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Abstract. We have previously shown that the isomorphism classes of orientable locally trivial
fields of C�-algebras over a compact metrizable space X with fiber D ˝ K, where D is a
strongly self-absorbingC�-algebra, form an abelian group under the operation of tensor product.
Moreover this group is isomorphic to the first group NE1

D
.X/ of the (reduced) generalized

cohomology theory associated to the unit spectrum of topological K-theory with coefficients
inD. Here we show that all the torsion elements of the group NE1

D
.X/ arise from locally trivial

fields with fiber D ˝ Mn.C/, n � 1, for all known examples of strongly self-absorbing
C�-algebras D. Moreover the Brauer group generated by locally trivial fields with fiber
D ˝Mn.C/, n � 1 is isomorphic to Tor. NE1

D
.X//.
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1. Introduction

Let X be a compact metrizable space. Let K denote the C �-algebra of compact
operators on an infinite dimensional separable Hilbert space. It is well known that
K ˝ K Š K and Mn.C/ ˝ K Š K. Dixmier and Douady [7] showed that the
isomorphism classes of locally trivial fields of C �-algebras overX with fiberK form
an abelian group under the operation of tensor product over C.X/ and this group is
isomorphic to H 3.X;Z/. The torsion subgroup of H 3.X;Z/ admits the following
description. Each element of Tor.H 3.X;Z// arises as the Dixmier-Douady class
of a field A which is isomorphic to the stabilization B ˝ K of some locally trivial
field of C �-algebras B over X with all fibers isomorphic toMn.C/ for some integer
n � 1, see [8], [1].

In this paper we generalize this result to locally trivial fields with fiber D ˝ K
whereD is a strongly self-absorbingC �-algebra [17]. For aC �-algebraB , we denote
�M.D. was partially supported by NSF grant #DMS–1362824
��U.P. was partially supported by the SFB 878 – “Groups, Geometry & Actions”



1138 M. Dadarlat and U. Pennig

byCB.X/ the isomorphism classes of locally trivial continuous fields ofC �-algebras
over X with fibers isomorphic to B . The isomorphism classes of orientable locally
trivial continuous fields is denoted by C 0

B.X/, see Definition 2.2. We have shown
in [4] that CD˝K.X/ is an abelian group under the operation of tensor product
over C.X/, and moreover, this group is isomorphic to the first group E1D.X/ of a
generalized cohomology theory E�D.X/ which we have proven to be isomorphic to
the theory associated to the unit spectrum of topological K-theory with coefficients
in D, see [5]. Similarly .C 0

D˝K.X/;˝/ Š
NE1D.X/ where NE

�
D.X/ is the reduced

theory associated to E�D.X/. ForD D C, we have, of course, E1C.X/ Š H 3.X;Z/.
We consider the stabilization map

� W CD˝Mn.C/.X/! .CD˝K.X/;˝/ Š E
1
D.X/

given by ŒA� 7! ŒA˝K� and show that its image consists entirely of torsion elements.
Moreover, if D is any of the known strongly self-absorbing C �-algebras, we show
that the stabilization map

� W
[
n�1

CD˝Mn.C/.X/! Tor. NE1D.X//

is surjective, see Theorem 2.10. In this situationCD˝Mn.C/.X/ Š C 0
D˝Mn.C/.X/ by

Lemma 2.2 and hence the image of the stabilization map is contained in the reduced
group NE1D.X/. In analogy with the classic Brauer group generated by continuous
fields of complex matrices Mn.C/ [8], we introduce a Brauer group BrD.X/
for locally trivial fields of C �-algebras with fibers Mn.D/ for D a strongly self-
absorbing C �-algebra and establish an isomorphism BrD.X/ Š Tor. NE

1
D.X//, see

Theorem 2.15.
Our proof is new even in the classic caseD D Cwhose original proof relies on an

argument of Serre, see [8, Thm.1.6], [1, Prop.2.1]. In the casesD D Z orD D O1
the group NE1D.X/ is isomorphic to H 1.X;BSU˝/, which appeared in [20], where
its equivariant counterpart played a central role.

We introduced in [4] characteristic classes

ı0 W E
1
D.X/! H 1.X;K0.D/

�
C/ and ık W E

1
D.X/! H 2kC1.X;Q/; k � 1:

If X is connected, then NE1D.X/ D ker.ı0/. We show that an element a belongs
Tor.E1D.X// if and only if ı0.a/ is a torsion element and ık.a/ D 0 for all k � 1.

In the last part of the paper we show that if Aop is the opposite C*-algebra of a
locally trivial continuous field A with fiberD˝K, then ık.Aop/ D .�1/kık.A/ for
all k � 0. This shows that in general A ˝ Aop is not isomorphic to a trivial field,
unlike what happens in the case D D C. Similar arguments show that in general
ŒAop�Br ¤ �ŒA�Br in BrD.X/ for A 2 CD˝Mn.C/.X/, see Example 3.5.

Acknowledgements. We would like to thank Ilan Hirshberg for prompting us to
seek a refinement of Theorem 2.10 in the form of Theorem 2.11.
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2. Background and main result

The class of strongly self-absorbing C �-algebras was introduced by Toms and
Winter [17]. They are separable unital C �-algebras D singled out by the property
that there exists an isomorphism D ! D ˝D which is unitarily homotopic to the
map d 7! d ˝ 1D [6], [19].

If n � 2 is a natural number we denote by Mn1 the UHF-algebra Mn.C/˝1:
IfP is a nonempty set of primes, we denote byMP1 the UHF-algebra of infinite typeN
p2P Mp1 : If P is the set of all primes, thenMP1 is the universal UHF-algebra,

which we denote byMQ.
The class Dpi of all purely infinite strongly self-absorbing C �-algebras that

satisfy the Universal Coefficient Theorem in KK-theory (UCT) was completely
described in [17]. Dpi consists of the Cuntz algebrasO2,O1 and of allC �-algebras
MP1 ˝O1 with P an arbitrary set of primes. LetDqd denote the class of strongly
self-absorbing C �-algebras which satisfy the UCT and which are quasidiagonal. A
complete description of Dqd has become possible due to the recent results of Matui
and Sato [13, Cor. 6.2] that build on results of Winter [18], and Lin and Niu [12].
ThusDqd consists ofC, the Jiang–Su algebraZ and all UHF-algebrasMP1 with P
an arbitrary set of primes. The class D D Dqd [Dpi contains all known examples
of strongly self-absorbing C �-algebras. It is closed under tensor products. If D
is strongly self-absorbing, then K0.D/ is a unital commutative ring. The group of
positive invertible elements of K0.D/ is denoted by K0.D/�C.

Let B be a C �-algebra. We denote by Aut0.B/ the path component of the
identity of Aut.B/ endowed with the point-norm topology. Recall that we denote
by CB.X/ the isomorphism classes of locally trivial continuous fields over X with
fibers isomorphic to B . The structure group of A 2 CB.X/ is Aut.B/, and A is in
fact given by a principal Aut.B/-bundle which is determined up to an isomorphism
by an element of the homotopy classes of continuous maps fromX to the classifying
space of the topological group Aut.B/, denoted by ŒX; BAut.B/�.

Definition 2.1. A locally trivial continuous field A of C �-algebras with fiber B is
orientable if its structure group can be reduced to Aut0.B/, in other words if A is
given by an element of ŒX; BAut0.B/�.

The corresponding isomorphism classes of orientable and locally trivial fields is
denoted by C 0

B.X/.

Lemma 2.2. Let D be a strongly self-absorbing C �-algebra satisfying the UCT.
Then Aut.Mn.D// D Aut0.Mn.D// for all n � 1 and hence CD˝Mn.C/.X/ Š

C 0
D˝Mn.C/.X/.

Proof. First we show that for any ˇ 2 Aut.D ˝Mn.C// there exist ˛ 2 Aut.D/
and a unitary u 2 D ˝Mn.C/ such that ˇ D u.˛ ˝ idMn.C//u

�. Let e11 2 Mn.C/
be the rank-one projection that appears in the canonical matrix units .eij / ofMn.C/
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and let 1n be the unit of Mn.C/. Then nŒ1D ˝ e11� D Œ1D ˝ 1n� in K0.D/
and hence nŒˇ.1D ˝ e11/� D nŒ1D ˝ e11� in K0.D/. Under the assumptions
of the lemma, it is known that K0.D/ is torsion free (by [17]) and that D has
cancellation of full projections by [19] and [15]. It follows that there is a partial
isometry v 2 D ˝Mn.C/ such that v�v D 1D ˝ e11 and vv� D ˇ.1D ˝ e11/.
Then u D

Pn
iD1 ˇ.1D ˝ ei1/v.1D ˝ e1i / 2 D ˝Mn.C/ is a unitary such that the

automorphism u�ˇ u acts identically on 1D ˝ Mn.C/. It follows that u�ˇ u D
˛˝ idMn.C/ for some ˛ 2 Aut.D/. Since both U.D˝Mn.C// and Aut.D/ are path
connected by [17], [15] and respectively [6] we conclude that Aut.D ˝Mn.C// is
path-connected as well.

Let us recall the following results contained in Corollary 3.7, Theorem 3.8, and
Corollary 3.9 from [4]. LetD be a strongly self-absorbing C �-algebra.

(1) The classifying spaces BAut.D ˝ K/ and BAut0.D ˝ K/ are infinite
loop spaces giving rise to generalized cohomology theories E�D.X/ and respec-
tively NE�D.X/.

(2) The monoid .CD˝K.X/;˝/ is an abelian group isomorphic to E1D.X/.
Similarly, the monoid .C 0

D˝K.X/;˝/ is a group isomorphic to NE1D.X/. In both
cases the tensor product is understood to be over C.X/.

(3)

E1MQ
.X/ Š H 1.X;Q�C/˚

M
k�1

H 2kC1.X;Q/;

E1MQ˝O1.X/ Š H
1.X;Q�/˚

M
k�1

H 2kC1.X;Q/;

(4)
NE1MQ

.X/ Š NE1MQ˝O1.X/ Š
M
k�1

H 2kC1.X;Q/:

(5) IfD satisfies the UCT thenD˝MQ˝O1 ŠMQ˝O1; by [17]. Therefore
the tensor product operation A 7! A˝MQ ˝O1 induces maps

CD˝K.X/! CMQ˝O1˝K.X/; C 0
D˝K.X/! C 0

MQ˝O1˝K.X/

and hence maps

E1D.X/
ı
�! E1MQ˝O1.X/ Š H

1.X;Q�/˚
M
k�1

H 2kC1.X;Q/;

ı.A/ D .ıs0.A/; ı1.A/; ı2.A/; : : : /; ık.A/ 2 H
2kC1.X;Q/;

NE1D.X/
Nı
�! NE1MQ˝O1.X/ Š

M
k�1

H 2kC1.X;Q/;
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Nı.A/ D .ı1.A/; ı2.A/; : : : /; ık.A/ 2 H
2kC1.X;Q/:

The invariants ık.A/ are called the rational characteristic classes of the continuous
field A, see [4, Def.4.6]. The first class ıs0 lifts to a map

ı0 W E
1
D.X/! H 1.X;K0.D/

�
C/

induced by the morphism of groups Aut.D ˝K/! �0.Aut.D ˝K// Š K0.D/�C.
ı0.A/ represents the obstruction to reducing the structure group ofA to Aut0.D˝K/.
Proposition 2.3. A continuous field A 2 CD˝K.X/ is orientable if and only if
ı0.A/ D 0. If X is connected, then NE1D.X/ Š ker.ı0/.

Proof. Let us recall from [4, Cor. 2.19] that there is an exact sequence of topological
groups

1! Aut0.D ˝K/! Aut.D ˝K/
�
�! K0.D/

�
C ! 1: (2.1)

The map � takes an automorphism ˛ to Œ˛.1D ˝ e/� where e 2 K is a rank-one
projection. If G is a topological group and H is a normal subgroup of G such that
H ! G ! G=H is a principal H -bundle, then there is a homotopy fibre sequence
G=H ! BH ! BG ! B.G=H/ and hence an exact sequence of pointed sets
ŒX;G=H�! ŒX; BH�! ŒX; BG�! ŒX; B.G=H/�. In particular, in the case of the
fibration (2.1) we obtain

ŒX;K0.D/
�
C�! ŒX; BAut0.D˝K/�! ŒX; BAut.D˝K/�

ı0
�! H 1.X;K0.D/

�
C/:

(2.2)
A continuous field A 2 C 0

D˝K.X/ is associated to a principal Aut.D ˝ K/-bundle
whose classifying map gives a unique element in ŒX; BAut.D ˝ K/� whose image
in H 1.X;K0.D/

�
C/ is denoted by ı0.A/. It is clear from (2.2) that the class

ı0.A/ 2 H
1.X;K0.D/

�
C/ represents the obstruction for reducing this bundle to a

principal Aut0.D ˝ K/-bundle. If X is connected, ŒX;K0.D/�C� D f�g and hence
NE1D.X/ Š ker.ı0/.

Remark 2.4. IfD D C orD D Z then A is automatically orientable since in those
cases K0.D/�C is the trivial group.

Remark 2.5. Let Y be a compact metrizable space and let X D †Y be the
suspension of Y . Since the rational Künneth isomorphism and the Chern character
on K0.X/ are compatible with the ring structure on K0.C.Y / ˝ D/, we obtain a
ring homomorphism

chWK0.C.Y /˝D/! K0.Y /˝K0.D/˝Q!
1Y
kD0

H 2k.Y;Q/ DW H ev.Y;Q/ ;

which restricts to a group homomorphism chW NE0D.Y / ! SL1.H
ev.Y;Q//, where

the right hand side denotes the units, which project to 1 2 H 0.Y;Q/.
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If A is an orientable locally trivial continuous field with fiber D ˝ K over X , then
we have

ık.A/ D log ch.fA/ 2 H 2k.Y;Q/ Š H 2kC1.X;Q/ ; (2.3)

where fAWY ! �BAut0.D ˝ K/ ' Aut0.D ˝ K/ is induced by the transition
map of A. The homomorphism logWSL1.H ev.Y;Q// ! H ev.Y;Q/ is the rational
logarithm from [14, Section 2.5]. For the proof of (2.3) it suffices to treat the case
D D MQ ˝ O1, where it can be easily checked on the level of homotopy groups,
but since NE0D.Y / and H

ev.Y;Q/ have rational vector spaces as coefficients this is
enough.
Lemma 2.6. Let D be a strongly self-absorbing C �-algebra in the class D. If
p 2 D ˝K is a projection such that Œp� ¤ 0 in K0.D/, then there is an integer
n � 1 such that Œp� 2 nK0.D/

�
C. If Œp� 2 nK0.D/

�
C, then p.D ˝ K/p Š

Mn.D/. Moreover, if n;m � 1, thenMn.D/ Š Mm.D/ if and only if nK0.D/�C D
mK0.D/

�
C.

Proof. Recall that K0.D/ is an ordered unital ring with unit Œ1D� and with positive
elements K0.D/C corresponding to classes of projections in D ˝K. The group of
invertible elements is denoted by K0.D/� and K0.D/�C consists of classes Œp� of
projectionsp 2 D˝K such that Œp� 2 K0.D/�. It was shown in [4, Lemma2.14] that
if p 2 D ˝K is a projection, then Œp� 2 K0.D/�C if and only if p.D ˝K/p Š D.
The ring K0.D/ and the group K0.D/�C are known for all D 2 D, [17]. In
fact K0.D/ is a unital subring of Q, K0.D/C D QC \ K0.D/ if D 2 Dqd and
K0.D/C D K0.D/ ifD 2 Dpi :Moreover,

K0.C/ Š K0.Z/ Š K0.O1/ Š Z; K0.O2/ D f0g;

K0.MP1/ Š K0.MP1 ˝O1/ Š ZŒ1=P � Š
O
p2P

ZŒ1=p�

Š fnp
k1

1 p
k2

2 � � �p
kr
r Wpi 2 P; n; ki 2 Zg;

K0.C/�C Š K0.Z/�C D f1g; K0.O1/�C D f˙1g;

K0.MP1/
�
C Š fp

k1

1 p
k2

2 � � �p
kr
r Wpi 2 P; ki 2 Zg:

K0.MP1 ˝O1/�C Š f˙p
k1

1 p
k2

2 � � �p
kr
r Wpi 2 P; ki 2 Zg:

In particular, we see that in all cases K0.D/C D N � K0.D/�C, which proves the
first statement. If p 2 D ˝ K is a projection such that Œp� 2 nK0.D/�C, then
there is a projection q 2 D ˝ K such that Œq� 2 K0.D/

�
C and Œp� D nŒq� D

Œdiag.q; q; : : : ; q/�. Since D has cancellation of full projections, it follows then
immediately that p.D ˝K/p ŠMn.D/ proving the second part.

To show the last part of the lemma, suppose now that ˛ W D ˝ Mn.C/ !
D ˝Mm.C/ is a �-isomorphism. Let e 2 Mn.C/ be a rank one projection. Then
˛.1D ˝ e/.D ˝ Mm.C//˛.1D ˝ e/ Š D. By [4, Lemma 2.14] it follows that
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˛�Œ1D� D Œ˛.1D˝e/� 2 K0.D/
�
C. Since ˛ is unital, ˛�.nŒ1D�/ D mŒ1D� and hence

mŒ1D� 2 nK0.D/
�
C. This is equivalent to nK0.D/�C D mK0.D/�C.

Conversely, suppose that mŒ1D� D nu for some u 2 K0.D/
�
C. Let

˛2Aut.D ˝K/ be such that Œ˛.1D ˝ e/� D u. Then ˛�.nŒ1D�/ D nu D mŒ1D�.
This implies that ˛ maps a corner ofD˝K that is isomorphic toMn.D/ to a corner
that is isomorphic toMm.D/.

Corollary 2.7. Let D 2 D and let � WD ˝ Mnr .C/ ! D ˝ Mn1 be a unital
inclusion induced by some unital embeddingMnr .C/!Mn1 , where n � 2; r � 0.
Let R be the set of prime factors of n. Then, under the canonical isomorphism
K0.D ˝Mnr .C// Š K0.D/, we have

��1� .K0.D ˝Mn1/
�
C/ D

[
r

rK0.D/
�
C � K0.D/

where r runs through the set of all products of the form
Q
q2R q

kq , kq 2 N [ f0g.

Proof. From Lemma 2.6 we see thatK0.D/ Š ZŒ1=P � for a (possibly empty) set of
primes P . The order structure is the one induced by .Q;QC/ if D is quasidiagonal
or K0.D/C D ZŒ1=P � if D is purely infinite. If R � P , then � induces an
isomorphism on K0 and the statement is true, since �� is order preserving and
ZŒ1=R�� � K0.D/

�. Thus, we may assume that R ª P . Let S D P [ R

and thus K0.D ˝Mn1/ Š ZŒ1=S�. The map �� induces the canonical inclusion
ZŒ1=P � ,! ZŒ1=S�. We can write x 2 ZŒ1=P � as

x D m �
Y
p2P

prp �
Y

q2RnP

qkq

with m 2 Z relatively prime to all p 2 P and q 2 R, only finitely many rp 2 Z
non-zero and kq 2 N [ f0g. From this decomposition we see that x is invertible in
ZŒ1=S� if and only if m D ˙1. This concludes the proof since prp 2 K0.D/�C.

Remark 2.8. Let q 2 D ˝ K be a projection and let ˛ 2 Aut.D ˝ K/. As in [4,
Lemma 2.14] we have that Œ˛.q/� D Œ˛.1˝e/� � Œq�with Œ˛.1˝e/� 2 K0.D/�C. Thus,
the condition Œq� 2 nK0.D/�C for n 2 N is invariant under the action of Aut.D˝K/
on K0.D/. Given A 2 CD˝K.X/, a projection p 2 A, x0 2 X and an isomorphism
�WA.x0/ ! D ˝ K the condition Œ�.p.x0//� 2 nK0.D/�C is independent of �.
Abusing the notation we will write this as Œp.x0/� 2 nK0.D/�C.

Corollary 2.9. Let D 2 D and let A 2 CD˝K.X/ with X a connected compact
metrizable space. If p 2 A is a projection such that Œp.x0/� 2 nK0.D/�C for some
point x0, then .pAp/.x/ ŠMn.D/ for all x 2 X and hence pAp 2 CD˝Mn.C/.X/.
If p 2 A is a projection with Œp.x0/� 2 K0.D/ n f0g, then Œp.x0/� 2 nK0.D/�C for
some n 2 N.
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Proof. LetV1; : : : ; Vk be a finite cover ofX by compact sets such that there are bundle
isomorphisms �i W A.Vi / Š C.Vi /˝D ˝K. Let pi be the image of the restriction
of p to Vi under �i . After refining the cover .Vi /, if necessary, we may assume that
kpi .x/ � pi .y/k < 1 for all x; y 2 Vi . This allows us to find a unitary ui in the
multiplier algebra of C.Vi /˝D ˝K such that after replacing �i by ui�iu�i and pi
by uipiu�i , we may assume that pi are constant projections. Since X is connected
and Œp.x0/� 2 nK0.D/�C by assumption, it follows from Œpi .x0/� 2 nK0.D/

�
C for

x0 2 Vi and the above remark that Œpj .x/� 2 nK0.D/�C for all 1 � j � k and all
x 2 Vj . Then Lemma 2.6 implies .pAp/.Vj / Š C.Vj /˝Mn.D/. By Lemma 2.6
we also have that Œp.x0/� ¤ 0 implies Œp.x0/� 2 nK0.D/�C for some n 2 N proving
the statement about the case Œp.x0/� 2 K0.D/ n f0g.

We study the image of the stabilization map

CD˝Mn.C/.X/! CD˝K.X/

induced by the map A 7! A˝K, or equivalently by the map

Aut.D ˝Mn.C//! Aut.D ˝Mn.C/˝K/ Š Aut.D ˝K/:

Let us recall that D denotes the class of strongly self-absorbing C �-algebras
which satisfy the UCT and which are either quasidiagonal or purely infinite.

Theorem 2.10. Let D be a strongly self-absorbing C �-algebra in the class D.
Let A be a locally trivial continuous field of C �-algebras over a connected compact
metrizable spaceX such thatA.x/ Š D˝K for all x 2 X . The following assertions
are equivalent:

(1) ık.A/ D 0 for all k � 0.

(2) The field A˝MQ is trivial.

(3) There is an integer n � 1 and a unital locally trivial continuous field B over
X with all fibers isomorphic toMn.D/ such that A Š B ˝K.

(4) A is orientable and A˝m Š C.X/˝D ˝K for some m 2 N.

Proof. The statement is immediately verified if D Š O2. Indeed all locally trivial
fields with fiberO2˝K are trivial since Aut.O2˝K/ is contractible by [4, Cor. 17 &
Thm. 2.17]. For the remainder of the proof we may therefore assume thatD © O2.

(1) , (2) If D 2 Dqd , then it is known that D ˝MQ Š MQ. Similarly, if
D 2 Dpi andD © O2 thenD˝MQ Š O1˝MQ. If A is as in the statement, then
A˝MQ is a locally trivial field whose fibers are all isomorphic to either MQ ˝ K
or toO1˝MQ˝K. In either case, it was shown in [4, Cor. 4.5] that such a field is
trivial if and only if ık.A/ D 0 for all k � 0. As reviewed earlier in this section, this
follows from the explicit computation of E1MQ

.X/ and E1MQ˝O1.X/.
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(2)) (3)Assumenow thatA˝MQ is trivial, i.e. A˝MQ Š C.X/˝D˝MQ˝K.
Let p 2 A˝MQ be the projection that corresponds under this isomorphism to the
projection 1˝e 2 C.X/˝D˝MQ˝Kwhere 1 is the unit of theC �-algebraC.X/˝
D ˝MQ and e 2 K is a rank-one projection. Then Œp.x/� ¤ 0 in K0.A.x/˝MQ/

for all x 2 X (recall that D © O2). Let us write MQ as the direct limit of an
increasing sequence of its subalgebrasMk.i/.C/: Then A˝MQ is the direct limit of
the sequence Ai D A˝Mk.i/.C/. It follows that there exist i � 1 and a projection
pi 2 Ai such that kp � pik < 1: Then kp.x/ � pi .x/k < 1 and so Œpi .x/� ¤ 0 in
K0.Ai .x// for each x 2 X , since its image inK0.A.x/˝MQ/ is equal to Œp.x/� ¤ 0.
Let us consider the locally trivial unital field B WD pi .A˝Mk.i/.C//pi . Since the
fibers ofA˝Mk.i/.C/ are isomorphic toD˝K˝Mk.i/.C/ Š D˝K, it follows by
Corollary 2.9 that there is n � 1 such that all fibers of B are isomorphic toMn.D/.
SinceB is isomorphic to a full corner ofA˝K, it follows by [3] thatA˝K Š B˝K.
We conclude by noting that since A is locally trivial and each fiber is stable, then
A Š A˝K by [9] and so A Š B ˝K.

(3)) (2) This implication holds for any strongly self-absorbing C �-algebra D.
Let A and B be as in (3). Let us note that B ˝MQ is a unital locally trivial field
with all fibers isomorphic to the strongly self-absorbing C �-algebraD˝MQ. Since
Aut.D˝MQ/ is contractible by [4, Thm. 2.3], it follows that B˝MQ is trivial. We
conclude that A˝MQ Š .B ˝MQ/˝K Š C.X/˝D ˝MQ ˝K:

(2), (4) This equivalence holds for any strongly self-absorbing C �-algebra D
if A is orientable. In particular we do not need to assume that D satisfies the UCT.
In the UCT case we note that since the map K0.D/ ! K0.D ˝MQ/ is injective,
it follows that A is orientable if and only if A ˝MQ is orientable, i.e. ı0.A/ D 0

if and only if ıs0.A/ D 0. Since ı0.A/ D 0, A is determined up to isomorphism by
its class ŒA� 2 NE1D.X/. To complete the proof it suffices to show that the kernel of
the map � W NE1D.X/! NE1D˝MQ

.X/, �ŒA� D ŒA˝MQ�, consists entirely of torsion
elements. Consider the natural transformation of cohomology theories:

� ˝ idQ W NE�D.X/˝Q! NE�D˝MQ
.X/˝Q Š NE�D˝MQ

.X/:

If D ¤ C, it induces an isomorphism on coefficients since NE0D.pt/ D 0 and for
i > 0

NE�iD .pt/ D �i .Aut0.D ˝K// Š Ki .D/

by [4, Thm. 2.18] and since the map Ki .D/˝Q! Ki .D ˝MQ/ is bijective. We
conclude that the kernel of � is a torsion group. The same property holds forD D C
since NE�C.X/ is a direct summand of NE�Z.X/ by [4, Cor. 4.8].

Theorem 2.11. Let D, X and A be as in Theorem 2.10 and let n � 2 be an integer.
The following assertions are equivalent:

(1) The field A˝Mn1 is trivial.
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(2) There is a k 2 N and a unital locally trivial continuous field B over X with
all fibers isomorphic toMnk .D/ such that A Š B ˝K.

(3) A is orientable and A˝nk
Š C.X/˝D ˝K for some k 2 N.

Proof. By reasoning as in the proof of Theorem 2.10, we may assume thatD © O2.
(1)) (2) By assumption the continuous fieldA˝Mn1 is trivializable and hence

it satisfies the global Fell condition of [4]. This means that there is a full projection
p1 2 A˝Mn1 with the property that p1.x/ 2 K0.A.x/˝Mn1/

�
C for all x 2 X .

Let �i WMni .C/!Mn1 be a unital inclusion map. Since A˝Mn1 is the inductive
limit of the sequence

A! A˝Mn.C/! � � � ! A˝Mni .C/! A˝MniC1.C/! � � �

there is an i 2 N and a full projection p 2 A˝Mni .C/ with k.idA ˝ �i /.p/ � p1k
< 1. Fix a point x0 2 X . Let � WA.x0/ ˝ Mni .C/ ! A.x0/ ˝ Mn1 be the
unital inclusion induced by �i . Note that ��.Œp.x0/�/ D .idA.x0/ ˝ �i /�.Œp.x0/�/ D

Œp1.x0/� 2 K0.A.x0/ ˝ Mn1/
�
C. By Corollary 2.7 this implies that Œp.x0/� 2

rK0.A.x0//
�
C for some r 2 N that divides nk for some k 2 N [ f0g. Then B0 WD

p.A˝Mni .C//p 2 CD˝Mr .C/.X/ by Corollary 2.9. Write nk D mr with m 2 N.
It follows that B WD B0 ˝Mm.C/ 2 CD˝M

nk .C/.X/. The fact that B ˝ K Š A

follows just as in step (2)) (3) in the proof of Theorem 2.10.
(2) ) (1) This is just the same argument as step (3) ) (2) in the proof of

Theorem 2.10.
(1), (3) The orientability of A follows from Theorem 2.10.
Observe that the elements ŒA� 2 C 0

D˝K.X/ D
NE1D.X/ such that nkŒA� D 0 or

equivalently A˝nk is trivializable for some k 2 N [ f0g coincide precisely with
the elements in the kernel of the group homomorphism NE1D.X/! NE1D.X/˝ ZŒ 1

n
�.

Since ZŒ 1
n
� is flat, it follows that X 7! NE�D.X/˝ ZŒ 1

n
� still satisfies all axioms of a

generalized cohomology theory. In particular, we have the following commutative
diagram of natural transformations of cohomology theories:

NE�D.X/
//

��

NE�D˝Mn1
.X/

Š

��
NE�D.X/˝ ZŒ 1

n
�
Š
// NE�D˝Mn1

.X/˝ ZŒ 1
n
�

where the isomorphisms follow by checking them on the coefficients. Thus the kernel
of the left vertical map agrees with the one of the upper horizontal map proving the
statement.
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Corollary 2.12. LetD andX be as in Theorem 2.10. Then any element x 2 NE1D.X/
with nx D 0 is represented by the stabilization of a unital locally trivial field over X
with all fibers isomorphic toMnk .D/ for some k � 1. Moreover if A 2 CD˝K.X/,
then A ˝MQ is trivial, A ˝Mn1 is trivial for some n 2 N, A is orientable
and nkŒA� D 0 in NE1D.X/ for some k 2 N and some n 2 N.

(An example from [1] forD D C shows that in general one cannot always arrange
that k D 1.)

Proof. The first part follows from Theorem 2.11. Indeed, condition (3) of that
theorem is equivalent to requiring that A is orientable and nkŒA� D 0 in NE1D.X/.
The second part follows from Theorems 2.10 and 2.11.

Definition 2.13. LetD be a strongly self-absorbing C �-algebra. IfX is a connected
compact metrizable space we define the Brauer group BrD.X/ as equivalence
classes of continuous fields A 2

S
n�1 CMn.D/.X/. Two continuous fields

Ai 2 CMni
.D/.X/, i D 1; 2 are equivalent, if

A1 ˝ p1C.X;MN1
.D//p1 Š A2 ˝ p2C.X;MN2

.D//p2;

for some full projections pi 2 C.X;MNi
.D//: We denote by ŒA�Br the class

of A in BrD.X/. The multiplication on BrD.X/ is induced by the tensor product
operation, after fixing an isomorphismD˝D Š D. We will show in a moment that
the monoid BrD.X/ is a group.

Remark 2.14. It is worth noting the following two alternative descriptions of
the Brauer group. (a) If D 2 D is quasidiagonal, then two continuous fields
Ai 2 CMni

.D/.X/, i D 1; 2 have equal classes in BrD.X/, if and only if
A1 ˝ p1C.X;MN1

.C//p1 Š A2 ˝ p2C.X;MN2
.C//p2; for some full projections

pi 2 C.X;MNi
.C//: (b) If D 2 D is purely infinite, then two continuous

fields Ai 2 CMni
.D/.X/, i D 1; 2 have equal classes in BrD.X/, if and

only if A1 ˝ p1C.X;MN1
.O1//p1 Š A2 ˝ p2C.X;MN2

.O1//p2; for some
full projections pi 2 C.X;MNi

.O1//: In order to justify (a) we observe that
if D is quasidiagonal, then every projection p 2 C.X;MN .D// has a multiple
p.m/ WD p ˝ 1Mm

.C/ such that p.m/ is Murray–von Neumann equivalent to a
projection in C.X;MNm.C//˝ 1D � C.X;MNm.C//˝D and that Ai ˝D Š Ai
by [9]. For (b) we note that if D is purely infinite, then then every projection
p 2 C.X;MN .D// has a multiple p ˝ 1Mm

.C/ that is Murray–von Neumann
equivalent to a projection in C.X;MNm.O1//˝ 1D:

One has the following generalization of a result of Serre, [8, Thm.1.6].

Theorem 2.15. LetD be a strongly self-absorbing C �-algebra in D.

(i) Tor. NE1D.X// D ker
�
NE1D.X/

Nı
�!

L
k�1H

2kC1.X;Q/
�
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(ii) The map � W BrD.X/! Tor. NE1D.X//, ŒA�Br 7! ŒA˝K� is an isomorphism
of groups.

Proof. (i) was established in the last part of the proof of Theorem 2.10.
(ii) We denote by Lp the continuous field p C.X;MN .D//p. Since Lp ˝K Š

C.X;D ˝K/ it follows that the map � is a well-defined morphism of monoids.
We use the following observation. Let � W S ! G be a unital surjectivemorphism

of commutative monoids with units denoted by 1. Suppose that G is a group and
that fs 2 S W �.s/ D 1g D f1g. Then S is a group and � is an isomorphism.
Indeed if s 2 S , there is t 2 S such that �.t/ D �.s/�1 by surjectivity of � . Then
�.st/ D �.s/�.t/ D 1 and so st D 1. It follows that S is a group and that � is
injective.

We are going to apply this observation to the map � W BrD.X/! Tor. NE1D.X//.
By condition (3) of Theorem 2.10 we see that � is surjective. Let us determine the
set ��1.f0g/. We are going to show that if B 2 CD˝Mn.C/.X/, then ŒB ˝K� D 0 in
NE1D.X/ if and only if

B Š p .C.X/˝D ˝MN .C// p Š LC.X;D/.p C.X;D/N /

for some selfadjoint projection p 2 C.X/ ˝ D ˝ MN .C/ Š MN .C.X;D//.
Let B 2 CD˝Mn.C/.X/ be such that ŒB ˝ K� D 0 in NE1D.X/. Then there is an
isomorphism of continuous fields� W B˝K

Š
�! C.X/˝D˝K. After conjugating�

by a unitary we may assume that p WD �.1B˝e11/ 2 C.X/˝D˝MN .C/ for some
integerN � 1. It follows immediately that the projectionp has the desired properties.
Conversely, if B Š p .C.X/˝D ˝MN .C// p then there is an isomorphism of
continuous fields B ˝ K Š C.X/˝D ˝ K by [3]. We have thus shown that that
�.ŒB�Br/ D 0 if and only if ŒB�Br D 0.

We are now able to conclude that BrD.X/ is a group and that � is injective by
the general observation made earlier.

Definition 2.16. Let D be a strongly self-absorbing C �-algebra. Let A be a locally
trivial continuous field of C �-algebras with fiberD ˝K. We say that A is a torsion
continuous field if A˝k is isomorphic to a trivial field for some integer k � 1.

Corollary 2.17. Let A be as in Theorem 2.10. Then A is a torsion continuous field
if and only if ı0.A/ 2 H 1.X;K0.D/

�
C/ is a torsion element and ık.A/ D 0 2

H 2kC1.X;Q/ for all k � 1.

Proof. Let m � 1 be an integer such that mı0.A/ D 0. Then ı0.A˝m/ D 0. We
conclude by applying Theorem 2.10 to the orientable continuous field A˝m.
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3. Characteristic classes of the opposite continuous field

Given a C �-algebra B denote by Bop the opposite C �-algebra with the same
underlying Banach space and norm, but with multiplication given by bop � aop D
.a � b/op. The conjugate C �-algebra B has the conjugate Banach space as its
underlying vector space, but the same multiplicative structure. The map a 7! a�

provides an isomorphism Bop ! B . Any automorphism ˛ 2 Aut.B/ yields in
a canonical way automorphisms N̨ WB ! B and ˛opWBop ! Bop compatible with
� WBop ! B . Therefore we have group isomorphisms � WAut.B/ ! Aut.B/ and
Aut.B/ ! Aut.Bop/. Note that ˛ 2 Aut.B/ is equal to �.˛/ when regarded as
set-theoretic maps B ! B . Given a locally trivial continuous field A with fiber B ,
we can apply these operations fiberwise to obtain the locally trivial fields Aop and A,
which we will call the opposite and the conjugate field. They are isomorphic to each
other and isomorphic to the conjugate and the opposite C �-algebras of A.

A real form of a complex C*-algebra A is a real C*-algebra AR such that A Š
AR˝C. A real form is not necessarily unique [2] and not all C*-algebras admit real
forms [16]. If two C*-algebrasA andB admit real formsAR andBR, thenAR˝RB

R

is a real form of A˝ B .
Example 3.1. All known strongly self-absorbing C*-algebras D 2 D admit a real
form.

Indeed, the real Cuntz algebras OR
2 and OR

1 are defined by the same generators
and relations as their complex versions. AlternativelyOR

1 can be realized as follows.
Let HR be a separable infinite dimensional real Hilbert space and let FR.HR/ DL1
nD0H

˝n
R be the real Fock space associated to it. Every � 2 HR defines a shift

operator s�.�/ D � ˝ � and we denote the algebra spanned by the s� and their
adjoints s�

�
byOR

1. If F.HR˝C/ denotes the Fock space associated to the complex
Hilbert space H D HR ˝ C, then we have FR ˝ C Š F.H/. If we represent O1
on F.H/ using the above construction, then the map s� C i s�0 7! s�Ci �0 induces
an isomorphism OR

1 ˝ C ! O1. Likewise define MR
Q to be the infinite tensor

productM2.R/˝M3.R/˝M4.R/˝ : : : . SinceMn.C/ ŠMn.R/˝C, we obtain
an isomorphism MR

Q ˝ C Š MQ on the inductive limit. Let KR be the compact
operators onHR andK those onH , then we haveKR˝C Š K. Thus,MQ˝O1˝K
is the complexification of the real C �-algebraMR

Q ˝OR
1 ˝KR.

The Jiang–Su algebra Z admits a real form ZR which can be constructed in the
same way as Z . Indeed, one constructs ZR as the inductive limit of a system

� � � ! C.Œ0; 1�;Mpnqn
.R//

�n
�! C.Œ0; 1�;MpnC1qnC1

.R//! � � �

where the connecting maps �n are defined just as in the proof of [11, Prop. 2.5]
with only one modification. Specifically, one can choose the matrices u0 and u1 to
be in the special orthogonal group SO.pnqn/ and this will ensure the existence of a
continuous path ut in O.pnqn/ from u0 to u1 as required.
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IfB is the complexification of a realC �-algebraBR, then a choice of isomorphism
B Š BR˝C provides an isomorphism cWB ! B via complex conjugation onC. On
automorphisms we have Adc�1 WAut.B/! Aut.B/. Let � D Adc�1 ı � WAut.B/!
Aut.B/. Now we specialize to the case B D D ˝ K with D 2 D and study the
effect of � on homotopy groups, i.e. ��W�2k.Aut.B// ! �2k.Aut.B//. By [4,
Theorem 2.18] the groups �2kC1.Aut.B// vanish.

Let R be a commutative ring and denote by
�
K0.S2k/˝R

�� the group of units
of the ring K0.S2k/˝ R. Let

�
K0.S2k/˝R

��
1
be the kernel of the morphism of

multiplicative groups
�
K0.S2k/˝R

��
! R�: This is the group of virtual rank 1

vector bundles with coefficients in R over S2k . Let cS WK0.S2k/ ! K0.S2k/ and
cRWK0.D/! K0.D/ be the ring automorphisms induced by complex conjugation.
Lemma 3.2. Let D be a strongly self-absorbing C �-algebra in the class D, let
R D K0.D/ and let k > 0. There is an isomorphism �2k.Aut.D ˝ K// !�
K0.S2k/˝R

��
1
(k > 0) such that the following diagram commutes

�2k.Aut.D ˝K//

��

�� // �2k.Aut.D ˝K//

���
K0.S2k/˝R

��
1

cS˝cR //
�
K0.S2k/˝R

��
1

Proof. Observe that �2k.Aut.D ˝ K// D �2k.Aut0.D ˝ K// (for k > 0)
and Aut0.D ˝ K/ is a path connected group, therefore �2k.Aut.D ˝ K// D
ŒS2k;Aut0.D˝K/�. Let e 2 K be a rank 1 projection such that c.1D˝e/ D 1D˝e.
It follows from the proof of [4, Theorem 2.22] that the map ˛ 7! ˛.1˝ e/ induces
an isomorphism

ŒS2k;Aut0.D ˝K/�! K0.C.S
2k/˝D/�1 D 1CK0.C0.S

2k
n x0/˝D/:

We have �.˛/.1˝ e/ D c�1.˛.c.1˝ e/// D c�1.˛.1˝ e//, i.e. the isomorphism
intertwines � and c�1. Consider the following diagram of rings:

K0.S2k/˝R

��

cS˝cR // K0.S2k/˝R

��
K0.C.S

2k/˝D/
p 7!c�1.p/ // K0.C.S

2k/˝D/

The vertical maps arise from the Künneth theorem. Since K1.D/ D 0, these are
isomorphisms. Since cS corresponds to the operation induced on K0.C.S2k// by
complex conjugation on K, the above diagram commutes.

Remark 3.3. (i) If D 2 D then R D K0.D/ � Q with Œ1D� D Œ1DR � D 1. Thus
c�1.1D/ D 1D and this shows that the above automorphism cR is trivial. The
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K0-ring of the sphere is given by K0.S2k/ Š ZŒXk�=.X2k /. The element Xk is the
k-fold reduced exterior tensor power ofH�1, whereH is the tautological line bundle
over S2 Š CP 1. Since cS mapsH �1 to 1�H , it follows thatXk is mapped to�Xk
if k is odd and to Xk if k is even. We have

�
K0.S2/˝R

��
1
D f1C t Xk j t 2 Rg

� RŒXk�=.X
2
k
/. Thus, cS maps 1C t Xk to its inverse 1 � t Xk if k is odd and acts

trivially if k is even.
(ii) By [4, Theorem 2.18] there is an isomorphism �0.Aut.D ˝K// Š K0.D/�C

given by Œ˛� 7! Œ˛.1˝ e/�. Arguing as in Lemma 3.2 we see that the action of � on
this groups is given by cR D id.
Theorem 3.4. Let X be a compact metrizable space and let A be a locally trivial
continuous field with fiberD ˝K for a strongly self-absorbing C �-algebraD 2 D.
Then we have for k � 0:

ık.A
op/ D ık.A/ D .�1/

k ık.A/ 2 H
2kC1.X;Q/ :

Proof. Let DR be a real form of D. The group isomorphism �WAut.D ˝ K/ !
Aut.D ˝ K/ induces an infinite loop map B�WBAut.D ˝ K/ ! BAut.D ˝ K/,
where the infinite loop space structure is the one described in [4, Section 3]. If
f WX ! BAut.D˝K/ is the classifying map of a locally trivial fieldA, thenB�ıf
classifies A. Thus the induced map �� W E1D.X/ ! E1D.X/ has the property that
��ŒA� D ŒA�.

The unital inclusion DR ! BR WD DR ˝ OR
1 ˝M

R
Q induces a commutative

diagram
Aut.D ˝K/ � //

��

Aut.D ˝K/

��
Aut.B ˝K/ � // Aut.B ˝K/

with B WD BR ˝ C. From this we obtain a commutative diagram

E1D.X/
�� //

ı

��

E1D.X/

ı

��
E1B.X/

�� // E1B.X/

As explained earlier, B Š MQ ˝O1. Recall that E1MQ˝O1.X/ Š H 1.X;Q�/˚L
k�1H

2kC1.X;Q/. By Lemma 3.2 and Remark 3.3(i) the effect of � on
H 2kC1.X; �2k.Aut.B/// Š H 2kC1.X;Q/ is given by multiplication with .�1/k for
k > 0. ByRemark 3.3(ii) � acts trivially onH 1.X; �0.Aut.B/// D H 1.X;Q�/.

Example 3.5. Let Z be the Jiang–Su algebra. We will show that in general the
inverse of an element in the Brauer group BrZ.X/ is not represented by the class
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of the opposite algebra. Let Y be the space obtained by attaching a disk to a circle
by a degree three map and let Xn D Sn ^ Y be nth reduced suspension of Y .
Then E1Z.X3/ Š K0.X2/

�
C Š 1 C eK0.X2/ by [4, Thm. 2.22]. Since this is a

torsion group, BrZ.X3/ Š E1Z.X3/ by Theorem 2.15. Using the Künneth formula,
BrZ.X3/ Š 1 C eK0.S2/ ˝ eK0.Y / Š 1 C Z=3. Reasoning as in Lemma 3.2
withX2 in place of S2k , we identify the map �� W E1Z.X3/! E1Z.X3/ with the map
K0.X2/

�
C ! K0.X2/

�
C that sends the class x D ŒV1� � ŒV2� to x D ŒV 1� � ŒV 2�,

where V i is the complex conjugate bundle of Vi . If V is a complex vector bundle,
and c1 is the first Chern class, c1.V / D �c1.V / by [10, p. 206]. Since conjugation
is compatible with the Künneth formula, we deduce that x D x for x 2 K0.X2/�C.
Indeed, if ˇ 2 eK0.S2/, y 2 eK0.Y / and x D 1Cˇy, then x D 1C .�ˇ/.�y/ D x.
Let A be a continuous field over X3 with fibersMN .Z/ such that ŒA�Br D 1C ˇy

in BrZ.X3/ Š 1C eK0.S2/˝ eK0.Y / Š 1C Z=3, where ˇ a generator of eK0.S2/
and y is a generator of eK0.Y /. Then ŒA�Br D 1C .�ˇ/.�y/ D ŒA�Br and hence

ŒA˝C.X3/ A�Br D .1C ˇy/
2
D 1C 2ˇy ¤ 1:

Corollary 3.6. Let X be a compact metrizable space and let A be a locally trivial
continuous field with fiber D ˝ K with D in the class D. If H 4kC1.X;Q/ D 0 for
all k � 0, then there is an N 2 N such that

.A˝C.X/ A
op/˝N Š C.X;D ˝K/ :

Proof. IfH 4kC1.X;Q/ D 0, then ı2k.A˝C.X/ Aop/ D 0 for all k � 0. Moreover,
ı2kC1.A ˝C.X/ A

op/ D ı2kC1.A/ � ı2kC1.A/ D 0. The statement follows from
Corollary 2.17.
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