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Abstract. We present a modified version of the definition of property RD for discrete quantum
groups given by Vergnioux in order to accommodate examples of non-unimodular quantum
groups. Moreover we extend the construction of spectral triples associated to discrete groups
with length functions, originally due to Connes, to the setting of quantum groups. For quantum
groups of rapid decay we study the resulting spectral triples from the point of view of compact
quantum metric spaces in the sense of Rieffel.
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1. Introduction

In the theory of noncommutative geometry in the sense of Connes [6], spectral triples
can be thought of as noncommutative analogues of smooth Riemannian manifolds. A
spectral triple .A;H;D/ consists of a �-algebraA, represented on a Hilbert spaceH,
together with an unbounded self-adjoint operator D on H. The basic requirements
on this data are that D has compact resolvent and that the commutators ŒD; a� are
bounded for all a 2 A.

The prototypical example of a spectral triple is given by the algebraA D C1.M/

of smooth functions on a compact Riemannian spinmanifoldM , acting on the Hilbert
space H D L2.M; S/ of L2-section of the spinor bundle S ofM , together with the
associated Dirac operator. Another class of examples, studied already by Connes [5],
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arises from discrete groups equipped with length functions. In this case A D CŒG�
is the complex group algebra of the group G, acting on the Hilbert space l2.G/, and
the operatorD acts by multiplication with the length function.

Quantum groups can be viewed as noncommutative manifolds, and various
examples of spectral triples have been constructed in this context, see for
instance [4, 8, 14]. In this paper we consider more elementary examples of spectral
triples for quantum groups, motivated by the construction for discrete groups with
length functions mentioned above. Actually, the passage from discrete groups to
discrete quantum groups is essentially straightforward in this context. Although the
resulting spectral triples are trivial from the point of view of K-homology, we show
that they provide examples of quantum metric spaces in the sense of Rieffel [17]. In
fact, in order to make a link to the theory of Rieffel, we have to restrict to quantum
groups of rapid decay, and follow the work of Antonescu–Christensen in the group
case [1].

The property of rapid decay for discrete quantum groups was introduced and
studied by Vergnioux [19], following the definition for classical groups in [12].
Quantum groups of rapid decay in the sense of [19] are necessarily unimodular,
which unfortunately excludes some of the most studied examples, in particular those
arising from q-deformations of semisimple compact Lie groups. The incompatibility
of the theory in [19] with non-unimodularity is of course invisible in the classical
setting of discrete groups. For examples coming from q-deformations it may appear
somewhat surprising, because duals of classical compact Lie groups actually do have
property RD in the sense of [19].

In the first part of this paper we explain how a slight modification of the definitions
given in [19] allows to remedy this situation. Our definitions agree with Vergnioux’s
for unimodular discrete quantum groups. On the other hand, we obtain a more
interesting theory in the non-unimodular case.

Let us explain how the paper is organised. In Section 2we collect some definitions
from the theory of quantum groups and fix our notation. Section 3 contains our
modified definitions of rapid decay. In Section 4 we consider amenable quantum
groups and compare our notion of rapid decay with a suitable notion of polynomial
growth. Actually, for polynomial growth the difference to the definition in [19]
consists simply in replacing quantum dimensions with ordinary dimensions. In
Section 5 we explain how the construction of a spectral triple from a group with a
length function extends to the setting of quantum groups. The aim of Section 6 is to
review the definition of compact quantum metric spaces in the sense of Rieffel, and
to show that we obtain natural Lipschitz seminorms from the spectral triples defined
in Section 5. In the final Section 7 we prove the Lip-norm property for suitable
Lipschitz seminorms provided the underlying quantum group has property RD in our
sense. This yields a family of examples of compact quantummetric spaces associated
to quantum groups.

Let us make some remarks on notation. We write L.H/ for the space of bounded
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operators on a Hilbert space H. The closed linear span of a subset X of a Banach
space is denoted by ŒX�. Depending on the context, the symbol ˝ denotes either
the tensor product of Hilbert spaces, or the minimal tensor product of C �-algebras.
For operators on multiple tensor products we use the leg numbering notation. We
write k � k2 for Hilbert space norms and k � k D k � kop for the operator norm.

2. Preliminaries

In this section we review some basic definitions concerning quantum groups. For
more detailed information we refer to [2, 13, 21]. Our notation and conventions will
follow [15].

The main objects of study in this paper are discrete quantum groups. It is
technically convenient to describe them using Hopf C �-algebras. Recall first that
a Hopf C �-algebra is a C �-algebra S together with an injective nondegenerate
�-homomorphism� W S !M.S˝S/, called comultiplication, such that .�˝ id/�
D .id˝�/� and Œ�.S/.1˝ S/� D S ˝ S D Œ.S ˝ 1/�.S/�.

With this terminology, a discrete quantum group can be described by a
pair of Hopf C �-algebras C0.G/ and C �r .G/ together with a multiplicative
unitary W 2M.C0.G/˝ C �r .G//, satisfying certain axioms. In particular, the
algebra C �r .G/ is unital, and C0.G/ is a C �-algebraic direct sum of matrix algebras.
We write � for the comultiplication of C0.G/ and O� for the comultiplication
of C �r .G/. Some properties of the multiplicative unitary linking these two Hopf
C �-algebras will be stated below. We refer to C0.G/ as the algebra of functions
onG, and toC �r .G/ as the reduced groupC �-algebra ofG. The theory also provides
a full group C �-algebra C �f .G/, which however will not show up explicitly in this
paper. At some points we will restrict attention to the case that G is amenable,
which means that the canonical quotient homomorphism C �f .G/ ! C �r .G/ is an
isomorphism.

Inside the Hopf C �-algebra C0.G/ we have a canonical dense multiplier Hopf-
�-algebra Cc.G/, compare [9]. More precisely, Cc.G/ is the algebraic direct sum of
matrix blocks defining C0.G/. Moreover C0.G/ admits a left Haar weight �, given
by a positive linear functional � W Cc.G/ ! C satisfying .id˝�/�.f / D �.f /1,
and we let l2.G/ denote the GNS-construction of �. We writeƒ.f / 2 l2.G/ for the
image of f 2 Cc.G/ under the GNS-map.

Themultiplicative unitaryW can be considered as an element ofL.l2.G/˝ l2.G//,
and we have the explicit formula

W �.ƒ.f /˝ƒ.g// D .ƒ˝ƒ/.�.g/.f ˝ 1//

for its adjoint. Moreover, theC �-algebra of functions onG can be recovered fromW
as

C0.G/ D Œ.id˝L.l2.G//�/.W /�;
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with the comultiplication given by

�.f / D W �.1˝ f /W

for f 2 C.G/. The reduced group C �-algebra of G can be identified with

C �r .G/ D Œ.L.l
2.G//� ˝ id/.W /�:

In fact, the latter formula can be taken as the definition of C �r .G/ if one constructs
the multiplicative unitary first, and the comultiplication of C �r .G/ is given by

O�.x/ D OW �.1˝ x/ OW

for x 2 C �r .G/, where OW D †W �†.
A finite dimensional unitary corepresentation of G is defined to be a unitary

X 2 C �r .G/˝ L.H/ satisfying . O� ˝ id/.X/ D X13X12. Here H is a finite
dimensional Hilbert space, and we are using leg numbering notation. Such
corepresentations form a semisimple C �-tensor category. We denote by Irr.G/ the
set of equivalence classes of irreducible corepresentations of G, and we write � for
the trivial corepresentation on C.

Using corepresentation theory we can identify

Cc.G/ Š
M

˛2Irr.G/

L.H˛/ Š
M

˛2Irr.G/

Mdim.˛/.C/

as the algebraic direct sum of the endomorphism algebras of all irreducible
corepresentations. The algebra C0.G/ is obtained by taking the C �-algebraic direct
sum instead. Finally, we will also need the algebraic multiplier algebra C.G/ of
Cc.G/, which can be written as

C.G/ Š
Y

˛2Irr.G/

L.H˛/ Š
Y

˛2Irr.G/

Mdim.˛/.C/;

the algebraic direct product of all endomorphism algebras L.H˛/ for ˛ 2 Irr.G/.
The matrix coefficients of all irreducible corepresentations define a canonical

dense Hopf-�-algebra CŒG� � C �r .G/. The algebras CŒG� � C �r .G/ and Cc.G/ �
C0.G/ are linearly spanned by elements of the form .! ˝ id/.W / and .id˝!/.W /,
respectively, where! D !�;� 2 L.l2.G//� is associated to vectors �; � 2 ƒ.Cc.G//.

If f 2 Cc.G/ and x 2 CŒG� are represented by Lf ; Lx 2 L.l2.G//� in the
sense that .id˝Lf /.W / D f and .Lx˝ id/.W / D x, then we obtain a well-defined
bilinear pairing

hf; xi D hx; f i D .Lx ˝ Lf /.W / D Lf .x/ D Lx.f /

between Cc.G/ and CŒG�, see [2].
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We point out that the product of CŒG� is dual to the coproduct of Cc.G/, whereas
the product of Cc.G/ is dual to the opposite coproduct of CŒG�. In other terms, we
have for all f; g 2 Cc.G/ and x; y 2 CŒG� the relations

hf; xyi D hf.1/; xihf.2/; yi and hfg; xi D hf; x.2/ihg; x.1/i;

where we use the Sweedler notation �.f / D f.1/ ˝ f.2/ and O�.x/ D x.1/ ˝ x.2/
for the comultiplications on Cc.G/ and CŒG�. Of course, this notation has to be
interpreted with care, in particular, the coproduct �.f / of an element f of the
multiplier Hopf �-algebra Cc.G/ can be represented only as an infinite sum of
simple tensors in general.

We shall use the notations

.x * f /.y/ D f .yx/; .f ( x/.y/ D f .xy/;

.f * x/.g/ D x.fg/; .x ( f /.g/ D x.gf /

for the left and right regular actions of CŒG� on Cc.G/, and of C.G/ on CŒG�,
respectively. Remark that these definitions are in accordance with our conventions
for the comultiplications of Cc.G/ and CŒG�.

From the duality theory of algebraic quantum groups [9] it follows that there is a
linear isomorphism G W CŒG�! Cc.G/ given by

G.x/.y/ D O�.S.x/y/;

where O� is the left and right invariant normalized Haar functional on CŒG�, and S
denotes the antipode of CŒG�. We fix the left invariant Haar functional � on Cc.G/
such that

�.G.x// D O�.x/
for all x 2 CŒG�, where � W CŒG� ! C denotes the counit. Similarly, we obtain a
linear isomorphism F W Cc.G/! CŒG� by

F.f /.h/ D �.hf /;

and the maps G by F are in fact mutually inverse.
Moreover, the map F is isometric with respect to the standard scalar products

hx; yi D O�.x�y/; hf; gi D �.f �g/

on CŒG� and Cc.G/, respectively. In fact, using F we can identify l2.G/ with the
GNS-representation of O�, andwewill write Oƒ.x/ 2 l2.G/ for the image of x 2 CŒG�.

We will denote by jj � jj2 the Hilbert space norm in l2.G/: The modular function
for G is a multiplier F 2 C.G/ which relates the left and right Haar integrals
of Cc.G/. A discrete quantum group G is unimodular iff the modular function
satisfies F D 1. This happens iff the Haar state O� on CŒG� is a trace.
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In the general case, each componentF ˛ ofF for ˛ 2 Irr.G/ is a positive invertible
matrix such that tr.F ˛/ D tr..F ˛/�1/, the latter being the quantum dimension of ˛,
denoted by dimq.˛/. One may fix bases such that F ˛ is a diagonal operator for all
˛ 2 Irr.G/, and we will do this in the sequel.

Let us write u˛ij for the matrix coefficients of ˛ 2 Irr.G/ with respect to such an
orthonormal basis of the representation space of ˛. Then the Schur orthogonality
relations become

O�.u˛ij .u
ˇ

kl
/�/ D ı˛ˇ ıikıjl

.F ˛/jj

dimq.˛/
; O�..u˛ij /

�u
ˇ

kl
/ D ı˛ˇ ıikıjl

.F �1˛ /i i

dimq.˛/
;

where ˛; ˇ 2 Irr.G/. Moreover, notice that

O�.u˛ij / D

dim.˛/X
kD1

u˛ik ˝ u
˛
kj :

The left and right Haar functionals for Cc.G/ are given by

�.f / D
X

˛2Irr.G/

dimq.˛/ tr.Fp˛f /;  .f / D
X

˛2Irr.G/

dimq.˛/ tr.F �1p˛f /;

where we denote by p˛ 2 Cc.G/ the central projection corresponding to ˛ 2 Irr.G/.
We remark that these formulas differ from the corresponding ones in [19] because
we have flipped the comultiplication of CŒG�.

3. Rapid decay for discrete quantum groups

In this section we review some definitions from [19] and introduce our notion of rapid
decay. We also state some equivalent characterisations of rapid decay, following
Vergnioux.

Let us first recall the notion of a length for a discrete quantum group introduced
in [19].
Definition 3.1. Let G be a discrete quantum group. A length for G is a positive
element L 2 C.G/ such that

a) �.L/ D 0.
b) S.L/ D L.
c) �.L/ � L˝ 1C 1˝ L.
These conditions reflect the classical definition of length functions. Note that L

can be viewed as a sequence of positive matrices indexed by the elements of Irr.G/.
We will be mainly interested in central lengths, that is, lengths L which are

central elements of the algebra C.G/. Such central lengths are obtained from length
functions l on Irr.G/ in the following sense.
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Definition 3.2. Let G be a discrete quantum group. A length function for G is a
function l W Irr.G/! Œ0;1/ such that

a) l.�/ D 0 where � 2 Irr.G/ is the trivial corepresentation.

b) l.˛/ D l.˛/ for all ˛ 2 Irr.G/, where ˛ denotes the contragredient corep-
resentation of ˛.

c) ˛ � ˇ ˝  implies l.˛/ � l.ˇ/C l./ for all ˛; ˇ;  2 Irr.G/.

The length function l is called proper if for any n 2 N there are only finitely many
irreducible corepresentations ˛ 2 Irr.G/ with l.˛/ � n and l.˛/ D 0 iff ˛ D �.

A length function l induces a central length L 2 C.G/ by the formula

L D
X

˛2Irr.G/

l.˛/p˛;

recall that p˛ 2 Cc.G/ is the unit element in the matrix block corresponding to ˛.
We can also view L as an unbounded self-adjoint operator on l2.G/ in the obvious
way. Any central length arises in this way, and we will freely pass from l to L in the
sequel.

Basic examples of length functions are given by word length functions on finitely
generated quantum groups. We recall that a subset D � Irr.G/ is said to generate
the discrete quantum group G iff every corepresentation ˛ 2 Irr.G/ is contained in
some iterated tensor product of corepresentations from D. The quantum group G
is called finitely generated provided there exists a finite subset D � Irr.G/ which
generates G. In the sequel we will always work with symmetric generating sets, that
is, we shall assume that ˛ 2 D implies ˛ 2 D.

Given a finitely generated quantumgroupGwith finite generating setD, we obtain
a proper length function lD on Irr.G/ by letting lD.˛/ be the smallest number k such
that ˛ � ˛1 ˝ � � � ˝ ˛k and ˛j 2 D for all j . Although lD clearly depends on D,
it can be shown that the definitions and results in the sequel do not depend on the
choice of the generating set in an essential way, compare Lemma 3.3 and Remark 3.6
in [19].

Given a length function l on G, we let pn 2 L.l2.G// be the sum of all
projections p˛ for ˛ 2 Irr.G/ such that l.˛/ 2 .n � 1; n�. Notice that pn is a
finite rank projection for all n 2 N0 if l is proper.

Let G be a discrete quantum group. In the sequel we shall work with the self-
adjoint element C of C.G/ given by

C D
X

˛2Irr.G/

dimq.˛/
dim.˛/

F ˛p˛:

We remark that C D 1 iff G is unimodular. If L is a length on G, we define the
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associated Sobolev s-norm for s � 0 and f 2 Cc.G/ by

kf k22;s D
X

˛2Irr.G/

dimq.˛/2

dim.˛/
tr.p˛..1C L/sfF /�.1C L/sfF /

D �...1C L/sf C 1=2/�.1C L/sf C 1=2/

D h.1C L/sf C 1=2; .1C L/sf C 1=2i:

Observe that k � k2;0 D k � k2 iff G is unimodular. Similarly, for s � 0 and x 2 CŒG�
we define

kxk22;s D h.1C L/
sG.C 1=2 * x/; .1C L/sG.C 1=2 * x/i

D

X
˛2Irr.G/

dimq.˛/2

dim.˛/
tr.p˛..1C L/sG.F * x//�.1C L/sG.F * x//;

where we recall thatG W CŒG�! Cc.G/ is the Fourier transform given byG.x/.y/ D
O�.S.x/y/ for x; y 2 CŒG�, with inverse F W Cc.G/ ! CŒG� given by F.f /.h/ D
�.hf /. We remark that

F.fg/ D .F �1gF / * F.f /; G..F �1gF / * x/ D G.x/g

for all f; g;2 Cc.G/ and x 2 CŒG�. In particular, we have

G.C 1=2 * x/ D G.x/C 1=2:

It follows that G and F are isometries with respect to the k � k2;s-norms.
Definition 3.3. Let G be a discrete quantum group. We say that G has property RD
with respect to a central length L on G if there exist constants c; s > 0 such that

kF.f /kop � ckf k2;s

for all f 2 Cc.G/.
We say thatG has property RD if it has property RD with respect to some central

length.
Since C D 1 for a unimodular discrete quantum group, our definition of the

Sobolev norms above reduces to the definitions in [19] in this case. In other words,
for unimodular quantum groups Definition 3.3 is equivalent to the definition of
property RD given by Vergnioux.

As we will see below, this is not true for non-unimodular quantum groups. One
might therefore call the property defined above modular property RD, or something
alike, in order tomake a distinctionwith the original notion. However, since there is no
real conflict in terminology neither in the unimodular nor in the non-unimodular case
— a non-unimodular quantum group can only possibly have property RD according
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to the above version of the definition — we have refrained from introducing new
terminology.

Our above definition of Sobolev norms may appear somewhat arbitrary, but it can
be motivated as follows. Essentially, the operator C 1=2 controls the deviation of the
norm

k Oƒ.u˛ij /k D
.F ˛/

�1=2
i i

dimq.˛/1=2

from its value dim.˛/�1=2 in the unimodular case. More precisely, we have

k Oƒ.C 1=2 * u˛ij /k D
1

dim.˛/1=2
;

so that the action of C 1=2 compensates for the rescaling of Hilbert space norms. We
remark that one could also incorporateC 1=2 in the definition of the Fourier transform,
which would simplify some formulas in the sequel. The remaining ingredients in the
definition of the Sobolev norms are as in [19], with the only difference that we are
working with left Haar weights.

If L is a length on G we denote by Hs
L.G/ the completion of CŒG� with respect

to the Sobolev s-norm k � k2;s . Moreover, we define the associated Schwartz space
H1L .G/ by

H1L .G/ D
\
s�0

Hs
L.G/:

The spaceH1L .G/ is naturally a Fréchet space with respect to the topology given by
the Sobolev seminorms. Let us prove the following variant of Proposition 3.5 in [19].
Proposition 3.4. Let G be a discrete quantum group and let L be a central length
on G. Then the following conditions are equivalent.

a) G has property RD with respect to L.
b) There exists c; s > 0 such that kxkop � ckxk2;s for all x 2 CŒG�.
c) The identity map CŒG�! CŒG� induces a continuous linear embedding

H1L .G/ � C �r .G/:

d) There exists a polynomial p.x/ 2 RŒx� such that

kF.f /kop � p.n/kf k2;0

for all n 2 N and f 2 pnCc.G/.
e) There exists a polynomial p.x/ 2 RŒx� such that

kplF.f /pkkop � p.n/kf k2;0

for all k; l; n 2 N and f 2 pnCc.G/.
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Proof. The arguments follow precisely the pattern of [19], for the convenience of the
reader we shall include the details.

a/ , b/ This follows immediately from the fact that the Fourier transform
F W Cc.G/! CŒG� is a linear isomorphism preserving Sobolev norms.

b/ ) c/ From the norm estimate in b/ we obtain the existence of a continuous
linear map � W H1L .G/ ! C �r .G/, and we may compose with the embedding
C �r .G/! l2.G/ � C.G/. Since the completion of Cc.G/ with respect to k � ks can
be realised as a subspace of C.G/ in a compatible way it follows that � is injective.

c/) b/ is obvious.
a/) d/ Let s be the natural number and c > 0 such that kF.f /kop � ckf k2;s .

Then for f 2 pnCc.G/ we have

kF.f /kop � ckf k2;s D ck.1C L/sf k2;0 � ck.1C n/sf k2;0 � p.n/kf k2;0;

where p.x/ D c.1C x/s .
d/) a/ Let us choose constants c1; s > 0 such that p.n/ � c1.1C n/s for all

n 2 N. Then we obtain

kF.f /kop �
1X
nD0

kF.pnf /kop

� c1

1X
nD0

.1C n/skpnf k2;0

D c1

1X
nD0

1

1C n
.1C n/sC1kpnf k2;0

� c1

� 1X
nD0

1

.1C n/2

�1=2� 1X
nD0

.1C n/2sC2kpnf k
2
2;0

�1=2
� c2k.1C L/

sC1f k2;0 D c2kf k2;sC1

for a suitable constant c2, using the Cauchy–Schwarz inequality as in the classical
case [11].

d/) e/ is obvious.
e/ ) d/ Let f 2 pnCc.G/. Then if plF.f /pk ¤ 0 we have .k; l; n/ 2 T

where T � N3 is the set of all .k; l; n/ such that �.pn/.pk ˝ pl/ ¤ 0. Indeed, due
to Lemma 3.4 in [19] the set T is stable under permutations and we have

plF.f /pk D .� ˝ id/..1˝ pl/W.f ˝ pk// D .� ˝ id/.W�.pl/.pnf ˝ pk//;

using F.f /ƒ.h/ D hS�1.h.1//;F.f /iƒ.h.2// D �.S�1.h.1//f /ƒ.h.2// for
h 2 Cc.G/, and .� ˝ id/.W.f ˝ 1//ƒ.h/ D �.S�1.h.1//f /ƒ.h.2//.
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For a unit vector � 2 l2.G/ we obtain

kF.f /�k2 D
1X
lD0

kplF.f /�k2

�

1X
lD0

� 1X
kD0

kplF.f /pk�k
�2

� p.n/2kf k22;0

1X
lD0

� X
kj.k;l;n/2T

kpk�k

�2
using condition e/. According to Lemma 3.4 in [19], for fixed l 2 N the number
of elements k such that .k; l; n/ 2 T is bounded above by 2n C 5. Hence by the
Cauchy–Schwarz inequality we have� X

kj.k;l;n/2T

kpk�k

�2
� .2nC 5/

� X
kj.k;l;n/2T

kpk�k
2

�
for any l . Therefore,

1X
lD0

� X
kj.k;l;n/2T

kpk�k

�2
�

1X
lD0

.2nC 5/

� X
kj.k;l;n/2T

kpk�k
2

�
� .2nC 5/2

1X
kD0

kpk�k
2
D .2nC 5/2k�k2;

and we get kF.f /kop � .2nC 5/p.n/kf k2;0 as desired.

4. Property RD and polynomial growth

In this section we study property RD for amenable quantum groups, and we show
that it is equivalent to a suitable notion of polynomial growth, again following the
work of Vergnioux. However, we have to modify the definition of polynomial growth
introduced in [19]. We will comment on the relation between the various concepts
below.

Let us start with the following definition.
Definition 4.1. Let G be a discrete quantum group. We say that G has polynomial
growth with respect to a central length function l on G if there exists a polynomial
p.x/ 2 RŒx� such that X

l.˛/2.n�1;n�

dim.˛/2 � p.n/

for all n 2 N.
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We say that G has polynomial growth if it has polynomial growth with respect to
some central length function on G.

A finitely generated discrete quantum group G has polynomial growth iff it has
polynomial growth with respect to a word length function l on G.

If l is a central length function on G we shall write Sn � Irr.G/ for the set of
all corepresentations ˛ satisfying l.˛/ 2 .n � 1; n�. We note that G has polynomial
growth with respect to l iff the sequences

sn D jS
n
j; dn D sup

˛2Sn

dim.˛/2

both have polynomial growth. In particular, a unimodular discrete quantum group
has polynomial growth in the sense of [19] iff it has polynomial growth in the sense
of Definition 4.1.

For non-unimodular quantum groups the concept introduced above differs from
the notion in [19]. Indeed, for polynomial growth in the sense of Vergnioux one
has to replace classical dimensions by quantum dimensions in Definition 4.1. In
order to distinguish the two notions one could refer to them as classical and quantum
polynomial growth, respectively. As in the case of property RD we shall however
refrain from using new terminology. We observe that a non-unimodular quantum
group cannot have polynomial growth in the sense of [19], so this should not lead to
confusion.

We have the following version of a result in [19].
Proposition 4.2. Let G be a discrete quantum group and let l be a length function
on G.

a) If G has polynomial growth with respect to l then G has property RD with
respect to l .

b) IfG is amenable and has property RDwith respect to l , thenG has polynomial
growth with respect to l .

In particular, rapid decay and polynomial growth are equivalent in the amenable
case.

Proof. Again, we follow the arguments in [19], and include the details for the
convenience of the reader. It will be convenient to use the element

qn D
X

˛2Irr.G/

dim.˛/
dimq.˛/

p˛pnF
�1
D

X
˛2Sn

dim.˛/
dimq.˛/

p˛F
�1
D

X
˛2Sn

p˛C
�1;

and we observe that
�.qn/ D

X
˛2Sn

dim.˛/2

for all n.
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a/ Recall that every element of CŒG� � C �r .G/ can be written in the form
.! ˝ id/.W / where W 2 M.C0.G/ ˝ C �r .G// is the multiplicative unitary of G
and ! a linear functional on C0.G/ of the form ! D F.f / for f 2 Cc.G/. Here F
denotes the Fourier transform as above. Notice that .!˝ id/.W / D F.f / 2 C �r .G/
for ! D F.f /, and kF.f /kop D k.! ˝ id/.W /k � k!k.

Let us assume first that f 2 pnCc.G/ is such that ! D F.f / is a positive
linear functional. The latter is equivalent to saying that fF 2 Cc.G/ is positive.
Taking an approximate identity .uj /j2J forC0.G/ of central projections we compute
k!k D limF.f /.uj / D lim�.ujf / D �.f /. Hence we obtain

kF.f /kop � k!k D �.f / D �.pnf /
D hqn; f i2;0 � kqnk2;0kf k2;0 D

p
p.n/ kf k2;0

by the Cauchy–Schwarz inequality, where p.x/ is the polynomial appearing in the
polynomial growth estimate for G. Here we write h�; �i2;0 for the inner product
corresponding to the norm k � k2;0.

Next assume that the functional ! D F.f / is hermitian, which is equivalent
to saying that fF is self-adjoint. In this case we may write f D fC � f� where
f˙F

�1 are positive. In fact, we have f˙ D ˙e˙f for suitable projections e˙. The
previous computation yields

kF.f /kop � kF.fC/kop C kF.f�/kop
�
p
p.n/.keCf k2;0 C ke�f k2;0/ �

p
2p.n/kf k2;0;

where the last step follows by inspecting the definition of the norm k k2;0.
Finally, consider an arbitrary element f 2 pnCc.G/ and write f as sum f D

g C ih such that both gF and hF are self-adjoint. In this case, taking into account
our previous computations, we obtain

kF.f /kop � kF.g/kop C kF.h/kop
�
p
2p.n/.kgk2;0 C khk2;0/

�
p
4p.n/kf k2;0

using that
kgk22;0 C khk

2
2;0 D kg C ihk

2
2;0 D kf k

2
2;0

since
tr.p˛.gF /�hF / D tr.p˛gFhF / D tr.p˛.hF /�gF /

for any ˛ 2 Irr.G/. It follows that G has property RD.
b/ Due to amenability, the counit O� W CŒG� ! C extends to a �-homomorphism

C �r .G/! C. Moreover, we have O�.F.f // D �.f / for all f 2 Cc.G/. Therefore

j�.f /j D jO�.F.f //j � kF.f /kop � ckf k2;s
for some constants c; s > 0.
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Using the elements qn defined above we can test polynomial growth. More precisely,
we compute

�.qn/
2
� c2k.1C L/sqnk

2
2;0

� c2.1C n/2s
X
˛2Sn

dimq.˛/2

dim.˛/
tr.p˛C�2F 2/

D c2.1C n/2s
X
˛2Sn

dimq.˛/ tr.p˛C�1F /

D c2.1C n/2s�.qn/

which implies �.qn/ � c2.1C n/2s . That is, G has polynomial growth.

Using Proposition 4.2 we conclude that all duals of q-deformations of compact
semisimple Lie groups have property RD. Indeed, these discrete quantum groups are
amenable [3], and the Weyl dimension formula implies that they have polynomial
growth in the sense of Definition 4.1, see Example 4.5 in [19]. We record the
following precise statement of this fact.

Proposition 4.3. Let q 2 .0; 1� and let Gq be the standard deformation of a
simply connected compact semisimple Lie group G. Then the discrete dual quantum
group OGq has property RD.

This shows in particular that, in the non-unimodular case, our definition of
property RD differs from the original definition given by Vergnioux.

5. Spectral triples from length functions

In this section we explain how to associate spectral triples to discrete quantum groups
equipped with proper length functions. Moreover we study basic properties of the
spectral triples obtained this way.
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Let us first recall the definition of a spectral triple due to Connes, see [6, 10].
Definition 5.1. A spectral triple .A;H;D/ consists of

a) a �-algebra A, faithfully represented onH,
b) a (graded) Hilbert spaceH, together with
c) an unbounded self-adjoint (odd) operatorD inH

such that
1) the commutators ŒD; a� are bounded for all a 2 A,
2) D has compact resolvent, that is,

.1CD2/�1

is compact.
In the above definition we have indicated how to include a grading in the general

setup, but this will not be relevant in our examples.
The prototypical example of a spectral triple is given by A D C1.M/, the

algebra of smooth functions on a compact Riemannian spin manifold, the Hilbert
space H D L2.M; S/ of L2-sections of the spinor bundle of M , and the Dirac
operatorD. In this case the formula

d.x; y/ D supfjf .x/ � f .y/j j f 2 C1.M/; kŒD; f �k � 1g

allows to express the Riemannian metric, or rather the corresponding geodesic
distance function, in terms of operator theoretic data.

Connes studied spectral triples associated to discrete groups with length
functions [5]. Let G be a discrete group and let l be a proper length function
on G. Consider the Hilbert space l2.G/ and the unbounded operator D in l2.G/
defined on CŒG� � l2.G/ by

D D
X
n2N0

npn;

where pn D qn � qn�1, and qk denotes the projection onto the finite dimensional
subspace of l2.G/ spanned by group elements of length at most k. If l comes from
a word metric we may viewD as multiplication by the length function l .

It is not hard to check that one obtains a spectral triple in this way. In fact, we will
consider a more general class of spectral triples below, and for this it is convenient to
work within the framework of filtered algebras. More precisely, let A be a complex
unital dense �-subalgebra of a unital C �-algebra A. Let us call A a filtered algebra
if we are given a family of finite dimensional subspaces .Am/m2N0

of A such that
a) A D

S1
nD0An,

b) A0 D C1,
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c) Am � An for m < n,
d) A�n D An for all n,
e) AmAn � AmCn for all m; n.

Assume further that � is a state on A which is faithful on A, and let H D L2.A; �/
be the GNS-construction of � . Then each An is a finite dimensional, hence closed,
subspace of H. Let qn denote the orthogonal projection of H onto An. Let
pn D qn � qn�1 and p0 D q0. Then the formula

D D
X
n2N0

npn

defines an unbounded operatorD onH.
Filtrations and associated Dirac operators were first introduced by Voiculescu

in [20] and further studied in [16]. The following general fact is a restatement of
Lemma 1.1. in [16].
Lemma 5.2. The triple .A;H;D/ associated to a filtered algebraA together with a
state as above is a spectral triple.

We note that theK-homology class of the resulting (odd) triple is trivial because
the operator D is positive. That is, the corresponding phase F is identically 1.
In general, one should rather think of D as the absolute value jDj of a true Dirac
operator on the underlying noncommutative space, see [18].

We recall that a spectral triple .A;H;D/ is called regular if for each a 2 A both
a and ŒD; a� are contained in the domain of all powers of the derivation ı given by

ı.T / D ŒjDj; T �;

see [10].
Lemma 5.3. The above spectral triple .A;H;D/ associated to a filtered algebra A
with a state is regular.

Proof. Notice again that we have jDj D D in this case. In order to verify regularity
we will closely follow the proof of Lemma 1.1 of [16]. Let a be an element of Ap .
Then we have

ŒD; a� D
X

j jjj j�p

jTj ;

where Tj D
P
m pmapm�j is a bounded operator for each j . We consider

ŒD; ŒD; a�� D
P
j jjj j�pŒD; Tj �. Now

ŒD; Tj � D
h
D;
X
m

pmapm�j

i
D

X
m

jpmapm�j D jTj :

Thus, ŒD; ŒD; a�� D
P
j jjj j�p j

2Tj : The statement of the corollary follows by
repeated application of this technique.
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Now we turn to the case of quantum groups. For simplicity, let G be a finitely
generated discrete quantum group, and let l be a word length function on it. Imitating
Connes’ construction in the group case, we construct a spectral triple with the Hilbert
space l2.G/, where CŒG� acts by the regular representation. Our candidate for the
Dirac operator isD, where

dom.D/ D

( X
˛2Irr.G/

dim.˛/X
i;jD1

a˛ij
Oƒ.u˛ij / j

X
˛;i;j

l.˛/2ja˛ij j
2
k Oƒ.u˛ij /k

2 <1

)
and

D

 X
˛;i;j

a˛ij
Oƒ.u˛ij /

!
D

X
˛;i;j

l.˛/a˛ij
Oƒ.u˛ij /:

The algebra A D CŒG� is naturally a filtered algebra with the filtration defined by
lettingAn be the linear span of all matrix coefficients u˛ij such that l.˛/ � n. Notice
that there are only finitely many irreducible corepresentations of length at most n.
Hence the subspacesAn are all finite dimensional. MoreoverA0 D C1, and it is easy
to see from the properties of length functions that A�n D An and AnAm � AnCm.
Lemma 5.4. LetG be a finitely generated discrete quantum group with a word length
function. Then the triple .CŒG�; l2.G/;D/ constructed above is a regular spectral
triple.

Proof. Let A D C �r .G/ and A D CŒG�. The Hilbert space l2.G/ is the GNS-
Hilbert space with respect to the Haar state O�, and O� is faithful on CŒG�. By
the observations made above, the filtration .Am/m2N0

satisfies the conditions of
Lemma 5.2, and therefore .CŒG�; l2.G/;D/ is a spectral triple. Regularity follows
from Lemma 5.3.

Recall that a spectral triple .A;H;D/ is called p-summable if Tr. OD�p/ < 1,
where OD denotes the restriction of jDj to the orthogonal complement of its kernel.

The following result is a variant of Proposition 6 in [5].
Proposition 5.5. Let G be a finitely generated amenable discrete quantum group of
rapid decay, and fix a word length function and constants c; s such that

kakop � ckak2;s

for all a 2 CŒG�. Then the associated spectral triple .CŒG�; l2.G/;D/ constructed
above is p-summable for all p > 2s C 1.

Proof. Since G is amenable, we see from the proof of Proposition 4.2 thatX
l.˛/Dn

dim.˛/2 D �.qn/ � c2.1C n/2s:
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Using this, we find

Tr. OD�p/ D
X
˛¤�

dim.˛/2l.˛/�p

D

1X
nD1

X
l.˛/Dn

dim.˛/2n�p

�

1X
nD1

c2.nC 1/2s

np
:

This yields the claim.

Notice that we cannot drop the amenability assumption in Proposition 5.5 in
general. For instance, according to [19], the free orthogonal quantum group FO.n/
has property RD, but the corresponding spectral triplewill fail to be finitely summable
as soon as n > 2. Indeed, we have Irr.FO.n// Š N, with the same fusion rules as
SU.2/, and the dimension of the corepresentation Vk corresponding to k is

dim.Vk/ D
qkC1 � q�k�1

q � q�1
� q�k;

where qC q�1 D n and q < 1. It follows that the sequence of dimensions appearing
in the estimate of Proposition 5.5 diverges for any p as soon as n > 2.

6. Compact quantum metric spaces

We recall that the geodesic distance on a compact Riemannian spin manifold can be
recovered from the associated spectral triple. For a general spectral triple .A;H;D/,
one may take

d.�; �/ D supfj�.a/ � �.a/j j a 2 A j kŒD; a�k � 1g

as an Ansatz to define a metric on the state space S.A/ of the C �-algebra closure A
of A in L.H/, thus generalising the Monge-Kantorovich metric on probability
measures. We note that without further assumptions the above formula may yield
d.�; �/ D1 for some states, see [7].

The above considerations, along with further examples, motivated Rieffel to
introduce the concept of a quantum metric space. In [17] the theory is developed
starting from order unit spaces instead of C �-algebras, but for our purposes the
following definition is sufficient.
Definition 6.1. Let A be a unital C �-algebra and let A � A be a dense unital
�-subalgebra. A Lipschitz seminorm onA is a seminorm L W A! Œ0;1/ such that
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L.a�/ D L.a/ for all a 2 A and L.a/ D 0 iff a 2 C1. A Lipschitz seminorm is
called a Lip-norm if the topology on S.A/ induced by

dL.�; �/ D supfj�.a/ � �.a/j j a 2 A j L.a/ � 1g
coincides with the w�-topology.

A unital C �-algebra A together with a Lip-norm on a dense �-subalgebraA � A
is called a compact quantum metric space.

Starting from Definition 6.1 it is natural to ask for conditions ensuring that
a Lipschitz seminorm is indeed a Lip-norm. Ozawa–Rieffel gave the following
criterion, see Proposition 1.3 in [16].
Proposition 6.2. Let A be a unital C �-algebra, and let L be a Lipschitz seminorm
on a dense unital �-subalgebra A � A. If � is a state on A such that

E D fa 2 A j L.a/ � 1 and �.a/ D 0g

is totally bounded with respect to the norm of A, then L is a Lip-norm.
Recall that a subset B of a metric space X is totally bounded if for any � > 0

there exists finitely many balls of radius � whose union covers B .
Let us now assume that .A;H;D/ is the spectral triple associated to a filtered

algebra as in Section 5. One may ask whether the resulting Lipschitz seminorm
L.a/ D kı.a/k D kŒD; a�k is a Lip-norm on A, viewed as a dense subalgebra of its
norm closure A. This seems to be unclear in general.

In [16], Ozawa and Rieffel showed that L is indeed a Lip-norm provided a
condition of the form

kpmapnk � ckak2

holds for a 2 Ak and all k;m; n. They call such an inequality a Haagerup type
condition. As remarked in Section 5, Connes’ spectral triples on group algebras
coming from length functions are special cases of the Ozawa–Rieffel construction in
Lemma 5.2. Examples of groups for which the Haagerup type condition hold include
word hyperbolic groups [6, 16] as well as free products of the form G1 � G2, where
G1 and G2 satisfy the Haagerup type condition and one works with tracial states on
the group algebras of G1 and G2.

It is not clear, however, whether L is a Lip-norm for groups of rapid decay in
general. In this case one has a weaker inequality of the form

kpmapnk � cP.k/kak2

for all a 2 Ak , where P is a polynomial. Antonescu and Christensen observed
that one can easily prove the Lip-norm property in this case if one works with a
slightly different Lipschitz seminorm instead [1]. More precisely, for k 2 N and
a 2 A D CŒG�, consider

Lk.a/ D kık.a/k D kŒD; ŒD; : : : ŒD; a� : : : ��k;

where the commutator is taken k times.



1194 J. Bhowmick, C. Voigt and J. Zacharias

Wewill consider a similar construction in the case of discrete quantumgroups, and
prove some lemmas which are needed later on. However, in order to accommodate
non-unimodular discrete quantum groups, we need to use a twisted version of the
seminorm Lk . Throughout, we assume that G is a discrete quantum group equipped
with a proper length function l .
Lemma 6.3. Using the same notation as before, we have ık.u˛ij / Oƒ.1/ D Dk Oƒ.u˛ij /

for all k 2 N. In particular, for a finite sum of the form a D
P
˛;i;j a

˛
iju

˛
ij , we have

ık.a/ Oƒ.1/ D
P
˛;i;j l.˛/

ka˛ij
Oƒ.u˛ij /.

Proof. We proceed by induction. For k D 1, we have

ı.u˛ij /
Oƒ.1/ D ŒD; u˛ij �

Oƒ.1/

D D Oƒ.u˛ij / � u
˛
ijD
Oƒ.1/ D D Oƒ.u˛ij /:

Let us now assume that ık.u˛ij / Oƒ.1/ D D
k Oƒ.u˛ij /. Then

ıkC1.u˛ij /
Oƒ.1/ D ŒD; ık.u˛ij /�

Oƒ.1/

D Dık.u˛ij /
Oƒ.1/ � ık.u˛ij /D

Oƒ.1/

D DDk Oƒ.u˛ij /

D DkC1 Oƒ.u˛ij /;

which yields the claim.

Lemma 6.4. If a 2 CŒG� is such that Lk.a/ D 0, then a is a scalar multiple of the
identity. Hence Lk is a Lipschitz seminorm.

Proof. Let a D
P
˛;i;j a

˛
iju

˛
ij 2 CŒG�. By definition, the relation Lk.a/ D 0

implies that ık.a/ D 0. In particular we have ık.a/ Oƒ.1/ D 0. Therefore, according
to Lemma 6.3 we obtain

0 D
X
˛;i;j

a˛ijD
k Oƒ.u˛ij / D

X
˛;i;j

l.˛/ka˛ij
Oƒ.u˛ij / D 0:

Since the vectors Oƒ.u˛ij / form a linearly independent set in l2.G/, we conclude
l.˛/ka˛ij D 0 for all ˛; i; j . If l.˛/ ¤ 0 then a˛ij D 0. Since l is a proper length
function we conclude that a has to be a scalar multiple of the identity. Moreover, we
clearly have Lk.1/ D 0 and Lk.a/ D Lk.a�/. Hence Lk is a Lipschitz seminorm.

Fix a natural number k and consider the operator T D C
1

2k . As before, we let
ı.a/ D ŒD; a� and define

ıT .a/ D ŒD; TaT �; LkT .a/ D kı
k
T .a/k

for a 2 A D CŒG�.
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Lemma 6.5. Let k 2 N. For any a 2 A we have ıkT .a/ D T
kık.a/T k , and LkT is a

Lipschitz seminorm on A.

Proof. Since T commutes withD we have ıT .a/ D ŒD; TaT � D T ŒD; a�T , and so
ıkT .a/ D T

kık.a/T k . Moreover

LkT .a
�/ D kıkT .a

�/k D kT kık.a�/T kk D kT kık.a/T kk D LkT .a/

since T is self-adjoint. For the Lipschitz seminorm property, we need to check that
if LkT .a/ D 0, then a is a scalar multiple of the identity. But LkT .a/ D 0 implies
that T kık.a/T k D 0. Since T is invertible we conclude ık.a/ D 0 which means
Lk.a/ D 0. Hence the desired conclusion follows from Lemma 6.4.

Lemma 6.6. Let k 2 N. Then we haveX
˛;i;j

dim.˛/�1l.˛/2kja˛ij j
2
D

X
˛;i;j

ıkT .a
˛
iju

˛
ij /
Oƒ.1/

2
2

� LkT

 X
˛;i;j

a˛iju
˛
ij

!2
:

Proof. Using Lemma 6.3 we computeX
˛;i;j

ıkT .a
˛
iju

˛
ij /
Oƒ.1/

2
2

D

X
˛;i;j

a˛ij l.˛/
kT k Oƒ.u˛ij /

2
2

D

X
˛

X
i;j

X
i 0;j 0

a˛ija
˛
i 0j 0

dimq.˛/
dim.˛/

l.˛/2k.F ˛/
1
2

i i .F
˛/

1
2

i 0i 0h
Oƒ.u˛ij /;

Oƒ.u˛i 0j 0/i

D

X
˛;i;j

dim.˛/�1l.˛/2kja˛ij j
2:

This yields the claim.

7. Rapid decay and the Lip norm property

In this section we show that the Lipschitz norms considered above have the Lip
norm property for all sufficiently large exponents provided the quantum group under
consideration has property RD.

For simplicity we shall again concentrate on the case of a finitely generated
discrete quantum group G equipped with a word length function l . Moreover we
assume that G has property RD, and we fix constants c; s > 0 such that

kakop � ckak2;s

holds for all a in CŒG� with respect to the Sobolev norms associated with l .
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Using the notation introduced in Section 6, we will apply Proposition 6.2 by
Ozawa–Rieffel to show that there exists a positive integer k such that LkT has the Lip
norm property. We start with the following lemma.

Lemma 7.1. Let a D
P
˛;i;j a

˛
iju

˛
ij 2 CŒG�. Then we have

kak22;s D
X
˛;i;j

1

dim.˛/
.1C l.˛//2sja˛ij j

2:

Proof. We compute

kak22;s D
X
˛;i;j

h.1C L/sa˛ijG.u˛ij /C 1=2; .1C L/sa˛ijG.u˛ij /C 1=2i

D

X
˛;i;j

dimq.˛/
dim.˛/

.1C l.˛//2sja˛ij j
2.F ˛/i i hu

˛
ij ; u

˛
ij i

D

X
˛;i;j

1

dim.˛/
.1C l.˛//2sja˛ij j

2;

where we use the Schur orthogonality relations in the last step.

Now, for a positive integer k > s, let

E D fa 2 CŒG� j LkT .a/ � 1 and O�.a/ D 0g;

which we view as a subset of CŒG� � C �r .G/.

Lemma 7.2. For all n 2 N there exists a constant cn such that X
˛;i;j jl.˛/�n

a˛iju
˛
ij


op

� cn

for any a D
P
˛;i;j a

˛
iju

˛
ij 2 E.
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Proof. We recall that � denotes the trivial corepresentation. Using a�11 D O�.a/ D 0
and the Cauchy–Schwarz inequality we computeX
˛;i;j jl.˛/�n

ja˛ij j D
X

˛;i;j j1�l.˛/�n

l.˛/�k
p
dim.˛/l.˛/kja˛ij j

p
dim.˛/

�1

�

 X
˛;i;j jl.˛/�n

l.˛/�2k dim.˛/

! 1
2
 X
˛;i;j jl.˛/�n

l.˛/2kja˛ij j
2 dim.˛/�1

! 1
2

� cnL
k
T .a/ � cn;

where we choose cn such that X
˛;i;j jl.˛/�n

l.˛/�2k dim.˛/

! 1
2

� cn;

and we use Lemma 6.6.
Since the matrices .u˛ij / are unitary we have ku˛ij kop � 1 for all ˛ and

i; j D 1; : : : ; dim.˛/. Hence we obtain X
˛;i;j jl.˛/�n

a˛iju
˛
ij


op

�

X
˛;i;j jl.˛/�n

ja˛ij jku
˛
ij kop �

X
˛;i;j jl.˛/�n

ja˛ij j � cn:

This yields the claim.

Lemma 7.3. Let a D
P
˛;i;j a

˛
iju

˛
ij 2 CŒG� and fix a positive integer k > s. Then

we have X
˛;i;j;l.˛/>n

a˛iju
˛
ij

2
op

� c222sn2.s�k/
X

˛;i;j;l.˛/>n

dim.˛/�1l.˛/2kja˛ij j
2

for any n 2 N.

Proof. We follow Antonescu–Christensen [1]. For ˛ satisfying l.˛/ > n write

.1C l.˛//2s � 22sl.˛/2s � 22sn2s�2kl.˛/2k :

Therefore, by property RD and Lemma 7.1, we have X
˛;i;j;l.˛/>n

a˛iju
˛
ij

2
op

� c2
 X
˛;i;j;l.˛/>n

a˛iju
˛
ij

2
2;s

D c2
X

˛;i;j;l.˛/>n

dim.˛/�1.1C l.˛//2sja˛ij j
2

� c222sn2.s�k/
X

˛;i;j;l.˛/>n

dim.˛/�1l.˛/2kja˛ij j
2:

This finishes the proof.
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We are now ready to prove the following result.
Theorem7.4. LetG be a finitely generated discrete quantum groupwith property RD,
and fix constants c; s such that kF.f /kop � ckf k2;s for all f 2 Cc.G/. Then
for any positive integer k > s, the algebra CŒG� � C �r .G/ together with the
seminorm LkT is a compact quantum metric space.

Proof. We have to show that LkT is a Lip norm, equivalently, E is totally bounded,
i.e. for every � > 0, the set E can be covered by finitely many �-balls. Given � > 0
choose n such that c2sns�k < �.

Using Lemma 7.2 we see that f
P
1�i�n pi .x/ j x 2 Eg is a bounded subset

of a finite dimensional normed space, and thus totally bounded. Moreover, by our
choice of n and Lemma 7.3, the set f

P
i>n pi .x/ j x 2 Eg is contained in B� ,

the �-ball around 0 in C �r .G/. Thus, if fvi j i D 1; 2; : : : ; mg is a finite �-net for
f
P
1�i�n pi .x/ j x 2 Eg; then fB�g[fvi CB� j i D 1; 2; : : : mg is a finite covering

of E by �-balls. This completes the proof.
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