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The analytical assembly map and index theory

Markus Land

Abstract. In this paper we study the index theoretic interpretation of the analytical assembly
map that appears in the Baum–Connes conjecture. In its general form it may be constructed
using Kasparov’s equivariant KK-theory. In the special case of a torsionfree group the domain
simplifies to the usual K-homology of the classifying space BG of G and it is frequently used
that in this case the analytical assembly map is given by assigning to an operator an equivariant
index. We give a precise formulation of this statement and prove it.
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1. Introduction

LetG be a countable discrete group. The Baum–Connes conjecture predicts a certain
analytical assembly map

RKG� .EG/
// K�.C

�
r G/

to be an isomorphism. In the case where the group is torsionfree the domain of this
map may be identified with the compactly supported analytic K-homology of the
classifying space BG of G and it is frequently used that the resulting map

RK�.BG/ // K�.C
�
r G/
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is given by associating to an elliptic differential operator an equivariant index. The
goal of this paper is to prove that this is indeed the case.

This is important for the following reason. One standard method of proving the
Baum–Connes conjecture is by the so called Dirac-dual-Dirac method. This uses the
construction of the assembly map as proposed by Kasparov. But when one wants to
prove that the Baum–Connes conjecture implies (for example) the trace conjecture
(which in turn implies the Kaplansky conjecture) one uses the interpretation of
the assembly map as a Mishchenko Index. So when relating the Baum–Connes
conjecture to other classical conjectures one needs the index theoretic interpretation
of the analytical assembly map.

To the author’s knowledge, this result has not been published yet and is in fact
more subtle than we expected. The main obstacle is to relate the Mishchenko bundle
to the canonical projection associated to any proper and cocompact G-space, which
is used in the Kasparov picture.

Most arguments of the paper are contained in detail in the author’s master’s
thesis, but a crucial step was still missing there. We close this gap using a recent
result of Buss–Echterhoff about fixed point Hilbert-modules in a special case.

The paper is divided into three parts.
In section 2 we recall the definition of the (full) analytical assembly map as

proposed by Kasparov.
In section 3, we define an index map

KK�.C0.BG/;C/
MF // KK�.C; C �G/

and relate it to classical Mishchenko–Fomenko index theory.
In section 4 we give a proof that these constructions coincide. This implies that

the same is true for the reduced versions. On the way we prove a factorization of the
descent homomorphism as it appears in the analytical assembly map and give some
recollections on the Morita theory needed for the proof.

Acknowledgements. I want to thank Wolfgang Lück for introducing me to the field
of isomorphism conjectures, and especially the Baum–Connes conjecture. Without
his support during the writing of my master’s thesis, this paper would not have
been possible. I want to thank Alain Valette for encouraging me to think about the
index theoretic interpretation of the analytical assembly map and Nigel Higson for
telling me about the factorization of the descent homomorphism as I need it. I am
particularly indebted to Siegfried Echterhoff who answered a number of questions
concerning C �-algebraic methods used in the proof of my comparison theorem. I
also want to thank the referee for helpful suggestions. This work has been supported
by the Leibniz Preis of Wolfgang Lück.
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2. The Kasparov approach to analytical assembly

The main input in Kasparov’s definition of the analytical assembly map are a descent
homomorphism and a canonical element in KK.C; C0.X/ o G/ for any proper
and cocompact G-space X . We will first recall the descent homomorphism to fix
notation.

Lemma 2.1. For any G-C �-algebras A and B there is a descent homomorphism

KKG� .A;B/
jG
.r/ // KK�.Ao.r/ G;B o.r/ G/

which is functorial and compatible with Kasparov products in the obvious sense.

Proof. This is due Kasparov [8, Theorem 3.11] and is also explained in [3, 2.2]. To
fix notation let us briefly summarize [3, 2.2].

We consider an equivariantKK-cycle given by ŒE ; �;F � 2 KKG� .A;B/ i.e., E is
aG-Hilbert-B-module, � W A! L.E/ is a graded equivariant �-homomorphism and
F 2 L.E/ an odd self-adjoint operator satisfying the usual compatibility relations.

We then consider Cc.G; E/ as a pre-Hilbert-Cc.G;B/-module as in [3, 2.2].
There is a left action of Cc.G;A/ on Cc.G; E/ using the G-action on E . Now we
can complete this to

E oG D Cc.G; E/

which is then a Hilbert-BoG-module. The action of Cc.G;A/ on Cc.G; E/ extends
to a graded �-homomorphism Q� W AoG // L.E oG/ . Furthermore we define
QF 2 L.E oG/ by QF.˛/.g/ D F.˛.g// for ˛ 2 Cc.G; E/. Then

jG ŒE ; �;F � D ŒE oG; Q�; QF �:

For the reduced descent homomorphism, we simply complete Cc.G; E/ to a Hilbert-
BorG-module EorG and it follows (using e.g. [8, Lemma 3.9]) that the canonical
morphism AoG ! L.E or G/ factors over Aor G as needed.

Now let X be a proper and cocompact G-space.

Lemma 2.2. There exists a non-negative function 2 Cc.X/ such that
P
g2G  .gx/

D 1 for all x 2 X . Such a  will be referred to as cut-off function. Using this we
define an element pX 2 Cc.G �X/ by

pX .g; x/ D
p
 .x/ �  .g�1x/

and view it as an element pX 2 C0.X/ o G. This element is a projection and its
KK-theory class Œ pX � 2 KK.C; C0.X/ o G/ is independent of the choice of the
cut-off function.
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Proof. This is proven in the more general setting for groupoids in [12, sections 6.2
and 6.3]. Concrete calculations may also be found in [5, section 2.3].

Definition 2.3. Let X be a proper and cocompact G-space. Then we define a
morphism �X by the composite

KKG� .C0.X/;C/
jG // KK�.C0.X/oG;C �G/

�ıŒ pX � // KK�.C; C �G/ Š K�.C �G/:

Remark 2.4. This map is natural with respect to equivariant maps of proper G-
spaces because the canonicalKK-class Œ pX � 2 KK.C; C0.X/oG/ does not depend
on a specific  as in Lemma 2.2.

Definition 2.5. For a countable discrete group G the full analytical assembly map is
the map

RKG� .EG/
Def
D colim

X�EG
KKG� .C0.X/;C/

A // K�.C
�G/;

where the colimit runs over all cocompact G-invariant subsets X of EG, the
classifying space for proper G-actions, and the map is induced by the maps �X .
By the previous remark this is well-defined. If G is torsionfree then EG D EG.

Remark 2.6. The reduced analytical assembly map may be obtained from the
previous full version by post composing with the canonical morphismK�.C

�G/!

K�.C
�
r G/.

3. The Mishchenko–Fomenko index

Definition 3.1. For aCW -complexX and a unitalC �-algebraA denote byK.X IA/
the Grothendieck group of the monoid of isomorphism classes of finitely generated
projective Hilbert-A-module bundles over X under direct sum.

Proposition 3.2. If X is compact, there is an isomorphism

K.X IA/ // KK.C; C.X/˝ A/

induced by assigning to such a finitely generated projective Hilbert-A-module bundle
its module of sections.

Proof. This is proven in [11, Proposition 3.17].

Definition 3.3. For a compact space X and a map f W X // BG we consider

the G-bundle OX ! X classified by f and define the Mishchenko line bundle to be
the following associated bundle

Lf D OX �G C �G;
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where the action of G on C �G is given by left multiplication. If f D id W BG !
BG is the identity or the inclusion of a subspace Y we simply write LBG or LY for
this bundle.
Remark 3.4. Of course, by construction we have that

Lf D f �.LBG/

and by Proposition 3.2 we view this element as

ŒLf � 2 KK.C; C.X/˝ C �G/:

Definition 3.5. Now let X � BG be a compact subset. We define a Mishchenko–
Fomenko index map MF by the composite

KK�.C.X/;C/
�C�G // KK�.C.X/˝ C

�G;C �G/
�ıŒLX � // KK�.C; C �G/

where LX is the bundle LBG restricted to the subset X . This is just the cup-cap
product map with the element ŒLX � 2 KK.C; C.X/ ˝ C �G/ This construction
induces a map on colimits :

RKK�.C0.BG/;C/
MF // KK�.C; C �G/

because LX is natural in X as it is the pullback of a bundle over BG.
Remark 3.6. In [1] it is shown that every element in RKK.C0.BG/;C/ may be
represented by a triple ŒM; f;E� where M is a spinc-manifold, f W M ! BG is a
continuous map andE is a hermitian vector bundle overM . Using this we can relate
the previous map MF to the classical construction of C �-algebra valued indices as
in [9].
Proposition 3.7. The index map

RKK0.C0.BG/;C/
MF // KK0.C; C �G/

ŒM; f;E�
� // ind.DE o Lf /

maps the class ŒM; f;E� to the Mishchenko–Fomenko Index of the Dirac operator
twisted by the Mishchenko line bundle as constructed in [9].

Proof. This follows from [11, Theorem 6.22] and the commutativity of the diagram

RK0.BG/
�C�G // RKK0.C0.BG/˝ C

�G;C �G/
�ıŒLBG �// KK0.C; C �G/

K0.M/
�C�G

//

f�

OO

KK0.C.M/˝ C �G;C �G/
�ıŒLf �

//

.f �˝C�G/�

OO

KK0.C; C �G/:

The analogous statement for the reduced version (using C �r G instead of C �G) is
also true by essentially the same reasoning.
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4. The comparison theorem

In this section we study the relationship between the analytical assembly map of
section 2 and the Mishchenko–Fomenko index map of section 3 in the case of a
torsionfree group. We recall that these are maps

MF W RKK�.C0.BG/;C/ // KK�.C; C �G/ and

A W RKKG� .C0.EG/;C/ // KK�.C; C �G/:

The main result of this paper is the following

Theorem 4.1. Let G be a countable, torsion-free, discrete group. Then there is an
identification of the domains such that the following diagram commutes:

RKK�.C0.BG/;C/
MF // KK�.C; C �G/

RKKG� .C0.EG/;C/
A

<<

Š

OO

So let us begin by explaining the identification

RKKG� .C0.EG/;C/
Š // RKK�.C0.BG/;C/:

This proceeds in two steps.
First, we use the dual of the Green–Julg Theorem as stated e.g. in [2, 20.2.7 (b)].

Proposition 4.2. For a discrete groupG and aG-C �-algebraA there is a canonical
isomorphism

GJ W KKG� .A;C/
Š // KK�.AoG;C/

i.e. the equivariant analytical K-homology coincides with the unequivariant K-
homology of the full crossed product.

The next result we need is the following proposition due to Green, see [6].

Proposition 4.3. Suppose that a discrete group G acts properly and freely on a
space X , e.g. the action is proper and the group is torsionfree. Then the algebras
C0.X/oG and C0.X=G/ are Morita equivalent.

Proof. There are at least two ways to construct this Morita equivalence, and since we
will need both descriptions we briefly mention both. Both construct an imprimitivity
C0.X=G/-C0.X/oG bimodule. A canonical way is to consider the module

Fc.X/ D Cc.X/
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with bimodule structure given by

(1) .f:'/.x/ D f Œx� � '.x/, for f 2 C0.X=G/ and ' 2 Cc.X/,

(2) .':˛/.x/ D
P
g2G

'.g�1x/ � ˛.g�1; g�1x/, for ˛ 2 Cc.G �X/,

and inner products given by

(1) h'; '0iC0.X/oG.g; x/ D '.x/ � '
0.g�1x/, as well as

(2) C0.X=G/h'; '
0iŒx� D

P
g2G

'.g�1x/ � '0.g�1x/.

This completes to a Hilbert-C0.X/oG-module which we call F.X/. It still carries
the structure of a C0.X=G/-C0.X/ o G-bimodule and C0.X=G/ Š K.F.X//.
Moreover the C0.X/oG-valued inner product is full if and only if the G-action on
X is free, and so this is an imprimitivity bimodule as needed.

The other approach uses the projection pX 2 C0.X/ o G and general Morita
theory associated to projections. It is a general fact about corners that given any
C �-algebra A and a projection p 2 A the module pA with the obvious structure
becomes an imprimitivity pAp-ApA bimodule. A projection is called full if ApA D
A and if G acts freely on X then the projection pX is full in this sense. Hence
pX � .C0.X/ o G/ is also an imprimitivity bimodule as stated in the proposition
since the corner pX � .C0.X/oG/ � pX is isomorphic to C0.X=G/, see [4]. But the
projection is not canonical (only its K-theory class is canonical) so this is a draw-
back in this definition. We have an (noncanonical) isomorphism of imprimitivity
bimodules

ˆ W F.X/ // pX � .C0.X/oG/

which restricted to Fc.X/ is given by

ˆ.'/ D h‚; 'iC0.X/oG

where ‚ D
p
 for a cut-off function  as in Lemma 2.2.

Definition 4.4. We denote the resulting (invertible) KK-element by

ŒF.X/� 2 KK.C0.X=G/; C0.X/oG/:

Remark 4.5. The element ŒF.X/� is natural with respect to inclusions of G-spaces,
which follows from the description using the projection.

Using this we can now define the claimed identification as the map induced on
colimits of the composite

KKG� .C0.X/;C/
GJ // KK�.C0.X/oG;C/

�ıŒF.X/� // KK�.C0.X=G/;C/:
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We want to conclude this construction with the following

Lemma 4.6. Let X be a proper, free and cocompact G-space. Then the inclusion
i W C! C.X=G/ has the property

i�ŒF.X/� D Œ pX � 2 KK.C; C0.X/oG/:

Proof. This follows immediately from the description of F.X/ using the projec-
tion pX .

So we want to show that for each proper and cocompactG-spaceX the composite

KKG� .C0.X/;C/
GJ // KK�.C0.X/oG;C/

�ıŒF.X/�// KK�.C.X=G/;C/
MF // KK�.C; C �G/

(4.1)

equals the analytical assembly map of section 2. We recall that MF is defined by
taking cup-cap product with the element

ŒLX=G � 2 KK.C; C.X=G/˝ C �G/:

Now it is a standard fact from KK-theory, see for instance [2, Proposition 18.9.1
(c)], that the diagram

KK�.C0.X/oG;C/
�C�G //

�ıŒF.X/�
��

KK�..C0.X/oG/˝ C �G;C �G/

�ı�C�G ŒF.X/�
��

KK�.C.X=G/;C/ �C�G
// KK�.C.X=G/˝ C

�G;C �G/

commutes, which implies that the composite (4.1) is equal to

KKG� .C0.X/;C/
GJ // KK�.C0.X/oG;C/ // KK�.C; C �G/

where the last map is the cup-cap product with the class

�C�G ŒF.X/� ı ŒLX=G � 2 KK.C; .C0.X/oG/˝ C �G/:

So our next goal is to factor the analytical assembly map as a composite

KKG� .C0.X/;C/
GJ // KK�.C0.X/oG;C/ // KK�.C; C �G/

in which the last map is cup-cap product with an element

ˇX 2 KK.C; .C0.X/oG/˝ C �G/:

The main for this is the following Proposition. We want to thank Nigel Higson
for pointing this out to us.
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Proposition 4.7. Let A be a G-C �-algebra. Then the following diagram commutes

KKG� .A;C/
jG //

GJ
��

KK�.AoG;C �G/

KK�.AoG;C/
�C�G

// KK�.AoG ˝ C �G;C �G/:

��

OO

The similar statement for the reduced descent homomorphism is also true.

Proof. By classical results as for example in [7] we may assume that any element
in KKG� .A;C/ is represented by a triple ŒH; �;F � where H is a separable Hilbert-
space with unitary G-action U W G ! B.H/, � W A ! B.H/ is an equivariant
representation and F 2 B.H/ is a selfadjoint operator satisfying the usual
compactness conditions.

Let us first calculate what the lower composite does on such an element. The
Green–Julg map takes this class to the class ŒH; � oU;F � where � oU W AoG !
B.H/ is induced by the covariant pair .�; U /. By definition we get that

�C�G ŒH; � o U;F � D ŒH˝ C �G; .� o U/˝ �;F ˝ id�:

where again � denotes the action by left multiplication of C �r G on itself. Hence, we
have

��.�C�G.GJŒH; �;F �// D ŒH˝ C �G; ..� o U/˝ �/ ı�;F ˝ id�:

We need to compare this to jG ŒH; �;F � D ŒHoG; Q�; QF � and for this we will show
the following facts:

(i) The Hilbert-C �G-modules HoG and H˝ C �G are isomorphic and

(ii) under this isomorphism, the operator QF translates to F ˝ id and the represen-
tation Q� corresponds to ..� o U/˝ �/ ı�.

For .i/ we will begin by showing that H ˝ Cc.G;C/ and Cc.G;H/ are
isomorphic as Cc.G;C/ modules. Note that it is clear that they are isomorphic as
C-modules so it suffices to check whether the canonical map H ˝ Cc.G;C/ !
Cc.G;H/ sending x ˝ ˛ to the function ˛x.g/ D ˛.g/ � x is a Cc.G;C/ module
map, which is a tedious but simple calculation.

Next we show that the given inner products on Cc.G;H/ and H ˝ Cc.G;C/
coincide. More precisely let ˛; ˇ 2 Cc.G;C/ and x; y 2 H. Then as before we can
view ˛x and ˇy as elements of Cc.G;H/. One can compute that

h˛x; ˇyiCc.G;H/ D .˛
�ˇ/ � hx; yiH D hx ˝ ˛; y ˝ ˇiH˝C�G :

It follows that there is an induced isomorphism of the Hilbert-C �G-modules HoG
and H˝ C �G as claimed.
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In order to show .ii/ we want that under this isomorphism QF corresponds to F ˝ id.
This just means that for any ˛ 2 Cc.G;C/ and x 2 H we want that QF.˛x/ D ˛F.x/,
which is true since for any g 2 G we have

QF.˛x/.g/ D F.˛x.g// D F.˛.g/x/ D ˛.g/F.x/ D ˛F.x/.g/

as desired.
So it remains to show that the two representations

AoG N�o NU // L.HoG/ and

AoG ..�oU/˝�/ı� // L.H˝ C �G/

correspond to each other under the canonical isomorphism of .i/. So let us calculate
both representations. Let a 2 A and h 2 G, let x 2 H and ˛ 2 Cc.G;C/. We define
elements ıa

h
2 Cc.G;A/ by the formula

ıah.g/ D

(
a if h D g;
0 else.

It is the definition of � that we have

�.ıah/ D ı
a
h ˝ h:

Hence we can compute

...� o U/˝ �/ ı�/ .ıah/.x ˝ ˛/.g/ D ..� o U/˝ �/ .ıah ˝ h/.x ˝ ˛/.g/
D
�
.� o U/.ıah/.x/˝ �h.˛/

�
.g/

D ˛.h�1g/ � .� o U/.ıah/.x/

D ˛.h�1g/ �
X
h02G

�..ıah/.h
0//.Uh0.x//

D ˛.h�1g/ � �.a/.Uh.x//:

On the other hand by definition of the reduced descent homomorphism we can
compute

. Q� o QU/.ıah/.˛x/.g/ D
X
h02G

�..ıah/.h
0//.Uh0.˛x.h

0�1g///

D �.a/.Uh.˛.h
�1g/x// D ˛.h�1g/ � �.a/.Uh.x//:

This completes the proof of the proposition.
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Remark 4.8. In [10, section 2.2] Rosenberg claims that the (unreduced) descent
homomorphism may be factored in a different way, but this factorization is not true.
For example his factorizations says that for finite groups the diagram

KKG.C;C/ //

GJ
��

jG

((

KK.C;CG/

"�

��
KK.CG;C/

i�

// KK.CG;CG/

commutes, where the top horizontal map is the Green–Julg isomorphism for compact
groups. Using that jG ŒidC� D ŒidCG � and that " ı i D idC this in turn implies the
existence of elements x 2 KK.CG;C/ and y 2 KK.C;CG/ such that the identity
map of K0.CG/ factors over K0.C/, hence G would be the trivial group.

The last proposition provides a factorization of the analytical assembly map as
follows

KK�.C; C �G/

KK�.C0.X/oG;C/

//

�C�G // KK�..C0.X/oG/˝ C �G;C �G/
�� // KK�.C0.X/oG;C �G/

�ıŒ px �

OO

KKG� .C0.X/;C/ jG

33

GJ Š

OO

where now by definition of the cup-cap product the upper composite is just cup-cap
product with the element

ˇX D Œ�.pX /� 2 KK.C; .C0.X/oG/˝ C �G/:

It is hence natural to ask whether we have an equality

Œ�.pX /� D �C�G ŒF.X/� ı ŒLX=G � 2 KK.C; .C0.X/oG/˝ C �G/

which would directly imply the main theorem. We recall that we have (using
Lemma 4.6)

Œ�.pX /� D Œ�� ı Œ pX � D Œ�� ı i
�ŒF.X/�:

The rest of this paper is devoted to a proof of this equality

Œ�� ı i�ŒF.X/� D �C�G ŒF.X/� ı ŒLX=G � 2 KK.C; .C0.X/oG/˝ C �G/:

To do this we will apply methods from fixed point algebras as introduced by
Kasparov in [8, section 3] and more general versions as used in [3]. Once in the
picture of fixed point algebras we can use results by Buss and Echterhoff in [3] to
prove the equality. One of the crucial points in the proof is to relate the dual coaction
� to the Hilbert-module that occurs in the Kasparov product �C�G ŒF.X/� ı ŒLX=G �.
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Definition 4.9. Let B be a G-C �-algebra and E a G-Hilbert-B-module. If E is
equipped with a G-equivariant morphism C0.X/ ! L.E/ we call this datum a
.B;X oG/-Hilbert-module.

Definition 4.10. We consider the following two G-C �-algebras given by

A D .C0.X/˝ C
�G; � ˝ ad�/

and B D .C0.X/˝ C
�G; � ˝ id/

where ad� denotes the conjugation action of G on C �G, and � is the induced action
of G on C0.X/. The object

E D .C0.X/˝ C �G; � ˝ �/

naturally becomes an equivariant imprimitivity A-B-bimodule, where � denotes the
left regular representation of G on C �G.

We note that both E and B are examples of .B;X o G/-Hilbert-modules as in
Definition 4.9, where the action C0.X/ ! L.E/ and C0.X/ ! L.B/ is given by
left multiplication on C0.X/.

For the next definition see also the remark after [4, Lemma 2.1] and the references
listed there.

Definition 4.11. The generalized fixed point algebras AG and BG are defined by:

AG D C0.X �G;ad� C
�G/

and BG D C0.X �G;id C
�G/ Š C0.X=G/˝ C

�G:

The generalized fixed point module EG is defined similarly by

EG D C0.X �G;� C �G/:

Remark 4.12. These algebras and this module may of course be interpreted as the
algebras and the module of sections of the obvious bundles over X=G. In this
notation we have that EG D �0.LX=G/.
Lemma 4.13. The algebras AG and BG are Morita equivalent.

Proof. The generalized fixed point module EG is an imprimitivity bimodule.

Remark 4.14. We just want to emphasize again that this implies that the element

Œ EG � 2 KK.AG ; BG/

is a KK-equivalence.
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There exists an inclusion j W C0.X=G/! AG using the fact that the conjugation
action of G on C � C �G is trivial. Using that BG D C0.X=G/ ˝ C

�G we have
the following

Lemma 4.15. If X is in addition cocompact we have

ŒEG ; �C; 0� D ŒLX=G � 2 KK.C; C.X=G/˝ C �G/

where �C is the unique unital representation.

Proof. This follows directly from the definitions.

Following [3, section 3], we need to extend the construction of F.X/ to a more
general situation.

Definition 4.16. Given any .B;X oG/-Hilbert-module E we define

Fc.E/ D Cc.X/ � E

which can be viewed as a right Cc.G;B/-module and as left C0.X=G/-module.
Moreover Fc.E/ has a Cc.G;B/-valued inner product, with respect to which it
completes to a Hilbert-B oG-module F.E/.
Example 4.17. Consider B D C0.X/ D E as a G-Hilbert-C0.X/-module over
itself. The action by multiplication operators is G-equivariant and so we get a
Hilbert-C0.X/oG-module F.C0.X// and it can be checked that

F.C0.X// Š F.X/:

We need the following technical observations.

Lemma 4.18. In the notation of Definition 4.10 we have E o G D B o G D

.C0.X/ o G/ ˝ C �G. Moreover the multiplication action of C0.X/ on E is
equivariant and the induced action

C0.X/oG // L.E oG/ D L.C0.X/oG ˝ C �G/

may be identified with the multiplication action after applying the dual coaction.
Precisely the diagram

C0.X/oG //

�

��

L.C0.X/oG ˝ C �G/

C0.X/oG ˝ C �G
M

;;

commutes, where � is the dual coaction and M is the left-multiplication action.
Furthermore F.B/ Š F.X/˝ C �G as right-B oG-modules.
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Proof. It is clear that E oG D B oG because the G-action on E is not used when
constructing E oG (only the action on B is relevant for this). The G-action is used
when constructing the action map C0.X/ o G ! L.E o G/. We recall from [3,
section 2.2, formula 2.5] that Cc.G; C0.X// acts on Cc.G; E/ by the formula

.f:˛/.g; x/ D
X
h2G

f .h; x/ � h � ˛.h�1g; h�1x/

for f 2 Cc.G; C0.X// and ˛ 2 Cc.G; C0.X/˝ C �G/. Note that the extra h in the
product comes precisely from the G-action � ˝ � on E . Now by definition of the
convolution product on B oG we have that

.�.f / � ˛/.g; x/ D
X
h2G

�.f /.h; x/ � ˛.h�1g; h�1x/:

Here, no extra h-factor comes up in the product with ˛ as theG-action on B is given
by � ˝ id, i.e. is trivial on the C �G-term.

Now we consider the special functions f D ı'
h
2 Cc.G; C0.X// for ' 2 C0.X/.

We recall that these are given by

ı
'

h
.g/ D

(
' if h D g;
0 else,

and as in Proposition 4.7 we have

�.ı
'

h
/ D ı

'

h
˝ h:

Using this we can easily see that

.ı
'

h
:˛/.g; x/ D '.x/ � h � ˛.h�1g; h�1x/ D .�.ı

'

h
/ � ˛/.g; x/

which shows the commutativity of the diagram.
The statement about F.B/ follows directly from the fact that the G-action is

trivial on the C �G-tensor factor and the example previous to this lemma.

Proposition 4.19. In the situation of Definition 4.16 there is an isomorphism of
Hilbert-B oG-modules

‰ W F.X/˝C0.X/oG .E oG/ Š // F.E/

where E oG is as in Lemma 2.1.

Proof. This is a special case of [3, Proposition 3.6].

It turns out (using the description in [3, before Prop. 3.20]) that the equivariant
fixed point module EG as defined in Definition 4.11 coincides with the more
general construction as in [3, Lemma 4.1]. In particular we have the following
characterization of EG in terms of the construction of Definition 4.16.
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Proposition 4.20. There is an isomorphism of Hilbert-BG-modules

EG Š // F.E/˝BoG F.B/� :

Proof. This is proven in [3, Corollary 4.6] using [3, Proposition 4.5].

We have now collected all results needed to prove the remaining equality. So let
us start by computing the Kasparov product

�C�G ŒF.X/� ı ŒLX=G � D �C�G ŒF.X/� ı Œ EG ; �C; 0�:

First, we claim that

�C�G ŒF.X/� D ŒF.B/� 2 KK.BG ; B oG/:

Indeed, by Lemma 4.18 we have that F.B/ Š F.X/˝C �G andBG Š C0.X=G/˝
C �G and the left BG-module action on F.B/ corresponds precisely to

� ˝ ł W C0.X=G/˝ C �G ! L.F.X/˝ C �G/

as in the definition of the exterior product �C�G . Hence we can compute the
Kasparov product to be

ŒF.B/� ı ŒEG ; �C; 0� D ŒEG ˝BG F.B/; �C; 0� 2 KK.C; B oG/:

The fact that this is a Kasparov product follows from the construction of it (the
connection one needs to construct may be chosen to be zero in this case, as all
operators involved are the zero operators).

Altogether this means that

�C�G ŒF.X/� ı ŒLX=G � D ŒEG ˝BG F.B/; �C; 0� 2 KK.C; B oG/:

We can now compute the Hilbert-B oG-module EG ˝BG F.B/ as follows

EG ˝BG F.B/ Š F.E/˝BoG F.B/� ˝BG F.B/ by Prop. 4.20

Š F.E/
Š F.X/˝C0.X/oG .E oG/ by Prop. 4.19

Š F.X/˝� B oG by Prop. 4.18

Now on the other hand we want to compute the element

Œ�� ı i�ŒF.X/� 2 KK.C; B oG/

but by sheer definition we get that

Œ�� ı i�ŒF.X/� D ŒF.X/˝� B oG;�C; 0�:
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Hence we have

�C�G ŒF.X/� ı ŒLX=G � D ŒEG ˝BG F.B/; �C; 0�

D ŒF.X/˝� B oG;�C; 0�

D Œ�� ı i�ŒF.X/�:

Remark 4.21. At last we want to point out that our main theorem implies that
the usual Baum–Connes assembly map (which is the reduced analytical assembly
map) is also equal to a Mishchenko–Fomenko index if we replace C �G by C �r G
throughout the whole paper.
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