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A1-homotopy theory of noncommutative motives
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Abstract. In this article we continue the development of a theory of noncommutative motives,
initiated in [30]. We construct categories of A1-homotopy noncommutative motives, describe
their universal properties, and compute their spectra of morphisms in terms of Karoubi–
Villamayor’s K-theory (KV ) and Weibel’s homotopy K-theory (KH ). As an application,
we obtain a complete classification of all the natural transformations defined on KV;KH .
This leads to a streamlined construction of Weibel’s homotopy Chern character from KV to
periodic cyclic homology. Along the way we extend Dwyer–Friedlander’s étale K-theory to
the noncommutative world, and develop the universal procedure of forcing a functor to preserve
filtered homotopy colimits.
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1. Introduction

Grothendieck derivators. The theory of derivators allow us to state and prove pre-
cise universal properties. The original reference is Grothendieck’s manuscript [13];
consult the Appendices of [4, 5] for shorter and more didactic accounts. Roughly
speaking, a derivator D consists of a strict contravariant 2-functor from the 2-
category Cat of small categories to the 2-category CAT of all categories

D W Catop
�! CAT I 7! D.I /

subject to several natural axioms. The essential example to keep in mind is the
derivator D D HO.M/ associated to a Quillen model category M and defined for
every small category I by HO.M/.I / WD Ho.Fun.I op;M//. Let e be the 1-point
category with only one object and one identity morphism. By definition, D.e/ is
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called the base category of the derivator D. Heuristically, it is the basic “derived”
category under consideration. For instance, if D D HO.M/ then D.e/ D Ho.M/.
Finally, a derivator D is called triangulated if D.I / is a triangulated category for
every small category I . For example, the derivator HO.M/ associated to a stable
Quillen model category M is triangulated.

Dg categories. A differential graded (=dg) category, over a base commutative
ring k, is a category enriched over complexes of k-modules; see §4. Every (dg)
k-algebraA gives naturally rise to a dg category with a single object. Another source
of examples is provided by schemes since the derived category of perfect complexes
perf.X/ of every quasi-compact quasi-separated k-scheme X admits a canonical dg
enhancement perfdg.X/; see Keller [20, §4.6]. As explained in §4, the category
dgcat of (small) dg categories carries a Quillen model structure. Consequently, we
obtain a well-defined Grothendieck derivator HO.dgcat/.

A1-homotopy invariants. A morphism of derivators E W HO.dgcat/ ! D, with
values in a triangulated derivator, is called:

(i) A1-homotopy invariant if it inverts the dg functors A! AŒt � WD A˝ kŒt �;
(ii) Additive if it preserves filtered homotopy colimits and sends split short exact

sequences of dg categories (see [30, §13]) to direct sums

0 // A // Bvv // Cvv // 0 7! E.A/˚E.C/ ' E.B/ I

(iii) Localizing if it preserves filtered homotopy colimits and sends short exact
sequences of dg categories (see [30, §9]) to distinguished triangles

0 �! A �! B �! C �! 0 7! E.A/! E.B/! E.C/! †E.A/ :

Clearly (iii) ) (ii). When E satisfies (i)–(ii), resp. (i) and (iii), we call it an
A1-additive invariant, resp. an A1-localizing invariant. Here are some examples:

Example 1.1. (Karoubi–Villamayor’s K-theory) Karoubi and Villamayor intro-
duced in [18, 19] the algebraic K-theory groups KVn; n � 1, of rings. In §5.2 we
construct the spectral enhancement KV of these groups as well as its mod-l variant
KV.�IZ=l/. These are examples of A1-additive invariants.

Example 1.2. (Weibel’s homotopy K-theory) Weibel introduced in [36] the alge-
braic K-theory groups KHn; n 2 Z, of rings and schemes. In §5.3 we extend these
constructions to dg categories and introduce also the mod-l variant KH.�IZ=l/.
These are examples of A1-localizing invariants.

Example 1.3. (Dwyer–Friedlander’s étale K-theory) Dwyer and Friedlander intro-
duced in [7, 8] (see also [9, 10]) the étale K-theory of schemes. In §5.4, making
use of Thomason’s work [32], we extend this construction to (the noncommutative
setting of) dg categories. This is an example of an A1-localizing invariant.
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Example 1.4. (Periodic cyclic homology) Goodwillie (resp. Weibel) introduced
in [11] (resp. in [35]) the periodic cyclic homology of rings (resp. of schemes).
In §6 we extend these constructions to dg categories. As proved in Proposition 6.1,
the morphism of derivators obtained HP W HO.dgcat/ ! HO.Sp/ (with values
in spectra) is A1-homotopy invariant whenever k is a field of characteristic zero.
However, since periodic cyclic homology is defined using infinite products,HP does
not preserve filtered homotopy colimits. Consequently, HP is not an A1-additive
invariant. Making use of a universal construction of independent interest (see
Proposition 6.2), we obtain nevertheless an A1-additive invariant HP flt and a 2-
morphism � W HP flt ) HP whose evaluation at every homotopically finitely
presented dg category (see §4.2) is an isomorphism.

In this article we study the above properties (i)–(iii) from a motivic viewpoint.

2. Statement of results

Given derivators D;D0, let us write Hom.D;D0/ for the category of morphisms
of derivators, Homflt.D;D0/ for the full subcategory of filtered homotopy colimit
preserving morphisms of derivators, and HomŠ.D;D0/ for the full subcategory of
homotopy colimit preserving morphisms of derivators.

Theorem 2.1. There exist morphisms of derivators

U A1

add W HO.dgcat/ �! MotA
1

add U A1

loc W HO.dgcat/ �! MotA
1

loc

characterized by the following universal property: given any triangulated deriva-
tor D one has induced equivalences

.U A1

add/
�
W HomŠ.MotA

1

add;D/
�
�! Hom add;A1.HO.dgcat/;D/ (2.1)

.U A1

loc /
�
W HomŠ.MotA

1

loc;D/
�
�! Hom loc;A1.HO.dgcat/;D/ ; (2.2)

where the left-hand-sides denote the categories of homotopy colimit preserving mor-
phisms of derivators and the right-hand-sides the categories of A1-additive/localizing
invariants. Moreover, MotA

1

add (resp. MotA
1

loc) carries an homotopy colimit preserving
closed symmetric monoidal structure which makes U A1

add (resp. U A1

loc ) symmetric
monoidal and which gives rise to a˝-enhancement of (2.1) (resp. of (2.2)).

Roughly speaking, Theorem 2.1 shows that an A1-additive (resp. A1-localizing)
invariant is the same data as an homotopy colimit preserving morphism of derivators
defined on MotA

1

add (resp. MotA
1

loc ). Because of these universal properties, which
are reminiscent of motives, the base categories of MotA

1

add and MotA
1

loc are called the
triangulated categories of A1-homotopy noncommutative motives.
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Given an object O in a triangulated category T and an integer l � 2, let �l be
the l-fold multiple of the identity of O and lnO the fiber of �l . As any triangulated
derivator (see [5, §A.1]), MotA

1

add and MotA
1

loc are enriched HomSp.�;�/ over spectra.

Theorem 2.2. Let A and B be two dg categories, with A smooth and proper
(see §4.2). Under these assumptions, we have the following weak equivalences of
spectra

HomSp.U
A1

add.A/; U A1

add.B// ' KV.Aop
˝

L B/

HomSp.lnU
A1

add.A/; U A1

add.B// ' KV.Aop
˝

L BIZ=l/

HomSp.U
A1

loc .A/; U A1

loc .B// ' KH.Aop
˝

L B/ (2.3)

HomSp.lnU
A1

loc .A/; U A1

loc .B// ' KH.Aop
˝

L BIZ=l/ : (2.4)

Note that the left-hand-sides of Theorem 2.2 are defined solely in terms of uni-
versal properties (algebraic K-theory is never mentioned). Therefore, Theorem 2.2
provides a simple conceptual characterization of Karoubi–Villamayor and Weibel’s
K-theories. Roughly speaking, these K-theories are the functors co-represented by
the ˝-unit of the categories of A1-homotopy noncommutative motives. Note also
that Theorem 2.2 combined with Theorem 2.1 implies that MotA

1

add (resp. MotA
1

loc) is
enriched over KV.k/-modules (resp. KH.k/-modules).

Corollary 2.3. Let X and Y be quasi-compact quasi-separated k-schemes, with X
smooth and proper, and Y (or X ) k-flat. Under these assumptions, we have

HomSp.U
A1

loc .perfdg.X//; U
A1

loc .perfdg.Y /// ' KH.X � Y / :

3. Applications

Our main application is the following (complete) classification result:

Theorem 3.1. Given any A1-additive invariant E, with values in HO.Sp/, one has

NatSp.KV;E/ ' E.k/ and Nat.KV;E/ ' E0.k/ ; (3.1)

where NatSp stands for the spectrum of natural transformations and Nat WD �0NatSp.
The same holds for A1-localizing invariants E when KV is replaced by KH .

Note that Theorem 3.1 provides a streamlined construction of natural transforma-
tions: given your favorite A1-additive invariant E, the choice of an element of E0.k/
gives automatically rise to a well-defined natural transformation KV ) E ! In the
particular case of periodic cyclic homology (E D HP flt) we have

Nat.KV;HP flt/ ' HP flt
0 .k/ ' HP0.k/ ' k :
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Let us denote by KV ) HP flt the natural transformation corresponding to 1 2 k

and by chA1

the composition KV ) HP flt �
) HP . Given a dg category A, we

hence obtain induced homomorphisms

chA1

n .A/ W KVn.A/ �! HPn.A/ n � 0 : (3.2)

Theorem 3.2. When A D A, with A a k-algebra, the above homomorphisms (3.2)
(with n � 1) agree with Weibel’s homotopy Chern characters [37, §5].

Theorem 3.2 provides a simple conceptual characterization of Weibel’s homo-
topy Chern characters. Intuitively speaking, these are the natural transformations
corresponding to the unit 1 of the base ring k.

Notations. Throughout the article we will work over a base commutative ring k.
We will use freely the language of Quillen model categories; see [14, 15, 26].
Given a Quillen model category M, we will write Ho.M/ for its homotopy
category. The category of simplicial sets (endowed with the classical Quillen model
structure [12]) will be denoted by sSet, the category of spectra (endowed with
Bousfield–Friedlander’s Quillen model structure [3]) will be denoted by Sp, and
the category of symmetric spectra (endowed with Hovery-Shipley-Smith’s stable
Quillen model structure [16]) will be denoted by Sp†. Finally, adjunctions will
be displayed vertically with the left (resp. right) adjoint on the left (resp. right)
hand-side.

4. Differential graded categories

Let C.k/ be the category of complexes of k-modules. A differential graded (=dg)
category A is a category enriched over C.k/. A dg functor F W A! B is a functor
enriched over C.k/; consult Keller’s ICM survey [20] for details. In what follows,
we will write dgcat for the category of (small) dg categories and dg functors.

Let A be a dg category. The category H0.A/ has the same objects as A and
H0.A/.x; y/ WD H 0A.x; y/. The opposite dg category Aop has the same objects
as A and Aop.x; y/ WD A.y; x/. A right A-module is a dg functor Aop ! Cdg.k/

with values in the dg category Cdg.k/ of complexes of k-modules. Let us write C.A/
for the category of right A-modules. As explained in [20, §3.1], the dg structure
of Cdg.k/ makes C.A/ into a dg category Cdg.A/. The derived category D.A/ of A
is the localization of C.A/ with respect to quasi-isomorphisms. Its subcategory of
compact objects will be denoted by Dc.A/.

A dg functor F W A ! B is called a Morita equivalence if the restriction
of scalars D.B/ �! D.A/ is an equivalence. As proved in [31, Theorem 5.3],
dgcat admits a Quillen model structure whose weak equivalences are the Morita
equivalences.
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The tensor product A˝B of dg categories is defined as follows: the set of objects
is the cartesian product of the sets of objects of A and B and .A˝ B/..x; w/; .y; z//
WD A.x; y/˝ B.w; z/. As explained in [20, §2.3], this construction gives rise to
symmetric monoidal categories .dgcat;�˝�; k/ and .Ho.dgcat/;�˝L �; k/.

Given dg categories A and B, an A-B-bimodule B is a dg functor B W A˝LBop !

Cdg.k/, i.e. a right .Aop ˝L B/-module. A standard example is the A-A-bimodule

A˝L Aop
�! Cdg.k/ .x; y/ 7! A.y; x/ : (4.1)

Notation 4.2. Given dg categories A and B, let rep.A;B/ be the full triangulated
subcategory of D.Aop ˝L B/ consisting of those A-B-bimodules B such that
B.x;�/ 2 Dc.B/ for every object x 2 A. In the same vein, let repdg.A;B/ be the
full dg subcategory of Cdg.Aop ˝L B/ consisting of those A-B-bimodules B which
belong to rep.A;B/. By construction, we have H0.repdg.A;B// ' rep.A;B/.

4.1. Finite dg cells. For n 2 Z, let Sn be the complex kŒn� (with k concentrated
in degree n) and Dn the mapping cone of the identity on Sn�1. Let S.n/ be the
dg category with two objects 1 and 2 such that S.n/.1; 1/ D k, S.n/.2; 2/ D k,
S.n/.2; 1/ D 0, S.n/.1; 2/ D Sn, and with composition given by multiplication.
Similarly, let D.n/ be the dg category with two objects 3 and 4 such that
D.n/.3; 3/ D k, D.n/.4; 4/ D k, D.n/.4; 3/ D 0, D.n/.3; 4/ D Dn. For n 2 Z, let
�.n/ W S.n � 1/! D.n/ be the dg functor that sends 1 to 3, 2 to 4 and Sn�1 to Dn

by the identity on k in degree n � 1 :

S.n � 1/
�.n/ // D.n/

1

k

��

Sn�1

��

� // 3

k

��

Dn

��

incl //

2

k

DD
� // 4

k

DD

where

Sn�1
incl // Dn

0 //

��

0

��
0 //

��

k
id��

k
id //

��

k

��

.degree n�1/

0 // 0

A dg category A is called a finite dg cell if the unique dg functor ; ! A (where
the empty dg category ; is the initial object in dgcat) can be expressed as a finite
composition of pushouts along the dg functors �.n/; n 2 Z, and ; ! k.

4.2. Smooth, proper, and homotopically finitely presented dg categories. Recall
from [14, Definition 17.4.1] that every Quillen model category comes equipped



A1-homotopy theory of noncommutative motives 857

with a mapping space Map.�;�/. A dg category A is called homotopically finitely
presented if for each filtered direct system fBj gj2J the induced map

hocolimj Map.A;Bj / �! Map.A; hocolimj Bj /

is a weak equivalence of simplicial sets. As proved in [30, Proposition 5.2],
the homotopically finitely presented dg categories are precisely the retracts in
the homotopy category Ho.dgcat/ of the finite dg cells. Recall from Kontsevich
[21, 22, 23] that a dg category A is called smooth if the A-A-bimodule (4.1)
belongs to Dc.Aop ˝L A/ and proper if for each pair of objects .x; y/ we haveP
i rankH iA.x; y/ < 1. The standard examples are the finite dimensional

k-algebras of finite global dimension (when k is a perfect field) and the dg categories
perfdg.X/ associated to smooth and proper k-schemes X . As proved in [4,
Proposition 5.10], every smooth and proper dg category is homotopically finitely
presented.

5. Algebraic K-theories

Let kŒt � be the k-algebra of polynomials and

� W k ,! kŒt � ev0; ev1 W kŒt �! k (5.1)

the inclusion and evaluation maps. Given a dg category A, let � W A ! AŒt � and
ev0; ev1 W AŒt �! A be the dg functors obtained by tensoring A with (5.1).

Lemma 5.1. Given a dg category A, there exists a filtered direct system of finite dg
cells fBj gj2J such that

hocolimj .Bj ! Bj Œt �/
�
�! .A! AŒt �/ : (5.2)

Proof. As proved in [5, Proposition 3.6(iii)], there exists a filtered direct system of
finite dg cells fBj gj2J such that hocolimj Bj ' A. Since the k-algebra kŒt � is k-
flat, the functor �˝kŒt � preserves filtered homotopy colimits. Hence, by combining
these two facts, we obtain the desired isomorphism (5.2).

5.1. A1-homotopization. Let M be a model category, E W dgcat !M a functor
sending Morita equivalences to weak equivalences, E W HO.dgcat/ ! HO.M/ the
associated morphism of derivators, and �n WD kŒt0; : : : ; tn�=.

Pn
iD0 ti � 1/; n � 0,

the simplicial k-algebra with faces and degenerancies given by the formulas

dr.ti / WD

8<: ti if i < r

0 if i D r

ti�1 if i > r

sr.ti / WD

8<: ti if i < r

ti C tiC1 if i D r

tiC1 if i > r

:
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Out of this data, one constructs the A1-homotopization of E:

Eh W HO.dgcat/ �! HO.M/ A 7! hocolimnE.A˝�n/ :

Note that Eh comes equipped with a 2-morphism � W E ) Eh.

Proposition 5.2. (i) The morphism Eh is A1-homotopy invariant.

(ii) When E is A1-homotopy invariant, � W E ) Eh is a 2-isomorphism.

(iii) When E is additive/localizing, Eh is also additive/localizing.

(iv) When M carries an homotopy colimit preserving symmetric monoidal struc-
ture and E is symmetric monoidal, Eh is also symmetric monoidal.

Proof. On the one hand we have ev0 ı � D id. On the other hand, the simplicial map
.kŒt �

ev0
! k

�
! kŒt �/˝�n; n � 0, is homotopic to id via the simplicial homotopy

fhj W kŒt �˝�n �! kŒt �˝�nC1g0�j�n (5.3)

that sends t 7! t .tjC1C � � � C tnC1/ and ti 7! sj .ti /. By first tensoring A with (5.3)
and then by applying the functors E W dgcat !M and hocolimn W HO.M/.�/ !

Ho.M/ (where � is the category of finite ordinal numbers with order-preserving
maps between them), we conclude that Eh.� ı ev0/ D id. This implies that the map

Eh.A/ WD hocolimnE.A˝�n/ �! hocolimnE.A˝ kŒt �˝�n/ DW Eh.AŒt �/

is an isomorphism and so item (i) is proved. Item (ii) follows from the fact that all
the maps of the simplicial object n 7! E.A ˝ �n/ are isomorphisms whenever E
is A1-homotopy invariant. In what concerns item (iii), note first that �0 ' k and
�n ' kŒt0; : : : ; tn�1� for n > 0. This implies that the k-algebras�n; n � 0, are flat.
As a consequence, we obtain well-defined morphisms of derivators

�˝�n W HO.dgcat/ �! HO.dgcat/ n � 0 : (5.4)

Thanks to Drinfeld [6, Proposition 1.6.3], these morphisms preserve (split) short
exact sequences of dg categories. Moreover, since the symmetric monoidal
structure on HO.dgcat/ is homotopy colimit preserving (see [4, Proposition 3.3]),
the morphisms (5.4) preserve also filtered homotopy colimits. These facts imply
item (iii). Finally, item (iv) follows from the following sequence of isomorphisms

Eh.A/˝Eh.B/ WD hocolimnE.A˝�n/˝ hocolimn0E.B ˝�n0/
' hocolimn;n0.E.A˝�n/˝E.B ˝�n// (5.5)

' hocolimn;n0E..A˝L B/˝ .�n ˝�n0// (5.6)

' hocolimnE.A˝L B ˝�n/ DW Eh.A˝L B/ : (5.7)
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Some explanations are in order: (5.5) follows from the assumption that the
symmetric monoidal structure on M is homotopy colimit preserving; (5.6) follows
from the fact that E is symmetric monoidal; and (5.7) follows from the cofinality of
the diagonal map �! � ��.

Remark 5.3. When M is the Quillen model category of spectra Sp, one has a
standard convergent right half-plane spectral sequence E1pq D N p�qE.A/ )
�pCqE

h.A/, where N ��qE.A/ stands for the Moore complex (see [12, III §2])
of the simplical group n 7! �qE.A˝�n/.

5.2. Karoubi–Villamayor’s K-theory. Recall from [30, Example 15.6] the con-
struction of connective algebraicK-theoryK W HO.dgcat/! HO.Sp/. This additive
invariant is induced from a functor dgcat ! Sp (sending Morita equivalences to
weak equivalences) and so thanks to Proposition 5.2 it gives rise to a well-defined
A1-additive invariant

KV WD Kh W HO.dgcat/ �! HO.Sp/ A 7! hocolimnK.A˝�n/ :

Remark 5.3 furnishes a convergent spectral sequence E1p;q D N pKq.A/ )
KVpCq.A/.

Proposition 5.4 (Agreement). When A D A, with A a k-algebra, the groups
KVn.A/; n � 1, agree with the Karoubi–Villamayor’s K-theory groups of A.

Proof. As explained in [34, IV §11], the Karoubi–Villamayor’s K-theory groups
of A can (alternatively) be defined as the homotopy groups of the 0-connected cover
KV.A/h0i ofKV.A/. Hence, the proof follows from the fact that �n.KV.A/h0i/ '
�nKV.A/ for every n � 1.

Notation 5.8. Let O be an object in a triangulated category T and l � 2 an integer.
We define the mod-l Moore object O=l of O as the cofiber of �l W O! O.

Given l � 2, consider the mod-l Karoubi–Villamayor’s algebraic K-theory

KV.�IZ=l/ W HO.dgcat/! HO.Sp/ A 7! KV.A/ ^L S=l ;

where S=l is the mod-l Moore spectrum of S. Since �^LS=l preserves direct sums,
KV.�IZ=l/ is also an A1-additive invariant. Moreover, thanks to the universal
coefficients theorem (see [34, IV §2]), we have the short exact sequence

0! KVn.A/˝Z Z=l ! KVn.AIZ=l/! fl-torsion in KVn�1.A/g ! 0 :
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5.3. Weibel’s homotopy K-theory. Recall from [30, Theorem 10.3] the con-
struction of nonconnective algebraic K-theory IK W HO.dgcat/ ! HO.Sp/.
This localizing invariant is induced from a functor dgcat ! Sp (sending Morita
equivalences to weak equivalences) and so thanks to Proposition 5.2 it gives rise to
a well-defined A1-localizing invariant

KH WD IKh W HO.dgcat/ �! HO.Sp/ A 7! hocolimn IK.A˝�n/ :

Remark 5.3 furnishes a convergent spectral sequence E1p;q D N pIKq.A/ )
KHpCq.A/. Given an integer l � 2, consider the mod-l Weibel’s homotopy
K-theory

KH.�IZ=l/ W HO.dgcat/! HO.Sp/ A 7! KH.A/ ^L S=l :

Since�^S=l preserves distinguished triangles,KH.�IZ=l/ is also an A1-localizing
invariant. As above, we have the short exact sequence

0! KHn.A/˝Z Z=l ! KHn.AIZ=l/! fl-torsion in KHn�1.A/g ! 0 :

Proposition 5.5 (Agreement). Let A be a dg category.

(i) When A D A, with A a k-algebra, KH.A/ agrees with Weibel’s homotopy
algebraic K-theory of A.

(ii) When A D perfdg.X/, with X a quasi-compact quasi-separated k-scheme,
KH.A/ agrees with Weibel’s homotopy algebraic K-theory of X .

Proof. Item (i) follows automatically from Weibel’s definition [36, Definition 1.1]
and from the natural identificationA˝�n ' �nA, where�nA is the coordinate ring
AŒt0; : : : ; tn�=

�Pn
iD0 ti � 1

�
A of “standard n-simplexes” over A. In what concerns

item (ii), we have the following weak equivalences of spectra

IK.perfdg.X/˝�n/ ' IK.perfdg.X/˝
L perfdg.Spec.�n///

' IK.perfdg.X � Spec.�n/// (5.9)

' IK.X � Spec.�n// ;

where (5.9) follows from [27, Proposition 8.2] (in loc. cit. we assumed X to be
separated; however the same result holds with X quasi-separated) since Spec.�n/ is
flat and IK is localizing. As a consequence, IKh.perfdg.X// ' hocolimn IK.X �

Spec.�n//. This latter spectrum is equivalent to the one defined by Weibel in
[36, Definition 6.5] using Čech’s cohomological descent; see Thomason–Trobaugh
[33, §9.11].
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5.4. Dwyer–Friedlander’s étale K-theory. Let l� be a prime power with l odd.
Assume that 1=l 2 k. Let K.1/ be the first Morava K-theory spectrum and
LK.1/ W HO.Sp/ ! HO.Sp/ the associated left Bousfield localization; see Mitchell
[24, §3.3]. Since LK.1/ is triangulated we have the following A1-localizing invariant

Ket .�IZ=l�/ W HO.dgcat/ �! HO.Sp/ A 7! LK.1/KH.AIZ=l�/ :

We call it the Dwyer–Friedlander étale K-theory. This is justified as follows:

Theorem 5.6 (Agreement). Let X be a quasi-compact separated k-scheme which is
regular and of finite type over ZŒ1=l�, or Q, or Fp with p ¤ l , or FpŒŒt �� with p ¤ l ,
or Fp..t// with p ¤ l , or Z^p with p ¤ l , or Q^p , or over k a separable closed field
of characteristic different from l . Under these assumptions, Ket .perfdg.X/;Z=l�/
agrees with Dwyer–Friedlander’s étale K-theory of X .

Proof. Since by assumption 1=l 2 k, one has IK.X IZ=l�/ ' KH.X IZ=l�/; see
[33, Thm. 9.5]. Hence, the proof follows from Thomason’s celebrated result [32,
Theorem 4.11]; see also [32, Remark 4.2 and §A.14].

6. Periodic cyclic homology

Recall from [4, §8-9] the construction of periodic cyclic homology

HP W HO.dgcat/
M
�! HO.C.ƒ// P

�! HO.kŒu�-Comod/
HomSp.kŒu�;�/
�! HO.Sp/ :

(6.1)
Same explanations are in order: C.ƒ/ is the Quillen model category of mixed
complexes; M is induced by the mixed complex construction; kŒu�-Comod is
the Quillen model category of kŒu�-comodules (where kŒu� is the Hopf algebra
of polynomials in one variable u of degree 2); and finally P is induced by the
perioditization construction. When applied to A, respectively to perfdg.X/, (6.1)
agrees with Goodwillie’s periodic cyclic homology of A, respectively with Weibel’s
periodic cyclic homology of X ; see Keller [20, Theorem 5.2].

Proposition 6.1. When k is a field of characteristic zero, the above morphism of
derivators HP is A1-homotopy invariant.

Proof. Kassel’s property (P) (see [17, p. 211]) is clearly verified by the k-algebras
k and kŒt �. Therefore, [17, Theorem 3.10] gives rise to the isomorphisms

HP.A˝ k/ ' HP.A/˝HP.k/ HP.A˝ kŒt �/ ' HP.A/˝HP.kŒt �/ :

This implies that (6.1) is A1-homotopy invariant if and only if HP.k/! HP.kŒt �/

is an isomorphism. Since by assumption k is a field of characteristic zero, Kassel’s
A1-homotopy invariance results (see [17, Corollary 3.12 and (3.13)]) allow us to
conclude that this is indeed the case. This achieves the proof.
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Since periodic cyclic homology is defined using infinite products, HP does not
preserve filtered homotopy colimits. The problem is that kŒu� is not a compact object
of HO.kŒu�-Comod/. As a consequence,HP is not an additive invariant. Making use
of Proposition (6.2) below we obtain nevertheless an A1-additive invariant (when k
is a field of characteristic zero)

HP flt
W HO.dgcat/ �! HO.Sp/ A 7! HP flt.A/

and a 2-morphism � W HP flt ) HP .

Proposition 6.2. Given any derivator D, one has an adjunction of categories

Hom.HO.dgcat/;D/

.�/flt

��

Homflt.HO.dgcat/;D/
?�

OO
(6.2)

Given E 2 Hom.HO.dgcat/;D/, the following holds:

(i) The evaluation of the counit 2-morphism � W Eflt ) E at every homotopically
finitely presented dg category is an isomorphism;

(ii) When E sends split short exact sequences to direct sums, Eflt is additive;

(iii) When E is A1-homotopy invariant, Eflt is also A1-homotopy invariant.

Proof. We start by constructing the right adjoint .�/flt. Recall from [30, §5] that we
have the following diagram

dgcatf ŒS�1�

h

��

i // HO.dgcat/

hvv
HO.LSFun.dgcatop

f
; sSet//

Re
66

with h ı i ' h and Re ı h ' i . Some explanations are in order: dgcatf is the
(essentially) small subcategory of dgcat obtained by stabilizing the finite dg cells
with respect to fibrant and cosimplicial cofibrant resolutions; S is the set of Morita
equivalences in dgcatf ; dgcatf ŒS�1� is the associated prederivator (see [4, §A.1]);
h is induced by the Yoneda embedding; Fun.dgcatop

f
; sSet/ is endowed with the

projective Quillen model structure and LSFun.dgcatop
f
; sSet/ is its left Bousfield

localization with respect to the image of S under h; h is fully-faithful and preserves
filtered homotopy colimits; and finally .Re; h/ is an adjunction. This latter adjunction
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gives automatically rise to the following one (with h� fully-faithful)

Hom.HO.dgcat/;D/

Re�

��
Hom.HO.LSFun.dgcatop

f
; sSet//;D/ :

h�

OO
(6.3)

Thanks to [30, Theorem 3.1], we have the induced equivalence

h� W HomŠ.HO.LSFun.dgcatop
f
; sSet//;D/

�
�! Hom.dgcatf ŒS�1�;D/ : (6.4)

Moreover, [30, Lemma 3.2] gives rise to the following adjunction

Hom.HO.LSFun.dgcatop
f
; sSet//;D/

‰

��

E 0_

��
HomŠ.HO.LSFun.dgcatop

f
; sSet//;D/

?�

OO

‰.E 0/ WD E 0 ı h ;

(6.5)

where E 0 ı h is the unique homotopy colimit preserving morphism of derivators
corresponding to E 0 ı h under the above equivalence (6.4). As proved in [30,
Theorem 5.13], we have also the following induced equivalence

h� W HomŠ.HO.LSFun.dgcatop
f
; sSet//;D/

�
�! Homflt.HO.dgcat/;D/ : (6.6)

By concatenating (6.3) with (6.5)–(6.6), one hence obtains the desired adjunc-
tion (6.2). Making use of Re ı h ' i , one observes that the right adjoint functor
.�/flt WD h� ı ‰ ı Re� sends a morphism of derivators E W HO.dgcat/ ! D to
Eflt WD E ı i ı h.

We now have all the ingredients needed for the proof of items (i)–(iii). Making
use of h ı i D h, one observes that the evaluation of the counit 2-morphism
� W Eflt ) E at every dg category A 2 dgcatf is an isomorphism. Since
the homotopically finitely presented dg categories are retracts (in the homotopy
category Ho.dgcat/) of finite dg cells, we hence obtain item (i). As proved in
[30, Proposition 13.2], every split short exact sequence of dg categories is Morita
equivalent to a filtered homotopy colimit of split short exact sequences whose
components are finite dg cells. By combining this fact with item (i) and with the
fact Eflt preserves filtered homotopy colimits, we obtain item (ii). Finally, item (iii)
follows from item (i), from the fact thatEflt preserves filtered homotopy colimts, and
from Lemma 5.1.
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7. Proof of Theorem 2.1

We will focus ourselves in the localizing case. The proof of the additive case is
similar. Recall from [30, §10] the construction of the universal localizing invariant

Uloc W HO.dgcat/ �! Motloc :

Given any triangulated derivator D, one has an induced equivalence of categories

.Uloc/
�
W HomŠ.Motloc;D/

�
�! Homloc.HO.dgcat/;D/ : (7.1)

Remark 7.1. (Quillen model) Consider the category Fun.dgcatop
f
;Sp/ endowed with

the projective Quillen model structure; recall from the proof of Proposition 6.2 the
definition of the category dgcatf . As explained in [30, §10–11], Motloc admits a
left proper cellular Quillen model MotQloc given by the left Bousfield localization
of Fun.dgcatop

f
;Sp/ with respect to a set loc of morphisms which implement the

localizing property. Moreover, Uloc is induced by the functor

dgcat �! MotQloc A 7!
�
B 7! †1.Nwrepdg.B;A/C/

�
;

where wrepdg.B;A/ stands for the category of quasi-isomorphisms of repdg.B;A/,
Nwrepdg.B;A/ for its nerve, and †1.�C/ for the suspension spectrum.

Following [4, §A.7], one can consider the left Bousfield localization of MotQloc
with respect to the following set of maps

S WD f�n.Uloc.B! BŒt �// jB finite dg cell; n � 0g ;

where � stands for desuspension. Thanks to [4, Theorem A.4 and Proposition A.6],
we obtain a well-defined triangulated derivator MotA

1

loc (admiting a Quillen model

MotA
1;Q

loc WD LS;locFun.dgcatop
f
;Sp/) as well as an adjunction

Motloc

lŠ
��

MotA
1

loc :

l�

OO

The theory of left Bousfield localization (see [4, §A.7]) implies that

.lŠ/
�
W HomŠ.MotA

1

loc;D/
�
�! HomŠ;S.Motloc;D/ ; (7.2)

where the right-hand-side denotes the category of homotopy colimit preserving
morphisms of derivators which invert the elements of S. Since Uloc preserves filtered
homotopy colimits one concludes then from Lemma 5.1 that (7.1) restricts to

.Uloc/
�
W HomŠ;S .Motloc;D/

�
�! Homloc;A1.HO.dgcat/;D/ : (7.3)

Finally, by combining (7.2)–(7.3) we obtain the desired equivalence (2.2).
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Let us now prove the second claim. Recall from [4, Theorem 8.5] that Motloc
carries an homotopy colimit preserving symmetric monoidal structure making
Uloc symmetric monoidal. Given any triangulated derivator D, endowed with an
homotopy colimit preserving symmetric monoidal structure, one has an induced
equivalence (which is a˝-enhancement of (7.1))

.Uloc/
�
W Hom˝

Š
.Motloc;D/

�
�! Hom˝loc.HO.dgcat/;D/ ; (7.4)

where the left-hand-side denotes the category of symmetric monoidal homotopy
colimit preserving morphisms of derivators and the right-hand-side the category of
symmetric monoidal A1-localizing invariants.
Remark 7.2. (Symmetric monoidal Quillen model) Recall from [4, §8.1] the
construction of the (essentially) small category dgcat˝

f
(denoted by dgcatf in loc.

cit.). This full subcategory of dgcatf is symmetric monoidal and every object of
dgcatf is Morita equivalence to an object in dgcat˝

f
. Hence, as explained in loc.

cit., LlocFun..dgcat˝
f
/op;Sp†/ (endowed with the Day convolution product) is a

symmetric monoidal Quillen model MotQ;˝loc of Motloc. Moreover, the following
functor

dgcat �! MotQ;˝loc A 7! .B 7! †1.Nwrepdg.B;A/C// ; (7.5)

with †1.�C/ taking values in symmetric spectra, is symmetric monoidal.
Let us now verify that for every noncommutative motiveN the functorN ˝L � W

MotQ;˝loc ! MotQ;˝loc sends the elements of S to S-local weak equivalences. The
category MotQ;˝loc is generated by the noncommutative motives of the form Uloc.A/,
with A a dg category, and the Day convolution product is homotopy colimit
preserving. Hence, it suffices to show that the functors Uloc.A/ ˝L � send the
elements of S to the S-local weak equivalences. This is indeed the case since

Uloc.A/˝L �n
�
Uloc.B! BŒt �/

�
' �nUloc

�
.A˝L B/! .A˝L B/Œt �

�
:

Thanks to [4, Proposition 6.6] (recall from the proof of [4, Theorem 8.5] that all
the remaining conditions of this proposition are already satisfied) we obtain a well-
defined symmetric monoidal Quillen model category MotA

1;Q;˝
loc . Consequently, [4,

Propositions A.2 and A.9] imply that MotA
1

loc carries an homotopy colimit preserving
symmetric monoidal structure, that lŠ is symmetric monoidal, and that we have an
induced equivalence

.lŠ/
�
W Hom˝

Š
.MotA

1

loc;D/
�
�! Hom˝

Š;S.Motloc;D/ : (7.6)

Since Uloc is symmetric monoidal and preserves filtered homotopy colimits one
concludes once again from Lemma 5.1 that (7.4) restricts to

.Uloc/
�
W Hom˝

Š;S.Motloc;D/
�
�! Hom˝

loc;A1.HO.dgcat/;D/ : (7.7)
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Finally, by combining (7.6)-(7.7) one obtains the desired˝-enhancement of (2.2)

.U A1

loc /
�
W Hom˝

Š
.MotA

1

loc;D/
�
�! Hom˝

loc;A1.HO.dgcat/;D/ : (7.8)

It remains only to show that the symmetric monoidal structure on MotA
1

loc is

closed. By construction, the Quillen model MotA
1;Q;˝

loc is combinatorial in the
sense of Smith, i.e. it is cofibrantly generated and the underlying category is
locally presentable. Following Rosicky [1, Proposition 6.10], we conclude that
the triangulated base category MotA

1

loc.e/ is well-generated in the sense of Neeman.
Given any noncommutative motive N , the functor �˝L N W MotA

1

loc.e/! MotA
1

loc.e/

is triangulated and preserves arbitrary coproducts. Hence, thanks to Neeman [25,
Theorem 8.4.4], it admits a right adjoint RHom.N;�/ which by definition is the
internal-Hom functor. This implies that the symmetric monoidal structure is closed.

8. Proof of Theorem 2.2

Similarly to the proof of Theorem 2.1, we will focus ourselves on the localizing case,
i.e. on the proof of weak equivalences (2.3)-(2.4). As explained in Remark 7.2, the
Quillen model MotQ;˝loc carries an homotopy colimit preserving symmetric monoidal
structure and the functor (7.5) is symmetric monoidal. Thanks to Proposition 5.2,
we obtain then a well-defined symmetric monoidal A1-localizing invariant U hloc W
HO.dgcat/ ! Motloc and a 2-morphism � W Uloc ) U hloc. Consequenty,
equivalence (7.8) gives rise to a symmetric monoidal homotopy colimit preserving
morphism U hloc W MotA

1

loc ! Motloc such that U hloc ı U
A1

loc ' U hloc. The proof of (2.3)
follows now from the following weak equivalences of spectra

HomSp.U
A1

loc .A/; U A1

loc .B// ' HomSp.Uloc.A/; .l� ı U A1

loc /.B//

' HomSp.Uloc.A/; .U hloc ı U A1

loc /.B// (8.1)

' HomSp.Uloc.A/; hocolimn Uloc.B ˝�n//
' hocolimn HomSp.Uloc.A/; Uloc.B ˝�n// (8.2)

' hocolimn IK.Aop
˝

L .B ˝�n// (8.3)

D IKh.Aop
˝

L B/ DW KH.Aop
˝

L B/ :

Some explanations are in order: (8.1) follows from isomorphism l� ' U hloc of
Lemma 8.1 below; (8.2) follows from the compactness of the noncommutative
motive Uloc.A/ (see [4, Corollary 8.7]); and (8.3) follows from the weak equivalence

HomSp.Uloc.A/; Uloc.B ˝�n// ' IKrepdg.A;B ˝�n/

(see [4, Theorem 9.2]) and from the existence of a Morita equivalence between
repdg.A;B ˝�n/ and Aop ˝L .B ˝�n/ (see [4, Lemma 5.9]).
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Lemma 8.1. The morphisms of derivators

l� W MotA
1

loc �! Motloc U hloc W MotA
1

loc �! Motloc (8.4)

are canonically isomorphic.

Proof. Consider the endomorphism L WD U hloc ı lŠ of Motloc. Thanks to equiva-
lence (7.1), the 2-morphism � W Uloc ) U hloc extends to a 2-morphism � W Id ) L.
Consider the noncommutative motive LA1

WD hocolimn Uloc.�n/ 2 Motloc. We claim
that L.�/ ' �˝L LA1

. Since these two endomorphisms preserve homotopy colimits
and Motloc is generated by the noncommutative motives of the form Uloc.A/, with A
a dg category, it suffices to show that L.Uloc.A// ' Uloc.A/ ˝L LA1

. This follows
from the isomorphisms

L.Uloc.A// ' U hloc.A/ WD hocolimnUloc.A˝�n/
' hocolimn.Uloc.A/˝L Uloc.�n//

' Uloc.A/˝L hocolimnUloc.�n/ D Uloc.A/˝L LA1

:

Under this identification, the evaluation of the 2-morphism � at the noncommutative
motive Uloc.A/ corresponds to the following composition

Uloc.A/
r
�! Uloc.A/˝L Uloc.k/

id˝�
�! Uloc.A/˝L LA1

;

where r is the right isomorphism constraint and � the canonical map. Let us now
prove that the couple .L; �/ defines a left Bousfield localization of Motloc, i.e. that
the natural transformations L� and �L are not only equal but moreover isomorphisms.
Once again, since Motloc is generated by the noncommutative motives of the form
Uloc.A/, with A a dg category, it suffices to show that the morphisms

Uloc.A/˝L LA1 r˝id
�! Uloc.A/˝L Uloc.k/˝

L LA1 id˝�˝id
�! Uloc.A/˝L LA1

˝
L LA1

Uloc.A/˝L LA1 id˝r
�! Uloc.A/˝L LA1

˝
L Uloc.k/

id˝ id˝�
�! Uloc.A/˝L LA1

˝
L LA1

are not only equal but moreover isomorphisms. The latter claim follows from the
isomorphisms �˝ id and id˝�, which in turn follows from the cofinality of the maps

�
id�0
�! ��� and �

0�id
�! ���. On the other hand, the former claim follows from

the commutativity of the following diagram

Uloc.A/˝L LA1 r˝id // Uloc.A/˝L Uloc.k/˝
L LA1 id˝�˝id// Uloc.A/˝L LA1

˝L LA1

Uloc.A/˝L LA1

id˝r
// Uloc.A/˝L LA1

˝L Uloc.k/id˝ id˝�
//

id˝� �

OO

Uloc.A/˝L LA1
˝L LA1

;
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where � is the symmetry isomorphism constraint. Now, in order to prove that the
morphisms (8.4) are isomorphic, it suffices by the general formalism of left Bousfield
localization to show the following: a morphism in Motloc becomes an isomorphism
after application of L if and only if it becomes an isomorphism after application of lŠ.
For this purpose it is enough to consider the morphisms �. Once again, since L and lŠ
are symmetric monoidal and homotopy colimit preserving, and Motloc is generated
by the noncommutative motives of the form Uloc.A/, with A a dg category, we can
restrict ourselves to the morphism lŠ.Uloc.k/! hocolimn Uloc.�n//. This is clearly
an isomorphism since U A1

loc D lŠ ı Uloc is A1-homotopy invariant.

Let us now prove the weak equivalence (2.4). Consider the distinguished triangle

�U A1

loc .A/ �! lnU A1

loc .A/ �! U A1

loc .A/
�l
�! U A1

loc .A/ :

By applying to it the contravariant functor HomSp.�; U
A1

loc .B// and using the weak
equivalence (2.3), we obtain the following distinguished triangle of spectra

KH.Aop ˝L B/ �l! KH.Aop ˝L B/! HomSp.lnU
A1

loc .A/; U A1

loc .B//! †KH.Aop ˝L B/ :

This triangle implies that HomSp.lnU
A1

loc .A/; U A1

loc .B// is the mod-l Moore object of
KH.Aop ˝L B/. Now, recall from §5.3 that KH.Aop ˝L BIZ=l/ is defined as

K.Aop ˝L B/ ^L S=l . Using the distinguished triangle S
�l
! S! S=l ! †S, we

conclude thatKH.Aop˝LBIZ=l/ is also the mod-l Moore object ofKH.Aop ˝L B/.
This achieves the proof of Theorem 2.2.

9. Proof of Corollary 2.3

Recall from §4.2 that since by assumption X is a smooth proper k-scheme, the dg
category perfdg.X/ is smooth and proper. Hence, Theorem 2.2 (with A D perfdg.X/
and B D perfdg.Y /) gives rise to the weak equivalence

HomSp.U
A1

loc .perfdg.X//; U
A1

loc .perfdg.Y /// ' KH.perfdg.X/
op
˝

L perfdg.Y // :

Thanks to [27, Proposition 8.2]1 (with E D KH ) and the Morita equivalence
perfdg.X/

op ' perfdg.X/, one concludes that the right-hand-side identifies with
KH.perfdg.X � Y //. The proof follows now from Proposition 5.5 (ii).

1In loc. cit. we assumed X and Y to be separated. However, the same result holds with X and Y
quasi-separated.
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10. Proof of Theorem 3.1

Let KV ;E W MotA
1

add ! HO.Sp/ be the homotopy colimit preserving morphisms of
derivators associated to KV;E under equivalence (2.1). Note that NatSp.KV;E/ '
NatSp.KV ;E/. Now, consider the following sequence of weak equivalences

NatSp.KV ;E/ ' NatSp.HomSp.U
A1

add.k/;�/; E/ ' E.k/ ' E.k/ :

The first one follows from Theorem 2.2 (with A D k), the second one follows from
the Sp-enriched Yoneda lemma, and the third one follows from E ı U A1

loc ' E. This
implies the left-hand-side of (3.1). The right-hand-side is obtained by applying the
functor �0.�/. Finally, the proof of the localizing case is similar.

11. Proof of Theorem 3.2

Let ch.A/ W K.A/ ! HP.A/ be the classical Chern character from the algebraic
K-theory of A to the periodic cyclic homology of A. Consider the induced map

hocolimn.K.�nA/
ch.�nA/
�! HP.�nA// ; (11.1)

where �nA WD AŒt0; : : : ; tn�=.
Pn
iD0 ti � 1/A. As explained in the proof of

Proposition 5.5(i), the left-hand-side of (11.1) identifies with KV.A/. On the
other hand, since HP is A1-homotopy invariant, the right-hand-side identifies with
HP.A/. Weibel’s homotopy Chern characters KVn.A/ ! HPn.A/; n � 1, are
obtained from (11.1) by applying the (stable) homotopy group functors �n.�/,
n � 1; see [37, §5].

Now, consider the following commutative diagram

HO.dgcat/

Uadd
��

UA1

add

��

HP flt
// HO.Sp/

Motadd HP flt

::

lŠ
��

MotA
1

add

HP flt

DD

;

(11.2)

where HP flt and HP flt are the homotopy colimit preserving morphism of derivators
induced from (the additive version of) (7.1) and (2.1), respectively. Note that the
composition chA1

.A/ W KV.A/! HP flt.A/ �
! HP.A/ identifies with

HomSp.U
A1

add.k/; U
A1

add.A//! HomSp.HP.k/;HP
flt.A//! HomSp.HP.k/;HP.A// ;



870 G. Tabuada

where the left-hand-side map is induced byHP flt and the right-hand-side one by the
counit 2-morphism �. Since MotA

1

add is a left Bousfield localization of Motadd, we
have by adjunction and compactness of Uadd.k/ the following weak equivalences

HomSp.U
A1

add.k/; U
A1

add.A// ' HomSp.Uadd.k/; hocolimnUadd.A˝�n//
' hocolimnHomSp.Uadd.k/; Uadd.A˝�n// :

On the other hand, since HP flt and HP are A1-homotopy invariant, we have

HomSp.HP.k/;HP
flt.A// ' hocolimnHomSp.HP.k/;HP

flt.A˝�n//
HomSp.HP.k/;HP.A// ' hocolimnHomSp.HP.k/;HP.A˝�n// :

As a consequence, chA1

.A/ identifies with

hocolimn.HomSp.Uadd.k/; Uadd.A˝�n//! HomSp.HP.k/;HP.A˝�n/// ;
(11.3)

where the maps are now induced byHP flt and �. Let us now prove that (11.3)=(11.1)
when A D A. This clearly achieves the proof. In order to do so, consider the
following commutative diagram

HO.dgcat/

Uadd
��

PıM // HO.kŒu�-Comod/
HomSp.kŒu�;�/ // HO.Sp/

Motadd
PıM

44

;

where P ıM is the homotopy colimit preserving morphism of derivators induced
from (the additive version of) (7.1). Recall from §6 that the upper horizontal
composition is HP . Given a dg category A, consider the composition of the map

HomSp.Uadd.k/; Uadd.A˝�n// �! HomSp.kŒu�; .P ıM/.A˝�n// (11.4)

induced by P ıM with the map

HomSp.kŒu�; .P ıM/.A˝�n// �! HomSp.HP.k/;HP.A˝�n// (11.5)

induced by HomSp.kŒu�;�/. As proved in [28, Theorem 2.8] [29, §5], the
composition (11.5) ı (11.4) agrees with the Chern character ch.�nA/ W K.�nA/!
HP.�nA/ when A D A. Hence, in order to prove the equality (11.3)=(11.1), it
suffices to show that the following diagram is commutative (up to weak equivalence)

HomSp.Uadd.k/; Uadd.A˝�n//

��

(11.4) // HomSp.kŒu�; .P ıM/.A˝�n//

(11.5)
��

HomSp.HP.k/;HP
flt.A˝�n// // HomSp.HP.k/;HP.B ˝�n// ;

(11.6)
where the left vertical map is induced by HP f and the bottom horizontal map by �.
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Let us assume first thatA is homotopically finitely presented. Since the k-algebra�n
(considered as a dg category) is clearly homotopically finitely presented, A ˝ �n
is also homotopically finitely presented; see [4, Theorem 4.4]. Hence, thanks to
Proposition 6.2 (i), the bottom horizontal map is an isomorphism. We now claim
that, via the adjunction (11.7) below, we have a 2-isomorphism

‰.HomSp.kŒu�;�/ ı P ıM/ ' HP flt :

Thanks to equivalence (11.9) and adjunction (11.10), this follows from the fact
that HomSp.kŒu�;�/ ı P ıM and HP flt agree with HP when precomposed with
h W dgcatf ŒS�1� ! Motadd and from the fact that HP flt is homotopy colimit
preserving. Making use of Proposition 11.1, we then conclude that (11.6) is
commutative. Let us now assume that A is an arbitrary dg category. As proved
in [5, Proposition 3.6 (iii)], there exists a filtered direct system of finite dg cells
fBj gj2J such that hocolimjBj ' A. Consequently, we have the weak equivalences

HomSp.Uadd.k/; Uadd.A˝�n// ' HomSp.Uadd.k/; Uadd.hocolimjBj ˝�n//
' HomSp.Uadd.k/; hocolimjUadd.Bj ˝�n//
' hocolimjHomSp.Uadd.k/; Uadd.Bj ˝�n// :

Therefore, in order to prove that (11.6) is commutative, it suffices to show that its
precomposition with the maps

HomSp.Uadd.k/; Uadd.Bj ˝�n// �! HomSp.Uadd.k/; Uadd.A˝�n//; j 2 J

is commutative. This follows automatically from the functoriality of diagram (11.6)
on A and from the previous case.

Proposition 11.1. Given any triangulated derivator D, one has an adjunction

Hom.Motadd;D/

‰

��

HomŠ.Motadd;D/
?�

OO
(11.7)

Given E 0 2 Hom.Motadd;D/, the evaluation of the counit 2-morphism ‰.E 0/) E 0

at every homotopically finitely presented dg category is an isomorphism.

Proof. Recall first from (the additive version of) Remark 7.1 that Motadd admits
a Quillen model MotQadd given by LaddFun.dgcatop

f
;Sp/, where add is a set of

morphisms implementing the additive property. When D is a triangulated derivator,
the equivalence (6.4) (with sSet replaced by Sp)

h� W HomŠ.HO.LSFun.dgcatop
f
;Sp//;D/

�
�! Hom.dgcatf ŒS�1�;D/ (11.8)
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holds also; see [30, Theorem 3.1 and §8]. By further localizing LSFun.dgcatop
f
;Sp/

with respect to add, we obtain the Quillen model MotQadd. Since every split short
exact sequence of dg categories is Morita equivalent to a filtered homotopy colimit
of split short exact sequences whose components are finite dg cells (see [30,
Proposition 13.2]), (11.8) give then rise to the following equivalence

h� W HomŠ.Motadd;D/
�
�! Homsses.dgcatf ŒS

�1�;D/ ; (11.9)

where the right-hand-side denotes the category of morphisms of derivators that send
split short exact sequences of dg categories to direct sums. As in (6.5), we obtain
then the following adjunction

Hom.Motadd;D/

‰

��

E 0_

��
HomŠ.Motadd;D/

?�

OO

‰.E 0/ WD E 0 ı h ;

(11.10)

where E 0 ı h is the unique homotopy colimit preserving morphism of derivators
corresponding to E 0 ı h under the above equivalence (11.9). This establishes the
desired adjunction (11.7). The second claim is now clear from the construction of
the right adjoint ‰ and from the fact that every homotopically finitely presented dg
category is a retract (in the homotopy category Ho.dgcat/) of a finite dg cell.
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