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Poisson and Hochschild cohomology and the semiclassical limit
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Abstract. Let A be a quantum algebra possessing a semiclassical limit A. We show that under
certain hypotheses Ae can be thought of as a deformation of the Poisson enveloping algebra
of A, and we give a criterion for the Hochschild cohomology of A to be a deformation of the
Poisson cohomology ofA in the case that A is Koszul. We verify that condition for the algebra of
2� 2 quantum matrices and calculate its Hochschild cohomology and the Poisson cohomology
of its semiclassical limit.
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1. Introduction

Certain quantum algebras A admit a semiclassical limit: that is, a Poisson algebra
structure on their q ! 1 limit A which preserves some noncommutative information
from A. A simple example is the quantum plane

A D
k.q/hx; yi
.xy � qyx/

whose semiclassical limit is the polynomial ring kŒx; y� with Poisson structure
determined by fx; yg D xy. Various authors have investigated to what extent the
Hochschild (co)homology of A is determined by the Poisson (co)homology of its
semiclassical limit, for example [16, 5], usually using spectral sequence methods,
and a related situation where there is a Poisson structure on an associated graded
algebra is dealt with in [9, Théorème, p.223]. The famous Kontsevich quantization
theorem also guarantees a relationship between the cohomology of a Poisson algebra
and that of its canonical quantization.

In this paper we study the link between Poisson and Hochschild cohomology by
showing that if A is graded with a PBW basis of polynomial type with a polynomial
semiclassical limit A, the enveloping algebra Ae is a deformation of the Poisson
enveloping algebra P.A/ (Section 3). The restriction to A being polynomial allows
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us to describe P.A/ by generators and relations (Lemma 2.2): when the Kähler
differentials of A are not free as an A-module, additional relations are required.

If A is Koszul with quadratic dual AŠ the Hochschild cohomology of A is
computed by a differential graded algebra whose underlying algebra is A ˝ AŠ. If
A has a PBW basis of polynomial type we show that this DGA is a deformation
of the DGA A ˝ AŠ that computes Poisson cohomology of the semiclassical limit
A (Proposition 4.10). This leads to a condition for HH.A/ to be a deformation of
HP.A/; in particular when this holds the Hochschild and Poisson cohomologies have
the same bigraded Hilbert series (Corollary 4.11).

Two algebras to which our results can be applied are the coordinate ring A.n/ of
quantum affine n-space and the algebra M of 2 � 2 quantum matrices. We discuss
the cohomology of the quantum plane and its semiclassical limit in Section 5 as an
example of our methods; Hochschild cohomology for quantum affine spaces and
Poisson cohomology of their semiclassical limits are already known, for example
[17, §6], [1], [11, Proposition 2.2.1], [15, §3.3].

In Section 6 we show that the Hochschild cohomology for 2�2 quantum matrices
is a q-deformation of the Poisson cohomology of the semiclassical limit, and calcu-
late this Poisson cohomology explicitly in Theorem 6.1. These computations are
new, although some low-dimensional Hochschild cohomology groups for quantum
matrices have appeared in the literature: the zeroth Hochschild cohomology group
is known to be generated by the quantum determinant, and the structure of the
first cohomology group as a module over the centre was determined in [10]. An
interesting feature of these computations is the action of the Poisson centre on the
Poisson cohomology groups, which acts freely except for a single trivial summand
in the top cohomological dimension. This is in contrast to [16, Theorem 4.1] for
example, where the action is free.

1.1. Notation and conventions. Throughout this article q is a transcendental
element over a field k of characteristic zero. kŒq˙1� is the ring of Laurent
polynomials in q and k.q/ its field of fractions. “Graded” means Z�0-graded unless
otherwise stated. The nth graded component of a graded algebra ƒ is denoted ƒn,
and if � 2 ƒn we write j�j D n.

2. Poisson algebras and Poisson cohomology

2.1. The Poisson enveloping algebra. Let A be a Poisson k-algebra with bracket
f�;�g; that is, A is a commutative associative k-algebra with unit, f�;�g is a Lie
bracket on A, and for any a 2 A the map

b 7! fa; bg

is a derivation. A left Poisson module over A is a k-vector space M which is a
simultaneously a left module for A as an associative algebra and a left module for
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the Lie algebra .A; f�:�g/, satisfying

fx; ymgM D fx; ygmC yfx;mgM

fxy;mgM D xfy;mgM C yfx;mgM

for any x; y 2 A and m 2 M , where fa;mgM denotes the Lie algebra action and
am the associative algebra action of a 2 A on m 2M .

Let �.A/ be the A-module of Kähler differentials of A. This is the free left A-
module on generators �.a/ for a 2 A quotiented by the submodule generated by all
elements of the form

�.˛/; �.aC b/ ��.a/ ��.b/; �.ab/ � a�.b/ � b�.a/ (2.1)

for ˛ 2 k and a; b 2 A. If we define

Œa�.x/; b�.y/� D afx; bg�.y/C bfa; yg�.x/C ab�.fx; yg/

then �.A/ becomes a k-Lie algebra: see [8, Theorem 3.8].
There is an associative algebra U.A;�.A// called the Poisson enveloping

algebra satisfying a universal property such that the category of left U.A;�.A//-
modules is equivalent to the category of left Poisson modules overA. A more general
construction of which the Poisson enveloping algebra is a special case given in [8,
§1].

In the rest of this section A D kŒx1; : : : ; xn� will be a polynomial algebra so that
the Kähler differentials are freely generated as an A-module by �.x1/; : : : ; �.xn/
[18, §8.8]. We will need a presentation of the Poisson enveloping algebra by
generators and relations in this special case. To this end, let P.A/ be the k-algebra
generated by yi and �.yi / for 1 � i � n, subject to two sets of relations. The first
set says that the yi s commute:

yiyj D yjyi 1 � i < j � n (2.2)

so there is an algebra homomorphism �A W A! P.A/ determined by xi 7! yi . The
second set of relations is

�.yi /yj � yj�.yi / D �A.fxi ; xj g/ 1 � i; j � n (2.3)

�.yi /�.yj / ��.yj /�.yi / D
X
k

�A

�
@fxi ; xj g

@xk

�
�.yk/ 1 � i < j � n:

(2.4)

The map �A W A! P.A/makes P.A/ into anA-module. Let ��.A/ W �.A/! P.A/

be the map of A-modules such that �.xi / 7! �.yi /, and regard P.A/ as a k-Lie
algebra by defining Œu; v� D uv � vu.
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Lemma 2.1. ��.A/ is a homomorphism of k-Lie algebras.

Proof. Firstly note that

�.yi /�A.b/ � �A.b/�.yi / D �A.fxi ; bg/ (2.5)

for any b 2 A. When b is a monomial this can be proved by induction on the length
using (2.3), and the result extends to arbitrary b 2 A by linearity.

To prove that ��.A/ is a Lie algebra homomorphism we must show that for any
a; b 2 A and 1 � i; j � n,

��.A/.Œa�.xi /; b�.xj /�/ D �A.afxi ; bg/�.yj /C �A.bfa; xj g/�.yi /

C �A.ab/
X
k

�A

�
@fxi ; xj g

@xk

�
�.yk/

is equal to

��.A/.a�.xi //��.A/.b�.xj // � ��.A/.b�.xj //��.A/.a�.xi //

D �A.a/�.yi /�A.b/�.yj / � �A.b/�.yj /�A.a/�.yi /

for any a; b 2 A and any i; j .
Using (2.5),

�A.a/�.yi /�A.b/�.yj / � �A.b/�.yj /�A.a/�.yi /

D �A.a/.�A.b/�.yi /C �A.fxi ; bg//�.yj /

� �A.b/.�A.a/�.yj /C �A.fxj ; ag//�.yi /

D �A.ab/.�.yi /�.yj / ��.yj /�.yi //

C �A.afxi ; bg/�.yj /C �A.bfa; xj g/�.yi /

and the result follows from (2.4)

Lemma 2.2. The Poisson enveloping algebra U.A;�.A// is isomorphic to P.A/.

Proof. We will verify that .P.A/; �A; ��.A// has the universal property of [8, 1.6].
We must show that given an associative k-algebra B equipped with the Lie bracket
Œb1; b2� D b1b2 � b2b1, a morphism of k-Lie algebras ��.A/ W �.A/ ! B and a
morphism of k-algebras �A W A! B such that

�A.a/��.A/.b�.xi // D ��.A/.ab�.xi // (2.6)

��.A/.b�.xi //�A.a/ � �A.a/��.A/.b�.xi // D �A.bfxi ; ag/ (2.7)

for any a; b 2 A and any i , there is a unique homomorphism ˆ W P.A/ ! B of
k-algebras such that ˆ ı �A D �A and ˆ ı ��.A/ D ��.A/.
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If these are to hold, ˆ must satisfy ˆ.yi / D �A.xi / and ˆ.�.yi // D

��.A/.�.xi //. Since the elements yi and �.yi / generate P.A/, if such a ˆ exists it
is unique.

In order to show that such aˆ exists we need only show that the elements �A.xi /
and ��.A/.�.xi // satisfy the relations (2.2), (2.3) and (2.4) of P.A/. Certainly
the �A.xi / commute since �A W A ! B is an algebra homomorphism, so (2.2) is
satisfied. Next,

��.A/.�.xi //�A.xj / � �A.xj /��.A/.�.xi // D �A.fxi ; xj g/

by (2.7), and therefore (2.3) is satisfied. Finally,

��.A/.�.xi //��.A/.�.xj // � ��.A/.�.xj //��.A/.�.xi //

D ��.A/.Œ�.xi /;�.xj /�/

D ��.A/.�.fxi ; xj g/

because ��.A/ is a homomorphism of Lie algebras, and applying ��.A/ to

�.fxi ; xj g/ D
X
k

@fxi ; xj g

@xk
�.xk/

and using (2.6) gives

��.A/.�.fxi ; xj g// D
X
k

�A

�
@fxi ; xj g

@xk

�
��.A/.�.xk//

and so (2.4) is also satisfied.

Corollary 2.3. P.A/ has a PBW basis consisting of all elements of the form

y
a1

1 � � �y
an
n �.y1/

b1 � � ��.yn/
bn

for ai ; bi � 0.

Proof. This is a consequence of a result of Rinehart [8, Theorem 1.9] which shows
that the Poisson enveloping algebra is isomorphic as a vector space to the symmetric
A-algebra on �.A/ via the canonical map.

2.2. Poisson cohomology. In this section A D kŒx1; : : : ; xn� is once again a
polynomial algebra so that �.A/ is a free A-module, and we may consider its mth
A-exterior power ƒmA.�.A//. This is the quotient of the tensor product over A of m
copies of �.A/ by the submodule generated by all tensors with two equal factors.
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Write
�.a1/ ^ � � � ^�.am/

for the image of the pure tensor

�.a1/˝A � � � ˝A �.am/

in
Vm
A.�.A//. As an A-module,

Vm
A.�.A// is free on all elements of the form

�.xi1/ ^ � � � ^�.xim/

for 1 � i1 < i2 < � � � < im � n, so it is isomorphic to A˝k ƒm.V / where ƒm.V /
is the mth exterior power of the vector space V spanned by the �.xi /.

Definition 2.4. AltmA.�.A/; A/ is HomA.
Vm
A.�.A//; A/

This is what Huebschmann calls the space of A-multilinear alternating functions
from �.A/ to A. The direct sum Alt�A.�.A/; A/ D

L
m�0 AltmA.�.A/; A/ is a

differential graded algebra when equipped with the Cartan–Chevalley–Eilenberg
differential

df .�.xi1/ ^ � � � ^�.xim//

D

X
j�1

.�1/jC1�.xij /f .�.xi1/ ^ � � � ^
2�.xij / ^ � � � ^�.xim//

C

X
1�j<k�m

.�1/jCkf .Œ�.xij /;�.xik /� ^�.xi1/ ^ � � �

^2�.xij / ^ � � � ^2�.xik / ^ � � � ^�.xim//

and the shuffle product

.f ^ g/.�.a1/ ^ � � � ^�.ajf jCjgj//

D

X
i

sgn.i/f .�.ai1/ ^ � � � ^�.aijf j//g.�.aijf jC1
/ ^ � � � ^�.aijf jCjgj//

where f 2 Altjf jA .�.A/; A/, g 2 AltjgjA .�.A/; A/, the sum is over all i D
.i1; : : : ; ijf jCjgj/ such that i1 < � � � < ijf j and ijf jC1 < � � � < ijf jCjgj, and sgn.i/ is
the sign of the permutation r 7! ir . The shuffle product on the space of alternating
forms is obtained by transferring the natural multiplication onA˝kƒ�.V �/ through
the isomorphisms

AltA.�.A/; A/ Š HomA.A˝ƒ
�.V /; A/ Š Homk.ƒ

�.V /; A/ Š A˝k ƒ
�.V �/:

Definition 2.5. The Poisson cohomology HP�.A/ of a Poisson algebra A is the
cohomology of the differential graded algebra Alt�A.�.A/; A/.
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If A is a graded algebra and its Poisson bracket respects the grading then the
Poisson cohomology groups are bigraded; in this case we write HPij .A/ for the part
in homological degree i and internal degree j .

When the Kähler differentials are projective as an A-module, so in particular
when A is polynomial, P.A/ ˝A ƒ�A.�.A// is a projective resolution of A as a
P.A/-module and the Poisson cohomology of A is isomorphic as an algebra to
Ext�P.A/.A;A/ [8, p.81].

3. The semiclassical limit and q-deformations

Let A be a kŒq˙1�-algebra which is a torsion-free kŒq˙1�-module and suppose A D
A=.q � 1/A is commutative. If u 2 A write Nu for its image in A. Then A is a
Poisson algebra with bracket

f Na; Nbg WD ˇ.a; b/

where ˇ.a; b/ is the unique element of A such that ab � ba D .q � 1/ˇ.a; b/.

Definition 3.1. With A, f�;�g and A as above we say that A is the semiclassical
limit of A.

See for example [4, 7].

Definition 3.2. A kŒq˙1�-subalgebra R of a k.q/-algebra R is called a kŒq˙1�-form
of R if the natural map R ˝kŒq˙1� k.q/ ! R is an isomorphism. We say R is a q-
deformation of the k-algebra R via the kŒq˙1�-form R if R=.q�1/R is isomorphic
as a k-algebra to R.

We will use an analogous notion of q-deformation for differential graded
algebras, obtained by replacing ‘algebra’ and ‘subalgebra’ by ‘DG-algebra’ and
‘sub-DG-algebra’ everywhere in the above definition. Note that if R is (bi)graded
then so is R, and they have the same Hilbert series.

Suppose A is a kŒq˙1�-form of a k.q/-algebra A and that A has a semiclassical
limit A. We want to relate the Poisson enveloping algebra P.A/ and the enveloping
algebra Ae D A ˝k.q/ Aop of A using the notion of q-deformation. The subalgebra
of Ae generated by A ˝ 1 and 1 ˝ Aop is not suitable as a kŒq˙1�-form because it
is commutative modulo q � 1, and P.A/ is in general noncommutative. To help us
define a suitable kŒq˙1�-form we need some special elements of Ae .

Definition 3.3. Let a 2 A. Then Q�.a/ is

a˝ 1 � 1˝ a
q � 1

2 Ae:
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Lemma 3.4. Let x; y 2 A. Write x and y for the elements x ˝ 1 and y ˝ 1 of Ae .
Then in Ae ,

Q�.xy/ D x Q�.y/C y Q�.x/C .q � 1/ Q�.y/ Q�.x/ (3.1)
Q�.x/y � y Q�.x/ D ˇ.x; y/˝ 1 (3.2)

Q�.x/ Q�.y/ � Q�.x/ Q�.y/ D Q�.ˇ.x; y//: (3.3)

The proof is a simple computation. This lemma shows that the Q�.a/ behave like
q-analogues of the Kähler differentials of A — compare (3.1) with (2.1) and (3.2),
(3.3) with (2.3), (2.4).

Remark 3.5. If A is a quadratic algebra generated by homogeneous elements xi of
degree one with a basis of the form xa1

1 � � � x
an
n for ai � 0, these relations, together

with the relations of A, are enough to give a presentation of Ae . This follows by
counting the dimension of the spaces of relations.

For the rest of this section we assume that A is graded, that x1; : : : ; xn is a
homogeneous generating set for A, and that A is polynomial on the images xi of
the xi . Let yi be the generator of P.A/ corresponding to xi ; then P.A/ is graded by
putting yi in the same degree as xi .

Lemma 3.6. Let A0 be the kŒq˙1�-subalgebra of Ae generated by xi ˝ 1 and Q�.xi /
for 1 � i � n. Then there is a surjection of graded algebras P.A/� A0=.q � 1/A0

defined by yi 7! xi ˝ 1 and �.yi / 7! Q�.xi /.

Proof. We must show that if we substitute xi ˝ 1 for yi and Q�.xi / for �.yi / in
the defining relations (2.2), (2.3), (2.4) of P.A/, the resulting expressions lie in
.q � 1/A0. This is true of the relations (2.2) because the semiclassical limit exists.
(2.3): We need

Q�.xi /.xj ˝ 1/ � .xj ˝ 1/ Q�.xi / D ˇ.xi ; xj /˝ 1 mod .q � 1/

but this is immediate from (3.2).
(2.4): Suppose first that ˇ.xi ; xj / D xi1 � � � xiN is a monomial. We need

Q�.xi / Q�.xj / � Q�.xj / Q�.xi / D
X
j

.xi1 � � �cxij � � � xiN ˝ 1/ Q�.xij / mod .q � 1/

but this follows easily by induction on N using (3.1). The general case, when
ˇ.xi ; xj / is not assumed to be a monomial, follows by linearity.

Lemma 3.7. Let z1; : : : ; zn be a homogeneous generating set for a graded k.q/-
algebra B and let B be the kŒq˙1�-subalgebra of B generated by z1; : : : ; zn. Then
B ˝kŒq˙1� k.q/ Š B as graded algebras.
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Proof. The assignment zi 7! zi ˝ 1 determines a graded surjective homomorphism
of algebras B ! B ˝kŒq˙1� k.q/. Suppose the kernel contains a non-zero element
X D

P
i.ai=bi/zi where ai; bi 2 kŒq

˙1� and zi D zi1 ; : : : ; ziN . We may assume
all the bi are equal to 1 by multiplying by an appropriate element of kŒq˙1�, so that
X 2 B. Now B is a free kŒq˙1�-module as it is the direct sum of its graded pieces
which are finitely generated kŒq˙1�-submodules of a k.q/-module and therefore
torsion-free. Therefore the map B ! B ˝kŒq˙1� k.q/ is injective and so X D 0, a
contradiction.

It follows that A0 is a kŒq˙1�-form of Ae .

Corollary 3.8. If dimk P.A/m D dimk.q/ Aem for all m then Ae is a q-deformation
of P.A/ via the kŒq˙1�-form A0.

Proof. If we regard k as a kŒq˙1�-module with q acting as 1 then

A0=.q � 1/A0 Š A0 ˝kŒq˙1� k

as graded algebras. Each graded piece of A0 is a free kŒq˙1�-module, since it embeds
into a k.q/-module Ae and is therefore torsion free. So for any m,

dimk.A0˝kŒq˙1� k/m D dimk.q/.A0˝kŒq˙1� k.q//m D dimk.q/ Aem D dimk P.A/m

where the second equality is because of Lemma 3.7. So the surjection of Lemma 3.6
has to be injective.

When A has a PBW basis of polynomial type we can apply the previous corollary
to get:

Theorem 3.9. Suppose the set of elements of the form xa1

1 � � � x
an
n for ai � 0 form a

basis of A. Then Ae is a q-deformation of P.A/ via the kŒq˙1�-form A0.

Proof. Corollary 2.3 says that P.A/ has a PBW basis consisting of the elements

y
a1

1 � � �y
an
n �.y1/

b1 � � ��.yn/
bn

for ai ; bi � 0, where yi is the generator of P.A/ corresponding to xi . Our
assumptions on A mean that Ae has a PBW basis consisting of

.x1 ˝ 1/a1 � � � .xn ˝ 1/an.1˝ x1/b1 � � � .1˝ xn/bn

for ai ; bi � 0, therefore the hypothesis of Corollary 3.8 holds.
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3.1. Example: the quantum plane.

Definition 3.10. The coordinate ring of the quantum plane is the k.q/-algebra A
generated by x; y subject to the relation xy D qyx.

A is graded with jxj D jyj D 1; it is a quadratic algebra with basis consisting of all
elements xayb with a; b � 0. The kŒq˙1�-form A generated by x; y has semiclassical
limit A which is polynomial on the images x; y of x; y and has Poisson structure
determined by fx; yg D xy. By Lemma 2.2 the Poisson enveloping algebra P.A/ is
generated by x; y and �.x/;�.y/ subject to

xy D yx;�.x/y � y�.x/ D xy;�.y/x � x�.y/ D �xy

�.x/�.y/ ��.y/�.x/ D x�.y/C y�.x/

Theorem 3.9 shows Ae is a q-deformation ofP.A/ via the kŒq˙1�-form generated
by x; y and Q�.x/; Q�.y/. By Lemma 3.4, the following relations hold in Ae:

xy D qyx; Q�.x/y � y Q�.x/ D xy; Q�.y/x � x Q�.y/ D �xy

q Q�.x/ Q�.y/ � Q�.x/ Q�.y/ D x Q�.y/C y Q�.x/:

In fact by counting the dimension of the relation space they are sufficient to give a
presentation of Ae .

3.2. Example: 2 � 2 quantum matrices.

Definition 3.11. The algebra of 2 � 2 quantum matrices M is the k.q/-algebra
generated by a; b; c; d subject to the relations

ab D qba ac D qca bc D cb bd D qdb cd D qdc (3.4)

ad � da D .q � q�1/bc:

M is graded with a; b; c; d in degree 1; it is a quadratic algebra which admits a
basis consisting of all elements aibj ckdl for i; j; k; l � 0.

The kŒq˙1�-subalgebra M generated by a; b; c; d has semiclassical limit M
which is polynomial on the images a; b; c; d of a; b; c; d with Poisson structure
determined by

fa; bg D ab fa; cg D ac fa; dg D 2bc

fb; cg D 0 fb; dg D bd fc; dg D cd: (3.5)
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By Lemma 2.2 the Poisson enveloping algebra P.M/ is generated by a, b, c, d ,
�.a/, �.b/, �.c/, �.d/ subject to relations saying that a, b, c, d commute, and

�.a/a � a�.a/ D 0 �.a/b � b�.a/ D ab

�.a/c � c�.a/ D ac �.a/d � d�.a/ D 2bc

�.b/a � a�.b/ D �ab �.b/b � b�.b/ D 0

�.b/c � c�.b/ D 0 �.b/d � d�.b/ D bd

�.c/a � a�.c/ D �ac �.c/b � b�.c/ D 0

�.c/c � c�.c/ D 0 �.c/d � d�.c/ D �cd

�.d/a � a�.d/ D �2bc �.d/b � b�.d/ D �bd

�.d/c � c�.d/ D �cd �.d/d � d�.d/ D 0

�.a/�.b/ ��.b/�.a/ D a�.b/C b�.a/

�.a/�.c/ ��.c/�.a/ D a�.c/C c�.a/

�.a/�.d/ ��.d/�.a/ D 2b�.c/C 2c�.b/

�.b/�.c/ ��.c/�.b/ D 0

�.b/�.d/ ��.d/�.b/ D b�.d/C d�.b/

�.c/�.d/ ��.d/�.c/ D c�.d/C d�.c/

Theorem 3.9 shows Me is a q-deformation of P.M/ via the kŒq˙1�-form generated
by a; b; c; d and Q�.a/; Q�.b/; Q�.c/; Q�.d/.

By Lemma 3.4, the following relations hold in Me:

Q�.a/a � a Q�.a/ D 0 Q�.a/b � b Q�.a/ D ab
Q�.a/c � c Q�.a/ D ac Q�.a/d � d Q�.a/ D .1C q�1/bc
Q�.b/a � a Q�.b/ D �ab Q�.b/b � b Q�.b/ D 0
Q�.b/c � c Q�.b/ D 0 Q�.b/d � d Q�.b/ D bd
Q�.c/a � a Q�.c/ D �ac Q�.c/b � b Q�.c/ D 0
Q�.c/c � c Q�.c/ D 0 Q�.c/d � d Q�.c/ D �cd
Q�.d/a � a Q�.d/ D �.1C q�1/bc Q�.d/b � b Q�.d/ D �bd
Q�.d/c � c Q�.d/ D �cd Q�.d/d � d Q�.d/ D 0
q Q�.a/ Q�.b/ � Q�.b/ Q�.a/ D a Q�.b/C b Q�.a/
q Q�.a/ Q�.c/ � Q�.c/ Q�.a/ D a Q�.c/C c Q�.a/
Q�.a/ Q�.d/ � Q�.d/ Q�.a/ D .1C q�1/b Q�.c/C .1C q�1/c Q�.b/ � .q � q�1/ Q�.b/ Q�.c/
Q�.b/ Q�.c/ � Q�.c/ Q�.b/ D 0
q Q�.b/ Q�.d/ � Q�.d/ Q�.b/ D b Q�.d/C d Q�.b/
q Q�.c/ Q�.d/ � Q�.d/ Q�.c/ D c Q�.d/C d Q�.c/

4. Koszul algebras and modules

We refer to [13] for general background on quadratic and Koszul algebras. Recall
that a graded k-algebraƒ is called quadratic if it there is a finite-dimensional vector
space V and a subspace R � V ˝k V such that ƒ Š T .V /=.R/ where T .V /
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denotes the tensor algebra. The quadratic dual ƒŠ of ƒ is T .V �/=.R?/ where
V � D Homk.V; k/ and R? is the image of the annihilator of R under the canonical
isomorphism of .V ˝k V /� with V � ˝k V �.

Example 4.1. Let M be the algebra of 2�2 quantum matrices defined in Section 3.2.
The quadratic dual MŠ of M is generated by a�; b�; c�; d� subject to

a�2; b�2; c�2; d�2; b�c� C c�b� C .q � q�1/a�d�

qa�b� C b�a�; qa�c� C c�a�; a�d� C d�a�; qb�d� C d�b�; qc�d� C d�c�:

A graded left ƒ-module M is called quadratic if it is isomorphic as a graded
module to one of the form .ƒ˝kM0/=ƒH whereM0 is a finite-dimensional vector
space, H � ƒ1 ˝M0, and M0 is homogeneous with respect to the grading. The
quadratic dual M Š of M is the left ƒŠ-module .ƒŠ ˝k M �0 /=.ƒ

ŠH?/ where H?

denotes the image of the annihilator ofH under the canonical isomorphism between
.ƒ1˝kM0/ andƒ�1˝kM

�
0 D .ƒ

Š/1˝kM
�
0 . IfM andN are graded leftƒ-modules,

Ext�ƒ.M;N / is bigraded, by homological degree and by internal degree. We write
Extijƒ.M;N / for the part with homological degree i and internal degree j . Write
k for the trivial ƒ-module ƒ=

L
i>0ƒi . A quadratic algebra ƒ is called Koszul if

Extijƒ.k; k/ is zero whenever i ¤ j , in which case Ext�ƒ.k; k/ Š ƒŠ as algebras. A
graded module M over a Koszul algebra ƒ is called Koszul if Extijƒ.M; k/ is zero if
i ¤ j , or equivalently ifM admits a linear projective resolution, that is, a projective
resolution P� �M such that Pi is generated by its component of degree i .

4.1. Hochschild cohomology of Koszul algebras. If ƒ is Koszul then ƒe is
Koszul: ƒop is Koszul by [13, remark on p.20], and tensor products of Koszul
algebras are Koszul by [13, Corollary 3.1.2]. Furthermoreƒ is a Koszul ƒe-module
by [6, Corollary 2.2].

Lemma 4.2. The quadratic dual .ƒeƒ/Š of the ƒe-module ƒ is isomorphic as a
vector space to the dual quadratic algebra ƒŠ.

Proof. Let ƒ D T .V /=.R/ so that ƒe D T .V ˚ V 0/=.R ˚ R0 ˚ C/ where V 0 is
isomorphic to V via a map that sends v 2 V to v0, R0 is the image of R under the
twist map � W v˝w 7! w0˝v0 and C has basis xi ˝x0j �x

0
j ˝xi where x1; : : : ; xn

is some fixed basis of V .
Thus .ƒe/Š is isomorphic to T .V �˚V 0�/=.R?˚R0?˚D/ whereD has a basis

consisting of all tensors of the form x�i ˝ x
0�
j C x

0�
j ˝ x

�
i where the x�i are the basis

of V � dual to x1; : : : ; xn. It follows .ƒe/Š Š ƒŠ Ő k.ƒ
Š/op where Ő k denotes the

graded commutative tensor product: .�1 Ő �1/ � .�2 Ő �2/ D .�1/mn�1�2 Ő �1�2
for �2, �1 homogeneous of degrees m and n respectively.

As aƒe D T .V ˚V 0/=.R˚R0˚C/-module,ƒ D ƒe=.xi�x0i W i D 1; : : : ; n/.
Therefore the quadratic dual of ƒeƒ is .ƒe/Š=.x�i C x0�i W i D 1; : : : ; n/. This
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ideal corresponds to the ideal .x�i ˝ 1 C 1 ˝ x
0�
i / under the isomorphism between

T .V ˚ V 0/=.R ˚ R0 ˚ C/ and ƒŠ Ő k.ƒ
Š/op. There is an exact sequence of

ƒŠ Ő .ƒŠ/op-modules

0! .x�i ˝ 1C 1˝ x
0�
i /! ƒŠ Ő k.ƒ

Š/op
! OƒŠ ! 0

where OƒŠ is the ƒŠ Ő k.ƒŠ/op-module which is ƒŠ as a vector space, and with action
.� Ő �0/ � x D .�1/j�jjxjCj�j.j�jC1/=2�x� for �; x; � 2 ƒŠ, homogeneous, and the
mapƒŠ Ő k.ƒŠ/op ! OƒŠ is determined by 1˝ 1 7! 1. This completes the proof.

Definition 4.3. Let M be a Koszul left-module for the Koszul k-algebra � D
T .V /=.R/ and let e� 2 �˝k� Š be

P
i vi˝v

�
i where vi runs over a basis of V and v�i

is the corresponding dual basis element of V � D � Š1. Then the Koszul resolution
K�.M/ is �˝k .M Š/� with differential given by right-multiplication by e� , and the
Koszul cocomplex NK�.M/ isM ˝kM Š with differential given by left-multiplication
by e� .

[13, §2.3] shows that K�.M/ is a minimal free resolution of M , so that
Ext��.M;M/ is computed by cohomology of the cocomplexes

Hom�.� ˝k .M
Š/�;M/ Š Homk..M

Š/�;M/ ŠM ˝k M
Š
D NK�.M/:

Consider the special case when � D ƒe for some Koszul algebra ƒ and
M D ƒeƒ. By Lemma 4.2, .ƒeƒ/Š is OƒŠ so NKƒe .ƒ/ is isomorphic to ƒ ˝k ƒŠ

as a vector space. The corresponding differential is

�˝ � 7!
X
i

.xi�˝ x
�
i �C .�1/

j�jC1�xi ˝ �x
�
i / (4.1)

for � homogeneous of degree j�j – see [16, p.5]. This differential makes ƒ˝k ƒŠ,
with its natural multiplication, into a differential graded algebra.

This means that the Hochschild cohomology ring HH.ƒ/ D Ext�ƒe .ƒ;ƒ/ has
two multiplications: one it inherits as the cohomology of the differential graded
algebra ƒ ˝k ƒŠ and one from the Yoneda product on Ext. We want to show that
they agree.

Lemma 4.4. The cohomology of the differential graded algebra ƒ˝k ƒŠ equipped
with the differential (4.1) is isomorphic as an algebra to HH�.ƒ/.

Proof. We already know that the cohomology ofƒ˝kƒŠ with this differential agrees
with HH�.ƒ/ as a vector space. To show that the two products are the same we need
to examine the Koszul resolution more closely. If ƒ D T .V /=.R/ then ƒŠm is equal
to

.V �/˝mPm�2
iD0 .V

�/˝i ˝R? ˝ .V �/˝.m�2�i/
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(the denominator is to be interpreted as zero if m D 0 or 1). For m � 2 the
denominator is the annihilator of

Nm D

m�2\
iD0

V ˝i ˝R˝ V ˝.m�2�i/

so we can identify .ƒŠm/
� withNm, and the Koszul resolutionKƒe .ƒ/ ofƒ overƒe

can be written as
Kƒe .ƒ/m D ƒ˝Nm ˝ƒ (4.2)

where N1 D V and N0 D k. As before let x1; : : : ; xn be a basis of V , and given a
sequence i D .i1; : : : ; im/ write xi for xi1 ˝ � � � ˝ xim 2 V

˝m. The differential on
(4.2) is

1˝

 X
i

˛ixi

!
˝ 1 7!

X
i

˛i.xi1 ˝ x.i2;:::;im/ ˝ 1 � 1˝ x.i1;:::;im�1/ ˝ xim/

where ˛i 2 k.
Write B� for the standard (bar) complex ofƒ [3, IX.6], whosemth term is Bm D

ƒ˝.mC2/. The inclusion V ,! ƒ induces a map

� W Kƒe .ƒ/� ! B�

which is a morphism of chain complexes [16, Proposition 3.3]. The bar complex
of ƒ admits a comultiplication � W B� ! B� ˝ƒ B� defined by

�.�˝ yi ˝ �/ D
X
r

.�˝ y.i1;:::;ir / ˝ 1/˝ .1˝ y.imC1;:::;im/ ˝ �/

where yi D yi1 ˝ � � � ˝ yim 2 ƒ
˝m. We will show that

�.im �/ � .im �/˝ƒ .im �/ (4.3)

so that � induces a comultiplication on Kƒe .ƒ/. This is equivalent to proving that
if
P

i ˛ixi 2 Nm thenX
i

˛ix.i1;:::;ir / ˝ x.irC1;:::;im/ 2 Nr ˝Nm�r

for any r � m. Corollary 3.3 of [14] says that for any sequence j of length m � r ,X
iW.irC1;:::;im/Dr

˛ix.i1;:::;ir / 2 Nr

ThusX
i

˛ix.i1;:::;ir /˝x.irC1;:::;im/ D

X
j

0@ X
iW.irC1;:::;im/Dr

˛ix.i1;:::;ir /

1A˝xj 2 Nr˝V
˝m�r :
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Similarly it lies in V ˝r ˝Nm�r , so in

.Nr ˝ V
˝m�r/ \ .V ˝r ˝Nm�r/ D Nr ˝Nm�r

completing the proof of (4.3).
If we identify ƒ ˝ƒ ƒ with ƒ then B� ˝ƒ B� is a free resolution of ƒ and �

is a chain map lifting the identity map on ƒ. Because of (4.3) the same holds for
Kƒe .ƒ/. [2, p.4] point out that the Yoneda product on HH.ƒ/ can be computed as
follows: if f W Kƒe .ƒ/r ! ƒ and g W Kƒe .ƒ/s ! ƒ are cocycles, the product of
the cohomology elements they represent is represented by f � g D .f ˝ƒ g/ ı �

where f ˝ƒ g W Kƒe .ƒ/r ˝ƒ Kƒe .ƒ/s ! ƒ is � ˝ �0 7! f .�/g.�0/.
There is a linear isomorphism � W ƒ˝ ƒŠ 7! Homƒe .Kƒe .ƒ/�; ƒ/ that sends

�˝ � to
1˝ n˝ 1 7! h�;ni�

where � 2 ƒŠm, n 2 Nm and h�;�i is the pairing between ƒŠm and Nm. We will
show this is is a homomorphism of algebras when Homƒe .Kƒe .ƒ/�; ƒ/ is equipped
with the product �.

Since the product in ƒŠ is induced by tensor multiplication in T .V �/, if � D
O�C Ann.Nr/ 2 ƒŠr and �0 D O�0 C Ann.Ns/ 2 ƒŠs then

�.��0 ˝ ��0/.1˝

 X
i

˛ixi

!
˝ 1/ D

X
i

˛i O�.x.i1;:::;ir //
O�0.x.irC1;:::;irCs//��

0:

On the other hand

.�.�˝ �/ � �.�0 ˝ �0//.1˝

 X
i

˛ixi

!
˝ 1/

D �.�˝ �/˝ �.�0 ˝ �0/
X

i

˛i.1˝ x.i1;:::;ir / ˝ 1/˝ .1˝ x.irC1;:::;irCs/ ˝ 1/

D

X
i

˛i O�.x.i1;:::;ir //
O�0.x.irC1;:::;irCs//��

0:

This completes the proof.

4.2. Quadratic Poisson enveloping algebras are Koszul. A polynomial Poisson
algebra A D kŒx1; : : : ; xn� is a left Poisson module over itself in the obvious way.
A is therefore a P.A/-module, isomorphic to the quotient of P.A/ by the left ideal
generated by the �.yi /.

Lemma 4.5. Let A D kŒx1; : : : ; xn� be a polynomial algebra, graded with each xi
in degree one, equipped with a Poisson bracket f�;�g such that fxi ; xj g 2 A2 for
all i and j . Then P.A/ is a Koszul algebra and A is a Koszul P.A/-module.

A Poisson algebra or bracket with this property will be called quadratic.
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Proof. If we place all yi and �.yi / in degree one, the defining relations (2.2), (2.3)
and (2.4) of P.A/ are homogeneous of degree two. Applying Corollary 2.3 shows
that P.A/ is a quadratic algebra with a PBW basis, and such algebras are Koszul by
a result of Priddy [13, Theorem 4.3.1].

When �.A/ is a projective A-module, which holds when A is polynomial,
Huebschmann [8, p.66] points out that P.A/ ˝A ƒ�A.�.A// with the Cartan–
Chevalley–Eilenberg differential is a projective resolution of A over P.A/. Since
this is clearly a linear resolution, A is a Koszul P.A/-module by [13, p.20].

Corollary 4.6. P.A/Š is generated by y�i and �.y�i / subject to

�.yi /
��.yj /

�
C�.yj /

��.yi /
� 1 � i � j � n

�.ym/
�y�n C y

�
n�.ym/

�
C

X
i<j

@fxi ; xj g

@xm@xn
�.yi /

��.yj /
�

y�my
�
n C y

�
ny
�
m �

X
i<j

@fxi ; xj g

@xm@xn
.�.yi /

�y�j ��.yj /
�y�i /:

The subalgebra O D h�.y1/�; : : : ; �.yn/�i of P.A/Š is exterior of rank n.

Proof. The given presentation for P.A/Š follows from the presentation of P.A/
given by relations (2.2), (2.3) and (2.4).

[13, Corollary 2.2] says that ifM is a Koszul module over a Koszul algebraƒ and
M Š,ƒŠ are their Koszul duals then hƒ.t/hƒŠ.�t / D 1 and hM Š.t/ D hƒŠ.t/hM .�t /

where hM .t/; hƒ.t/; hM Š.t/; hƒŠ are the Hilbert series ofM;ƒ;M Š; ƒŠ respectively.
Applying this with M D A whose Hilbert series is .1� t /�n and ƒ D P.A/ whose
Hilbert series is .1 � t /�2n shows that hP.A/Š D .1 C t /2n and the Koszul dual of
the P.A/-module A has Hilbert series .1C t /n.

By definition, AŠ D P.A/Š=P.A/Š.y�1 ; : : : ; y
�
n/ and repeatedly using the second

relation shows this quotient is spanned byOCP.A/Š.y�1 ; : : : ; y
�
n/. But dimAŠ D 2n,

so dimO � 2n. Since O is certainly a quotient of an exterior algebra of rank n we
in fact have dimO D 2n. The last statement follows.

At the moment AŠ could mean two different things: the Koszul dual of the
algebra A and the quadratic dual of the P.A/-module A. In what follows AŠ

always refers to the algebra O with P.A/-module structure induced by the vector
space isomorphism betweenO and P.A/Š=P.A/Š.y�1 ; : : : ; y

�
n/ from the proof of the

previous corollary.

Remark 4.7. The quadratic dual of P.A/ can be described as follows. A Poisson
superalgebra (or graded Poisson algebra) B is a graded-commutative algebra, that is
ab D .�1/jajjbjba for homogeneous elements a; b of B , equipped with a bilinear
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bracket f�;�g such that

fa; bg D .�1/1Cjajjbjfb; ag

.�1/jajjcjfa; fb; cgg C .�1/jajjbjfb; fc; agg C .�1/jbjjcjfc; fa; bgg D 0

fa; bcg D fa; bgc C .�1/jajjbjbfa; cg

for all homogeneous a; b; c 2 B .
A quadratic Poisson bracket on the polynomial algebra A is determined by a map

b W ƒ2.A1/ ! S2.A1/, where ƒ2 and S2 are the exterior and symmetric squares
andA1 is the vector space spanned by the xi . The dual map b� W S2.A�1/! ƒ2.A�1/

allows us to define a quadratic Poisson superalgebra structure on the exterior algebra
generated by the x�i by

fx�i ; x
�
j g WD b

�.x�i ; x
�
j /:

The quadratic dual of P.A/ is isomorphic to the Poisson enveloping algebra of the
exterior algebra generated by the x�i with graded Poisson bracket determined by b�.

Corollary 4.8. Let A be a polynomial algebra with a quadratic Poisson bracket.
Then the Koszul cocomplex NKP.A/.A/ D A˝kAŠ with its natural multiplication and
differential eP.A/ is a differential graded algebra whose cohomology is isomorphic
as an algebra to HP�.A/.

Proof. We will show that NKP.A/.A/ with differential eP.A/ is isomorphic as a
differential graded algebra to Alt�A.�.A/; A/. As in Subsection 2.2 we identify this
with A˝ ƒ�.V �/ where V � is the span of the �.xi /�, and map A˝k ƒ�.V �/ !
NKP.A/.A/ by � W a ˝ �.xi /� 7! a ˝ �.yi /

�. This is clearly an isomorphism of
algebras; we only have to show that it respects the differential. Since A˝k ƒ�.V �/
is generated as an algebra by the xi ˝ 1 and 1˝ �.xi /� it is enough to check that
�.ı.xi˝1// D eP.A/.x1˝1/ and �.ı.1˝�.xi /�// D eP.A/.1˝�.yi /�/, where ı
is the differential corresponding to the Cartan–Chevalley–Eilenberg differential d on
Alt�A.�.A/; A/. The element xi ˝ 1 2 A˝k ƒ�.V �/ corresponds to fi W 1˝ 1 7!
xi 2 Alt�A.�.A/; A/, and

d.fi /.1˝�.xj // D �.xj /f .1˝ 1/ D fxj ; xig

so that ı.xi ˝ 1/ D
P
j fxj ; xig ˝ �.xj /

�, and the image of this under � isP
j fxj ; xig ˝�.yj /

�. Applying

eP.A/ D
X
j

�
yj ˝ y

�
j C�.yj /˝�.y

�
j /
�

to xi˝1 gives
P
j �.yj / �xi˝�.yj /

� D
P
j fxj ; xig˝�.yj /

�, so �.ı.xi˝1// D
eP.A/.x1 ˝ 1/ holds.
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1˝�.xi /
� corresponds to the element fi of AltA.�.A/; A/ that sends 1˝�.xj /

to 1 if i D j and 0 otherwise. Therefore

dfi .1˝�.xj / ^�.xk// D �dfi .1˝A �.fxj ; xkg/

which is equal to minus the coefficient of �.xi / in �.fxj ; xkg/. Therefore

ı.1˝�.xi /
�/ D �

X
j<k

cijk ˝�.xj /
�
^�.xk/

�

where cijk is the coefficient of �.xi / in �.fxj ; xkg/. On the other hand, applying
eP.A/ to 1˝�.yi /� gives

X
r

yr ˝ y
�
r�.yi /

�
D �

X
j<k

 X
r

yr
@fxj ; xkg

@xr@xi

!
˝�.yj /

��.yk/
�

using the second relation from Corollary 4.6, which completes the proof.

The polynomial algebra A D kŒx1; : : : ; xn� admits derivations @i D @
@xi

defined
in the usual way. Similarly its quadratic dual AŠ D kh�.y1/

�; � � � ; �.yn/
�i has

graded derivations @�i defined by

@�i .�.y/
�b/ D .�1/

P
j <i bj bi�.y/�b�ei

where ei is the vector with a 1 in position i and zeroes elsewhere and �.y/�b

denotes�.y1/�b1 � � ��.yn/
�bn . We can use these to build a derivation on the Koszul

cocomplex:

Lemma 4.9. Let A D kŒx1; : : : ; xn� be a quadratic Poisson algebra and let A˝kAŠ

be the Poisson cocomplex computing HP�.A/ with differential e D eP.A/. Let h DP
i @i ˝ @

�
i . Then

he C eh D
X
i

@iHi ˝ 1C 1˝ @
�
i H
�
i (4.4)

where Hi .x/ D fxi ; xg and H�i .X/ D f�.yi /
�; Xg D y�i �X .

Proof. Since h and e are (graded) derivations, so is he C eh. We first show that the
right hand side of (4.4) is a derivation.

Since f�;�g and its dual are (graded) derivations when one argument is fixed,

fx; yg D
X
i

@i .x/Hi .y/ D �
X
i

@i .y/Hi .x/ (4.5)

fz; wg D .�1/jzjC1
X
i

@�i .z/H
�
i .w/ D .�1/

jzjjwjCjwj
X
i

@�i .w/H
�
i .z/
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for z; w 2 AŠ and x; y 2 A. Furthermore

@iHi .xy/ D @i .x/Hi .y/C x@iHi .y/C @iHi .x/y CHi .x/@i .y/

so summing over i and applying (4.5) shows
P
i @iHi is a derivation. Similarly so

is
P
i @
�
i H
�
i , and thus

P
i @iHi ˝ 1C 1˝ @

�
i H
�
i is a derivation.

It is easy to see that heC eh and
P
i @iHi ˝ 1C 1˝ @

�
i H
�
i agree on xr ˝ 1 and

1˝�.yr/
� for any r . Since these elements generate A˝AŠ, the two derivations are

equal.

The utility of this result is that in some cases, including that of the semiclassical
limits we are interested in, he C eh acts diagonally on the PBW basis. Therefore
some multiple of h will be a contracting homotopy for certain parts of the Koszul
cocomplex.

4.3. q-deformations of the Koszul cocomplex. Let A be a Koszul k.q/-algebra
which has a semiclassical limit A such that Ae is a q-deformation of P.A/ Then
HH�.A/ is computed by the differential graded algebra A ˝ AŠ with the differential
eAe and HP�.A/ is computed by A ˝ AŠ with differential eP.A/. We want to show
that the first of these DGAs is a q-deformation of the second.

Proposition 4.10. Let A be a Koszul k.q/-algebra minimally generated by x1; : : : ; xn
and let A be the kŒq˙1�-form of A generated by the xi and admitting a semiclassical
limit A which is polynomial on the images of the xi . Suppose the map P.A/ �
A0=.q�1/A0 of Lemma 3.6 is an isomorphism. Then the differential graded algebra
NKAe .A/ is a q-deformation of NKP.A/.A/.

Proof. We split the proof into sections.

Hilbert series. Under our hypotheses,

dimAr D rankAr D dim Ar

for any r . The first equality holds because Ar is free as a kŒq˙1�-module, being
finitely-generated torsion-free. For the second, if b1; : : : is a basis of Ar then
by multiplying by an appropriate scalar we may assume the bi lie in Ar . Thus
rankAr � dim Ar . Any kŒq˙1�-linearly independent set in Ar is k.q/-linearly
independent in Ar , so the opposite inequality holds. We get that A has the same
Hilbert series as the polynomial algebra A. The Hilbert series of a Koszul algebra
determines that of its Koszul dual by [13, Corollary 2.2.2], so AŠ has the same Hilbert
series as the exterior algebra AŠ.
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Relations in AŠ. Write A D T .V /=.R/ as a quadratic algebra where V has a basis
v1; : : : ; vn whose images in A are x1; : : : ; xn. Existence of the semiclassical limit
implies that for each i < j there is an element rij of R of the form

vi ˝ vj � vj ˝ vi � .q � 1/ Ǒij

where Ǒij lies in the kŒq˙1�-span of the vs ˝ vt . By substituting rst into the Ǒij we
obtain elements r 0ij of R of the form

vi ˝ vj � vj ˝ vi � .q � 1/ Ǒ
0
ij C .q � 1/

2ij

where only tensors of the form vs ˝ vt for s < t appear in ˇ0ij , and the image

of Ǒ0ij in A is fxi ; xkg. These r 0ij are k.q/-linearly independent since they are even
linearly independent modulo q � 1. They form a k.q/-basis of R, for if R had larger
dimension dim A2 would be smaller than n.nC 1/=2.

Let v�1 ; : : : ; v
�
n be the basis of V � dual to v1; : : : ; vn. For r < s define

�rs D v
�
r ˝ v

�
s C v

�
s ˝ v

�
r � .q � 1/

X
k<l

fxk; xlg

@xr@xs
v�l ˝ v

�
k

where xi is the image of xi in A. Furthermore define

�rr D v
�
r ˝ v

�
r � .q � 1/

X
k<l

1

2

fxk; xlg

@x2r
v�l ˝ v

�
k :

Then for any r � s and any i < j we have �rs.rij / 2 .q � 1/2kŒq˙1�. As before,
the �rs are linearly independent and there are some elements "rs in the kŒq˙1�-span
of the v�i ˝ v

�
j such that

�rs C .q � 1/
2"rs r � s (4.6)

is a basis of R?. Recall that AŠ D T .V �/=.R?/ and write x�i for the image of v�i in
AŠ. Let B be the kŒq˙1�-subalgebra of AŠ generated by the elements .1 � q/x�i . The
relations (4.6) show that

x�i x�j C x�j x�i D 0 mod .q � 1/

Since AŠ and hence B has the same Hilbert series as AŠ, the quotient B=.q � 1/B is
isomorphic to the exterior algebra AŠ.

Let B0 be the subalgebra of AŠ ˝k.q/ .AŠ/op generated by x�i ˝ 1 C 1 ˝ x�i and
.1 � q/˝ x�i for 1 � i � n.
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A is an A0-module, B is a B0-module. A is a Ae-module, and we claim that
the action of A0 � Ae preserves A. Certainly elements xi ˝ 1 preserve A, and
.xi ˝ 1� 1˝ xi / �A � .q � 1/A because of the existence of the semiclassical limit.

Recall that the action of AŠ ˝k.q/ .AŠ/op on AŠ is

.�˝ �0/ � x D .�1/j�jjxjCj�j.j�jC1/=2�x�:

Clearly the action of .1 � q/ ˝ x�i preserves B. The relations (4.6) show that the
elements x�i ˝ 1 C 1 ˝ x�i send generators of B to B; the general result follows
because x�i ˝ 1C 1˝ x�i acts by graded derivations on B.

Let C D A˝kŒq˙1� B, and eC W C ! C be the map induced by left-action ofX
i

�
.xi ˝ 1/˝ .x�i ˝ 1C 1˝ x�i /C

xi ˝ 1 � 1˝ xi
q � 1

˝ ..1 � q/˝ x�i /
�
2 A0˝B0

This makes it clear that C with differential eC is a DGA which is a kŒq˙1�-form of
NKAe .A/. Therefore all we need to complete the proof is:

C=.q � 1/C is isomorphic as a DGA to NKP.A/.A/. We consider NKP.A/.A/ as the
complex A˝k AŠ as in the proof of Corollary 4.8.
NKP.A/.A/ is isomorphic as an algebra to C=.q � 1/C Š .A=.q � 1/A/˝

.B=.q � 1/B/. Write � W NKP.A/.A/ ! .A=.q � 1/A/ ˝ .B=.q � 1/B/ for the
algebra isomorphism that sends xi ˝ 1 to the image of xi ˝ 1 and 1˝�.yi /� to the
image of .1� q/˝ x�i in C=.q � 1/C. We claim � respects the differentials on these
DGAs, and since NKP.A/.A/ is generated by the xi ˝ 1 and 1˝�.yi /� it is enough
to check these elements.

eP.A/.xi ˝ 1/ D
X
j

fxj ; xig ˝�.yj /
�

eC.xi ˝ 1/ D
X
j

ˇ.xj ; xi /˝ .1 � q/x�j

so �.eP.A/.xi ˝ 1// equals eC.�.xi ˝ 1//C .q � 1/C.

eP.A/.1˝�.yi /
�/ D �

X
j<k

X
r

@fxj ; xkg

@xi@xr
xr ˝�.yj /

��.yk/
�

eC.1˝ .1 � q/x�i / �
X
r

xr ˝ .1 � q/.x�r x�i C x�i x�r /

D

X
r

X
j<k

@fxj ; xkg

@xi@xr
x�r ˝ .1 � q/

2x�kx�j

modulo .q � 1/C.



686 M. Towers

If ˛ 2 kŒq˙1� and M is a kŒq˙1�-module we say M has ˛-torsion if there is a
non-zero element of M annihilated by ˛.

Corollary 4.11. If H�.C/ has no .q � 1/-torsion then HH�.A/ is a q-deformation
of HP�.A/.

Proof. C ˝kŒq˙1� k Š
NKP.A/.A/ so H�.C ˝kŒq˙1� k/ Š HP�.A/, and C ˝kŒq˙1�

k.q/ Š NKAe .A/ so HH�.A/ Š H�.C ˝kŒq˙1� k.q// Š H
�.C/˝kŒq˙1� k.q/.

We first show that HPr.A/ and HHr.A/ have the same Hilbert series for any r .
The universal coefficient theorem gives an exact sequence of graded modules

0! H rj .C/˝kŒq˙1� k ! H rj .C ˝kŒq˙1� k/! TorkŒq
˙1�

1 .H rC1;j .C/; k/! 0

(4.7)
for any j . Because kŒq˙1� is a principal ideal domain,

TorkŒq
˙1�

1

�
kŒq˙1�

.f /
; k

�
D ker.k

f �
! k/

and the Tor group in (4.7) vanishes under our hypothesis. So HPrj .A/ Š
H rj .C/˝kŒq˙1� k for any r; j , and this has the same dimension as H rj .C ˝kŒq˙1�

k.q// Š HHrj .A/.
Consider the kŒq˙1�-form H�.C/ ˝kŒq˙1� 1 of H�.C/ ˝kŒq˙1� k.q/. This is

isomorphic as a kŒq˙1�-algebra to the quotient of H�.C/ by its torsion ideal T
(the ideal of all elements annihilated by some ˛ 2 kŒq˙1� n f0g). Under our
hypothesis �˝kŒq˙1�k kills all torsion summands ofH�.C/, soH�.C/˝kŒq˙1�k Š

.H�.C/=T /˝kŒq˙1� k. Thus HH�.A/ Š H�.C/˝kŒq˙1� k.q/ is a q-deformation of
HP�.A/ Š H�.C/˝kŒq˙1� k via the kŒq˙1�-form H�.C/˝ 1 Š H�.C/=T .

In practise the hypothesis of Corollary 4.11 can be checked using the following
lemma.

Corollary 4.12. If every element of ker.eC ˝kŒq˙1� k/ lifts to an element of ker eC ,
then H�.C/ has no .q � 1/-torsion.

Proof. It is enough to show that C= im eC has no .q � 1/-torsion under these
hypotheses. Since kŒq˙1� is a principal ideal domain, maps between free kŒq˙1�-
modules can be written in Smith Normal Form. Consequently C= im eC has .q � 1/-
torsion if and only if rank.eC ˝ k/ < rank eC on some graded piece, if and only if
the kernel of eC ˝ k has rank larger than that of eC on that graded piece. If every
element of ker.eC ˝ k/ lifts, this cannot happen.
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5. The quantum plane

In this section we illustrate some of the results of the previous sections in the case
of the quantum plane. The Hochschild cohomology of quantum affine space was
described in [15, §3.3] (though it appears difficult to obtain an explicit expression
for the nth cohomology group), and it is known ([11, Corollary 3.5.2], [12]) that it
agrees with the Poisson cohomology of the semiclassical limit.

The coordinate ring A of the quantum plane as defined in Section 3.1 is Koszul
since it is a quadratic algebra with a PBW basis of polynomial type. Therefore by
Theorem 3.9 and Proposition 4.10, NKAe .A/ is a q-deformation of NKP.A/.A/, whereA
is the semiclassical limit of A.

The Koszul dual of A is the quantum exterior algebra AŠ, generated by x�; y�
subject to x�2 D y�2 D 0 and qx�y� C y�x� D 0 .

Using this and (4.1) we can compute the Koszul cocomplex NKAe .A/. For m 2 Z
write Œm� for the q-integer q

m�1
q�1

. The maps in the Koszul cocomplex are

e0.ybxa/ D Œb�xaC1yn ˝ x� � Œa�xaybC1 ˝ y�

e1.ybxa ˝ x�/ D Œa � 1�xaybC1 ˝ x�y�

e1.ybxa ˝ y�/ D Œb � 1�xaC1yb ˝ x�y�

so, noting that gcd.Œa�; Œb�/ D Œgcd.a; b/� in kŒq˙1�,

ker e0 D kŒq˙1� � 1;

.ker e1/nC1 D kŒq˙1�

*
Œb�ybxn�b ˝ x� � Œn � b � 1�ybC1xn�1�b ˝ y�

Œgcd.b; n � b � 1/�

+

Therefore H 0.C/ D kŒq˙1� � 1,

H 1.C/ Š kŒq˙1�x˝ x� ˚ kŒq˙1�y˝ y� ˚ T1
H 2.C/ Š kŒq˙1�˝ x�y� ˚ kŒq˙1�yx˝ x�y� ˚ T2

where T1 and T2 are direct sums of kŒq˙1�-modules of the form kŒq˙1�=.Œa�/ for
a 2 Z. Therefore there is no .q�1/-torsion inH�.C/, and HH.A/ is a q-deformation
of HP.A/. Furthermore HH.A/ is one-dimensional in homological degree zero and
two-dimensional in degrees 1 and 2.

In fact, for any quantum affine space the two Koszul cocomplexes are actually
isomorphic after a change of base field: NKAe .A/ Š NKP.A/.A/ ˝k k.q/ as
cocomplexes.
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6. 2 � 2 quantum matrices

In this section we will compute the Poisson cohomology ofM , showing that it agrees
with the Hochschild cohomology of M. In describing elements of NKP.M/.M/ we
write �ij

kl
for �.a/�i�.b/�j�.c/�k�.d/�l and we omit the ˝ symbol. Similarly

in NKMe .M/ we write fij
kl

for dlckbj ai and Q�ij
kl

for Q�.a/�i Q�.b/�j Q�.c/�k Q�.d/�l and
omit the˝ symbol.

We begin by summarizing the results.

Theorem 6.1. HH�.M/ is a q-deformation of HP�.M/. The Poisson centre of M is
polynomial in � D ad � bc, and for i � 3, HPi .M/ is a free kŒ��-module freely
generated by the images of the following elements:

i Representatives of generators of HPi .A/
0 1

1 a�1000 C d�
00
01; a�

10
00 C c�

00
10; b�

01
00 C d�

00
01

2 bj�1001; c
k�.a/1001 for j; k ¤ 2, bc�0110�ab�

11
00Cac�

10
10, b.a�1100Cd�

01
01/,

c.a�1100 C d�
01
01/, b.a�

10
10 C d�

00
11/, c.a�

10
10 C d�

00
11/

3 bj�1101; c
k�1101; b

k�1011; c
j�1011 for j ¤ 3 and bj ck.a�1110 � d�

01
11/

for j C k D 2.

As a kŒ��-module, HP4.M/ is the direct sum of a trivial module generated by �1111
and free summands generated by bc�1111, bj�1111 and ck�1111 for j; k > 0.

The theorem is proved as follows. Firstly, M has a PBW basis of polynomial
type, so we may apply Theorem 3.9 and Proposition 4.10 to get that NKMe .M/ is
a q-deformation of NKP.M/.M/. We compute HP�.M/ directly using the Koszul
cocomplex and show that each cocycle lifts to one for NKMe .M/, so that Corollary 4.12
applies and HH�.M/ is a q-deformation of HP�.M/. This is simplified by two
observations: first, the boundary of d lckbjai�i

0j 0

k0l 0
lifts to that of dlckbj ai Q�i

0j 0

k0l 0

so we only need to lift non-bounding cocycles, and second � D ad � bc lifts to
�q D da � q

�1cb so we only need lift a kŒ��-generating set for the non-bounding
cocycles. In practise the lifting is always the most straightforward one possible:
a�1000 C b�

01
00 lifts to a Q�1000 C b Q�0100 and so on.

We need to know the differentials on both Koszul cocomplexes explicitly to check
the lifting condition. Since the differential on NKP.M/.M/ is the ‘reduction mod q�1’
of that for NKMe .M/, we give the latter in the tables that follow.

e0.f
ij

kl
/ D .ŒjCk�fiC1;j

kl
Cq�1Œ2l�fi;jC1

kC1;l�1
/ Q�1000C.Œl��Œi �/.f

i;jC1

k;l
Q�0100Cfij

kC1;l
Q�0010/

� .Œj C k�fij
k;lC1

C q�1Œ2i �fi�1;jC1
kC1;l

/ Q�0001
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x e1.f
ij

kl
�.x/�/

a q�1.Œi � � Œl C 1�/.fi;jC1
kl

Q�1100 C fij
kC1;l

Q�1010/

C .Œj C k�fij
k;lC1

C q�1Œ2i �fi�1;jC1
kC1;l

/ Q�1001

b .Œj C k � 1�fiC1;j
kl

C q�2Œ2l�fi;jC1
kC1;l�1

/ Q�1100 C .Œi � � Œl �/f
ij

kC1;l
Q�0110

� qi�1Œ2�fij
kC1;l

Q�1001 C .Œj C k � 1�f
ij

k;lC1
C q�2Œ2i �fi�1;jC1

kC1;l
/ Q�0101

c .Œj C k � 1�fiC1;j
kl

C q�2Œ2l�fi;jC1
kC1;l�1

/ Q�1010 C .Œl� � Œi �/f
i;jC1

kl
Q�0110

� ql�1Œ2�fi;jC1
kl

Q�1001 C .Œj C k � 1�f
ij

k;lC1
C q�2Œ2i �fi�1;jC1

kC1;l
/ Q�0011

d .Œl � 1� � Œi �/.fi;jC1
kl

Q�0101 C fij
kC1;l

Q�0011/

C .Œj C k�fiC1;j
kl

C q�1Œ2l�fi;jC1
kC1;l�1

/ Q�1001

x; y e2.f
ij

kl
�.x/��.y/�/

a; b q�1.Œl C 1�� Œi �/fij
kC1;l

Q�1110� .Œj C k � 1�f
ij

k;lC1
C q�2Œ2i �fi�1;jC1

kC1;l
/ Q�1101

a; c q�1.Œi �� Œl C 1�/fi;jC1
kl

Q�1110 � .Œj C k � 1�f
ij

k;lC1
C q�2Œ2i �fi�1;jC1

kC1;l
/ Q�1011

a; d q�1.Œi � � Œl �/.fi;jC1
kl

Q�1101 C fij
kC1;l

Q�1011/

b; c .Œj C k � 2�fiC1;j
kl

C q�3Œ2l�fi;jC1
kC1;l�1

/ Q�1110 � q
l�2Œ2�fi;jC1

kl
Q�1101

C qi�2Œ2�fij
kC1;l

Q�1011 � .Œj C k � 2�f
ij

k;lC1
C q�3Œ2i �fi�1;jC1

kC1;l
/ Q�0111

b; d .Œj C k � 1�fiC1;j
kl

C q�2Œ2l�fi;jC1
kC1;l�1

/ Q�1101 C .Œi � � Œl � 1�/f
ij

kC1;l
Q�0111

c; d .Œj C k � 1�fiC1;j
kl

C q�2Œ2l�fi;jC1
kC1;l�1

/ Q�1011 C .Œl � 1� � Œi �/fi;jC1
kl

Q�0111

i 0; j 0; k0; l 0 e3.f
ij

kl
Q�
i 0j 0

k0l 0
/

1; 1; 1; 0 Œj C k � 2�fij
k;lC1

Q�1111 C q
�3Œ2i �fi�1;jC1

kC1;l
Q�1111

1; 1; 0; 1 q�1.Œl� � Œi �/fij
kC1;l

Q�1111

1; 0; 1; 1 q�1.Œi � � Œl �/fi;jC1
kl

Q�1111

0; 1; 1; 1 Œj C k � 2�fiC1;j
kl

Q�1111 C q
�3Œ2l�fi;jC1

kC1;l�1
Q�1111
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The formulas are obtained by computing directly using the definition of the
Koszul cocomplex and the presentations of M and MŠ given in (3.4) and Example 4.1.

We want to find a contracting homotopy to show that certain portions of
NKP.M/.M/ are exact. To this end we define another grading on NKP.M/.M/:

Definition 6.2. The grade of aibj ckd l�i
0;j 0

k0;l 0
2 NKP.M/.M/ is i � i 0 � l C l 0.

The differential eP.M/ preserves grade, as is easily seen from the tables above.

Lemma 6.3. .he C eh/.f ij
kl
�
i 0j 0

k0l 0
/ D 2.l � l 0 � i C i 0/f

ij

kl
�
i 0j 0

k0l 0

Proof. This is an application of Lemma 4.9. Computing using the bracket formulas
(3.5) shows

.@aHa C @bHb C @cHc C @dHd / f D 2.l � i/f
ij

kl
:

Next, the second relation of Corollary 4.6 gives the following description of the
action of P.M/Š on M Š (with a slight abuse of notation):

a� ��.b/� D b� ��.a/� D ��.a/��.b/�

a� ��.c/� D c� ��.a/� D ��.a/��.c/�

a� ��.d/� D d� ��.a/�D 0

b� ��.c/� D c� ��.b/� D �2�.a/��.d/�

b� ��.d/� D d� ��.b/�D 0

c� ��.d/� D d� ��.c/�D ��.c/��.d/�

and that x� ��.x/� D 0 for x D a; b; c; d . From these, a tedious calculation shows
that �

@�aH
�
a C @

�
bH
�
b C @

�
cH
�
c C @

�
dH
�
d

�
�
i 0j 0

k0l 0
D 2.i 0 � l 0/�

i 0j 0

k0l 0
:

Putting these together gives the formula claimed.

This means that a suitable scalar multiple of h is a contracting homotopy on any
summand of NKP.M/.M/ with nonzero grade. Write K0.M/ for the subcomplex
of NKP.M/.M/ consisting of all elements of grade zero, and let En be the induced
differential in homological degree n. Then HP�.M/ Š H�.K0.M/;E/, so we work
only with the cocomplex K0.M/.

6.1. Computations.
Lemma 6.4. HP0.M/ D kŒ��, and � lifts to �q D da � q�1cb.

Proof. K0.M/0 consists of elements of the form
P
�ijk.ad/

ibj ck , and such an
element is in kerE0 if and only if it has trivial bracket with a, if and only if

2i�i;j�1;k�1 D �.j C k/�i�1;j;k
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for all i; j; k, where �ijk should be interpreted as zero if any of its indices are
negative. If �ijk is a solution of this recurrence and j > k then �ijk D 0: if k
is minimal such that there exists j > k with �ijk ¤ 0 then .j C k/�ijk D

�2.i C 1/�iC1;j�1;k�1 D 0 contradicting �ijk ¤ 0. By symmetry �ijk D 0 if
j ¤ k.

Writing �ij for �ijj gives

i�i;j�1 D �j�i�1;j

For fixed i C j , any solution is a scalar multiple of �ij D .�1/i
�
iCj
i

�
, thusP

�ij .ad/
i .bc/j is a polynomial in�. The claim about lifting is easily verified.

Therefore E0 is a kŒ��-map with kernel equal to kŒ��. As a kŒ��-module,
K0.M/ D h.ad/ibj ck W i; j; k � 0i is free on the generators bj ck , so imE0 is free
on the image of bj ck for j; k not both zero. Using the description of the differential
above, we get:
Lemma 6.5. imE0 is freely generated by bj ck.a�1000 � d�

00
01/ for j; k not both

zero.
In the above Lemma and from now on, the terms ‘free generators’ and ‘freely

generated’ refer to the kŒ��-module structure.
Lemma 6.6. kerE1 is freely generated by b�0100 C a�

10
00, a�1000 C c�

00
10 and all

bj ck.a�1000 � d�
00
01/ with j; k � 0.

Proof. K0.M/1 is spanned by elements of the form .ad/iabj ck�1000, .ad/ibj ck�0100,
.ad/ibj ck�0010, .ad/idbj ck�0001 and is therefore freely generated by the elements
abj ck�1000, bj ck�0100, bj ck�0010, dbj ck�0001. The images under E1 of these free
generators are

E1ab
j ck�1000 D E1db

j ck�0001 D ..j C k C 2/b
jC1cjC1 C .j C k/�bj ck/�1001

E1b
j ck�0100 D .j C k � 1/b

j ck.a�1100 C d�
01
01/ � 2b

j ckC1�1001

E1b
j ck�0010 D .j C k � 1/b

j ck.a�1010 C d�
00
11/ � 2b

jC1ck�1001

Therefore if pjk; qjk; rjk; sjk are polynomials, the image ofX
pjk.�/ab

j ck�1000 C qjk.�/b
j ck�0100 C rjk.�/b

j ck�0010 C sjk.�/db
j ck�0001

(6.1)
is X

.j C k � 1/qjk.�/.ab
j ck�1100 C db

j ck�0101/

C

X
.j C k � 1/rjk.�/.ab

j ck�1010 C db
j ck�0011/

C

X
.pjk.�/C sjk.�//..j C k C 2/b

jC1ckC1 C .j C k/�bj ck/�1001

�

X
.2qjk.�/b

j ckC1 C 2rjk.�/b
jC1ck/�1001:
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The terms abj ck�1010 are free generators of the�1010 component ofK0.M/2, and
so the only way for the �1010 component of this expression to vanish is if rjk D 0 for
j C k ¤ 1. Similarly we must have qjk D 0 for j C k ¤ 1.

The coefficient of c2�1001 in this sum is 2q01.�/c2�1001, therefore q01 D 0, and
similarly r10 D 0. The condition for (6.1) to be in kerE1 is therefore that rjk D
qjk D q01 D r10 for j C k ¤ 1 and

�q10 � r01 C p00 C s00 D 0

pjk C sjk D 0

for j; k not both zero. This is equivalent to our claim about the kernel generators.

We say an element
P
˛
i 0j 0k0l 0

ijkl
f
ij

kl
�
i 0j 0

k0l 0
of kerE� lifts trivially if

P
˛
i 0j 0k0l 0

ijkl
fij
kl
Q�
i 0j 0

k0l 0

is a cocycle for NKMe .M/.

Corollary 6.7. HP1.M/ is freely generated by the images of b�0100Ca�
10
00, a�1000C

c�0010 and a�1000 � d�
00
01. Each of these elements lifts trivially to an element of

HH1.M/.

Proof. The first part follows immediately from the previous two lemmas. The
second follows from the description of the differential in NKMe .M/ given earlier.

Lemma 6.8. imE1 is freely generated by

c2�1001; b2�1001; .bjC1ckC1 C
j C k

j C k C 2
�bj ck/�1001

for j; k � 0 and for j C k ¤ 1,

bj ck.a�1100 C d�
01
01/ �

2

j C k � 1
�1001

bj ck.a�1010 C d�
00
11/ �

2

j C k � 1
�1001:

Proof. From our description of kerE1 it follows that imE1 is freely generated by the
images of abj ck�1000 for any j; k, bj ck�0100 and bj ck�0010 for j C k ¤ 1 and c�0100
and b�0010. These images are non-zero scalar multiples of the given elements.

Lemma 6.9. kerE2 is freely generated by

bkck.a�1100 C d�
01
01/; bj ck.a�1010 C d�

00
11/; bj ck�1001

for j; k � 0 and bc�0110 � ab�
11
00 C ac�

10
10:
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Proof. E2 kills bj ck�1001 and acts on the other free generators of K0.M/2 as
follows:

E2ab
j ck�1100 D �E2db

j ck�0101

D ..j C k C 1/bkC1ckC1 C .j C k � 1/�bj ck/�1101

E2ab
j ck�1010 D �E2db

j ck�0011

D ..j C k C 1/bkC1ckC1 C .j C k � 1/�bj ck/�1011

E2b
j ck�0110 D .j C k � 2/b

j ck.a�1110 � d�
01
11/C 2b

j ck.c�1011 � b�
11
01/

As in the calculation of kerE1 we see by considering the �1110 term that a kernel
element of the formX

pjk.�/ab
j ck�1100 C qjk.�/ab

j ck�1010 C rjk.�/b
j ck�0110

C sjk.�/db
j ck�0101 C tjk.�/db

j ck�0011

must have rjk D 0 unless j C k D 2, and since the b3�1101 and c3�1011 coefficients
must vanish rjk D 0 unless j D k D 1. The condition for an element obeying these
restrictions on rjk to lie in the kernel is that

r11 C q01 � t01 D 0 �r11 C p10 � s10 D 0

pjk � sjk D 0 qlm � rlm D 0

for .j; k/ ¤ .1; 0/ and .l; m/ ¤ .0; 1/. Therefore the kernel is as claimed.

Corollary 6.10. HP2.M/ is freely generated by the images of

b.a�1100 C d�
01
01/; b.a�1010 C d�

00
11/; c.a�1100 C d�

01
01/; c.a�1010 C d�

00
11/;

bc�0110 � ab�
11
00 C ac�

10
10; br�1001; cr�1001

for r ¤ 2. Each of these elements lifts trivially to an element of HH2.M/.

Proof. The first statement follows from our calculation of kerE2 and imE1, the
second by computing using the description of the differential on NKMe .M/ given
earlier.

Lemma 6.11. imE2 is freely generated by

.bjC1ckC1 C
j C k � 1

j C k C 1
�bj ck/�1101; .bjC1ckC1 C

j C k � 1

j C k C 1
�bj ck/�1011

for any j; k � 0,

bj ck.a�1110 � d�
01
11/C 2b

j ck.c�1011 � b�
11
01/

for j C k ¤ 2, b3�1101 and c3�1011.
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Proof. The computation of kerE2 shows that imE2 is free on the images of
bj cka�1100, bj cka�1010, bj ck�0110 for jCk ¤ 2, b2�0101Cab�

10
10 and c2�0110�ac�

11
00

which are, up to a scalar multiple, the given generators.

Lemma 6.12. kerE3 is freely generated by

bj ck�1011; b
j ck�1101; and bj ck.a�1110 � d�

01
11/

for all j; k � 0.

Proof. E3 kills bj ck�1011 and bj ck�1101 and sends bj cka�1110 and bj ckd�0111 to
..j C k/bjC1ckC1C .j C k � 2/�bj ck/�1111. The result follows immediately.

Again we can read off the cohomology group:

Corollary 6.13. HP3.M/ is freely generated by the images of

bj�1101; ck�1101; bk�1011; cj�1011

for j ¤ 3 together with ax�1110�dx�
01
11 for x D b2; bc; c2. Each of these elements

lifts trivially to an element of HH3.M/.

Lemma 6.14. imE3 is freely generated by��1111 and .bjC1ckC1C jCk�2
jCk

bj ck/�1111
for j; k not both zero.

Proof. Our computation of kerE3 shows that imE3 is free on the images of
bj cka�1110, which up to a nonzero scalar multiple are the generators given.

Corollary 6.15. HP4.M/ is generated as a kŒ��-module by�1111, bj�1111 and cj�1111
for j; k � 0. kŒ�� acts trivially on �1111 and freely on the other generators.

Since E4 D 0, all kernel elements lift trivially.
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