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Cohomological approach to the graded Berezinian

Tiffany Covolo

Abstract. We develop the theory of linear algebra over a (Z>)"-commutative algebra (n € N),
which includes the well-known super linear algebra as a special case (n = 1). Examples of such
graded-commutative algebras are the Clifford algebras, in particular the quaternion algebra
H. Following a cohomological approach, we introduce analogues of the notions of trace and
determinant. Our construction reduces in the classical commutative case to the coordinate-free
description of the determinant by means of the action of invertible matrices on the top exterior
power, and in the supercommutative case it coincides with the well-known cohomological
interpretation of the Berezinian.
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1. Introduction

Remarkable series of algebras, such as the algebra of quaternions and, more
generally, Clifford algebras turn out to be graded-commutative. Originated in [1]
and [2], this idea was developed in [10] and [11]. The grading group in this case is
(Zo)"*1, where n is the number of generators, and the graded-commutativity reads
as

ab = (=1)!%P)pq (1.1)
where @, b € (Z,)"*! denote the degrees of the respective homogeneous elements
a and b, and { ,) : (Zy)"*! x (Zy)"T! — Zj is the standard scalar product of
binary (n + 1)-vectors (see Section 2). This choice of the graded-commutativity
has various motivations. First, it is the intuitive extension of the well-known
superalgebra, which corresponds to this (Z;)"-commutativity for n = 1, (,)
being in this case just classical multiplication. Secondly, it was proved in [11]
that such (Z,)"-commutativity is universal among graded-commutative algebras.
That is, if I' is a finitely generated Abelian group, then for an arbitrary T'-graded-
commutative algebra A with graded-commutativity of the form ab = (—1)B@bpq,
with 8 : T x T' — Z, a bilinear symmetric map, it exists n € N such that A is
(Z3)" -commutative (in the sense of (1.1)).
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First steps towards the (Z,)"-graded version of linear algebra were done in [6].
The notion of graded trace for all endomorphisms and that of graded Berezinian
for 0-degree automorphisms were introduced in the most general framework of an
arbitrary free module (of finite rank) over a (Z,)" -commutative algebra.

In this paper, we develop a cohomological approach to the notion of graded
Berezinian and graded trace. In the super case, this approach is originally due
to O. V. Ogievetskii and 1. B. Penkov ([12]), but we will mostly refer to the
description given in [9]. Similarly to this latter, we define a graded analogue of
the Koszul complex and the graded Berezinian module associated to a given free
module of finite rank. We believe this to be the first step towards the conception of
a generalization of the Berezinian integral over a multi-graded (i.e. (Z,)"-graded)
manifold, see [3] and [4] for the definition and a first study of this latter.

The paper is organized as follows. We recall the basic notions of graded
linear algebra in Section 2 and derive the graded matrix calculus in Section 3. In
Section 4, we present our first main result, a cohomological interpretation of the
graded Berezinian. In Section 5, we give a similar description of the graded trace. It
is worth noticing that the cohomological description of the graded trace of arbitrary
even matrices leads to interesting restrictions for the grading group (Z,)", namely
n has to be odd. Furthermore, the parity changing operator has to be chosen in a
canonical way and corresponds to the element (1, 1, ..., 1) of (Z,)".

We have to note that there is an alternative approach to the generalization
of superalgebras and related notions, which makes use of category theory. This
approach follows from results by Scheunert in [13] (in the Lie algebras setting)
and Nekludova (in the commutative algebra setting). An explicit description of the
results of the latter can be found in [8]. This other method to treat the problem and
its consequences in the (Z,)"-commutative case, will be the object of a separate
work [5].

Acknowledgements. The author is pleased to thank Norbert Poncin whose sug-
gestions initiate the paper, Jean-Philippe Michel for enlightening discussions and
Dimitry Leites who made her aware of Nekludova’s work. The author is grateful
to Valentin Ovsienko for the contributions he gave through the development and the
finalization of the paper.

The author thanks the Luxembourgian NRF for support via AFR PhD grant 2010-
1, 786207.

2. Graded linear algebra

In this section, we give a brief survey of the main notions of linear algebra over
graded-commutative algebras.
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Consider an Abelian group (I", +) endowed with a symmetric bi-additive map
(,): TxT > Z,.

We call I" the grading group. This group admits a natural splitting I' = I'g U I'g,
where I' is the subgroup characterized by (y, y) = 0 for all y € I'g, and where I';
is the set characterized by (y,y) = 1 forall y € I';. We call I'j and I'; the even
subgroup and odd part, respectively.

In this paper, we restrict the considerations to the case I' = (Z;)", for some fixed
n € N, equipped with the standard scalar product

(x,y) = Z X; i

1<i<n

of n-vectors, defined over Z,. Our main example are the Clifford algebras equipped
with the grading described in Example 2.1 (see next section).

2.1. Graded-commutative algebras. A graded vector space is a direct sum

V:@VV

yel’

of vector spaces V'V over a commutative field K (that we always assume of
characteristic 0). An endomorphism of V is a K-linear map from V to V that
preserves the degree; we denote by Endg (V') the space of endomorphisms.

A T'-graded algebra is an algebra A which has a structure of a I'-graded vector
space A = @yer AY such that the operation of multiplication respects the grading
foralla, B € T,

A% AP 4% TP,

We always assume A associative and unital.

An element a € AY is called homogeneous of degree y. For every homogeneous
element a, we denote by a its degree. Because of the even-odd splitting of the
grading group, one also has

A=A ® Ai,

where a € A or Aj if @ is even or odd, respectively. For simplicity, in most formulas
below the involved elements are assumed to be homogeneous. These expressions are
then extended to arbitrary elements by linearity.

A T-graded algebra is called I-commutative if
ab = (=)@ pq. 2.1)

In particular, every odd element squares to zero.
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Example 2.1. As we have mentioned in the Introduction, a Clifford algebra Cl,, of
n generators (over R or C) is a (Z;)"*!-commutative algebra ([11]). The grading is
given on the generators e; of Cl, as follows

¢ =(0,...,0,1,0,...0,1) € (Z)" ™!

where 1 is at the i -th and at the last position.

2.2. Graded modules. A graded left module M over a I-commutative algebra A
is a left A-module with a I"-graded vector space structure M = P, . M such that
the A-module structure respects the grading, i.e. forall , 8 € T,

A*MP c MetP.

The notion of graded right module over A is defined analogously. Thanks to
the graded-commutativity of A, a left A-module structure induces a compatible right
A-module structure given by

ma = (—1)@Mgm (2.2)
and vice-versa!l. Hence, we identify the two concepts. An A-module is called free of

total rank r € N if it admits a basis of r homogeneous elements {es}s=1,... . In this
case, every element m € M can be decomposed in a basis either with left or right
coefficients, which are clearly related through (2.2).

A morphism of A-modules, is amap £ : M — N which is A-linear of degree
zero (ie. £(M?%) C N9 Va € I'). We will denote the set of such maps by
Hom 4 (M, N). We usually refer to this set as the categorical Hom since A-modules
with these degree-preserving A-linear maps form a category GrrMod 4.

We remark that the Hom set of graded A-modules is not a graded A-module itself.
The internal Hom of the category GrrMod 4 is

Hom4 (M, N) := @ Hom’ (M, N) ,
yell

where each HomZ(M , N) consists of A-linear maps £ : M — N of degree y, that
is additive maps satisfying

Lam) = (=)D qt(m) (or equivalently, £(ma) = {(m)a ) (2.3)
and LM% C N*H7
The A-module structure of Hom 4 (M, N) is given by

@-0)(=) = (=)@ . -y (or equivalently, (€ -a)(—) = £(a-—)). (2.4)

'We have to note that, even though the most natural, (2.2) is not the only possible choice. In general,
for any fixed y € T, setting ma := (—1)%-"+Yam also defines a right module structure on a left
module. This situation also appears in superalgebra [8].
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Remark 2.2. The categorical Hom coincides with the 0-degree part of the internal
Hom, i.e. Homy4(M,N) = Hom(jl(M, N). By abuse of notation, we also refer
to the elements of the internal Hom as morphisms. To make clear the distinction
between categorical and internal hom, we often add the adjective “graded” in the
latter case.

We define graded endomorphisms and graded automorphisms of an A-module
M by

End4 (M) :=Hom (M, M)
and Auty (M) :={¢ € End4(M) : £ invertible } ,

and their degree-preserving analogues by
Endg(M) := End%(M) and Autg(M):= Aut) (M) .

In situations where it is not misleading, we will drop the subscript and just write
Hom(M, N), End(M), Aut(M), etc.

The dual of a graded A-module M is the graded A-module M* := Hom(M, A).
As for classical modules, if M is free with basis {e; };=1,... » then its dual module M *
is also free of same rank. Its basis {&'};=1,..., is defined as usual by

eej) =8, Vi,j
where 8; is the Kronecker delta. Note that this implies g = ¢; foralli.
2.3. Lie algebras, derivations. A I'-colored Lie algebra A is a I'-graded algebra

in which the multiplication operation (denoted [, ]) verify the following two
conditions, for all homogeneous elements a, b, ¢ € A.

1) Graded skew-symmetry:
la.b] = —(=1)@) (b, a]
2) Graded Jacoby identity:
la. [b.c]] = [[a. b).c] + (=)@ b, [a.c]] .

Natural examples of colored Lie algebras are I'-graded associative algebras with
the graded commutator

[a,b] = ab — (=1)@Ppq . (2.5)

If A is a (Zy)"-colored Lie algebra, its 0-degree part A° is a classical Lie algebra.
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An homogeneous derivation of degree y of a I'-graded algebra A over a field K,
is a K-linear map of degree y D € End}, (A4) which verifies the graded Leibniz rule

D(ab) = D(a)b + (=)@ a D(b) ,

for all homogeneous elements a, b € A.
We denote the set of derivations of degree y of A by Der” (A). Then, the set of
all graded derivations of A

Der(A) := @) Der” (4)

yel

is a I"-graded vector space. It is also an A-module, with the A-module structure
given by (aD)(x) = a D(x). Moreover, considering composition of derivations,
Der(A) is also a colored Lie algebra for the commutator (2.5).

2.4. Graded tensor and symmetric algebras. Let A be a [-~commutative algebra.

The tensor product of two graded A-modules M and N can be defined as follows.
Let us forget, for the moment, the graded structure of A, seeing it simply as a non-
commutative ring, and consider M and N respectively as right and left modules. In
this situation, the notion of tensor product is well-known (see [7]), and the obtained
object M ® 4 N is a Z-module. Then, reconsidering the graded structure of the initial
objects, we see that M ® 4 N admits an induced I"-graded structure

M®AN=@(M®AN)”=EB @ {Zm@An ‘meM“,neNﬂ}.

yel vel a+B=y
(2.6)

Moreover, because of the actual two-sided module structure of both M and N, the
resulting object M ® 4 N have also right and left A-module structures, which are by
construction compatible (in the sense of (2.2)).

As usual, tensor product of graded A-modules can be characterized as a universal
object. All classical results and constructions related to the tensor product can then
be transferred to the graded case without major difficulties.

Set M®* = M ®4...®4 M (n factors M, n > 1) and M®° := A. The graded
A-module

o — ®k
TSM := @kGN M

is an associative graded A-algebra, called graded tensor algebra, with multiplication
®4: MO x M® — M® @4 M® ~ MO+

The graded A-algebra T'§ M is in fact bi-graded: it has the classical N-grading (given
by the number of factors in M) that we call weight, and an induced I'-grading (see
(2.6)) called degree.
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Taking the quotient of T3 M by the ideal Js generated by the elements of the
form

mem — (D" m' @m, VYm,m' e M
we obtain a [~commutative A-algebra S5 (M) called the graded symmetric algebra.

As their classical analogues, both these notions satisfy universal properties.

2.5. Change of parity functors. Unlike the classical super case (i.e. I' = Zj), in
general we have many different parity reversion functors.

For every mw € I'j, we specify an endofunctor of the category of modules over a
[commutative algebra A

IT: GrrMody — GrrMody
M — M
Homs(M,N)> f +— f € Homu(IIM,TIN)

The object ITM is defined by
(IIM)* := M*+7,
for all « € T', and graded A-module structure
O(m +m'):=Tm+m’ and T(am) = (=)™ g m .
The morphism f ™ € Hom4(ITM, TIN) is defined by
ST (Tm) 2= TL(f (m)) .

Clearly, the map IT which sends an A-module M to the A-module ITM is an
A-linear map of degree 7, i.e. [T € Hom™ (M, TIM).

3. Graded matrix calculus

A graded morphism ¢t : M — N of free A-modules of total rank r and s
respectively, can be represented by a matrix over A. Fixing a basis {e; };=1,.., of M
and {h;};=1,. s of N and considering elements of the modules as column vectors
of right coordinates

M>m= Ze ja’ ~ m=| 49 .
the graded morphism is defined by the images of the basis vectors

tm)=> "tleya' =Y hjthd" .
i,j

J
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Hence, applying ¢ corresponds to left multiplication by the matrix T = (l"i) €
M(s x r; A),
t(m) ~ Tm.

We have a similar description when considering elements of the modules as row
vectors of left coordinates. In this paper, we choose the first approach. This choice is
justified by the fact that the graded morphisms are easier to handle when one consider
the right module structure, see (2.3).

In what follows, the graded modules are implicitly assumed to be free, except
when explicitly stated.

3.1. Case I' = (Z,)" . The additive group (Z)" is of finite order N := 2" and
we can enumerate its elements following the standard order: the first ¢ := 2"~!
elements being the even degrees ordered by lexicographical order, and the last ones
being the remaining odd degrees, also ordered lexicographically. E.g. (Z,)?> =
{(0,0),(1,1),(0, 1), (1,0)}. In the following, we denote y; the i-th element of (Z,)"
with respect to this standard order.

This allows to re-order the basis of the considered graded A-modules following
the degrees of the elements. We call a basis ordered in this way a standard basis.
From now on, we only consider this type of basis.

The rank of a free graded module M over a (Z;)"-commutative algebra is then
a N-tupler = (r1,....ry) € NV where each r; is the number of basis elements
of degree y;. Hence, a standard basis {e;};—1,.. » of a graded A-module of rank r
is such that the first 71 elements are of degree y;, the following r, elements are of
degree y», etc.

Consequently, the matrix corresponding to an homogeneous graded morphism
t : M — N of free A-modules of ranks r and s respectively, writes as a block matrix

Ti1 ...| Tin

T=1 ...|...] ... |, (3.1

Tnvi | ... | TN

where each block T, (of dimension s, x r,) have homogeneous entries of the
same degree. This latter is given by y, + y, + f, i.e. it depends on both the
position (u, v) of the block and the degree of the matrix, which is by definition the
degree of the corresponding graded morphism 7. We will denote by M(s, r; A) =
D, ez, MY (s, r; A) the space of such matrices, also called graded matrices.

Example 3.1. As a particular case of Clifford algebras, the algebra of quaternions H
is a (Z3)3-commutative algebra ([10]). We assign to the generators 1, i, j and k of H
a degree following the standard order of (Z5)3, i.e.

1:=(0,0,0), i:=(0,1,1), j:=(1,0,1) and k:=(1,1,0).
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Note that, as every other Clifford algebra (with the gradation given as in Exam-
ple 2.1), it is purely even i.e. graded only by the even subgroup of (Z,)".

Every graded endomorphism of a free H-module M of rank r then corresponds
to a matrix in M (r; H), that is a quaternionic matrix.

The 1-to-1 correspondence
MY (s,r; A) ~ Hom” (M, N),

for every y € (Z;)", permits to transfer the associative graded A-algebra structure
of Hom(M, N) to M(s,r; A). Thus, we get the usual sum and multiplication of
matrices, as well as an unusual multiplication of matrices by scalars in A defined as
follows.

(=D@riary | | (=D%aTyy

aT = ,

(=D@rNMaTyy | ... | (=D%YN)aTyy
i.e. the (i, j)-th entry lying in the (u, v)-block is given by

@r); = (=1)l@rdg .
Note that the sign appearing here is a direct consequence of (2.4).
In particular, graded endomorphisms End(M) of a free graded A-module M (of
finite rank r) can be seen as square graded matrices M(r; A) := M(r,r; A). With
the commutator (2.5) it is another example of (Z;)"-colored Lie algebra.

3.2. Graded transpose. As in the previous section, let M and N be two graded
A-modules of ranks r and s respectively.
The graded transpose Tt of a matrix T € M(s, r; A), that corresponds to
t € Hom(M, N), is defined as the matrix corresponding to the transpose 1* €
Hom(N*, M*) of t. For simplicity, we suppose ¢ to be homogeneous of degree 7 .
We recall that the dual graded A-module of M is M* := Hom(M, A), so that
the dual morphism ¢* is naturally defined, for all n* € N* and all m € M, by

(t*(n*),m) = (=1 (n*, 1(m)) (3.2)

where (—, —) denotes the evaluation of the involved morphisms on the corresponding
source-module element.

Let {ex}x=1,.,r (esp. {h;};=1,.s) be the basis of M (resp. N) and let
{ek Yk=1,...r (tesp. {nl}lzl,_“,s) the corresponding dual basis.
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Proposition 3.2. The graded transpose ‘T of a matrix T = (Ty,) € M7 (s,1;A)
(considering here its block form (3.1)) is given by

(FIT)vu — (_1)(Vu+yvsf+yv) tTuv

where ' is the classical transpose.
Proof. From the definition (3.2) of ¢*, we have that
(")) er) = DD t(er)) = DD Y bk = (=D
k
On the other hand, denoting ti* 7 the (i, j)-entry of the matrix [T, we have
' (n'). e:) Z(ek e = YDA 6 e = ()
k
Thus, for all 7, j,

i = () e (3.3)

In particular, ti* /= t{ =i+é+ hi,- for all 7, j, so that the transpose morphism ¢*
is also homogeneous of same degree 7. Hence, (3.3) rewrites as

o I = (cp)lite vy +éi)[{
and the result follows. L]

In the super case (i.e. n = 1), the graded transpose coincide with the well-known
super transpose.

It is easily verified by straightforward computations, that the operation of graded-
transposition satisfy the following familiar property.

Corollary 3.3. For any pair of homogeneous square graded matrices S,T €
M(r; A), of degrees s and t respectively, we have that

Tt (ST) — (_1)(S,t)F[T FtS .
Consequently, we also have that

fis, Ir) = =1s, 17 . (3.4)
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3.3. Graded trace. As in the classical context, for any graded A-module M there
is a natural isomorphism of A-modules

M*®4 M ~End(M). (3.5)
It is given by reading a tensora @ m € M*® 4 M as the endomorphism
a®@m: M>m' > (=) gmym e M

In the case where M is free (of rank r), this endomorphism is represented by a
matrix T' = (t';) € M(r; A), where the (i, j)-th entry is

tij _ (_1)(r7l,ej)+(a~j,5j +éi)ajmi

The above isomorphism permits to define the graded trace of the matrix
corresponding to the endomorphism o ® m as its contraction a(m) (as a (1, 1)-
tensor).

Definition 3.4. The graded trace of an homogeneous matrix T = (Ty) € M7 (r; A)
(considering here its block form (3.1)) is defined as

Tte(T) i= Y (=1)PeFtrd (T,,) (3.6)

u

where tr denotes the classic trace of a matrix.

It is proved in [6] that T'tr : M(r; A) — A is the unique (up to multiplication by
a scalar of degree 0) homomorphism of A-linear colored Lie algebras.

3.4. Graded Berezinian. Fixing a standard basis {e;};—1,..., of a free graded A-
module M permits to represent degree-preserving automorphisms of this module as
invertible 0-degree matrices, the group of which we denote by GLO(r; A). In [6] we
have introduced the notion of graded Berezinian for this type of matrices. Let us
recall the main result of [6].

There is a unique group homomorphism

I'Ber : GLO(r; 4) — (4%)*

such that:
1) For every block-diagonal matrix X € GLO(r; A),

q N
IBer(X) = [ [ det(Xyy) - [ | det™ (Xuu) .

u=1 u=q-+1

2) The image of any lower (resp., upper) block-unitriangular matrix in GL® (r; A)
equals 1 € (A%)*.
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Here, (A%)* denotes the invertible elements of the 0-degree part of A, and g :=
N/2 =21

Note that, similarly to the classical Berezinian, I'Ber is defined only for 0-degree
invertible matrices. In the particular case where the module M is graded by the
even part (Z2)j, the function I'Ber is a polynomial. Moreover, if A = H then
I'Ber coincides with the classical Diedonné determinant (restricted to these type of
quaternionic matrices), see [6].

4. Cohomological definition of the graded Berezinian

In this section, we define the graded Berezinian module and describe its
cohomological interpretation. We obtain the function I'Ber from the action of the
group of degree-preserving automorphisms. This construction generalizes the one
described in [9] for the classical Berezinian.

4.1. Graded Berezinian module. Given a free A-module M, the corresponding
graded Berezinian module I'Ber(M) is the free A-module of total rank 1 built up
from formal basis elements B({e; }) for each standard basis {¢;};—;,.., of M. The
transformation law induced by a change of basis e; = e; t{ in M (of transition
matrix 7 = (t{ )) is given by

B({¢}}) = B({e;})[Ber(T). (@.1)

Hence, intuitively, I'Ber(M) is the free A-module of total rank 1 which is
functorial with respect to 0-degree automorphisms of A-modules and if M is
concentrated in only one even degree (i.e. is just a classical module) it coincides
with the classical determinant module Det(M) := A'" M.

The above description of the module I'Ber(M) is quite abstract. In the text
section, we will present an explicit cohomological construction of this module.

4.2. Cohomological construction. Consider the graded-commutative algebra
SS(IIM & M*), where M is a (free) graded A-module of rank r.
SY(IIM @ M™) is the (Z;)"-graded-commutative algebra of polynomials in the
graded variables [le; and &' with coefficients in A. We define the operator d to be
left multiplication by the following element of S5(ITM & M™*):

d=Y Te¢é, (4.2)

that we also denote by d, by abuse of notation. This choice of d is natural since
dly =11.
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This defines a cochain complex K* := (S§(IIM & M*), d ), thanks to the
following result.

Proposition 4.1. The operator d is independent of the choice of the basis and
d?=0.

Proof. Let us consider a transformation matrix 7 = (tij) e GL(r; A) from the
basis {e;};i=1,....r to the basis {e;};=; ., (both standard, e’; = & Vi), ie. ¢ =
> jej t];. . The transformation matrix between the induced basis {Ile;};—;, ., and
{Ile}}i=1,.., of TIM (resp. between the dual basis {¢'};—;,.., and {¢"};—1 ., of
M*)is then T (resp. YT 1)), i.e.

Hel{ _ Z Hejt];. and &' = ngtzi _ ng(_l)(ék-i-?i ’ék>fik (4.3)
j : k

where £, denotes the (i, k)-th entry of T~
Hence, we have

i i,j.k

= Z Hej gk (Z(_l)(éi-i—ék ,ex)+(e;+e; ,Ek)[];. tik)
J.k

i

J-k i
= Z Ie; sk(—l)(ék’ngrEf)S,{ = Z Te; &/
J.k J

so that d is well-defined.

The fact that d squares to zero is easily checked by direct computation, using the
graded-commutativity. 0

To lighten the notation, we will denote by x; the even elements in {Ile;} U {&'}
and by &; the odd ones (up to sign). More precisely, with r’ := Z?:l r; indicating
the number of basis elements of M of even degree, we set

&l ifl<i<y Ile; ifl<i<y

= and ;= - ) 4.4
IMe; ifr'+1<i<r §i —(—1)<e"’”)8’ ifr'+1< i(§ r)

Xi .
By construction, we still have that §,- = X; + 7 foralli.

With this notation, the differential d corresponds to left multiplication by
Y i &ix;, and SY(TIM @ M™) is now viewed as the (Z;)"-commutative algebra
A[x, ] of polynomials in the (Z;)"-graded variables x-s and £-s. Let us stress the
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fact that the product of polynomials is here the one which is naturally induced by the
graded sign rule (2.1).

The elements of the cochain complex K® at k-th level (k > 0) are defined as the
polynomials in A[x, ] with k-th total power degree in £. The element &; ---&, is a
cocycle. Indeed, we have that

dgr ) =y (~DE T B gy 826 =0

since & are odd and hence squares to 0. By this same observation, ¥ = 0 for
all £ > r. Hence, this cocycle will play the analogous role of the classical “top
element”.

Proposition 4.2.

0 if k
HH0C) = e
(1---&]- A ifk=r
Proof. Let us consider the operator p = ) ; %%, where % , % are graded
homogeneous partial derivations, i.e. '
0 ; d
—x; =4, —& =0
ox i i J 8x,~ EJ
0 .
—x;=0, —& =4".
%" A
for all indices i, j. Note that the respective degrees are
Kl E
% d —=§& =% .
o X; an 95 =X+

Let us compute [p , d] where [ , ] is the (Z;)"-commutator (2.5).

9
[P,d]:Z[ga—é_,&xi]
it
a9 ; d d
A L ERNCEE ) B
o, [agi ’ Efx’] +;( ) [ax,- E"x’] 0t
9 [ 9 cim 3 9 9
— ) R -1 (Xj+m,Xj+m) '|:—,)C':|
Loy ERe 20 i L7
: d 9
(%i ) I
“Zen g6 v

< S = 0 d
_ Z(_l)(xi , ) +H(X; ,xj+rr)§_-j |:7 xjj| v
i,J
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But, by construction,

[3%’%]=5§" [%’Ef]zo’
[%,xj]zO, [3%75]]253’

so that we have

Z—xl ,Z(_l)( g
_Z(ld+( 1) (X;,%;) xl ) Z( x,,xl 2
_r1d+2x, ZEZ&S

since each x; have even degree , i.e. (X; , X;) = O forall i.
Now, if P is a homogeneous monomial in Kk, ie.

P = Saxﬂaaﬁ

with « € {0,1}" such that || := ) ;o; = k, B € N and aqp a homogeneous
element of A , we have for every i that

i Pif B;
i (py= PP A0
ax,- 0 lfﬂi =0
and
ifOll' =1
i 35, ( ) = ifa; =0
so that

[p. d](P)=(r+I|B]—k)id(P) .

In fact, we only have to consider 0 < k < r. Hence, ¢ := r + |B| — k is zero if and
only if k = r and B = 0. It follows that, for k # r, we have a cochain homotopy
between the identity id and the zero map. It is given by p/c on monomials of the
same form of P. We conclude that H*(/C*) = 0 for all k # r.

It remains to consider the case when k = r. By definition,

H'(K*) = ker(d : K" = K™ /im(d - K71 — K7

where K™ = {£---§£, 0 | QO € A[x]} and K"*! = 0. Hence, ker(d : K" —
KTt1) = K. On the other hand, by direct computation (e.g. apply d on an element
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of the form &, - -+ &y, _, Oq With Q4 € A[x] a homogenous monomial), we obtain
im(d : K"'' - K") = &--+& (3_; A[x] - x;). In conclusion,

H(K®) = &b ALK gy (3, A ) = GobAL O

Remark 4.3. a) Proposition 4.2 implies that H(K®) = H"(K®) ~ [&1---&]

A,
hence is a free A-module of total rank 1. The degree of the basis element is

a N N
EE =) (itmn+ Y vini=rm+ Y yini.
i=1 i=q+1 i=1

b) The result is independent of the chosen parity functor IT in the cochain
complex £C°.

A degree-preserving automorphism of M, ¢ € AutO(M ) (represented by a
matrix T € GL° (r; A)), naturally induces two automorphisms

U TIM - TIM and (o H)*: M* > M*,
and hence an automorphism (of A-algebras)
¢ S IMeeM*) — S;(TIM e M™¥).

on the “total space” K := @, Kk = S5 (ITM & M ™) of the corresponding complex.
Explicitly, it is given by

Lo e 1<is<r N 3D 1<i<r
¢(x’)_§<o“<x,~) iz M W‘)_{(w*)—l(&) peisr

(4.5)
i.e. corresponds to matrix multiplication by 7 on ITM and by '(7~!) on M*.

The differential d : K — K is invariant under this transformation (see

Proposition 4.1). Hence, we obtain an automorphism on kerd /iy, 4. This latter
module, is equal to

kerd /im g = (@k kerdl,ck>/<@k imd|Kk_1) =D (kerdllck/imdhck_l)
k
= H (K*)
k

and hence is just H" (KC*), thanks to Proposition 4.2.

By means of a graded matrix 7 € GL°(r; A) representing ¢, the obtained map
rewrites as a group action of GL%(r; 4) on H” (K*). In other words, we have a group
morphism

@ : GL(r; 4) — Aut’ (H” (K*)) ~ (4%)* (4.6)
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given by

O(T) ([E1---& D = [#(Er--- &) -

We will now prove that this morphism coincides with the graded Berezinian.

Proposition4.4. Forall T € GLO(r; A), ®(T) is the operator of right multiplication
by I'Ber(T).

Proof. We will first explicit in detail the proof for the super case (i.e. with grading
group Z,), following the description given in [9]. Hence, in this case the graded
Berezinian and the graded trace reduce to the classical Berezinian and the supertrace.

1y

2)

Let us consider two particular types of transformations ¢.

Let ¢ be a diagonal transformation, i.e. the corresponding graded matrix is block-
diagonal.

A 0 / 1
T=( 0 B )eGLo(r=(r,r);A)

The matrix corresponding to the inverse dual is also block-diagonal

-1
ST = ( tAO ,Bo_l ) e GL%(r; 4)

Let us denote a' J the entries of A and b ji the entries of ‘B~1L.

We have that
o (&) = Zl<]_<r, Eja]l: forl <i<r'
pE) =1 e . o
(") (&) = Zr/<j<r £ib/Z, forr <i<r
so that
¢E1---&r)

=)o &) - (@) Er) - (0T E)

=& -& ( Z signo agl(l)"'agr(/r))( Z signo hcrl(l)"'bar(_rr—/r’))

0ES,/ TES, _,/
=& & det(4)det(B™")
=£&---& Ber(T) .
Here, signs appears because the elements of the subset {£; }1<; <, (respectively,
{&i}; <i<r) are of the same odd degree, hence anticommute.

Let ¢ be a unitriangular transformation, i.e. the corresponding graded matrix is
block-unitriangular. The value of its Berezinian then equals 1. We will consider
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only the case of an upper unitriangular matrix, the case of a lower unitriangular
matrix being similar. Let

_(I C 0.
T—(O H)eGL(r,A).

Then the corresponding dual inverse is also block-unitriangular, more precisely

sy _ (T 0
t(Tl)_(tC ]I)

o(E) =& forl <i <7’
(@) &) =& forr’ <i<r

We have in this case
d(&) = {

so that

¢Gr---&)=&1--& =§1---§& Ber(T).

Hence, we have proved that ® coincide with left multiplication by Ber on block
diagonal and block unitriangular matrices. By the uniqueness result concerning the
Berezinian, this suffices to conclude.

This strategy of proof generalizes to the case of grading group (Z5)" for higher
n € N, thanks to the analogous uniqueness result of the graded Berezinian (see
Section 3.4). We hence only have to verify 1. and 2. in this multigraded case.

Let M be, as usual, a free module of rank r = (r1,r2,...,ry). The
odd elements & are by construction ordered by degree, so that in each subset
{Ei}Zaq re<i<Yq<,ro the elements are of the same odd degree, hence they
anticommute. This implies that in the first step the expected signs (and hence the
determinants) appears, as in the super case. In the second step, by definition of the
graded transpose (see Section 3.2), we still have that if T is a block upper (resp.
lower) unitriangular matrix then I'(7~1) is lower (resp. upper) block unitriangular.
Let us consider, for simplicity, » = 2 andr = (1,1, 1, 1). We then have only four
odd §&;, of two different degrees (0, 1) and (1, 0). For a graded matrix

1 a =
T = 1; 2 e GLY((1,1,1,1); 4)
1
we have
1
= |
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We then obtain

p(&1) €1, (") ' (&) E3 +&4b
o) = &a+é, () ') = &,

so that
¢E1---84) = E1(5ra + E2)(E3 + DEa)sa =61+ 84

since the &;-s square to zero.
This clearly generalize to arbitrary r and arbitrary n. O

We summarize the above statements as follows.

Theorem 4.5. The map

Y : TBer(M) — H(K®)
B({ei}) = [&1---&/]

is an A-module isomorphism of degree r' .

The degree of the isomorphism i can be easily understood. Indeed, the A-
module I'Ber(M) is then either purely even or purely odd, and this depends only
on the parity of Zi\]:r’ 41 Yiri. This corresponds, when n = 1, exactly to the well-
known situation of the classical Berezinian.

5. Cohomological definition of the graded trace

As we have seen in the previous section, the assignment GLO(r; A) > T —
¢t € Aut’ (K), where ¢7 is an automorphism of A-algebras corresponding to
matrix multiplication by 7 on TIM and by I'(T~1) on M*, defines a group action
for which the differential d is invariant. It induces a group morphism (4.6) which
coincides with right multiplication by I'Ber.

In this section, we consider analogously the action of the colored Lie algebra of
infinitesimal automorphisms on the complex .. We obtain the graded trace from the
action on Ber(M).

5.1. General construction of the action. Consider, as before, the graded-commuta-
tive algebra K = S5(ITM & M ™), where M is a free A-module of rank r over a
graded-commutative algebra A. To any homogeneous square matrix S € M(r; 54) of
degree S we can associate a graded derivation of the same degree Lg € DerS (K).
Lg is given by matrix multiplication by S on M and by matrix multiplication by
—T''S on M*. Note that since & has also an A-module structure, it is natural to
restrict ourselves only to derivations that are also A-module morphisms, i.e.

Ders(K) :={D €Der(K) : D(a) =0, Ya € A} C End4(K) .
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Hence, more explicitly, we have an assignment
L:M(r;A)> S+ Lgs €Deryg (K) (5.1)

where, for any homogeneous matrix S, Ls € End4(K) is given on generating
elements by

Ls(Tle;) = ) Teg s (5.1a)
k
and Ls(e) = =Y eF(-D@teesS+ang = (1)@ 3" ok (5.1b)
k k

and extends to arbitrary elements by the graded Leibniz rule
Ls(ab) = Ls(@b + (- a Ls(b)

foralla,b € K.
In fact, L is a colored Lie algebra morphism of degree 0. Indeed, we see that the
equality
[Ls.Lt] = Ls,m)

holds on M by construction, and on M * it follows from (3.4) (Corollary 3.3).

5.2. Deducing the graded trace. The second main result of this paper is as follows.

Theorem 5.1. Given an even matrix S € Mg(x; A), its action (by derivation) on
the cohomology H(K®) is well-defined provided one of the following conditions is
satisfied:

1) S € MO(r; A) and the parity of 1 is an arbitrary odd element w € (Z3)";

2) S is an arbitrary even matrix, n is an odd integer and

7= (L1....1) € (Z)".

In both cases, the action of S coincides with the operator of left multiplication
by T'te(S).

To prove the theorem, let us first determine the conditions sufficient for invariance
of the differential d : I — K under the action (5.1).

Lemma 5.2. [Lg,d] = 0 if one of the above conditions 1 or 2 is satisfied.

i

Proof. By definition, the operator d is left multiplication by ), ITe; &'.
[Ls,d] = 0isequivalent to Ls (>, Tle; ') = 0.

Hence,
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From (5.1a-b), we have that

1
= Z Iey ski g — (—1)(5”” Z Ie; siksk
i,k i,k

= Z Ile, s¥ &¥ (1 — (—1)(5’”)>

u,v

LS<Z Me; si) =y (Ls(ne,-)s" + (—)SE+m g, Ls(s"))

which is equal to zero if and only if
(S,m)=0. (5.2)

In particular this holds whenever S = (0,0,...,0) (then m is arbitrary). On the

other hand, assuming that n is an odd integer and # = (1,1,..., 1), the equality
(5.2) then also holds for every homogeneous matrix of even (not necessarily zero)
degree. O

Consequently, in the two cases of the above proposition, L induces an action
(respectively denoted by £® and £) on the cohomology H(K®) = H"(K*). In
other words, we have in the first case an algebra morphism

£ Mr; 4) — End° (H™(K®)) = A°
and in the second case (i.e. when n is odd) an algebra morphism
L : Mg(r; A) — Endg (H"(K*®)) ~ 45 ,

both given by
Ls ([§1---&] = [Ls (51---&)] .

Here, we use again the (x, £)’s notation introduced in (4.4). With this notation,
(5.1a—b) give in particular

r’ r
k k . . ’
Ekzlsks,-—l—g kyrn kST ifl<i<r

Ly = .
(—1)is+men) (Zk=1 skixk - Zkzr,+l(—1)(ek’”)ski§k) ifr' <i<r
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so that
Ls([§1---§]) = [Ls (§1---§/)]
= [Z(—l)(g’z’“ gy & L (€ "'Eri|

i=1

= Y DS s 6]

i=1k=1
r’ r B .
+y > ORI s &
i=1k=r'+1
r r’ . B B
+ Y (NS IR ey gy s i 6]
i=r'+1k=1

r r - _ - 5 .
- Z Z (=182 <i §7) (S +mei)+{ex) [£1- i1 L Exbigr & ]

i=r'+1k=r'+1

= Y DER ) [ s ]
i=1

— Z (—1)S2j<i&j)+(5.e) [51-'-Ei—lsii§i§i+1"-$r]

i=r'+1
= Y EDER g g ] = Y DS [ 8]
i=1 i=r'+1

r’ r
_ Z(_l)(s,ei-i-n)-f-(ei,ei)sli [E1---&] + Z (_l)(S,e,‘)-i-(e,',e,-)sli [E1- &
i=1

i=r'+1
Clearly, if we are in one of the two cases described in Theorem 5.1, this rewrites as

r

Ls (& &]) = (Z(—l)‘éﬁmsz) (61 &) = Tr(S) &1+ & .

i=1

Theorem 5.1 is proved.
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