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The Gysin sequence for quantum lens spaces

Francesca Arici, Simon Brain and Giovanni Landi*

Abstract. We define quantum lens spaces as ‘direct sums of line bundles’ and exhibit them as
‘total spaces’ of certain principal bundles over quantum projective spaces. For each of these
quantum lens spaces we construct an analogue of the classical Gysin sequence in K-theory.
We use the sequence to compute the K-theory of the quantum lens spaces, in particular to give
explicit geometric representatives of their K-theory classes. These representatives are interpreted
as ‘line bundles’ over quantum lens spaces and generically define ‘torsion classes’. We work out
explicit examples of these classes.
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1. Introduction

This paper is devoted to the study of the noncommutative topology of quantum lens
spaces via their K-theory. We construct an exact sequence — a noncommutative
analogue of the classical Gysin sequence — which relates the K-theory of quantum
lens spaces to the K-theory of quantum projective spaces. Our construction enables
us not only to compute the K-theory of the quantum lens spaces in a novel way, but
also to obtain geometric representatives of the K-theory classes, generically torsion
ones, in terms of ‘line bundles’.

Noncommutative (or quantum) lens spaces have been the subject of increasing
interest of late. They first appeared in [24] in the context of what we would now
call ‘theta-deformed’ topology; they later surfaced in [16] in the guise of graph C*-
algebras, with certain more recent special cases (cf. [3, 12]). The particular case
of the quantum three-dimensional real projective space was studied in [26] and [21].
Real spectral triples on three-dimensional noncommutative lens spaces have recently
been studied in [29].

Lens spaces arise in classical geometry as quotients of odd-dimensional spheres
by an action of a finite cyclic group. In parallel with this, quantum lens spaces are
usually introduced in terms of fixed point algebras for suitable actions of finite cyclic
groups on function algebras over odd dimensional quantum spheres. Indeed, the
key result of [16] is the realization of the C *-algebra of continuous functions on a
quantum lens space as the Cuntz—Krieger algebra of a directed graph. From this,
and quite importantly, one deduces the K-theory of the algebra as the kernel and
cokernel of a certain ‘incidence matrix’ associated to the graph. This computation of
the K-theory is, one has to say, very direct, although somewhat implicit and obtained
via some rather complicated isomorphisms.

In the present paper we task ourselves with finding a more elegant intuitive
and geometric approach to the K-theory of quantum lens spaces. To this end, our
starting point is the ‘algebraic’ approach to the K-theory of quantum projective
spaces presented in [10]. Center stage there is taken by (polynomial) bimodules £y
of sections of noncommutative ‘line bundles’ over the projective space; line bundles
which determine the K-theory of the C*-algebra C(CPy). Out of this algebraic
approach to K-theory there come several important advantages that we list in the
remainder of this introduction, by way of summarizing some of the main results of
the present paper.



The Gysin sequence for quantum lens spaces 1079

Given a pair of positive integers n, r, the coordinate algebra .A(L,(]”’r)) of the
quantum lens space of dimension 27 + 1 (and index r) is defined to be

ALE) =P Len - 4.1)

NezZ

Then L((I"’r) is the ‘total space’ of a principal bundle over the quantum projective space
CPy with structure group U(1) := U(1)/Z,. This parallels the U(1) principal bundle
over CPy having total space the quantum sphere Sf]”“, the latter being obtained for
r = 1 in the previous decomposition:

ASTTH =P L. (4.3)

NezZ

One is then able to show a posteriori that the algebra .A(L,(I"’r)) is made of
all elements of A(SZ”“) which are invariant under a certain action of the cyclic
group Z,. With these principal bundles there comes a way to ‘pull-back’ line
bundles from CP7 to L,(I"’r):

Ly - Ly 4.7)

.A(L(" L) Q— A((CP”)

That is to say, the algebra inclusion j : A(CPZ) — A(L,(In’r)) also induces a map
« + Ko(C(CPY)) — Ko(CLTM)). (4.6)

The marked difference between a line bundle £ 5 over (CP” versus its pulled-back Z N

to L(” " s that, while each Ly is not free when N # 0, this need not be the case
for E N the pulled-back /J_r of L_, is tautologlcally free, that is to say it is trivial

in the group Ko (C (Lg' ")). Tt follows that (L_N)®" ~ L_,y also has trivial class
for any N € Z and thus such line bundles £_y define torsion classes; they generate
the group KO(C(LEI"J))).

In addition, there is a multiplicative structure on the group Ko(C(CPg)):

Proposition 3.4. It holds that
Ko(C(CPY)) = Z[[L]l/ (1 = [LaD)" T = Z[u] /u™ !

where u = x([L-1]) := 1 — [£_1] is the Euler class of the line bundle L_.
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Out of this one is led to a map
o : Ko(C(CPy)) — Ko(C(CPY)) (4.8)

where « is now multiplication by the Euler class y(£_,) := 1 — [£_;] of £L_,.
Central for us is the assembly of this map with the pull-back map (4.6) into an exact
sequence

0 — K1 (CLY")) > Ko(C(CP2)) —2= Ko(C(CP?))
s Ko(CLE)) ——0,

the Gysin sequence for our quantum lens space L,(I"’r), with a suitable index map
Ind explicitly described below. Having arrived at this sequence, one could easily be
content simply by admiring its sheer elegance. It has, however, some very practical
and doubtlessly important applications, which we present in the final sections.

Notably, there is the computation of the K-theory of the quantum lens spaces
L,(I"’r). Owing to Proposition 3.4, the map « can be given as an (n + 1) x (n + 1)
matrix with respect to the Z-module basis {1, u, ..., u"} of K®(C(CP})) ~ Z"*1.
This leads to the identifications

Ki(C(LI)) ~ ker(e), Ko(C(L)) = coker(a) . 6.1)

We stress that our construction is structurally different from the one in [16], the only
point of contact being that the K-theory is obtained out of a matrix. First, our matrix
is different from the incidence matrix of [16]. Second, and more importantly, the
structure of the map « and Prop. 3.4 allow us to give geometric generators of both the
groups K (C (L;”’r))) and Ko (C (L((]”’r))), for the latter in particular as (combinations)
of pulled-back line bundles from CPZ to LL(I"’r). All of this is described in full detail
in §6.

Some of the dual constructions pertinent to the K-homology of the quantum lens
spaces L,(I"’r), stemming from a sequence dual to the previous one, will be reported
elsewhere.

Notation. By a x-algebra we mean a complex associative unital involutive algebra.
An unadorned tensor product is meant to be over C. As it is customary, a
noncommutative C*-algebra A is thought of as being the algebra of continuous
functions on an underlying ‘quantum’ topological space, and we use the notation
K. (A) for the K-theory of this C *-algebra, together with K°(A) for its K-homology.

Acknowledgements. We are grateful to Alan Carey, Francesco D’Andrea, Erik
van Erp, Sasha Gorokhovsky, Jens Kaad, Max Karoubi, Ryszard Nest and Georges



The Gysin sequence for quantum lens spaces 1081

Skandalis for useful discussions. Adam Rennie deserves a special mention for making
transparent one of our central theorems below. Finally, we thank an anonymous
referee for some excellent comments which led to a much improved version of the

paper.

2. The classical Gysin sequence

In this section we simply follow Karoubi’s book [17]. Let CP” denote the complex
projective space of C**1 and let V be a complex vector bundle over CP" equipped
with a Hermitian fibre metric. We write B(1') for the ‘ball bundle’ of V, the bundle
over CP” whose fibre B(V') at the point x € CP” is the closed unit ball of the fibre V.
of V. Similarly we write S(V') for the ‘sphere bundle’ of V', whose fibre S(V), at
x € CP" is the unit sphere of the fibre V. Then B(V') — S(V') denotes the open ball
bundle.

Since S(V) is closed in B(V), with K*(B(V),S(V)) denoting the relative
K-theory groups, one has a six term exact sequence in topological K-theory
[17,1V.1.13]:

K°(B(V), S(V)) —= K°(B(V)) ——= K°(S(V)) 2.1

510T l&n

K'(S(V)) K'(B(V)) =— K'(B(V), S(V)).

Here the vertical arrows are the usual ‘connecting homomorphisms’ , while the
horizontal arrows are induced by natural maps and will be described explicitly below
[17,11.3.21].

Since B(V') is compact, it follows that K*(B(V), S(V)) ~ K*(B(V) — S(V)).
Moreover, the total space of the fibre bundle B(V') — S(V') is homeomorphic to the
total space of V. These facts, followed by the Thom isomorphism combined with
Bott periodicity, give rise to isomorphisms of K-groups

K*(B(V),S(V)) ~ K*(B(V) — S(V)) ~ K*(V) ~ K*(CP").

Finally, since the total space of B(V') is homotopic to CP” (via the inclusion of
the latter into B(V') determined by the zero section of V'), one has isomorphisms of
K-groups

K*(B(V)) ~ K*(CP").

Assembling all of this together and using the vanishing K'(CP") = 0 (cf. [17,
Cor. IV.2.8]), the sequence 2.1 transforms into the K-theoretic Gysin sequence for the
bundle S(V):

0 —> K (S(V)) 2% KOCP") %> KO(CP") "> KOS(V)) —> 0.  (2.2)
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The ‘pull-back’ homomorphism 7 * is induced by the bundle projection 7 : S(V) —
CP”". The homomorphism « is given by multiplication by the Euler class y(V') of
the vector bundle V' that we shall momentarily describe more explicitly.

Now let L be the tautological line bundle over CP", whose total space is C**!
and whose fibre L, at x € CP” is the one-dimensional complex vector subspace

of C"*1 which defines that point. Via the usual associated bundle construction, the
bundle L may be identified with the quotient of 2"+ x C by the equivalence relation

(x.t) ~(Ax,A7Y), resSlcc.

Similarly, its 7-th tensor power L®” may be identified with the quotient of $2”*! x C
by the equivalence relation (x, ) ~ (Ax, A™"t). Moreover, L®" can be given the fibre
metric defined by ¢ ((x,'), (x,)) = t'f. It follows that the sphere bundle S(L®")
can be identified with the ‘lens space’ L") := §27+1 /7, (where the cyclic group Z,
of order r acts upon the sphere S?*T! via the r-th roots of unity) by the map
(x,1) —~ t-x.

Taking V = L®” in the above sequence (2.2) one finds, just as in [17, IV.1.14],
the K-theoretic Gysin sequence for the lens space L*"):

8 *
0 — K'@L®") 2% KOcp) = KO(CP") = KOL™) — 0. (23)
Here, since L®" is a line bundle, its Euler class (giving the map «) is given by

y(L®) :=1—[L®].

3. Quantum projective spaces

We first describe the class of noncommutative projective spaces that we need. We
recall both the algebras of coordinate and continuous functions on quantum projective
space, together with the noncommutative ‘line bundles’ which represent the K-theory.

3.1. Functions on quantum projective spaces. In the following, without loss of
generality, the real deformation parameter is restricted to the interval 0 < g < 1.
We recall from [31] that the coordinate algebra of the unit quantum sphere S;”“ is
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the *-algebra A(S2"*1) generated by 2n + 2 elements {z;, z;"}i =o,.... subject to the
relations:

zizj=q 'zjz 0<i<j=n,
z/zj =qz;z] i
n
ozl =0, [hal=(-gd) Y 5z i=0..n—1,
j=i+1
1 =zozg + 212y + -+ + znz, . (3.1)
h/

The notation of [31] is obtained by setting ¢ = e”/2, while the relationship with the

generators x; used in [13] is given by x; = z; 4+1-; together with the replacement
g — q~'. The quantum sphere SZ"H is a quantum homogeneous space of the
quantum SU(n + 1) group of [33] and the properties of the sphere depend crucially
on properties of the latter.

We write A(CP7) for the *-subalgebra of A(Sé”“) generated by the elements
Dij = z;‘zj fori, j = 0,1,...,n, which we think of as the coordinate algebra of
the quantum projective space CP. It is easy to see that the algebra A(CPy) is made

of the invariant elements for the action of U(1) on the algebra A(S;”“) given by
(20,21 .- 2Zn) > (Azg, Azy, ..., Azy), A e U(l). (3.2)

From the relations of A(S7"*1) one gets relations for A(CP}):

pijpki = @ ETHEUTD ey ifi #/and j #k,

pijpjic = q = ITITIROTOT by (3.3)
— (=g P ifi #k,

pijpji = >V pjipij + (1—¢°) (3.4)

(Zz>i g* D p i pry =3 Pizpu) iti #7j, (3.5)

with sign(0) := 0. The elements p;; are the matrix entries of a projection P = (p;;),
that is to say it obeys P> = P = P*, or rather that ) 7_ pijpjx = pix and
p;’} = pj;. This projection has g-trace equal to one:

n
Trg(P) ==Y q*pii = 1. (3.6)
i=0
To the best of our knowledge, the algebra A((CPZ) first appeared in [32].
The C*-algebra C(S2"*1) of continuous functions on the quantum sphere S7"*"

is the completion of .A(Sg”Jr 1) in the universal C *-norm. The C *-algebra C (CPy) of
continuous functions on the quantum projective space is the completion of .A((CPZ) in
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the universal C*-norm. By definition, the -algebra inclusion A(CP}) < A(S7"*1)
extends to an inclusion of C*-algebras C(CPy) — C (S‘ZI”H).

There is a marked difference between S7"*+! and CP} which is reflected in their
(Ko, K1)-groups: for the odd-dimensional spheres SZ”“ these are equal to (Z, Z)
regardless of the dimension, while for CPy they are equal to (Z"*1,0). A set of
generators for the K-theory and K-homology of the sphere algebras C (S;”“) can be
found in [13].

That Ko(C(CP})) >~ Z"*! can be proved by viewing the C*-algebra C(CP})
as the Cuntz—Krieger algebra of a graph [15]. The group Ky is the cokernel of the
incidence matrix canonically associated to the graph (while K; is the kernel of the
matrix). The dual result for K-homology is obtained using the same techniques:
the group K° is now the kernel of the transposed matrix [7] and this leads to
K°(C(CPy)) ~ Z"*! (and K is the cokernel of the transposed matrix).

Generators of the homology group K°(C (CP)) were given explicitly in [10] as
(classes of) even Fredholm modules

e = (ACPY), Hiy, X, vy, Fy). for 0<k <n. (3.7)

Generators of the K-theory Ko(C(CPy)) were also given in [10] (¢f. also [11]) as
projections whose entries are polynomial functions, that is to say these entries are in
the coordinate algebra A(CPy) rather than the C *-algebra C(CPy).

Before we recall these generators explicitly for later use, we need to pause for
some notation. The g-analogue of an integer n € Z is given by

n —n

q

] =1 =

q _ b
it is defined for ¢ # 1 and is equal to # in the limit ¢ — 1. Forany n > 0, one defines
the factorial of the g-number [r] by setting [0]! := 1 and then [r]! := [#][n—1]---[1].

The g-multinomial coefficients are in turn defined by

[jo j]"_ [j0+---+jn]!
seeen Jnfs o — . .
[ol!-..[jnl!

For N € Z, let Wy := (w%,...,jn) be the vector-valued function on S7"*! with

components
Los .- ju)l2q™2 Zr<s rds (z00)* | (zd")*  for N >0,
N —
1//-].0,“.,]" T

[jos--- ,jn]!%q%ZKS Jris+Xr=oTir Z({" L.zim for N <O,
(3.8)
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with jo + ...+ jn = |[N|. Then U3, Wy = 1 and Py := Wy W} is a projection in
a matrix algebra of a certain size:

N
Py € May (ACPY),  dy = (' 'n”), (39)

(this was proven in [8], generalizing the special case where n = 2 in [9]). By
construction, the entries of the matrix Py are U(1)-invariant and so they are indeed
elements of the algebra A(CPy). In particular we see that P; = P is the ‘defining’
projection of the algebra A(CPy) given before with relations in (3.3).

We let [Py] denote the class in Ko(C(CPg)) of the projection Py and let [14x]
denote the classes in K°(C (CPZ)) of the Fredholm modules (3.7). The following
result was proved in [10] (c¢f. Props. 4 and 5 there).

Proposition 3.1. Forall N € N and for all 0 < k < n it holds that
([1k], [P=N1) = Trpg (v (x ®(Tr P_y)) = (IZ) ,

with (ZZ) := 0 when k > N. Moreover, the elements (o], ..., [un] are generators
of K° (C(CPyp)), and the elements [Py), . .., [P—,] are generators of Ko(C(CPyp)).

Indeed, the matrix of couplings M € M,,41(Z) with M;; := ([pL,'], [P_‘,-]) = ({),
fori, j =0, 1,...,n, has inverse with integer entries (M ~');; = (=1)’*/ (/). Thus
the aforementioned elements are a basis of Z"*1! as a Z-module, which is equivalent

to saying that they generate Z"*! as an Abelian group.

3.2. Line bundles. It is well known that the algebra inclusion A(CP}) —
A(S7"*1) is a quantum principal bundle with structure group U(1). To each
projection Py there corresponds a line bundle associated to this principal bundle, as
we now describe.

The column vector Wy has dy entries, all of which are elements of A(Sé”“).
We consider the collection

Ly = SoN = V-YUN =Y Vjgriju Vi ( * (3.10)
Jo++tjn=N

where v = (vj,,...j,) € (A((CPZ))dN. Each Ly is made of elements of A(SZ”H)
which transform under the U(1)-action in (3.2), as o5 — @yA~Y. In particular
Lo = A(CPy). By their very definition each Ly is an A(CPy)-bimodule —
the bimodule of equivariant maps for the irreducible representation of U(1) with
weight N. It also holds that

LN ® ety LN = LN4N (3.11)
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(cf. [11, Lem. 7.5] and also [19, Prop. 3.1]) and so, in particular,
(/.,‘N)®A(CP"})M ~ ﬁMN . (3.12)

An argument as in [10, Prop. 3.3] yields isomorphisms Ly =~ (.A((CPZ))dN Py
as left A(CPy)-modules and Ly =~ P_y (.A(CPZ))“’N as right A(CP)-modules.
Clearly then, we have to make a choice: we always use the left A(CPy)-module
identification and denote the class of the projection Py by [Lx] as an element of the
group Ko(C(CP7)).

Foreach N € Z the module Ly describes a line bundle, in the sense that its ‘rank’
(as computed by pairing with [1o]) is equal to 1. It is completely characterized by its
‘first Chern number’ (as computed by pairing with the class [¢1]). Indeed, using an
argument similar to that of the proof of Proposition 3.1 one shows the following.

Proposition 3.2. Forall N € Z it holds that
(lwol. [EN]) =1 and  ([p1].[LN]) = —

From the above discussion, the line bundle £_; emerges as a central character:
from Proposition 3.1 its only non-vanishing charges are ([ito],[£-1]) = 1 and
([u1], [£=1]) = 1. The bundle £_; is the tautological line bundle for the quantum
projective space CPy.

Now consider the element in Ko(C(CPy)) given by

u:=1-[L_], (3.13)

of which we can take powers using the identification (3.12). For j > 0, as elements
in K-theory, one has then

J
W = (1= [Lal) = Y DY ()L-n]. (3.14)

Proposition 3.3. For 0 < j < n and for 0 < k < n, it holds that

(i) u?) = 0 Jorj#Ek (3.15)
(=07 forj=k
while for all 0 < k < n it holds that
(el u" ) = 0. (3.16)

Proof. Denoting as before by [£_x] the class of the projection P_p and setting
(IIZ) := 0 when k > N, we compute using Proposition 3.1 that

J
([ ) Z( DY () (. L=wD) = 3= DY ()R
N=k
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If k > j this vanishes again due to (ZZ ) := 0fork > N. On the other hand, if k < j,
it is

Vil Y GON
(el v’} = 5 szk G — NN —k)!

and an act of direct computation yields (3.15). Similarly, one computes that

n+1 N
nil (n+ 1! (=D
N p—l p— 0’
e Nz_:k 1+ 1= N)I(N —k)!
thus completing the proof. O

The elementu = y([£—1]) := 1—[£_1] shall be named the Euler class of the line
bundle £_1, in analogy with the classical case (cf. [17,IV.1.13]). Sincefor0 < k <n
the elements [j1x] are generators of K°(C (CPR)), the fact that ([Mk], u”“) = 0 for
0 < k < n amounts to saying that u”*! = 0 in Ko(C(CP})). On the other
hand, since the elements [£_x] for 0 < k < n are generators of Ko(C(CPy)), the
results in (3.15) say that the elements [ux] and (—u)’ for 0 < k, j < n form dual
bases. These two facts lead to the following analogue of the classical result (cf. [17,
Cor. IV.2.11])).

Proposition 3.4. It holds that
Ko(C(CPY)) = Z[L]/(1 = [LoaD)"*! = Z[u]/u"*!

where u = y([L£-1]) := 1 — [L_1] is the Euler class of the line bundle L_.

4. Quantum lens spaces

Next we come to describe the algebras of functions on quantum lens spaces and
noncommutative ‘line bundles’ thereon. Indeed, we define quantum lens spaces as
‘direct sums of line bundles’ and algebras of their functions in terms of corresponding
‘modules of sections’. A posteriori these algebra of functions are seen as subalgebras
of functions on odd-dimensional quantum spheres which are invariant for the action of
a cyclic group. In such a manner there are natural principal and associated fibrations.
This gives rise to a natural family of representatives of classes in the K-theory of
quantum lens spaces.

4.1. Functions on quantum lens spaces. Fix an integer r > 2 and define

ALS) =P Ly 4.1)

NezZ

Then proving the following is straightforward.
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Proposition 4.1. The vector space .A(L((In’r)) is a x-algebra made of all elements of
A(SZ"‘H) which are invariant under the action oy : Z, — Aut(A(Sé”H)) of the
cyclic group 7, generated by the map

(20,214 ..., 2p) > (ezm/'zo,ez”i/'zl, ... ,ez’”/’zn). 4.2)

Proof. Let { = ¢2™/7 which then satisfies {" = 1, be the generator of Z,. A
standard argument shows that equipping the algebra A(S;”“) with this action ¢, is

equivalent to giving it the grading by the Pontryagin dual group Z, ~ Z, defined by
AST = P A Av=1a e ASPTY | ar(@) = al

keZ,

The algebra Ag of invariant elements is by definition the algebra .A(Lc(ln’r)) of
functions on the lens space; this also shows that there are no other invariant
elements. O

We think of the algebra A(L,(I"’r)) as the coordinate algebra of an underlying
quantum space L,(I"’r), which is named the quantum lens space of dimension 2n + 1
(and index r); it is a deformation of the classical lens space L") = §27+1/7,
of the same dimension. The C*-algebra C (L((]n’r)) of continuous functions on the
quantum lens space, the universal C *-completion of A(Lt(ln’r)), is part of the general
family of lens spaces defined in [16].

Of course, the value r = 1 is also possible but this does not yield anything new.
Indeed, in that case one has Lfln’l) = S;"“ and the above expression (4.1) is nothing
other than the well known vector space decomposition

ASTTH =P L. (4.3)

NezZ

Clearly A(CPy) is a subalgebra of A(Lg”r)). In parallel with the U(1)-quantum
principal bundle A(CP}) — A(S"*!) there is indeed more structure.

Proposition 4.2. The algebra inclusion A(CP) — A(L,(I" ’r)) is a quantum principal
bundle with structure group U(1) := U(1)/Z, ~ U(1). In particular, one finds that

— (n,r)\U(1)
A(CPy) = A7),
in analogy with the identification A(CPy) = A(S;”H)U(l) as defined before.
Proof. This is deferred to Appendix A. O

The U(1) and U(1) principal bundles over the quantum projective space CPy as
in Proposition 4.2 are related by a Z, principal bundle structure over the quantum
lens space Lé"’r). Indeed, it is also not difficult to verify the following.
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Proposition 4.3. The algebra inclusion A(L,(Jn’r)) — A(SfI"H) is a quantum
principal bundle with structure group Z,.

Proof. This can also be found in App. A. O

Remark 4.4. Note that, with Z denoting the Pontryagin dual of the quotient
group U(1) (so that there is an injection Z — Z given by multiplication by r),
the decomposition (4.1) may be written, in parallel with the decomposition (4.3), as

ALE") = P L. (4.4)
NEZ
4.2. Pulling back line bundles. Having the inclusion j : A(CP}) — A(LEI” )y,

we proceed now to ‘pull-back’ the associated line bundles from CPy to L,(]"’r). We
are led to the following natural definition.

Definition 4.5. For each A(CPy)-bimodule Ly asin (3.10) (a line bundle over CP),
its “pull-back’ to L‘(I"’r) is the A(L,(I"’r))—bimodule

JLN) =GN =v-Uy = v Uh it (4.5)
jottin=N
forv = (vj,,....j,) € (.A(L((Jn’r)))dN. We shall use the shorthand j.(Ly) := ZN.

By embedding the cyclic group Z, into U(1) via the r-th roots of unity, each ZN
is made of elements of A(S2"+!) which transform as §n + @ ¢ 2™ V/" under the
U(1)-action of Prop. 4.1. By its very definition, ZN is an .A(L((Jn’r) )-bimodule. Once
again, arguments like those of [10, Prop. 3.3] for the L yield the following.

Proposition 4.6. There are left .A(L((Jn’r))-module isomorphisms
Ly >~ (A7) Py
and right A(Lf]"’r) )-module isomorphisms
Ly =~ P_y(ALSD))dn

We stress that the projections Py here are those constructed before, around (3.8)
and (3.9), taken now as elements of the group Ko(C (L("’r))) Just as for the
modules £y, we need to make a choice of representatives: we use the left .A(L(" r))
module identification and denote by [E ] the class of the projection Py as an element

in Ko(C (Lg" r))). Thus, the pull-back of line bundles induces a map

« + Ko(C(CPY)) — Ko(CLT)). (4.6)
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‘Geometrically’, the pull-back of line bundles from CP to L((]n’r) could be depicted

as )
f VL — 4.7)

v v
ALG™") < A(CP}).

The marked difference between the module £y versus its pull-back ZN is that,
while each Ly is not free when N # 0 (as a consequence of Prop. 3.2), this need not
be the case for L, that is the projection Py could be trivial (i.e. equivalent to 1) in
Ko(CL{"™")). _

Indeed, the pull-back £_, of the line bundle £_, from the projective space
CPy to the lens space Lg”r) is free: recall that the corresponding projection is
P_, := W_,U*  and here the vector-valued function W_, has entries in the algebra
A(L,g"’r)) itself. Thus the condition W* W_, = 1 implies that the projector P,
is equivalent to 1, that is to say, the class of the module £_, is trivial in the group
Ko(C (L,(I"’r))). It follows that (£_y )®" ~ £_, also has trivial class forany N € Z,

the tensor product being taken over A(L((]"’r)). Such pulled-back line bundles ‘- N
thus define forsion classes and, as we shall see later on, they generate the group
Ko(CLG™")).

Remark 4.7. A moment’s thought shows that for each A((CPZ)-module Ly its
pull-back £ is none other than the A(Lg”r))—module

Ly = A(ng,r)) ®A(Cpf(}) Ly .

From this it follows at once that £_, = .A(L((I"’r)) ®.acer) L—r = A(Lfln’r)) = Lo,
thus showing that the module Z_r is free. While we could have taken this as defining
the pull-back map, we rather prefer the one in (4.5) due to the central role to be played
by the partial isometries Wy ’s later on in the paper.

At this point it is pertinent to introduce a second crucial ingredient to the
discussion, in the form of a natural map
a : Ko(C(CPy)) — Ko(C(CPy)), (4.8)

where o is multiplication by the Euler class y(L_;) := 1 — [£_,] of the line
bundle £_,. The central idea of our paper is to combine this map with the pull-back
map (4.6) into a sequence for our quantum lens spaces that parallels the classical
Gysin sequence (2.3):

0 — Ki(C(LG"")) = Ko(C(CP})) —*= Ko(C(CPY))

L Ko@) —o0,

for a suitable map Ind. Such is the topic of the next section.
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5. The Gysin sequence for quantum lens spaces

In this section we arrive at a Gysin sequence for quantum lens spaces by invoking
some general properties of K-theory associated to circle actions on C *-algebras. For
the general background of unbounded operators on Hilbert modules we refer to [20].
Given a (countably generated) right Hilbert F-module X = F overa C *-algebra F,
the right F-Hermitian structure on X is denoted {-|-) 7.

5.1. Construction of the sequence. In order to lighten our notation and in a way
which is consistent with the notation used in [5, 6], we write

A= CLI), F := C(CP)).

By the universal property of these C *-algebras, the action of U(1) on A(L‘(I"’r))
extends uniquely to a strongly continuous circle action o : U(1) — Aut(A) on A.
From Proposition 4.2 the C *-algebra F sits inside A as the fixed point subalgebra,
namely

F={acA:01(a)=aforallr € U(1)}.

Since fj(l) is compact, there is a faithful conditional expectation
2n
t:A— F, (a) := / or(a)dt,
0

from which one obtains an F-valued inner product on A by defining
(w)F:AxA—F, (a,b)F := t(a*D).

The properties of the conditional expectation imply that this equips A with the
structure of a right pre-Hilbert F'-module. Let X = F be the right Hilbert module
resulting from completion of A in the corresponding norm ||a||% := ||{a,a)F||. For
each k € Z we denote the corresponding eigenspace of the action o on A by

Ap :=1{a € A : 0s(a) = e"**aforall t € R}.

In particular A9 = F and in fact Prop. 4.2 implies that the action o : U(1) — Aut(A)
has full spectral subspaces in the sense that Ay Ay = F for all k € Z (cf. [6,
Defn. 2.2]). This is interpreted as a noncommutative analogue of having a free circle
action.

We recall that if © : Dom(®) — X is an unbounded linear operator with dense
domain Dom(®) C X, then D is said to be closed whenever its graph

B(D) = {(x,@x) | x € @om(@)} CXhX 5.1

is a closed subspace of X & X. The operator ® : Dom(®) — X is said to
be symmetric if Dom(D) € Dom(D*) and D = D* on Dom(D), and it is self-
adjoint if it is symmetric and Dom(D*) = Dom(D). A closed, self-adjoint linear
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operator © : Dom(®) — X is said to be regular if and only if the operators
D +i:Dom(®) — X have dense range, which in turn happens if and only if these
operators are bijective.

There is a certain natural unbounded operator with these properties on the Hilbert
module X = F which is of particular interest to us. This operator is nothing
other than the infinitesimal generator of the circle action o : U(1) — Aut(A4) given

explicitly by
D: Xp - X, @(Zxk) = kx (5.2)
keZ keZ
on the dense domain Xo C X,

Xp = X=Zxk€X|xk€Ak, Zkz(xk,xk) <X . (5.3)
keZ kel

This defines a self-adjoint and regular operator on X (cf. [25, Prop. 4.6] and
[6, Prop. 2.7]) and it follows from [6, Prop. 2.9] that the pair (X, ®) in turn yields a
class in the odd unbounded Kasparov bivariant K-theory K K1 (A, F).

Next, we invoke the internal Kasparov product in bivariant K-theory [18], which
in our case of interest takes the form of a map

—®4—: KK+«(C,A) x KK{(A, F) - KKy41(C, F).

In particular, the Kasparov product of the class [(X,®)] of the pair (X,®) in
KK (A, F) with the K-theory K«(A) = KK« (C, A) immediately equips us with a
pair of maps

Indp : Ki(A) — Kit1(F), Indp (—) := — ®4[(X.D)].

For the case of interest in the present paper one has K (F) = 0, thus one of these
maps is just the zero map, Indp : K¢(A) — 0. On the other hand, by its definition the
operator © has a spectral gap around zero, whence the map Indg : K1(A) — Ko(F)
is given explicitly as an index

Indo ([u]) := [Ker PuP] — [Coker PuP] € Ko(F),

where P denotes the spectral projection for the self-adjoint operator ® and associated
to the non-negative real axis [25, App. A].

In our new notation, the multiplication in (4.8) by the Euler class y(L_;) :=
1 — [£_;] of the line bundle £_, yields a map

a: Ko(F) — Ko(F),
whereas the map in (4.6) induced by the inclusion map j : F — A gives

Jx : Ko(F) — Ko(A).
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Assembling all of these together yields a sequence

Indo

0 — Ki(A) 220 Ko(F) —%> Ko(F) —2> Ko(4) — 0, (5.4)

where we already use the fact that in the last term of the sequence we have K1 (F) = 0.
We claim that it is an exact sequence: this is proved over the next couple of sections.
The sequence (5.4) will be called the Gysin sequence for the quantum lens space Lg’ ),

Remark 5.1. Let us stress that it is not invidious to put zeros at the beginning and
end of the sequence (5.4). At this point we are saying nothing about exactness of
the sequence, so we are not yet saying that the maps Indp and j, are respectively
injective and surjective: for the time being this is merely a claim.

5.2. K-theory of the mapping cone. Our strategy to prove exactness of the Gysin
sequence will be to relate it to a six-term exact sequence in K-theory coming from
the mapping cone of the pair (F, A). We start then by recalling how to lift the index
theory described above to the KK-theory of the mapping cone.

Recall that the mapping cone of the pair (F, A) is the C *-algebra
M(F, A):={f €C([0,1],4) | f(0) =0, f(1) € F}.

The group Ko(M(F, A)) has a particularly elegant description in terms of partial
isometries. Indeed, let us write V;,, (F, A) for the set of partial isometries v € My, (A)
such that the associated projections v*v and vv* belong to M,,(F). Using the
inclusion V,, (F, A) < V,,+1(F, A) given by setting v > v @ 0, one defines

V(F, A) =) Vin(F. A)

and then generates an equivalence relation ~ on V(F, A) by declaring that:

(1) v~v@ pforallv e V(F,A) and p € My, (F);

(2) ifv(t),t € [0, 1], is a continuous path in V(F, A) then v(0) ~ v(1).

Following [27, Lem. 2.5], there is a well defined bijection between V(F, A)/ ~
and the K-theory Ko(M(F, A)). It is also shown there that if v and w are partial
isometries with the same image in Ko(M(F, A)) one can arrange them to have the
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same initial projection, i.e. v*v = w*w, without changing their class in V(F, A)/~.
Having done so, an addition is defined [5, Lem. 3.3] in V(F, A)/~ by [v ® w*] =
[V]+[w*] = [v]—[w] = [vw*] so that V(F, A)/~ and Ko(M(F, A)) are isomorphic
as Abelian groups.

The class of (X,®) in KK;(A, F), as defined previously in §5.1, has a canonical
lift to the group K Ko(M(F, A), F). Let P be as before, the spectral projection for ©
corresponding to the non-negative real axis. Following [5, §4], we write

Ty =30, ®14+1®9
for the unbounded operators with domains
n
Dom(Te) :={f € C([0.00) ® Xp | f =D fi ®x;, x; € Xo,

i=1

and P(f(0)) =0 (+case), (1— P)(f(0)) =0 (-case),

where smoothness at the boundary of [0, co) is defined by taking one-sided limits.
With Y := L?([0, 0)) ® X, one finds that

o) :Oom(Ty) @ Dom(T-) - Y B Y, D= (0 T_),
Ty 0

is a densely defined unbounded symmetric linear operator. By modifying the domains
slightly, one obtains a Z,-graded Hilbert M (F, A)-F-bimodule X endowed with an
odd unbounded linear operator D : @0111(5) —> X which in addition is self-adjoint
and regular [5, Prop. 4.13]. It then follows from [5, Prop. 4.14] that the pair (? , ”}5)
determines a class in the bivariant K-theory K Ko(M(F, A), F).

The internal Kasparov product of Ko(M(F, A)) with the class of (? , @) yields
a map

Indg : Ko(M(F, A)) — Ko(F). (5.5)

Following [5, Thm. 5.1] and writing £ := X™, the internal Kasparov product
of the K-theory Ko(M(F, A)) with the class of ()? , 33) in the bivariant K-theory
KKo(M(F, A), F) is represented by the index

Ind@([v]) := Ker(PvP)|yxype — Ker(Pv* P)|yy* pe.

the result being an element of KKo(C, F) = Ko(F). Here v € M,,(A4) is a
partial isometry representing a class in Ko(M(F, A)) and considered as a map
v:v*vPE - vv*PE.

5.3. Exactness of the Gysin sequence. With S(4) = Cy((0,1)) ® A the
suspension of the C *-algebra A, it is clear that

0— S(A) > M(F, A) S5 F 0, (5.6)
wherei(f ®a)(t) ;= f(t)aandev(f) := f(1),isanexactsequence of C *-algebras.
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The six term exact sequence in K-theory corresponding to (5.6) has the form

Ko(S(A)) — Ko(M(F, A)) — Ko(F) (5.7)

| |

Ky (F) Ky (M(F, A)) <— K1(S(4)).

Using the vanishing of K (F), this sequence degenerates to

0 Ko(S(4)) == Ko(M(F, 4)) > Ko(F)
L Ki(S(A) = Ki(M(F, A) = 0. (5.8)
As before, the inclusion i : S(A) — M(F, A) induces the map
ix 1 Ko(S(A4)) = Ko(M(F, A)).
The map ev in (5.8) can be given by
evy : Ko(M(F, A)) — Ko(F), ev«([v]) := [v*v] — [vv™],

for v € M, (A) a partial isometry representing a class in Ko(M(F, A)) (¢f. [27,
Lem. 2.3]).

The boundary map 9 is defined as in [14, p.113]: for [p] — [¢q] € Ko(F) one
chooses representatives p,g over F and, from these, self-adjoint lifts x, y over
M(F, A). Then the exponentials e?™** and e2™" are unitaries over C(S') ® 4
which are equal to the identity modulo Cy((0, 1)) ® A, so one defines

A[pl — [q]) =[] — [¢*"7] € K1(S(A)). (5.9)

Now recall that A is a Cuntz—Krieger algebra associated to a graph which is
connected, row-finite and has neither sources nor sinks [16]. It follows [5, Lem. 6.7]
that K1 (M (F, A)) = 0 and that the index map (5.5) is an isomorphism [5, Prop. 6.8].
Thus

Ko(M(F, A)) ~ Ko(F) ~ 7", (5.10)

where the second isomorphism is the result of Prop. 3.1, since F = C(CPy).

As a consequence, there is a very easy description of the partial isometries which
generate Ko(M(F, A)). Recall from the discussion at the end of §4 that, upon pulling-
back to A, one finds that for all N € Z the projections P,y become equivalent to
the identity. This is equivalent to saying that for any M € Z the projections P,y
and P,y ) are equivalent for all N € Z. Indeed, one can explicitly exhibit partial
isometries relating these projectors. Taking the particular case M = 1, these partial
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isometries are the elements vy € My
(3.9), given by

rv+1y.dry) (A), with the integers d() as in

ov =Y ¥ly, N =0,—1,...,-n (5.11)

clearly vyvy = P,y and vyvy = Pry41) for N = 0,—1,...,—n. With our
conventions, the entries of vy are elements of A homogeneous of degree —r for the
action of U(1).

Proposition 5.2. The partial isometries (5.11) form a basis of Ko(M(F, A)).

Proof. From (5.10) we just need n + 1 independent generators. Now, since the
map (5.5) is an isomorphism, the partial isometries vy are independent (and thus a
basis for Ko(M(F, A)) if and only if the classes Ind5([vn]) are so. Since Puy P is
essentially a ‘left degree shift’ operator on the elements of non-negative homogeneous
degree in PX N it has no cokernel. Its kernel thus determines the index:

Indg([on D) = [ Py X§™ ] = [P,

Now, it follows from Prop. 3.1 that the matrix of pairings {{[ux], [P-rn]) = (r,iv )}
is invertible, thus proving that the elements P,y for N = 0,—1,...,—n are
independent. We note that these projections do not form a basis for Ko(F): the
matrix of pairings (while invertible over Q) is not invertible over Z, that is it does not
belong to GL(n + 1, Z). O

Finally we introduce a pair of maps
Br 1 Ko(F) — Ko(F), B4 : K1(S(4)) — Ko(4).
The former is defined simply by the multiplication
Br([p] —[q]) := —[P-,1([p] — [4]
in Ko(F). The latter map B 4 is the inverse of the Bott isomorphism
Bott : Ko(A) — K1(S(A))
given by Bott([p]) := [e 72" ® p + 1 ® (1 — p)], with ¢ € (0, 1), where S(A4) =
Co((0,1)) ® A.

We are ready to state and prove! a central theorem; it directly implies exactness
of the Gysin sequence (5.4).

!We thank Adam Rennie for explaining to us the explicit forms of the various maps in the exact
sequence (5.8), a conversation from which the proof of our theorem followed very naturally.
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Theorem 5.3. There is a diagram

0 — > K1 (A) 2> Ko(M(F, 4)) —Y> Ko(F) —> K1 (S(4)) ——= 0

lid llndg lB F j B4
Indo j

0 — Ki(A) — 2> Ko(F) —2— Ko(F) —2— Ko(A4) 0
(5.12)

in which every square commutes and each vertical arrow is an isomorphism of groups.

Proof. Upon using the isomorphism K;(A) >~ Ko(S(A)), that the first square
commutes is precisely [5, Thm. 5.1]. For the second square we explicitly compute
that foreach N = 0,—1,...,—n, one has

o (ndg (D) = (1 = [P-DIP] = —[P-([Prv] = [Priv 1)
= Br(eva([on))-

For the third square, we argue as in [5, Lem. 3.1]. Recall that in defining the map
(5.9) we chose self-adjoint lifts x, y over M(F, A). We choose here in particular the
lifts x ==t ® j(p) and y :=t ® j(q). These are both self-adjoint and vanish at
t = 0;att = 1 they are matrices over F. It follows that

[€27] = [¢277] = [e*70OP) — [2718D] = —Bott([p] ~ [g]) € Ki(S(A).
Thus it follows that, modulo the isomorphism Bott : Ko(A4) — K;(S(A)), we have
I[pl—1lgD) = =i (»] =i (@D, (5.13)

i.e. that d is induced up to Bott peridocity by minus the algebra inclusion j : F — A.
Now using the fact that the image of the class of P_, in Ko(A) along j : F — A is
trivial, the above (5.13) may in fact be written

A([pl—lgD) = = (P-Ij (] = [J(@D.

up to Bott periodicity, from which the result follows. O

6. The K-theory of quantum lens spaces

We put to work the Gysin sequence (5.4) by using it to compute the K-theory of our
quantum lens spaces. We shall obtain explicit generators as classes of ‘line bundles’,
generically torsion ones. This is illustrated by working out some explicit examples.

Since the map j in (5.4) is surjective, the group Ko(C (Lé"’r))) can be obtained
by ‘pulling back’ classes from Ko(C(CPy)). Now, as shown in Proposition 3.4,

Ko(C(CPy) = Zful /u"
with u := 1 — [£_1] the Euler class of the line bundle £_;.
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Moreover, the Euler class y(L£—_,) of the line bundle £_; is just
(L) =1—-[L]=1—-[L4] =1-(0—-u)".

As a consequence, the map « in (5.4) can be given as an (n 4+ 1) x (n + 1) matrix A
with respect to the Z-module basis {1, u,...,u"} of K°(C(CP})) ~ Z"*!. This
leads to

K1(CLI)) ~ ker(a) = ker(4),  Ko(C(LY"")) ~ coker(er) = coker(4).
(6.1)
as Z-module identifications via the surjective ‘pull-back’ map j.
Simple algebra allows one to compute explicitly the matrix A of the map « with

respect to the Z-module basis {1, u, ..., u"}. Using the condition " *! = 0 one has
min (r,n)
_ _ _ ro__ _1\Jt1(ry,,J
AL =1-(1-w'= > (-1 (")’ .
j=1

Thus A is an (n + 1) x (n 4 1) strictly lower triangular matrix with entries on the
Jj -th sub-diagonal equal to (—1)7*! (;) for j < min(r,n) and zero otherwise:

0 0 O «vve-- 0
r 0 O «vve-- 0
_(;) r 0O «ooves 0

a=| G -G r 0 6.2)
0 0 O «eve-- ro0

The following is then immediate.

Proposition 6.1. The (n + 1) x (n + 1) matrix A has rank n, whence
Ki(CLY ) ~ 7.

On the other hand, the structure of the cokernel of the matrix A depends on the
divisibility properties of the integer r. Since coker(A4) ~ Z"*!/Im(A) and Im(A)
being generated by the columns of A4, the vanishing of these columns yields conditions
on the generators making them torsion classes in general. Indeed, upon pulling back
to the lens space, the vanishing of the the j-th column is just the condition that
the pulled back line bundles satisfy £_(,4 ) = L£_;; thus this vanishing contains
geometric information.

However, to quickly determine coker(A4) (although not directly its generators) one
can use the Smith normal form ([30]) for matrices over a principal ideal domain, such
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as Z. Thus (cf. [23, Thm. 26.2 and Thm. 27.1]) there exist invertible matrices P
and Q having integer entries which transform A to a diagonal matrix

Sm(A) := PAQ = diag(aq,-- ,0y,0), (6.3)

with integer entries o; > 1, ordered in such a way that «; | ;41 for 1 < i < n.
These integers are algorithmically and explicitly given by

a; = dqi(A), o; = di(A)/di—1(A), foreach 2<i<n,

where d; (A) is the greatest common divisor of the non-zero minors of order i of the
matrix A. The above leads directly to the following.

Proposition 6.2. It holds that
coker(A) ~ coker(Sm(A)) =Z @ Z/a1\Z & --- ® Z/an 7.
As a consequence,
Ko(CLY N = 7@ Loy &+ ® Ly .
with the convention that 7, = 7Z/1Z is the trivial group.

As already mentioned, the merit of our construction is not in the computation of
the K-theory groups — these are found for instance by using graph algebras as in [15].
Owing to the explicit diagonalization as in (6.3) and to Prop. 3.4, we also obtain
explicit generators as integral combinations of powers of the pull-back to the lens
space LfI"’r) of the generator # := 1 — [£_;]. We show how this works and compute

Ko(C (L,(I"’r))) in some examples.

Example 6.3. If r = 2 one computes ¢; = o = -+ = ®&y—1 = 1 and o, = 2".
Hence for L,(I"’z) = S2"+1 /7, = RPZ"*!, the quantum real projective space, we
get

Ko(CRP"™ 1) = Z.& Zon
in agreement with [15, §4.2] (with a shift » — n 4 1 from there to here). Moreover,
we can construct explicitly the generator of the torsion part of the K-theory group.
We claim this is given by 1 — [£_1]. First of all, owing to £_, ~ L, one has

(1= [£4])? =201 = [£-4]),
and iterating: _ _

(1 =[] =271 - [£-1)].
Thus, in a sense one can switch from multiplicative to additive notation. Furthermore,
from Prop. (3.4) we know that u”j 1= 0, withu = 1 —[£_;]. When pulled back to
the lens space, owing to Lo >~ Lo and Loy 1 =~ L1, this implies that
0= (1-[L)"" =2"(1 - [L1)].

This amounts to saying that the generator 1 — [Z_l] is cyclic with the correct order 2.
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Example 6.4. For n = 1 there is only one &y = r. Then in this case one has
Ko(CLY™) =2 L, .

From its very definition [Z_r] =1, thus £_ 1 generates the torsion part. Alternatively,
from u? = 0 it follows that £_; = —(j — 1)+ jL_; forall j > 0; upon lifting to

L(1 "), for j = r this yields r (1 — [E 1]) =0, thatis 1 — [ —1] is cyclic of order r.

Example 6.5. For n = 2 there are two cases, according to whether r is even or odd.
For the o’s in Prop. 6.2 one finds:

(r/2,2r) if r even

(@1,02) = {(r, ’) if ¥ odd

As a consequence one has that

7 ® Zg @D Zoy if r even

Ko(C(LZM)) =
o(CLg™™) 72&7 &7, if r odd

This is in agreement with [16, Prop. 2.3] (once again with a shiftn — n + 1). In
particular, for r = 2 we get back the case of Example 6.3. In order to identify
generators in the two cases, we start from [ﬁ_r] = 1. Direct computations from the
conditions [£ e+l = [E_,] for j =0,...,r —1lead to

qr(r=DuW? —ru=0 and ru*>=0, (6.4)

where w = 1 — [Z_l]. Indeed these are just the lifts to the lens space ng,r) of the
non-vanishing columns of the corresponding matrix A4 in (6.2).

When r_= 2k is even, we have conditions coming from (E )k~ Lo. In fact,
due to [£_ox] = 1, one has (1 — [£_g])? = 2(1 — [L_x]), leading to

0=(1-[L_k])? =4 —[L_k]) = 4kT —2k(k — 1) 7>
Together with the conditions (6.4) this yields
Ir@+2u) =0 and 2ru=0,

that is %2 + 2% is of order r/2 while % is of order 2r (again, for r = 2 this
is consistent with the result of Example 6.3, the first ‘generator’ collapsing to the
condition %2 + 2% = 0).

When r = 2k + 1 is odd, the conditions (6.4) just say that % and %2 are cyclic

of order r:

ri=0 and ru? =0.
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Example 6.6. When n = 3 the selection of generators for the torsion groups is
more involved but still ‘doable’. We compute explicitly in App. B the cokernel of the
matrix 4 in (6.2) and list here the K-theory groups as well as the generators obtained
by lifting to the lens space the cokernel of A via the surjective map j«. As before we
denote W = 1 — [£_1]. There are now four possibilities. For the &’s in Prop. 6.2 one
finds:

‘6|r‘2|r,3+r‘2+r,3|r‘2+r,3+r‘

ay | r/6 r/2 r/3 r
a | r/2 r/2 r r
oz | 12r 4r 3r r

Asa consequence:

Case r =0 (mod 6):
Ko(CLP™) =Z& Ly © Ly & Ly,
with generators
w+12%, ur+6u, 1,
of order r/6, r/2 and 12r, respectively. For the particular case r = 6, the first torsion

part is absent, one has W+ 12% =0, and

Ko(C(LY®) = Z& 73 & Zra.

Caser = 2,4 (mod 6):
Ko(CLGM) = Z® Ly © Ly & Ly
with generators
w2, W42, W,
of order r/2, r/2 and 4r, respectively. The particular case r = 2 goes back

to Example 6.3 with the first and second torsion parts absent and the condition
%% 4+ 2% = 0 as in there.

Case r = 3 (mod 6):
Ko(CLP™) =Z & Ly © Zy @ Zs,

with generators

w43u, ut, .
of order r/3, r and 3r, respectively. For the particular case r = 3 the first torsion
part is absent, one has W+ 3% =0,and

Ko(C(LY?) = Z & Z3 & Zo.
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Caser = 1,5 (mod 6):
Ko(CUL$) =2 7L, 7y © L,

with the three generators of order r given by

To further illustrate the construction, we mention the next case for the dimension n,
for which we list the K-theory groups.

Example 6.7. Whenn = 4 there are 8 possibilities. For the «’s in Prop. 6.2 one finds:

‘24|r‘12|r;8+r‘8|r;6+r,‘6|r;4+r,‘4|r;3,8+r‘

ay | r/24 r/12 r/8 r/6 r/4
a | r/6 r/12 r/4 r/6 r/4
o3 6r 12r 4r 4r 2r
0y 24r 12r 8r 12r 8r

|31rm24r | 2]rm3.44r 247347 |

r/3 r/2 r
r/3 r/2 r
r r/2 r
9r 8r r

As a consequence,

7 @ Z2L4 &b Zé @ Zer D Znar r=0 (mod24)
L® Ly ® Ly ®ZLizr ®ZLizr r =12 (mod 24)
L@ Ly &Ly ® Lar Ly r=8,16 (mod 24)
Z®Lr ®Lr ® LZay ®Ziar  r =6 (mod 12)
Z@Z£€BZ£EBZZrEBZ8r r=4,20 (mod 24)
L®Ly ® Ly & ZLr ® Loy r=3,9 (mod12)
Z@Z%GBZ%@Z%EBZ& r=2 (mod 12)
2®Ly &Ly 7Ly D Zy r=1,5 (mod 6)

Ko(C(L{M")) =

We leave to the diligent reader the determination of the corresponding generators.
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7. Final remarks and future perspectives

In the classical geometry of ‘commutative’ spaces, the Gysin sequences for principal
U(1)-bundles (at least at the level of de Rham cohomology) play a particularly
important role both in T-duality theories and in Chern—Simons theory; these are
topics of intensely active current research, although they by no means exhaust the
uses of such a sequence.

In T-duality theories one studies principal U(1)-bundles E — M over a compact
manifold M and their associated line bundles. The Gysin sequence relates the H -flux
(a given three-form on the total space E) to the curvature (a two-form on the base
space M) of a connection on a dual line bundle E’. The curvature is indeed thought
of as representing the Chern class of the dual bundle E’ on M. In the case of a
two-dimensional base manifold M this also gives an isomorphism between Dixmier—
Douady classes on E and line bundles on M (cf. pages 385 and 391 of the seminal

paper [2]).

In Chern—Simons theory, the importance of the role of the Gysin sequence is
in the evaluation of the path integral on U(1)-bundles over smooth curves, where
it facilitates the counting of those U(1)-bundles over the total space which arise as
pull-backs from the base (cf. page 26 of the fundamental paper [1]). Thus in both
of these applications of the Gysin sequence, what is important is the use of explicit
representatives of elements in cohomology, rather than the simple knowledge of the
cohomology groups themselves.

In the present paper we have presented a novel geometric approach to quantum
lens spaces and their noncommutative topology. This is done via a Gysin sequence
in K-theory for these spaces which, to the best of our knowledge, have never been
studied before in this context. The strength of our construction is not only the matter
of computing the K-theory groups, which could and has be done by means of graph
algebras, although ours is a method of a novel sort. Our central result is that we also
obtain explicit geometric generators as classes of ‘line bundles’ which generically are
torsion ones. These line bundles are pulled-back from line bundles over the quantum
projective spaces, the ‘base spaces’ of U(1)-bundles whose ‘total spaces’ are the
quantum lens spaces themselves.

There are several potential but important applications to problems which could not
be treated with the old methods, that is to say, where explicit geometric generators for
(classes of) bundles play a crucial role. For our scientific taste, applications concern
mainly 7'-duality theory and Chern—Simons theory for quantum spaces: they are
under current investigation and will be reported elsewhere.
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A. Principal bundle structures

In this Appendix we carry out the proofs of Prop. 4.2 and Prop. 4.3. While for the
principal bundles there the structure groups are ordinary (Abelian) groups, Z, and
fj(l) respectively, we use their dual Hopf algebras that give direct and easy algebraic
methods.

A noncommutative principal bundle is a triple (A, H, F), where A is the *-
algebra of functions on ‘the total space’, H is the Hopf x-algebra of functions on the
‘structure group’, with A being a right (say) H -comodule *-algebra, that is there is
a right coaction

A R : .A — .A ® H.

The functions on ‘the base space’ are given by the x-subalgebra of coinvariant
elements:
F:={ae A| Ar(a) =a ® 1}.

Conditions to be satisfied are imposed via a suitable sequence. Let ., () denote
the bimodule of universal differential forms over a unital algebra B and €z be the
counit of the Hopf algebra H. Principality of the bundle (for the universal calculus)
is expressed by requiring exactness of the sequence [4]:

0—> AQL (F)A— QL (A) > AQkerey — 0. (A.1)
Here the first map is inclusion while the second one, ver(a ® b) := (a @ 1)Agr(b),
generates ‘vertical one-forms’. When H is cosemisimple and has an invertible
antipode, exactness of the sequence (A.1) is equivalent to the statement that the
canonical map

Y AR A—> AR H, x@a®b):=(a®1)Ag(D), (A.2)

is an isomorphism (sometimes this is also known as the statement that the triple
(A, H, F) is a Hopf-Galois extension). Furthermore, things are easier for a
cosemisimple Hopf algebra H with bijective antipode, since then the map (A.2)
is injective whenever it is surjective and thus it is enough to check surjectivity [28,
Thm. IJ.

A.1. Proof of Prop. 4.3. The algebra A(Z,) of functions on the cyclic group Z,
is the x-algebra generated by a single element ¢ modulo the relation ¢ = 1. The
Hopf structures are given by coproduct A({) = ¢ ® £, counit €(¢) = 1 and antipode
S =¢*

Thus the algebra .A(L((In’r)) can be also obtained as the algebra of coinvariant
elements with respect to the coaction of A(Z,) on A(Sé”“) defined on generators
by

ARr(zi) =z ®, Ar(zf) =z ® ("
and extended as algebra map to the whole of A(SZ”“).
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The Hopf algebra A(Z,) is certainly cosemisimple and so, to show that the
datum (A(S7" ), A(Z,). A(L((I"’r))) is a principal bundle, it is enough to establish
surjectivity of the map y defined as in (A.2). For this we use a strategy borrowed
from [22].

Writing A = A(S?"*!), H = A(Z,) and F = .A(L((I"’r)), a generic element
in A ® H is a sum of elements of the form f ® ZN with N =0,...,r — 1 and
f e A", By left A(S;"*1)-linearity of y, it is enough to exhibit a pre-image
for elements of the form 1 ® ¢V, since if y € A ® » A is such that y(y) = 1 ® ¢V,
then x(fy) = fA®N) = f V.

i be the vector-valued functions in (3.8), and

y =y (iMy ey, (A3)
J

define the element

which is clearly in A ® 7 A. The multi-index j = (jo,..., jn), is such that
jo + -+ jn = N. To lighten notation denote

BY = Ljo,.- jullghrs Ir i t22r—orir,
Upon applying y one obtains
AW = (@i @ v
J
= Y B @ ) Ag (2

Jotin=N

= Zﬂjv ((ZIJ;")*,..(Z({O)* Q 1) . (Z(J)'o “_erl',, ® §N)
J

- Zﬂjv <(erln)*(260)*zéozrlzn ® ZN)
J

= Z’By(zi{n)*'“(Z(])o)*z(j)o---z«r{" ®§N
J

=1®¢",
which is all one needs for proving surjectivity of the map .
A.2. Proof of Prop. 4.2. Let A(U(1) = C[£,£*]/(§*¢ — 1) denote the coordinate
algebra of the group U(1). With U(1) := U(1)/Z,, the corresponding coordinate

algebra, _
AU®D) := AUD)/Z,) = AUD)™,

is the Hopf *-subalgebra of A(U(1)) generated by the elements £§” and £*".
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Denote A" = A(Lé"’r)), H' = AU®)) and F = A(CPY). As before, the
datum (A’, H', F') is seen as a quantum principal bundle via surjectivity of the
canonical map

Ao A —-A®H,

surjectivity proved again by exhibiting a pre-image for elements of the kind 1 ® £V .

For this, we observe that the vectors W% .j, in (3.8) have entries in A =

A(Lé"’r)) precisely when N is a multiple of r. Then, in parallel with (A.3), the
elementof A’ @ »» A’,

y = Z(wj—”\’)* ® wj—’N, with N >0, (A4)
J

is mapped to 1 ® £V by the canonical map x’; enough for the surjectivity of the
latter.

B. Computing cokernels

We compute explicitly the cokernel of the matrix A in (6.2) when n = 3. This is
a bit involved and, depending on the divisibility properties of the integer r, requires
considering different cases for r. Now coker(4) ~ Z*/Im(A); since Im(A) is
generated by the columns of A, the vanishing of these columns yields conditions on
the generators of coker(A).

r = 6k. The columns of the matrix A yield the constraints

6ku — 3k(6k — 1)u? + k(6k — 1)(6k —2)u® =0,
6ku? —3k(6k — 1u®> =0,
6ku® =0.

Substituting the third equation into the first and second yields the relations

6ku + 3k(1 — 6k)u? + 2ku®> =0,
3ku2+ud)=0 = 12ku?>=0,
6ku® =0.

By multiplying the first equation by two and using the second, one gets
k(12u + u?) = 0,

that is 12u + u® has order k = r/6. On the other and, the first equation
can be multiplied by three, after which the use of the third equation yields
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18ku + 9k(1 — 6k)u? = 0. Now, modulo 12ku?, one has 9k(1 — 6k)u? = 3ku?,
which transforms the previous equation into

3k(6u +u?) =0,

that is (6u + u?) has order 3k = r/2. Finally, multiplying the first equation by 6 and
using 6ku> = 0 or the second equation by 4 and using 12ku? = 0, it follows that

T2ku = 0,

i.e. u has order 12r.
r =06k +2andr = 6k — 2. For the first case, the columns of A4 yield the
constraints
23k + Du — Bk + 1)(6k + Du? + 2k(3k + 1)(6k + Du® =0,
23k + Du? — Bk + 1)(6k + Hu®* =0,
23k + Hu =0.
These can be rewritten as
23k + u — Bk + 1)(6k + Hu? =0,
2@k 4+ Du> FBk+DHul=0 = 4Bk +1Hu?2=0,
23k + DHu? =0
and from the second equation one immediately gets
Gk + Du? +u?) =0,

which says that (2u? + u3) has order 3k + 1 = r/2. On the other hand, modulo
4(3k + 1)u? one has that (3k + 1)(6k + 1)u? = (—=1)¥(3k + 1)u? which transforms
the first equation to

Gk + 1)Qu + (=D)*T1u?) =0,

that is 2u + (—1)*T'u2 has order 3k + 1 = r/2. Moreover, using again
4(3k + 1)u? = 2 this also yields
433k + 1)2u =0,
that is u has order 8(3k + 1) = 4r.
Analogous computations and results hold for r = 6k — 2.
r = 6k + 3.  The columns of the matrix A yield the constraints
32k + Du — 33k + 1)(2k + Du? + 2k + 1)(3k + 1)(6k + Hu> =0,
32k + Du? =33k + 1)(2k + u =0,
32k + DHu® = 0.
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These can be rewritten as

3k + Du + 2k + )3k + 1)(6k + Du? =0,
32k + Du? =0,
32k + Hu? =0,

that is both u> and u? have order 3(2k + 1) = r. Moreover, using twice the last
equation in the first one leads to

0 = (6k + 3)u —2(2k + )3k + Du® = 2k + 1)(3u — (6k + 2)u?)
= 2k + 1)Bu + u?),

which says that 3u + u3has order 2k + 1 = r/3. Finally
92k + Du = 32k + u® =0,
hence u has order 9(2k + 1) = 3r.

r =6k 4+ landr = 6k —1. The columns of the matrix A4 yield the constraints

(6k + 1)u — 3k(6k + )u? + k(6k + 1)(6k — Hu® =0,
(6k + Nu? —3k(6k + DHu®> =0,
(6k + Hu? =0.

These just tell us that u, u?, u> all have order 6k + 1 = r. Analogous computations
and results hold for r = 6k — 1.
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