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A Dixmier-Douady theory for strongly self-absorbing
C *-algebras II: the Brauer group
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Abstract. We have previously shown that the isomorphism classes of orientable locally trivial
fields of C™-algebras over a compact metrizable space X with fiber D ® K, where D is a
strongly self-absorbing C *-algebra, form an abelian group under the operation of tensor product.
Moreover this group is isomorphic to the first group E_ID (X) of the (reduced) generalized
cohomology theory associated to the unit spectrum of topological K-theory with coefficients
in D. Here we show that all the torsion elements of the group £ 11) (X) arise from locally trivial
fields with fiber D ® M,,(C), n > 1, for all known examples of strongly self-absorbing
C*-algebras D. Moreover the Brauer group generated by locally trivial fields with fiber
D ® M, (C), n > 1 is isomorphic to Tor(ElD (X)).
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1. Introduction

Let X be a compact metrizable space. Let K denote the C*-algebra of compact
operators on an infinite dimensional separable Hilbert space. It is well known that
K®K =~ K and M,(C) ® K =~ K. Dixmier and Douady [7] showed that the
isomorphism classes of locally trivial fields of C *-algebras over X with fiber K form
an abelian group under the operation of tensor product over C(X) and this group is
isomorphic to H3(X,Z). The torsion subgroup of H?>(X,Z) admits the following
description. Each element of Tor(H?3(X,Z)) arises as the Dixmier-Douady class
of a field A which is isomorphic to the stabilization B ® K of some locally trivial
field of C*-algebras B over X with all fibers isomorphic to M, (C) for some integer
n>1,see[8],[1].

In this paper we generalize this result to locally trivial fields with fiber D ® K
where D is a strongly self-absorbing C *-algebra [17]. Fora C *-algebra B, we denote
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by €5 (X) the isomorphism classes of locally trivial continuous fields of C *-algebras
over X with fibers isomorphic to B. The isomorphism classes of orientable locally
trivial continuous fields is denoted by ‘539 (X), see Definition 2.2. We have shown
in [4] that ¥pex(X) is an abelian group under the operation of tensor product
over C(X), and moreover, this group is isomorphic to the first group E 1D (X)ofa
generalized cohomology theory E7,(X) which we have proven to be isomorphic to
the theory associated to the unit spectrum of topological K-theory with coefficients
in D, see [5]. Similarly (¢9gx(X). ®) = EL(X) where E}(X) is the reduced
theory associated to E7,(X). For D = C, we have, of course, Eé(X) ~ H3(X,7).
We consider the stabilization map

0 Cpom,©)(X) = (€pex(X),®) = EL(X)

given by [A] — [A ® K] and show that its image consists entirely of torsion elements.
Moreover, if D is any of the known strongly self-absorbing C *-algebras, we show
that the stabilization map

o : | €oemc)(X) = Tor(Eh(X))

n>1

is surjective, see Theorem 2.10. In this situation €p g, ) (X) = ‘Kg oM, ) (X) by
Lemma 2.2 and hence the image of the stabilization map is contained in the reduced
group E 11) (X). In analogy with the classic Brauer group generated by continuous
fields of complex matrices M, (C) [8], we introduce a Brauer group Brp(X)
for locally trivial fields of C*-algebras with fibers M, (D) for D a strongly self-
absorbing C *-algebra and establish an isomorphism Brp (X) =~ Tor(ElD (X)), see
Theorem 2.15.

Our proof is new even in the classic case D = C whose original proof relies on an
argument of Serre, see [8, Thm.1.6], [1, Prop.2.1]. Inthe cases D = Zor D = Oy
the group E}) (X) is isomorphic to H'!(X, BSUg), which appeared in [20], where
its equivariant counterpart played a central role.

We introduced in [4] characteristic classes

8o EL(X) - HY (X, Ko(D)Y) and & : EL(X) — H*T(X,Q), k=>1.

If X is connected, then E}) (X) = ker(6p). We show that an element a belongs
Tor(E} (X)) if and only if §o(a) is a torsion element and 8¢ (a) = 0 for all k > 1.

In the last part of the paper we show that if A°? is the opposite C*-algebra of a
locally trivial continuous field A with fiber D ® K, then 8; (A4°?) = (—1)K 8, (A) for
all k > 0. This shows that in general A ® A°? is not isomorphic to a trivial field,
unlike what happens in the case D = C. Similar arguments show that in general
[A°P]g, # —[A]Br in Brp(X) for A € €pgm, ) (X), see Example 3.5.

Acknowledgements. We would like to thank Ilan Hirshberg for prompting us to
seek a refinement of Theorem 2.10 in the form of Theorem 2.11.
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2. Background and main result

The class of strongly self-absorbing C*-algebras was introduced by Toms and
Winter [17]. They are separable unital C *-algebras D singled out by the property
that there exists an isomorphism D — D ® D which is unitarily homotopic to the
mapd — d ® 1p [6], [19].

If n > 2 is a natural number we denote by M, the UHF-algebra M,, (C)®>.
If P is anonempty set of primes, we denote by M po the UHF-algebra of infinite type
@ pep Mpoo. If P is the set of all primes, then M peo is the universal UHF-algebra,
which we denote by Mg.

The class D,; of all purely infinite strongly self-absorbing C *-algebras that
satisfy the Universal Coefficient Theorem in KK-theory (UCT) was completely
described in [17]. D; consists of the Cuntz algebras O, O and of all C *-algebras
Mpoo ® Ooo with P an arbitrary set of primes. Let Dy 4 denote the class of strongly
self-absorbing C *-algebras which satisfy the UCT and which are quasidiagonal. A
complete description of D, has become possible due to the recent results of Matui
and Sato [13, Cor. 6.2] that build on results of Winter [18], and Lin and Niu [12].
Thus D,y consists of C, the Jiang—Su algebra Z and all UHF-algebras M po with P
an arbitrary set of primes. The class D = D,y U D),; contains all known examples
of strongly self-absorbing C *-algebras. It is closed under tensor products. If D
is strongly self-absorbing, then K¢(D) is a unital commutative ring. The group of
positive invertible elements of Ko(D) is denoted by Ko(D)? .

Let B be a C*-algebra. We denote by Autg(B) the path component of the
identity of Aut(B) endowed with the point-norm topology. Recall that we denote
by ¢5(X) the isomorphism classes of locally trivial continuous fields over X with
fibers isomorphic to B. The structure group of A € €p(X) is Aut(B), and A is in
fact given by a principal Aut(B)-bundle which is determined up to an isomorphism
by an element of the homotopy classes of continuous maps from X to the classifying
space of the topological group Aut(B), denoted by [X, BAut(B)].

Definition 2.1. A locally trivial continuous field A of C*-algebras with fiber B is
orientable if its structure group can be reduced to Auty(B), in other words if A is
given by an element of [X, BAuty(B)].

The corresponding isomorphism classes of orientable and locally trivial fields is
denoted by €9 (X).
Lemma 2.2. Let D be a strongly self-absorbing C *-algebra satisfying the UCT.
Then Aut(M, (D)) = Autg(M,(D)) for all n > 1 and hence Cpgm,cc)(X) =

Proof. First we show that for any B € Aut(D ® M,(C)) there exist « € Aut(D)
and a unitary u € D ® M, (C) such that B = u(o ® idpy, (c))u™. Let e;; € M, (C)
be the rank-one projection that appears in the canonical matrix units (e;;) of M, (C)
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and let 1, be the unit of M, (C). Then n[lp ® e11] = [1p ® 1,] in Ko(D)
and hence n[B(lp ® e11)] = n[lp ® e11] in Ko(D). Under the assumptions
of the lemma, it is known that K¢(D) is torsion free (by [17]) and that D has
cancellation of full projections by [19] and [15]. It follows that there is a partial
isometry v € D ® M, (C) such that v*v = Ip ® e;; and vv* = B(lp ® e11).
Thenu =Y ;_, B(1p ® e;1)v(1p ® e1;) € D ® M,(C) is a unitary such that the
automorphism u*B u acts identically on 1p ® M, (C). It follows that u*fu =
a ®idpy, (c) for some o € Aut(D). Since both U(D ® M, (C)) and Aut(D) are path
connected by [17], [15] and respectively [6] we conclude that Aut(D ® M, (C)) is
path-connected as well. O

Let us recall the following results contained in Corollary 3.7, Theorem 3.8, and
Corollary 3.9 from [4]. Let D be a strongly self-absorbing C *-algebra.

(1) The classifying spaces BAut(D ® K) and BAuty(D ® K) are infinite
loop spaces giving rise to generalized cohomology theories E7,(X) and respec-
tively E7, (X).

(2) The monoid (€pgr(X).®) is an abelian group isomorphic to EJ,(X).
Similarly, the monoid (€4 (X).®) is a group isomorphic to E},(X). In both
cases the tensor product is understood to be over C(X).

3)
Ey,(X) = H'(X,Q) & P H* (X, Q),
k>1
Eiyeo.(X) = H' (X, Q") & P H* ' (X, Q),
k>1
“)

Ej,(X) = Ego. (X) = P H* (X, Q).
k>1

(5) If D satisfies the UCT then D ® Mgy ® O = Mg ® O, by [17]. Therefore
the tensor product operation A = A ® Mg ® O« induces maps

Cpar(X) = CMypomer(X),  Chex(X) = Cr g er(X)

and hence maps

Eb(X) 5 Elygo. (X) = H'(X.Q°) & @D H*+ (X, Q),
k>1

8(A) = (85(4),81(4),82(4),...), & (4) € H*F(X,Q),

_ .
Ep(X) — Ejgo. (X) = P H* (X, Q),
k>1
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§(A) = (B1(A).82(4)....).  (A) € H* (X, Q.

The invariants §x (A) are called the rational characteristic classes of the continuous
field A, see [4, Def.4.6]. The first class & lifts to a map

801 EL(X) — H' (X, Ko(D)X)

induced by the morphism of groups Aut(D ® K) — mo(Aut(D ® K)) = Ko(D)}.
80(A) represents the obstruction to reducing the structure group of A4 to Auty (D ® K).

Proposition 2.3. A continuous field A € Cpgx(X) is orientable if and only if
80(A) = 0. If X is connected, then E},(X) = ker(5p).

Proof. Let us recall from [4, Cor. 2.19] that there is an exact sequence of topological
groups
1 > Auty(D ® K) - Aut(D ® K) —> Ko(D)X — 1. 2.1)

The map 7 takes an automorphism « to [a(1p ® e)] where e € K is a rank-one
projection. If G is a topological group and H is a normal subgroup of G such that
H — G — G/H is a principal H-bundle, then there is a homotopy fibre sequence
G/H — BH — BG — B(G/H) and hence an exact sequence of pointed sets
[X,G/H] — [X,BH] — [X, BG] — [X, B(G/H)]. In particular, in the case of the
fibration (2.1) we obtain

[X, Ko(D)Z] — [X, BAuty(D ® K)] — [X, BAut(D Q K)] &) H(X, Ko(D)Y).

(2.2)
A continuous field 4 € CKB ok (X) is associated to a principal Aut(D ® K)-bundle
whose classifying map gives a unique element in [X, BAut(D ® K)] whose image
in H'(X, Ko(D)%) is denoted by 8o(A4). It is clear from (2.2) that the class
So(A) € H' (X, Ky (D)%) represents the obstruction for reducing this bundle to a
principal Auto(D ® K)-bundle. If X is connected, [X, Ko(D)7] = {*} and hence
EL(X) = ker(8p). O

Remark 2.4. If D = C or D = Z then A is automatically orientable since in those
cases Ko(D)Z is the trivial group.

Remark 2.5. Let Y be a compact metrizable space and let X = XY be the
suspension of Y. Since the rational Kiinneth isomorphism and the Chern character
on K°(X) are compatible with the ring structure on Ko(C(Y) ® D), we obtain a
ring homomorphism

ch: Ko(C(Y) ® D) = K°(Y) ® Ko(D) ® Q - [ [ H*(¥.Q) =: H*(Y. Q).
k=0

which restricts to a group homomorphism ch: E% (Y) - SL{(H®(Y,Q)), where
the right hand side denotes the units, which project to 1 € H°(Y, Q).
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If A is an orientable locally trivial continuous field with fiber D ® K over X, then
we have
8k (A) = logch(f4) € H*(Y.Q) = H**'(X. Q) . (2.3)

where f4:Y — QBAutg(D ® K) >~ Autg(D ® K) is induced by the transition
map of A. The homomorphism log: SL1(H® (Y,Q)) — H® (Y, Q) is the rational
logarithm from [14, Section 2.5]. For the proof of (2.3) it suffices to treat the case
D = Mgy ® O, where it can be easily checked on the level of homotopy groups,
but since E% (Y) and H®(Y, Q) have rational vector spaces as coefficients this is
enough.

Lemma 2.6. Let D be a strongly self-absorbing C*-algebra in the class D. If
p € D ® K is a projection such that [p] # 0 in Ko(D), then there is an integer
n > 1 such that [p] € nKo(D)X. If [p] € nKo(D)%, then p(D ® K)p =
My (D). Moreover, if n,m > 1, then My, (D) = My, (D) if and only if nKo (D)% =

Proof. Recall that Ko(D) is an ordered unital ring with unit [1 p] and with positive
elements Ko(D)4 corresponding to classes of projections in D ® K. The group of
invertible elements is denoted by Ko(D)* and Ko (D)7 consists of classes [p] of
projections p € D®K suchthat[p] € Ko(D)*. It was shown in [4, Lemma 2.14] that
if p € D ® K is a projection, then [p] € Ko(D)Z if and only if p(D @ K)p = D.
The ring Ko(D) and the group Ko(D) are known for all D € D, [17]. In
fact Ko(D) is a unital subring of Q, Ko(D)+ = Q4 N Ko(D) if D € Dyq and
Ko(D)+ = Ko(D) if D € D,;. Moreover,

Ko(C) = Ko(2) = Ko(O) = Z, Ko(O2) = {0},

Ko(Mpoo) = Ko(Mpos ® Ooo) = Z[1/P] = (R) Z[1/p]
pEP

~ {np’flplz€2 o pkripie Pon ki € 2},
Ko(C)} = Ko(2)F = {1}, Ko(Ox)} = {£1},
Ko(Mpoo)§ = {p\' py> -+ pf": pi € Pk € Z}.
Ko(Mpoo ® Oxo)y = {:I:p’f'p’zc2 o pkripi e Pk € 7).

In particular, we see that in all cases Ko(D)+ = N - Ko(D)Z, which proves the
first statement. If p € D ® K is a projection such that [p] € nKo(D)%, then
there is a projection ¢ € D ® K such that [¢] € Ko(D)% and [p] = n[q] =
[diag(¢,q,...,q)]. Since D has cancellation of full projections, it follows then
immediately that p(D ® K)p = M, (D) proving the second part.

To show the last part of the lemma, suppose now that ¢ : D ® M,(C) —
D ® M,,(C) is a x-isomorphism. Let e € M, (C) be a rank one projection. Then
a(lp ® e)(D @ My, (C))a(lp ® e) = D. By [4, Lemma 2.14] it follows that
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ax[1p] = [a(1p ®e)] € Ko(D) . Since  is unital, o« (n[1 p]) = m[1p] and hence
m[lp] € nKo(D) . This is equivalent to nKo(D)} = mKo(D)7.

Conversely, suppose that m[lp] = nu for some u € Ko(D)}. Let
a € Aut(D ® K) be such that [@(1p ® e)] = u. Then ax(n[lp]) = nu = m[lp].
This implies that & maps a corner of D ® K that is isomorphic to M, (D) to a corner
that is isomorphic to M, (D). O

Corollary 2.7. Let D € D and let : D ® M,r(C) — D ® M, be a unital
inclusion induced by some unital embedding My, r (C) — Myco, wheren > 2,r > 0.
Let R be the set of prime factors of n. Then, under the canonical isomorphism
Ko(D ® My,r(C)) = Ko(D), we have

01 (Ko(D ® My)}) = | JrKo(D)% C Ko(D)

where r runs through the set of all products of the form quR gka, kg € NU {0}.

Proof. From Lemma 2.6 we see that Ko(D) = Z[1/ P] for a (possibly empty) set of
primes P. The order structure is the one induced by (Q, Q4 ) if D is quasidiagonal
or Ko(D)* = Z[1/P] if D is purely infinite. If R € P, then 6 induces an
isomorphism on Ky and the statement is true, since 6, is order preserving and
Z[1/R]* € Ko(D)*. Thus, we may assume that R € P. Let S = P UR
and thus Ko(D ® M) = Z[1/S]. The map 6. induces the canonical inclusion
Z[1/P] — Z[1/S]. We can write x € Z[1/P] as

x:m.l_[prﬁ. l_[ qkq

peP gqER\P

with m € Z relatively prime to all p € P and g € R, only finitely many r, € Z
non-zero and k; € N U {0}. From this decomposition we see that x is invertible in
Z[1/S] if and only if m = £1. This concludes the proof since p"» € Ko(D)}. O

Remark 2.8. Let ¢ € D ® K be a projection and let ¢ € Aut(D ® K). As in [4,
Lemma 2.14] we have that [ (q)] = [@(1®e)]-[¢q] with [¢(1®e)] € Ko(D)% . Thus,
the condition [¢] € nKo(D) forn € Nis invariant under the action of Aut(D ® K)
on Ko(D). Given A € €pgx(X), a projection p € A, xo € X and an isomorphism
¢: A(xo) — D ® K the condition [¢(p(xo))] € nKo(D)% is independent of ¢.
Abusing the notation we will write this as [p(xo)] € nKo (D).

Corollary 2.9. Let D € D and let A € €pgx(X) with X a connected compact
metrizable space. If p € A is a projection such that [p(x¢)] € nKo(D)Z for some
point xo, then (pAp)(x) = M, (D) for all x € X and hence pAp € €pem, «)(X).
If p € A is a projection with [p(xo)] € Ko(D) \ {0}, then [p(xo)] € nKo(D)} for
some n € N,
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Proof. LetVy,..., Vi beafinite cover of X by compact sets such that there are bundle
isomorphisms ¢; : A(V;) = C(V;) ® D ® K. Let p; be the image of the restriction
of p to V; under ¢;. After refining the cover (V;), if necessary, we may assume that
|pi(x) — pi(¥)|| < 1forall x,y € V;. This allows us to find a unitary u; in the
multiplier algebra of C(V;) ® D ® K such that after replacing ¢; by u;¢;u; and p;
by u; p;u}, we may assume that p; are constant projections. Since X is connected
and [p(xo)] € nKo(D)% by assumption, it follows from [p; (xo)] € nKo(D)7 for
Xo € V; and the above remark that [p;(x)] € nKo(D)} forall 1 < j < k and all
x € V;. Then Lemma 2.6 implies (pAp)(V;) = C(V;) ® M,(D). By Lemma 2.6
we also have that [p(xo)] # 0 implies [p(xo)] € nKo(D) for some n € N proving
the statement about the case [p(xg)] € Ko(D) \ {0}. O

We study the image of the stabilization map

Epem, ) (X) = Cper(X)
induced by the map A — A ® K, or equivalently by the map
Aut(D ® M,(C)) = Aut(D ® M,(C) ® K) = Aut(D ® K).

Let us recall that D denotes the class of strongly self-absorbing C *-algebras
which satisfy the UCT and which are either quasidiagonal or purely infinite.

Theorem 2.10. Let D be a strongly self-absorbing C*-algebra in the class D.
Let A be a locally trivial continuous field of C *-algebras over a connected compact
metrizable space X such that A(x) = D QK forall x € X. The following assertions
are equivalent:

(1) 8x(A) =0 forallk > 0.
(2) The field A ® Mg is trivial.

(3) There is an integer n > 1 and a unital locally trivial continuous field I3 over
X with all fibers isomorphic to M, (D) such that A =~ B ® K.

(4) A is orientable and A®™ =~ C(X) ® D ® K for some m € N.

Proof. The statement is immediately verified if D =~ (J,. Indeed all locally trivial
fields with fiber O, ® K are trivial since Aut(O, ® K) is contractible by [4, Cor. 17 &
Thm. 2.17]. For the remainder of the proof we may therefore assume that D 2% O,.

(1) & ) If D € Dyq, then it is known that D ® Mg =~ Mg. Similarly, if
D € Dy and D % O, then D @ Mg = Oy ® Mg. If A is as in the statement, then
A ® Mg is a locally trivial field whose fibers are all isomorphic to either Mg ® K
orto Os ® Mg ® K. In either case, it was shown in [4, Cor. 4.5] that such a field is
trivial if and only if §; (4) = 0 for all k > 0. As reviewed earlier in this section, this
follows from the explicit computation of E}MQ (X)and E 1114@ 0o (X)-
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(2) = (3) Assume now that AQ Mg istrivial,i.e. AQ Mg = C(X)®DRQMyRK.
Let p € A ® Mg be the projection that corresponds under this isomorphism to the
projection I®e € C(X)® D ® My®K where 1 is the unit of the C *-algebra C(X) ®
D ® Mg and e € K is a rank-one projection. Then [p(x)] # 0 in Ko(A(x) ® Mg)
for all x € X (recall that D 2 ;). Let us write Mg as the direct limit of an
increasing sequence of its subalgebras My ;)(C). Then A ® My is the direct limit of
the sequence A; = A ® My ;)(C). It follows that there exist i > 1 and a projection
pi € A; such that ||p — pi|| < 1. Then || p(x) — pi(x)]| < 1 and so [p;(x)] # 0 in
Ko(A;(x)) foreach x € X, since its image in Ko(A(x) ® Mg) isequal to [p(x)] # 0.
Let us consider the locally trivial unital field B := p;(4 ® My)(C))p;. Since the
fibers of A ® My ;)(C) are isomorphic to D ® K® My ;)(C) = D ®K, it follows by
Corollary 2.9 that there is n > 1 such that all fibers of B are isomorphic to M, (D).
Since B is isomorphic to a full corner of A ® K, it follows by [3]that AQ K =~ BRK.
We conclude by noting that since A is locally trivial and each fiber is stable, then
A~ A®Kby[9]andso A =~ B K.

(3) = (2) This implication holds for any strongly self-absorbing C *-algebra D.
Let A and B be as in (3). Let us note that B ® My is a unital locally trivial field
with all fibers isomorphic to the strongly self-absorbing C *-algebra D ® Mg. Since
Aut(D ® My) is contractible by [4, Thm. 2.3], it follows that B ® M is trivial. We
conclude that A @ Mg = (B M) ® K= C(X) ® D ® Mg ® K.

(2) & (4) This equivalence holds for any strongly self-absorbing C *-algebra D
if A is orientable. In particular we do not need to assume that D satisfies the UCT.
In the UCT case we note that since the map Ko(D) — Ko(D ® My) is injective,
it follows that A is orientable if and only if A ® Mg is orientable, i.e. §o(4) = 0
if and only if 635(A) = 0. Since §o(A) = 0, A is determined up to isomorphism by
its class [A] € E 1D (X). To complete the proof it suffices to show that the kernel of
themap 7 : EL(X) — E%)@M@ (X), t[A] = [A ® M), consists entirely of torsion
elements. Consider the natural transformation of cohomology theories:

t®idg : EH(X) ® Q = EDgp,(X) ® Q = Efgpg, (X).

If D # C, it induces an isomorphism on coefficients since E_% (pt) = 0 and for
i>0

Ep' (pt) = mi(Auto(D ® K)) = K; (D)
by [4, Thm. 2.18] and since the map K; (D) ® Q — K;(D ® My) is bijective. We
conclude that the kernel of 7 is a torsion group. The same property holds for D = C
since Eg(X) is a direct summand of E%(X) by [4, Cor. 4.8]. O

Theorem 2.11. Let D, X and A be as in Theorem 2.10 and let n > 2 be an integer.
The following assertions are equivalent:

(1) The field A ® M, is trivial.
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(2) Thereis a k € N and a unital locally trivial continuous field B over X with
all fibers isomorphic to M,k (D) such that A = B ® K.

(3) A is orientable and A® ~ C(X)® D ®K for somek € N.

Proof. By reasoning as in the proof of Theorem 2.10, we may assume that D 2£ O,.

(1) = (2) By assumption the continuous field A ® M, is trivializable and hence
it satisfies the global Fell condition of [4]. This means that there is a full projection
Poo € A® Myeo with the property that poo(x) € Ko(A(x) ® Myo<)} forall x € X.
Letv;: M,,i (C) — Moo be a unital inclusion map. Since A ® My is the inductive
limit of the sequence

A—->AIM,C)— - > A M, (C) > A M,i+1(C) — ---

there is an i € N and a full projection p € A ® M,,; (C) with ||(id4 ® v;)(p) — Pooll
< 1. Fix a point xo € X. Let 0: A(x9) ® M,i(C) — A(x9) ® M, be the
unital inclusion induced by v;. Note that Ox([p(x0)]) = (id4(xy) ® vi)«([P(x0)]) =
[Poo(x0)] € Ko(A(x0) ® Myeo)%. By Corollary 2.7 this implies that [p(xo)] €
rKo(A(xo))7 for some r € N that divides nk for some k € N U {0}. Then By :=
p(A® M,i(C))p € €pem,c)(X) by Corollary 2.9. Write nk = mr withm e N.
It follows that B := By ® M,,(C) € CKD@,Mnk(C) (X). The fact that BQ K =~ A
follows just as in step (2) = (3) in the proof of Theorem 2.10.

(2) = (1) This is just the same argument as step (3) = (2) in the proof of
Theorem 2.10.

(1) & (3) The orientability of A follows from Theorem 2.10.

Observe that the elements [A] € CKB@K(X) = E_}D (X) such that nk[A] =0or
equivalently A®"* s trivializable for some k € N U {0} coincide precisely with
the elements in the kernel of the group homomorphism E 1D (X) > E ID (X)® Z[%]
Since Z[%] is flat, it follows that X +— E H(X)® Z[%] still satisfies all axioms of a
generalized cohomology theory. In particular, we have the following commutative
diagram of natural transformations of cohomology theories:

Ej(X) EDe,ee (X)

| -

Ep(X) ® Z[H] > Epgpy . (X) ® Z[1]

where the isomorphisms follow by checking them on the coefficients. Thus the kernel
of the left vertical map agrees with the one of the upper horizontal map proving the
statement. 0
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Corollary 2.12. Let D and X be as in Theorem 2.10. Then any element x € Ell) (X)
with nx = 0 is represented by the stabilization of a unital locally trivial field over X
with all fibers isomorphic to M, (D) for some k > 1. Moreover if A € €pgr(X),
then A @ Mg is trivial & A @ Moo is trivial for some n € N & A is orientable
and n*[A] = 0 in E_ID (X) for some k € N and some n € N.

(An example from [1] for D = C shows that in general one cannot always arrange
thatk = 1.)

Proof. The first part follows from Theorem 2.11. Indeed, condition (3) _of that
theorem is equivalent to requiring that A is orientable and n¥[A] = 0 in E 11) (X).
The second part follows from Theorems 2.10 and 2.11. O

Definition 2.13. Let D be a strongly self-absorbing C *-algebra. If X is a connected
compact metrizable space we define the Brauer group Brp(X) as equivalence
classes of continuous fields A € (J,-; €m,(p)(X). Two continuous fields
A; € %”Mni o (X),i =1,2are equivalenf, if

A1 ® p1C(X, My, (D))p1 = A2 ® p2C(X, My, (D)) pa,

for some full projections p; € C(X, My, (D)). We denote by [A]p, the class
of A in Brp(X). The multiplication on Brp(X) is induced by the tensor product
operation, after fixing an isomorphism D ® D = D. We will show in a moment that
the monoid Brp(X) is a group.

Remark 2.14. It is worth noting the following two alternative descriptions of
the Brauer group. (a) If D € D is quasidiagonal, then two continuous fields
Ai € Cum,.(0)(X), i = 1,2 have equal classes in Brp(X), if and only if
A1 ® plC(jf, My, (C)p1 = A2 ® p2C(X, Mn,(C)) p,, for some full projections
pi € C(X,Mp,(C)). (b) If D € D is purely infinite, then two continuous
fields 4; € %Mni(p)(X), i = 1,2 have equal classes in Brp(X), if and
only if A1 ® p1C(X, My,(Ox))p1 = Az @ p2C(X, Mn,(Ou))p2. for some
full projections p; € C(X, My,(Ox)). In order to justify (a) we observe that
if D is quasidiagonal, then every projection p € C(X, My (D)) has a multiple
p(m) = p ® 1y, (C) such that p(m) is Murray—von Neumann equivalent to a
projection in C(X, My, (C)) @ 1p C C(X, My (C)) @ D and that A; ® D =~ A;
by [9]. For (b) we note that if D is purely infinite, then then every projection
p € C(X,Mpy(D)) has a multiple p ® 1p,,(C) that is Murray—von Neumann
equivalent to a projection in C(X, My, (Ou)) ® 1p.

One has the following generalization of a result of Serre, [§, Thm.1.6].

Theorem 2.15. Let D be a strongly self-absorbing C*-algebra in D.

(i) Tor(EL(X)) = ker (ElD(X) i> B> H* (X, Q))
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(ii) Themap 0 : Brp(X) — Tor(E_ll) (X)), [AlBr = [A QK] is an isomorphism
of groups.

Proof. (i) was established in the last part of the proof of Theorem 2.10.

(ii) We denote by L, the continuous field p C(X, My (D))p. Since L, ® K =
C(X, D ® K) it follows that the map 0 is a well-defined morphism of monoids.

We use the following observation. Let 6 : S — G be a unital surjective morphism
of commutative monoids with units denoted by 1. Suppose that G is a group and
that {s € S:6(s) = 1} = {1}. Then S is a group and 6 is an isomorphism.
Indeed if s € S, there is ¢ € S such that 6(t) = 0(s)~! by surjectivity of 8. Then
O(st) = 0(s)0(¢t) = 1 and so st = 1. It follows that S is a group and that € is
injective.

We are going to apply this observation to the map 6 : Brp(X) — Tor(ElD (X)).
By condition (3) of Theorem 2.10 we see that 6 is surjective. Let us determine the
set 671 ({0}). We are going to show that if B € €pegm,, c)(X), then [B ® K] = 0in
EL(X) if and only if

B=p(C(X)®D®My(C))p=Lcx,p)(pC(X,D)N)

for some selfadjoint projection p € C(X) ® D ® My(C) = My (C(X, D)).
Let B € €pgm,(c)(X) be such that [B ® K] = 0in E},(X). Then there is an

isomorphism of continuous fields ¢ : B®K —> C(X)® D ®IK. After conjugating ¢
by a unitary we may assume that p := ¢(1p®e11) € C(X)® D ® My (C) for some
integer N > 1. It follows immediately that the projection p has the desired properties.
Conversely, if B = p(C(X) ® D ® My (C)) p then there is an isomorphism of
continuous fields B ® K =~ C(X) ® D ® K by [3]. We have thus shown that that
0([B]pr) = 0if and only if [B] g, = 0.

We are now able to conclude that Brp(X) is a group and that 6 is injective by
the general observation made earlier. O

Definition 2.16. Let D be a strongly self-absorbing C *-algebra. Let A be a locally
trivial continuous field of C *-algebras with fiber D ® K. We say that A is a torsion
continuous field if A®¥ is isomorphic to a trivial field for some integer k > 1.

Corollary 2.17. Let A be as in Theorem 2.10. Then A is a torsion continuous field
if and only if 8o(A) € H' (X, Ko(D)}) is a torsion element and §;(A) = 0 €
H?*k+Y(X, Q) forall k > 1.

Proof. Let m > 1 be an integer such that m8y(A4) = 0. Then §o(A®™) = 0. We
conclude by applying Theorem 2.10 to the orientable continuous field 4®™. 0
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3. Characteristic classes of the opposite continuous field

Given a C*-algebra B denote by B°P the opposite C*-algebra with the same
underlying Banach space and norm, but with multiplication given by b°P - ¢°P =
(a - b)°®. The conjugate C*-algebra B has the conjugate Banach space as its
underlying vector space, but the same multiplicative structure. The map a + a*
provides an isomorphism B°® — B. Any automorphism « € Aut(B) yields in
a canonical way automorphisms @: B — B and «°: B> — B° compatible with
% : B — B. Therefore we have group isomorphisms 6: Aut(B) — Aut(B) and
Aut(B) — Aut(B°P). Note that « € Aut(B) is equal to 6(«) when regarded as
set-theoretic maps B — B. Given a locally trivial continuous field A with fiber B,
we can apply these operations fiberwise to obtain the locally trivial fields A% and A,
which we will call the opposite and the conjugate field. They are isomorphic to each
other and isomorphic to the conjugate and the opposite C *-algebras of A.

A real form of a complex C*-algebra A is a real C*-algebra A® such that 4 =
AR ® C. A real form is not necessarily unique [2] and not all C*-algebras admit real
forms [16]. If two C*-algebras A and B admit real forms AR and BR, then AR @ BR
is areal form of A ® B.

Example 3.1. All known strongly self-absorbing C*-algebras D € D admit a real
form.

Indeed, the real Cuntz algebras O5 and O are defined by the same generators
and relations as their complex versions. Alternatively O% can be realized as follows.
Let Hy be a separable infinite dimensional real Hilbert space and let F~(Hg) =
D2, HE" be the real Fock space associated to it. Every £ € Hg defines a shift
operator s¢(n) = & ® n and we denote the algebra spanned by the s¢ and their
adjoints sg by O . If F(Hr ® C) denotes the Fock space associated to the complex
Hilbert space H = Hg ® C, then we have FX ® C = F(H). If we represent Oy
on F(H) using the above construction, then the map s¢ + i s¢ > Sg4; ¢ induces
an isomorphism O% ® C — Ou. Likewise define Mg to be the infinite tensor
product M>(R) ® M3(R) ® M4(R) ® .. .. Since M,(C) = M, (R) ® C, we obtain
an isomorphism Mg ® C 2 Mg on the inductive limit. Let K¥ be the compact
operators on Hg and K those on H, then we have KR®C =~ K. Thus, Mo®0,QK
is the complexification of the real C *-algebra M(H; ® 0% ® KE.

The Jiang—Su algebra Z admits a real form Z® which can be constructed in the
same way as Z. Indeed, one constructs ZR as the inductive limit of a system

ce > C([0,1], Mp, g, (R)) O, C([0.1]. Mp, g, (R)) — -+

ndn

where the connecting maps ¢, are defined just as in the proof of [11, Prop. 2.5]
with only one modification. Specifically, one can choose the matrices uy and u; to
be in the special orthogonal group SO(p,¢q,) and this will ensure the existence of a
continuous path u; in O(p,qy) from ug to u; as required.
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If B is the complexification of areal C *-algebra B, then a choice of isomorphism
B =~ BR®®C provides an isomorphism ¢: B — B via complex conjugation on C. On
automorphisms we have Ad.—1: Aut(B) — Aut(B). Let n = Ad.—1 o §: Aut(B) —
Aut(B). Now we specialize to the case B = D ® K with D € D and study the
effect of n on homotopy groups, i.e. n«: wor (Aut(B)) — mor(Aut(B)). By [4,
Theorem 2.18] the groups 7ok +1 (Aut(B)) vanish.

Let R be a commutative ring and denote by [K 0(5%F) ® R]X the group of units
of the ring K°(S%) ® R. Let [K°(S%) ® R]T be the kernel of the morphism of
multiplicative groups [K°(S%) ® R]>< — R*. This is the group of virtual rank 1
vector bundles with coefficients in R over $2¢. Let c5: K°(S2f) — K°(S%¥) and
cr: Ko(D) — Ko(D) be the ring automorphisms induced by complex conjugation.

Lemma 3.2. Let D be a strongly self-absorbing C*-algebra in the class D, let
R = Ky(D) azd let k > 0. There is an isomorphism 7y, (Aut(D ® K)) —
[KO(SZk) ® R]1 (k > 0) such that the following diagram commutes

UES

o (Aut(D ® K)) o (Aut(D ® K))

l l

[KO(SZk) ® R]>1< Cs®CR [KO(SZk) ® R]T

Proof. Observe that mor (Aut(D @ K)) = mr(Autg(D ® K)) (for k& > 0)
and Autg(D ® K) is a path connected group, therefore i (Aut(D ® K)) =
[S2k, Auty(D ®K)]. Lete € K be arank 1 projection such that c(1p ®e) = 1p Qe.
It follows from the proof of [4, Theorem 2.22] that the map « — «(1 ® e) induces
an isomorphism

[S?*, Auto(D ® K)] — Ko(C(S%%) ® D) = 1+ Ko(Co(S* \ x0) ® D).

We have n(@)(1 ® ¢) = ¢ Ha(c(l ® e))) = ¢ Ha(l ® e)), i.e. the isomorphism
intertwines 7 and ¢ ~!. Consider the following diagram of rings:

csRCcr

KO(S2k) ® R KO(SZk) ® R

| |

Ko(C(5%) ® D) 27D ky(C(5%) ® D)

The vertical maps arise from the Kiinneth theorem. Since K;(D) = 0, these are
isomorphisms. Since cg corresponds to the operation induced on Ko(C(S2¥)) by
complex conjugation on KK, the above diagram commutes. 0

Remark 3.3. (i) If D € D then R = Ko(D) C Q with [1p] = [Ipr] = 1. Thus
¢ '(1p) = 1p and this shows that the above automorphism cg is trivial. The
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K°-ring of the sphere is given by K°(S?¥) =~ Z[Xy]/(X?). The element X is the
k-fold reduced exterior tensor power of H —1, where H is the tautological line bundle
over 2 == CP!. Since cs maps H —1to 1— H,, it follows that X is mapped to — Xy
if k is odd and to X}, if k is even. We have [KO(SZ) ® R];( ={l+tXx|t eR}
C R[Xk]/(X,f). Thus, c¢s maps 1 + ¢ Xj to its inverse 1 — ¢ X if k is odd and acts
trivially if & is even.

(ii) By [4, Theorem 2.18] there is an isomorphism 7o (Aut(D ® K)) = Ko(D)Z
given by [o] — [¢(1 ® e)]. Arguing as in Lemma 3.2 we see that the action of 7 on
this groups is given by cg = id.

Theorem 3.4. Let X be a compact metrizable space and let A be a locally trivial
continuous field with fiber D ® K for a strongly self-absorbing C*-algebra D € D.
Then we have for k > 0:

8k (A?) = 8 (A) = (=1 8 (4) € H* (X, Q).

Proof. Let D® be a real form of D. The group isomorphism 7: Aut(D ® K) —
Aut(D ® K) induces an infinite loop map Bn: BAut(D ® K) — BAut(D ® K),
where the infinite loop space structure is the one described in [4, Section 3]. If
f:X — BAut(D ®K) is the classifying map of a locally trivial field 4, then Bno f
classifies A. Thus the induced map 74 : EID (X) —» EID (X) has the property that

n+[A] = [4].
The unital inclusion D¥ — B¥ := D* ® Oy ® Mg induces a commutative
diagram

Aut(D ® K) —— Aut(D ® K)
Aut(B ® K) ——~ Aut(B ® K)

with B := B® ® C. From this we obtain a commutative diagram

EL(X) 2> EL(X)

sl Ls
UES
E}; X)—— E}; (X)
As explained earlier, B =~ Mg ® Os. Recall that EJI\/I@@(OOO (X)= H'(X,Q%) &
Pi>1 H*T1(X,Q). By Lemma 3.2 and Remark 3.3(i) the effect of 7 on
H2k+V (X o5 (Aut(B))) = H***1(X,Q) is given by multiplication with (—1)¥ for
k > 0. By Remark 3.3(ii) n acts trivially on H!(X, mo(Aut(B))) = H'(X,Q*). O

Example 3.5. Let Z be the Jiang—Su algebra. We will show that in general the
inverse of an element in the Brauer group Brz(X) is not represented by the class
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of the opposite algebra. Let Y be the space obtained by attaching a disk to a circle
by a degree three map and let X, = S A Y be n'” reduced suspension of Y.
Then EL(X3) = K°(X, )X ; 1 + K°(X;) by [4, Thm. 2.22]. Since this is a
torsion group, Brz(X3) = (X 3) by Theorem 2.15. Using the Kiinneth formula,
Brz(X;) = 1 + K°(S?) ® KO(Y) ~ 1+ 7Z/3. Reasomng as in Lemma 3.2
with X» in place of §2*, we identify the map 7 : EL(X3) — EL(X3) with the map
K%(X»)% — K°(X»)% that sends the class x = [V1] — [Va] to X = [V1] — [V,
where V; is the complex conjugate bundle of V;. If V is a complex vector bundle,
and ¢, is the first Chern class, ¢; (V) = —c (V) by [10, p. 206]. Since conjugation
is compatible with the Kiinneth formula, we deduce that x = X for x € K°(X;)X i
Indeed, if 8 € K°(S2),y € K°(Y)and x = 1 + By, then¥ = 1 + (=B)(—y) = x.
Let Abea continuous field over . X3 with fibers My (Z) such that [A] g, = =1+ By
in Brz(X3) = 1+ K°S?) ® K°(Y) = 1 + Z/3, where B a generator of K°(S?)
and y is a generator of K°(Y). Then [A]g, = 1 + (—B)(~y) = [A]p, and hence

[A ®cxsy) Algr = (1 + By)> = 1+ 2By # 1.

Corollary 3.6. Let X be a compact metrizable space and let A be a locally trivial
continuous field with fiber D ® K with D in the class D. If H***t1(X,Q) = 0 for
all k > 0, then there is an N € N such that

(A ®c(x) AP)®N ~ C(X,D ®K).

Proof. If H**1(X,Q) = 0, then 6,4 (4 ®c(x) A®) = 0 for all k > 0. Moreover,
Sok+1(A ®cx) A®) = 82k 4+1(A) — S2k+1(A) = 0. The statement follows from
Corollary 2.17. O
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