
J. Noncommut. Geom. 9 (2015), 877–937
DOI 10.4171/JNCG/211

Journal of Noncommutative Geometry
© European Mathematical Society

Multiplicative structures on the twisted equivariant K-theory of
finite groups
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Abstract. Let K be a finite group and let G be a finite group acting on K by automorphisms.
In this paper we study two different but intimately related subjects: on the one side we classify
all possible multiplicative and associative structures with which one can endow the twisted
G-equivariant K-theory of K, and on the other, we classify all possible monoidal structures
with which one can endow the category of twisted and G-equivariant bundles over K. We
achieve this classification by encoding the relevant information in the cochains of a sub double
complex of the double bar resolution associated to the semi-direct product K o G; we use
known calculations of the cohomology of K, G and K o G to produce concrete examples of
our classification.

In the case in whichK D G andG acts by conjugation, the multiplication mapGoG ! G

is a homomorphism of groups and we define a shuffle homomorphism which realizes this map
at the homological level. We show that the categorical information that defines the Twisted
Drinfeld Double can be realized as the dual of the shuffle homomorphism applied to any 3-
cocycle of G. We use the pullback of the multiplication map in cohomology to classify the
possible ring structures that the Grothendieck ring of representations of the Twisted Drinfeld
Double may have, and we include concrete examples of this procedure.
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1. Introduction

The purpose of this work is to investigate a relationship existing among certain tensor
categories attached to a semi-direct product of groups (they include the Twisted
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Drinfeld Double of a discrete group), their fusion algebras and the cohomology
groups of the semi-direct product. These tensor categories, as well as some of
our results, are closely related to abelian extensions of Hopf algebras and the
cohomological description of Opext.CG ;CF /) given by Kac in [12], cf. [14].

The abelian extension theory of Hopf algebras was generalized to coquasi-Hopf
algebras by Masuoka in [15]. Some of our results and constructions can be framed
in the abelian extension theory of coquasi-Hopf algebras in the particular case where
the matched pair of groups is a semi-direct product. However, our approach to
these tensor categories does not follow Masuoka’s point of view, instead we use
the concept of pseudomonoids in a suitable 2-monoidal 2-category associated to a
group. There are some reasons why we prefer to use the pseudomonoid approach:
First, it exhibits more clearly the relationship between the cohomology of semi-direct
products and the multiplicative structures of theG-equivariant twistedK-theory of a
finite group K. Second, some terms of a spectral sequence associated to the double
complex have a direct interpretation in terms of obstructions and classification of
the possible pseudomonoid structures. Third, some of our constructions and results
make sense in categories different from the category of sets; in particular, if we
change to the Cartesian categories of locally compact topological spaces and change
discrete group cohomology to the Borel-Moore cohomology [16], we have a more
general theory where the categories of coquasi-Hopf algebras may not capture all the
desired information.

There are two main reasons for our interest in the fusion algebra of the tensor
categories defined in this paper. On the one side, semisimple tensor categories can
be encoded in a combinatorial structure divided in two parts: the fusion algebra (or
the Gorthendick ring of the tensor category) and some non-abelian cohomological
information provided by the F -matrices of the 6j -symbols (see [18]). And on the
other, these fusion algebras are generalizations of !K.ŒG=G�/, the w-twisted stringy
K-theory of the groupoid ŒG=G� (see [19]).

In the case that the semi-direct product is finite, the associated tensor categories
are fusion categories, and they belong to a bigger family of fusion categories called
group-theoretical fusion categories for which many interesting results have been
established cf. [9, 17]. Since an explicit description of the fusion rules of the
tensor categories studied in this paper, via induction and restriction of projective
representations of certain subgroups of G already appear in [20, Theorem 4.8],
our approach focuses in determining the number of fusion category and fusion
algebra structures associated to a fixed semi-direct product. We accomplish this
task in several steps. First, we show that the information encoding a pseudomonoid
with strict unit in the 2-category of G-sets with twists over the group K is
equivalent to a 3-cocycle in Z3.Tot�.A�;�.K oG;T///, where the double complex
A�;�.K o G;T/ is the sub double complex without the 0-th row of the double bar
resolution C �;�.K oG;T/ and whose total cohomology calculates the cohomology
of K o G. Second, we show that the information encoded in a pseudomonoid with
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strict unit in the 2-category of G-sets with twists K, is precisely the information
required to endow the category BunG.K/ of projective G-equivariant complex
vector bundles with a monoidal structure; hence the isomorphism classes of bundles
Groth.BunG.K// becomes a fusion algebra, and this fusion algebra structure could
be alternatively understood as a twisted G-equivariant K-theory ring of K. Third,
we construct the twisted G-equivariant K-theory of the group K and we show the
conditions under which this group could be endowed with a multiplicative structure
making it a ring; we define the group of multiplicative structures byMSG.K/ and we
show that this group could be calculated by the use of a spectral sequence associated
to the complex Tot�.A�;�.K o G;T//. We study the canonical homomorphism

H 3.Tot�.A�;�.K o G;T///
�
! MSG.K/ and we give an explicit description of

its kernel and its cokernel; a multiplicative structure on MSG.K/ not appearing in
the image of �, endows the twistedG-equivariant K-theory ofK with a ring structure
which is not the fusion algebra of any tensor category of the formBunG.K/, in other
words, it is an algebra structure which is not possible to categorize.

Of particular interest is the case in which G D K and G acts on itself by
conjugation. In this case, the cohomological information which was used in [7] to
define the Twisted Drinfeld DoubleDw.G/ for w 2 Z3.G;T/ defines an element in
Z3.Tot�.A�;�.G o G;T///. The formulæ defining this 3-cocycle were reminiscent
of the formulæ appearing in [8, Theorem 5.2] on the proof of the Eilenberg–
Zilber theorem, and we conjectured that there had to exist a way to define for
any cocycle in Zn.G;T/ a n-cocycle in Zn.Tot�.A�;�.G o G;T/// having similar
properties as the ones defined for n D 3. We show in this paper that indeed this
is the case and its proof is based on two facts: first that the multiplication map
� W G o G ! G, �.k; g/ D kg is a homomorphism of groups, and second,
on a construction of an explicit Shuffle homomorphism at the chain level, whose
dual �_ W C �.G;T/ ! Tot�.C �;�.G o G;T// applied to w recovers the cocycle
defined in [7], and moreover that in cohomology equals the pullback of �, i.e.
�� D �� W H�.G;T/ ! H�.G o G;T/: Since the group G o G is isomorphic

to the product G �G we get that the map H 3.Tot�.A�;�.G oG;T///
�
!MSG.G/

is surjective, and since we know that the cohomology class of the 3-cocycle that
is defined in [7] could be recovered from the cohomology class of ��w, we give
a simple procedure to determine the fusion algebras of Rep.Dw.G// which are
isomorphic to the G-equivariant K-theory ring KUG.G/; at the end of this work
this procedure is exemplified in some interesting cases.

This paper is organized as follows. In Section 2 we provide background
material on the semi-direct products and the double bar complex associated to
its cohomology. In Section 3 the Shuffle homomorphism of a trivializable semi-
direct product is defined and some of its properties are shown. In Section 4 the
2-monoidal 2-category of twisted G-sets with strict unit and the 2-category of
pseudomonoids in this 2-category are defined and described using the complex
Tot�.A�;�.KoG;T//. In Section 5 the tensor category of equivariant vector bundles
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over a group, tensor functors and monoidal natural isomorphism associated to the 2-
category of pseudomonoids in the 2-category of twisted G-sets with strict unit are
defined. In Section 6 the obstruction to the existence of multiplicative structures
over the twisted G-equivariant K-theory of a groupK is described using the spectral
sequence associated to the filtration F r WD A�;�>r of the double complex A�;�. In
Section 7 several concrete examples are completely calculated. We finish with an
appendix in Section A in which we give the explicit relation of our tensor categories
with coquasi-bialgebras.

2. Preliminaries

2.1. Semi-direct products. Let K be a discrete group endowed with an action
of the discrete group G defined through a homomorphism � W G ! Aut.K/; for
simplicity, for g 2 G and k 2 K denote the action by g.k/ WD �.g/.k/. Denote by
KoG the group defined by the semi-direct product ofG withK; as a setKoG WD
K �G and the product structure is defined by .a; g/.b; h/ WD .a g.b/; gh/.

The group K oG fits in the short exact sequence

1! K ! K oG
�2
! G ! 1 (2.1)

and we say that K oG is isomorphic to another split extension

1! K ! E
p
! G ! 1

whenever there is an isomorphism  W K oG
Š
! E such that �2 D p ı  .

Recall that Inn.K/ is the group of inner automorphisms of the group K, i.e.
the automorphisms of K induced by conjugation, and that it fits in the short exact
sequences

1! Z.K/! K
�
! Inn.K/! 1

1! Inn.K/! Aut.K/! Out.K/! 1

where Z.K/ denotes the center of K and Out.K/ denotes the group of outer
automorphisms of K.
Proposition 2.1. The exact sequence (2.1) of the semi-direct product K o G is
isomorphic to the trivial exact sequence of the product K � G if and only if the
image of � is in Inn.K/, and there is a homomorphism � W G ! K such that the
following diagram commutes

G

� ##

� // K

�{{
Inn.K/

where the action of G on K is given by the inner automorphisms defined by �.
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Example 2.2. LetK D G and consider the conjugation action ofK on itself. In this
case � D � and we can take � D IdK . Therefore the map

� W K oK ! K; .a; g/ 7! ag

is a homomorphism of groups and

� � �2 W K oK ! K �K; .a; g/ 7! .ag; g/

is an isomorphism.

Remark 2.3. Note that whenever we have a homomorphism � W G ! K such that
� D � ı � then the map

� W K oG ! K; .k; g/ 7! k�.g/

becomes a group homomorphism. Moreover, the map

K oG ! K oK; .k; g/ 7! .k; �.g//

is a homomorphism of groups.

2.2. Bar resolution. Let us find an explicit model for the homology of the group
K o G. For this, let us first setup the notation for the explicit model for the bar
resolution that we will use.

Take H a discrete group and define the complex C�.EH;Z/ with

Cn.EH;Z/ WD ZH˝nC1

and with differential @H W Cn.EH;Z/ ! Cn�1.EH;Z/ defined by the equation on
generators

@H .h1; h2; : : : ; hnC1/ D .h2; h3; : : : ; hnC1/C

nX
iD1

.�1/i .h1; : : : ; hihiC1; : : : ; hnC1/:

The complex .C�.EH;Z/; @H / becomes a complex in the category of ZH -modules
if we endow each Cn.EH;Z/ with the left ZH -module structure defined by the
equation

h � .h1; : : : ; hnC1/ WD .h1; : : : ; hnC1h
�1/:

The augmentation map

� W C0.EH;Z/! Z; �.h/ D 1

is a map of ZH -modules and the complexC�.EH;Z/ becomes a ZH -free resolution
of the trivial ZH -module Z,

� W C�.EH;Z/! Z:
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The elements
.h1; h2; : : : ; hn; 1/

generate the ZH -module Cn.EH;Z/ and therefore we could write them using the
“bar notation”

Œh1jh2j : : : jhn� WD .h1; h2; : : : ; hn; 1/I

the differential @H in this base becomes

@H Œh1jh2 : : : jhn� D Œh2jh3j : : : jhn�C

nX
iD1

.�1/i Œh1j : : : jhihiC1j : : : jhn�

C .�1/nC1h�1n � Œh1j : : : jhn�1�:

For a left ZH -module W , the homology groups of H with coefficients in W are
defined as

H�.H;W / WD H�.C�.EH;Z/˝ZH W /

and the cohomology groups of H with coefficients in W as

H�.H;W / WD H�.HomZH .C�.EH;Z/;W //:

Since we have a canonical isomorphism of Z-modules

HomZH .Cn.EH;Z/;W / Š Maps.Hn; W /;

the cohomological differential ıH in terms of the bar notation becomes

.ıHf /Œh1jh2 : : : jhn� D f Œh2jh3j : : : jhn�C

nX
iD1

.�1/if Œh1j : : : jhihiC1j : : : jhn�

C .�1/nC1h�1n � f Œh1j : : : jhn�1�:

2.3. Cohomology of K oG. Consider the double complex

C�.EG;Z/˝Z C�.EK;Z/

with differentials @G ˝ 1 and 1 ˝ @K . Denote by .g1; : : : ; gpC1jjk1; : : : ; kqC1/ a
generator in Cp.EG;Z/˝Z Cq.EK;Z/ and define the action of .k; g/ 2 K oG by
the equation

.k; g/�.g1; : : : ; gpC1jjk1; : : : ; kqC1/ WD .g1; : : : ; gpC1g
�1
jjg.k1/; : : : ; g.kqC1/k

�1/:

A straightforward computation shows that indeed it is an action and therefore
Cp.EG;Z/˝ZCq.EK;Z/ becomes a free Z.KoG/-module. Since the differentials
@G ˝ 1 and 1 ˝ @K are also maps of Z.K o G/-modules, we could take the total
complex

Tot�.C�.EG;Z/˝Z C�.EK;Z//
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whose degree n-component is

Totn.C�.EG;Z/˝Z C�.EK;Z// WD
M

pCqDn

Cp.EG;Z/˝Z Cq.EK;Z/

and whose differential is
@G ˝ 1˚ .�1/

p1˝ @K

thus obtaining a free Z.K o G/ complex. Since the homology of the total complex
of this double complex is just Z in degree 0,

H�.Tot�.C�.EG;Z/˝Z C�.EK;Z//; @G ˝ 1˚ .�1/p1˝ @K/ D Z;

we have that
Tot�.C�.EG;Z/˝Z C�.EK;Z//

�˝�
�! Z

is a free Z.K oG/ resolution of Z.
Making use of the bar notation we take the elements

Œg1j : : : jgpjjk1j : : : jkq� WD .g1; : : : ; gp; 1jjk1; : : : ; kq; 1/

as a set of generators of Cp.EG;Z/˝Z Cq.EK;Z/ as a Z.K oG/-module; in this
base we have the equality

.g1; : : : ; gp; gjjk1; : : : ; kq; k/ D .k
�1; g�1/ � Œg1j : : : jgpjjg.k1/j : : : jg.kq/�:

This choice of base provides us with an isomorphism of Z-modules

HomZ.KoG/.Cp.EG;Z/˝Z Cq.EK;Z/;Z/ Š Maps.Gp �Kq;Z/

that allows us to transport the dual of the differentials @G ˝ 1 and 1 ˝ @K to
Maps.Gp�Kq;Z/; the induced differentials will be denote by ıG and ıK . Therefore
we obtain:
Definition 2.4. Let C

p;q
.K oG;Z/, p; q � 0, be the double complex

C
p;q
.K oG;Z/ WD Maps.Gp �Kq;Z/

with differentials ıG W C
p;q
! C

pC1;q
and ıK W C

p;q
! C

p;qC1
defined by the

equations

.ıGF /Œg1j : : : jgpC1jjk1j : : : jkq� D F Œg2j : : : jgpC1jjk1j : : : jkq�

C

pX
iD1

.�1/iF Œg1j : : : jgigiC1j : : : jgpC1jjk1j : : : jkq�

C .�1/pC1F Œg1j : : : jgpjjgpC1.k1/j : : : jgpC1.kq/�

.ıKF /Œg1j : : : jgpjjk1j : : : jkqC1� D F Œg1j : : : jgpjjk2j : : : jkqC1�

C

qX
jD1

.�1/jF Œg1j : : : jgpjjk1j : : : jkjkjC1j : : : jkqC1�

C .�1/qC1F Œg1j : : : jgpjjk1j : : : jkq�;

where by convention G0 �K0 is the set with one point.
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Hence we have

Lemma 2.5. The cohomology of the total complex of the double complexC
�;�
.K oG;

Z/; ıG ; ıK is the cohomology of the group K oG, i.e.

H�
�

Tot�.C
�;�
.K oG;Z//; ıG ˚ .�1/pıK

�
Š H�.K oG;Z/:

We can take a smaller double complex, more suited for our work, which is called
the normalized double complex. Let us define it

Definition 2.6. The normalized double complex of C
�;�
.K o G;Z/; ıG ; ıK is the

double complex
Cp;q.K oG;Z/ � Cp;q.K oG;Z/

consisting of maps F W Gp � Kq ! Z such that F Œg1j : : : jgpjjk1j::jkq� D 1

whenever gi D 1 or kj D 1. The differentials on Cp;q are also ıG and ıK . We setup
C 0;0 D Z.

It is known in homological algebra that the normalized complex of the bar
resolution is quasi-isomorphic to the bar resolution (see page 215 in [10]). Therefore
we have

Lemma 2.7. The induced map on total complexes

Tot�.C �;�.K oG;Z//! Tot�.C
�;�
.K oG;Z//

is a quasi-isomorphism. Then

H�
�
Tot�.C �;�.K oG;Z//; ıG ˚ .�1/pıK

�
Š H�.K oG;Z/:

We can generalize our definition of the double complex to other coefficients.
Denote by T the group S1 and consider the exact sequence of coefficients

0 �! Z �! R �! T �! 0:

We will denote the complex Cp;q.K oG;T/ as the complex generated by maps
F W Gp � Kq ! T on which F is 1 if one of the entries is the identity, and the
differentials ıG and ıK are the same ones as Definition 2.4 but changing the sums by
multiplications. Note also that we set up C 0;0.K oG;T/ WD T.

Then

H�
�

Tot�.C �;�.K oG;T//; ıG ˚ ı.�1/
p

K

�
Š H�.K oG;T/:

2.3.1. Decomposition of the cohomology of K oG. Note that the 0-th row of the
double complex is isomorphic to the normalized bar cochain complex of G

.C �;0.K oG;Z/; ıG/ Š .C �.G;Z/; ıG/;

and the action of the differential ıK on this row is trivial. Therefore, if we define
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Definition 2.8. Let

A�;�.K oG;Z/ WD C �;�>0.K oG;Z/

be the sub double complex of C �;�.KoG;Z/ with trivial 0-th row, and differentials
ıG and ıK .

Then we obtain

Lemma 2.9. There is a canonical isomorphism of double complexes

.C �;�.K oG;Z/; ıG ˚ .�1/pıK/
Š .A�;�.K oG;Z/; ıG ˚ .�1/pıK/˚ .C �.G;Z/; ıG/;

which induces a canonical isomorphism in cohomology

H�.K oG;Z/ Š H�.Tot�.A�;�.K oG;Z///˚H�.G;Z/;

and the respective one with coefficients in T,

H�.K oG;T/ Š H�.Tot�.A�;�.K oG;T///˚H�.G;T/

where A�;�.K oG;T/ D C �;�>0.K oG;T/.

3. The case of the trivializable semi-direct product K oG

Whenever the semi-direct product K o G is isomorphic to K � G we know by
Proposition 2.1 and Remark 2.3 that there exists a homomorphism � W G ! K such
that K o G ! K o K; .k; g/ 7! .k; �.g// is a homomorphism of groups. In this
case we have the homomorphisms

K oG ! K oK
�
! K; .k; g/ 7! .k; �.g// 7! k�.g/

which induce the following homomorphism at the level of their homologies

H�.K oG;Z/! H�.K oK;Z/
��
! H�.K;Z/:

Since the interesting information lies on the homomorphism �� we will investigate
its properties.

3.1. The Shuffle homomorphism. In what follows we will describe how to obtain
the map �� at the chain level using the explicit models for H�.K o K;Z/ and
H�.K;Z/ defined previously. Its definition needs some preparation.
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Take a base element Œg1j : : : jgpjjk1j : : : jkq� in Cp.EK;Z/ ˝Z Cq.EK;Z/ and
think of it as a way to represent�p��q as the product of the simplices Œg1j : : : jgp��
Œk1j : : : jkq� in BK. For � 2 Shuff.p; q/ a .p; q/-shuffle, i.e. an element in the
symmetric group SpCq such that �.i/ < �.j / whenever 1 � i < j � p or
p C 1 � i < j � p C q, we can define an element

�Œg1j : : : jgpjk1j : : : jkq� 2 CpCq.EK;Z/

such that �Œg1j : : : jgpjk1j : : : jkq� WD Œs1j : : : jspCq� with

s�.i/ D

�
gi if i � p

gpC�.i/�iC1 : : : gp�1gpki�p.gpC�.i/�iC1 : : : gp�1gp/
�1 if i > p:

From the Eilenberg–Zilber theorem it follows that the set

f�Œg1j : : : jgpjk1j : : : jkq�W� 2 Shuff.p; q/g

is a subdivision in simplices of dimension p C q of the product of the simplices
Œg1j : : : jgp� � Œk1j : : : jkq�.

An equivalent way to see the elements �Œg1j : : : jgpjk1j : : : jkq� is the following:
a .p; q/-shuffle can also be understood as a way to parameterize a lattice path of
minimum distance from the point .0; 0/ to the point .p; q/; one moves one unit to the
right in the steps �.1/; : : : ; �.p/ and one unit up in the steps �.pC1/; : : : ; �.pCq/.
We label the horizontal and vertical edges in the rectangular lattice defined by the
points .0; 0/; .p; 0/; .p; q/; .0; q/ by the following rule:

� The horizontal path between .i � 1; j / and .i; j / is labeled with gi indepen-
dent of j .

� The vertical path between .p; j � 1/ and .p; j / is labeled with kj and all
the other vertical paths are labeled in such a way that the squares become
commutative squares (when thinking of the labels as maps). This implies that
the vertical edge from .i; j � 1/ to .i; j / is labeled with

giC1 : : : gp�1gpkj .giC1 : : : gp�1gp/
�1:

Since � parameterizes a path in the lattice, the element �Œg1j : : : jgpjk1j : : : jkq�
encodes the labels that the path � follow in order to go from .0; 0/ to .p; q/.

We can now define the map of complexes which in homology realizes ��:
Definition 3.1. Let

� W Cp.EK;Z/˝Z Cq.EK;Z/! CpCq.EK;Z/

be the graded homomorphism defined on generators by the equation

�.g1; : : : gp; gjjk1; : : : ; kq; k/

WD

X
�2Shuff.p;q/

.gk/�1 � .�1/j�j�Œg1j : : : jgpjgk1g
�1
j : : : jgkqg

�1�
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where j�j denotes the sign of the permutation �. This is usually called the Shuffle
homomorphism.

We claim that the Shuffle homomorphism � is an admissible product in the sense
described in [6, IV-55, p. 118]

Theorem 3.2. The graded homomorphism

� W Tot�.C�.EK;Z/˝Z C�.EK;Z//! C�.EK;Z/

is a chain map that satisfies the equations

�
�
.a�1; h�1/ � .g1; : : : gp; gjjk1; : : : ; kq; k/

�
D .ha/�1 � �.g1; : : : gp; gjjk1; : : : ; kq; k/

.� ˝ �/.k; g/ D �.kg/:

Hence it induces a graded homomorphism in homology

�� W H�.K oK;Z/! H�.K;Z/

which is equal to the one induced by the pushforward ��.

Proof. A routine calculation shows that the equations above are satisfied. The proof
of the fact that � is a chain map, namely that

@K ı � D � ı .@K ˝ 1C .�1/
p1˝ @K/;

is essentially included in the proof of [8, Theorem 5.2]; the decomposition in
simplices of dimension p C q of the product of the simplices Œg1j : : : jgp� �
Œk1j : : : jkq� in BK is done by choosing appropriately p C q edges with the use
of the .p; q/-shuffles as follows

�Œg1j : : : jgpjjk1j : : : jkq� D
X

�2Shuff.p;q/

.�1/��Œg1j : : : jgpjk1j : : : jkq�:

With this decomposition of Œg1j : : : jgp� � Œk1j : : : jkq�, its boundary can be
calculated as .@K � 1 C .�1/p1 � @K/Œg1j : : : jgp� � Œk1j : : : jkq� or alternatively
as @K.�Œg1j : : : jgpjjk1j : : : jkq�/; then it follows that � is a chain map.

Now, since � is a chain map which preserves the module structures, then it
induces a chain map at the level of the coinvariants

Tot�.C�.EK;Z/˝Z C�.EK;Z//˝Z.KoK/ Z! C�.EK;Z/˝ZK Z

which defines a homomorphism

�� W H�.K oK;Z/! H�.K;Z/:

This homomorphism �� must be equal to the pushforward �� since � preserves the
module structures defined by �.
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If we have a homomorphism of groups � W G ! K for which the map  W K o
G
Š
! K � G; .k; g/ 7! .k; �.g// induces an isomorphism of semi-direct products,

then we have that the map

� ı .� ˝ 1/ W Cp.EG;Z/˝Z Cq.EK;Z/! CpCq.EK;Z/
Œg1j : : : jgpjjk1j : : : jkq� 7! �Œ�.g1/j : : : j�.gp/jjk1j : : : jkq�

induces a chain map

� ı .� ˝ 1/ W Tot�.C�.EG;Z/˝Z C�.EK;Z//! C�.EK;Z/

preserving their respective module structures, and hence inducing a homomorphism

.� ı .� ˝ 1//� W H�.K oG;Z/! H�.K;Z/

which is equal to the pushforward map of the composition � ı  ; i.e.

.� ı  /� D .� ı .� ˝ 1//� W H�.K oG;Z/! H�.K;Z/:

3.2. The dual of the Shuffle homomorphism. Dualizing the map � , we obtain a
homomorphism

�_ W C
n
.K;Z//!

M
pCqDn

C
p;q
.K oK;Z/

.�_F /Œs1j : : : jsn� 7!
M

pCqDn

F.�Œs1j : : : jspjjspC1j : : : jspCq�/

which induces a cochain map

�_ W .C
�
.K;Z/; ıK/! .Tot�.C

�;�
.K oK;Z//; ıG ˚ .�1/pıK/I

here we have kept the notation of the differentials as ıG and ıK in order to avoid
confusion. A straightforward calculation shows that the cochain map �_ preserves
normalized cochains

�_ W .C �.K;Z/; ıK/! .Tot�.C �;�.K oK;Z//; ıG ˚ .�1/pıK/

and therefore it induces a homomorphism at the level of cohomologies

�� W H�.KIZ/! H�.K oK;Z/

which by Theorem 3.2 is equal to the pullback of the homomorphism of groups �.
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If we bundle up our previous discussion we have

Theorem 3.3. The homomorphism in cohomology

�� W H�.K;Z/! H�.K oK;Z/

defined by the cochain map

�_ W C n.K;Z//!
M

pCqDn

Cp;q.K oK;Z/

.�_F /Œs1j : : : jsn� 7!
M

pCqDn

F.�Œs1j : : : jspjjspC1j : : : jspCq�/

is equal to
�� W H�.K;Z/! H�.K oK;Z/

which is the pullback of the group homomorphism � W K oK ! K; .k; g/ 7! kg.

3.3. Further properties of the Shuffle homomorphism. Consider the homomor-
phisms

�K W K ! K oK; �G W K ! K oK
x 7! .x; 1K/ g 7! .1K ; g/:

and note that they fit into the commutative diagram

K
�K //

Š
##

K oK
�

��

K
�Goo

Š
{{

K

which induces the commutative diagram

H�.K;Z/
Š

ww
��

��

Š

((
H�.K;Z/ H�.K oK;Z/

��
K

oo
��
G

// H�.K;Z/:

(3.1)

From Lemma 2.9 we know that there is a canonical isomorphism

Hp.K oK;Z/ Š Hp.Tot�.A�;�.K oK;Z///˚Hp.K;Z/

and the homomorphism ��G is precisely the projection on the second component of
the direct sum Hp.Tot�.A�;�.K oK;Z///˚Hp.K;Z/.
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Moreover, by defining the chain map

�_1 W C
n.K;Z//!

M
pCqDn; q>0

Ap;q.K oK;Z/ (3.2)

.�_1 F /Œs1j : : : jsn� 7!
M

pCqDn; q>0

F.�Œs1j : : : jspjjspC1j : : : jspCq�/

we have that the chain map

�_ W C �.K;Z//! Tot�.A�;�.K oK;Z//˚ C �;0.K oK;Z/

is isomorphic to the chain map

�_1 ˚ 1 W C
�.K;Z//! Tot�.A�;�.K oK;Z//˚ C �;0.K oK;Z/

and therefore we have that at the cohomological level we obtain the commutative
diagram

Hp.K;Z/
Š

uu
��

1

��
Hp.K;Z/ Hp.Tot�.A�;�.K oK;Z///

��
K
jA

oo

(3.3)

for all p > 0, where at the cochain level ��K jA is simply the projection map on the
0-th column

��K jA W Tot�.A�;�.K oK;Z//! A�;0.K oK;Z/ Š C �>0.K;Z/:

Therefore we make the following definition

Definition 3.4. Let

B�;�.K oG;Z/ WD C �>0;�>0.K oG;Z/

be the sub double complex of C �;�.K o G;Z/ with trivial 0-th row and trivial 0-th
column, and differentials ıG and ıK .

Lemma 3.5. The homomorphism

Hp.K;Z/˚Hp.Tot�.B�;�.K oK;Z///! Hp.Tot�.A�;�.K oK;Z///
x ˚ y 7! ��1 x C y

is an isomorphism for all p > 0.

Proof. The short exact sequence of complexes

0! Tot�.B�;�.K oK;Z//! Tot�.A�;�.K oK;Z//! C �>0.K;Z/! 0
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induces a long exact sequence in cohomology groups

! Hp.Tot�.B�;�.KoK;Z///! Hp.Tot�.A�;�.KoK;Z///
��
K
jA
! Hp.K;Z/!

which splits by diagram (3.3).

Therefore we can conclude that there is a canonical splitting of the cohomology
of K o K in terms of the cohomology of K and of the cohomology of the double
complex B�;�.K oK;Z/.

Proposition 3.6. The homomorphism

Hp.K;Z/˚Hp.Tot�.B�;�.K oK;Z///˚Hp.K;Z/
Š
! Hp.K oK;Z/

x ˚ y ˚ z 7! ��1 x C y C �
�
2 z

is an isomorphism for all p > 0. Here �2 W K o K ! K; .a; g/ 7! g denotes
the homomorphism induced by the projection on the second coordinate satisfying
�2 ı �G D 1.

4. Categorical definitions

4.1. 2-category of discrete G-sets with twist. We shall fix a discrete group G. We
define the 2-category of discrete G-sets with twist as follows:

(1) Objects will be called discrete G-sets with twist, and they are pairs .X; ˛/,
where X is a discrete left G-set and ˛ 2 Z2G.X;T/ is a normalized 2-cocycle in
the G-equivariant complex of X , i.e. a map

˛ W G �G �X ! T;

such that

˛Œ� j�jjx� ˛Œ�� j�jjx��1 ˛Œ� j��jjx� ˛Œ� j� jj�x��1 D 1

for all �; �; � 2 G; x 2 X .
Note that the previous equation is equivalent to the equation ıG˛ D 1, when we
see ˛ as element in C 2;1.X oG;T/.

(2) Let .X; ˛X /; .Y; ˛Y / be discrete G-sets with twist. A 1-cell from .X; ˛X / to
.Y; ˛Y /, also called a G-equivariant map, is a pair .L; ˇ/,

.X; ˛X /
.L;ˇ/ // .Y; ˛Y /
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where

� L W X ! Y is a morphism of G-sets,

� ˇ 2 C 1G.X;T/ is a normalized cochain such that ıG.ˇ/ D L�.˛Y /.˛X /�1,
i.e., a map

ˇ W G �X ! T

such that

ˇŒ� jjx� ˇŒ�� jx��1 ˇŒ� jj�x� D ˛Y Œ� j� jjL.x/� ˛X Œ� j� jjx�
�1;

for all �; � 2 G; x 2 X .

(3) Given two 1-cells .L; ˇ/; .L; ˇ0/ W .X; ˛X / ! .Y; ˛Y /, a 2-cell � W .L; ˇ/ )
.L; ˇ0/

.X; ˛X /

.L;ˇ/

!!

.L;ˇ 0/

==.Y; ˛Y /�

��

is 0-cochain � 2 C 0G.X;T/ such that ıG.�/ D ˇ0ˇ�1, i.e., a map � W X ! T,
such that

�Œx��Œ�x��1 D ˇ0Œ� jjx� ˇŒ� jjx��1

for all � 2 G; x 2 X .

Let us define the composition on 1-cells and 2-cells in the following way. Let
.F; ˇF / W .X; ˛X /! .Y; ˛Y / and .G; ˇG/ W .Y; ˛Y /! .Z; ˛Z/ two 1-cells, define
their composition as

.G; ˇG/ ı .F; ˇF / D .G ı F;F
�.ˇG/ˇF / W .X; ˛X /! .Z; ˛Z/;

.X; ˛X /
.F;ˇF / //

.GıF;F �.ˇG/ˇF / %%

.Y; ˛Y /

.G;ˇG/yy
.Z; ˛Z/

and if � W .L; ˇ/ ) .L; ˇ0/ and � 0 W .L; ˇ0/ ) .L; ˇ00/ are 2-cells, their
composition is the product of the maps, namely

� 0 ı � DW � 0� W .L; ˇ/) .L; ˇ00/
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.X; ˛X /
.L;ˇ 0/ //

.L;ˇ 00/

CC

.L;ˇ/

��
�

��

� 0

��

.Y; ˛Y / D .X; ˛X /

.L;ˇ/

!!

.L;ˇ 00/

==.Y; ˛Y /� 0�

��

A straightforward calculation implies that
Lemma 4.1. The composition of 1-cells and 2-cells satisfy the axioms of a
2-category.

4.2. Pseudomonoids. A strict 2-monoidal 2-category is a triple .B;�; I/ where B
is a 2-category, � W B � B ! B is a 2-functor and I is an object in B, such that
� ı .�� IdB/ D � ı .IdB ��/ and I�X D X � I D X for every object in B (for
more details see [5]).
Definition 4.2. Given a strict 2-monoidal 2-category .B;�; I/, a pseudomonoid in
B consists of:

� an object C 2 B,
together with:

� a multiplication 1-cell m W C � C! C,
� an identity-assigning 1-cell I W I! C,

together with the following 2-isomorphisms:
� the associator:

C � C � C

C � C C � C

C

id�m

��

m�id

��

m
��

m
��

a +3 (4.1)

� the left and right unit laws:

I � C C � C C � I

C

I�id // id�Ioo

m

��
D

$$
D

zz

`

~�
r

� 
(4.2)
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such that the following diagrams commute:
� the pentagon identity for the associator:

mı.m�id/ı.m�id�id/

mı.m�id/ı.id�m�id/

mı.id�m/ı.id�id�m/

mı.id�m/ı.id�m�id/

mı.m�m/

mı.a�id/
��

aı.m�id�id/
2:

aı.id�m�id/
+3

mı.id�a/

@H

aı.id�id�m/

$,
(4.3)

where we use the equalities

.id � m/ ı .m � id � id/ D m � m

.m � id/ ı .id � id � m/ D m � m

in order to compose the upper 1-cells a ı .m� id� id/ and a ı .id� id�m/,
equalities which follow from the fact that � is a 2-functor.

� the triangle identity for the left and right unit laws:

mı.m�id/ı.id�I�id/
aı.id�I�id/ +3

mı.r�id/
#+

mı.id�m/ı.id�I�id/

mı.id�`/
s{

m

(4.4)

where we use the fact that C � I D C D I� C to make sense of the diagonal
arrows.

Remark 4.3. The 2-category ofG-sets with twist has a 2-monoidal structure, where
the product of two objects .X; ˛X /, .Y; ˛Y / is given by

.X; ˛X /� .Y; ˛Y / D .X � Y; ˛X � ˛Y /;

whereX�Y is aG-set with the diagonalG-action and ˛X�˛Y WD ��1 .˛X /�
�
2 .˛Y /.

In an analogous way we construct the product � for 1-cells and 2-cells. A unit object
is any fixed G-set with one element and the constant function 1 for 2-cocycle.

4.3. Pseudomonoids in the 2-category of G-sets with twist. We are interested
in studying pseudomonoids in the 2-category of G-sets with twists, but in order
to get normalized cocycles we are forced to consider only pseudomonoids where
the identity-assigning 1-cell is strict in the sense that the cochain (the second
component of the 1-cell) is trivial, and furthermore, that the unit constraints in
diagram (4.2) are identities, namely that the diagram (4.2) commutes. We will call
these pseudomonoids with strict unit.
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Proposition 4.4. A pseudomonoid with strict unit in the 2-category of G-sets with
twists is equivalent to the following data:
� A monoid .K;m; 1/, where K is a G-set, m is G-equivariant and 1 2 K is a
G-invariant element.

� ˛ 2 C 2;1.KoG;T/, ˇ 2 C 1;2.KoG;T/, � 2 C 0;3.KoG;T/ such that ˛˚ˇ˚�
is a three cocycle in

�
Tot.A�;�.K oG;T//; ıG ˚ ı.�1/

p

K

�
with A�;�.K o G;T/

the double complex introduced in Definition 2.8.

Proof. A pseudomonoid in the 2-category of G-sets is:

i) An object C D .K; ˛/ where K is a G-set and

˛ W G �G �K ! T

such that ˛ is normalized in the components of the group G and that ıG˛ D 1.

ii) A multiplication 1-cell

m D .m; ˇ/ W .K �K; ˛ � ˛/! .K; ˛/

such that m W K �K ! K is a G-equivariant map, and a map

ˇ W G �K �K ! T

satisfying the equation

ıGˇ D m
�˛ � .˛ � ˛/�1: (4.5)

iii) An identity-assigning 1-cell

I D .1K ; / W .f�g; 1/! .K; ˛/

where 1K W f�g ! K is a map choosing a G-invariant element 1K WD 1K.�/ in
K, and  W G � f�g ! T is the constant map 1 because we are only considering
pseudomonoids with strict unit. The cochain condition on  reads

.ıG/Œg1jg2jj�� D ˛Œg1jg2jj1K �

and since  is the constant function it follows that ˛Œg1jg2jj1K � D 1, namely that
˛ is normalized in the K variable.

iv) The left hand side of diagram (4.2) translates to the diagram

.f�g �K; 1� ˛/

.�2;1/ **

.1K�id;�1/ // .K �K; ˛ � ˛/

.m;ˇ/

��
.K; ˛/
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where �2 is the projection on the second component. The composition of the 1 at
the level of the G-sets implies the equation

m.1K ; h/ D h

for any element h 2 K. Now, the composition of the 1-cells at the level of the
cochains implies the equation

Œgjj�� � ˇŒgjj1K jh� D 1

with g 2 G and h 2 K. Since the cochain  is equal to the constant function 1,
we have that ˇŒgjj1K jh� D 1. Applying the same arguments as above we
conclude that ˇŒgjjhj1K � D 1 and therefore the left and right unit laws imply
that ˇ is normalized on the K components, and moreover that 1K is a unit for the
multiplication map m.

v) Diagram (4.1) translates to the diagram

.K �K �K; ˛ � ˛ � ˛/
.m�id;ˇ�1/

tt

.id�m;1�ˇ/

**
.K �K; ˛ � ˛/

.m;ˇ/
**

� +3 .K �K; ˛ � ˛/

.m;ˇ/
tt

.K; ˛/

whose commutativity at the level of G-sets implies that the multiplication m W
K � K ! K is associative, and at the level of cochains the diagram implies the
equation

.ıG�/Œgjjh1jh2jh3�

D ˇŒgjjh2jh3� ˇŒgjjh1h2jh3�
�1 ˇŒgjjh1jh2h3� ˇŒgjjh1jh2�

�1: (4.6)

vi) Diagram (4.3) translates into the equation

�Œk1k2jk3jk4� � Œk1jk2jk3k4� D �Œk1jk2jk3� � Œk1jk2k3jk4� � Œk2jk3jk4� (4.7)

for all elements k1; k2; k3; k4 in K.

vii) Diagram (4.4) translates into the equality

�Œk1j1K jk2� D 1 (4.8)

for all k1; k2 2 K, because the unit constraints are trivial.
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From ii) we have that the multiplication mapm W K�K ! K is aG-equivariant
map and v) tells us that the multiplicationm is associative. From iii) we know thatK
is provided with a G invariant element 1K and iv) tells us that this element is a left
and right unit for the multiplication m. We have then that .K;m; 1K/ is a monoid
endowed with a G-action compatible with m and 1K .

Since K is a G-equivariant monoid with unit, we can use the notation of
Definition 2.4 to see that equation (4.5) can be written as

ıG.ˇ/ıK.˛/ D 1;

equation (4.6) becomes

ıG.�/ıK.ˇ/
�1
D 1

and equation (4.7) becomes

ıK.�/ D 1:

We furthermore have that ıG˛ D 1 by the definition of an object in the category of
G-sets with twist.

Equation (4.8) implies that � is normalized in the variable of the middle; this fact,
together with the fact that ı2� D 1 implies that � is normalized in all the variables
since

1 D ıK�Œ1K j1K jk1jk2� D �Œ1K jk1jk2�

1 D ıK�Œk1jk2j1K j1K � D �Œk1jk2j1K �:

From iii) we know that ˛ is normalized in the K coordinate, and from iv) we know
that ˇ is normalized in the K coordinates. Therefore the maps ˛, ˇ and � are
normalized in all variables since their normalization on coordinates of G follow
from the definition of the 2-category of G-sets with twists.

Summarizing we have that ˛ 2 C 2;1.K o G;T/, ˇ 2 C 1;2.K o G;T/ and
� 2 C 0;3.K oG;T/ such that ˛ ˚ ˇ ˚ � is a three cocycle in�

Tot.A�;�.K oG;T//; ıG ˚ ı.�1/
p

K

�
because we have that

.ıG ˚ ı
.�1/p

K /.˛ ˚ ˇ ˚ �/ D ıG.˛/˚ ıK.˛/ıG.ˇ/˚ ıK.ˇ/
�1ıG.�/˚ ıK.�/

D 1˚ 1˚ 1˚ 1;
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or in a diagram

4 1

3 � 1

2 ˇ 1

1 ˛ 1

0 1 2 3

ıK

ıG

.ıK/
�1

ıG

ıK

ıG

From the construction above, it is easy to see that if we are given the G
equivariant monoid .K;m; 1K/ with unit plus the cocycle ˛ ˚ ˇ ˚ � , then we can
construct in a unique way a pseudomonoid with strict unit in the 2-category ofG-sets
with twists. This finishes the proof.

Remark 4.5. For a fixed G equivariant monoid .K;m; 1K/, the possible pseu-
domonoid structures with strict unit in the 2-category of G-sets associated over
.K;m; 1K/ are classified by elements in

Z3.Tot.A�;�.K oG;T///;

namely, 3-cocycles in the total complex of A�;�.K oG;T/.

Definition 4.6. Given pseudomonoids .C;m; I; a/ and .C0;m0; I0; a0/ in a 2-category
B, a morphism

F W .C;m; I; a/ �! .C0;m0; I0; a0/

consists of:

� a 1-cell F W C! C0

equipped with:

� a 2-isomorphism
C � C

C0 � C0 C

C0

m

��

F�F

��

F
��m0 ��

F2 +3
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� a 2-isomorphism

C C0

I

I

��

I0

��

F
//

F0
2:

(4.9)

such that diagrams expressing the following laws commute:

� compatibility of F2 with the associator:

m0 ı .m0 � id/ ı .F� F� F/ m0 ı .F� F/ ı .m � id/ F ım ı .m � id/

m0 ı .id � m0/ ı .F� F� F/ m0 ı .F� F/ ı .id � m/ F ım ı .id � m/

m0ı.F2�F / +3 F2ı.m�id/ +3

Fıa

��

a0ı.F�F�F/

��

m0ı.F�F2/

+3
F2ı.id�m/

+3

� compatibility of F0 with the left unit law:

m0 ı .I0 � F/ F

m0 ı .F� F/ ı .I� id/ F ım ı .I� id/

`0ıF +3

Fı`

KS

m0ı.F0�F/

KS

F2ı.I�id/
+3

� compatibility of F0 with the right unit law:

m0 ı .F� I0/ F

m0 ı .F� F/ ı .id � I/ F ım ı .id � I/

Fır 0 +3

Fır

KS

m0ı.F�F0/

KS

F2ı.id�I/
+3

Definition 4.7. Given two pseudomonoids with strict unit K D .K;m; 1; ˛; ˇ; �/

and K0 D .K 0; m0; 10; ˛0; ˇ0; � 0/ in the 2-category of G-sets with twists, a morphism
F W K ! K0 is a morphism of pseudomonoids (as in Definition 4.6) such that the
2-isomorphism F0 of diagram (4.9) is an identity.

Proposition 4.8. A morphism of pseudomonoids with strict unit in the 2-category of
G-sets with twists F W K! K0 consists of the triple F D .F; �; �/ with

F W K ! K 0
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a G-equivariant morphism of monoids, and cochains � 2 C 1;1.K o G;T/ and
� 2 C 0;2.K oG;T/ such that

.ıG ˚ ı
.�1/p

K /.�˚ ��1/ D F �˛0=˛ ˚ F �ˇ0=ˇ ˚ F �� 0=�:

Proof. Following Definition 4.6 a morphism F W K! K0 consists of:

i) A 1-cell .F; �/ W .K; ˛/! .K 0; ˛0/, i.e. a G-equivariant map F W K ! K 0 and a
normalized cochain � 2 C 1G.K;T/ such that

ıG� D F
�˛0=˛: (4.10)

ii) A 2-cell � 2 C 0G.K �K;T/

.K �K; ˛ � ˛/
.m;ˇ/ //

.F�F;���/
��

.K; ˛/

.F;�/

��
.K 0 �K 0; ˛0 � ˛0/

.m0;ˇ 0/

//

�

2:

.K 0; ˛0/

such that
ıG� D .ˇ �m

��/=.�� � � F �ˇ0/:

Note that at the level of the G sets the diagram is commutative, therefore F W
K ! K 0 preserves the multiplication; and since

ıK� D �� � � .m��/�1;

we can rewrite the equation above as:

ıG� � ıK� D ˇ=F
�ˇ0: (4.11)

iii) The commutativity of the diagram (4.9)

.K; ˛/ .K 0; ˛0/

.f�g; 1/

I

��

I0

��

.F;�/
//

implies that the map F W K ! K 0 preserves the unit and that �.g; 1/ D 1 for any
g 2 G, namely that � is normalized in the K variable and therefore we could say
that � 2 C 1;1.K oG;T/.
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iv) The commutativity of � with the associator. This implies that F preserves the
associativity of the multiplications m and m0, and that the following equation is
satisfied

� 0ŒF .a1/jF.a2/jF.a3/� �Œa2ja3� �Œa1ja2a3� D �Œa1ja2� �Œa1a2ja3� � Œa1ja2ja3�

for all a1; a2; a3 2 K. Note that this last equation can be written as

ıK� D �=F
�� 0: (4.12)

v) Compatibility with the left and right units, but as the 2-cells F0; l; r; l 0 and r 0 are
identities, then this implies that �Œ1ja� D 1 D �Œaj1� and therefore we have that �
is normalized in the K variables and we can assume that � 2 C 0;2.K oG;T/.

From the previous arguments it follows that F W K ! K 0 is a G-equivariant
morphism of monoids, and moreover, calculating the differential, we have that

.ıG ˚ ı
.�1/p

K /.�˚ ��1/ D ıG.�/˚ ıK.�/
�1ıG.�/

�1
˚ ıK.�/

�1

D F �˛0=˛ ˚ F �ˇ0=ˇ ˚ F �� 0=�;

where the second equality follows from equations (4.10), (4.11) and (4.12). In a
diagram

3 F �� 0=�

2 ��1 F �ˇ0=ˇ

1 � F �˛0=˛

0 1 2

ıK

ıG

.ıK/
�1

ıG

This finishes the proof.

Definition 4.9. Given morphisms F D .F; F0; F2/ and G D .G; G0; G2/ from
.C;m; I; a/ to .C0;m0; I0; a0/ pseudomonoids in B, a 2-morphism s W F ! G is a
2-cell s W F �! G in B such that the following diagrams commute:

� compatibility with F2 and G2:

m0 ı .F� F/ m0ı.s�s/ +3

F2

��

m0 ı .G�G/

G2

��
F ım sım +3 G ım

(4.13)
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� compatibility with F0 and G0:

F ı I G ı I

I0

F0

=E

G0

Ya

sıI
+3 (4.14)

Proposition 4.10. Given morphisms of pseudomonoids with strict unit in the
2-category of G-sets with twists F D .F; �; �/ and F 0 D .F; �0; �0/, with F ;F 0 W
K! K0, a 2-morphism  W F ! F 0 is a cochain  W C 0;1.K oG;T/ such that

.ıG ˚ ı
.�1/p

K /./ D .�0=�; �=�0/:

Proof. Let  W .F; �/ ! .F; �0/ be the 2-cell defined by the 2-morphism, then we
have that

ıG./ D �
0=�:

Now, by diagram (4.13) we have that

ıK./ D �=�
0;

and by diagram (4.14) we have that  is a normalized cochain.

Remark 4.11. Propositions 4.4, 4.8 and 4.10 imply that the relevant information
encoded in cochains for the 2-category of pseudomonoids with strict unit of G-sets
with twists, is given by the cochains of the total complex�

Tot.A�;�.K oG;T//; ıG ˚ ı.�1/
p

K

�
For a fixed G-equivariant monoid .K;m; 1K/, Proposition 4.4 tells us that the

3-cocycles Z3.Tot�.A�;�.K o G;T/// are in one to one correspondence with the
set of possible pseudomonoid structures with strict unit in the 2-category of G-sets
with twist over K. If we only consider invertible morphisms of pseudomonoids as
defined in Proposition 4.8, we may define a groupoid which encodes the equivalence
classes of pseudomonoid structures over K. Let us be more explicit.

4.4. Equivalence classes of pseudomonoid structures over a fixed monoid.
Definition 4.12. Fix a G-equivariant monoid .K;m; 1K/. Define the groupoid
PsdmnG.K/ whose set of objects is Z3.Tot�.A�;�.K o G;T/// and whose mor-
phisms are invertible morphisms of pseudomonoids as defined in Proposition 4.8.
The groupoid PsdmnG.K/ encodes the information of all pseudomonoid strucures
over K and its coarse moduli space jPsdmnG.K/j, i.e. the set of equivalence
classes defined by the morphisms, is the set of equivalence classes of pseudomonoid
structures on K.
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Note that a morphism in PsdmnG.K/ consists of a triple .F; �; �/ where
F W K ! K must be a G-equivariant automorphism. If we denote by

AutG.K/ WD ff 2 Aut.K/Wf .gk/ D gf .k/ for all g 2 Gg

then we have that the group AutG.K/ is isomorphic to the subgroup of Aut.K oG/
which leaves the G fixed; for a G-equivariant automorphism f 2 AutG.K/ we can
associate the automorphism f 2 Aut.K oG/ by the equation

f .k; g/ WD .f .k/; g/:

Since the automorphism f leaves G fixed, then the groups of automorphism act on
the double complex A�;�.K oG;Z/; we claim

Lemma 4.13. The set of equivalence classes of pseudomonoid structures on K can
be described by the quotient

jPsdmnG.K/j Š H 3.Tot�.A�;�.K oG;T///=AutG.K/:

Proof. We first perform the quotient with the morphisms .F; �; �/ where F is the
identity on K; this quotient is precisely H 3.Tot�.A�;�.K o G;T///. Then we see
that elements ofH 3.Tot�.A�;�.K oG;T/// lying on the same orbit of the action of
AutG.K/ define equivalent pseudomonoid structures.

In particular we may conclude that if H 3.Tot�.A�;�.K o G;T/// D 0,
then all pseudomonoid structures with strict unit in the 2-category of G-sets
with twist over K are isomorphic to the trivial one. Since we are interested
in finding pseudomonoid structures with strict unit in the 2-category of G-sets
with twist over K non isomorphic to the trivial one, we will calculate the group
H 3.Tot�.A�;�.KoG;T///, the group AutG.K/ and the set jPsdmnG.K/j for some
particular examples.

The main tool we will use in order to calculate the groupH 3.Tot�.A�;�.K oG;
T/// will be the Lyndon–Hochschild–Serre spectral sequence. This spectral se-
quence can be obtained if the complex Tot�.A�;�.K o G;T// is filtered by the
complexes

F n WD Tot�.A��n;�.K oG;T//
thus defining a spectral sequence whose second page becomes

E
p;q

2 D Hp.G;H q.K;T//

where G acts onH q.K;T/ through the induced action of G onK; note in particular
that

E
0;q

2 D H
q.K;T/G and E

p;0

2 D Hp.G;T/:
On the other hand we have that

AutG.K/ Š CAut.K/.�.G//
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where � W G ! Aut.K/ determines the action of G, and

CAut.K/.�.G// WD ff 2 Aut.K/W Œf; �.g/� D 1 for all g 2 Gg

is the centralizer of �.G/ on Aut.K/, consisting of the automorphisms of K which
commute with the G-action. In particular when G D Aut.K/ we have that
AutG.K/ D Z.Aut.K//. Let us see some examples:

4.4.1. K D Z=p for prime p > 2, and G D Aut.Z=p/ D Z=.p � 1/. Here we
have that AutG.K/ D Z.Aut.K// Š Z=.p � 1/ and that

H 0.G;H 3.K;T// D H 3.K;T/G Š .Z=p/Z=.p�1/ D 0
H 1.G;H 2.K;T// D Hom.Z=.p � 1/; 0/ D 0
H 2.G;H 1.K;T// D H 2.Z=.p � 1/;Z=p/ D 0

where the last equality follows from the fact that Hn.G;M/ is annihilated by jGj
for all n > 0 [6, III.10.2]. In this caseH 3.Tot�.A�;�.KoG;T/// D 0 and therefore
all pseudomonoid structures on K D Z=p are equivalent to the trivial one. This
example could be generalized as follows:

4.4.2. Groups with order relatively prime. Let us recall two facts. First, if G is
a finite group of order m, r is a positive integer with .m; r/ D 1 and Ar D 0, then
Hn.K;A/ D 0 for all n and all subgroups K of G, see [13, Proposition 1.3.1]. And
second, if e is the exponent of H 2.G;T/ then e2 divides the order of G, see [13,
Theorem 2.1.5].

Then for the case on which jGj is relatively prime to jKj we obtain that

H 1.G;H 2.K;T// D 0 and H 2.G;H 1.K;T// D 0:

Therefore we have that H 3.Tot�.A�;�.K oG;T/// Š H 3.K;T/G and

jPsdmnG.K/j Š H 3.K;T/G=AutG.K/:

4.4.3. The dihedral group Dn as a semi-direct product.. The dihedral group is
isomorphic to Z=n o Z=2 when Z=2 acts on Z=n by multiplication of �1. Since
the induced action of Z=2 on the cohomology ring H�.Z=n;Z/ Š ZŒx�=hnxi maps
x 7! �x, we have that x2 7! x2 and therefore H 4.Z=n;Z/Z=2 D Z=n and

H 2.Z=2;H 2.Z=n;Z// D H 2.Z=n;Z/Z=2 D
�
Z=2 if n is even
0 if n is odd:
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Since

H 4.Dn;Z/ D
�
Z=2˚ Z=2˚ Z=n if n is even

Z=2˚ Z=n if n is odd

we know that

H 3.Tot�.A�;�.Z=no Z=2;T/// D
�
Z=2˚ Z=n if n is even

Z=n if n is odd;

and therefore

jPsdmnZ=2.Z=n/j D
�
.Z=2˚ Z=n/=Aut.Z=n/ if n is even

.Z=n/=Aut.Z=n/ if n is odd:

because in this case AutZ=2.Z=n/ D Aut.Z=n/.
In particular, when n D 4 we have that Aut.Z=4/ D Z=2. and therefore the

action of AutZ=2.Z=4/ on H 3.Tot�.A�;�.Z=4o Z=2;T/// is trivial. Hence

jPsdmnZ=2.Z=4/j D Z=2˚ Z=4:

4.5. The case of the group acting on itself by conjugation. Perhaps the most
known pseudomonoid with strict unit in the 2-category of G-sets with twist was
introduced by Dijkgraaf, Pasquier and Roche in [7, Section 3.2] while defining the
quasi Hopf algebra Dw.G/ with w 2 Z3.GIT/. In the equations (3.2.5) and (3.2.6)
of [7] they defined a 3-cocycle ˛w ˚ ˇw ˚ �w 2 Z3.Tot.A�;�.G o G;T/// by the
equations

˛w Œgjhjjx� WD
wŒgjhjx� wŒghxh�1g�1jgjh�

wŒgjhxh�1jh�

ˇw Œgjjxjy� WD
wŒgjxjy� wŒgxg�1jgyg�1jg�

wŒgxg�1jgjy�

�w Œxjyjz� WD wŒxjyjz�;

where ˛w was used to define the algebra law, ˇw to define the coalgebra law, and �w
encoded the fact that the coproduct is quasicoassociative (to be precise, in order to
get exactly the same formulæ as in [7], it is necessary to change G by Gop).

This quasi Hopf algebra Dw.G/ is known as the Twisted Drinfeld Double of G
twisted by w (cf. [19]). Firstly we claim the following.

Lemma 4.14. The 3-cocycle ˛w ˚ ˇw ˚ �w equals �_1 w, the image of w under the
restricted shuffle homomorphis �_1 w defined in (3.2).
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Proof. From the following diagrams associated to .�_1 w/Œgjhjk�

�

� � �
g h

k

� �

� �
g

hkh�1

h

� � �

�

ghkh�1g�1

hkh�1 h

�

�

� �
g

h

k

�

� �

�

ghg�1

g
k

� �

�

�

ghg�1

gkg�1

g

we obtain that ˛w ˚ ˇw ˚ �w D �_1 w.

Therefore by Lemma 2.9, Theorem 3.2 and Lemma 3.5 we get

Proposition 4.15. The cohomology class

Œ˛w ˚ ˇw ˚ �w �˚ Œw� 2 H
3.Tot�.A�;�.G oG;T///˚H 3.G;T/

is equal to ��Œw� where � W G o G ! G; .a; g/ 7! ag is the multiplication map.
Moreover we obtain the isomorphism

H 3.G;T/˚H 3.Tot�.B�;�.G oG;T///! H 3.Tot�.A�;�.G oG;T///
Œw�˚ Œx� 7! Œ˛w ˚ ˇw ˚ �w �C Œx�:

Now, sinceGoG Š G�G, we have that the Lyndon–Hochschild–Serre spectral
sequence collapses at the second page. And since the action of G on G is given
by conjugation, then the action of G on H�.G;T/ is trivial. Hence we have that
H 3.Tot.B�;�.G oG;T/// sits in the middle of the short exact sequence

0! H 2.G;Hom.G;T//! H 3.Tot.B�;�.GoG;T///! Hom.G;H 2.G;T//! 0:

Moreover, in the present situation we have �.G/ D Inn.G/, and therefore

AutG.G/ D CAut.G/.Inn.G//;

namely the group of automorphisms of G which commute with all inner automor-
phisms.

With the previous calculations at hand we can calculate the groupH 3.Tot.B�;�.Go
G;T/// and AutG.G/ in some particular examples:
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4.5.1. G simple and nonabelian. When G is simple and nonabelian, its abelian-
izationG=ŒG;G� is trivial. Therefore Hom.G;T/ and Hom.G;H 2.G;T// are trivial
and hence

H 3.Tot�.B�;�.G oGIT/// D 0:

So we have that
jPsdmnG.G/j Š H 3.G;T/=AutG.G/:

When G is the alternating group An we have that AutAn
.An/ D CSn

.An/ D 1

and therefore

jPsdmnAn.An/j Š H
3.An;T/; for n ¤ 6 and n > 4:

In particular when n D 5 we have that H 3.A5;T/ D Z=120 and hence

jPsdmnA5.A5/j Š Z=120:

4.5.2. Binary icosahedral group. The binary icosahedral group A5 is a subgroup
of SU.2/ that can be obtained as the pullback of the diagram

A5 //

��

SU.2/

��
A5 // SO.3/

where A5 embeds in SO.3/ as the group of isometries of an icosahedron. This
group satisfies H1.A5;Z/ D 0, H2.A5;Z/ D 0 and H3.A5;Z/ D Z=120 (see
[1, Page 279]), and therefore H 1.A5;Z/ D H 2.A5;Z/ D H 3.A5;Z/ D 0 and
H 4.A5;Z/ D Z=120. Hence H 1.A5;T/ D H 2.A5;T/ D 0, H 3.A5;T/ D Z=120
and H 3.Tot.B�;�.A5 o A5IT/// D 0:

In this case Inn.A5/ Š A5 and Aut.A5/ Š S5, therefore AutA5
.G/ D

CS5
.A5/ D 1 and

jPsdmnA5.A5/j Š Z=120:

A similar argument applies to any superperfect group since by definition they are
the ones such that H1.G;Z/ D 0 and H2.G;Z/ D 0.

4.5.3. The dihedral group G D Dn with n odd. In this case

Hom.Dn;T/ D Z=2; H 2.DnIZ=2/ D Z=2 and H 2.DnIT/ D 0;

hence

H 3.Tot�.B�;�.Dn oDnIT/// D H 2.Dn;Hom.Dn;T/ D Z=2:
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Since H 3.DnIT/ D Z=2 ˚ Z=n we have that the isomorphism classes of
pseudomonoid structures coming from the Twisted Drinfeld Double construction
are Z=2 ˚ Z=n and that there is an independent pseudomonoid structure which
comes fromH 2.Dn;Hom.DnIT// D Z=2. In this case we have that AutDn

.Dn/ D

Z.Dn/ D 1 and therefore

jPsdmnDn.Dn/j Š .Z=n˚ Z=2˚ Z=2/:

4.5.4. The symmetric group G DSn for n � 4. From [1, VI-5] we know that

Hom.Sn;T/ D Z=2; H 2.SnIZ=2/ D Z=2

H 2.SnIT/ D Z=2 and H 3.SnIZ=2/ D Z=2˚ Z=2
hence we get the exact sequence

0! Z=2! H 3.Tot�.B�;�.Sn oSnIT///! Z=2! 0:

In particular we could say that the nontrivial element in H 2.Sn;Hom.Sn;T// D
Z=2 induces a pseudomonoid structure on Sn which is not isomorphic to any
structure coming from the construction of the Twisted Drinfeld Double. This follows
from the fact that for n ¤ 2 and n ¤ 6, Aut.Sn/ D Inn.Sn/ D Sn and therefore
AutSn

.Sn/ D Z.Sn/ D 1 is the trivial group. Whenever n D 6 we know that
Out.S6/ D Z=2; nevertheless AutS6

.S6/ D 1. Therefore we have that

jPsdmnSn.Sn/j D H
3.Sn;T/˚H 3.Tot�.B�;�.Sn oSnIT///

with

H 3.Sn;T/ D
�

Z=12˚ Z=2 if n D 4; 5

Z=12˚ Z=2˚ Z=2 if n � 6

4.5.5. G cyclic group. When G D Z=n we get that

H 3.Tot�.B�;�.Z=n � Z=nIT/// D H 2.Z=n;Hom.Z=n;T// D Z=n

and H 3.Z=n;T/ D Z=n. The action of AutZ=n.Z=n/ D Z=n�, which is
the multiplicative group of units in Z=n, on H 1.Z=n;T/ D Z=n is given by
multiplication and while on H 3.Z=n;T/ D Z=n is given by the square of the
multiplication; hence we get that

jPsdmnZ=n.Z=n/j Š .Z=n˚ Z=n/=Z=n�

where the action is given by

Z=n� � .Z=n˚ Z=n/! .Z=n˚ Z=n/; .a; .x; y// 7! .ax; a2y/:

For example when n D 4 we have that

jPsdmnZ=4.Z=4/j Š .Z=4/=.Z=4�/ � Z=4:
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5. The monoidal category of equivariant vector bundles on a pesudomonoid

Let G be a group and K D .K;m; 1; ˛; ˇ; �/ a pseudomonoid with strict unit in the
2-category ofG-sets with twists. We define the categoryBunG.K/ ofG-equivariant
finite dimensional bundles over K as follows:

An object is a K-graded finite dimensional Hilbert space H D
L
k2KHk and a

twisted G-action
� W G ! U.H/

such that
� � �Hk D H� �k

� � � .� � hk/ D ˛Œ� j� jjk�.��/� hk

� e � h D h

for all �; � 2 G; k 2 K; hk 2 Hk . Morphisms in the category are linear maps that
preserve the grading and the twisted action, i.e., a linear map f W H ! H0 is a
morphism if

� f .Hk/ � H0
k

,

� f .� � h/ D � � f .h/

for all � 2 G; k 2 K and h 2 H.
We define a monoidal structure on BunG.K/ as follows: let H and H0 be objects

in BunG.K/, then the tensor product of Hilbert spaces H ˝H0 is a G-equivariant
K-bundle with K-grading .H ˝ H0/k D

L
x;y2KWxyDkHx ˝ H0y and twisted

G-action
� � .hx ˝ h

0
y/ WD ˇŒ� jjxjy�.� � hx ˝ � � h0y/;

for all k 2 K; � 2 G; hx 2 Hx and h0y 2 H0y .
Now, for H, H0 and H00 objects in BunG.K/ the associativity constraint

‚ W .H˝H0/˝H00 ! H˝ .H0 ˝H00/;

for the monoidal structure˝ is defined by

‚..hx ˝ h
0
y/˝ h

00
z/ D �Œxjyjz�

�1hx ˝ .h
0
y ˝ h

00
z/

for all x; y; z 2 K, hx 2 Hx , h0y 2 H0y and h00z 2 H00z .
Finally we define the unit object C as the one dimensional Hilbert space C graded

only at the unit element e 2 K, endowed with trivial G-action. All in all, we have
that

Proposition 5.1. For K D .K;m; 1; ˛; ˇ; �/ a pseudomonoid with strict unit in
the 2-category of G-sets with twists, the triple .BunG.K/;˝;C/, endowed with the
tensor product˝ and the unit element C is a monoidal category (or tensor category).
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Remark 5.2. Consider the case of a group G acting on itself by conjugation and
the pseudomonoid KwG D .G;m; 1; ˛w ; ˇw ; �w/ defined in Section 4.5. In the
case that G is finite, the tensor category BunG.KwG/ is exactly the category of
representations Rep.Dw.G// of the Twisted Drinfeld Double Dw.G/. Note that
the quasi-Hopf algebra Dw.G/ is defined only for G finite, but BunG.KwG/ is
defined for an arbitrary discrete group. So, the tensor category BunG.KwG/ is a
generalization of the Twisted Drinfeld Double of a finite group.

5.1. Morphism of pseudomonoids, monoidal functors and natural isomor-
phisms. A morphism in the 2-category of pseudomonoids in the 2-category G-sets
with twists induce a monoidal functor between the associated monoidal categories.

Proposition 5.3. Let F D .F; �; �/ W K ! K0 be a morphism of pseudomonoids.
Then F induces a monoidal functor from the monoidal categories .BunG.K/;˝;C/
and .BunG.K0/;˝0;C0/.

Proof. Let F D .F; �; �/ W K! K0 be a morphism of pseudomonoids as defined in
Proposition 4.8. We define a functor F W BunG.K/ ! BunG.K0/ in the following
way: for H an object in BunG.K/, the K 0-graded Hilbert space F.H/ is the direct
sum

F.H/y D
M

fx2KWF.x/Dyg

Hx :

The twisted G-action on F.H/ is defined as follows: take h0y 2 F.H/y defined
by the element h0y D hx for some vector hx 2 Hx with F.x/ D y. Define the
twisted G-action �0 on h0y by

� �0 h0y WD �Œ� jjx�.� � hx/:

The monoidal structure of the functor F is defined as follows: take H;H0 two
objects in BunG.K/ and consider the map

R W F.H/˝0 F.H0/!F.H˝H0/
hx1
˝
0 hx2

7! �.x1; x2/
�1hx1

˝ hx2

where hx1
2 Hx1

and hx2
2 H0x2

but we see them both as elements in F.H/F.x1/

and F.H0/F.x2/ respectively, and the element hx1
˝ hx2

we see it as an element in
F.H˝H0/F.x1x2/.

Proposition 5.4. Given morphisms of pseudomonoids with strict unit in the 2-category
of G-sets with twists F D .F; �; �/ and F 0 D .F; �0; �0/, with F ;F 0 W K ! K0,
a 2-morphism  W F ) F 0, induces a monoidal natural isomorphism between the
monoidal functors F and F0.
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Proof. Using the notation defined above, we define the transformation between F
and F0 as follows:

F.H/!F0.H/
hx 7! .x/�1 hx :

Equations ı1 D �0=� and ı2 D �=�0 shown in the proof of Proposition 4.10 imply
that the transformation is natural and monoidal, respectively.

5.2. Automorphisms of pseudomonoids and their action on the monoidal
category of equivariant vector bundles. Let us fix K D .K;m; 1; ˛; ˇ; �/ a
pseudomonoid with strict unit in the 2-category of G-sets with twists and let
.BunG.K/;˝;C/ be the monoidal category of G-equivariant bundles over K.

Take F D .F; �; �/ W K ! K an invertible morphism of the pseudomonoid K
and note that Proposition 5.3 tells us that the induced monoidal functor

F W .BunG.K/;˝;C/! .BunG.K/;˝;C/

becomes an automorphism of the monoidal category .BunG.K/;˝;C/.
If we denote by

AutPsmnd.K/
the 2-group of automorphisms of the pseudomonoid K, whose morphisms are
invertible morphisms F W K ! K and whose 2-morphisms are the natural
transformations between functors  W F ) F 0, and

Aut˝.BunG.K//

the 2-group of automorphisms of the monoidal category .BunG.K/;˝;C/, whose
morphisms are invertible monoidal functors and whose 2-morphisms are monoidal
natural transformations, then we have that Propositions 5.3 and 5.4 imply that there
is a 2-functor

AutPsmnd.K/! Aut˝.BunG.K//
 W F ) F 0 7!  W F) F0

from the 2-group of automorphisms of the pseudomonoid K to the 2-group of
automorpshisms of BunG.K/.

To understand the previous action in more detail, let us start by studying the
category AutPsmnd.K/.

An automorphism F D .F; �; �/ W K ! K consists of a G-equivariant
automorphism F 2 AutG.K/, together with a degree 2 cochain � ˚ ��1 in
Tot�.A�;�.K oG;T// such that

.ıG ˚ ı
.�1/p

K /.�˚ ��1/ D F �˛=˛ ˚ F �ˇ=ˇ ˚ F ��=�:
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The automorphism F lies on the image of the forgetful functor

AutPsmnd.K/! AutG.K/

F D .F; �; �/ 7! F I

if and only if the cohomology classes Œ˛ ˚ ˇ ˚ �� and F �Œ˛ ˚ ˇ ˚ �� are equal as
cohomology classes in H 2 .Tot�.A�;�.K oG;T///. If we define

AutG.KI Œ˛ ˚ ˇ ˚ ��/ WD fF 2 AutG.K/jF �Œ˛ ˚ ˇ ˚ �� D Œ˛ ˚ ˇ ˚ ��g

we have that the 2-group of automorphisms of K sits in the exact sequence

0

��
Tot1.A�;�.K oG;T///

ıG˚ıK

��
Z2.Tot�.A�;�.K oG;T/// // AutPsmnd.K/ // AutG.KI Œ˛ ˚ ˇ ˚ ��/ // 0

whereZ2.Tot�.A�;�.KoG;T/// denotes the degree 2-cocycles and Tot1.A�;�.Ko
G;T// parameterizes the 2-morphisms between the morphisms ofZ2.Tot�.A�;�.Ko
G;T///.

If we take equivalence classes of automorphisms in AutPsmnd.K/ defined by the
2-morphisms, we obtain a group which is usually denoted by

�1 .AutPsmnd.K// I

this group sits in the middle of the short exact sequence

0! H 2.Tot�.A�;�.KoG;T///! �1 .AutPsmnd.K//! AutG.KI Œ˛˚ˇ˚��/! 0I

and by the Lyndon–Hochschild–Serre spectral sequence we know that there is an
exact sequence

0! H 1.G;Hom.K;T//! H 2.Tot�.A�;�.K oG;T///

! H 2.K;T/G
d2
! H 2.G;Hom.K;T//;

where d2 is the differential of the second page.
Furthermore, if we take the group of 2-morphisms of the identity morphism in

AutPsmnd.K/, we obtain a group which is usually denoted by

�2 .AutPsmnd.K//

and is equal to H 1.Tot.A�;�.K oG;T/// D Hom.K;T/G .
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5.3. The Grothendieck ring associated to the monoidal category. Consider the
isomorphism classes of objects in the monoidal category BunG.K/. Since the
objects could be understood as finite dimensional vector spaces which are K-graded
endowed with a projective G-action, we can add them up and moreover we can
multiply them by using the tensor product of the monoidal category. What we
obtain is a semi-ring which we can make into a ring by applying the standard
Grothendieck construction argument of K-theory. Denoting by Groth .BunG.K//
the Grothendieck ring constructed from the monoidal category BunG.K/, we have
a functor

PsmndG ! Rings

K 7! Groth .BunG.K//

from the 2-category of pseudomonoids with strict unit in the 2-category G-sets with
twists, to the category of rings.

The ring Groth .BunG.K// can also be understood as the ˛-twistedG-equivariant
K-theory of the monoid K where the multiplication is induced by the pushfor-
ward m� of the multiplication m W K �K ! K. This twisted K-theory ring was the
main motivation of this work and is the subject of the next section.

In the case in which G D K and G acts on G by the left adjoint action we
have seen that any 3-cocycle w 2 Z3.GIT/ induces a 3-cocycle ˛w ˚ ˇw ˚

�w 2 Z
3.Tot�.A�;�.G o G;T/// that makes K WD .G;m; 1; ˛w ; ˇw ; �w/ into a

pseudomonoid with strict unit in the 2-category G-sets with twists. In this case
the Grothendieck ring Groth .BunG.K// is isomorphic to the Grothendieck ring of
representations

Groth.Rep.Dw.G///

of the Twisted Drinfeld Double Dw.G/ of the group G (see [19, Section 3]), which
is also isomorphic to the w-twisted stringy K-theory

wKst .ŒG=G�/

of the groupoid ŒG=G� [19, Prop. 18] c.f. [2, 4, 11].

5.3.1. Automorphisms. Since the 2-functor

AutPsmnd.K/! Aut˝.BunG.K//

induces a homomorphism

�1.AutPsmnd.K//! �1.Aut˝.BunG.K///;

we have that there is a homomorphism of groups

�1.AutPsmnd.K//! Aut.Groth.BunG.K///
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which composed with the inclusion

H 2.Tot.A�;�.K oG;T///! �1.AutPsmnd.K//

defines a homomorphism

H 2.Tot.A�;�.K oG;T///! Aut.Groth.BunG.K///:

The previous morphism will be of interest when we compare it with the group of
automorphisms of the twisted equivariant K-theory ring in Section 6.7.1.

6. The fusion product and the twisted G-equivariant K-theory ring

Whenever X is a finite G-CW complex with G a finite group, the elements
in H 3

G.X IZ/ classify the isomorphism classes of projective unitary stable and
equivariant bundles over X , and these bundles provide the required information to
define equivariant Fredholm bundles over X ; the homotopy groups of the space of
section of a such bundle is one way to define the twisted G-equivariant K-theory
groups of X (see [3]). The homotopy classes of automorphisms of a projective
unitary stable and equivariant bundle over X are in one to one correspondence with
H 2
G.X IZ/ and this group acts on the twisted G-equivariant K-theory groups.

Whenever the space X is a discrete G-set, there is an equivalent but easier way
to define the twisted G-equivariant K-theory groups of X . Let us review it.

6.1. Twisted G-equivariant K-theory. Take a normalized 2-cocycle ˛ W G �G �
X ! T and define an ˛-twisted G-vector bundle over X as a finite dimensional
X -graded complex vector space E, which can alternatively be seen as a finite
dimensional complex vector bundle p W E ! X with finite support, endowed with
a G action such that p is G equivariant, the action of G on the fibers is complex
linear, and such that the composition of the action on E satisfies the equation

g � .h � z/ D ˛.g; hjjp.z//.gh � z/

for all z in E. Two ˛-twisted G-vector bundles over X are isomorphic if there exists
a G equivariant map E ! E 0 of complex vector bundles which is an isomorphism
of vector bundles.

Definition 6.1. The ˛-twisted G-equivariant K-theory of X is the Grothendieck
group

KUG.X I˛/

associated to the semi-group of isomorphism classes of ˛-twisted G-vector bundles
over X endowed with the direct sum operation.
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If we have aG-equivariant map F W Y ! X then the pullback of bundles induces
a group homomorphism

F � W KUG.X I˛/! KUG.Y IF �˛/:

6.1.1. For a normalized cochain � 2 C 1G.X IT/ with ıG� D ˛0=˛ then there is an
induced isomorphism of groups

� W KUG.X I˛/
Š
! KUG.X I˛0/

where �.E/ WD E and the G-action �0 on z 2 �.E/ is given by the equation:

h �0 z WD �Œhjjp.z/�.h � z/:

Since cohomologous twistings induce isomorphic twisted K-theory groups, we
have that H 2

G.X IT/ classifies the isomorphism classes of twistings for the G-
equivariant K-theory of X . And since the isomorphisms � and � � .ıG/ are equal,
we have that the group H 1

G.X IT/ acts on the ˛-twisted G-equivariant K-theory
group KUG.X I˛/ by automorphisms.

6.2. Pushforward. For a G-equivariant map F W Y ! X and ˛ 2 Z2G.X IT/ there
is a pushforward map

F� W KUG.Y IF �˛/! KUG.X I˛/

defined at the level of vector bundles as follows

.F�E/x WD
M

fy2Y jF.y/Dxg

Ey

where the G-action on F�E is the one induced by the G-action on Y and the G-
action on E.

6.3. External product. If we consider two G-sets with twist .X; ˛X / and .Y; ˛Y /,
the external product is the homomorphism

KUG.X I˛X / �KUG.Y I˛Y /
�
! KUG.X � Y I��1˛X � �

�
2˛Y /

where .E �F /.x;y/ WD Ex ˝Fy and �1 and �2 denote the projections of X � Y on
the first and the second coordinate respectively.
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6.4. Multiplicative structures on Twisted Equivariant K-theory. In the partic-
ular case on which the G-set X is endowed with the additional structure of a G-
equivariant multiplication map

m W X �X ! X

and moreover that the cohomology class Œ˛� of the twisting is multiplicative i.e.
��1 Œ˛� � �

�
2 Œ˛� D m�Œ˛�, then the ˛-twisted G-equivariant K-theory group can be

endowed with a product structure. This construction could be done forG-equivariant
H-spaces, but for clarity we will restrict ourselves to the case on which the G-set is
a G-equivariant monoid with unit.

Let K be a G-equivariant discrete monoid with unit and denote by m W K �
K ! K the multiplication of the monoid. Take a twist ˛ 2 Z2G.KIT/ that is
multiplicative, i.e. that there exist a cochain ˇ 2 C 1G.K �KIT/ such that

ıGˇ D
m�˛

��1˛ � �
�
2˛

or equivalently ıGˇ � ıK˛ D 1, then we can compose the following morphisms

KUG.KI˛/ �KUG.KI˛/
�
�! KUG.K �KI��1˛ � �

�
2˛/

ˇ
�! KUG.K �KIm�˛/

m�
�! KUG.KI˛/

thus producing a product structure

?ˇ W KUG.KI˛/ �KUG.KI˛/! KUG.KI˛/

.E; F / 7! m�.ˇ.�.E; F ///:

It is a simple calculation to see that the product ? previously defined is associative
whenever the cohomology class Œˇ� 2 H 1

G.K �KIT/ satisfies the equation

ıK Œˇ� D 1

as a cohomology class in H 1
G.K �K �KIT/. We therefore have that if there exists

a cochain � 2 C 0G.K �K �KIT/ such that

ıG� D ıKˇ

then the product ? previously defined endows the group KUG.KI˛/ with a ring
structure. Summarizing:

Proposition 6.2. Consider ˛ 2 Z2G.KIT/ and ˇ 2 C 1;2.K o GIT/ satisfying the
equations

ıGˇ � ıK˛ D 1; ı2Œˇ� D 1:
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Then the group KUG.KI˛/ endowed with the product structure ?ˇ becomes a ring.
Let us denote this ring by

KUG.KI˛; ˇ/ WD .KUG.KI˛/; ?ˇ /

and let us call the pair .˛; ˇ/ a multiplicative structure for K.

6.4.1. Many of the features of the twisted G-equivariant K-theory rings are better
understood if we work with the notation introduced in Section 2.

Recall that the double complex A�;� WD A�;�.K o GIT/ is the subcomplex of
C �;�.KoGIT/ disregarding the 0-th row. Consider the subcomplex A�;�>3 of A�;�

defined as subcomplex of C �;�.K oGIT/ where we disregard the first four rows.
The double complex A�;�=A�;�>3 consists of the second, third and fourth rows

of the double complex C �;�.KoGIT/, and we have that if KUG.KI˛/ can be made
into a ring is because there exists ˇ and � such that the cochain ˛˚ ˇ˚ � becomes
a 3-cocycle in the complex Tot�.A�;�=A�;�>3/ and the 3-cocycle can be seen in a
diagram as follows

4

3 � 1

2 ˇ 1

1 ˛ 1

0 1 2 3

ıG

.ıK/
�1

ıG

ıK

ıG

Proposition 6.3. If the cocycle ˛ 2 Z2G.KIT/ can be lifted to a 3-cocycle ˛˚ˇ˚�
in the complex Tot�.A�;�=A�;�>3/ then the the group KUG.KI˛/ can be endowed
with the ring structure KUG.KI˛; ˇ/.

6.4.2. Let us see another way to understand the conditions under which the twist ˛
can define a multiplicative structure on KUG.KI˛/. Consider the filtration of the
double complex A�;� given by the subcomplexes F r WD A�;��r . The spectral
sequence that the filtration defines abuts to the cohomology of the total complex
of A�;�

E�;�1 ) H�.Tot.A�;�//

and has for first page
E
p;q
1 D H

p
G.K

q
IT/
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with differential

d1 W E
p;q
1 ! E

p;qC1
1 ; d1Œx� WD Œ.ıK/

.�1/px�:

If we have a twist ˛, its cohomology class Œ˛� is an element in E2;11 . The element
d1Œ˛� is the first obstruction to lift ˛ to a 3-cocycle in Tot�.A�;�/, that is, d1Œ˛� D 1
if and only if there exists ˇ 2 C 1;2.K o GIT/ such that ıGˇ � ıK˛ D 1. Note
furthermore that

d1Œ˛� D
m�Œ˛�

��1 Œ˛� � �
�
2 Œ˛�

and therefore we recover what we knew, namely that the twist ˛ may induce a
product in KUG.KI˛/ if and only if the cohomology class Œ˛� is multiplicative.

If the cohomology class Œ˛� is multiplicative, then Œ˛� survives to the second page
of the spectral sequence with Œ˛� 2 E2;12 . The second differential applied to Œ˛� is
d2Œ˛� D Œ.ı2ˇ/

�1�

3 .ıKˇ/
�1

2 ˇ 1

1 ˛

0 1 2

ıK

ıG

.ıK/
�1

3 Œ.ıKˇ/
�1�

2

1 Œ˛�

0 1 2

d2

and this is the second obstruction to lift ˛ to a 3-cocycle in Tot�.A�;�/, i.e. d2Œ˛� D 1
if and only if there exists � 2 C 0;3.K o G;T/ such that ıG�.ıKˇ/�1 D 1. Note
that d2Œ˛� measures the obstruction for the multiplication ?ˇ in KUG.KI˛/ to be
associative.

We have then that the equations d1Œ˛� D 1 D d2Œ˛� are the equations that need
to be satisfied in order for the group KUG.KI˛/ to become a ring with respect to
the construction provided in this section.

If Œ˛� survives to the third page we have that d3Œ˛� D ŒıK�� and therefore
d3Œ˛� D 1 implies that ˛ ˚ ˇ ˚ � is a 3-cocycle in Tot�.A�;�/. So if Œ˛� survives
to the fourth page, and hence the page at infinity, then K D .K;m; 1; ˛; ˇ; �/ is a
pseudomonoid with strict unit in the 2-category ofG-sets with twists. Summarizing:
Proposition 6.4. Consider ˛ 2 Z2G.KIT/, then ˛ can be lifted to a 3-cocycle
˛ ˚ ˇ ˚ � in Tot�.A�;�=A�;�>3/ if and only if d1Œ˛� D 1 D d2Œ˛�, and this implies
that KUG.KI˛; ˇ/ becomes a ring. If furthermore d3Œ˛� D 1 then ˛ ˚ ˇ ˚ �

is a 3-cocycle in Tot.A�;�/ and this implies that K D .K;m; 1; ˛; ˇ; �/ is a
pseudomonoid with strict unit in the 2-category of G-sets with twists, and in this
case

KUG.KI˛; ˇ/ Š Groth .BunG.K// :
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6.5. Isomorphism classes of Multiplicative structures. In this section we want
to determine some sufficient conditions under which the twisted G-equivariant
K-theory rings KUG.KI˛; ˇ/ and KUG.KI˛0; ˇ0/ induced by the multiplicative
structures .˛; ˇ/ and .˛0; ˇ0/ become isomorphic.

Let us consider the double complex A�;�=A�;�>2 which consists of the first and
the second row of the double complex C �;�.K oG;T/. We claim

Lemma 6.5. Consider .˛; ˇ/ and .˛0; ˇ0/ multiplicative structures on K. If ˛ ˚ ˇ
and ˛0 ˚ ˇ0 are cohomologous as 3-cocycles in Tot�.A�;�=A�;�>2/, then the rings
KUG.KI˛; ˇ/ and KUG.KI˛0; ˇ0/ are isomorphic.

Proof. If ˛˚ˇ and ˛0˚ˇ0 are cohomologous as 3-cocycles in Tot�.A�;�=A�;�>2/,
then there exists a 2-cochain �˚ ��1 with � 2 A1;1 and � 2 A0;2 such that

ıG ˚ ı
.�1/p

K .�˚ ��1/ D ˛0=˛ ˚ ˇ0=ˇ;

namely that ıG� D ˛0=˛ and .ıK�/�1.ıG�/�1 D ˇ0=ˇ, or diagramatically

3

2 ��1 ˇ0=ˇ

1 � ˛0=˛

0 1 2

ıG

.ıK/
�1

ıG

The isomorphism � W KUG.KI˛/
Š
! KUG.KI˛0/ induces an isomorphism of

rings

� W KUG.KI˛; ˇ/
Š
! KUG.KI˛0; ˇ00/

where ˇ00 WD ˇ.ıK�/
�1. Since .ıK�/�1.ıG�/�1 D ˇ0=ˇ, we have that ˇ00 D

ˇ0.ıG�/, therefore the isomorphism ˇ00 and ˇ0 are equal and we obtain that
KUG.KI˛0; ˇ00/ Š KUG.KI˛0; ˇ0/.

The short exact sequence of complexes

0! A�;�>2=A�;�>3 ! A�;�=A�;�>3 ! A�;�=A�;�>2 ! 0

induces a long exact sequence in cohomology groups

! H 3.Tot�.A�;�=A�;�>3//!H 3.Tot�.A�;�=A�;�>2//!H 4.Tot�.A�;�>2=A�;�>3//!

Œ˛ ˚ ˇ ˚ �� 7! Œ˛ ˚ ˇ� 7! Œ.ı2ˇ/
�1�
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and we see that Lemma 6.5 and Proposition 6.4 imply that the subgroup

MSG.K/ WD fŒ˛ ˚ ˇ� 2 H
3.Tot�.A�;�=A�;�>2//jŒıKˇ� D 1g

is precisely the group of equivalence classes of multiplicative structures associated
to the twisted G-equivariant K-theory of the monoid K. We define

Definition 6.6. The group

MSG.K/ WD fŒ˛ ˚ ˇ� 2 H
3.Tot.A�;�=A�;�>2//jŒı2ˇ� D 1g

will be called the group of multiplicative structures for the G-equivariant K-theory
of the monoid K.

And therefore we have that

Proposition 6.7. The elements of the group MSG.K/ are in one to one corre-
spondence with the set of isomorphism classes of ring structures (in the sense of
Lemma 6.5) on the twisted G-equivariant K-theory to the monoid K.

In particular we have that there are at most #.MSG.K// of different multiplica-
tive structures in the twisted G-equivariant K-theory groups of K.

6.6. Automorphisms of the twisted equivariant K-theory ring. From Section
6.1.1 we know that if � 2 C 1G.KIT/ satisfies ıG� D 1 then the map � induces an
isomorphism of groups

� W KUG.KI˛/
Š
! KUG.KI˛/:

Whenever .˛; ˇ/ is a multiplicative structure, it follows that the map � induces an
isomorphism of rings whenever the homomorphism ıK� is the identity map, namely
that ŒıK�� D 1 as a cohomology class in H 1

G.K �KIT/. If we define the group of
multiplicative elements by

H 1
G.KIT/mult WD

˚
Œ�� 2 H 1

G.KIT/jıK Œ�� D �
�
1 Œ�� � �

�
2 Œ�� �m

�Œ���1 D 1
	

we have then that the group of automorphisms of the twistedG-equivariant K-theory
ring is equal to the multiplicative elements in H 1

G.KIT/, i.e.

Aut.KUG.KI˛; ˇ// D H 1
G.KIT/mult

Using the spectral sequence of Section 6.4.2 we see that the multiplicative terms
appear in the second page of the spectral sequence

H 1
G.KIT/mult D E

1;1
2
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since d1Œ�� D ŒıK��
�1 is the obstruction of being multiplicative. If furthermore a

multiplicative element satisfies d2Œ�� D 1, then we have that Œ�� can be lifted to an
element Œ�˚ �� in H 2.Tot.A�;�//. This means that we have the exact sequence

0! H 2.C �.KIT/G/! H 2.Tot.A�;�//! H 1
G.KIT/mult

d2
! H 3.C �.KIT/G/

(6.1)

where the G-invariant cochains come from the first page of the spectral sequence,
i.e. E

0;q
1 D C q.KIT/G , and its cohomology appears in the second page, i.e.

E
0;q
2 D H q.C �.KIT/G ; ıK/.

6.7. Relation between the Grothendieck ring associated to a monoidal category
and the twisted equivariant K-theory ring. Let us consider a G-equivariant
monoid with unit K. We have seen that to a pseudomonoid with strict unit in the
2-category of G-sets with twist K D .K;m; 1; ˛; ˇ; �/ over K we can associate the
ring Groth.BunG.K// of isomorphism classes of objects in the monoidal category
BunG.K/. At the same time, since ˛ ˚ ˇ ˚ � 2 Z3.Tot�.A�;�.K o G;T///, then
.˛; ˇ/ is a multiplicative structure and we get that

Groth.BunG.K// Š KUG.KI˛; ˇ/

as rings. We have therefore a canonical map

H 3.Tot.A�;�//!MSG.K/ (6.2)

Œ˛ ˚ ˇ ˚ �� 7!Œ˛ ˚ ˇ�

from the isomorphism classes of pseudomonoid structures with strict unit of G-sets
with twist over K, to the group of multiplicative structures of the G-equivariant
twisted K-theory groups of K. Let us understand this map in more detail.

Consider the projection homomorphism between the exact sequences of com-
plexes

0 // A�;�>2

p

��

� // A�;�

�

��

� // A�;�=A�;�>2 //

Š

��

0

0 // A�;�>2=A�;�>3
N� // A�;�=A�;�>3

N� // A�;�=A�;�>2 // 0

and the homomorphism between the long exact sequences induced

H 3.Tot.A�;�/��

�

��

� // H 3.Tot.A�;�=A�;�>2//

Š

��

� // H 4.Tot.A�;�>2/

p

��

� //

H 3.Tot.A�;�=A�;�>3//
N� // H 3.Tot.A�;�=A�;�>2// N� // H 4.Tot.A�;�>2=A�;�>3// N� //

where � and N� are the connection homomorphisms with �Œ˛ ˚ ˇ� D ı2Œˇ�.
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By definition
MSG.K/ D ker. N�/

and furthermore note that the map � is injective since H 3.Tot.A�;�>3// D 0.
Therefore the canonical map defined in (6.2) is precisely the map

H 3.Tot.A�;�//
�
�!MSG.K/:

In complete generality it is difficult to give an explicit description of how the kernel

and the cokernel of the map H 3.Tot.A�;�//
�
�! MSG.K/ looks like, but for

calculations we can give the following description:

Theorem 6.8. The kernel of the homomorphism H 3.Tot.A�;�//
�
�! MSG.K/ is

isomorphic to

ker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
Š �

�
H 3.C �.K;T/G/

�
and the cokernel is isomorphic to

coker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
Š ker

�
H 4.C �.K;T/G/! H 4.Tot.A�;�//

�
:

Proof. Let us start with the kernel of the map �. From the long exact sequences of
cohomologies defined above we get that

ker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
Š �

�
H 3.Tot.A�;�>2//

�
where the groupH 3.Tot.A�;�>2// consists of elements in C 0;3 that are closed under
the differentials ıG and ıK and therefore

H 3.Tot.A�;�>2// D Z3.K;T/G :

Now, since the elements ıK.C 2.K;T/G/ are all zero inH 3.Tot.A�;�// we have that

�
�
Z3.K;T/G

�
D �

�
H 3

�
C �.K;T/G

��
and therefore

ker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
Š �

�
H 3.C �.K;T/G/

�
:

For the cokernel we have that the long exact sequence in cohomologies defined
above implies that

coker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
Š H 4.Tot.A�;�>2// \ ker.p/ \ ker.�/:
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Now, the projection map

p W H 4.Tot.A�;�>2//! H 4.Tot.A�;�>2=A�;�>3// D H 1
G.K

3;T/

has for kernel the elements in the fourth cohomology of the G-invariant K-chains

ker.p/ D H 4.C �.K;T/G/;

and this follows from the spectral sequence that converges H�.Tot.A�;�>2//
associated to the filtration Tot.A�>q;�/. Since the natural homomorphism

H 4.C �.K;T/G/! H 4.Tot.A�;�//

coincides with the map �, we have the desired isomorphism

coker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
Š ker

�
H 4.C �.K;T/G/! H 4.Tot.A�;�//

�
:

For calculation purposes let us understand the kernel and the cokernel of the
map � from the point of view of the spectral sequence of Section 6.4.2.

Proposition 6.9. Consider the filtration of the complex Tot.A�;�/ defined by the
subcomplexes Tot.A�;�>q/ and consider the spectral sequence that it defines which
converges to H�.Tot.A�;�/. Then we have the isomorphisms

ker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
Š E

0;3
4

coker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
Š d3.E

2;1
3 /C d2.E

1;2
2 /:

In the particular case on which the spectral sequence collapses at the second page
we conclude that

0! H 3.C �.K;T/G/! H 3.Tot.A�;�//
�
�!MSG.K/! 0:

Proof. The first page of the spectral sequence associated to the filtration Tot.A�;q>�/
is given by E0;q1 D C q.K;T/G and Ep;q1 D H

p
G.K

q;T/ whenever q > 0, and
therefore one has that the second page is given by

E
0;q
2 DH q.C �.K;T/G/

and for p > 0 and q > 0

E
p;q
2 D

ker
�
H
p
G.K

q;T/
ıK
! H

p
G.K

qC1;T/
�

im
�
H
p
G.K

q�1;T/
ıK
! H

p
G.K

q;T/
� :
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The map
H 4.C �.K;T/G/! H 4.Tot.A�;�//

coincides with the standard map E0;42 ! H 4.Tot.A�;�// and its kernel consists of
the images of E1;22 and E2;13 under the differentials d2 and d3 respectively, since we
know that the map

E
0;4
4 ,! H 4.Tot.A�;�//:

is injective. Therefore we have that

d2.E
1;2
2 / � ker

�
H 4.C �.K;T/G/! H 4.Tot.A�;�//

�
and the above inclusion is an equality whenever d3.E

2;1
3 / D 0. In the case that

d3.E
2;1
3 / ¤ 0 we could abuse of the notation and say that

d3.E
2;1
3 /C d2.E

1;2
2 / D ker

�
H 4.C �.K;T/G/! H 4.Tot.A�;�//

�
:

A similar argument could be used to calculate �
�
H 3.C �.K;T/G/

�
. Since

E
0;3
2 D H 3.C �.K;T/G/ we have that its image �.E0;32 / � H 3.Tot.A�;�// is equal

to the image of the canonical map

E
0;3
2 ! H 3.Tot.A�;�//:

Since the image is isomorphic to the group to which it converges, in this case E0;44 ,
then we can conclude that �

�
H 3.C �.K;T/G/

�
Š E

0;3
4 and therefore

ker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
Š E

0;3
4 :

Finally, whenever the spectral sequence collapses at the second page we have
that d2 D 0 D d3 and therefore � is surjective. Since we have in this case we have
that E0;34 D E

0;3
2 D H

3.C �.K;T/G/, the proposition follows.

From Theorem 6.8 we can deduce two things.

� If K D .K;m; 1; ˛; ˇ; �/ is a pseudomonoid with strict unit in the 2-category of
G-sets with twists such that Œ˛˚ˇ˚�� lies in the image of �, then the Grothendieck
ring Groth.BunG.K// is isomorphic to the untwisted ring KUG.K/.

� Multiplicative structures .˛0; ˇ0/ in MSG.K/ such that ˛0 ˚ ˇ0 ˚ � 0 belongs to
Z3.Tot.A�;�=A�;�>3// and ıK� 0 ¤ 0, define ring structures KUG.KI˛0; ˇ0/
which cannot be obtained as the Grothendieck ring Groth.BunG.K// for any
pseudomonoid K with strict unit in the 2-category of G-sets with twists.
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6.7.1. Relation between the automorphisms. We have seen that the isomorphism
classes of automorphisms of K that leave the monoid K fixed is isomorphic to the
group H 2.Tot.A�;�.K oG;T///. Since the automorphism group of KUG.KI˛; ˇ/
is H 1

G.KIT/mult we have that there is an induced map

H 2.Tot.A�;�//! H 1
G.KIT/mult

which matches the homomorphism that appears in the exact sequence (6.1)

0! H 2.C �.KIT/G/! H 2.Tot.A�;�//! H 1
G.KIT/mult

d2
! H 3.C �.KIT/G/:

Note that in the case that the spectral sequence collapses at the second page we get
the short exact sequence

0! H 2.C �.KIT/G/! H 2.Tot.A�;�//! H 1
G.KIT/mult ! 0:

A more elaborate analysis of the homomorphisms

H 3.Tot.A�;�//
�
!MSG.K/ and H 2.Tot.A�;�//! H 1

G.KIT/mult

will depend on the choice of the group G and of the G-equivariant monoid K. In
the next chapter we will calculate explicitly the previous homomorphisms for several
examples, and from them we will deduce interesting information with regard to the
twisted equivariant K-theory rings.

7. Examples

The main objective of this section is to use Proposition 6.9 to calculate the kernel
and cokernel of the homomorphism

H 3.Tot.A�;�//
�
!MSG.K/

for different choices ofG andK, in order to show the different twistedG-equivariant
K-theory rings over K that can appear.

7.1. Trivial action of G on K. In this case we have that the spectral sequence
defined in Proposition 6.9 collapses at the second page and moreover we have that
C �.K;T/ D C �.K;T/G . Therefore we obtain the short exact sequence

0! H 3.K;T/! H 3.Tot.A�;�//
�
!MSG.K/! 0;

thus implying that

MSG.K/ Š H
3.Tot�.B�;�.K �G;T///;
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and moreover that all multiplicative structures for the G-equivariant K-theory of K
can be obtained from the ring structures defined by the Grothendieck rings of the
monoidal categories BunG.K/. We also obtain the short exact sequence

0! H 2.K;T/! H 2.Tot.A�;�//! Hom.K;Hom.G;T//! 0

where in this case H 1
G.K;T/mult D Hom.K;Hom.G;T//.

Furthermore, if Œ� � 2 H 3.K;T/ is non trivial then we can define a non-
trivial pseudomoinoid with strict unit in the 2-category of G-sets with twist
K D .K;m; 1; 0; 0; �/ with Œ0˚ 0˚ �� non-zero in H 3.Tot.A�;�//, such that

Groth.BunG.K// Š R.G/˝Z ZŒK�

where R.G/ is the Grothendieck ring of finite dimensional complex representations
of G and ZŒK� is the group ring of K, since we know that R.G/ ˝Z ZŒK� is
isomorphic to the non-twisted ring structure on KUG.K/.

7.1.1. G D Z=n and K D Z=m. In this case we have that H 3.K;T/ D Z=m and

H 3.Tot.A�;�// D Z=m˚ Z=.n;m/

where .n;m/ is the greatest common divisor of the pair n;m. ThereforeMSG.K/ D
Z=.n;m/ and we have that all non trivial multiplicative structures come from the
group

Z=.n;m/ D H 3.Tot.B�;�// � H 3.Tot.A�;�//:

7.2. Adjoint action of G on itself. From Lemma 3.5 we know that in this case we
have the split short exact sequence

0 // H�.Tot.B�;�// // H�.Tot.A�;�// // H�.G;T//
��pp

// 0

induced by the short exact sequence of complexes

0! Tot.B�;�/ � Tot.A�;�/! C �>0.G;T/! 0:

Since we have the inclusion H�.Tot.B�;�// � H�.Tot.A�;�//, we can deduce
that the groups E�;02 of the 0-th column of the second page of the spectral
sequence converging to H�.Tot.A�;�// defined in Proposition 6.9, are unaffected
by the differentials di for i > 1; this follows from the injectivity between the
spectral sequences associated to the filtrations B�;�>q and A�;�>q of Tot.B�;�/ and
Tot.A�;�/ respectively.

Therefore we have that E0;34 D E
0;3
2 D H 3.C �.G;T/G/ and d2.E

1;2
2 / D 0 D

d3.E
2;1
3 /, and by Proposition 6.9 we get the short exact sequence

0! H 3.C �.G;T/G/! H 3.Tot.A�;�//
�
!MSG.G/! 0: (7.1)
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Moreover, the cokernel of the inclusion

E0;q1 ! H q.Tot.A�;�//

should match the cohomology group H q.Tot.B�;�// since this piece is built from
the groups Er;s1 with r; s > 1 and r C s D p, therefore we have the canonical
isomorphism

H q.C �.G;T/G/˚H q.Tot.B�;�//
Š
! H q.Tot.A�;�//; x ˚ y 7! x C y

which in particular implies that

H q.C �.G;T/G/
Š
�! H q.G;T/:

Then we can conclude that the composition of the maps

H 3.Tot.B�;�// � H 3.Tot.A�;�//
�
!MSG.G/

is an isomorphism, and therefore we obtain the canonical isomorphism

H 3.Tot.B�;�//
Š
!MSG.G/; Œ˛ ˚ ˇ� 7! Œ˛ ˚ ˇ�: (7.2)

Also we obtain the short exact sequence

0! H 2.C �.GIT/G/! H 2.Tot.A�;�//! H 1
G.GIT/mult ! 0;

with H 1
G.GIT/mult Š H

2.Tot.B�;�// Š Hom.G;Hom.G;T//.
Now we will study the multiplicative structures that define the pseudomonoids

constructed via the formalism introduced in [7], and whose properties were outlined
in Section 4.5. For this purpose we need to calculate the composition of the maps

H 3.G;T/
��

1
! H 3.Tot.A�;�//

�
!MSG.G/

where ��1 is the induced map in cohomology which was defined at the chain level
in (3.2). This calculation will be carried out using the ring structure of the ring
H�.G;Z/ together with the pullback map�� W H�.G;Z/! H�.GoG;Z/ induced
by the multiplication � W G o G ! G as we have in Theorem 3.3. Since we have
the isomorphism

H 3.Tot.A�;�//˚H 3.G;T/
Š
! H 3.G oG;T/; x ˚ y 7! x C ��2 y

where �2 W G oG ! G; .a; g/ 7! g is the projection, then the short exact sequence
of (7.1) implies that the following is also a short exact sequence

0! H 3.C �.KIT/G/˚H 3.G;T/! H 3.G oG;T/!MSG.G/! 0:
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We conclude that the homomorphism

� ı ��1 W H
3.G;T/!MSG.G/

is equivalent to the composition of homomorphisms

H 3.G;T/
��

! H 3.G oG;T/=.H 3.C �.KIT/G/˚H 3.G;T//
Š
!MSG.G/:

Therefore we simply need to find the restriction to H 3.Tot.B�;�// of the image
of �� in H 3.G oG;T/,

H 3.G;T/
��

! H 3.G oG;T/
res
! H 3.Tot.B�;�// ŠMSG.G/:

Let us see some examples.

7.2.1. Cyclic groups. ConsiderG D K D Z=n and note that as ringsH�.GIZ/ D
ZŒx�=.nx/ where jxj D 2. By the Kunneth theorem we have that

H 2.G �GIZ/ Š H 2.GIZ/˝H 0.GIZ/˚H 0.GIZ/˝H 2.GIZ/

and moreover we have that

��x D x ˝ 1C 1˝ x:

Since x2 is the generator of H 4.GIZ/ we obtain

��x2 D x2 ˝ 1C 2x ˝ x C 1˝ x2

where
H 4.Tot.B�;�.G �G;Z/// D hx ˝ xi Š Z=n

and therefore we obtain that the map

� ı ��1 W H
3.G;T/!MSG.G/

is equivalent to the map

H 4.GIZ/! H 4.Tot.B�;�.G �G;Z///; x2 7! 2x ˝ x:

Since in this caseH 3.GIT/ ŠMSG.G/ Š Z=nwe have that �ı��1 W Z=n
�2
! Z=n.

Therefore, when n is odd, the map � ı ��1 is an isomorphism and therefore the
Grothendieck rings of representations Groth.Rep.Dw.G/// of the Twisted Drinfeld
Doubles Dw.G/ for w 2 H 3.G;T/ are all non-isomorphic.

Meanwhile when n is even, the cocycle w 2 Z3.G;T/ whose cohomology
class is n

2
2 Z=n Š H 3.G;T/ has for Grothendieck ring of representations
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Groth.Rep.Dw.G/// a ring isomorphic to Groth.Rep.D.G///, which is by defi-
nition the ring KUG.G/ D R.G/ ˝ ZG. Moreover, the multiplicative structures
defined by odd numbers in Z=n ŠMSG.G/ define Grothendieck rings of represen-
tations associated to the respective pseudomonoids which cannot be recovered via
the Grothendieck ring of representations associated to the Twisted Drinfeld Double
construction.

Note furthermore that in this case the automorphism groups are isomorphic

H 2.Tot.A�;�.G �G;T/// Š H 1
G.G;T/mult Š Z=n:

7.2.2. Quaternionic group. Consider G D K D Q8 the quaternionic group and
recall that Q8 � SU.2/ and that it sits in the short exact sequence

0! Z=2! Q8 ! Z=2˚ Z=2! 0:

From the Serre fibration

SU.2/=Q8 ! ESU.2/=Q8 ! BSU.2/

one can deduce that the integral cohomology ring of Q8 is

H�.Q8;Z/ D ZŒx; y; e�=.x2; y2; xy; 2x; 2y; xe; ye; 8e/

with jxj D jyj D 2 and jej D 4.
Since the cohomology of Q8 is all of even degree, by the Kunneth isomorphism

we have that

H 4.Q8 �Q8;Z/ Š
4M
jD0

H j .Q8;Z/˝H 4�j .Q8;Z/

and since Q8 �Q8 Š Q8 oQ8 we have that

H�.Q8 oQ8;Z/ Š H�.Q8 �Q8;Z/:

In this case we have that

MSQ8
.Q8/ Š H

4.Tot.B�;�.Q8oQ8;Z/// D hx˝x; x˝y; y˝x; y˝yi Š .Z=2/˚4

and since
��e D e ˝ 1C 1˝ e

we can deduce that the map

� ı ��1 W H
3.Q8;T/

�0
!MSQ8

.Q8/

is the trivial map.
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A nice consequence of the triviality of the map � ı ��1 is that for all w 2
Z3.Q8;T/, the Grothendieck ring of representations of the w-Twisted Drinfeld
Double is isomorphic as rings to KUQ8

.Q8/, which is the Grothendieck ring of
representations of the untwisted Drinfeld double D.Q8/.

Note also that the automorphism groups are isomorphic

H 2.Tot.A�;�.Q8 oQ8;T/// Š H 1
Q8
.Q8;T/mult Š .Z=2/˚4:

7.2.3. G simple and non-abelian. In Section 4.5.1 we showed thatH 3.Tot.B�;�.Go
G;T/// D 0 and therefore we have thatMSG.G/ D 0. Hence all Grothendieck rings
of representations for all pseudomonoids are isomorphic to the ring KUG.G/.

7.2.4. G binary icosahedral. The same result applies to the binary icosehedral
group since we showed in section 4.5.2 that H 3.Tot.B�;�.G o G;T/// D 0 and
hence MSG.G/ D 0.

7.3. Z=n acted by Z=2. Consider the action of G D Z=2 on K D Z=n given by
multiplication of �1. The group Z=noZ=2 is isomorphic to the dihedral group Dn
of rigid symmetries of the regular polygon of n sides.

7.3.1. n odd. Let us suppose that n is odd and recall that in this caseH 1.Dn;T/ D
Z=2, H 2.Dn;T/ D 0 and H 3.Dn;T/ D Z=2 ˚ Z=n. Since H 3.Z=2;T/ D Z=2
we can conclude that H 3.Tot.A�;�// D Z=n. Now, applying the spectral sequence
defined in Proposition 6.9 we have that E1;q1 D H 1

G.K
q;T/ D Z=2, since

the only fixed point of the Z=2 action is the p-tuple of zeros, and therefore
we obtain that E1;q2 D 0 for q > 0 since a simple calculation shows that
the maps d1 W E

1;2i�1
1 ! E

1;2i
1 are all isomorphisms. Moreover, since E2;q1 D

H 2
G.K

q;T/ D 0 because H 2.Z=2;T/ D 0 we have that E2;13 D 0 and we can
conclude that

coker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
D 0I

hence we have that the map H 3.Tot.A�;�//
�
�!MSG.K/ is surjective.

It remains now to calculate ker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
. Applying the

same argument as before we have that E0;32 D H 3.C �.K;T/G/ and we already
know that E1;22 D 0 D E

2;1
2 ; therefore �.H 3.C �.K;T/G// coincides with the

image of the canonical mapE0;32 ! H 3.Tot.A�;�// and this map must be surjective.
Therefore we have that

ker
�
H 3.Tot.A�;�//

�
�!MSG.K/

�
D Z=n



Multiplicative structures on twisted equivariant K-theory 931

and we can conclude that

MSG.K/ D 0I

i.e. all multiplicative structures on the Z=2-equivariant K-theory of Z=n are trivial
and and all the Grothendieck rings Groth.BunZ=2.K// are isomorphic to the ring
KUZ=2.Z=n/ for any K D .Z=n;m; 1; ˛; ˇ; �/. KUZ=2.Z=n/ is just the ring of
isomorphism classes of representations of the dihedral group Dn.

In this case the automorphism groups are both trivial

H 2.Tot.A�;�.Z=no Z=2;T/// D 0 D H 1
Z=2.Z=n;T/mult :

7.3.2. n even. Let us now suppose that n is even; in this case H 1.Dn;T/ D
Z=2 ˚ Z=2, H 2.Dn;T/ D Z=2 and H 3.Dn;T/ D Z=2 ˚ Z=2 ˚ Z=n. Since
H 3.Z=2;T/ D Z=2 we have thatH 3.Tot.A�;�// D Z=2˚Z=n. Now, we also have
that

E
1;q
1 D H 1

G.K
q;T/ Š Maps..Z=2/q;Z=2/

since the fixed points of the Z=2 action on Kq consists of q-tuples of points with
either 0 or n

2
for entries. It is a simple calculation to show that the differential d1 W

E
1;i
1 ! E

1;iC1
1 is precisely the differential of the cohomology of the group Z=2with

coefficients in Z=2 and therefore we get that

E
1;q
2 Š H q.Z=2;Z=2/ Š Z=2:

The groups E2;q1 are trivial because H 2.Z=2;T/ D 0.

Let us now calculate the group E0;12 D H 1.C �.K;T/G/. This group consists of
the maps f W Z=n! T such that f is invariant under the G-action, namely f .x/ D
f .�x/, and that ı1f D 0, which means that f is a homomorphism. The only
G-invariant homomorphisms are the ones that take values in the subgroup Z=2 � T
and therefore we have that

E
0;1
2 D H

1.C �.K;T/G/ D Z=2:
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The information we have obtained so far on the cohomology groups of the second
page of the spectral sequence is the following

3 ‹

2 ‹ Z=2

1 Z=2 Z=2 0

0 T Z=2 0 Z=2

0 1 2 3

and since we know that H 1.Dn;T/ D Z=2˚ Z=2 and H 2.Dn;T/ D Z=2 we can
deduce that E0;21 D E

0;2
2 D 0 and therefore E0;32 D E40; 3 D Z=n. Hence we have

that

H 3.C �.G;T/G/ D Z=n; MSG.K/ D Z=2

and H 3.Tot.A�;�//
�
�!MSG.K/; Z=n˚ Z=2! Z=2

is the canonical projection map.
In this case the automorphism groups are isomorphic

H 2.Tot.A�;�.Z=no Z=2;T/// Š H 1
Z=2.Z=n;T/mult Š Z=2:

A. Relation with (coquasi) bialgebras

In what follows we will show how BunG.K/ can be understood as the tensor
category of corepresentations associated to an explicit coquasi-bialgebra, and for this
purpose we will show that the input necessary for defining such coquasi-bialgebra
is equivalent to the information encoded in a pseudomonoid with strict unit in the
2-category of G-sets with twists.

A.1. Coquasi-bialgebras.

A.1.1. Coalgebras and comodules. Let k be a field. A coalgebra over k is a vector
space over k together with two linear maps � W C ! C˝C; " W C ! k (called
comultiplication and counit respectively) such that .C ˝ �/� D .�˝C/� and
.C˝"/� D ."˝C/� D C . We shall use the Sweedler’s notation omitting the sum
symbol, that is �.c/ D c1 ˝ c2 if c 2 C .
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If C is a coalgebra, a right C -comodule is a vector k-space M with a linear map
� W M ! M˝C such that .�˝C/� D .M˝�/� and .M˝"/ D M . Again for the
comodule structure we shall use Sweedler’s notation omitting the sum symbol, i.e.,
�.m/ D m0 ˝m1; m0 2 M;m1 2 C . If M;N are C -comodules, a comodule map
is a linear map f WM ! N such that �Nf D .f˝C/�M . We shall denote by MC

the category of right C -comodules.
If C;C 0 are coalgebras C ˝ C 0 is a coalgebra with comultiplication �.c˝c0/ D

.c1˝c
0
1/˝.c2˝c

0
2/ and counit ".c˝c0/ D ".c/".c0/.

For a coalgebra C the space C � is an associative algebra with the convolution
product f � g.c/ D f .c1/f .c2/ and unit ".

A.1.2. Coquasi-bialgebras. A coquasi-bialgebra is a five-tuple .H;�;m; 1H ; �/
where H is a coassociative coalgebra with counit, m W H˝H ! H;h˝g 7! hg

is a coalgebra map, 1H is a grouplike element (i.e. �.1H / D 1H ˝ 1H ) which
is a unit for m, and � 2 .H˝H˝H/� is a convolution invertible map (called the
coassociator), satisfying the identities

�.g˝1H˝h/ D ".g/".h/; (A.1)

m.m˝idH / � � D � �m.idH˝m/; (A.2)

�.d1f1˝g1˝h1/�.d2˝f2˝g2h2/

D �.d1˝f1˝g1/�.d2˝f2g2˝h1/�.f1˝g3˝h2/

(A.3)

for all f; g; h 2 H .
The category of right H -comodules MH is monoidal, where the tensor product

is over the base field and the comodule structure of the tensor product is induced by
the multiplication. The associator is given by

ˆU;V;W W .U ˝ V /˝W �! U ˝ .V ˝W /

ˆU;V;W ..u˝ v/˝ w/ D �
�1.u1; v1; w1/u0 ˝ .v0 ˝ w0/

for u 2 U , v 2 V , w 2 W and U; V;W 2MH .

A.2. Coquasi-bialgebras associated to pseudomonoids. Let G be a finite group
and K D .K;m; 1; ˛; ˇ; �/ a pseudomonoid with strict unit in the 2-category of
G-sets with twists; let us denote CG WD Maps.G;C/, let ı� 2 CG be the function
that assigns 1 to � and 0 otherwise, and let ı�;� be the Dirac’s delta associated to the
pair �; � 2 G, namely ı�;� is 1 whenever � D � and 0 otherwise.

Theorem A.1. The vector space CG#K with basis fı�#xj� 2 G; x 2 Kg is a
coquasi-bialgebra with product

.ı�#x/.ı�#y/ D ı�;�ˇŒ� jjxjy�ı�#xy;
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coproduct,
�.ı�#x/ D

X
a;b2GWabD�

˛Œajbjjx�ıa#bx˝ıb#x;

associator
�.ı�#x; ı�#y; ı�#z/ D ı�;eı�;eı�;e�Œxjyjz�;

counit ".ı�#x/ D ı�;e , and unit 1#e for all �; �; � 2 G, x; y; z 2 K.
Moreover, the tensor category of right CG#CK-comodules is tensor isomorphic

to the monoidal category BunG.K/ of equivariant vector bundles on K.

Proof. It is straightforward to check that CG#K satisfies all axioms of coquasi-
bialgebra.

If V D
L
x2K Vx is an object inBunG.K/, we define a right CG#CK-comodule

structure over V by
�.vx/ D

X
�2G

� � vx ˝ ı�#x;

for all vx 2 Vx , x 2 K. It follows that this rule defines a strict monoidal functor F
from BunG.K/ to the category of right CG#CK-comodules.

Conversely, if .V; �/ is a right CG#CK-comodule then

V D
M
x2K

Vx; where Vx D fv 2 V W .id˝�/� D v ˝ xg;

where � W CG#K ! CK; ı�#x 7! ı�;eux and the comodule map defines unique
linear maps � W CG ˝ Vx ! V .x 2 G/ such that

�.vx/ D
X
�2G

� � vx#x;

for all vx 2 Vx . It follows that .V D
L
x2K Vx;�/ 2 BunG.K/, and this rule

defines a functor that by construction is the inverse of F .

Remark A.2. If � is trivial, CG#K is a Hopf algebra, and if we consider G
acting by conjugation on K D G together with the 3-cocycle w 2 Z3.G;T/, the
coquasi-bialgebra CG#CG defined by the pseudomonoid .G;m; 1; ˛w ; ˇw ; �w/ as in
Section 4.5, is the dual of the Twisted Drinfeld Double of the finite group G defined
in [7, Section 3.2].

We finish with a corollary of the results of this appendix and the ones of
Section 7.2. A quasi-isomorphism between coquasi- bialgebras .H; / and .H 0;  /
is a pair .F; �/ consisting of a coalgebra isomorphism F W H ! H 0 and a
convolution invertible map � 2 .H ˝H/� such that �.1˝ h/ D �.h˝ 1/ D ".h/

and
�.g1 ˝ h1/F.g2h2/ D F.g1/F.h2/�.g2 ˝ h2/;
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for all g; h 2 H . A quasi-isomorphism is called an isomorphism of coquasi-
bialgebras if additionally

�.f1 ˝ g2/�.f2g2 ˝ h1/ .f3 ˝ g3 ˝ h3/

D  0.F.f1/˝ F.g1/˝ F.h1//�.g2 ˝ h2/�.f2 ˝ g3h3/:

In general, the tensor category of representations of Dw.G/ is not equivalent to
the category of representations of any Hopf algebra. However, by the isomorphism
outlined in (7.2), if G is finite and acts over itself by conjugation, the Grothendieck
ring of BunG.K/ for any 3-cocycle in Z3.Tot�.A�;�.G o G;T///, is always
equivalent to the Grothendieck ring of BunG.K0/, where the 3-cocycle associated
lives in Z3.Tot�.B�;�.GoG;T///. By Theorem A.1, BunG.K0/ is the category of
representation of a Hopf algebra, so in particular we can conclude

Corollary A.3. The Twisted Drinfeld Double of a finite group is always quasi-
isomorphic to a Hopf algebra.
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