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Families of hyperfinite subfactors with the same standard
invariant and prescribed fundamental group
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Abstract. We construct irreducible hyperfinite subfactors of index 6 with a prescribed
fundamental group from a large family containing all countable and many uncountable
subgroups of RC. We also prove that there are unclassifiably many irreducible hyperfinite
group-type subfactors of index 6 that all have the same standard invariant. More precisely,
we associate such a subfactor to every ergodic measure preserving automorphism of the
interval Œ0; 1� and prove that the resulting subfactors are isomorphic if and only if the
automorphisms are conjugate.

Mathematics Subject Classification (2010). 46L37; 46L36, 46L55.

Keywords. Subfactor, standard invariant, von Neumann algebra, deformation/rigidity theory.

1. Introduction and statement of the main results

To every inclusion of II1 factors N � M with finite Jones index [18] is associated
a group-like object GN�M called the standard invariant. In [25], Popa proved
the fundamental result that every strongly amenable standard invariant arises from
precisely one hyperfinite subfactor. When the standard invariant is nonamenable,
much less is known. It is for instance wide open to decide at which index values
larger than 4, the A1 Temperley–Lieb–Jones standard invariant arises from a
hyperfinite subfactor, and if it does, whether this subfactor is unique or not.

In [3], Bisch and Haagerup associated to every countable group � generated
by finite subgroups H;K � � and to every outer action .˛g/g2� of � on the
hyperfinite II1 factor R, the group-type subfactor S.˛/ W RH � R o K. This
construction gives rise to a wealth of infinite depth subfactors with different types
of properties (amenable vs. strongly amenable, property (T), etc). Popa proved
in [26] a deep cocycle superrigidity theorem for Connes–Størmer Bernoulli actions
of infinite property (T) groups � and used this to show that all these groups � admit
�Funded by ERC Consolidator Grant 614195 from the European Research Council under the European
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uncountably many non outer conjugate actions .˛g/g2� . This result was then applied
in [4] to property (T) groups � generated by subgroups H Š Z=2Z and K Š Z=3Z
and implied that the resulting subfactors S.˛/ are nonisomorphic, but nevertheless
all have the same standard invariant.

Also amplifications can give rise to nonisomorphic subfactors with the same
standard invariant. If N �M is a subfactor and t > 0, the amplification .N �M/t

is defined as follows : choose a projection p 2 Mn.C/ ˝ N with .Tr˝�/.p/ D t

and define .N � M/t as the inclusion p.Mn.C/ ˝ N/p � p.Mn.C/ ˝ M/p.
Following [24, Definition 5.4.7], the relative fundamental group of the subfactor
N �M is then defined as

F.N �M/ D ft > 0 j .N �M/t Š .N �M/g

and is a subgroup of RC. For the group-type subfactors S.˛/ W RH � R o K,
it is shown in [4] that F.N � M/ is a subgroup of the fundamental group F.˛/
introduced in [26]. Since it is proven in [26] that the noncommutative Bernoulli
actions of an infinite property (T) group have trivial fundamental group, the
resulting subfactors S.˛/ also have trivial relative fundamental group and the
amplifications S.˛/t , t > 0, form an uncountable family of nonisomorphic
subfactors with the same standard invariant.

In Theorem A below, we refine the above results and show that there are
“unclassifiably” many nonisomorphic subfactors of index 6 with the same standard
invariant. More precisely, to every ergodic measure preserving automorphism �

of the interval Œ0; 1�, we associate an outer action ˛� of the modular group
PSL.2;Z/ D Z=2Z � Z=3Z on the hyperfinite II1 factor R and consider the cor-
responding subfactor S.˛�/ W RZ=2Z � R o Z=3Z. All these subfactors S.˛�/
have index 6 and the same standard invariant G. We prove that the subfactor S.˛�/
is isomorphic with S.˛�

0

/ if and only if � is conjugate to �0, meaning that
�0 D � ı � ı ��1 for some measure preserving transformation � . Since the
classification of ergodic transformations up to conjugacy is wild in any possible
sense (see e.g. [14, 11]), the classification of hyperfinite index 6 subfactors with
standard invariant G is at least as wild.

In Theorem A, we also construct outer actions ˛ of the modular group PSL.2;Z/
such that the resulting subfactor S.˛/ has any prescribed relative fundamental group
from the large family S of subgroups of RC studied in [31, Section 2]. This family S
contains all countable subgroups of RC, as well as many uncountable subgroups that
can have any Hausdorff dimension between 0 and 1.

Note that the main result of [31] showed that all groups in the family S arise
as the fundamental group F.M/ of a II1 factor M with separable predual. The
result in [31] is an existence theorem that ultimately relies on a Baire category
argument. Explicit examples of II1 factors with prescribed fundamental group in S
were constructed in [9]. In Corollary 4.4 below, we also give a new and explicit
proof of that result, using Theorem A and the main results of [32, 33].
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Theorem A. Let n � 2 be an integer and m � 3 a prime number. Put
� D .Z=nZ/ � .Z=mZ/. For every outer action .˛g/g2� of � on the hyperfinite
II1 factor, consider the associated group-type subfactor S.˛/ W RZ=nZ � RoZ=mZ.
Note that these subfactors are irreducible, have index nm and have a standard
invariant that only depends on the integers n and m.

(1) For every group H 2 S , there exists an outer action .˛g/g2� on the
hyperfinite II1 factor R such that the subfactor S.˛/ has relative fundamental
group H .

(2) To every ergodic probability measure preserving automorphism � of a
standard nonatomic probability space, we can associate an outer action
.˛�g /g2� on R such that the corresponding subfactors S.˛�/ are isomorphic
if and only if the automorphisms are conjugate.

As mentioned above, classifying group-type subfactors RH � R oK is closely
related to classifying actions up to outer/cocycle conjugacy. Two outer actions ˛
and ˇ of a countable group � on a II1 factor M are called outer conjugate if there
exist automorphisms  2 Aut.M/, ı 2 Aut.�/ and a family of unitaries .wg/g2�
in M such that ˇı.g/ ı  D  ı .Adwg/ ı ˛g for all g 2 � . If the unitaries wg can
be chosen in such a way that wgh D wg ˛g.wh/ for all g; h 2 � , then ˛ and ˇ are
called cocycle conjugate.

There are several parallels between the study of outer actions of � on the
hyperfinite II1 factor R up to cocycle conjugacy and the study of free ergodic
probability measure preserving (pmp) actions � y .X; �/ up to orbit equivalence.
Recall for instance that by [22] all free ergodic pmp actions of an infinite amenable
group � are orbit equivalent, while it was shown in [20] that all outer actions of an
amenable group � on R are cocycle conjugate.

Nonamenable groups � admit uncountably many non orbit equivalent actions:
this was first proven for the free groups Fn in [13] and then for groups containing
a copy of F2 in [16], and finally in the general case in [10]. This last result is
based on [12], where it is shown that every nonamenable group � contains F2
“measurably”. In particular, there is no explicit construction of an uncountable
family of non orbit equivalent actions of an arbitrary nonamenable group � , but
rather a proof of their existence. Quite surprisingly, our Theorem B below provides
an explicit and rather easy uncountable family of non outer conjugate actions of an
arbitrary nonamenable group � on the hyperfinite II1 factor. Note here that it was
already proven in [19] that every nonamenable group � admits at least two non outer
conjugate actions on the hyperfinite II1 factor, while it was shown in [26] that every
w-rigid1 group � admits uncountably many non outer conjugate actions.

1A countable group � is called w-rigid if � admits an infinite normal subgroup with the relative
property (T) of Kazhdan-Margulis.
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Theorem B. Let � be any nonamenable group and let ƒ be any amenable group
that has a torsion free FC-radical2, e.g. take ƒ to be an amenable icc group, or an
amenable torsion free group. Realize the hyperfinite II1 factor R as

R D .M2.C/��ƒ ˝M2.C/ƒ/oƒ

where ƒ acts diagonally by Bernoulli shifts and where we take infinite tensor
products with respect to the trace on M2.C/. The Bernoulli shift of � yields an
outer action .˛ƒg /g2� of � on R.

The actions .˛ƒ1
g /g2� and .˛ƒ2

g /g2� are outer conjugate if and only if the groups
ƒ1; ƒ2 are isomorphic.

We prove Theorems A and B by using Popa’s deformation/rigidity methods,
in particular the spectral gap rigidity of [29] and the malleable deformation for
Bernoulli actions of [26, 28].

Our methods can best be explained for the very explicit actions .˛ƒg /g2� of the
arbitrary nonamenable group � on the hyperfinite II1 factor

M.ƒ/ D .M2.C/��ƒ ˝M2.C/ƒ/oƒ

as defined in Theorem B. Contrary to the approach in [26], we cannot expect to
prove a general cocycle superrigidity theorem for .˛ƒg /g2� , because � might be the
free group, or a free product group, and such groups do not have cocycle superrigid
actions.

So we need to use another method to prove that every outer conjugacy  W
M.ƒ1/ ! M.ƒ2/ between .˛ƒ1

g /g2� and .˛ƒ2
g /g2� is actually a conjugacy up

to an inner automorphism. For this, note that by construction, the subalgebra
Pi D M2.C/ƒi o ƒi of M.ƒi / is pointwise fixed under the action .˛ƒi

g /g2� .
Using the methods of [26, 28, 29], including a malleable deformation of M.ƒ2/
and spectral gap rigidity coming from the nonamenability of � , we deduce that the
deformation converges uniformly to the identity on the unit ball of  .P1/ and find a
unitary w 2 M.ƒ2/ such that w .P1/w� D P2. Replacing  by .Adw/ ı  , we
may assume that  .P1/ D P2. Still,  is an outer conjugacy between .˛ƒ1

g /g2� and
.˛
ƒ2
g /g2� . But since .˛ƒi

g /g2� acts as the identity on Pi and P 0i \M.ƒi / D C1, it
follows that  actually is a conjugacy of .˛ƒ1

g /g2� and .˛ƒ2
g /g2� . Using the mixing

techniques of [28, Section 3], we then finally deduce that  must send M2.C/ƒ1

ontoM2.C/ƒ2 . Since also  .P1/ D P2, the actionsƒi yM2.C/ƒi follow cocycle
conjugate and, in particular, ƒ1 Š ƒ2.

Acknowledgements. We are very grateful to Darren Creutz and Cesar E. Silva for
their advice on rank one ergodic transformations (see 4.1 below).

2The FC-radical of a countable group � is the normal subgroup that consists of all elements of � that
have a finite conjugacy class.
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2. Preliminaries

We start by recalling Popa’s theory of intertwining-by-bimodules developed in [28,
Section 2]. Let .M; �/ be a von Neumann algebra with separable predual equipped
with a normal faithful tracial state. Let P;Q � M be von Neumann subalgebras.
Following [28], write P �M Q if there exist projections p 2 P , q 2 Q, a
normal unital �-homomorphism � W pPp ! qQq and a nonzero partial isometry
v 2 pMq satisfying av D v�.a/ for all a 2 P . By [28, Corollary 2.3], we have
P 6�M Q if and only if there exists a sequence of unitaries vn 2 U.P / satisfying
limn kEQ.avnb/k2 D 0 for all a; b 2M .

Also recall that a trace preserving action .
s/s2ƒ of a countable group ƒ on a
von Neumann algebra .B; �/ with normal faithful tracial state � is called mixing if
for all a; b 2 B with �.a/ D 0 D �.b/, we have lims!1 �.
s.a/b/ D 0.

Our first lemma provides a variant of the results in [28, Section 3]. For
completeness, we provide a complete proof.

Lemma 2.1. Let .B; �/ and .D;Tr/ be von Neumann algebras equipped with normal
faithful traces with �.1/ D 1 and with Tr being finite or semifinite. Assume that a
countable group ƒ acts in a trace preserving way on .B; �/ and .D;Tr/. Denote
these actions, as well as their diagonal product on B ˝D, by .
s/s2ƒ. Assume that
the action ƒy .B; �/ is mixing.

Let p 2 D be a projection with Tr.p/ < 1. Denote M D p..B ˝D/ o ƒ/p

and P D p.D o ƒ/p. If Q � P is a von Neumann subalgebra with Q 6�P pDp

and if v 2M satisfies vQ � Pv, then v 2 P .

Proof. By assumption, we get a sequencewn 2 U.Q/ satisfying limn kEpDp.xwny/k2
D 0 for all x; y 2 P . Denote by .us/s2ƒ the canonical unitaries in the crossed
product D oƒ. Every wn has a Fourier decomposition

wn D
X
s2ƒ

.wn/sus with .wn/s 2 pD
s.p/ :

We claim that for every fixed s 2 ƒ, we have limn k.wn/sk2 D 0. To prove this
claim, fix s 2 ƒ. For every unitary v 2 U.D/, we have the element pu�s vp 2 P and
therefore

lim
n
kEpDp.wn pu

�
s vp/k2 D 0 :

SinceEpDp.wn pu�s vp/ D .wn/s
s.p/vp D .wn/svp, we get that limn k.wn/svpk2
D 0. Then also limn k.wn/s vpv

�k2 D 0. Since the join of all the projections vpv�,
v 2 U.D/, equals the central support z 2 Z.D/ of p 2 D, we get that
limn k.wn/s zk2 D 0. But .wn/s z D z .wn/s D .wn/s and the claim is proven.

We next prove that

lim
n
kEP .xwny/k2 D 0 for all x; y 2M 	 P : (2.1)
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Since the linear span ofP .B	C1/ is k � k2-dense inM	P , it suffices to prove (2.1)
for x; y 2 B 	 C1. But then

EP .xwny/ D
X
s2ƒ

�.x
s.y// .wn/s us :

It follows that

kEP .xwny/k
2
2 D

X
s2ƒ

j�.x
s.y//j
2
k.wn/sk

2
2 :

Fix " > 0. Since the action ƒ y .B; �/ is mixing, take a finite subset F � ƒ such
that j�.x
s.y//j2 < "=Tr.p/ for every s 2 ƒ � F . Since limn k.wn/sk2 D 0 for
every fixed s 2 ƒ, we next take n0 such thatX

s2F

j�.x
s.y//j
2
k.wn/sk

2
2 < " for all n � n0.

We conclude that for all n � n0,

kEP .xwny/k
2
2 � "C

X
s2ƒ�F

j�.x
s.y//j
2
k.wn/sk

2
2

� "C
"

Tr.p/

X
s2ƒ�F

k.wn/k
2
2 � "C

"

Tr.p/
kwnk

2
2 D 2" :

So (2.1) is proven. The conclusion of the lemma now follows from [35, Lemma D.3].

Let .M; �/ be a tracial von Neumann algebra. Recall from [23, Section 1.2] that
von Neumann subalgebrasM1;M2 �M are said to form a commuting square when
EM1

ı EM2
D EM1\M2

D EM2
ı EM1

. We need the following easy lemma and
include a complete proof for the convenience of the reader.

Lemma 2.2. Let .M; �/ be a tracial von Neumann algebra with von Neumann
subalgebras M1;M2 � M that form a commuting square. Assume that the linear
span of M1M2 is k � k2-dense in M . If Q �M1 is a von Neumann subalgebra and
Q 6�M1

M1 \M2, then Q 6�M M2.

Proof. Put P D M1 \ M2. Assume that Q � M1 and Q 6�M1
P . We then

find a sequence of unitaries wn 2 U.Q/ satisfying limn kEP .xwny/k2 D 0 for all
x; y 2M1. For all x; y 2M1 and for all a; b 2M2, we have

EM2
.ax wn yb/ D aEM2

.xwny/ b D aEP .xwny/ b :

Therefore, limn kEM2
.ax wn yb/k2 D 0. Since the linear span of M1M2 is k � k2-

dense in M , we conclude that limn kEM2
.cwnd/k2 D 0 for all c; d 2 M . This

implies that Q 6�M M2.
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We finally recall the concept of a co-induced action. Assume that .B; �/ is a
tracial von Neumann algebra with a trace preserving action .ˇg/g2�0

. Assume
that �0 < � . The co-induced action of .ˇg/g2�0

to � is the following action
.˛g/g2� on the infinite tensor product .A; �/ D .B; �/�=�0 . First choose a section
� W �=�0 ! � with �.e�0/ D e. We then get the 1-cocycle ! W � � �=�0 ! �0
determined by

g �.h�0/ D �.gh�0/ !.g; h�0/ for all g 2 � ; h�0 2 �=�0 :

We denote by �h�0
W B ! A the embedding of B as the h�0-th tensor factor. There

is a unique trace preserving action .˛g/g2� of � on A satisfying

˛g.�h�0
.b// D �gh�0

.ˇ!.g;h�0/.b// for all g 2 � ; h�0 2 �=�0 ; b 2 B :

Note that by construction ˛g.�e�0
.b// D �e�0

.ˇg.b// for all g 2 �0, b 2 B .

3. A first outer conjugacy lemma and the proof of Theorem B

Throughout this section, we fix a countable group � with a subgroup �0 < � that is
not co-amenable, i.e. such that the set �=�0 does not admit a �-invariant mean. In
particular, one can take �0 D feg, or �0 amenable, and � any nonamenable group.
We also fix an infinite group ƒ. We let these groups � and ƒ act in the following
way on von Neumann algebras.

� Let .B; �/ be a von Neumann algebra equipped with a normal faithful tracial
state � . We assume that .B; �/ comes with commuting trace preserving
faithful3 actions .ˇg/g2�0

and .
s/s2ƒ. We assume that the action .
s/s2ƒ
on .B; �/ is mixing.

� We put .A; �/ D .B; �/�=�0 . As recalled at the end of Section 2, we can
define the co-induced action of .ˇg/g2�0

and this is an action .˛g/g2� of �
on .A; �/. We also consider the diagonal action of ƒ on .A; �/ that we still
denote as .
s/s2ƒ. Note that .˛g/g2� commutes with .
s/s2ƒ.

� Let .D;Tr/ be a von Neumann algebra equipped with a normal, finite or
semifinite, faithful trace Tr. Assume that .
s/s2ƒ is a trace preserving action
on .D;Tr/ and that one of the following assumptions hold.

(1) D is a factor, the action .
s/s2ƒ is outer and the group ƒ has a torsion
free FC-radical. For instance, we could take ƒ to be an icc group, or a
torsion free group.

(2) D is diffuse abelian and the action .
s/s2ƒ is essentially free and
ergodic.

3We call a group action faithful if no non trivial group element acts by the identity automorphism.
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We consider the diagonal action of ƒ on A ˝ D and continue to denote all
these actions of ƒ by .
s/s2ƒ.

These data yield the crossed product von Neumann algebra N D .A ˝ D/ o ƒ

equipped with the trace Tr induced by � and Tr. The action .˛g/g2� of � on A
extends to an action on N that equals the identity on D oƒ and that we still denote
as .˛g/g2� . We start by proving a few basic properties.

Lemma 3.1. The von Neumann algebraN is a factor. We haveN \.Doƒ/0 D C1.
The action .˛g/g2� of � on N is outer.

Proof. We first prove that N \ .D oƒ/0 D C1. In the case where D is a factor and
the action ofƒ onD is outer, we have that N \ .1˝D/0 D A˝ 1. Since the action
of ƒ on .B; �/ is mixing, the diagonal action on .A; �/ is still mixing, in particular
ergodic, so that N \ .D oƒ/0 D C1.

In the case whereD D L1.Z; �/ is diffuse abelian and the actionƒy .Z; �/ is
essentially free and ergodic, the essential freeness implies thatN\.1˝D/0 D A˝D.
So we must prove that all ƒ-invariant elements in A˝D are scalar multiples of 1.
Let F W Z ! A	C1 be a measurable function satisfying F.s �z/ D 
s.F.z// for all
s 2 ƒ and a.e. z 2 Z. We must prove that F is zero a.e. Sinceƒ acts ergodically on
.Z; �/, the map z 7! kF.z/k2 is constant a.e. If this constant differs from zero, we
may assume that it is equal to 1 a.e. We can then choose a 2 A	C1 with kak2 D 1
such that

U D fz 2 Z j kF.z/ � ak2 < 1=3g

is nonnegligible. Since the action of ƒ on .A; �/ is mixing, we can take a finite
subset F � ƒ such that jh
s.a/; aij < 1=3 for all s 2 ƒ � F . We derive as follows
that �.s � U \ U/ D 0 for all s 2 ƒ � F . Indeed, otherwise we find s 2 ƒ � F and
a point z 2 U such that s � z 2 U , kF.z/k2 D 1 and 
s.F.z// D F.s � z/. But then
we arrive at the contradiction

1 D jhF.s � z/; F.s � z/ij D jh
s.F.z//; F.s � z/ij < 2=3C jh
s.a/; aij < 1 :

So for almost every z 2 U , we have that ƒ � z \U � F � z. Therefore the restriction
of the orbit equivalence relation of ƒ y Z to the nonnegligible subset U has
finite orbits almost everywhere. But this equivalence relation is ergodic and U is
nonatomic. This is absurd and the conclusion that N \ .D oƒ/0 D C1 follows.

We have in particular that N is a factor. Assume that g 2 � and V 2 U.N / with
˛g D AdV . Since ˛g.d/ D d for all d 2 D oƒ, it follows that V is scalar. Hence
˛g D id. Since B ¤ C1 and since the action .ˇg/g2�0

of �0 on B is faithful, also
the action .˛g/g2� of � on A is faithful. We conclude that g D e.

We also record the following elementary result that we will need in Section 4.
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Lemma 3.2. Let �1 < � be a torsion free subgroup and �=�0 D I t J a partition
of �=�0 into �1-invariant subsets such that �1 acts freely on I . Define the Hilbert
space

L WD L2.N /	 L2..BJ ˝D/oƒ/ :

Then the unitary representation .˛g/g2�1
of �1 on L is a multiple of the regular

representation of �1.

Proof. For every finite nonempty subset F � I , define LF � L as the closed linear
span of ..B 	 C1/F BJ ˝ 1/L2.D oƒ/. Note that L is the orthogonal direct sum
of all the LF . Fix a nonempty finite subset F � I and define �2 D fg 2 �1 j
gF D Fg. Since �1 acts freely on I and since F is finite, it follows that �2 is
a finite subgroup of �1. Since �1 is torsion free, we get that �2 D feg. Because
˛g.LF / D LgF , we conclude that the subspaces .˛g.LF //g2�1

are orthogonal and
the lemma is proved.

The aim of this section is to understand when these actions .˛g/g2� are outer
conjugate, keeping fixed �0 < � but varying all the other data.

So we keep �0 < � fixed, but further assume that we have, for i D 1; 2, von
Neumann algebras .Bi ; �/ and .Di ;Tr/, infinite groups ƒi and actions .ˇig/g2�0

and .
 is /s2ƒi
. This results into factors Ni with outer actions .˛ig/g2� .

Throughout, we keep as standing assumptions the properties listed in the
beginning of this section.

Lemma 3.3. Assume that W N1 ! N2 is an outer conjugacy between .˛1g/g2� and
.˛2g/g2� . Then there exists a unitary w 2 U.N2/ and an automorphism ı 2 Aut.�/
such that the isomorphism  0 D .Adw/ ı  satisfies

 0.D1 oƒ1/ D D2 oƒ2 ;  0.D1/ D D2 and  0 ı ˛1g D ˛
2
ı.g/ ı  

0

for all g 2 � :

Our proof of Lemma 3.3 is very similar to the proof of [29, Theorem 4.1]. We
use the spectral gap methods of [29] and the malleable deformation for co-induced
actions developed in [26, 28]. We more precisely use the following variant of that
malleable deformation, due to [15]. To introduce the notations, we drop the indices
i D 1; 2 from Bi , Ai , Di , etc.

Define eB D B � LZ with respect to the natural tracial states that we all denote
by � . Denote by .un/n2Z the canonical unitaries in LZ and define h 2 LZ as
the selfadjoint element with spectrum Œ��; �� satisfying u1 D exp.ih/. For every
t 2 R, we put ut D exp.i th/ and we define the 1-parameter group .�t /t2R of inner
automorphisms of eB given by �t D Adut . We extend the actions .ˇg/g2�0

and
.
s/s2ƒ to eB by acting trivially on LZ. These two actions and the action .�t /t2R all
commute.
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Define eA as the infinite tensor product eA D eB�=�0 . We continue to denote by
.
s/s2ƒ and .�t /t2R the diagonal actions on eA. They commute with the co-induced
action .˛g/g2� on eA. Moreover this co-induced action extends the action .˛g/g2�
on A. We finally consider the crossed product eN D .eA ˝ D/ o ƒ with respect to
the diagonal action of ƒ, together with the action .˛g/g2� of � on eN that extends
the given action on eA and that is the identity on D oƒ.

Our assumption that �0 is not co-amenable in � is used to obtain the following
result.

Lemma 3.4. Assume that .Vg/g2� are unitaries in U.N / and that � W � � � ! T
is a map satisfying Vg ˛g.Vh/ D �.g; h/ Vgh for all g; h 2 � . The unitary
representation

� W � ! U.L2.eN 	N// W �g.�/ D Vg ˛g.�/ V �g
does not weakly contain the trivial representation.

Proof. We write H D L2.eN 	 N/. Denote by S the set of all finite nonempty
subsets F � �=�0. For every F 2 S , we define H.F/ as the closed linear span of
..eB 	 B/F ˝ 1/L2.N / inside L2.eN 	 N/. One checks that H is the orthogonal
direct sum of the subspacesH.F/, F 2 S . Note thatH.F/ is anN -N -subbimodule
of L2.eN 	N/ and that �g.H.F// D H.gF/ for all g 2 � and F 2 S .

Denote by Prob.S/ the set of probability measures on the countable set S . Denote
by .H/1 the set of unit vectors in H . The map

� W .H/1 ! Prob.S/ W .�.�//.F/ D kPH.F/.�/k22

satisfies �.�g.�// D g � �.�/.
Assume now that the unitary representation � weakly contains the trivial

representation, i.e. admits a sequence of unit vectors �n 2 .H/1 satisfying
limn k�g.�n/ � �nk2 D 0 for all g 2 � . We will prove that �0 is co-amenable
in � . Define !n D �.�n/. Then !n is a sequence of probability measures on S
satisfying limn kg � !n � !nk1 D 0.

Choose a set S0 � S of representatives for the orbits of the action � y S . We
make this choice such that e�0 2 F for every F 2 S0. For every F 2 S0, define
Norm.F/ D fg 2 � j gF D Fg. Since S0 is a set of representatives for the action
� y S , we identify S with the disjoint union of the sets �=Norm.F/, F 2 S0.

For every F 2 S0, write Stab.F/ D fg 2 � j gh�0 D h�0 for all h�0 2 Fg.
Since all the F are finite sets, we have that Stab.F/ is a finite index subgroup of
Norm.F/. We define S 0 as the disjoint union of the sets �=Stab.F/, F 2 S0.
Putting together the finite-to-one maps �=Stab.F/ ! �=Norm.F/, we obtain the
�-equivariant finite-to-one map � 0 W S 0 ! S . This map � 0 induces a �-equivariant
isometry of Prob.S/ into Prob.S 0/. Applying this isometry to !n, we find a sequence
of probability measures !0n on S 0 satisfying limn kg � !

0
n � !

0
nk1 D 0 for all g 2 � .
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Taking a weak� limit point, it follows that the action � y S 0 admits an invariant
mean. For every F 2 S0, we have e�0 2 F and therefore Stab.F/ � �0. Define
the map � 00 W S 0 ! �=�0 given by � 00.hStab.F// D h�0 for all F 2 S0 and h 2 � .
Since � 00 is �-equivariant, we push forward the �-invariant mean on S 0 to a �-
invariant mean on �=�0. This precisely means that �0 is co-amenable inside � .

We are now ready to prove Lemma 3.3.

Proof of Lemma 3.3. Fix a projection p1 2 D1 � N1 with 0 < Tr.p1/ <1. After
unitarily conjugating  , we may assume that  .p1/ 2 D2. Put p2 D  .p1/.

Since  is an outer conjugacy between .˛1g/g2� and .˛2g/g2� , we find an
automorphism ı 2 Aut.�/, unitaries .Vg/g2� in U.N2/ and a map � W � � � ! T
such that

 ı˛1
ı�1.g/

D .AdVg/ı˛2gı and Vg ˛
2
g.Vh/ D �.g; h/ Vgh for all g; h 2 � :

Define as above the malleable deformation .�t /t2R of eN 2 D .eA2˝D2/oƒ2. Denote
by � the unitary representation of � onL2.eN 2	N2/ given by �g.�/ D Vg ˛2g.�/ V

�
g .

By Lemma 3.4, � does not weakly contain the trivial representation. We then find a
constant � > 0 and a finite subset F � � such that

k�k2 � �
X
g2F

k�g.�/ � �k2 for all � 2 L2.eN 2 	N2/ : (3.1)

We write Mi D piNipi and fM i D pieN ipi . Put Pi D pi .Di o ƒi /pi . Put
" D kp2k2=4 and ı D "=.2� jF j/. Take an integer n0 large enough such that
t D n�10 satisfies

k.Vg � �t .Vg//p2k2 � ı for all g 2 F :

For every a 2 P1 and g 2 � , we have ˛1g.a/ D a and therefore Vg˛2g. .a//V
�
g D

 .a/. By our choice of t , we get that

kVg ˛
2
g.�t .b// V

�
g � �t .b/k2 � 2ı for all g 2 F and all b 2  .P1/ with kbk � 1.

(3.2)
Denote by E W eN ! N the unique trace preserving conditional expectation.
Whenever b 2  .P1/ with kbk � 1, we put � D �t .b/ � E.�t .b// and conclude
from (3.2) that

�
X
g2F

k�g.�/ � �k2 � 2� jF j ı D " :

It follows from (3.1) that k�k2 � ". A direct computation shows that .�t / satisfies
the following transversality property of [29, Lemma 2.1].

kb � �t .b/k2 �
p
2 k�t .b/ �E.�t .b//k2 for all b 2M2 :
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We conclude that kb� �t .b/k2 � 2" for all b 2  .P1/ with kbk � 1. It follows that
for all b 2 U. .P1//,

jTr.b�t .b�// � Tr.bb�/j � kbk2 kb � �t .b/k2 � kp2k2 2" D Tr.p2/=2 :

So Tr.b�t .b�// � Tr.p2/=2 for all b 2 U. .P1//.
Defining W 2fM 2 as the unique element of minimal k � k2 in the weakly closed

convex hull of fb�t .b�/ j b 2 U. .P1//g, it follows that Tr.W / � Tr.p2/=2 and
bW D W �t .b/ for all b 2  .P1/. In particular, W is a nonzero element of fM 2 and
WW � commutes with  .P1/.

Since Vg˛2g.b/V
�
g D b for all g 2 � and all b 2  .P1/, the elements

Wg WD Vg ˛
2
g.W / �t .V

�
g / also satisfy bWg D Wg�t .b/ for all b 2  .P1/. The join

of the left support projections of all Wg , g 2 � , is a projection q 2 fM 2 \  .P1/
0

that satisfies q D Vg ˛2g.q/ V
�
g for all g 2 � . By Lemma 3.4, q 2 M2. But then, by

Lemma 3.1, we get that q 2  .M1 \ P
0
1/ D Cp2. Since q is nonzero, we conclude

that q D p2. It follows that we can find a g 2 � such that W 0 D W �t .Wg/ is
nonzero. By construction, we have bW 0 D W 0�2t .b/ for all b 2  .P1/. We can
repeat the same reasoning inductively. Since t D 1=n0, we find a nonzero element
W 2fM 2 satisfying bW D W �1.b/ for all b 2  .P1/.

For every finite subset F � �=�0, we defineM2.F/ D p2..BF
2 ˝D2/oƒ2/p2.

We claim that there exists a finite subset F � �=�0 such that  .P1/ �M2
M2.F/.

Indeed, if this is not the case, we find a sequence of unitaries bn 2 U. .P1//
satisfying

kEM2.F/.xbny/k2 ! 0 for all x; y 2M2 and all finite subsets F � �=�0 :

We claim that

kEM2
.x�1.bn/y/k2 ! 0 for all x; y 2fM 2 : (3.3)

Since the linear span of all M2
eBF
2 , F � �=�0 finite, is k � k2-dense in fM 2, it

suffices to prove (3.3) for all x; y 2 eBF
2 p2 and all finite subsets F � �=�0. But for

such x; y 2 eBF
2 p2, we have

EM2
.x�1.bn/y/ D EM2

�
x�1.EM2.F/.bn//y

�
and the conclusion follows from our choice of .bn/. So (3.3) is proven. It follows in
particular that kEM2

.W �1.bn/W
�/k2 ! 0. Since

EM2
.W �1.bn/W

�/ D EM2
.bnWW

�/ D bnEM2
.W W �/

and since bn is unitary, we conclude that WW � D 0. This is absurd and we have
proven the existence of a finite subset F � �=�0 such that  .P1/ �M2

M2.F/.
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Note that  .P1/ 6� p2.BF
2 ˝D2/p2, because otherwise we can take the relative

commutant, apply [36, Lemma 3.5] and reach the contradiction that

.B
�=�0�F
2 ˝ 1/p2 �M2 \  .P1/

0
D  .M1 \ P

0
1/ D Cp2 :

In combination with the previous paragraph and [36, Remark 3.8], we find projec-
tions q1 2 P1 and q2 2 p2D2p2, a �-homomorphism � W q1P1q1 ! q2M2.F/q2
and a nonzero partial isometry V 2  .q1/M2q2 satisfying  .b/V D V�.b/ for all
b 2 q1P1q1, and satisfying �.q1P1q1/ 6� q2.BF

2 ˝D2/q2.
The projection V V � commutes with  .q1P1q1/ and hence must be equal

to  .q1/. The projection V �V commutes with �.q1P1q1/. Since the action of ƒ2
on B�=�0�F

2 is mixing, it follows from Lemma 2.1 that V �V 2 q2M2.F/q2. So
we may assume that V �V D q2. Since P1 and M2.F/ are factors, we can then
amplify V to a unitary element V 2 U.M2/ satisfying V � .P1/V �M2.F/.

Since �0 is not co-amenable inside � , it certainly has infinite index. Therefore
we can find g 2 � such that gF \ F D ; (see e.g. [30, Lemma 2.4]). Denote
Q2 D V � .P1/V . So Q2 � M2.F/. Since ˛1g.P1/ D P1, it follows that
the von Neumann algebras Q2 and ˛2g.Q2/ are unitarily conjugate inside M2.
Since Q2 �M2.F/ and ˛2g.Q2/ �M2.gF/, it follows from Lemma 2.2 that
Q2 �M2.;/ D P2. Reasoning as above, we find a unitary V 2 U.M2/ such that
V � .P1/V � P2.

The same reasoning applies to  �1 and we also find W 2 U.M1/ such that
W � �1.P2/W � P1. Writing T D  .W /V , we get that

T �P2T � V
� .P1/V � P2 : (3.4)

Since the action ofƒ2 on A2 is mixing, it follows from Lemma 2.1 that T 2 P2. But
then the inclusions in (3.4) are equalities and we conclude that V � .P1/V D P2.

So after a unitary conjugacy of , we may from now on assume that .D1 oƒ1/
D D2 o ƒ2 and  .p1/ D p2. Inside P2, we must have the embedding
 .p1D1p1/ � p2D2p2. Indeed, since the action ƒ2 y A2 is mixing and
 .A1p1/ commutes with  .p1D1p1/, it would otherwise follow from Lemma 2.1
that  .A1p1/ � P2 and hence  .M1/ � P2, which is absurd. We have a similar
embedding statement for  �1.

In the case where the Di are abelian, Dipi is a Cartan subalgebra of Pi . It
then follows from [27, Theorem A.1] that  .D1p1/ can be unitarily conjugated
onto D2p2 inside P2. In the case where the Di are factors and the groups ƒi
have a torsion free FC-radical, [17, Lemma 8.4] yields the same conclusion4. So

4The statement of [17, Lemma 8.4] requires the groups ƒi to be icc, but the proof of [17, Lemma
8.4] only uses the following property : if K < ƒi is a finite subgroup and H < ƒi is a finite index
subgroup such that K is normal in H , then K D feg. This last property is equivalent with the torsion
freeness of the FC-radical ofƒi .



788 A. Brothier and S. Vaes

after a further unitary conjugacy of  , with a unitary from D2 o ƒ2, we arrive at
 .D1 oƒ1/ D D2 oƒ2 and  .D1/ D D2.

Using Lemma 3.1, we then get that Vg 2 N2 \ .D2 o ƒ2/
0 D C1 and hence,

 ı ˛1g D ˛
2
ı
.g/ ı  for all g 2 � .

Theorem B is an immediate consequence of Lemma 3.3.

Proof of Theorem B. Assume that ˛ƒ1 and ˛ƒ2 are outer conjugate. Then Lemma 3.3
yields an isomorphism

 WM2.C/ƒ1 oƒ1 !M2.C/ƒ2 oƒ2 with  
�
M2.C/ƒ1

�
DM2.C/ƒ2 :

It follows that ƒ1 Š ƒ2. The converse is obvious.

4. Proof of Theorem A

Theorem A will be derived as a consequence of the more general Theorem 4.2 below.

Assumptions 4.1. We use, as a black box, the following kind of measure preserving
automorphism T of a standard nonatomic probability space .Y; �/.

(1) T is mixing.

(2) The only automorphisms of .Y; �/ that commute with T are the powers of T .

(3) The automorphisms T and T �1 are not isomorphic: there is no S 2 Aut.Y; �/
satisfying STS�1 D T �1.

(4) Viewing T as a unitary operator on L2.Y; �/, its maximal spectral type is
singular w.r.t. the Lebesgue measure.

In [34, Theorems 2.7 and 2.8], it was shown that Ornstein’s rank one automor-
phisms of [21] satisfy conditions 1, 2 and 3. In [5], these automorphisms were proven
to satisfy condition 4 as well. Note that in [34], conditions 2 and 3 are deduced
from a stronger property of T : the mixing automorphism T actually has minimal
self joinings (MSJ) in the strongest possible sense saying that the only measures on
Y � Y that are invariant under T n � Tm (with n ¤ 0 and m ¤ 0) and that have
marginals �, are the obvious ones. In later articles, the notion of MSJ has been
weakened by only considering T �T invariant measures with marginals �. We refer
to [8, Proposition 6.7] for a detailed discussion.

Every automorphism T 2 Aut.Y; �/ satisfying the assumptions in 4.1 gives rise
to a mixing pmp action Z y .Y; �/ that we denote by .
n/n2Z and that has the
following properties : the normalizer of Z inside Aut.Y; �/ equals Z itself; and
there is no nonzero bounded operator L2.Y; �/! `2.Z/ that intertwines the unitary
representation Z y L2.Y; �/ induced by .
n/n2Z with the regular representation
of Z.
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Theorem 4.2. Let � be any fixed nonamenable group that contains a copy of Z
as a malnormal5 subgroup �0. Fix an automorphism T 2 Aut.Y; �/ satisfying the
assumptions in 4.1 and consider the associated action of �0 D Z on .Y; �/. Put
.X; �/ D .Y; �/�=�0 and consider the coinduced action � y .X; �/ as well as the
diagonal action Z y .X; �/. Fix a standard nonatomic finite or infinite measure
space .Z; �/.

Whenever � 2 Aut.Z; �/ is ergodic and measure preserving, consider

N D L1.X �Z/o Z

where Z acts diagonally on X � Z. Consider the action .˛�g /g2� of � on N that
extends the action � y .X; �/ and that is the identity on L1.Z/o Z.

If �1; �2 2 Aut.Z; �/ are ergodic and measure preserving and if  W N1 ! N2
is an outer conjugacy between .˛

�1
g /g2� and .˛

�2
g /g2� , there exists a unitary

w 2 U.N2/ and a group element g0 2 � such that the outer conjugacy
 0 D ˛2g0

ı .Adw/ ı  is the composition of
� the isomorphism N1 ! N2 induced by an automorphism � 2 Aut.Z; �/

satisfying � ı �1 ı ��1 D �2 ; this isomorphism acts as the identity on
L1.X/o Z and as �� on L1.Z/ ;

� the automorphism of N2 induced by an automorphism ı 2 Aut.�/ satisfying
ı.g/ D g for all g 2 �0 ; this automorphism acts as the identity on
L1.Z/o Z and acts by permuting the tensor factors of L1.X; �/ D
L1.Y; �/�=�0 by the permutation g�0 7! ı.g/�0, g 2 � .

We say that actions .˛ig/g2� , i D 1; 2, of a group � on von Neumann
algebras Ni are isomorphic if there exists an isomorphism  W N1 ! N2 such that
˛2g ı  D  ı ˛

1
g for all g 2 � . We also use the notations mod. / and mod.�/ to

denote the scaling factor of a trace scaling automorphism  2 Aut.N /, or a measure
scaling automorphism � 2 Aut.Z; �/.

As a consequence of Theorem 4.2, we then have the following results.

fmod. / j  2 Aut.N / is an outer conjugacy of ˛�g

D fmod. / j  2 Aut.N / commutes with ˛�g

D fmod.�/ j � 2 Aut.Z; �/ commutes with �g :

If �1; �2 2 Aut.Z; �/ are ergodic and measure preserving, it follows from
Theorem 4.2 that the following three statements are equivalent.

� �1 is conjugate with�2 : there exists a nonsingular automorphism � 2 Aut.Z; �/
such that �2 D � ı�1 ı ��1 a.e.

� The actions .˛�1
g /g2� and .˛�2

g /g2� are isomorphic.

� The actions .˛�1
g /g2� and .˛�2

g /g2� are outer conjugate.

5A subgroup �0 < � is said to be malnormal if g�0g
�1 \ �0 D feg for all g 2 � � �0.
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Proof of Theorem 4.2. We start by making the notations compatible with those at the
beginning of Section 3. We denote B D L1.Y; �/ and A D B�=�0 D L1.X; �/.
For every g�0 2 �=�0, we denote by �g�0

W B ! A the embedding of B as the
g�0-th tensor factor ofA D B�=�0 . We have �0 D Z D ƒ and the actions .ˇg/g2�0

and .
g/g2�0
on B are equal and both induced by T .

We write D D L1.Z; �/. The ergodic measure preserving automorphisms
�1; �2 2 Aut.Z; �/ induce essentially free and ergodic actions .
 in/n2Z of ƒ D Z
on D. We consider N1; N2 as in the formulation of the Theorem, but we denote the
actions by .˛ig/g2� rather than .˛�i

g /g2� . Assume that  W N1 ! N2 is an outer
conjugacy between .˛1g/g2� and .˛2g/g2� .

By Lemma 3.3, and after replacing  by .Adw/ ı  , we may assume that

 .D o
1 Z/ D D o
2 Z ;  .D/ D D and  ı ˛1g D ˛
2
ı.g/ ı  (4.1)

for all g 2 � and some automorphism ı 2 Aut.�/. Taking the relative commutant
of  .D/ D D, we also have that  .A˝D/ D A˝D.

We prove now the existence of a g0 2 � such that g0ı.�0/g�10 \ �0 ¤ feg. If
such a g0 does not exist, it follows from Lemma 3.2 that the unitary representation
.˛2
ı.g/

/g2�0
on L2.N2/ 	 L2.D o
2 Z/ is a multiple of the regular representation

of �0. On the other hand, by condition 4 in 4.1, the unitary representation
�0 y L2.�e�0

.B/˝D/ given by .˛1g/g2�0
is disjoint from the regular represen-

tation of �0. Combining both observations, it follows that  .�e�0
.B/ ˝ D/ �

D o
2 Z. Since  ı ˛1g D ˛2
ı.g/
ı  for all g 2 � and using (4.1), we arrive at the

contradiction that  .N1/ � D o
2 Z. So there indeed exists a g0 2 � such that
g0ı.�0/g

�1
0 \ �0 ¤ feg.

After replacing  by ˛2g0
ı and ı by .Adg0/ ı ı, we may assume that ı.�0/\

�0 ¤ feg and we find g1 2 �0 with g1 ¤ e and ı.g1/ 2 �0. Since �0 is abelian, it
follows that ı�1.�0/ commutes with g1. By malnormality of �0 < � , we conclude
that ı�1.�0/ � �0. Applying ı, it follows that �0 � ı.�0/. Since ı.�0/ is abelian
and �0 < � is malnormal, we find that �0 D ı.�0/.

For i D 1; 2, define Ki D L2
�
.�e�0

.B/˝D/ o
 i Z
�

and Li D L2.Ni /	Ki .
Since �0 < � is malnormal, it follows from Lemma 3.2 that the unitary represen-
tation .˛2

ı.g/
/g2�0

of �0 on L2 is a multiple of the regular representation of �0.
By condition 4 in 4.1, the unitary representation .˛1g/g2�0

of �0 on K1 is disjoint
from the regular representation of �0. Combining both observations, it follows that
 .K1/ � K2. By symmetry, also the converse inclusion holds. So

 
�
.�e�0

.B/˝D/o
1 Z
�
D .�e�0

.B/˝D/o
2 Z :

We therefore find the isomorphism

‰ W .B ˝D/o
1 Z! .B ˝D/o
2 Z
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satisfying .�e�0
˝ id/ ı ‰ D  ı .�e�0

˝ id/. Because of (4.1) and the facts that
 .A˝D/ D A˝D and  .D/ D D, we have

‰.B ˝D/ D B ˝D ; ‰.D o
1 Z/ D D o
2 Z and ‰.D/ D D :

Since D D L1.Z; �/, we obtain the nonsingular automorphism � 2 Aut.Z; �/
satisfying‰.d/ D d ı��1 for all d 2 L1.Z; �/. Since‰.Do
1Z/ D Do
2Z, the
map � is an orbit equivalence between the essentially free actions 
 i W Z y .Z; �/.
So we find the 1-cocycle ! W Z �Z ! Z satisfying �.n � z/ D !.n; z/ � �.z/ for all
n 2 Z and a.e. z 2 Z. For all n;m 2 Z, denote by pn;m 2 L1.Z/ the projection
with support fz 2 Z j !.n; ��1.z// D mg. Denote by .un/n2Z the canonical
unitaries in the crossed product D o
 i Z. Then,

‰.un/ D
X
m2Z

um �n;m (4.2)

for all n 2 Z, where �n;m 2 U.Dpn;m/.
We identify B ˝D D L1.Z;B/. Since the automorphism ‰ 2 Aut.B ˝D/

satisfies ‰.D/ D D, we find a measurable family of automorphisms  z 2 Aut.B/,
for a.e. z 2 Z, such that

.‰.b//.�.z// D  z.b.z// for all b 2 L1.Z;B/ and a.e. z 2 Z :

The isomorphism  scales the trace by a scaling factor � > 0. Thus � scales the
measure by the same factor � and for a.e. z 2 Z, the automorphism  z is trace
preserving.

For all n 2 Z and b 2 B , we have

‰.
�n.b/˝ 1/ D ‰.u
�
n.b ˝ 1/un/ D ‰.un/

�‰.b ˝ 1/‰.un/ :

The left and right hand side both belong to L1.Z;B/. Evaluating the left and right
hand side in a point �.z/ for some z 2 Z with !.n; z/ D m and using (4.2), we
obtain the equality

 z.
�n.b// D 
�m. n�z.b// :

It follows that
 n�z ı 
n D 
!.n;z/ ı  z (4.3)

for all n 2 Z and a.e. z 2 Z.
Since  ı ˛1g D ˛2

ı.g/
ı  for all g 2 � , it follows that ‰ ı ˇg D ˇı.g/ ı ‰

for all g 2 �0. This means that  z ı ˇg D ˇı.g/ ı  z for all g 2 �0 and a.e.
z 2 Z. By conditions 2 and 3 in 4.1, it follows that ı.g/ D g for all g 2 �0 and that
a.e.  z is given by a power of T . So we find a measurable map ' W Z ! Z such that
 z D 
'.z/ for a.e. z 2 Z.

Writing !0.n; z/ D '.n � z/�1 !.n; z/ '.z/, it then follows from (4.3) that

!0.n;z/ D 
n. We conclude that !0.n; z/ D n for all n 2 Z and a.e. z 2 Z. It
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follows that the map z 7! '.z/�1 � �.z/ is an automorphism of .Z; �/. Denoting, for
all m 2 Z, by qm 2 L1.Z/ the projection with support fz 2 Z j '.��1.z// D mg,
it follows that

U D
X
m2Z

qmum

is a well defined unitary operator in D o
2 Z. Replacing  by .AdU �/ ı , we get
that

 ..�e�0
.b/˝ d/un/ D .�e�0

.b/˝ �.d//un

for all b 2 B , d 2 D, n 2 Z, where � 2 Aut.D/ satisfies � ı 
1n D 
2n ı � for all
n 2 Z. We still have that  ı ˛1g D ˛2

ı.g/
ı  for all g 2 � , where ı 2 Aut.�/

satisfies ı.g/ D g for all g 2 �0.
So  is indeed the composition of the two isomorphisms described in the

statement of the theorem.

Remark 4.3. Fix the same actions � y .X; �/ and Z y .X; �/ as in Theorem 4.2.
Whenever .�n/n2Z is an outer action of Z on the hyperfinite II1 factorR, we consider,
in the same way as in Theorem 4.2, the action .˛�g/g2� of � on

.L1.X/˝R/o� Z :

Contrary to the situation in Theorem 4.2, where we use the abelian algebra L1.Z/
instead of R, this construction is of little interest since all the actions .˛�g/g2� are
isomorphic. Indeed, take two outer actions .�n/n2Z and .�0n/n2Z of Z on R. By
[7, Theorem 2], the automorphisms �1 and �01 are outer conjugate. So we find
 0 2 Aut.R/ and a unitary v1 2 U.R/ such that  0 ı �1 D Ad v1 ı �01 ı  0.
Denoting by .un/n2Z the canonical generating unitaries of L.Z/, one checks that
there is a unique isomorphism

 W .L1.X/˝R/o� Z! .L1.X/˝R/o�0 Z

satisfying .a˝b/ D a˝ 0.b/ for all a 2 L1.X/, b 2 R and .u1/ D .1˝v1/u1.
By construction,  ı ˛�g D ˛

�0

g ı  for all g 2 � .

We are now ready to prove Theorem A.

Proof of Theorem A. We apply Theorem 4.2 to the group � D .Z=nZ/ � .Z=mZ/.
Denote by a 2 Z=nZ and b 2 Z=mZ the cyclic generators. Define �0 Š Z
as the subgroup of � generated by ab. By [6, Example 7.C], �0 is a malnormal
subgroup of � . For every ergodic measure preserving automorphism� of a standard
nonatomic finite or infinite measure space .Z; �/, Theorem 4.2 provides the outer
action .˛�g /g2� of � on N D L1.X �Z/o Z.

To prove the first statement of Theorem A, take H 2 S . By [1, Theorem 4.3],
there exists an ergodic measure preserving automorphism � of a standard infinite
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measure space .Z; �/ such that

H D fmod.�/ j � 2 Aut.Z; �/ commutes with �g : (4.4)

Fix a nonzero projection p 2 L1.Z/ of finite trace and realize the hyperfinite II1
factor R as pNp. We still denote by ˛� the restriction of ˛� to R D pNp. We
consider the associated group-type subfactor S.˛�/. We claim that F.S.˛�// D H .

First assume that � 2 F.S.˛�//. By [4, Theorem 3.2], we find a projection
q 2 L1.Z/ with Tr.q/ D �Tr.p/ and an isomorphism  W pNp ! qNq such
that  is an outer conjugacy between the restrictions of ˛� to pNp, resp. qNq. We
can then amplify  to an outer conjugacy  2 Aut.N / of ˛� scaling the trace by
the module �. Combining the remarks after Theorem 4.2 with formula (4.4), we
conclude that � 2 H .

Conversely, if � 2 H , we find by (4.4) an automorphism  2 Aut.N / that
commutes with the action ˛� and that scales the trace by the module �. Put
q D  .p/. Then q is an ˛�-invariant projection in N with Tr.q/ D �Tr.p/ and
 induces an isomorphism between the subfactors

.pNp/Z=nZ � .pNp/o Z=mZ and .qNq/Z=nZ � .qNq/o Z=mZ :

This precisely means that � 2 F.S.˛�//.
To prove the second statement of Theorem A, we take for .Z; �/ a standard

nonatomic probability space. For every ergodic pmp automorphism � 2 Aut.Z; �/,
Theorem 4.2 provides an outer action .˛�g /g2� on the hyperfinite II1 factor
R D L1.X �Z/o Z. We denote by S.˛�/ the associated group-type subfactor.

If the subfactors S.˛�1/ and S.˛�2/ are isomorphic, it follows from [4,
Theorem 3.2] that the actions ˛�1 and ˛�2 are outer conjugate. It then follows
from Theorem 4.2 that �1; �2 are conjugate inside Aut.Z; �/. Conversely, when
�1; �2 are conjugate inside Aut.Z; �/, the actions ˛�1 , ˛�2 are isomorphic and
hence, the subfactors S.˛�1/, S.˛�2/ are isomorphic.

Finally note that by [2, Theorem 5.1], the standard invariant of the subfactor
RH � R oK only depends on the inclusions H;K � � .

As explained in the introduction, we also provide as a corollary of Theorem 4.2,
the following new explicit construction of II1 factors with a prescribed fundamental
group in the family S of [31, Section 2].

Corollary 4.4. Let � be a nonamenable, weakly amenable, bi-exact, icc group
containing a copy of Z as a malnormal subgroup �0 < � , e.g. take � D F2 D
Z � Z with �0 given by the first copy of Z. For every ergodic measure preserving
automorphism � of a standard infinite measure space .Z; �/, consider the action
.˛�g /g2� of � on N D L1.X � Z/ o Z as in Theorem 4.2. Fix a projection
p 2 L1.Z/ with Tr.p/ <1.

The fundamental group of the II1 factor pNpo� is given by mod
�
CentrAut.Z;�/.�/

�
.
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Proof. First assume that � > 0 belongs to the fundamental group of pNp o � . We
can then take a projection q 2 L1.Z/ with Tr.q/ D �Tr.p/ and an isomorphism
 W pNp o � ! qNq o � . By [33, Theorem 1.4], we have  .pNp/ � qNq and
qNq �  .pNp/. It then follows from [17, Lemma 8.4] that  .pNp/ and qNq are
unitarily conjugate. So  defines a cocycle conjugacy of the action .˛�g /g2� scaling
the trace by the module �. By Theorem 4.2, we have that � D mod.�/ for some
� 2 Aut.Z; �/ that commutes with �.

Conversely, every � 2 Aut.Z; �/ that commutes with� defines an automorphism
ofN that commutes with ˛� and hence extends to an automorphism ofNo� scaling
the trace by the module �. It follows that mod.�/ belongs to the fundamental group
of pNp o � .
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