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Galois bimodules and integrality of PI comodule algebras over
invariants

Pavel Etingof

Abstract. Let A be a comodule algebra for a finite dimensional Hopf algebra K over an
algebraically closed field k, and let AX be the subalgebra of invariants. Let Z be a central
subalgebra in A, which is a domain with quotient field Q. Assume that Q ® z A is a central
simple algebra over Q, and either A is a finitely generated torsion-free Z-module and Z is
integrally closed in Q, or A is a finite projective Z-module. Then we show that A and Z
are integral over the subring of central invariants Z N AX. More generally, we show that
this statement is valid under the same assumptions if Z is a reduced algebra with quotient
ring O, and Q ®z A is a semisimple algebra with center Q. In particular, the statement
holds for a coaction of K on a prime PI algebra A whose center Z is an integrally closed
finitely generated domain over k. For the proof, we develop a theory of Galois bimodules over
semisimple algebras finite over the center.
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1. Introduction

The goal of this paper is to prove a noncommutative analogue (for PI algebras) of
Skryabin’s integrality theorem for coactions of a finite dimensional Hopf algebra K
on a commutative algebra A. In [12], Theorem 2.5 and Proposition 2.7, Skryabin
showed under a very minor assumption (that A has no nonzero nilpotent K-costable
ideals, which is not needed in positive characteristic) that such an algebra A is
integral over its invariants AX. This is a generalization of the classical theorem
of E. Noether saying that a commutative algebra is integral over its invariants under
a finite group action. !

We extend Skryabin’s result to the case when A is a noncommutative PI algebra
over an algebraically closed field k, under some assumptions. Namely, let Z C A be

ISkryabin’s result is a generalization of Noether’s theorem because an action of a finite group G on
A is the same thing as a coaction on A of the Hopf algebra Fun(G) of functions on G with values in the
ground field.
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a central subalgebra which is a domain, such that A is a finitely generated Z-module.
We show in Theorem 3.1 that if (I) Q ® z A is a central simple algebra over O (where
Q is the quotient field of Z), and (II) A is a projective Z-module, or A is a torsion
free Z-module and Z is integrally closed in Q, then Z and hence A4 is integral over
Z N AKX In particular, we show that this property holds for a coaction of K on a
prime PI algebra A whose center Z is an integrally closed finitely generated domain
over k. 2 Further, we show that the degree of Q over QX (the field of quoteints of
Z N AX) divides the dimension of K (Proposition 3.9).

We also generalize these results to the case when Z is not necessarily a domain.
Namely, we show in Theorem 5.1 that the same integrality result holds if Z is a
reduced algebra, and Q ®z A is a semisimple algebra with center Q. Finally, in
Proposition 5.4 we generalize the divisibility result of Proposition 3.9.

Skryabin’s proof is based on the freeness theorem for finite dimensional Hopf
algebras over coideal subalgebras, which he uses to show that A has invariant
characteristic polynomials. Our proof is ideologically similar to Skryabin’s proof.
Namely, we show that the coefficients of the minimal polynomial and the character-
istic polynomial of the operator of right multiplication by z € Z on Q ® z A belong
to Z and are K-invariant. However, in the noncommutative setting the coaction does
not give rise to coideal subalgebras, so we use a different method, based on minimal
polynomials. 3

Namely, we develop a theory of Galois bimodules over fields and, more generally,
over central simple algebras and semisimple algebras finite over the center, which
may be of independent interest. For an algebra A, a Galois A-bimodule of rank d
is an A-bimodule P which is free of rank d on each side, and satisfies the equation
P ®4 P = P?. We prove a classification theorem for Galois bimodules over a field
L (Theorem 2.31) which says that such a bimodule is simply a multiple of L ® g L,
where F is the center of P, i.e. the largest subalgebra of L over which P is linear.
Similarly, we show that any Galois bimodule over a central simple algebra B over
a field L is a rational multiple of B ® p B (Proposition 2.37). The same statement
holds more generally (for connected Galois bimodules) if B is a semisimple algebra
which is finite over its center (Proposition 4.6). 4

The theory of Galois bimodules is applied to the problem of invariants in the

2In the case when K is basic (i.e., K™ is pointed), similar (but not equivalent) results were obtained
by A. Totok in [15], Theorem 2.5. Also, some results about integrality and finiteness of noncommutative
module algebras over invariants are obtained in [1].

3We expect, however, that by using the results of [13] on projectivity and freeness over comodule
algebras, one can obtain different proofs of our results, which are more direct generalizations of the
arguments of [12].

4We also introduce the notion of a weakly Galois bimodule, replacing the condition that P ® 4 P =
P4 by a weaker condition that P ® 4 P is contained in PN for some N, and show that much of the
theory of Galois bimodules in fact goes through for weakly Galois bimodules. Finally, we study quasi-
Galois bimodules over commutative semisimple algebras L, i.e. bimodules P finite on both sides and
such that P ®; P = P and provide their classification (Theorem 4.2).
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following way. We show that the Hopf coaction of K on A makes the tensor product 3
0 ®z A ® K into a Galois bimodule over the algebra Q ®z A. This allows us
to establish the invariance of the characteristic polynomials of the right action of
z € Z on Q ®z P and thus obtain the desired integrality result (Theorem 3.1,
Theorem 5.1). ¢

We also relate Galois bimodules to tensor subcategories of the tensor category of
bimodules over a field studied in [7] and of the tensor category of bimodules over
a central simple algebra, and explain that these subcategories are twisted forms of
categories of bimodules over semisimple algebras in the sense of [2].

Finally, our approach motivates the definition of a new invariant of a Hopf
coaction on a central simple algebra — its Galois group. It would be interesting
to study this invariant further.

The paper is organized as follows. In Section 2 we develop the theory of Galois
and weakly Galois bimodules over fields and central simple algebras, and obtain the
classification of Galois bimodules. In Section 3, we apply the theory of Section 2
to prove the integrality theorem (Theorem 3.1) in the case when Z is a domain, and
discuss various consequences and examples. In Section 4 we develop the theory of
Galois bimodules over semisimple algebras finite over the center, and obtain their
classification. In Section 5 we apply the results of Section 4 to obtain integrality
(Theorem 5.1) in the case when Z is a reduced algebra. Finally, in Section 6
we discuss the connection of the theory of Galois bimodules for fields with tensor
subcategories of the category of bimodules over fields discussed in [7].

Acknowledgements. This work was partially supported by the NSF grant DMS-
1000113. The author is very grateful to Chelsea Walton for introducing him to this
field, for many useful discussions and ideas that inspired this work, and for helpful
comments on this paper.

2. Galois bimodules

2.1. Bimodules. Let P be a bimodule over a unital ring A. Then we have a
homomorphism ¢p : A°’? — End4(P) induced by the right action of A. We will
denote ¢ p just by ¢, when no confusion is possible.

Assume from now on that P is free of rank d > 1 as a left module. Then, fixing
an identification P =~ A< as left modules, we can view ¢p as a homomorphism
A — Maty (A).

5Throughout the paper, ® without subscript will denote the tensor product over the ground field k.
§When we pass from A to the associated Galois bimodule, we forget almost everything about the
coaction, but remember just enough to study the invariants of the coaction in the center of A.
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Definition 2.1. We say that P is linear over a central subring k C A if the left and
right action of k coincide on P. The center of P is the set Z(P) of z € A such that
zx = xz forall x € P,i.e. such that ¢p(z) = z - 1d.

Remark 2.2. 1. An A-bimodule linear over k is the same thing as a left module over
A Qp AP,

2. Z(P) C A isthe maximal central subring of A over which P is linear. Indeed,
if z € Z(P) then forany x € P,a € A, (az)x = a(zx) = a(xz) = (ax)z =
z(ax) = (za)x, hence za = az since P is free over A. Thus z belongs to the center
of A.

Let P be a bimodule over a field L which has dimension d as a left and right
L-vector space.

Definition 2.3. We say that P is split if for each a € L, the eigenvalues of ¢p (a)
are contained in L. In this case, we say that P is split separable if in addition the
matrices ¢ p(a) are diagonalizable for all a.

Given an algebra A and an automorphism g € Aut(A4), let Ag denote the A-
bimodule which is A as a left A-module, while the right A-action is multiplication
twisted by g:aoxob =axg(b) fora,x,b € A.

Lemma 2.4. An L-bimodule P is split if and only if it has a finite filtration whose
successive quotients are of the form Lg, where g € Aut(L). Moreover, a split L-
bimodule P is separable if and only if it is semisimple as a bimodule.

Proof. Assume P is split. Then there exists a basis vy, ..., vg of P as a left vector
space in which ¢p(a) are upper triangular for all @ € L. Let F; P be the span of
V1,...,0;. Then Fq is a bimodule filtration, and F; 1 P/F; P is L with the usual
left action of L and right action given by some field embedding g; : L — L. Since
P has dimension d as a right vector space, these embeddings are all isomorphisms.
Thus, F;+1 P/F; P = Lg; for some g; € Aut(L). Conversely, it is clear that any
bimodule having a filtration with successive quotients Lg is necessarily split.

Now, if P is separable, then the basis {v; } can be chosen in such a way that the
matrices ¢p(a) are diagonal, so we get that P = @;Lg;, i.e. P is semisimple.
Conversely, if P is semisimple then the filtration Fe must split, which implies that
P is separable. The lemma is proved. O

2.2. Galois and weakly Galois bimodules.

Definition 2.5. A weakly Galois bimodule over A of rank d > 1 is an A-bimodule
P such that P =~ A as a left and right A-module, and P ® 4 P is contained in PV
as an A-bimodule for some N. If moreover P ® 4 P =~ P? as an A-bimodule, then
we call P a Galois bimodule of rank d .
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Example 2.6. 1. A% is a Galois A-bimodule of rank d.

2. If every right-invertible element of A is left-invertible, and if P is a Galois
A-bimodule of rank 1 then P = A. Indeed, ¢ : A — A is a homomorphism which
makes A into a free right module of rank 1 over itself. This means that ¢ is injective.
Fix a generator x € A of this module. Then for any y € A there exists a, € A such
that y = x¢(a,). In particular, 1 = x¢(a;), hence x is right invertible and thus
invertible. So the equality xy = x¢(ay,) implies y = ¢(axy), i.e. ¢ is surjective,
and hence an automorphism. Moreover, since P is a Galois bimodule, ¢? = ¢
modulo inner automorphisms, hence ¢ is inner and we can assume that ¢ = Id, as
claimed.

3. If A is a commutative algebra, and B is an A-algebra which is free of rank d
as an A-module (e.g. if B is a field extension of degree d of a field A) then B ® 4 B
is a Galois bimodule over B of rank d.

4. Let G C Aut(A) be a finite subgroup, let ny > 0 be integers, and let P =
@®gec(Ag)"s. Then P is a weakly Galois A-bimodule of rank d = ), ng.
Moreover, if all ng are equal, then P is a Galois A-bimodule.

Lemma 2.7. (i) Suppose that B is an extension of A such that B is isomorphic to
A" as an A-bimodule (for instance, if A C B is a field extension of degree n). In this
case, if P is a Galois (respectively, weakly Galois) bimodule of rank d over A, then
B ®4 P ®4 B is a Galois (respectively, weakly Galois) bimodule of rank dn over
B.

(1) If P is a Galois (respectively, weakly Galois) bimodule over A of rank d
linear over k, and B is another k-algebra, then P ®; B is a Galois (respectively,
weakly Galois) bimodule over A @ B of rank d. For instance, for B = Mat,, (k),
we have that P @ B = Mat,,(P) is a (weakly) Galois bimodule over B.

(iii) If B is a central simple algebra with center A and dimy B = m?, then the
restriction to A of any Galois (respectively, weakly Galois) B-bimodule P of rank d
is a Galois (respectively, weakly Galois) bimodule of rank dm?.

Proof. (i) Let P be a Galois (respectively, weakly Galois) A-bimodule of rank d.
Then it is clear that under the assumptions of (i), B ® 4 P ® 4 B is free as a left and
right B-module of rank dn. Also

BR4P®4BRpBR®4PR4B=(B®4P Qs P ®yqB)",

which equals (B ® 4 P ® 4 B)?" (respectively, is contained in (B ® 4 P ® 4 B)V"
for some N), as desired.
(ii) This follows from the fact that (P ®; B)® 40, B (P ®x B) = (P®4P)g, B.
(iii) We have B ® 4 B°? =~ End4(B), so any B-bimodule linear over A is a
multiple of B. In particular, B ® 4 B = B™ as a B-bimodule. Thus, P ®4 P =
PRpB®R®4BRp P =(P Rp P)mz, which implies the statement. O
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2.3. Galois bimodules coming from Hopf coactions. Let K be a finite dimen-
sional Hopf algebra over an algebraically closed field k£ with coproduct A, counit ¢,
and antipode S. Let A be a (unital) k-algebra. Recall ([10]) that A is called a
right K-comodule algebra if it is equipped with a coactionmap p : A > A ® K
which is an algebra homomorphism, and such that it equips A with a structure of a
K-comodule, i.e.,

(p®@ D(pa)) = (1® A)(p(a)). (1 ®¢)(p(a)) =a. ac A.

Now suppose that A is an algebra with a coaction of a finite dimensional Hopf
algebra K of dimension d. So we have a coaction map p : A —> A ® K. This
map equips the tensor product P := A ® K with a structure of an A-bimodule, via
aoxob:=(a®1)xp),a,be A, xeP.

Proposition 2.8. P is a Galois bimodule over A of rank d. Moreover, one has
Z(P) = Z(A)K, where Z(A)X = Z(A) N AK is the subalgebra of central
invariants of A.

Proof. This is well known, but we will give a proof for reader’s convenience.
It is clear that P = A< as a left A-module. Let us show that this is also the case
as a right module. To this end, define the linear map ¢ : A ® K — A ® K by

V(a®y)=(1® y)p(a). Then
V(a1 ® y)p(az) = (1 ® y)p(ar)p(az) = (1 ® y)plaiaz) = ¥(ar1a2 ® y),

which shows that ¥ is a homomorphism of right modules, where the target module
is just the tensor product of A with the vector space K. So it is enough to show that
Y is an isomorphism. To do so, define anothermap £ : A ® K — A ® K by

Ea®y)=(1®y)(1®S ) (p).

Then it is easy to check that & is the inverse of ¥, which implies that i is an
isomorphism.

Finally, let us show that P ® 4 P is isomorphic to P¢. Actually, the coaction
gives rise to an explicit isomorphism. Consider the linear map 7 : P @4 P —
P ® K =A® K ® K defined by the formula

(a1 ® y1 ®az ® y2) 1= (a1 ® y1)p(az) ® y».
It is easy to see that this map is well defined, is an isomorphism, and commutes with
the left action of A in the first component. Identifying P ® 4 P with A ® K ® K
using t, we can transport the A-bimodule structure of P ® 4 P to A ® K ® K, and
the transported structure is given by

aoxob=>@x®11)(1QA)pb)), xc AQK®K,a,b e A.

So it remains to note that K ® K is isomorphic to K ® K, as a right K-module,
where K. is K with the trivial action of K.
The last statement follows directly from the definitions. O
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2.4. Basic facts from Galois theory. Recall the basic setup of Galois theory ([9]).
Let L D F be a normal algebraic field extension, i.e. L is the splitting field over F
of a family of polynomials. Let Fpe be the perfect closure of F in L, i.e. the field of
elements whose p”-th power is in F for some n if char F = p (in characteristic zero,
by definition Fer = F). Let Ly be the field of separable elements in L over F, i.e.
those whose minimal polynomials are separable (have a nonzero derivative). Then L
is a separable extension of Fp (see [9], Chapter 5, Proposition 6.11), and a purely
inseparable extension of L, and [L : Fperf] = [Lgep : F]. Moreover, this number
(finite or infinite) equals the order of the Galois group G = Gal(L/F), which is
the group of automorphisms of L which acts trivially on F. One has LY = perfs
GLgep = Lyep,and LG = F.

2.5. Galois and weakly Galois bimodules over fields.

Proposition 2.9. Let P be a bimodule over a field L which is finite dimensional on
both sides and such that P ® 1, P is contained in a multiple of P. Then the right and
left dimensions of P coincide, so that P is a weakly Galois L-bimodule.

Proof. Letdimy, P = d, dim P;, = d’. The bimodule P has finite length (which is
< min(d, d’)). Let {R,,} be the simple composition factors of P, and let r_, ry be
the minimal and maximal ratio of the right dimension and the left dimension among
the R,,. Since P ®; P is contained in PV, the bimodule P®S is contained in
PN 571, so the ratio 7 of the right dimension to the left dimension of P®* satisfies
the inequalities r— < ry < rq. Butry = (d’/d)’. Thus, r— < (d'/d)’ < ry. This
implies that d’ = d. O

Let P be a weakly Galois bimodule of rank d over a field L. Let ¢ = ¢p :
L — Maty (L) be the corresponding right action map. Foreacha € L, let u,(¢) =
?io ci (a)t* be the minimal polynomial of the matrix ¢ (a) over L (cg, = 1).

Proposition 2.10. The coefficients of (4 (t) belong to Z(P).

Proof. Let us view ¢ as a map L — Maty (k) ®x L. Applying ¢ in the second
component to the identity

da
pa(@(@) =) (1 ®ci(a)g(a) =0,
i=0

we have
da

3 (1 ® ¢l (@) ® $)(p(@)’ =0,

i=0

On the other hand, ¢pg, p(a) = (1®¢)(¢(a)) so since P® P is contained in PV,
we see that the matrix (1 ® ¢)(¢(a)) is conjugate to the restriction of Idy ® ¢(a) to
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an invariant subspace. This implies that

da
Y (1®1®¢(@)(1 & ¢)(¢(a)’ =0.
i=0

So, subtracting, we get

da—1

D 1@ @i(@) =18 ci(@)(1 ® ¢)(¢(a) =0 2.1)

i=0

(note that the terms corresponding to i = d, cancel since ¢z, (a) = 1).

Let C = L¢ (L) be the subalgebra of Mat, (L) generated by L and ¢(L). Then
C is a commutative algebra over the field ¢ (L), and equation (2.1) can be viewed as
an identity in Maty (k) ®; C C Maty (k) ®x Maty (k) ® L.

Since 1q(¢) has degree d,, the matrices ¢(a)’ € Maty(k) ®; L for i =
0,...,d; — 1 are linearly independent over L. This implies that the matrices
(1 ® ¢)(¢p(a)’) € Maty (k) ®x ¢p(L) fori =0,...,d, — 1 are linearly independent
over ¢ (L), hence over C. However, equation (2.1) provides a linear relation between
them over C. So this relation must be trivial, which implies that ¢ (c; (a)) = 1Qc¢;(a)
for all i, as desired. O

Proposition 2.11. If P is a weakly Galois L-bimodule, then L is an algebraic
extension of the center Z(P).

Proof. Proposition 2.10 implies that for every a € L, ¢(a) satisfies a monic
polynomial equation over Z(P), namely the equation u,(¢) = 0. Hence, a itself
satisfies the same equation. Thus, L is an algebraic extension of Z(P). O

Proposition 2.12. If L has characteristic zero or p > d, then the matrix ¢p(a) is
semisimple for all a € L, i.e., its minimal polynomial v, has distinct roots (over an
extension of L).

Proof. Let Z = Z(P), and consider the subfield F of ¢ (L) generated over Z =
¢ (2) by ¢(a). Then by Proposition 2.10, F = Z[t]/(uq(t)), so it is a finite field
extension of Z of degree < d. Since we are in characteristic zero or p > d, this
extension is separable, so i, has distinct roots and ¢ (a) is semisimple. O

Remark 2.13. Proposition 2.12 is false in positive characteristic if p divides d. For
example, let Z = k(t), where k has characteristic p, let L = Z[u]/(u? —t), and let
P =L ®z L. Then ¢p(u) is the operator of multiplication by x in L[x]/(x? —t),
which is not semisimple, since (x — u)? = 0 but x — u # 0. The extension L/Z is
not separable in this case.
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2.6. Split Galois and weakly Galois bimodules over fields.

Proposition 2.14. (i) If P is a split weakly Galois L-bimodule then L is a normal
extension of Z(P).

(i) Let L be a finite field extension of F. The Galois L-bimodule L @ L is split
if and only if L is a normal extension of F.

(iii) In characteristic 0 or p > d all split weakly Galois L-bimodules of rank d
are separable.

Proof. (i) By Proposition 2.10, the minimal polynomial of ¢ (a) € ¢ (L) over Z(P)
is (q. Hence, the minimal polynomial of @ € L over Z(P) is also g (as ¢ : L —
¢ (L) is an isomorphism). Thus, L is the minimal common splitting field for the
polynomials p,,a € L, so it is a normal extension.

(i1) It is clear that the center of the L-bimodule L ® r L is F, so the “only if”
part follows from (i). To prove the “if” part, note that the eigenvalues of ¢ (a) for
a € L are the roots of the minimal polynomial of @ over F. Since L is normal, all
the roots of this polynomial are in L, i.e. L ® r L is a split Galois bimodule.

(iii) This follows from Proposition 2.12. O

Now we will describe the structure of split Galois and weakly Galois bimodules.
Recall Example 2.6(4). Given a finite subgroup G C Aut(L) and integers ngy > O,
define the split separable weakly Galois L-bimodule

P, L,G):= ®gec(Lg)",

ofrank d = ) , g ng (wheren : G — Z is given by n(g) = ng). It is clear that
Z(P(n,L,G)) = L®. If ng = 1, then P(n, L, G) is a Galois L-bimodule, and we
will denote it by P(L, G). Itis easy to see that P(L,G) = L ®;c L.

Proposition 2.15. (i) All split separable weakly Galois L-bimodules P of rank d
are of the form P = P(n, L, G) with deG ng = d. This L-bimodule is Galois if
and only if ng = r is a constant function, with r|G| = d. Moreover, the group G is
completely determined by P.

(ii) Let P be a split Galois (respectively, weakly Galois) L-bimodule, and
let gr(P) be its associated graded bimodule under the socle filtration (as an L-
bimodule). Then gr(P) is a split separable Galois (respectively, weakly Galois)
bimodule, and it has the form given in (i).

Proof. (1) By Lemma 2.4, P =~ @leLg,- for some g; € Aut(L). Let G be the
set of all g;. Since P ® P is contained in PN for any i, j there is an m such
that g; o g; = gm. This means that the set G of all the g; inside Aut(L) is closed
under composition, so it is a finite subgroup’. For each g € G, let ny > 0 be the

7It is clear that a finite subset G of any group which is closed under multiplication is a subgroup.
Indeed, if g € G then by the pigeonhole principle g = g for some m > n, so g”~" = 1 and
gm—n—l — g—l_
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multiplicity of g among the g;. Then P = P(n,L,G), where n = (ng), which
proves the first statement.

Now assume that P is Galois of rank d. Then the element p := } , ;g8
satisfies the relation p> = dp. Also, since Dgheg = d, wegetp(}_,g) =
d(}_; g). Thus by the Frobenius—Perron theorem, there exists a positive integer
rsuchthat ) ngg =r) ,g,song =r, P =P(L,G)".

The group G is the group of all g € Aut(L) such that Lg occurs in P, so it is
completely determined by P. Part (i) is proved.

(i1) By Lemma 2.4, gr( P) is a split separable Galois (respectively, weakly Galois)
L-bimodule, and (i) applies. O

Remark 2.16. Over a field of characteristic p > 0, a split Galois bimodule may
fail to be separable (=semisimple). An example of such a Galois L-bimodule P is
given in Remark 2.13. This bimodule has length p, and all its composition factors
are copies of the trivial bimodule L.

2.7. Behavior of split weakly Galois bimodules under field extensions. Note that
if a Galois bimodule P over L is split, and if E is a finite field extension of L, then
the bimodule Q := E ®1 P ® E, which is a Galois E-bimodule by Lemma 2.7(i),
does not have to be split, even if E is Galois over L.

Example 2.17. Let L = C(¢) and G = Z/2 acting on L by t > —t¢. Let
E = Lul/(u?®—1-1).

Take the Galois bimodule P := P(L,G) over L, of rank 2. Then Q has rank
4. Consider the eigenvalues of the 4 by 4 matrix ¢o(u). They are ++/1 4 ¢ and
++/1 — ¢, and the last two don’t belong to E. Thus, Q is not split over E.

This happens because E is not Galois over LY (it has degree 4 over LY, while
the Galois closure has degree 8) and the automorphism g of L given by g(¢) = —¢
does not lift to E. More precisely, we have the following result.

Proposition 2.18. Let G C Aut(L) be a finite subgroup, and E a normal extension
of L. Then:

(1) The weakly Galois E-bimodule Q = E ®1 P(n,L,G) ® E is split if and
only if E is a normal extension of the center Z(P(n, L, G)) = LC.

(ii) In this case, gr(Q) = P(rn, E, G'), where G’ = Gal(E/L%) and r = [E :
Eep), so that we have an exact sequence

1 - Gal(E/L) - G — G — 1,

and where we denote the pullback of n to G’ also by n. Moreover, if E is separable
over L, we have Q = P(n, E, G').
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Proof. (i) The bimodule P(m, L, G) contains P(L,G) and is contained in its
multiple. Also, we have

E®LP(L,G)®LE=E®LL®LGL®LE=E®LGE,

so (i) follows from Proposition 2.14(ii).

To prove (ii), note that Q has a filtration with successive quotients £g ®1 E,
g € G (ng copies of each), and Eg ®, E has a filtration whose successive quotients
are Eh, where h € g-Gal(E /L) (each occurring r times). This implies the statement
on the structure of gr(Q). Finally, if E is separable over L, then Q is separable too,
and thus Q = P(n, E, G'). O

2.8. General weakly Galois bimodules. Let L be a field and P be a weakly Galois
L-bimodule of rank d.

Theorem 2.19. (i) Let E be the smallest field extension of L that contains all the
eigenvalues of ¢p(a) := ¢p(a), a € L. Then E is a finite extension of L and a
normal extension of Z(P).

(i) E ®r P ®1 E is a split weakly Galois E-bimodule of rank d[E : L], which
is Galois if so is P.

(iii) We have gr(E ® 1, P @ E) = P(n, E, G), where G is a finite subgroup of
Aut(E) containing H := Gal(E /L) as a (not necessarily normal) subgroup.

(iv) P contains a copy of the trivial bimodule L.

(v) If F is any finite extension of L then Z(F @1 P ® F) = Z(P). In
particular, Z(F ®, P(n,L,G) ®; F) = LS.

(vi) The center Z(gr(E ®1 P @1 E))is L :== LN E% = EC.

(vii) P is split if and only if Gal(E /L) is normal in G.

Proof. (i) Consider the commutative finite dimensional L-algebra C = L¢(L) C
Mat; (L). Let ay,...,as € L be such that ¢(ay),...,¢(as) are generators of C
over L. Consider the field E obtained from L by adding the eigenvalues of ¢ (a;),
i =1,...,s. Then E. is finite over L, and there exists a basis B of Ef over E, in
which the matrices ¢ (a;) are upper triangular. In this basis, the matrix ¢ (a) is upper
triangular for all @ € L, since it is a polynomial of ¢(a;) over L. Thus, E. contains
all the eigenvalues of ¢(a), so Ex = E, and hence FE is finite over L.

It is clear that E is a normal extension of Z(P), since it is the splitting field of
the minimal polynomials of ¢ (a) for a € L, which according to Proposition 2.10
have coefficients in Z(P).

(ii) By Lemma 2.7(i), £ ® 1 P ®1 E is a weakly Galois E-bimodule. Let A; :
L — E,j=1,...,d,be the eigenvalue homomorphisms for ¢, i.e. A, (a) are the
diagonal entries of ¢(a) in the basis . Since E is normal over Z(P), for any i,
there exists an automorphism g; € Gal(E/Z(P)) such that A;(a) = gia for any
a € L. This implies that £ Ai @ L E = Eg; ® E, which means that the associated



578 P. Etingof

graded bimodule gr(E @1 P ®1 E) of E ®;, P ® E under the socle filtration is
the direct sum of bimodules Eg;h, where h runs through Gal(E/L). This implies
that £ ®1 P ®p E is a split weakly Galois E-bimodule, which is Galois if so is P,
proving (ii).

(iii) Given (ii), Proposition 2.15 applied to gr(E ®; P ® E) implies that the
set G of elements g;# must form a finite subgroup of Gal(E/Z(P)) containing
H :=Gal(E/L),and gr(E ® P ®; E) = P(n, E, G). Thus (iii) is proved.

(iv) By (iii), for some i = iy, A; |z has to be the identity. Let us take a common
eigenvector v € P of ¢(a) with eigenvalue A;,(a) = a: ¢(a)v = av foralla € L.
Then Lv C P is a subbimodule isomorphic to L. This proves (iv).

(v) Note first that £ ® 7, P ®, E contains P as an L-bimodule, so L N Z(E ®;,
P ®p E) = Z(P). Also note that by (iv), £ ®1 P ® E has a subbimodule
isomorphic to £ ®p E. Hence Z(E ®1 P ®1 E) C L, which implies that Z(E ®,
P ®p E) = Z(P), as desired.

(vi) This follows from (iii).

(vii) If P is split, Proposition 2.18 implies that Gal(E£/L) is normal in G.
Conversely, if Gal(E/L) is normal in G, we see that L is a Galois extension of
LY, and Gal(L/L%) = G/Gal(E/L), so the statement follows. O

Example 2.20. If P has the same dimension over L as a right and left vector space
but is not weakly Galois, then there may be no extension E such that E ®; P ®p E
is split. For example, consider L = C(¢) and P = L & L, with the left and right
actions defined by

(f o(a,b)og)(t) = (f(Da(n)g(t®), f(t*)b(1)g(1)),

Then P is 3-dimensional over L on both sides, and the maps A; are defined by
A1) = 12, Ao(t) = t'/2, X5(t) = —t'/2. So the splitting field E has to contain
112" for all n and therefore cannot be finite over L. Note that Z(P) = C,so L is a
transcendental extension of Z(P).

Corollary 2.21. Let P be a Galois bimodule over a field L of degree d.
(i) Some power )(Z,V“ of the characteristic polynomial y, of ¢p(a), a € L isa
power of its minimal polynomial j14. In characteristic zero or p > d, one may take
N, = 1, and in characteristic p in general, one may take N, = p° for some s = s,
such that p* divides [L : Z(P)].2
(i) The coefficients C;(a) of)(flva belong to Z(P).

Proof. To prove (i), let P, = E ®1 P ®1 E, where E is the splitting field from
Proposition 2.19, and let D = [E : L]. Then for a € L the characteristic polynomial
of ¢p, (a) is the D-th power of the characteristic polynomial of ¢p(a). Also, the
minimal polynomials of ¢p(a) and ¢p, (a) coincide. So it suffices to check that

8We will show later in Corollary 2.32 that in fact one can always take N, = 1, but this is a more
difficult result.
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some power of the characteristic polynomial of ¢p, (a) is a power of its minimal
polynomial. But by Proposition 2.19, P, is split, and gr(P«x) = P(E,G)". So the
characteristic polynomial y(¢) of ¢p, (a) can be written in the form

@) =J]c-ga,

geG

while the minimal polynomial is

pa®) = [T @—p)Ne

beO(a)

where O(a) is the orbit of a under the action of G, and N, = 1 for characteristic
zero or p > d and a power of p dividing [L : Z(P)] in characteristic p in general.
This shows that y*(t)Ne = 1, (t)K, where K = r - |Stabg ()|, and Stabg (a) is the
stabilizer of @ in G. Thus (i) is proved.

(ii) follows from (i) and Proposition 2.10. O

2.9. Finiteness over the center. Let P be a weakly Galois bimodule over a field L
of rank d.

Proposition 2.22. [fcharL = 0, or charL > d then L is a finite extension of Z(P)
of degree < d, whose degree divides d if P is a Galois bimodule.®

Proof. The result follows Proposition 2.11 and the Primitive Element Theorem ([9]),
since by Proposition 2.10 and Corollary 2.21(i), every element of L satisfies a
polynomial equation over Z(P) of degree < d, which has degree dividing d if
P is Galois (namely, the equation w4 () = 0). O

Corollary 2.23. In characteristic zero or p > d, any weakly Galois bimodule of
rank d is semisimple as a bimodule.

Proof. Any weakly Galois L-bimodule is a bimodule over the algebra L ® z(p) L,
which by Proposition 2.22 is a finite dimensional semisimple algebra. O

2.10. Galois bimodules containing L ® z(p) L.

Proposition 2.24. Let P be a bimodule over a field L, finite dimensional as a left
vector space, such that PN contains L ® z(py L for some N. Then L ® z(py L is in
fact a direct summand in PN, and moreover in P.

oIt will be shown later in Proposition 2.30, Proposition 2.24, Theorem 2.31 that this result is in fact
valid in any characteristic.
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Proof. It is clear that [L : Z(P)] < oo. Thus, L ® z(p) L is a Frobenius algebra,
so it is an injective module over itself. Hence the inclusion of L ® z(p) L into PN
splits, so L ® z(p) L is a direct summand in PN . Furthermore, L ®zp) Lisa
finite dimensional commutative algebra, so it has multiplicity free decomposition
into indecomposable projective modules. Hence L ® z(p) L is a direct summand in
P, as desired. O

Proposition 2.25. Suppose that P be a Galois L-bimodule containing L ® z(p) L
as a direct summand.’® Then P is a multiple of L @ z(p) L.

Proof. Let [L : Z(P)] = m < oco. We have P = (L ®zp) L)" & M, where
r > 1, and M does not have direct summands of the form L ® z(py L. We have
dim M = d —rm as aleft and a right vector space. Since P ® P =~ P?, and since

LRzpyLOLM=M®, LQzpy L =(LQzpy L) ™,
we have
PRLP = (LRzpy L) "2@ ™M gMe M~ P!>~ (Lozp L) &M

Since L ®z(p) L is a commutative algebra and hence has a multiplicity free
decomposition into projective modules over itself, M ¢ does not contain L ® zp) L
as a direct summand. This implies that rd > r?m + 2r(d —rm),ie., r?>m > rd, or
rm > d (asr > 1). Hence M = 0, which implies the result.! OJ

2.11. Purely inseparable weakly Galois bimodules.
Definition 2.26. A split weakly Galois L-bimodule P of rank d is said to be purely
inseparable if gr(P) = L.

Let P be a split weakly Galois L-bimodule of rank d. Then gr(P) is separable,
so by Proposition 2.15, gr(P) = P(n, L, G) = @®gecg(Lg)"s, where G C Aut(L)
is a finite subgroup and ngy > 0. Let ' = L.

Lemma 2.27. (i) The L-bimodule L @ r P ® L embeds into PV for some N.

(1) The restriction of P to F is a purely inseparable weakly Galois F -bimodule
of rank d|G|.

Proof. (i) One has L ® r L = ®gegLg. Now, for each g € G pick an
eigenvector vy € P of the operators ¢ (a) with eigenvalues g(a). Then @gegLvy =
GBgeng =L®pL.Thus, LrpL C P,soL®rP = LQJrLR® P C PR P C
P", and similarly L ® P ®p L C P,

(ii) Wehave P ®r P = PR L®fF P C P ®1 P" C P"*. This implies
that P | is a weakly Galois F-bimodule of rank d |G |. Moreover, P | is split, and
gr(P|r) = L¢ = F416! a5 desired. O

10Tt follows from Proposition 2.24 and Proposition 2.30 below that in fact any Galois L-bimodule has

this property.
UThis proof is based on the idea of “projectivity defect”, [4], Section 2.5.
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2.12. The restricted Lie algebra of derivations attached to a purely inseparable
weakly Galois L-bimodule. This and the next subsection are devoted to studying
the structure of purely inseparable weakly Galois bimodules. This is nontrivial only
in characteristic p > 0, as in characteristic zero by Proposition 2.12, all purely
inseparable weakly Galois L-bimodules are multiples of L.

Let charL = p > 0. Let M be an extension of the trivial L-bimodule L by
itself. Such extensions are classified by Ext .. (L, L) = Der(L), the space of
derivations of L. For a derivation D of L, denote by M(D) the corresponding
bimodule. Namely, M(D) = L[x]/x?, and the left action of L is as usual, while the
right action is given by voa = v(a + xD(a)) (such bimodules appear in [8] and are
called “self-representations of fields”). It is easy to see that the bimodules M (D)
and M (D,) are isomorphic if and only if there exists a € L* such thataD{ = D>.

Now let P be a purely inseparable weakly Galois L-bimodule. Let us say that
a derivation D : L — L is P-compatible if M (D) is a subbimodule of P (or,
equivalently, of some multiple of P, as M (D) has length 2). Let D(P) be the
set of all P-compatible derivations. Clearly, it is a vector space over L under left
multiplication.

Proposition 2.28. (i) D(P) is finite dimensional over L.

(ii) D(P) is closed under commutator.

(iii) D(P) is closed under taking p-th powers. Thus, D(P) is a finite-
dimensional restricted L-Lie ring of derivations of L in the sense of Jacobson [8].

Proof. (i) Consider the socle filtration of P: F{P C F,P C ---, where F; P
is the maximal semisimple subbimodule, F, P/F; P is the maximal semisimple
subbimodule of P/F; P, etc. Then any inclusion of M (D) into P is actually an
inclusion into F, P. Now, the bimodule F;, P is an extension of V, = F, P/F; P ~
L™ by V3 = F1P =~ L™, Thus, it defines a linear map £ : Hom(Vy, V2) —
Exti_bimod(L, L) = Der(L). It is clear that M (D) is contained in P if and only if
D € Im(§). Thus, D(P) = Im(§), so D(P) is finite dimensional.

(i) Let X,Y € Der(L). Consider the tensor product M(X) ® 1 M(Y) QL
M(X) ®, M(Y). This product is isomorphic to L[xy, y1,x2, y2]/(x3 = y? =
x7 = y3 = 0) with the usual left action of L, and right action given by

voa=v-(Id+x;X)Id+ y1Y)Id + x2 X)(d + y>Y)(a)
=v(a + (x1 + x2)Xa + (y1 + y2)Ya
+ (x1 + x2)(y1 + y2)XYa + xay1[Y, X]a +--+).

Now consider the 2-dimensional subspace N in this product spanned by v; =
X1X2Y1Y2 and v = (X7 — x2)(¥1 — y2). Then from the last formula we get
vy oa = via,and v, oa = vaa + vi[X, Y]a. Thus, N = M([X,Y])).

Now assume that X,Y € D(P). Then M(X) @ M(Y) ®; M(X) ®1 M(Y)
and hence N is contained in P®*, which is contained in a multiple of P, since
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P is a weakly Galois bimodule. Hence N = M([X,Y]) is contained in P, so
[X,Y] € D(P), as desired.
(iii) Consider the tensor power M (D)®2?P~1, This is the algebra
L[x1, ..., X2p—1)/(x} =0,i =1,....2p—1)

with the usual left action of L and right action given by

2p—1 2p—1
voa=wv l_[ (Id+ x;D)(a) = v Z ej(x1,...,x2p—1)D7(a),
i=1 j=0

where e; are the elementary symmetric functions. Consider the vectors vi = ez,

and v, = e,_;. Since Zizﬁgl eit! = ]_[,261:11(1 + txx), we have

e i+je
jej = . i+j»
i€j j i+j

SO ep_1e; = (p_1.+j)ep_1+j = w%_lﬂ. This means that
ep—1ej =0forj =0,...,p—1,bute, 1€, = e3,_1. Sowe get vy oa = via
and v, 0 @ = vaa + vy DPa. Thus, M(D?) is contained in M(D)®?P~1. Thus, if
M(D) is contained in P, then M(D?) is contained in P®2P~!, which is a multiple

of P. Thus, M(D?) is contained in P and hence D? € D(P), as desired. O

2.13. The containment theorem for purely inseparable weakly Galois L-
bimodules.

Theorem 2.29. Let P be a purely inseparable weakly Galois L-bimodule of rank d.
Then L is a finite purely inseparable extension of Z(P). Moreover, P contains the
bimodule L @ z(py L.

Proof. The theorem is trivial in characteristic zero, so we will assume that charl, =
p > 0.

We will prove the theorem by induction in the length £(P) of the socle filtration
of P, starting from the trivial case £ = 1.

By Jacobson’s theorem [8], if D is a finite dimensional restricted L-Lie ring of
derivations of L, then [L : LP] < oo. Therefore, Proposition 2.28 implies that L is a
finite extension of the field of invariants F := LP®) of exponent 1 (i.e., L? C F).
Let[L: F] = p™and L = F(x1,...,xm), where x/ = a; € F. Define derivations
Dy,..., Dy of Lover F by Di(Xj) = 51']'.

Let D be a derivation of L such that D? = 0. Consider the L-bimodule
M(D)®P~!, and consider the subbimodule Q(D) in it generated by 1. As explained
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in the proof of Proposition 2.28, this subbimodule is spanned over L by e;,
i =0,...,p—1(where eg = 1), and the right action is defined by

p—1
voa = vZeiDi(a).

i=0

Note that ¢; = ’;—: where u = e, so Q(D) = L[u]/(u?), and we can rewrite the
last formula as
voa =vexp(uD(a)).

Thus, Q(D1) ®L -+ ®L Q(Dm) = Llup,...,um)/@d = -+ = ub = 0),
with the usual left action of L and the right action given by v o a = vy(a),
where y(x;) = x; + u;. Thus, Q(D1) & ... 1 O(Dy) =~ L ®F L as L-
bimodules, Now, Q(D;) is contained in a tensor power of P. Hence, Q(D1) ®r
... ®1 O(Dy) ® P is contained in a tensor power of P. Therefore, since
P is a weakly Galois bimodule, Q(D1) ®r, ... @1 Q(Dy) ®p P is contained
in a multiple of P, i.e. L ®F P is contained in PV for some N. Hence,
PRFP=P®.LQr P CP®PNcCP"™. This implies that P|r is a
purely inseparable weakly Galois F-bimodule with the same center Z(P).

Moreover, we have £(P|r) < £(P). Indeed, if F, is the socle filtration of P then
by construction F, P | g is semisimple (i.e., isomorphic to a multiple of F).

Thus, by the induction assumption, F is a finite purely inseparable extension of
Z(P). It follows that L is a finite purely inseparable extension of Z(P).

So to complete the induction and prove the theorem, it remains to show that P
contains L ®@z(p) L.

We have seen that L ® p L embeds into a tensor power, hence a multiple of P.
Since P is weakly Galois, this means that L ® r P Q r L = L ®fr L 1 P ®r
L ® r L embeds into a multiple of P. But by the induction assumption, P contains
F ®zp) F, hence L @ P ®F L contains L @z(py L. Hence L ®z(p) L is
contained in P for some N. Thus, by Proposition 2.24, L ® z(p) L is actually a
direct summand in P. The theorem is proved. 0

2.14. The classification theorem for Galois bimodules over a field.

Proposition 2.30. Let P be a weakly Galois L-bimodule. Then the bimodule
L ® z(p) L is contained in PN for some N. In particular, [L : Z(P)] < oc.

Proof. First assume that P is split. Let G be the set of g € Aut(L) such that
Lg occurs in gr(P), and let F = LC. Then by Lemma 2.27(ii), P|r is a purely
inseparable weakly Galois F-bimodule, with the same center as P. So by Theorem
2.29 it contains F' ® z(p) F. This means that L ® r P @ p L contains L @ z(p) L.
But we know from Lemma 2.27(i) that L  r P ® r L embeds into a multiple of P.
Thus, L ® z(p) L embeds into a multiple of P.
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Now consider the general case. Let E be the extension of Theorem 2.19, such
that the E-bimodule £ ®, P ®1 E is split. Then, as we have just shown, a multiple
of E ®; P ® E contains £ ® z(p)y E, which in turn contains L ® z(py L. But as
an L-bimodule, £ ®; P ® E is a multiple of P. So we get that L ® z(p) L is
contained in a multiple of P, as desired. O

Now we are ready to prove the main theorem about Galois bimodules.

Theorem 2.31. Let L be a field. Then any Galois L-bimodule P of rank d is a
multiple of L ® z(py L. In particular, [L : Z(P)] is finite and divides d.

Proof. By Proposition 2.30, L ® z(py L is contained in PN for some N. By
Proposition 2.24, this means that L ® z(py L is a direct summand in P. By
Proposition 2.25, this means that P is a multiple of L ® z(p) L, which implies the
theorem. O

Corollary 2.32. In Corollary 2.21, one may take N, = 1. Thus, if P is a Galois
L-bimodule, then the characteristic polynomial of ¢pp(a) is a power of its minimal
polynomial, and the coefficients C;(a) of this characteristic polynomial are in Z(P).

Proof. By Theorem 2.31, we only need to show that the statement holds for
P = L ®z(p) L. But in this case the minimal polynomial (i, and the characteristic
polynomial y, of ¢(a) are just the minimal and characteristic polynomials of the
operator M, of multiplication by « in L, regarded as a Z(P)-vector space. So, it is
clear that y, = ul, where r = [L : Z(P)(a)]. O

2.15. Galois bimodules over matrix algebras and central simple algebras. Let
L be a field.

Proposition 2.33. There is a natural bijection between isomorphism classes of
Galois bimodules over L of rank d and isomorphism classes of Galois bimodules
over Mat,, (L) of rank d, defined by P — Mat,,(P) as in Lemma 2.7(ii). The center
is preserved under this bijection.

Proof. We only need to construct the inverse. Suppose that Q is a Galois bimodule
for Mat,, (L) of rank d. Define the L-bimodules Q;; = E;; QF j;, where E ,, are
the elementary matrices. Clearly, these bimodules are all isomorphic, so we’ll call
them Q. We clearly have 0 ®7 O = Qd, and also mQ = EBiQ_ij = QFLjj,
which is of dimension dm over L on the right. Hence Q is of dimension d over
L on the right, and similarly on the left. The assignment Q +— Q is inverse to
P +— Mat,, (P), as desired.

The fact that the center is preserved is clear. O
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Corollary 2.34. Any Galois bimodule over Mat,, (L) is a multiple of
Mat,, (L ® zp) L).
Proof. This follows from Proposition 2.33 and Theorem 2.31. O

Definition 2.35. We will say that a Galois bimodule over Mat,, (L) is split if so is
the corresponding L-bimodule under the bijection of Proposition 2.33.

Now assume that B is a central simple algebra over L of dimension m?, and let
P be a Galois bimodule over B of rank d. Recall that by restricting from B to L, by
Lemma 2.7(iii) P is automatically a Galois L-bimodule of rank dm?, with the same
center.

Proposition 2.36. There exists a normal extension K of Z(P) finite over L which
is a splitting field for the algebra B and contains the eigenvalues of ¢p(a) for all
a € L. Moreover, K @ P ®;, K is a split Galois bimodule over Mat,,(K) of rank
d[K : L]

Proof. Let S be a finite extension of L which splits B, and let E be the extension of
Theorem 2.19. Let K be the normal closure over S - E over E. Then by Theorem
2.19, Proposition 2.18 and Proposition 2.33, the K-bimodule K ®; P ®1 K is a
split Galois bimodule over Mat,, (K) of rank d[K : L]. O

Corollary 2.37. If P is a Galois bimodule over B, then P s a multiple of
B® Z(P) B.

Proof. By Proposition 2.36 and Proposition 2.34, the Galois Mat,, (K )-bimodule
K ®p P ® K has the form Mat,,(K ® z(p) K)". So K®_, pm’ ® 1. K has the form
(Mat,,(K) ® z(p) Mat,,(K))", which as a B-bimodule is (B ® z(p) B)”‘z, where
n = [K : L]. On the other hand,

K®L P™ @, K =P™"

as a B-bimodule. So we get that pm’ = (B ®zp) B)", as desired. O

3. Invariants of K-comodule algebras finite over center

3.1. The main theorem. Let K be a finite dimensional Hopf algebra over an
algebraically closed field k. Let A be a (right) K-comodule algebra. We are
interested in the K-invariants AX of A4, i.e., the space of elements a € A such
that p(a) = a ® 1.12

12We note that many authors call these elements coinvariants and denote the space of such elements by
ACDK .
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Suppose that Z is a central k-subalgebra of A (not necessarily K-costable!3)
which is an integral domain, and let Q be the quotient field of Z.
Consider the following (redundant) list of assumptions on 4 and Z:

(1) A is finitely generated as a Z-module.
(2) Q ®z A is acentral simple algebra with center Q.
(3) A is a torsion-free Z-module.
(4) Z is integrally closed (in Q).
(5) Ais aprojective Z-module.
Our main result is the following theorem.

Theorem 3.1. (i) Under assumptions (1)—(4), Z and hence A are integral over
Z n AKX,

(i1) The conclusion of (i) also holds if conditions (3), (4) are replaced with
condition (5). In particular, it holds if A is an Azumaya algebra over Z.

(iii) If in addition Z is a finitely generated algebra over k, then in the situation
of (i) and (ii), A and Z are finitely generated modules over Z N AX, and thus A is a
finitely generated module over AX (on both sides).

(iv) If Z is a finitely generated algebra over k then in the situation of (i) or (ii),
sois Z N AK,

Theorem 3.1 is proved in the next subsection. We note that the proof of (i) uses
only the material up to Proposition 2.10, and the proof of (ii) only uses the material
up to Corollary 2.21 (inclusively). Parts (iii) and (iv) follow easily.

Remark 3.2. It is well known that a coaction of a noncommutative Hopf algebra
K on an algebra A does not have to preserve its center. The classical example is
K = A = k[G] being the group algebra of a nonabelian finite group G, coacting on
itself by its coproduct.

Remark 3.3. If A is commutative, conditions (1)-(4) imply that A = Z. Indeed, if
A is torsion-free and finite over Z, and coincides with Z after localization, then A is
contained in the integral closure of Z, which is Z if Z is integrally closed. Also, it
is clear that (1), (2) and (5) imply that A = Z if A is commutative.

Also note that the algebra A is necessarily a PI algebra, since by (2) and either
(3) or (5) it embeds into the central simple algebra Q ® 7 A.

Remark 3.4. In the case A = Z Theorem 3.1 says that Z is integral over ZX,
which is finitely generated as a ZX-module if Z is finitely generated over k. This
is a result of Skryabin ([12]) in the case of Z being a domain (Skryabin proves the
result more generally, when Z has no nilpotent K-costable ideals, and always in
positive characteristic).

BA K-costable subspace of a K-comodule is the same thing as a subcomodule.
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Example 3.5. Let A be a flat family of finite dimensional algebras parametrized by
an irreducible affine algebraic variety X over k, such that the fiber A, is a matrix
algebra for a generic point x € X (“flat family” means that A4 is projective over Z :=
O(X)). Suppose a finite dimensional Hopf algebra K coacts on A, not necessarily
preserving Z. Then conditions (1), (2), (5) are satisfied, and parts (ii), (iii), (iv) of
Theorem 3.1 apply. Also, these statements apply to the case when A = Mat,,(Z),
where Z is a finitely generated integral domain over k. This is an interesting example
even if Z is a polynomial algebra.

Corollary 3.6. Let Z be a finitely generated integrally closed domain over k, and A
be a prime PI algebra with center Z and a coaction of K. Then Z and A are finitely
generated modules over Z N AX, and A is a finite module over AX on both sides.
Moreover, in this case Z N AX is a finitely generated k-algebra.

Proof. Condition (1) of Theorem 3.1 is satisfied by [11], Proposition 13.6.11.
Condition (2) holds by Posner’s theorem, [11], Theorem 13.6.5. Condition (3) holds
because A is prime. Condition (4) is one of the assumptions. So Theorem 3.1
applies. O

3.2. Proof of Theorem 3.1. Let us prove (i). Let Q = Q7 be the field of quotients
of Z. Consider the tensor product Q ®z P. This is a left module over the algebra
B := Q ®z A, which is a central simple algebra over Q by (2), of rank m? for some
m. Consider the right action of Z on Q ® z P. This action defines a homomorphism
Vp:Z — Endg(Q ®z P) = Maty,2(0).

We claim that for any nonzero z € Z, the matrix ¥ p(z) is invertible. Indeed,
let x € Q ®z P be such that Yyp(z)x = xz = 0. Letx = w™ !y, where w € Z,
w # 0,and y € P. Hence, yz is a torsion element of P, ie. z/yz = 0in P for
some nonzero z’ € Z. But by (3) (or by (5)), A is torsion-free over Z, which implies
that P is torsion-free over Z on each side. So we get that yz = 0 and hence y = 0
and x = 0, as desired.

Thus, we see that the right action of Z on Q ®z P naturally extends to a right
action of Q,i.e. Q ®z P is a Q-bimodule. Hence, Q ®z P is a bimodule over the
central simple algebra B, and

O0QRzP=08zP Q20 =B®4P Q48B.

Now, let dim K = d. By Proposition 2.8, P := A® K is a Galois bimodule over
A of rank d. This implies by Lemma 2.7(i) that P, .= Q®z P = B®4 P Q@4 B
is a Galois bimodule over B of rank d, and hence by restriction (Lemma 2.7(iii)) a
Galois bimodule over Q of rank d m?, with the same center.

By Proposition 2.10, this implies that the coefficients of the minimal polynomial
Ua of ¢p(a) forall a € Q are in Z(Piy.).

Now we will use the following well known lemma.
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Lemma 3.7. Let Z be an integrally closed domain with field of quotients Q, and
M a finitely generated Z-module. Let b : M — M be an endomorphism. Then
the coefficients of the minimal polynomial and the coefficients of the characteristic
polynomial of b on Q ® z M belong to Z.

Proof. Let my,...,m, be generators of M. Then b(m;) = ) b;jm; for some
bij € Z. Let B = (b;;), and let yp be the characteristic polynomial of B. Then
by the Hamilton-Cayley theorem, yg(b) = 0. So the eigenvalues of b on Q ® z M
(which are elements of Q) are integral over Z. Hence the coefficients of the minimal
polynomial pp and the characteristic polynomial y; of b (which may have lower
degree than yp) are integral over Z (as they are polynomials of the eigenvalues).
Since these coeflicients are in Q and since Z is integrally closed, they are in Z, as
desired. O

We can now apply Lemma 3.7 to M = P as a left Z-module, and b = {p(2).
Then we get that the coefficients of the minimal polynomial of {p (z) belong to Z.

Moreover, if z € Z is central for P, then by (3) it is also central for P (indeed,
since P is torsion-free over Z, the map P — P, is an embedding of Z-bimodules).

Thus, the coeflicients of the minimal polynomial of {p (z) belong to Z N Z(P).
By Proposition 2.8, this means that these coefficients belong to Z N AX. Hence Z
is integral over Z N AX (as z is annihilated by the minimal polynomial of ¥ p (z)).
Thus, (i) is proved.

Now we prove (ii). We use Corollary 2.21(ii) to conclude that the coefficients
of some power of the characteristic polynomial of ¥ p(z) in Endp(Q ®z P) =
Mat,,,2(Q) belong to F := Z(P,.) C Q.14

Since condition (5) is satisfied, the module P is locally free as a left Z-module,
so the matrix ¥ p (z) actually has coefficients in Z. This implies that the coefficients
of the characteristic polynomial of ¥/ p (z) belong to Z N F = Z N AX (as by (5) any
element of Z central in Py, is also central in P). Thus, Z is integral over Z N AK,
and (ii) is proved.

Part (iii) follows from (i) and (ii) and the standard fact that if R C S is an integral
extension of k-algebras, and S is finitely generated as a k-algebra, then S is a finitely
generated R-module.

Finally, part (iv) follows from part (iii) and the Artin—Tate lemma: if B C C are
commutative k-algebras and C is finitely generated over k and finite as a module
over B, then B is a finitely generated k-algebra.

Theorem 3.1 is proved.

Remark 3.8. 1. Note thatif Z = Q is a field and A a central simple algebra over Z,
then (i) follows immediately from Proposition 2.8 and Proposition 2.10, by regarding
A ® K as a Galois Z-bimodule.

2. The coeflicients of the minimal polynomial of a square matrix over Z (unlike

14]n fact, Corollary 2.32 (which is more difficult to prove than Corollary 2.21) says that the coefficients
of the characteristic polynomial itself are in F, but we don’t need it here.
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those of its characteristic polynomial) do not have to be in Z if Z is not integrally
closed. For instance, take the 5 by 5 matrix over Z := C[x?2, x3] given by aj» = 1,
a1 = x2,az4 = 1, a45 = 1, as3 = x3, and the rest of the entries are zero. Then
the minimal polynomial is (1> — x3)(¢ + x), whose coefficients are not in Z. This
is why we used characteristic polynomials rather than minimal polynomials in the
proof of Theorem 3.1(ii).

3.3. Divisibility.

Proposition 3.9. In the situation Theorem 3.1 (i) or (ii), the degree of Q over the
field of quotients QX of Z N AX divides the dimension of K.

Proof. By Proposition 2.36, for a suitable extension £ of O, the bimodule £ ®¢
Po ® E = E ®z P ®z E is a split Galois bimodule over Mat,,(E) of
rank d[E : Q], where d = dim(K). Hence by Proposition 2.33, it corresponds
to a split Galois bimodule P’ over E of the same rank. The center of P’ is
Z(P') = Z(Pioc) = 0K, soby Theorem 2.31, P’ = (E ®ok E)',sod[E : Q] =
r[E : QX]. Thus, d = r[Q : 0%] and hence [Q : QK] divides d. O

Remark 3.10. If charL = 0 or charL. = p > d, then there is a simpler proof of
Proposition 3.9. Namely, in this case by Proposition 2.14(iii) and Proposition 2.15,
P’ = P(E,G)" for some finite group G C Aut(E). We have E¢ = Z(P’) = 0K,
so |G| = [E : QK] and hence d[E : Q] = r|G| = r[E : OX]. Thus
d =r[Q : QK] and hence [Q : QK] divides d.

3.4. Examples.

Example 3.11. Condition (2) cannot be removed to allow semisimple (rather than
simple) algebras over Q. Indeed, take Z = CJ¢] and A = CJ[t] & CJ¢], containing
Z as the diagonal. Consider the action of G = Z/2 on A by g(f1(?), f2(¢)) =
(fi(=t), f2(1 —t)) for the generator g € G (which corresponds to a coaction of
Fun(G)). Then Z N AS = C (it consists of polynomials f such that f(t) =
f(=1) = f(A—1)).

However, there is a generalization of Theorem 3.1 in which Z is a reduced
algebra (not necessarily a domain), Q is its total quotient ring, and Q ®z A is a
semisimple algebra with center Q (see Theorem 5.1).

Example 3.12. Condition (4) cannot be removed. Indeed, take A = Clx, y]
and Z = {f € A|f(0,y) = f(1,y)}. Define an action of G = Z/2 on A by
(gf)(x,y) = f(x,x — y) for the generator g of G. Then Z N A% consists
of polynomials f such that f(0,—y) = f(0,y) = f(l,y) = f(1,1 —y) =
f(0,1 — y). For such f, we have that f(0, y) is constant. Therefore, A and Z
cannot be finite modules over Z N A%,

Also, condition (3) cannot be removed. Namely, let R be any commutative
algebra over k with generators x1,...,x,, A = k[x1,...,xs,t]® R,and Z C A
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be the image of k[xi,...,Xx,,t] under the map k[xi,...,x,,t] — A given by
X; — (xi,x;), t — (¢,0). Suppose that K coacts on R and coacts trivially on
k[x1,...,Xn,t]; then it coacts diagonally on A and conditions (1), (2), (4) (although
not (3)) are satisfied. Yet, the invariants in Z = k[x1,..., x,, t] are those elements
whose images in R are invariant under the coaction of K on R. So if A is integral
over its invariants, then so must be R. But it is known that there exist finitely
generated commutative k-algebras with a coaction of K which are not integral over
their invariants, see [16].

Example 3.13. If A is a deformation of an algebra A satisfying the conditions of
Theorem 3.1 with a coaction of K, A does not have to be finite over AX, even if
Z C Ay is finitely generated. Indeed, let K = H*, where H is the Nichols Hopf
algebra of dimension 16 over C generated by a grouplike element g such that g2 = 1
and skew-primitive elements x;, i = 0, 1,2, such that gx; = —x; g, x;jx; = —x;x;,
xl.z = 0,and A(x;) = 1 ® x; + x; ® g. Let B be any C-algebra. Define a right
B-linear action of H on B? with right B-basis e, e; by

gle1) =e1, g(e2) = —ez, xi(e1) =0, xp(e2) = ey, x1(e2) = xeq, x2(e2) = yey,

where x, y € B are any elements. Now consider the corresponding adjoint action of
H on A := End(B?)p = Mat,(B), via

aoM =angyMS(a))

(using Sweedler’s notation). Then it is easy to show that AX is the set of matrices
b-1d, where b € Zy ,, and Z, , is the centralizer of x, y in B.

Now take B to be the Weyl algebra generated by x, y with the defining relation
[y,x] = 1. Then we get that Z, , = C, so the invariants AX in A are trivial, and
hence A4 is not finite over AX.

Note, however, that A can be viewed as a deformation of an algebra A satisfying
the conditions of Theorem 3.1, with finitely generated Z. Namely, we can consider
the filtration on A given by deg(bE;;) = i —j +deg(b), where E;; are the elementary
matrices and deg(b) is the Bernstein filtration degree of b € B defined by deg(x) =
deg(y) = 1. This filtration is preserved by H, and Ag = gr(4) = Mat,(Clx, y])
satisfies conditions (1), (2) and (5), for Z = C[x, y]. Also, we may consider the
reductions of A modulo primes p, and these reductions satisfy (1), (2), and (5) for
Z = k[x?,yP].

Thus, this is an example of a situation when the invariants of Ay don’t lift to the
deformation.

We note that such a thing could not happen for a coaction on B itself: it is shown
in [5] that any action of a finite dimensional Hopf algebra H on B preserving the
Bernstein filtration necessarily factors through a finite group algebra and hence B is
finite as a module over BX, where K = H*. Also nothing like this can happen for
a semisimple H = K™ since it is known that in this case a Noetherian algebra A is
a Noetherian AX-module ([10], Theorem 4.4.2).
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Remark 3.14. Taking B to be the algebra of matrices of any size N and x,y
generic elements of this algebra, we get an example when H = K* is fixed and
the dimension of AX is 1, but the dimension of 4 (which is a matrix algebra of size
2N) is arbitrarily large.

Such an example is only possible for nonsemisimple H, due to the following
lemma.

Lemma 3.15. Let H = K* be a semisimple Hopf algebra over an algebraically
closed field k, and A be a semisimple H-module algebra. Then dim AX - dim H >
dim A.

Proof. Consider the algebra H#A. This algebra is semisimple ([10], Theo-
rem 7.4.2(2)). Let us decompose A as an H#A-module: A = &n;V;, where V; are
the simple H#A-modules, and n; > 0. Then AKX = Endgua(A) = ®;Mat,, (k), so
dim AKX = Y, n?. Also, if d; = dim V;, then we have dim H dimA4 = ) d? and
dim A = ) n;d;. Thus, the result follows from the Cauchy—Schwarz inequality. [

Example 3.16. ([6]) The following example of an inner faithful coaction of a
non-basic finite dimensional Hopf algebra on a field shows that in the situation of
Theorem 3.1, even when A = Z is a field, the Galois Z-bimodule P = Z ® K is
not necessarily split, i.e., the eigenvalues of ¢ p (z) don’t necessarily belong to Z but
may define a nontrivial extension of Z. In other words, Z is not necessarily a Galois
extension of Z X and the Galois group G attached to P does not have to preserve Z.

Namely, let ¢ be a primitive m-th root of unity, and consider the 7?1 -dimensional
generalized Taft algebra K = Ty, , generated by g, x such that g”™" = 1, gx = ¢gxg,
xm=g"—1,A(g) =g ®g, Alx) =x®g+ 1® x (where n,m > 2). Define
the coaction of K on Z = C(z) by the formula p(z) = z ® g + 1 ® x. Then we
have p(z") = zZ" @ g" + 1@ (g™ —1),s0p(z" + 1) = (" + 1) ® g™, and
thus the invariants ZX are generated by u = (z"" + 1)". So [Z : ZK] = mn, but
this is a non-Galois extension obtained by adding to C(u) a root of the polynomial
(™ + 1)" — u. The Galois closure E of this extension is the splitting field of this
polynomial, which has degree m™n over ZX = C(u):

E =Cu"'/™ (=1 +&u/mVm j =0,....n—1),

where ¢ is a primitive n-th root of unity. The Galois group G = Gal(E/ZX) is thus
of order m"n, and is isomorphic to Z/n x (Z/m)", where Z/n cyclically permutes
the summands. The eigenvalues of p(z) include g/ (—1 + & (1 4+ z))}/™ so they
don’t all liein Z.

This is, of course, only possible because K is not basic. If K is basic, all
its irreducible representations are 1-dimensional, and thus it is clear that all the
eigenvalues of p(z) have to belong to Z.
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3.5. Localization and the Galois group of a coaction.

Corollary 3.17. In the situation of Theorem 3.1, the central simple algebra Q ® z A
carries a coaction of K, which extends the coaction of K on A.

Remark 3.18. This is a special case of a much more general result, [14], Theo-
rem 2.2.

Proof. Let L be the quotient field of Z N AX. Then we have a coaction of K
on L ® z~4x A which extends the coaction of K on A. But it is easy to see
that L ® znyx A = O ®z A. Indeed, it is well known that if U C Z are
commutative domains with fields of quotients Qy, Qz and Z is integral over U
then Qy ®u Z = Qz.

This allows us to define, in the situation of Theorem 3.1, the Galois group of the
coaction. Write QX for 0 N (Q ®z A)X (we don’t assume that Q is K-costable).

Definition 3.19. The Galois group Gal(p) of the coaction p is the group G =
Gal(E/QX), where E is the Galois closure of Q over QX.

Example 3.20. 1. If a finite group I" acts on central simple algebra 4 with center Z
by automorphisms, then the Galois group is G = I'/ 'y, where Iy is the subgroup
of elements acting trivially on Z.

2. In Example 3.16, the Galois groupis G = Z/n x (Z/m)". O

4. Galois bimodules over semisimple algebras finite over the center

4.1. Galois bimodules over commutative semisimple algebras. Now let L be
a commutative semisimple algebra, i.e., a direct sum of finitely many fields of the
same characteristic: L = L{ & --- & L,. Then an L-bimodule P has the form
P = ®; ; P;j, where P;; is an (L;, L j)-bimodule. Define the oriented incidence
graph I'(P) of P with vertices labeled by 1,...,n, and edges i — j whenever
Pj; # 0. Let us say that P is connected if I'(P) is a connected graph.

For a vector p = (p1, ..., pn) € Z,, denote by LP the L-module L' & --- &
Ly

Definition 4.1. A quasi-Galois bimodule over L of rank d and type (p,q) is an
L-bimodule P which is isomorphic to LP as a left L-module, to L9 as a right L-
module, and such that P ® ; P = P4 as a bimodule.

Clearly, a Galois L-bimodule of rank d is the same thing as a quasi-Galois L-
bimodule of rank d and type (d - 1,d - 1), where 1 = (1,...,1).

It is clear that any quasi-Galois L-bimodule of rank d is of the form P = @; P,
where P® is a connected quasi-Galois bimodule of rank d over LD and L = & i L®
(namely, T'(P®) are the connected components of I'(P)). Thus it suffices to
consider only connected quasi-Galois L-bimodules.
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Suppose Z is a field, and ¥; : Z — L; are field embeddings, such that [L; : Z]
= d; < 0o. Then Z C L by the diagonal embedding z — (¥1(2), ..., ¥,(2)). Let

P=@,;(Li®z Lj)*"/ 4.1)

for some positive integers a;,r;. It is easy to see that P is a quasi-Galois L-
bimodule of rank d = }_; a;d;r; and type (p,q), where p; = a; )_;r;d; and
q; =rj 2 aid;.

Theorem 4.2. Let P be a connected quasi-Galois L-bimodule. Then the center
Z = Z(P) is a field, which embeds into each L;, with [L; : Z] = d; < oo.
Moreover, P has the form (4.1). In particular, if P is Galois, then it is a multiple of
L®zL.

Proof. Let d be the rank of P. We will need the following well known lemma from
linear algebra.

Lemma 4.3. Let 0 < p < m be positive integers, and A € Mat,, (R) be a block

matrix
X Y
(o 7)

where X is of size p by p. Suppose that A*> = A, the entries of X and Z are strictly
positive, and the entries of Y are nonnegative. Then Y = (.

Proof. For any N > 2 we have

A AN — XN O XYZNTIEN (X XY +YZ 4+ (N -2)XYZ
-7 7 \o zN —\o z '

Thus, XYZ = 0. Since X, Z have positive entries and Y nonnegative entries, we
have Y = 0, as desired. L]

Lemma 4.4. One has P;j # 0 foranyi, j.

Proof. Let [P] be the matrix of dimensions of P;; over L;. Then [P]*> = d[P].
Call two vertices of I'(P) equivalent if they can be reached from each other
by moving along the edges of I'(P) according to their orientation.’® Let C; be
an equivalence class from which one cannot reach any other one (i.e., a sink), and
assume for the sake of contradiction that C, is another equivalence class from which
there is an edge into C;. Consider the principal submatrix A of [P]/d corresponding
to C; and C,. Then A satisfies the conditions of Lemma 4.3. Then the conclusion of
the lemma gives a contradiction with the existence of an edge from C; to C;. Thus,
there is only one equivalence class, which proves the lemma (in view of the identity
[P]? = d[P). O

15Note that since [P]?> = d[P], if a vertex vi € T'(P) can be reached from v, € I'(P) by an
oriented path then there is actually an edge from v to v;.
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Thus, we see that the matrix [P] has rank 1, i.e. [P];; = a;b; for some positive
rational numbers a;, b ;. We may scale a; in such a way that they are positive integers
with ged(ay, ...,a,) = 1. Then b; are positive integers as well. Also, since P is of
rank d, we have d = Zj a;b;.

Now consider the L;-bimodule P;;. It has left dimension a;b;, finite right
dimension, and we have P;; @1, Pi; C Pi‘f. Thus, by Proposition 2.9, the right
dimension of P;; is also a;b;, and P;; is a weakly Galois L;-bimodule.

Let Z; be the center of P;;. Then by Proposition 2.30, [L; : Z;] < co.

Let ¢ij : L; — Maty;p; (L;) be the map defined by the right action of L; on
Pij. Since Pij ®; Pji is contained in Pi”il, we have

(1 ® ¢ij)(¢)i(2)) =1dg;p;, ®1dg;p; @ 2 4.2)

for any z € Z;. This means that ¢;;(z) is a scalar matrix, ¢;;(z) = n;i(z)ldg;p,,
where 7;;(z) € L;. Moreover, since P;; ®L ; Pj; is contained in PJ?";, we have that
(1®¢;;)(¢;i(2)) is conjugate to restriction of Id; ® ¢;; (z) to an invariant subspace,
which implies that n,;(z) € Z;. Thus, n;; : Z; — Zj, and by (4.2), nj; o n;; = 1d,
so n;; are isomorphisms. Finally, since Py; ® L; P;; is contained in PZ, we have
Nej ©Mji = MNei-

Thus, we have a single field Z, and embeddings ; : Z — L; such that
Zi=vyi(Z)and n;; = Yo Il/‘i_l. Moreover, Z = Z(P) (where Z is embedded
into L by the diagonal embedding @;;). We will identify Z with Z; using the
maps ;.

Now we see that the dimension of P;; over Z (on either side) is a;bd;, which
implies that the dimension of P;; as aright vector space over L isa;b;d; /d; (which
is therefore an integer). Thus, P is a quasi-Galois bimodule of type (p, q), where

b
pi=a;y bj.q;= d_j_zaidi-
j I

Now, by Proposition 2.30, P;; contains L; ® z L;. Since P;; @, P;j is contained
in Pi‘; , we get that Pi‘j contains L; ® z L ;. Now, L; ®z L is a Frobenius algebra,
so it is an injective module over itself. Thus, this inclusion splits and L; ®z L
is contained in a multiple of P;; as a direct summand. Since L; ®z L; is a
commutative algebra, it has multiplicity free decomposition into indecomposable
projective modules, so is contained as a direct summand in P;; itself.

To conclude the proof, we use the argument from the proof of Proposition 2.25.
Let O = @;,;(Li ®z Lj)N“ibf/d-i, where N is the smallest positive integer such
that the numbers Nb;/d; are integers. It is easy to check that Q is a quasi-Galois
L-bimodule of rank Nd and type (Np, Nq), so that

0®L 0 =0 4.3)
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and also
0®LP=PQr0=0% (4.4)

Let Q = & sz, Sk > 0, be the decomposition of @ into indecomposable
L-bimodules, let #; be the multiplicity of Qf in the decomposition of P, and let
t/s = ty/s¢ be the smallest of the rational numbers #; /sx. Since, as shown above,
some multiple of P contains Q as a direct summand, ¢ > 0. We have P* = Q'® M,
where M does not contain Qy as a direct summand. By (4.3) and (4.4), we have

Q®LM=M®L Q= Q%N (4.5)
Thus, we get

Qlds D Mds — Pds2 — ps QL ps
=(Q'eM)®L (0" & M)
_ Qtsz—i-th(s—tN) &M M.

Since M does not contain Q as a direct summand, we get
tds > t>dN + 2td(s —tN).
Since ¢t > 0, this gives

s>tN +2(s—tN)=2s —tN.

Thus,

s—tN <0.
But we also know from (4.5) that s —¢tN > 0. Thus s —¢tN = 0, and hence M = 0.
So P¥ = Q' ie. P = @; j(L; ®z L;)%PiN/sd; This means that r; := tls’éjv are
integers, and P = @; ;(L; ®z L;)%'/, as claimed. The theorem is proved. O

4.2. Galois bimodules over noncommutative semisimple algebras finite over
center. Let B be a semisimple algebra finite over its center, i.e. B = &}_, B,
where B; are central simple algebras over fields L; of the same characteristic, of
dimension ml2 Let P be a Galois B-bimodule of rank d. As in the commutative
case, it suffices to consider connected bimodules, so we will assume that P is
connected.

First consider the case when B; = Maty,, (L;). In this case, similarly to the
case of simple algebras, we have the following proposition. Let m be the greatest
common divisor of the m;.

Proposition 4.5. The center Z of P is a field such that [L; : Z] < oo, and P is a
multiple of ®;,;Matm, xm , (Li ®z L ;)™i™i/ ™%,



596 P. Etingof

Proof. Let L = @7_, L; be the center of B. Let F : B — Bimod — L — bimod
be the standard Morita equivalence. It is easy to see that F(P) is a quasi-Galois
L-bimodule of rank d. Thus, by Theorem 4.2, F(P) = &; ;(L; ® z Lj)%"/, where
a; are coprime integers. By looking at the left dimensions of P;; over L;, we get

E m,-mja,-rjdj = dmlz
J

where d; = [L; : Z]. This implies that a; = m;/my, and dms = ), m;r;d;.
Also, by looking at right dimensions we have

E m,-mjairjdi = dm?,

1

which implies that r; = rm j/ms, where

dm dm?
r= = .
Zi dimiai Zi d,'ml.z
is an integer. This implies the statement by applying F~!. O

Now consider the general case.

Proposition 4.6. The center Z of P is a field such that [L; : Z] < oo, and P™: s
a multiple of B ® z B.

Proof. Let E; D L; be finite dimensional commutative separable algebras (not
necessarily field extensions) which split the central simple algebras B;, i.e. E; ®,
B; = Mat,,;(E;). We can pick E; in such a way that [E; : L;] = D, the same
number for all i. Let E = @; E;. Then E = LP as an L-module, so by Lemma
2.7(3), E ®1 P ®1 E is a Galois bimodule over £ ®; B = ®;Maty, (E;). By
Proposition 4.5, E ® 7, P ®, E is a multiple of ®i,j Matm; xm (Ei®z Ej)mimf/m%,
where Z is the center of P. This implies that the E-bimodule (E ®1 P ®p E )m%
is a multiple of

@i,jMatmiij (Ei ®= Ej)mimj = @,-,J-Matml. () ®z Matmj (E])
=(E®L B)®z (E QL B).

So restricting back to B, we get that pD?mi i q multiple of (B ®z B)DZ, which
shows that P™* is a multiple of B ® z B, as desired. O

Corollary 4.7. Let P be a Galois bimodule over B. Let m be the least common
multiple of the m;. Given a € (ai,...,a) € L C B, denote by ¢;(a) the i-th
component of ¢(a) = ¢p(a), ¢pi(a) € Mat,, >(L;). Let y, € L[t] be the collection
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of monic polynomials x4, (a)(t)mz/’”z2 € L;[t] of degree dm?, where x4, (q) is the
characteristic polynomial of ¢;(a). Then the coefficients of y, belong to the center
Z=2Z(P)CL.

Proof. It suffices to assume that P is connected, so we restrict ourselves to this case.
Let x4 ; be the characteristic polynomial of @; € L; acting by multiplication on L;
as a vector space over Z. Clearly, this is a polynomial over Z. By Proposition 4.6,
we have
2 2
1

n
m3 mim? A
Yow =[] 1a; 7 =™,
e

2
where f = [T}_, )(;nj’. Thus,

mz/m%

_ m/my)?
Koy =1

This is a polynomial with coefficients in Z, and it is independent on i, which implies
that y, has coefficients in Z, as desired. O

Corollary 4.8. If P is a connected Galois B-bimodule of rank d, and d; = [L; : Z],
then Y i_, di(m;/my)? divides d.

Proof. By Proposition 4.6, pPmi = (B ®z B)", so computing ranks over B as left
modules, we get dm? = r Y d;m?, which implies the statement. O

5. Generalization of Theorem 3.1

In this section we use the results of the previous section to generalize Theorem 3.1
to the situation when Z is not necessarily a domain, but a reduced algebra, i.e., one
without nonzero nilpotents. Let Q be the total quotient ring of Z.

Let A be an algebra over Z with a coaction of a finite dimensional Hopf algebra
K over k of dimension d. As in Section 3, consider assumptions (1)—(5) on A4, Z,
generalizing assumption (2) as follows:

(2) QO ®z A is a semisimple algebra with center Q.

Note that (2) implies that Q = Q1 ... D Q,,, where Q; are fields containing k.
This property of Z is satisfied, for instance, if Z is Noetherian (in particular, affine).

Theorem 5.1. Theorem 3.1 holds in this more general situation. In other words,
under the conditions (1)~(4) or (1), (2), (5), A and Z are integral over ZX, and if Z
is finitely generated over k, then so is ZX, and Z is a finite module over ZX.

In the case when A is commutative, this is again a special case of the result of
[12] (for reduced agebras whose quotient rings are finite direct sums of fields).
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Proof. The proof is parallel to the proof of Theorem 3.1. The proofs of (iii) and (iv)
are the same, so we only comment on the proofs of (i) and (ii).

As in the proof of Theorem 3.1, let P = A ® K, and Pi,c = Q ®z P. Thisis
a left module over the algebra B := Q ®z A, which is a semisimple algebra over
Q by (2), i.e., a direct sum of central simple algebras B; of dimensions ml2 over Q;
for some m;. Consider the right action of Z on Q ®z P. This action defines a
homomorphism Yp : Z — Endg(Q ®z P) = ;‘=1Matdml_z(Q,-).

We claim that for any z € Z which is not a zero divisor, the element ¥ p (z) is
invertible. Indeed, let x € Q ® z P be such that yp(z)x = xz = 0. Letx = w™ 'y,
where w € Z (not a zero divisor), and y € P. Hence, yz is a torsion element of P,
ie. zZ’yz = 0in P for some z’ € Z, which is not a zero divisor. But by (3) (or by
(5)), A is torsion-free over Z, which implies that P is torsion-free over Z on each
side. So we get that yz = 0 and hence y = 0 and x = 0, as desired.

Thus, we see that the right action of Z on Q ®z P naturally extends to a right
action of Q,i.e. O ®z P is a Q-bimodule. Hence, Q ®z P is a bimodule over the
semisimple algebra B, and

Poe =0®zP=0®zPRzQ0=B®4P ®4B.

By Proposition 2.8, P := A ® K is a Galois bimodule over A of rank d. This
implies by Lemma 2.7(i) that P}, is a Galois bimodule over B of rank d.

By Corollary 4.7, for each a € Z, the polynomial y,(¢) € Q][t] defined in
Corollary 4.7 has coefficients in Z(Poc) = 0K = Q N 4K,

Now, since Z is integrally closed (i.e., is a normal algebra), it is a direct sum
of integrally closed domains Z; & ... & Z,. Hence, Lemma 3.7 implies that
Xa(?) € Z[t].

Moreover, if z € Z is central for Pj,. then by (3) it is also central for P. Thus,
the coefficients of y, belong to Z N Z(P). By Proposition 2.8, this means that these
coefficients belong to Z N AX. Hence Z is integral over Z N AX (asa € Z is
annihilated by the polynomial y,). Thus, (i) is proved.

To prove (ii), it suffices to note that by (5), for a € Z the coeflicients of the
polynomial y,(t) of Proposition 4.6 are in Z, after which the proof is the same as in
). O

Corollary 5.2. In the situation of Theorem 5.1, the coaction of K on A uniquely
extends to Q ®z A.

Proof. This follows since by Theorem 5.1, Q ® z A = 0X ® ,x A. O

Remark 5.3. As before, this is a special case of [14], Theorem 2.2.
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We also obtain the following generalization of Proposition 3.9:

Proposition 5.4. Suppose A = @®_,A; is an indecomposable semisimple K-
comodule algebra with center Q, where A; are simple algebras of degrees m; over
fields Q; (so that Q = ®7_, Q;). Let my be the greatest common divisor of the m;,

and d; = [Q; : OK]. Then Y_"_, di(m;/m4)? divides d = dim K.

Proof. A ® K is a Galois A-bimodule of rank d, so the statement follows from
Proposition 4.8. 0

Remark 5.5. Here is another proof of Proposition 5.4 in characteristic zero, using
the theory of tensor categories (this approach also works in characteristic p with
some complications). By Theorem 5.1, [L; : Z] = d; < oco. So, tensoring over Z
with the algebraic closure Z, we obtain a semisimple algebra A with a coaction of
a Hopf algebra K (both finite dimensional over Z). Then RepA is a semisimple
indecomposable module category over RepK. Thus, one can define canonical
Frobenius—Perron dimensions of objects in RepA, as in [3], Subsection 2.5. They
are defined by the formula

dn?
FPdim(M;)? = L
21
where n; is the ordinary dimension of M;. These dimensions are known to be
integers, since FPdim(M;)?> = FPdimEnd(M,). This implies that if 7, is the greatest
dn2
X n;
where each m; is repeated d; times. This implies the statement.

common divisor of the n; then € Z. But ny = my, and (n ;) is the collection

6. The tensor category of finite dimensional L -bimodules

The theory of Galois bimodules over a field L is closely related to the theory
developed in [7]. Let us discuss this connection. For simplicity, we assume that
char(L) = 0, although this discussion can be extended to positive characteristic as
well (at the cost of losing semisimplicity of bimodules).

In [7], the authors consider the semisimple tensor category L — bimodg of
finite dimensional L-bimodules M that split over some finite Galois extension E
of L (or are E-balanced, in the language of [7]), i.e., E ®; M ® E is a direct
sum of bimodules Eg for g € Aut(E). They show that the Grothendieck ring of
this category tensored with Q, Ko(L — bimodg) ® Q, is naturally isomorphic to
the Hecke algebra H(Aut(E), H), where H = Gal(E/L) (i.e., the convolution
algebra of Q-valued H -biinvariant functions on Aut(E) with finite support). Thus,
a Galois L-bimodule P of rank d which splits over E defines a nonnegative
idempotent e = %[P] in this Hecke algebra. The support of such an idempotent is a
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multiplicatively closed finite subset of Aut(E), soitis a finite subgroup G C Aut(E)
containing H. Moreover, it is easy to see as in the proof of Proposition 2.15 that the
idempotent e has to be defined by the formula e(g) = ﬁ forall g € G. So

[Pl(g) = é—‘. For this to define an integral class, we need r := |H |d /|G| to be an
integer, and then £ ® P ®1 E = P(E, G)", as explained in Proposition 2.19.

The results of Section 2 on Galois bimodules and the results of [7] can be used
to prove the following result about the tensor category L — bimod of L-bimodules
which are finite dimensional as left and right L-vector spaces, which also gives a
classification of Galois L-bimodules.

Theorem 6.1. Suppose C C L — bimod is a full abelian rigid tensor subcategory,
which is semisimple and has finitely many simple objects. Then there exists a unique
subfield F C L such that [L : F] < oo, and C = C(F, L) is the category of L-
bimodules which are linear over F, i.e. the right and left actions of F coincide. The
simple objects of this category are the simple direct summands in L Q g L, and they
split over the Galois closure E of L over F.

Proof. Let d(X) be the dimension of an L-bimodule X as a left L-vector space.
Then d : Ko(C) — Z is a character. Let X; be the simple objects of C. Let
X = &@;X;. Since C is a tensor category, the matrix of right multiplication by X
in the basis X; is an indecomposable nonnegative matrix. So by the Frobenius—
Perron theorem there exist unique up to scaling positive real numbers r; such that
Q- riXi)X =AY, riXiin Ko(C) @R, where A is the largest positive eigenvalue
of X. Computing the dimensions of both sides as a left vector space, we get that
A = d(X), which is an integer. This implies that the numbers r; can be scaled to
be all integers as well; let us choose them in such a way. Let P = ®;r; X;. By
uniqueness of r;, we get that P ® 7 P = P4(P)_ Thus, P is a Galois bimodule. So
by Theorem 2.31, P is a multiple of L ® r L for some F (namely, F = Z(P)).
This implies the desired statement (as any simple F-linear L-bimodule is a quotient,
hence a direct summand, of L ® p L). ]

Remark 6.2. In the tensor category C(F, L), one has End(1) = L, but in general
it is not L-linear but only F-linear. It is a form over F, in the sense of [2], of the
multifusion category of Fun(G/H, E)-bimodules, which is associated to the natural
semilinear action of G = Gal(E/F) on this category. The simple objects in this
F-linear tensor category are then associated to orbits of G on G/H x G/H, which
correspond to double cosets of H in G, spanning the Hecke algebra as in [7]. Note
also that this category is independent on the choice of the Galois extension E of F,
as long as it contains L.

Remark 6.3. Theorem 6.1 generalizes to the case when the field L is replaced by
a central simple algebra B with center L. Namely, recall that by Proposition 2.37,
any Galois B-bimodule is semisimple and is a rational multiple of the bimodule
B ®F B for a uniquely determined subfield F C L such that [L : F] < oo (namely,
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F = Z(P)). Now, if C C B — bimod is a full abelian rigid tensor subcategory,
which is semisimple and has finitely many simple objects, then one shows similarly
to Theorem 6.1 that there exists a unique subfield /' C L such that [L : F] < oo, and
C = C(F, B) is the category of B-bimodules which are linear over F, i.e. the right
and left actions of F' coincide. The simple objects of this category are the simple
direct summands in B ® r B.

This is related to the results of [2] in the following way. The category
C(F,B) is a twisted form of the category C(F, L) in the sense of [2]. Ac-
cording to [2], such twisted forms which split over the Galois extension E of
F containing L correspond to elements of H?(G, Autg(Id)). In our situation
Autg(Id) = Fun(G/H,E*)/E*, and the long exact sequence of cohomol-
ogy and the Shapiro lemma imply that H?(G, Autg(Id)) contains the quotient
H?(H, E*)/ImH?(G, E*), which parametrizes E-split central simple algebras B
over L up to Morita equivalence modulo those of the form B = L ® r A, where A
is a central simple algebra over F. It is easy to show that under the correspondence
of [2], the category C(F, B) corresponds precisely to the class of the central simple
algebra B in H?(H, E*)/ImH?(G, EX).

In fact, it is easy to see explicitly that the categories C(F, B1) and C(F, B,) are
equivalent if By = B, ®F A, where A is a central simple algebra over F'. The
equivalence is defined by the formula M +— M ®F A for a By-bimodule M linear
over F.
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