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Abstract. We consider homogeneous compact matrix quantum groups whose fundamental
corepresentation matrix has entries which are partial symmetries with central support. We show
that such quantum groups have a simple presentation as semi-direct product quantum groups
of a group dual quantum group by an action of a permutation group. This general result allows
us to completely classify easy quantum groups with the above property by certain reflection
groups. We give four applications of our result. First, there are uncountably many easy quantum
groups. Second, there are non-easy homogeneous hyperoctahedral quantum groups. Third, we
study operator algebraic properties of the hyperoctahedral series. Finally, we prove a generalised
de Finetti theorem for those easy quantum groups in the scope of this article.
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1. Introduction

Easy quantum groups were introduced by Banica and Speicher in [8], in the context
of Wang’s universal quantum groups [44]. Via Speicher’s partitions, this class of
quantum groups has a natural link to free probability theory. Together with [37], the
present paper completes the classification of easy quantum groups, which was started
in [5, 8, 46].

Compact quantum groups were introduced by Woronowicz in [47, 50]. As they
have a natural set of axioms and satisfy a version of Tannaka–Krein duality [48], they
are by now an established generalisation of compact groups to a non-commutative
setting. There are mainly three sources of examples of compact quantum groups.
First, there are q-deformations of compact simple Lie groups described in [17, 23,
34, 48]. Second, motivated by a question of Connes, Wang described the quantum
symmetry group of n points in [45]. This later led Goswami to define quantum
isometry groups in [18]. Third, Banica and Speicher defined a combinatorial class
of quantum groups, which they called easy quantum groups [8]. This article is
concerned with the latter class of quantum groups.
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In 1995 Wang introduced the universal orthogonal and the universal unitary
quantum groups OCn and UCn [44]. Later in 1998 he introduced the quantum
permutation groups SCn [45]. After work of Banica and others [1–3] introducing
the free hyperoctahedral quantum groupHCn , it became clear that all these quantum
groups should be considered as a result of a “liberation process” of classical groups,
which was formalised in [8]. It resembles the passage from classical probability
theory to free probability theory via Speicher’s partitions. The combinatorial point
of view taken in [8] naturally gave rise to a new class of quantum groups which are
described by Speicher’s partitions. Banica and Speicher called them easy quantum
groups. By their very definition easy quantum groups are related to free probability
theory. This intuition was confirmed by several de Finetti type theorems, identifying
easy quantumgroups as the correct class of symmetries of certain distributions [6,27].
In [8, 46] the classification of two subclasses of easy quantum groups, namely easy
groups and free quantum groups (those easy quantum groups corresponding to non-
crossing partitions), was settled. Moreover, in [5,46] further classification results for
easy quantum groups were obtained, showing that there are exactly 13 easy quantum
groups outside a family called hyperoctahedral easy quantum groups. At the same
time, it was shown that there is at least a countable number of hyperoctahedral easy
quantum groups, leaving their complete classification as an open problem.

We complete the classification of easy quantum groups by classifying hyperocta-
hedral easy quantum groups in this paper and in [37].

We identify a dividing line between easy quantum groups which are quantum
subgroups of the semi-direct product quantum groups C�.Z�n2 / ‰ C.Sn/ and those
which are not. While the structure of the former class of easy quantum groups
is governed by algebraic considerations, the study of the latter class remains of
combinatorial nature. Indeed, in [37] we classify by combinatorial arguments
the remaining hyperoctahedral easy quantum groups which are not contained in
C�.Z�n2 / ‰ C.Sn/. It turns out that there are only countably many of them.
In contrast, in the present paper we completely classify homogeneous quantum
subgroups of C�.Z�n2 / ‰ C.Sn/ and only afterwards we identify easy quantum
groups among them. A quantum group is called homogeneous, if it contains
the permutation group Sn as a quantum subgroup (see Section 2.4.1 for a precise
definition). The homogeneity assumption is natural for any classification result for
compact quantum groups, since every Lie group admits many embeddings intoOn –
these subgroups have to be excluded to expect reasonable classification results. The
algebraic approach of this paper allows us to understand the easy quantum groups in
question more profoundly, as is demonstrated by several applications. Moreover, it is
a complete classification result for homogeneous quantum subgroups of a naturally
defined quantum group.

Already in the preprint [36], we obtained some of the results presented in this
paper by means of combinatorial methods. The present article however achieves a
complete description of the quantum groups treated there, making use of algebraic
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methods. We refer to [38] for a concise presentation of the combinatorial approach.
Let us describe the results of this paper in more detail. We first characterise

homogeneous compact matrix quantum groups .A; u/ such that all u2ij are central
projections in A. A compact matrix quantum group is called homogeneous, if it
admits a morphism A ! C.Sn/. The compact matrix quantum groups arising in
the next theorem are called semi-direct product quantum groups (see Section 2.5).
We denote them by C�.�/ ‰ C.Sn/. They generalise the compact groups bH Ì Sn,
whereH is a discrete abelian group carrying an action of Sn by group automorphisms.

Theorem A (See Theorem 3.1). Let .A; u/ be a homogeneous compact matrix
quantum group such that u�ij D uij and u2ij is a central projection in A for all
i; j 2 f1; : : : ; ng. Then there is a quotient Z�n2 � � whose kernel is invariant under
the natural action of Sn such that A is a version of C�.�/ ‰ C.Sn/. In particular,
we have A Š C�.�/‰ C.Sn/ if A is in its maximal version.

Applying the previous classification to hyperoctahedral easy quantum groups, we
obtain the following structural result. A strongly symmetric reflection group is a
quotient Z�n2 ! � whose kernel is invariant under any identification of letters (See
Definition 4.3).

TheoremB (See Theorem 4.5). Let .A; u/ be an easy quantum group associated with
the category of partitions C. Assume that

u

=�u2 C. Then A Š C�.�/ ‰ C.Sn/ for
some strongly symmetric reflection group� on n generators. Denoting the generators
of � by g1; : : : ; gn and the fundamental corepresentation of C.Sn/ by .pij /, the
fundamental corepresentation of A is identified with .ugipij /.

Moreover, every strongly symmetric reflection group arises this way.

Motivated by this result, we call categories of partitions that contain
u

=�u group-
theoretical categories of partitions. The associated easy quantum groups are called
group-theoretical easy quantum groups.

Our results allow us to answer some open questions on easy quantum groups.
First of all we show that there are uncountably many easy quantum groups.

Theorem C (See Theorem 5.6). There are uncountably many pairwise non-
isomorphic easy quantum groups.

Our next result deals with intermediate quantum groups of free quantum groups
and their classical counterparts. The half-liberated orthogonal group O�n is the unique
easy quantum group intermediate to OCn � On. Further, in [4], it is shown that there
is no intermediate quantum group O�n � G � On. However, it is an open problem,
whether there are other quantum groups intermediate to OCn � On. Likewise it is not
known whether there is any intermediate quantum group to SCn � Sn. In the spirit of
these questions, we show that besides the abundance of easy hyperoctahedral quantum
groups, there are examples of homogeneous hyperoctahedral quantum groups that
are not easy.
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Theorem D (See Theorem 5.8). For every n � 3, there is an example of a
homogeneous hyperoctahedral quantum groupHCn � G that is not easy.

In [5], two series of easy quantum groups were introduced. H
.s/
n and H Œs�

n ,
s 2 N [ f1g are called the hyperoctahedral series and the higher hyperoctahedral
series, respectively. These quantum groups fit into the framework of this article,
which allows us to identify them explicitly. In the light of present interest in operator
algebraic properties of free quantum groups, we study the hyperoctahedral series
from this point of view.

As a last application of our classification result in Theorem B, we prove a uniform
de Finetti theorem for all group-theoretical hyperocatahedral quantum groups in
Section 5.4. It recovers the de Finetti theorem for H�n of Banica, Curran and
Speicher [6].

Acknowledgements. The first author thanks Roland Speicher for inviting him to
Saarbrücken, where this work was initiated in June 2012. Both authors thank Stephen
Curran for pointing out an error at an early stage of our work on the preprint [36], of
which this paper is a continuation. We are very grateful to Teodor Banica and Adam
Skalski for useful discussions on the same preprint. Finally we want to say a warm
thank you to Julien Bichon for pointing out a missing hypothesis in Theorem 3.1.

2. Preliminaries

2.1. Compact matrix quantum groups. In [47, 49] Woronowicz defined compact
matrix quantum groups (CMQG), which are the correct analogue of compact Lie
groups in the setting of his compact quantum groups [50]. A compact matrix
quantum group is a unital C�-algebra A with an element u 2 Mn.A/ such that

� A is generated by the entries of u,

� there is a *-homomorphism � W A ! A ˝ A called comultiplication which
satisfies �.uij / D

P
k uik ˝ ukj for all 1 � i; j � n and

� u is unitary and its transpose ut is invertible.

The matrix u is called the fundamental corepresentation of .A; u/. A morphism
between CMQGs A and B is a morphism � W A! B of the underlying C�-algebras
such that .� ˝ id/.uA/ is conjugate with uB by some element in GL.n;C/. Two
CMQGs are called similar if they are isomorphic as C�-algebras via a morphism of
CMQGs. They are isomorphic if they are isomorphic as C�-algebras via a morphism
preserving the fundamental corepresentation.

An important feature of CMQG is the existence of a Haar state proved by
Woronowicz.
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Theorem 2.1 (See [47]). Let .A; u/ be a CMQGwith comultiplication�. Then there
is a unique state, the Haar state, � 2 A� such that

.id˝ �/ ı�.x/ D �.x/1 D .� ˝ id/ ı�.x/

for all x 2 A.

A CMQG group .A; u/ is called orthogonal, if its fundamental corepresentation
has self-adjoint entries. We write u D .u�ij / for the entrywise adjoint of u. One can
show that the Haar state � of an orthogonal quantum group .A; u/ is tracial, that is
�.xy/ D �.yx/ for all x; y 2 A. All compact matrix quantum groups considered in
this article are orthogonal.

2.2. Different versions of quantum groups. Every CMQG .A; u/ contains the
algebra of polynomial functions Pol.A/ D � � alg.uij ; i; j 2 f1; : : : ; ng/. Also the
universal enveloping C�-algebra of Pol.A/ is a CMQG, which is called the maximal
version ofA. We say thatA is in its maximal version if it is isomorphic to its maximal
version. We write C.G/ for the maximal version of a CMQG, thinking of G as the
quantum group. In this case we also write Pol.G/ D Pol.C.G//. Any CMQGwhose
maximal version is isomorphic with C.G/, is called a version of C.G/.

The Haar state � of A is faithful on Pol.G/.
For von Neumann algebraic notions we refer the reader to Section 2.7.1. Taking

the weak closure of Pol.G/ in the GNS-representation associated with �, we obtain
the von Neumann algebraic version of A denoted by L1.G/. If A is an orthogonal
CMQG, then � extends to a faithful normal tracial state on L1.G/, showing that it is
a finite von Neumann algebra.

Let us mention that with every compact matrix quantum group G, one can
associate a dual quantum group bG, which is a discrete quantum group. We will only
use the notation bG and refer to [40] for more explanation on duality for quantum
groups.

2.3. Tannaka–Krein duality for compact matrix quantum groups. Let .A; u/ be
aCMQGwith comultiplication�. A unitary corepresentationmatrix ofA is a unitary
element v 2 Mm.A/ such that �A.vij / D

P
k vik ˝ vkj for all i; j 2 f1; : : : ; mg.

A morphism between unitary corepresentation matrices v 2 Mk.A/ and w 2 Ml.A/

is a matrix T 2 Ml;k.C/ such that T v D wT . It is also called an intertwiner. The
space of intertwiners between two unitary corepresentation matrices v;w is denoted
by Hom.v; w/.

The tensor product of two corepresentation matrices v 2 Mk.A/ andw 2 Ml.A/

is defined as the Kronecker tensor product .v ˝ w/.i;i 0/.j;j 0/ D vijwi 0j 0 . Denote
by Corep.A; u/ the category whose elements are tensor powers u˝k , k 2 N and
whose morphisms are intertwiners. Then Corep.A; u/ is a concrete compact tensor
C�-category in the sense of Woronowicz (see [47, 48] or [40, Chapter 5]).
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We need the following special version of Woronowicz’s Tannaka–Krein duality.

Theorem 2.2 (See [48]). Any concrete tensor C�-category whose objects are tensor
powers of a specified object x is equivalent to the category Corep.A; u/ for some
orthogonal compact matrix quantum group .A; u/ such that u corresponds to x
under this equivalence of categories. Two orthogonal compact matrix quantum
groups .A; u/ and .B; v/ are similar if and only if the categories Corep.A; u/
and Corep.B; v/ are equivalent over FdHilb via an equivalence that sends the
isomorphism class of u to the isomorphism class of v.

2.4. Easy quantum groups. In order to describe corepresentation categories of
compact quantum matrix groups combinatorially, Banica and Speicher introduced
the notions of a category of partitions and of easy quantum groups [8]. Alternatively,
we speak about partition quantum groups. A partition p is given by k upper points
and l lower points which may be connected by lines. This way, the set of kC l points
is partitioned into several blocks. We write a partition as a diagram in the following
way:

� � � � : : : � �

p

� � � � : : : � �

k upper points and
l lower points

Two examples of such partitions are the following diagrams.

In the first example, all four points are connected and the partition consists only of
one block. In the second example, the left upper point and the right lower point are
connected, whereas neither of the two remaining points is connected to any other
point.

The set of partitions onk upper and l lower points is denoted byP.k; l/, and the set
of all partitions is denoted byP . We also writeP.k/ for the set of all partitions which
have only k upper points and no lower points. We will also use labelled partitions,
i.e. partitions whose points are labelled by natural numbers. Vice versa, we can
associate with an index i D .i1; : : : ; ik/ 2 f1; : : : ; ng

k the partition ker.i/ 2 P.k/
whose blocks are exactly fj j ij D i0g, where i0 runs through f1; : : : ; ng.

There are the natural operations tensor product (p˝ q), composition (pq), invo-
lution (p�) and rotation on partitions (see [8, Definition 1.8] or [46, Definition 1.4]).
If p 2 P.k; l/, q 2 P.k0; l 0/, then p ˝ q 2 P.k C k0; l C l 0/ is the partition
obtained by writing p and q next to each other. If p 2 P.k; l/, q 2 P.l; m/,
then qp is the partition obtained by writing p above q, connecting them along the l
intermediate points and deleting all closed strings which are not connected to any
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of the k C m remaining points. The involution p� 2 P.l; k/ of p 2 P.k; l/ is
obtained by turning p upside down. A basic rotation of p 2 P.k; l/ is the partition
in P.k � 1; l C 1/ or in P.k C 1; l � 1/ arising after one turns the first leg of the
upper row and puts it in front of the first leg of the lower row – or vice versa. Now, a
rotation of p is a partition which arises after applying multiple basic rotations to p.

A collection C of subsets C.k; l/ � P.k; l/, k; l 2 N is called a category of
partitions if it is closed under these operations and if it contains the pair partition u
(see [8, Definition 6.1] or [46, Definition 1.4]).

Given a partition p 2 P.k; l/ and two multi-indices .i1; : : : ; ik/, .j1; : : : ; jl/, we
can label the diagram of p with these numbers. The upper and the lower row both
are labelled from left to right and we define

ıp.i; j / D

(
1 if p connects only equal indexes,
0 if there is a block of p connecting unequal indexes .

For every n 2 N, one associates a map Tp W .Cn/˝k ! .Cn/˝l with p which is
defined by

Tp.ei1 ˝ � � � ˝ eik / D
X

j1;:::;jl2f1;:::;ng

ıp.i; j / � ej1 ˝ � � � ˝ ejl .

Definition 2.3 (Definition 6.1 of [8] or Definition 2.1 of [5]). An orthogonal compact
matrix quantum group .A; u/ is called easy, if there is a category of partitions C given
by sets C.k; l/ � P.k; l/, for all k; l 2 N such that

Hom.u˝k; u˝l/ D spanfTp jp 2 C.k; l/g .

We can apply Theorem 2.2, in order to obtain the following one-to-one
correspondence between categories of partitions and easy quantum groups. It is
the basis of combinatorial investigations of easy quantum groups.
Theorem 2.4 (See [8]). There is a bijection between

� categories of partitions C and
� families of easy quantum groups GC.n/, n 2 N, up to similarity.

2.4.1. Homogeneous quantum groups. The permutation groups Sn arise as easy
quantum groups associated with the category of all partitions. In the framework of
compact matrix quantum groups they can be presented as

C.Sn/ Š C�.pij ; 1 � i; j � n jp is unitary, pij are commuting projections/ ,

where p D .pij / is the fundamental corepresentation.
A compact matrix quantum group .A; u/ is called homogeneous if there is a

morphism of compact matrix quantum groups A ! C.Sn/. Put differently, Sn is a
quantum subgroup of the compact quantum group described by A.
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Note that all easy quantum groups are homogeneous, since every category of
partitions is contained in the category of all partitions.

2.4.2. Hyperoctahedral quantum groups. Properties of an easy quantum group
are, in principle, completely described by their category of partitions. Let us recall
some elementary instances of this fact.

A category of partitions C is called hyperoctahedral if the four block uuu is in C,
but the double singleton " ˝ " is not in C.
Proposition 2.5. Let .A; u/ be an easy quantum group whose category of partitions
is C.

(i) The entries uij of u are partial isometries if and only if uuu2 C.
(ii) The elements u2ij are central projections in A if and only if

u

=�u2 C.
(iii) The corepresentation matrix u is irreducible if and only if " ˝ "… C.

Proof. By Tannaka–Krein duality, A is the universal C�-algebra generated by the
entries uij of its fundamental corepresentation which satisfy Tpu˝k D u˝lTp for
all p 2 C.k; l/. Now item (i) follows by comparing coefficients of Tp and u˝4Tp for
p Duuu. Similarly item (ii) follows by comparing coefficients of Tpu˝3 and u˝3Tp
for p D

u

=�u.
In order to see (iii), note that u is irreducible if and only if dimHom.1; u˝ u/D1.

Since Tu 2 Hom.1; u ˝ u/ and jP.2/j D 2, it follows that u is irreducible, if and
only if T"˝" … Hom.1; u˝ u/. The latter is equivalent to " ˝ "… C.

Definition 2.6. An orthogonal compact matrix quantum group .A; u/ is called
hyperoctahedral if the entries uij are self-adjoint partial isometries and the
corepresentation matrix u is irreducible.

Item (iii) of the previous proposition can be reformulated to a characterisation of
hyperoctaherdal quantum groups.

Proposition 2.7. Let .A; u/ be a homogeneous orthogonal quantum group. Then
.A; u/ is hyperoctahedral if and only if the elements uij are self-adjoint partial
isometries and there are i; i 0 such that

P
j uij ¤

P
j ui 0j .

Proof. Let .A; u/ with u 2 Mn.A/ be a homogeneous orthogonal quantum group.
Since .A; u/ is orthogonal, its fundamental corepresentation u is irreducible if
and only if dimHom.1; u ˝ u/ D 1. Since .A; u/ is homogeneous, it satisfies
Hom.1; u˝ u/ � spanfTu; T"˝"g. Moreover, Tu 2 Hom.1; u ˝ u/. Assuming
that all entries uij of the fundamental corepresentation are self-adjoint partial
isometries, we hence have to prove that T"˝" 2 Hom.1; u ˝ u/ if and only ifP
j uij is independent of the choice of i 2 f1; : : : ; ng. This follows by comparing

the coefficients of T"˝" and u˝2T"˝".
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2.5. Semi-direct product quantum groups. Let � D hg1; : : : ; gni be a finitely
generated group and assume that Sn acts on � by permuting g1; : : : ; gn. Then Sn
also acts on the maximal group C�-algebra C�.�/. We describe a semi-direct
product construction implementing this action. It is a very simple special case of the
bicrossed-product constructions described in [26, 28, 29, 43].

Recall that the semi-direct product of two groups G and H , where H acts by
group automorphisms .˛h/h2H onG isG�H as a set whose multiplication is given
by .g1; h1/.g2; h2/ D .g1˛h1.g2/; h1h2/. This picture should be kept in mind in
order to understand the semi-direct product construction which is described in the
following proposition.

Denote by .pij / the fundamental corepresentation of C.Sn/. The CMQG
described in the next proposition is called the semi-direct product of C�.�/ and
C.Sn/ and it is denoted by C�.�/‰ C.Sn/.
Proposition 2.8. The C�-algebra C�.�/ ˝ C.Sn/ is a CMQG with fundamen-
tal corepresentation .ugipij /. Its comultiplication is given by �.ugipij / DP
k ugipik ˝ ugkpkj for all i; j 2 f1; : : : ; ng.

Proof. We first show that .ugipij / and .u�gipij / are unitaries in Mn.C�.�/˝C.G//.
We can use the relation

P
k pki D 1 so as to obtainX

k

pkiu
�
gk
ugkpkj D ıij

X
k

pki D ıij 1 .

So .ugipij / is an isometry. Similarly it follows that .u�gipij / is an isometry. As
C�.�/˝C.Sn/ has a faithful tracial state, this implies that both matrices are unitary.

Since
P
j ugipij D ugi and .ugipij /2 D pij , it follows that the entries of

.ugipij / generate C�.�/˝C.Sn/. Finally let us show that there is a comultiplication
on C�.�/ ˝ C.Sn/ which admits .ugipij / as a fundamental corepresentation.
The right Sn-action �.gi / D g��1.i/ gives rise to a right Sn-action on C�.�/.
Denote by ı W C�.�/ ! C.Sn/ ˝ C�.�/ the corresponding coaction satisfying
ı.ugi / D

P
k pik ˝ ugk . Denote by �Sn and �� the comultiplication of C.Sn/

and C�.�/, respectively. Then � D ..id˝ ı ˝ id˝ id/ ı .�� ˝�Sn//12324 from
C�.�/˝ C.Sn/ to C�.�/˝ C.Sn/˝ C�.�/˝ C.Sn/ satisfies

�.ugipij / D

 �
id˝ ı ˝ id˝ id/

�X
k

ugi ˝ ugi ˝ pik ˝ pkj

�!
12324

D

�X
k;l

ugi ˝ pil ˝ ugl ˝ pik ˝ pkj

�
12324

D

X
k

ugipik ˝ ugkpkj ,

for all i; j 2 f1; : : : ; ng. This finishes the proof.
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Example 2.9. Consider the permutation action of Sn on the natural generators ofZ˚n.
Note that C�.Z˚n/ Š C.Tn/ as compact quantum groups by Pontryagin duality.
We have C�.Z˚n/ ‰ C.Sn/ Š C.Tn Ì Sn/ as compact matrix quantum groups.
Similarly, we have C�.Z˚n2 /‰ C.Sn/ Š C.Z˚n2 Ì Sn/.

2.6. Diagonal subgroups. If .A; u/ is a CMQG whose fundamental corepresenta-
tion is a diagonal matrix, then its diagonal entries ui i , i 2 f1; : : : ; ng are unitary.
Let � be the group generated by these diagonal entries. Then A is a C�-algebra
completion of the group algebra C� . Using this fact, one can associate with any
CMQG a canonical discrete group with a fixed set of generators.

Definition 2.10. Let .A; u/ be a CMQG. Denote by � W A ! B the quotient of A
by the relations uij D 0 for all i ¤ j . Let � be the group generated by the elements
gi D �.ui i /. Then � together with the generators g1; : : : ; gn is called the diagonal
subgroup of .A; u/. We denote it by diag.A; u/.

We will use the following proposition, guaranteeing that a CMQG in its maximal
version gives rise to the maximal group C�-algebra of its diagonal subgroup.

Proposition 2.11. Let .A; u/ be aCMQG in its maximal version and let� be the diag-
onal subgroup of .A; u/. Then the C�-algebra A=.uij D 0 for all i ¤ j / Š C�.�/
is in its maximal version.

Proof. Since .A; u/ is in itsmaximal version, it is the universal envelopingC�-algebra
of its �-subalgebra �-alg.uij j i; j 2 f1; : : : ; ng/. Denote by � W A! B the quotient
of A by the relations uij D 0 for all i ¤ j . Then B is the universal enveloping
C�-algebra of the �-algebra �-alg.�.ui i / j if1; : : : ; ng/ Š C� . So B Š C�.�/.

2.7. Operator algebraic properties of quantum groups. In Section 5.3 we will
describe certain operator algebraic properties of easy quantum groups. Let us briefly
describe von Neumann algebras and some of their properties. We refer the reader to
the book [7] for more details on approximation properties for operator algebras and
to [16] for an introduction to von Neumann algebras.

2.7.1. Von Neumann algebras. A separable von Neumann algebra is a strongly
closed, unital �-subalgebra M � B.H/ for some (complex) separable Hilbert
space H . All von Neumann algebras in this article are separable. We say that M
is finite, if there is a faithful normal tracial state onM , i.e. a � -strongly continuous
functional � WM ! C such that

� �.x�x/ � 0 for all x 2M ,
� if �.x�x/ D 0 then x D 0 and
� �.xy/ D �.yx/ for all x; y 2M .
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If M has a normal faithful tracial state � , then .x; y/ 7! �.y�x/ defines an
inner product on M . The Hilbert space completion of M with respect to this inner
product is denoted by L2.M; �/. The action of M on itself by left multiplication
can be extended to a representation on L2.M; �/ called the GNS-representation
of M associated with � . We say that an inclusion of finite von Neumann algebras
N �M with faithful normal tracial state � has finite index if the commutant
N 0 D fx 2 B.L2.M; �// j xy D yx for all y 2 N g is a finite von Neumann algebra.
If M is finitely generated as a left N module, then N � M has finite index for all
traces onM .

2.7.2. Amenability. The notion of amenability for discrete groups goes back to the
work of von Neumann in [42]. All abelian groups are amenable, while the basic
example of a non-amenable group is a free group Fn. Also free products Z�.n�1/s for
s; n � 2 and sn � 6 are non-amenable.

In [35,41], Ruan and Tomatsu describe amenability of quantum groups. We need
the following very special case of their work, which already appeared in the article
of Ruan.

Theorem 2.12 (See [35, Theorem 4.5]). Let G be a compact quantum subgroup
of OCn . Then the discrete dual bG is an amenable quantum group, if and only L1.G/
is an amenable von Neumann algebra.

An important notion in von Neumann algebra theory is strong solidity introduced
in [33]. A von Neumann algebra M is called diffuse, if there are no minimal
projections inM . We callM strongly solid if for all amenable, diffuse von Neumann
subalgebrasA �M , the normaliserNM .A/

00 D vN.u 2 U.M/ juAu� D A/ is also
amenable.

2.7.3. Haagerup property. The Haagerup property for groups goes back to [19],
where Haagerup proved that free groups have the Haagerup property. More generally,
this property is preserved under free products.

Theorem 2.13 (See [9]). Let G1; G2 be groups with the Haagerup property. Then
also G1 �G2 has the Haagerup property.

Based on a lecture by Connes the Haagerup property was defined in the setting
of finite von Neumann algebra by Choda [10]. In particular, she proves that a group
has the Haagerup property if and only if its group von Neumann algebra has this
property.

Theorem 2.14 (See [10]). Let G be a discrete group. Then G has the Haagerup
property if and only if L.G/ has the Haagerup property.

The article [24] describes basic properties of the Haagerup property for finite von
Neumann algebras.
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Theorem 2.15 (See [24, Theorem 1.1]). Let N � M be a finite index inclusion of
von Neumann algebras. Then N has the Haagerup property if and only ifM has the
Haagerup property.

Recently, in [15] the notion was systematically investigated in the framework of
quantum groups. We cite a special case of the main result of this article.

Theorem 2.16 (See [15]). Let G be a compact quantum subgroup of OCn . Then bG
has the Haagerup property if and only if L1.G/ has the Haagerup property as a von
Neumann algebra.

2.7.4. The complete metric approximation property. The complete metric
approximation property (CMAP) for groups goes back to the work of Haagerup
in [19] and de Cannière-Haagerup [14]. In [39] it is proved that the free product of
groups having CMAP still has CMAP.

Theorem 2.17 (See [39, Theorem 4.13]). If G1 and G1 are groups with the CMAP,
then also G1 �G2 hast the CMAP.

The von Neumann algebraic analogue of CMAP is called W�-completely
contractive approximation property (W�-CCAP). We state a special case of a result
in [20] (see also [21]).

Theorem 2.18 (See [20]). LetG be a discrete group. ThenG has CMAP if and only
if L.G/ has the W�-CCAP.

The following stability result for the W�-CCAP is well known. It can be proved
using [7, Theorem 12.3.13].

Theorem 2.19. Let N � M be a finite index inclusion of von Neumann algebras.
Then N has the W�-CCAP if and only ifM has the W�-CCAP.

In the context of discrete quantum groups, CMAP was studied as well.

Theorem 2.20 (See [25]). LetG be compact quantum subgroup ofOCn . Then bG has
the CMAP if and only if L1.G/ has the W�-CCAP.

3. Homogeneous quantum subgroups of C�.Z�n
2

/ ‰ C.Sn/

Recall fromSection 2.5 that C�.Z�n2 /‰ C.Sn/ denotes theCMQGwhoseC�-algebra
is isomorphic with C�.Z�n2 / ˝ C.Sn/ and whose fundamental corepresentation is
.uaipij /. Here a1; : : : ; an denote the natural generators of Z�n2 and .pij / is the
fundamental corepresentation of C.Sn/. Note that .uaipij /2 D pij is a central
projection in C�.Z�n2 /˝C.Sn/ for all i; j 2 f1; : : : ; ng. The next theorem tells us in
particular that C�.Z�n2 /‰ C.Sn/ is the universal homogeneous quantum group with
this property.
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Theorem 3.1. Let .A; u/ be a homogeneous orthogonal compact matrix quantum
group such that u2ij is a central projection inA for all i; j 2 f1; : : : ; ng. Then there is
a quotient Z�n2 � � whose kernel is invariant under the natural action of Sn, such
that A is a version of C�.�/‰ C.Sn/. In particular, we have A Š C�.�/‰ C.Sn/
if A is in its maximal version.

Proof. First note that if .A; u/ is a compact matrix quantum group such that u2ij is
a central projection in A for all i; j 2 f1; : : : ; ng, then the elements u2ij are central
projections in Pol.A/ and hence the same is true in the maximal version of .A; u/.
We may hence assume that A is in its maximal version.

An embedding C.Sn/ ! A. Since uij is a self-adjoint partial isometry for all
i; j 2 f1; : : : ; ng and u is unitary, it follows that

P
k u

2
ik
D 1 D

P
k u

2
kj

for all
i; j 2 f1; : : : ; ng. Since qij D u2ij 2 A, i; j 2 f1; : : : ; ng is also a commuting
family of projections, it satisfies the relations of the fundamental corepresentation
of C.Sn/. So there is a morphism C.Sn/ ! A of compact quantum groups defined
by pij 7! qij . Here p D .pij / denotes the fundamental corepresentation of C.Sn/.
SinceA is homogeneous, there is amorphismA! C.Sn/ of compactmatrix quantum
groups, satisfying uij 7! pij . This shows that C.Sn/! A is an embedding.

Construction of � . Let now vi D
P
j uij for i 2 f1; : : : ; ng. Then all vi are

self-adjoint unitaries, since they are obviously self-adjoint and

v2i D
X
j;k

uijuik D
X
j

qij D 1 .

Denote by � the diagonal subgroup of .A; u/. By Proposition 2.11 the quotient
A=.uij D 0 for all i ¤ j / appears in its maximal version C�.�/, as A is in its
maximal version. Denote by � W A ! C�.�/ the natural quotient map. Since
�.vi / D �.ui i / and v2i D 1, there is a quotient map Z�n2 ! � mapping the i -th
generator of Z�n2 to �.vi /.

A �-homomorphism C�.�/ ! A. Denote by gi the natural generators of � ,
which satisfy ugi D �.ui i / D �.vi / for all i 2 f1; : : : ; ng. We show that there is a
map C�.�/! Awhich maps ugi to vi . By universality of C�.�/, it suffices to show
that the unitaries vi , i 2 f1; : : : ; ng satisfy the relations of gi , i 2 f1; : : : ; ng. So
assume that gi1 � � �gil D e. Then �.vi1 � � � vil / D ugi1 � � �ugil D 1. Let ilC1; : : : ; il 0
be an enumeration of f1; : : : ; ng n fi1; : : : ; ilg. Note that v2i D 1 implies g2i D e. So

�.ui1i1 � � � uil ilqilC1ilC1 � � � qil0 il0 / D 1

holds and implies

ui1i1 � � � uil ilqilC1ilC1 � � � qil0 il0 2 qi1i1 � � � qil ilqilC1ilC1 � � � qil0 il0 C hqij ; i ¤ j i ,
(3.1)

where the last expression denotes the ideal in A which is generated by all qij , i ¤ j .
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Note that indeed hqij ; i ¤ j i D huij ; i ¤ j i, since viqij D uij . Next note that
fi1; : : : ; il 0g D f1; : : : ; ng implies

hqij ; i ¤ j i � qi1i1 � � � qil ilqilC1ilC1 � � � qil0 il0 D 0 , (3.2)

because qij qij 0 D 0 D qij qi 0j for all i ¤ i 0 and j ¤ j 0. Moreover, since qij is
central in A, we have

.ui1i1 � � � uil ilqilC1ilC1 � � � qil0 il0 / � .qi1i1 � � � qil ilqilC1ilC1 � � � qil0 il0 /

D ui1i1 � � � uil ilqilC1ilC1 � � � qil0 il0 . (3.3)

Multiplying (3.1) with qi1i1 � � � qil ilqilC1ilC1 � � � qil0 il0 , and applying (3.2) and (3.3),
we see that

ui1i1 � � � uil ilqilC1ilC1 � � � qil0 il0 D qi1i1 � � � qil ilqilC1ilC1 � � � qil0 il0 . (3.4)

Applying � to (3.4), we obtainX
k1;:::;kl0

ui1k1 � � � uilklqilC1klC1 � � � qil0kl0 ˝ uk1i1 � � � ukl ilqklC1ilC1 � � � qkl0 il0

D

X
k1;:::;kl0

qi1k1 � � � qilklqilC1klC1 � � � qil0kl0 ˝ qk1i1 � � � qkl ilqklC1ilC1 � � � qkl0 il0

Multiplying this equation on both sides with qi1k1 � � � qilklqilC1klC1 � � � qil0kl0 ˝
qk1i1 � � � qkl ilqklC1ilC1 � � � qkl0 il0 for a fixed index k1; : : : ; kl 0 , we obtain that for all
such indices

ui1k1 � � � uilklqilC1klC1 � � � qil0kl0 ˝ uk1i1 � � � ukl ilqklC1ilC1 � � � qkl0 il0

D qi1k1 � � � qilklqilC1klC1 � � � qil0kl0 ˝ qk1i1 � � � qkl ilqklC1ilC1 � � � qkl0 il0 (3.5)

holds. This implies that

ui1k1 � � � uilklqilC1klC1 � � � qil0kl0 D qi1k1 � � � qilklqilC1klC1 � � � qil0kl0

for all k1; : : : ; kl 0 2 f1; : : : ; ng. Summing over all these indices and usingP
k qik D 1 for all i , we obtain vi1 � � � vil D 1. It follows that there is a

�-homomorphism C�.�/! A sending ugi to vi for all f1; : : : ; ng.
The Sn-action on � . Since g2i D e, there is a quotient map Z�n2 ! � mapping

the i -th natural generator of Z�n2 to gi . Let us show that the kernel of this map is
Sn-invariant. Take any permutation � 2 Sn and denote by �� W C.Sn/ ! C the
associated evaluation map. We have

�.vi / D �

�X
j

uij

�
D

X
k;j

uik ˝ ukj D
X
k

uik ˝ vk .
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So using the quotient map  W A! C.Sn/ W uij ! pij , we find

.�� ı  ˝ id/.�.vi // D
X
k

�� .pik/˝ vk D v��1.i/ .

Assume that gi1 � � �gil D e. Then vi1 � � � vil D 1 and hence �.vi1 � � � vil / D 1˝ 1.
We obtain

1 D .���1 ı  ˝ id/.�.vi1 � � � vil // D v�.i1/ � � � v�.il / .

This implies that g�.i1/ � � � g�.il / D e. We have shown that the kernel of Z�n2 ! � is
invariant under the natural action of Sn. So Sn acts on � by permuting its generators.

End of the proof. Since Sn acts on � , we can hence consider C�.�/˝C.Sn/with
the fundamental corepresentation matrix w D .ugipij / 2 Mn.C�.�/ ˝ C.Sn// as
described in Section 2.5. Now consider the map � W C�.�/˝C.Sn/! A defined by
�.ugi / D vi and �.pij / D qij . Then �.ugipij / D uij saying that � is a morphism
of CMQGs. We prove that .� ˝  / ı� W A! C�.�/˝ C.Sn/ is the inverse of �.
Indeed, it suffices to note that

.� ˝ / ı�.uij / D .� ˝ /

�X
k

uik ˝ ukj

�
D

X
k

ugi ıi;k ˝ pkj D ugi ˝ pij .

We proved that A Š C�.�/‰ C.Sn/ as CMQGs, which concludes the proof.

Before we end this section, let us mention the following proposition showing
the particular relevance of diagonal subgroups for CMQGs .A; u/ for which u2ij are
central projections in A. This makes the assumptions of Theorem 3.1 very natural.
Proposition 3.2. Let .A; u/ be an orthogonal CMQG and let .B; v/ be the quotient
of A by the relations

u2ij is a central projection for all i; j

Then diag.A; u/ D diag.B; v/.

Proof. Denote by �A the diagonal subgroup of A and by gi , i 2 f1; : : : ; ng its
generators. Then the diagonal subgroup of .B; u/ is described by its C�-algebra
via C�.�B/ D C�.�A/=fu2gi is a central projectiong. Since .A; u/ is orthogonal, the
generators of its diagonal subgroup satisfy g2i D e for all i 2 f1; : : : ; ng. It follows
that u2gi D 1 and hence C�.�B/ D C�.�A/, which finishes the proof.

4. Easy quantum subgroups of C�.Z�n
2 / ‰ C.Sn/

Recall from the preliminaries that the easy quantum group A D C.H Œ1�
n / associated

with the category h

u

=�ui is the universal C�-algebra generated by the entries uij ,
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i; j 2 f1; : : : ; ng of its fundamental corepresentation subject to the relations that u2ij
are central projections in A for all i; j 2 f1; : : : ; ng. Since all easy quantum groups
are homogeneous, Theorem 3.1 implies that C.H Œ1�

n / Š C�.Z�n2 /‰ C.Sn/. In
this section we achieve a complete classification of easy quantum subgroups of
C�.Z�n2 /‰ C.Sn/. In [38] we present a completely combinatorial proof for the
classification of easy quantum subgroups of C.H Œ1�

n /, but it fails to give a description
of the quantumgroups. The basic ideas behind [38] and the present section are similar,
but we make use of Theorem 3.1 in order to simplify combinatorial considerations.

Theorem 3.1 tells us that we need to investigate diagonal subgroups of easy
quantum groups in order to describe them completely.

4.1. Diagonal subgroups of easy quantum groups. Recall that the diagonal
subgroup of C.OCn / is Z�n2 together with its natural generators. Hence, all diagonal
subgroups of quantum subgroups C.OCn /� .A; u/ are quotients of Z�n2 . We want
to describe these quotients for easy quantum groups.

Let a1; a2; : : : be the natural generators of Z�12 . Given a partition p 2 P.k/ we
say that a labelling .i1; : : : ; ik/ of p is compatible, if every block of p is labelled
by exactly one index — equivalently ıp.i/ D 1. Take p 2 P.k/ and a compatible
labelling .i1; : : : ; ik/ of p by indices in N, we denote by w.p; i/ the word in Z�12
which arises by labelling p with the letters ai1 ; ai2 ; : : : ; aik from left to right. We
write n D f1; : : : ; ng for n 2 N� and n D N� for n D 1. If C is a category of
partitions we write C.k/ D C.k; 0/ for the partitions of length k without lower points.
For n 2 N [ f1g, we write

Fn.C/ D fw.p; i/ j k 2 N; p 2 C.k/; i 2 nk compatibleg

for the set of all possible words in Z�n2 arising from C. The next lemma shows
that Fn.C/ is always a normal subgroup of Z�n2 .
Lemma 4.1. Let C be a category of partitions and n 2 N [ f1g. Then Fn.C/ is a
normal subgroup of Z�n2 .

Proof. We first show that Fn.C/ is closed under products. Let p 2 C.k/, p0 2 C.k0/
and let i ,i 0 be compatible labellings with indices from n of length k and k0,
respectively. Then

w.p; i/w.p0; i 0/ D w.p ˝ p0; .i1; : : : ; ik; i
0
1; : : : ; i

0
k0// .

Next, observe that for p 2 C.k/ with compatible labelling i , the inverse of w.p; i/ is
given by

w.p; i/�1 D w.p�; .ik; ik�1; : : : ; i1// .
It remains to show that Fn.C/ is normal in Z�n2 . Take p and i as before. Choose
some i0 2 f1; : : : ; ng. Then

Ad.ai0/.w.p; i// D w.p
0; .i0; i1; : : : ; ik; i0// ,
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where p0 is the partition arising from p by rotating the uttermost right leg of p ˝t
to the left. This finishes the proof.

We can now give a description of the diagonal subgroup of an arbitrary easy
quantum group.
Lemma 4.2. Let C be a category of partitions and let GC.n/ be the easy quantum
group associated with C whose fundamental corepresentation matrix has size n � n.
Let � be the diagonal subgroup of GC.n/, whose natural generators we denote by
g1; : : : ; gn. Then � D .Z�n2 /=Fn.C/, where the natural generators of Z�n2 map to
the generators g1; : : : ; gn.

Proof. First note that by construction C.GC.n// is the universal C�-algebra generated
by the entries of amatrix .uij /1�i;j�n satisfyingTpu˝k D u˝lTp for allp 2 C.k; l/.
Since rotating partitions is implemented by repeated composition with j˝� � �˝j˝t,
one can equivalently describe the relations of .uij / by Tpu˝k D Tp for all p 2 C.k/.
Writing this out, we obtain the relationsX

i1;:::;ik

ıp.i/ui1j1 � � �uikjk D ıp.j / ,

for all partitions p 2 C.k/ and all indices j D .j1; : : : ; jk/. Passing to the diagonal
subgroup of � of C.GC.n// replaces uij by ıijugi in the previous relations, where
g1; : : : ; gn denote the natural generators of G. Using Proposition 2.11, we see that
C�.�/ is the universal C�-algebra whose generating elements ug1 ; : : : ; ugn satisfy

ıp.i/ugi1
� � � ugik

D ıp.i/ ,

for all p 2 C.k/ and all indices i1; : : : ; ik . So � is the universal group generated
by elements g1; : : : ; gn which satisfy e D gi1 � � �gik for all partitions p 2 C.k/ and
all compatible labellings i D .i1; : : : ; ik/. Note that in particular g2i D e for all
i 2 f1; : : : ; ng, since t 2 C. Put differently, � is a quotient of Z�n2 whose relations
are exactly given by elements of Fn.C/. This finishes the proof.

Next we precisely describe the possible diagonal subgroups of easy quantum
groups. The key notion for the subsequent classification is strong symmetry of
subgroups of Z�n2 .
Definition 4.3. Let n 2 N [ f1g. We define the strong symmetric semigroup sSn
as the semigroup of End.Z�n2 / consisting of identifications of letters. It contains
precisely the endomorphisms �� W ak 7! a�.k/, k 2 n, where � W n! n is any map.

A strongly symmetric reflection group � is the quotient Z�n2 ! � by an
sSn-invariant, normal subgroup together with its natural generators, which are the
images of ai in � .

The next theorem contains all necessary combinatorial considerations, in order
to deduce our main results about easy quantum groups.
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Theorem 4.4. For all categories of partitions and all n 2 N [ f1g, the subgroup
Fn.C/ � Z�n2 is sSn-invariant. Vice versa, for every n 2 N [ f1g and every
sSn-invariant, normal subgroup N � Z�n2 there is a category of partitions C such
that Fn.C/ D N .

Proof. Let C be a category of partitions and n 2 N [ f1g. We prove that Fn.C/ is
sSn-invariant. So let p 2 C.k/ and i be a compatible labelling of p by elements of n.
Let w.p; i/ 2 Fn.C/ be the associated word in Z�n2 and � W n ! n be an arbitrary
map. We denote by ��.i/ the labelling .�.i1/; : : : ; �.ik//. Then ��.w.p; i// D
w.p; ��.i// showing that Fn.C/ is sSn-invariant.

Fix n 2 N [ f1g. We show that all sSn-invariant, normal subgroups N � Z�n2
arise as N D Fn.C/ for some category of partitions C. Let N � Z�n2 be an sSn-
invariant, normal subgroup and define

C D fp 2 P jp is a rotation of ker.i/ for some k 2 N; ai1 � � � aik 2 N g .

If p D ker.i/ for some ai1 � � � aik 2 N and p0 2 C.k/ is a rotation of p, then also
p0 D ker.i 0/ for some ai 0

1
� � � ai 0

k
2 N . Indeed, it suffices to check this for a rotation

of the uttermost left leg of p to the uttermost right of p. If p0 arises from p in this
way, then p0 D ker.i2; : : : ; ik; i1/ and ai2 � � � aikai1 D Ad.ai1/.ai1 � � � aik / 2 N by
normality of N � Z�n2 . In particular

C.k/ D fp 2 P jp D ker.i/ for some ai1 � � � aik 2 N g . (4.1)

We show that C is a category of partitions.
� We have a21 D e 2 N , so t D ker..1; 1// 2 C.
� It is clear that C is closed under rotation.
� We show that C is closed under involution. The involution of a rotation
of p 2 C is equal to a rotation of the involution of p. So we have to
check that ker..ik; : : : ; i1// 2 C for all ai1 � � � aik 2 N . This follows from
aik � � � ai1 D .ai1 � � � aik /

�1.
� The tensor product of partitions p; p0 2 C (not necessarily on one row)
is a rotation of the tensor product of rotations of p and p0 onto one
row. So we have to check that for ai1 � � � aik 2 N and ai 0

1
� � � ai 0

k0
2 N

we have ker.i/ ˝ ker.i 0/ 2 C. Since N is Sn-invariant, we may
apply a permutation of letters to ai 0

1
� � � ai 0

k0
in order to assume that

fi1; : : : ; ikg \ fi
0
1; : : : ; i

0
k0
g D ;. But then ai1 � � � aikai 01 � � � ai 0k0 2 N implies

ker.i/˝ ker.i 0/ D ker..i1; : : : ; ik; i 01; : : : ; i 0k0// 2 C.
� It remains to show that if p 2 C.k; l/ and q 2 C.l; m/ then also qp 2 C.k;m/.
We may rotate all lower legs of p to its right and likewise for the lower legs
of q, so as to obtain partition p0 2 C.k C l/ and q0 2 C.l Cm/. Then qp is
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a rotation of the l-fold iterated composition of p0 ˝ q0 with partitions of the
form j ˝ � � � ˝ j ˝ u ˝ j ˝ � � � ˝ j. So we have to show that the composition
of any p 2 C.k/ with a partition of the form j ˝ � � � ˝ j ˝ u˝ j ˝ � � � ˝ j lies
in C.k � 2/. By (4.1), there is ai1 � � � aik 2 N such that p D ker.i/. Denote
by uk;l the partition in C.0; k/ of the from j ˝ � � � ˝ j ˝ u˝ j ˝ � � � ˝ j such
that the first leg of u is on the l-th position of uk;l . Denote by � W n ! n

the map that satisfies �.il/ D ilC1 and that fixes all other elements of n. By
sSn-invariance of N , we have

a�.i1/ � � � a�.il�1/a�.ilC2/ � � � a�.ik/ D ��.ai1 � � � aik / 2 N .

So the composition p ı uk;l D ker..�.i1/; : : : ; �.il�1/; �.iiC2/; : : : ; �.ik///
lies in C.k � 2/.

We have shown that C is a category of partitions. Since N is Sn-invariant, (4.1)
shows that Fn.C/ D N , which finishes the proof of the theorem.

4.2. Classification of group-theoretical easy quantum groups. We can now
combine the previous theorem with the classification of quantum groups in
Theorem 3.1 and the classification of diagonal subgroups of easy quantum groups
given in Lemma 4.2. In view of Proposition 3.2, it is natural to consider easy
quantum groups, whose categories of partitions contain

u

=�u. This yields a complete
description of group-theoretical easy quantum groups.
Theorem 4.5. Let .A; u/ be an easy quantum group associated with the category of
partitions C. Assume that

u

=�u2 C. Then A Š C�.�/ ‰ C.Sn/ as compact matrix
quantum groups for the strongly symmetric reflection group � D Z�n2 =Fn.C/.

Moreover, for every strongly symmetric reflection group � there is an easy
quantum group which is isomorphic with C�.�/ ‰ C.Sn/ and whose category
of partitions contains

u

=�u.

Proof. Since A is an easy quantum group, it is a homogeneous quantum group in its
maximal version. So we can apply Theorem 3.1 showing that A Š C�.�/‰ C.G/,
where � is the diagonal subgroup of .A; u/, the group G is some subgroup of Sn
and the entry uij of the fundamental corepresentation of A is identified with ugipij .
Here g1; : : : ; gn denote the natural generators of � and .pij / is the fundamental
corepresentation of C.G/ given by the natural embedding G ,! Sn. We have to
show thatG D Sn, that � Š .Z�n2 /=Fn.C/ and that the latter is a strongly symmetric
reflection group. First note that there is a homomorphism of CMQGs� W A! C.Sn/
given by �.uij / D �.u2ij / D pij . It follows that G D Sn. Next, Theorem 4.4 shows
that � D .Z�n2 /=Fn.C/ is strongly symmetric.

Theorem 4.4 also shows that for all strongly symmetric reflection groups on n
generators there is a category of partitions C such that � Š Z�n2 =Fn.C/. We can
invoke Propositions 2.5 and 3.2 so as to assume

u

=�u2 C. But then the first part of
the proof shows that AC.n/ Š C�.�/‰ C.Sn/. This finishes the proof.
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The next theorem deduces a complete classification of group-theoretical
categories of partitions.
Theorem 4.6. There is a one-to-one correspondence between

� categories of partitions which contain

u

=�u and
� strongly symmetric reflection groups on countably many generators

It is given by associating Z�12 =F1.C/ with a category of partitions C.

Proof. By Theorem 4.4 every sS1-invariant, normal subgroup N � Z�12 arises
as F1.C/ for some category of partitions C. Since F1.C/ D F1.hC;

u

=�ui/

by Proposition 3.2, we can assume that C contains

u

=�u. This shows that
C 7! Z�12 =F1.C/ maps surjectively from all categories of partitions which contain

u

=�u onto strongly symmetric reflection groups on countably many generators. It
remains to show that this map is injective.

LetC be a category of partitionswhich contains

u

=�u. We show thatC can be recov-
ered from Z�12 =F1.C/. Note that Z�n2 =Fn.C/ is the subgroup of Z�12 =F1.C/ gen-
erated by the first n generators. Moreover, C.GC.n// Š C�.Z�n2 =Fn.C//‰ C.Sn/
for all n 2 N by Theorem 4.5. So Theorem 2.4 implies that C can be recovered
from F1.C/.

5. Applications

5.1. Uncountably many pairwise non-isomorphic easy quantum groups. In this
section we show that there are uncountably many easy quantum groups. We inject
the lattice of varieties of groups into the lattice of hyperoctahedral categories of
partitions. The generators of F1 are denoted by x1; x2; : : : .
Definition 5.1. Letw D w.x1; : : : ; xn/ 2 F1 be a word in the letters x1; : : : ; xn and
let � be a group. Then the identical relation w holds in � if for all g1; : : : ; gn 2 � ,
we have w.g1; : : : ; gn/ D e.

Let W � F1 be any subset of the free group on countably many generators
x1; x2; : : : . The variety of groups V.W / associated with W is the class of all
groups � such that for all w 2 W the identical relation w holds in � .

Let us state a classical result in the theory of varieties of groups. A subgroup
N � F1 is called fully characteristic if �.N / � N for all � 2 End.F1/.
Theorem5.2 (See [30] or Theorem14.31 in [31]). There is a lattice anti-isomorphism
between varieties of groups and fully characteristic subgroups ofF1 sending a variety
of groups to the set of all identical relations that hold in it.

Denote by E � Z�12 the group consisting of all words of even length. We
identify E with a free group with basis x1 D a1a2; x2 D a1a3; : : : . The following
observation is key to this section.
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Proposition 5.3. The subgroupE � Z�12 is fully characteristic. In particular, every
fully characteristic subgroup of F1 Š E is fully characteristic in Z�12 .

Proof. If w D ai1ai2 � � � ai2k 2 E and � 2 End.Z�12 /, then �.w/ D �.ai1/ � � �

�.ai2k / 2 E. So E is fully characteristic in Z�12 . So every endomorphism of Z�12
restricts to E. This shows that a fully characteristic subgroup N � E Š F1 is also
a fully characteristic subgroup in Z�12 . This finishes the proof.

Remark 5.4. We do not know whether any fully characteristic subgroup Z�12 that
is contained in E and is fully characteristic, is also fully characteristic in F1. If this
was the case, then hyperoctahedral easy quantum groups A whose entries are subject
to the condition that u2ij is central in A, would be classified by non-trivial varieties
of groups.

Combining the previous proposition with the classification of group-theoretical
hyperoctahedral categories of partitions, we obtain the following result.

Theorem 5.5. There is a lattice injection from the lattice of non-trivial varieties of
groups into the lattice of easy quantum groups.

Proof. By Theorem 2.4 there is a lattice anti-isomorphism between categories of
partitions and easy quantum groups. Moreover by Theorem 4.6, group-theoretical
hyperoctahedral categories of partitions are in one-one correspondence with sS1-
invariant, normal subgroups of Z�12 and this correspondence preserves the lattice
structure given by inclusion.

By Theorem 5.2, there is a lattice anti-isomorphism between varieties of groups
and fully characteristic subgroups of F1.

So it suffices to find an embedding of lattices from fully characteristic subgroups
of F1 into sS1-invariant, normal subgroups of Z�12 . By Proposition 5.3, the
embedding F1 Š E � Z�12 has this property. This finishes the proof.

The correspondence from the last theorem allows us to translate classification
results for varieties of groups into results on easy quantum groups. In [5], the
question was raised whether or not all easy quantum groups are either classical, free,
half-liberated or form part of a multi-parameter family unifying the series of quantum
groupsH .s/

n andH Œs�
n . We can answer this question in the negative.

Theorem 5.6. There are uncountably many pairwise non-isomorphic easy quantum
groups.

This follows directly from Theorem 5.5 and the following result by Olshanskii.

Theorem 5.7 (See [32]). The class of varieties of groups has cardinality equal to the
continuum.
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5.2. Examples of non-easy quantum groups. It is was an open problem whether
easy quantum groups describe all intermediate quantum groups of free quantum
groups and their classical counterparts. While this remains open for OCn � On
and SCn � Sn, we answer this question in the negative for hyperoctahedral quantum
groups.

Theorem 5.8. For every n � 3, there is an example of a homogeneous
hyperoctahedral quantum groupHCn � G that is not easy.

Proof. Let n � 3. We start by exhibiting an example of a non-easy quantum group
H
Œ1�
n � G � Sn. By Theorem 3.1 it must satisfy C.G/ Š C�.�/ ‰ C.Sn/ for

some Sn-invariant quotient Z�n2 � � . So by Theorem 4.5 it suffices to exhibit an
Sn-invariant, normal subgroup of Z�n2 that is not sSn-invariant.

Let � W Z�n2 ! SnC1 be the homomorphism satisfying �.ai / D .1i/. It
is surjective, since .ij / D .1i/.1j /.1i/. If � W f1; : : : ; ng ! f1; : : : ; ng is any
map, then �.a�.i// D .1�.i//. So if w 2 Z�n2 maps to a product of cycles
�.w/ D .i1 : : : ik1/ � � � .ikl�1 � � � ikl /, then �.��.w// D .�.i1/�.i2/ : : : �.ik1// � � �

.�.ikl�1/ � � ��.ikl //. In particular, ker� is Sn-invariant. We show that it is not
sSn-invariant. Indeed, take for � W f1; : : : ; ng ! f1; : : : ; ng the map defined by
�.4/ D 1, �.i/ D i for all i ¤ 4. We have .12/.34/.12/.34/ D id, but applying �,
we obtain

.12/.31/.12/.31/ D .132/ ¤ id .

So ker� is not sSn-invariant.
Write now� D Z�n2 = ker.�/. We check that C�.�/‰ C.Sn/ is a hyperoctahedral

quantum group. The fundamental corepresentation of C�.�/ ‰ C.Sn/ is .uij / D
.ugipij / as described in Section 2.5. It is clear that its entries ugipij are self-adjoint
partial isometries. Moreover

P
j ugipij D ugi for all i . Since � ¤ Z2, we have

gi ¤ gi 0 for some i ,i 0. So it follows from Proposition 2.7 that C�.�/ ‰ C.Sn/ is a
hyperoctahedral quantum group. This completes the proof of the theorem.

5.3. The hyperoctahedral series. In [5], the hyperoctahedral series and the higher
hyperoctahedral series were defined. We describe these quantum groups in the
context of our classification results.

Definition 5.9. The higher hyperoctahedral series is the sequence of compact matrix
quantum groups defined by

C.H Œs�
n / D C�.uij ; 1 � i; j � n ju D u unitary, uij partial isometries and

.uijukl/
s
D .ukluij /

s for all i; j; k; l 2 f1; : : : ; ng/ .
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Similarly, the hyperoctahedral series is defined as

C.H .s/
n / D C�.uij ; 1 � i; j � n ju D u unitary, uij partial isometries,

.uijukl/
s
D .ukluij /

s for all i; j; k; l 2 f1; : : : ; ng
and abc D cba for all a; b; c 2 fuij j i; j 2 f1; : : : ; ng/ .

All members of the hyperoctahedral series and the higher hyperoctahedral series
are easy quantum groups such that u2ij are central projections in their underlying
C�-algebra. Hence these quantum groups are in the scope of this article.

Proposition 5.10. We have the following isomorphisms of CMQGs.

� C.H Œs�
n / Š C�..Z�n2 /=.aiaj /

s D e/‰ C.Sn/.

� C.H .s/
n / Š C�..Z�n2 /=.aiaj /

s D e and aiajak D akajai /‰ C.Sn/.

Proof. By [5], the higher hyperoctahedral series is associated with the category of
partitions generated by

u

=�u and

hs D

: : :

: : :

.

The hyperoctahedral series is associated with the categories huuu; hs;
ŚÍÍ i, which

also contain

u

=�u. So we can apply Lemma 4.2 and Theorem 4.5 in order to finish
the proof.

The next theorem describes some operator algebraic properties of quantum groups
in the hyperoctahedral series. We refer the reader to Section 2.7 for the relevant
notations.

Theorem 5.11. The quantum groupsC.H .s/
n / in the hyperoctahedral series are index

two extensions of C�.Z˚n�1s Ì Sn/, where a permutation � 2 Sn acts by

�.bi / D

8̂<̂
:
b�.i/ �.n/ D n

b�.n/ �.i/ D n

b�.n/b�.i/ �.n/ ¤ n ¤ �.i/

on the generators b1; : : : ; bn�1 of Z˚n�1s .
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In particular, b
H
.s/
n is a finite quantum group, or equivalently L1.H .s/

n / is a finite
dimensional von Neumann algebra.

For all s � 3, n � 3 the discrete dual quantum groups b
H
Œs�
n of the higher

hyperoctahedral series are not amenable, but weakly amenable and they have the
Haagerup property. Their von Neumann algebras L1.H Œs�

n / are strongly solid.

Proof. Let us first consider H .s/
n . By Proposition 5.10, the CMQG C.H .s/

n /

is isomorphic with C�..Z�n2 /=f.aiaj /s D e and aiajak D akajaig/ ‰ C.Sn/.
Consider the index two subgroup E of Z�n2 =f.aiaj /

s D e and aiajak D akajaig
consisting of words of even length. It is generated by the elements bi D anai ,
i 2 f1; : : : ; n � 1g. We can use the relation aiajak D akajai in order to
obtain bibj D anaianaj D anajanai D bj bi . Similarly, bibj D bj bi implies
aiajakal D b

�1
i bj b

�1
k
bl D b

�1
k
bj b
�1
i bl D akajaial for all i; j; k; l 2 f1; : : : ; ng.

So E is the universal group generated by n � 1 commuting elements of order s.
Hence E Š Z˚n�1s by an isomorphism identifying bi , i 2 f1; : : : ; n � 1g with the
natural generators of Z˚n�1s . Take � 2 Sn. Then �.bi / D �.anai / D a�.n/a�.i/ D
ana�.n/ana�.i/. So � acts on E via

�.bi / D

8̂<̂
:
b�.i/ �.n/ D n

b�.n/ �.i/ D n

b�.n/b�.i/ �.n/ ¤ n ¤ �.i/ .

In particular, Sn leaves E invariant, so that C�.E/ ‰ C.Sn/ � C.H .s/
n /

is a compact quantum group. Note that since the Pontryagin dual of Zs is
isomorphic with Zs , we have C�.E/ ‰ C.Sn/ Š C.Z˚n�1s Ì Sn/. Since
E � .Z�n2 /=f.aiaj /

s D e and aiajak D akajaig has index two, L1.H .s/
n / is two-

dimensional as an L1.Z˚n�1s Ì Sn/-module. So the inclusion L1.Z˚n�1s Ì Sn/ �
L1.H .s/

n / has index two. In particular, L1.H .s/
n / is a finite dimensional vonNeumann

algebra.
Let us now consider C.H Œs�

n /. By Proposition 5.10 it is isomorphic with
C�.Z�n2 =f.aiaj /s D eg/‰ C.Sn/. Denote by E � Z�n2 =f.aiaj /

s D eg the
subgroup of words of even length. It is generated by elements bi D anai ,
which only satisfy the relations bsi D e. Hence E Š Z�n�1s . Since uai DP
j uij 2 Pol.C.H Œs�

n / � L1.H Œs�
n /, we have L.E/ � L1.H Œs�

n /. Note that E
is not amenable, because s; n � 3. It follows that L1.H Œs�

n / is not amenable as

a von Neumann algebra. By Theorem 2.12 this implies non-amenability of b
H
.s/
n .

Moreover, L.E/ � L1.H Œs�
n / has finite index. Since E Š Z�n�1s has the CMAP

by Theorem 2.17 and has the Haagerup property by Theorem 2.13, it follows that
also L1.H Œs�

n / has the W�-CCAP and the Haagerup property. Finally note that E
is a free product of hyperbolic groups, so it is hyperbolic itself. Furthermore every
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non-trivial conjugacy class in E Š Z�n�1s is infinite, because s; n � 3. By [13], it
follows that L.E/ is a strongly solid von Neumann algebra. Since L1.H Œs�

n / contains
L.E/ as a finite index von Neumann subalgebra, [22, Proposition 5.2] implies that
also L1.H Œs�

n / is strongly solid. This finishes the proof.

5.4. De Finetti theorems for easy quantum subgroups of C�.Z�n
2 / ‰ C.Sn/.

After the work of Köstler and Speicher in [27], de Finetti theorems became a
central piece of the theory of easy quantum groups. In this section we present a
unified de Finetti theorem for all easy quantum subgroups of C�.Z�n2 / ‰ C.Sn/.
Unsurprisingly, it needs strong assumptions to yield the desired equivalence between
invariance of the distribution of non-commutative random variables x1; x2; : : : under
the natural action of a series of easy quantum groups and independence properties
of this distribution. However, the de Finetti theorem for H�n D H

.1/
n as it is known

from [6] takes its usual form, only demanding a commutation relation between the
random variables x1; x2; : : : in question. Similarly, one can formulate a simple de
Finetti theorem for H Œ1�

n . We describe these two especially interesting cases in
Corollary 5.14 justifying the assumptions of Theorem 5.12.

In the next theorem we use the following notation. If w 2 N�n is any word in n
letters, then we denote by ei .w/ the exponent of the i -th letter in w.

Theorem 5.12. Let � be a non-trivial strongly symmetric reflection group on
countably many generators and K D ker.N�1 ! �/ � N�1 the sS1-invariant
subsemigroup of N�1 associated with it. For n 2 N denote by �n the strongly
symmetric reflection groups generated by the first n generators of � . Let x1; x2; : : :
be a sequence of non-commutative, self-adjoint random variables in aW�-probability
space .M; �/. Then there is a von Neumann subalgebra B � M with �-preserving
expectation E WM ! B such that if x1; x2; : : : satisfy

� x2i xj D xjx
2
i for all i; j 2 N and

� �.w.x1; : : : ; xn// D �.E.xe1.w/1 / � � �E.xen.w/n // for all n 2 N and all words
w 2 K on n letters,

then the following are equivalent.

(i) x21 ; x
2
2 ; : : : ; are identically distributed and independent with respect to E and

�.w.x1; : : : ; xn// D 0 for all n 2 N and all w 2 N�1 nK in n letters.

(ii) For all n 2 N, the distribution of x1; : : : ; xn is invariant under the coaction of
the easy quantum group C�.�n/‰ C.Sn/.

Proof. Wemay assume thatM DW�.x1; x2; : : : /. LetB D
T
n�1W�.x2n; x2nC1; : : : /

and note that B lies in the centre ofM . In particular, there is a �-preserving normal
conditional expectation E WM ! B .
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Consider the coaction ˛n of C�.�n/‰ C.Sn/ on ChX1; X2; : : : i given by

˛n.Xi / D
X
j

Xj ˝ uj i D
X
j

Xj ˝ ugjpj i

for i � n and ˛.Xi / D Xi ˝ 1 for i > n. Denote by  the state on ChX1; X2; : : : i
given by  .w.X1; : : : ; Xn// D �.w.x1; : : : ; xn// for all w 2 N�n and all n 2 N.
Then the distribution ofx1; x2; : : : is invariant under the coaction ofC�.�n/‰ C.Sn/
if and only if for all indices i1; : : : ; il 2 f1; : : : ; ng we have

 .Xi1 � � � Xil / D
X

j1;:::;jl2f1;:::;ng

 .Xj1 � � � Xjl /ugj1 ���gjl
pj1i1 � � � pjl il . (5.1)

We are going to manipulate the right hand side of this equation. First note that we
have pj1i1 � � � pjl il ¤ 0 if and only if there is � 2 Sn such that jk D �.ik/ for all
k 2 f1; : : : ; lg. Moreover, if � jfi1;:::;il g D �jfi1;:::;il g for �; � 2 Sn, then

 .X�.i1/ � � � X�.il //ug�.i1/���g�.il /
p�.i1/i1 � � � p�.il /il

D  .X�.i1/ � � � X�.il //ug�.i1/���g�.il /
p�.i1/i1 � � � p�.il /il .

Let L be the cardinality of fi1; : : : ; ilg. ThenX
j1;:::;jl2f1;:::;ng

 .Xj1 � � � Xjl /ugj1 ���gjl
pj1i1 � � � pjl il

D
1

.n � L/Š

X
�2Sn

 .X�.i1/ � � � X�.il //ug�.i1/���g�.il /
p�.i1/i1 � � � p�.il /il . (5.2)

Let ilC1; : : : ; ilCl 0 be an enumeration of f1; : : : ; ngn fi1; : : : ; ilg. Using pj 0ipj i D 0
for all i; j; j 0 2 f1; : : : ; ng, j ¤ j 0, we see thatX
�2Sn

 .X�.i1/ � � � X�.il //ug�.i1/���g�.il /
p�.i1/i1 � � � p�.il /il

D

� X
�2Sn

 .X�.i1/ � � � X�.il //ug�.i1/���g�.il /
p�.i1/i1 � � � p�.il /il

�
�

� X
jlC1;:::;jlCl02f1;:::;ng

pjlC1ilC1 � � � pjlCl0 ilCl0

�
D .n � L/Š

X
�2Sn

 .X�.i1/ � � � X�.il //ug�.i1/���g�.il /
p�.i1/i1 � � �

� � � p�.il /ilp�.ilC1/ilC1 : : : p�.ilCl0 /ilCl0 .

(5.3)
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We can now use p2ji D pj i for all i; j 2 f1; : : : ; ngwith the equations (5.2) and (5.3)
in order to reformulate the right hand side of (5.1) and obtainX
j1;:::;jl2f1;:::;ng

 .Xj1 � � � Xjl /ugj1 ���gjl
pj1i1 � � � pjl il

D

X
�2Sn

 .X�.i1/ � � � X�.il //ug�.i1/���g�.il /
p�.1/1 � � � p�.n/n .

Using this equation, we see that the distribution of x1; x2; : : : is invariant under
the action of C�.�n/‰ C.Sn/ if and only if

 .w.X1; : : : ; Xn//

D

X
�2Sn

 .w.X�.1/; : : : ; X�.n///uw.g�.1/;:::;g�.n/p�.1/1 � � � p�.n/n , (5.4)

for all words w 2 N�n.
Assume (i) and take n 2 N. If w 2 N�n n K is a word on the first n letters

X1; : : : ; Xn, then  .w.X1; : : : ; Xn// D 0. Furthermore, for every � 2 Sn, there is
w0 2 N�n such thatw.X�.1/; : : : ; X�.n// D w0.X1; : : : ; Xn/. Sincew0 arises fromw
by permuting its letters according to � , we see that w0 2 N�n n K. Hence we have
 .w.X�.1/; : : : ; X�.n/// D 0. Filling in this information into equation (5.4), we see
that its left- and right-hand side are equal to zero for w 2 N�n nK.

There is a natural �n-grading of ChX1; X2; : : : i which grades w.X1; : : : ; Xn/ by
w.g1; : : : ; gn/ for all w 2 N�n and which grades Xk by e for k � nC 1. We have
already proven that  .w.X1; : : : ; Xn// D 0 for all w 2 N�n nK. This is equivalent
to the fact that  respects the �n-grading of ChX1; X2; : : : i. In particular, purely
graded subspaces of ChX1; X2; : : : ; i are pairwise orthogonal with respect to �. So
the GNS-construction gives rise to a well defined �n-grading ofM . Every element
in B is purely e-graded, because B is a subalgebra of W�.x21 ; x22 ; : : : ; /. It follows
that E.w.x1; : : : ; xn// D 0 for all w 2 N�1 n K. In particular, the fact that � is
not trivial implies that all xi have even distribution with respect to E. Combining
this with the fact that x21 ; x22 ; : : : ; have an identical distribution with respect to E, it
follows that x1; x2; : : : are identically distributed with respect to E.

Now take w 2 N�n \ K. As before, we see that for � 2 Sn, the word
w0 2 N�n arising from a permutation of letters of w according � satisfies
w.X�.1/; : : : ; X�.n// D w0.X1; : : : ; Xn/. Since K is invariant under permutation
of letters, we obtain w0 2 K and hence w.g�.1/; : : : ; g�.n// D e. This showsX
�2Sn

 .w.X�.1/; : : : ; X�.n///uw.g�.1/;:::;g�.n//p�.1/1 � � � p�.n/n

D

X
�2Sn

 .w.X�.1/; : : : ; X�.n///p�.1/1 � � � p�.n/n . (5.5)
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For all � 2 Sn, we have

 .w.X1; : : : ; Xn// D �.w.x1; : : : ; wn//

D �.E.xe1.w/1 / � � � E.xen.w/n // (assumption on
x1; : : : ; xn)

D �.E.xe1.w/
�.1/

/ � � � E.xen.w/
�.n/

// (x1; : : : ; xn identically
distributed wrt E)

D  .w.X�.1/; : : : ; X�.n/// .

Using this formula and equation (5.5), we obtainX
�2Sn

 .w.X�.1/; : : : ; X�.n///uw.g�.1/;:::;g�.n//p�.1/1 � � � p�.n/n

D  .w.X1; : : : ; Xn//
X
�2Sn

p�.1/1 � � � p�.n/n

D  .w.X1; : : : ; Xn// .

This shows that  is invariant under the action of C�.�n/‰ C.Sn/.
Assume (ii). For all n 2 N and all w 2 N�n, we have

 .w.X1; : : : ; Xn//

D

X
�2Sn

 .w.X�.1/; : : : ; X�.n///uw.g�.1/;:::;g�.n//p�.1/1 � � � p�.n/n . (5.6)

Letw 2 N�nnK. For� 2 Sn, we see as before thatw.g�.1/; : : : ; g�.n// ¤ e. So (5.6)
can only be true if  .w.X1; : : : ; Xn// D 0. Since g2

k
D e for all k 2 f1; : : : ; ng,

we have w.g21; : : : ; g2n/ D e for all n 2 N�n. Hence equation (5.6) for words of
length 2n implies

 .w.X21 ; : : : ; X
2
n // D

X
�2Sn

 .w.X2�.1/; : : : ; X
2
�.n///p�.1/1 � � � p�.n/n .

So the same formula is true if we replace  by � on both sides. Recall
that B D

T
n�1W�.x2n; x2nC1; : : : / admits the �-preserving conditional expectation

E WM ! B . Since the x21 ; x2n; : : : is a commuting family of random variables, the
classical de Finetti theorem implies that the distribution of x21 ; x22 ; : : : is independent
and identically distributed with respect to E. So we showed (i), which completes the
proof of the theorem.

Remark 5.13. Wewant to remark that the previous theorem confirms the special role
of easy quantum groups as correct symmetries of non-commutative distributions.
Indeed, it is the sSn-invariance of the kernel ker.N�n ! �/ for a strongly
symmetric reflection group � , which allows for substitution of letters and hence turns
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the statement �.w.x1; : : : ; xn// D �.E.x1/e1.w/ � � �E.xn/en.w// into a reasonable
condition.

We apply Theorem 5.12 to the easy quantum groups H Œ1�
n and H�n described in

Section 5.3. In particular, we recover the de Finetti theorem forH�n first proved in [6].
We take over the notion of being “balanced” from their work. A word w 2 N�n is
balanced if and only if w 2 ker.N�n ! Z�n2 =faiajak D akajaig/.
Corollary 5.14. Let x1; x2; : : : be a sequence of non-commutative self-adjoint
random variables in a W�-probability space .M; �/. Then there is a von Neumann
subalgebra B � M and a �-preserving conditional expectation E W M ! B such
that the following statements hold.

(i) If x2i xj D xjx
2
i for all i; j 2 f1; : : : ; ng, then the following are equivalent.

� x21 ; x
2
2 ; : : : is identically distributed and independent with respect to E

and �.w.x1; : : : ; xn// D 0 for all words w 2 ker.N�n ! Z�n2 /.
� For all n 2 N, the distribution of x1; : : : ; xn is invariant underC.H Œ1�

n /.

(ii) If xixjxk D xkxjxi for all i; j; k 2 f1; : : : ; ng, then the following are
equivalent
� x21 ; x

2
2 ; : : : are identically distributed and independent with respect to E

and �.w.x1; : : : ; xn// D 0 for all non-balanced words w 2 N�n.
� For all n 2 N, the distribution of x1; : : : ; xn is invariant under C.H�n /.

Proof. Wemay assume thatM DW�.x1; x2; : : : /. LetB D
T
n�1W�.x2n; x2nC1; : : : /

and note that B lies in the centre of M . In particular, there is a �-preserving
conditional expectation E WM ! B .

We are going to apply Theorem 5.12 to (i) and (ii). Before starting to consider
these cases one by one, let us observe the following facts. The invariance of the
E-distribution of x1; x2; : : : by any of the quantum groups H Œ1�

n or H�n , implies
that their distribution is invariant under the permutation groups Sn. In particular, as
the random variables x21 ; x22 ; : : : are pairwise commuting, they are independent and
identically distributed with respect to E. Moreover, as in Theorem 5.12, it follows
that the E-distribution of xi is even for all i . So x1; x2; : : : are identically distributed
with respect to E.

Let us start to prove (i). Since x2i xj D xjx
2
i for all i; j 2 f1; : : : ; ng and

K D ker.N�n ! Z�n2 / is the smallest subsemigroup of N�n which is invariant under
x 7! aixai , we obtain inductively that w.x1; : : : ; xn/ D x

e1.w/
1 � � � x

en.w/
n for all

w 2 K. Furthermore, e1.w/; : : : ; en.w/ 2 2N. Independence of x21 ; : : : ; x2n with
respect to E implies that

�.w.x1; : : : ; xn// D �.x
e1.w/
1 � � � xen.w/n / D .� ı E/.xe1.w/1 � � � xen.w/n /

D �.E.xe1.w/1 / � � �E.xen.w/n // ,

for all w 2 K on n letters.
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So we can apply Theorem 5.12 in order to finish the proof of (i).
In order to apply Theorem 5.12 to the situation in (ii), we need to check that

�.w.x1; : : : ; xn// D �.E.xe1.w/1 / � � �E.xen.w/n // for all balanced words w 2 N�n.
If w 2 N�n is a balanced word, then xixjxk D xkxjxi for all i; j; k implies
w.x1; : : : ; xn/ D x

e1.w/
1 � � � x

en.w/
n . So

�.w.x1; : : : ; xn// D �.x
e1.w/
1 � � � xen.w/n / D .� ı E/.xe1.w/1 � � � xen.w/n //

D �.E.xe1.w/1 / � � �E.xen.w/n // ,

where the last equality follows from the fact that ei .w/ 2 2N for all i 2 f1; : : : ; ng and
independence of x21 ; : : : ; x2n with respect to E. So we can indeed apply Theorem 5.12.
This finishes the proof.
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