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Abstract. We provide a classification of finite-dimensional graded pointed Majid algebras
generated by finite abelian groups as group-like elements and a set of quasi-commutative skew-
primitive elements. This amounts to a classification of finite quasi-quantum linear spaces in the
sense of nonassociative geometry.

Mathematics Subject Classification (2010). 16T05; 16T20, 81R60.
Keywords. Nonassociative geometry, quasi-quantum groups, pointed Majid algebras.

1. Introduction

As a further extension of noncommutative geometry, the theory of nonassociative
geometry has aroused a lot of interest. The idea is to think of the nonassociative
algebra geometrically as the coordinate algebra of a nonassociative space. Among
which, the class of quasi-associative algebras and the corresponding quasi-quantum
geometry is better understood. The crux of this quasi-associative setting is that
coordinate algebras are nonassociative but in a controlled way by means of a
multiplicative associator. This influential philosophy initiated from Drinfeld’s
seminal work [13] of quasi-Hopf algebras, or quasi-quantum groups, and has been
developed into a broader framework [1, 9, 32] and applied to quite a few subjects
such as quantum field theory [23,26], noncommutative differential calculus [7,8,24],
and string theory [11]. It is also important to note that this novel idea allows us to
treat quasi-associative algebras as if they were effectively associative with a help of
the theory of tensor categories. As a marvelous example, it is worth to point out
that Albuquerque and Majid discovered in [2] that the famous octonions are in fact
associative and commutative in some suitable braided linear Gr-category.

The goal of the present paper is to contribute more concrete quasi-quantum
geometric objects. We provide a classification of finite quasi-quantum linear spaces
which are natural extension of the quantum linear spaces studied in [3, 29, 33].
Throughout, we comply with the terminology of the review paper [29] of Majid.
�Supported by SRFDP 20130131110001, SDNSF ZR2013AM022 and NSFC 11571199.
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Recall that, by quantum linear spaces we mean pointed Hopf algebras that arise from
the bosonization of braided linear spaces [27] together with group algebras. Another
motivation of the paper is the classification problem of finite pointed tensor categories
and the corresponding finite quasi-quantum algebras which has been under intensive
research in recent years, see for instance [6, 14–17]. As a matter of fact, we obtain a
class of finite-dimensional pointed coquasi-Hopf algebras, also calledMajid algebras,
which may be understood as the coordinate algebras of finite quasi-quantum linear
spaces. Consequently, this also provides a class of finite pointed tensor categories
presented as the comodule categories of the obtained Majid algebras.

Now we introduce a bit more about the main result of the paper. Recall that a
Majid algebra is a coalgebra endowed with a quasi-associative algebra structure and a
quasi-antipode in a compatible way, for more details see [15–17,25]. AMajid algebra
is said to be pointed, if its underlying coalgebra is so, that is, the simple comodules
are one-dimensional. We call a Majid algebra graded, if it is coradically graded
as a coalgebra, and its quasi-algebra structure and quasi-antipode maps respect the
coradical grading. Throughout, we work over an algebraically closed field k with
zero characteristic. Our purpose is to classify all finite-dimensional graded pointed
Majid algebras generated by a finite abelian groupG as group-like elements and a set
of skew-primitive elements fX1; : : : ; Xng satisfying the quasi-commutative property,
namely,

XiXj D qj;iXjXi (1.1)

for some qj;i 2 k for all 1 � i ¤ j � n: These are the so-called finite quasi-
quantum linear spaces in accordance with the idea of nonassociative geometry. The
case with n D 2 was considered in [20] by direct computations. Those ideas seem
not applicable to this general situation.

The method of classification in the present paper may be viewed as an extension
of that used in [3] for the quantum linear spaces to the quasi-setting. Let G be
a finite abelian group. Firstly, we collect some necessary facts about the Yetter–
Drinfeld category kG

kGYDˆ of the group Majid algebra .kG;ˆ/: This category
is a generalization of that of Whitehead’s G-crossed modules [36] and was
computed explicitly by Majid in [31] as an example of his dual or center of the
comodule category of .kG;ˆ/: Then we investigate commutative Nichols algebras,
or equivalently braided linear spaces, inside kG

kGYDˆ: Finally we determine all finite
quasi-quantum linear spaces via a quasi-version of Majid’s bosonization [28], or
Radford’s biproduct [35]. It is worthy to remark that this method may be applied
to pursue more general finite-dimensional pointed Majid algebras. The key lies
in determining finite Nichols algebras inside those Yetter–Drinfeld categories of
form kG

kGYDˆ: It is expected that the successful ideas in [4, 5] may provide a useful
model to tackle this problem. We will turn to this subject matter in later works.

Here is the layout of the paper. In Section 2, we recall some preliminaries. In
Section 3, we provide the general foundation for the study of graded pointed Majid
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algebras via the 3-step method mentioned above. Finally in Sections 4 and 5, we give
a classification of finite quasi-quantum linear spaces.

2. Preliminaries

In this section, we recall some definitions, notations and basic facts about braided
Hopf algebras, the Yetter–Drinfeld categories of group Majid algebras and Nichols
algebras within them.

2.1. Braided Hopf algebras. Let .C;˝; 1; a; l; r; c/; denoted briefly by C in the
following, be a braided tensor category, where 1 is the unit object, a (l; or r)
is the associativity (left, or right unit) constraint and c is the braiding. An
(associative) algebra in C is an objectA of C endowedwith a multiplicationmorphism
m W A˝ A �! A and a unit morphism u W 1 �! A such that m ı .m ˝ id/ D
m ı .id˝m/ ı aA;A;A and m ı .id˝u/ D rA; m ı .u ˝ id/ D lA: Dually, a
(coassociative) coalgebra in C is an object C of C endowed with a comultiplication
morphism � W C �! C ˝ C and a counit morphism " W C �! 1 such that
aC;C;C ı .�˝ id/ ı� D .id˝�/ ı� and r�1C D .id˝"/ ı�; l

�1
C D ."˝ id/ ı�:

If .A;mA; uA/ and .B;mB ; uB/ are two algebras in C; then one can define a
morphism mA˝B W .A˝ B/˝ .A˝ B/ �! A˝ B by

mA˝B D .mA ˝mB/ ı aA˝A;B;B ı .a
�1
A;A;B ˝ id/

ı .id˝cB;A ˝ id/ ı .aA;B;A ˝ id/ ı a�1A˝B;A;B : (2.1)

Clearly this construction is a natural generalization of the usual tensor product of
algebras and was developed in general braided monoidal categories by Majid in his
theory of braided groups [27].
Proposition 2.1. Suppose that .A;mA; uA/ and .B;mB ; uB/ are algebras in the
braided tensor category C; then .A˝ B;mA˝B ; uA ˝ uB/ is an algebra in C:

The reader is referred to [29, Lemma 2.1] for a proof by means of braid
diagrams. The resulting algebra is called the braided tensor product of A and B .
Dually, if .C;�C ; "C / and .D;�D; "D/ are coalgebras in C; then one can define
a suitable morphism �C˝D W C ˝ D �! .C ˝ D/ ˝ .C ˝ D/ such that
.C ˝D;�C˝D; "C ˝ "D/ is again a coalgebra in C.

Armed with his construction of braided tensor product, Majid introduced and
studied systematically the theory of braided groups, or braidedHopf algebras [27, 29].
For completeness, we record the definition in the following.
Definition 2.2. We say that a sextuplet .H;m; u;�; "; S/ is a Hopf algebra in the
braided tensor category C; or simply a braidedHopf algebra, if .H;m; u/ is an algebra
in C, .H;�; "/ is a coalgebra in C and � W H �! H ˝ H and " W H �! 1 are
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algebra maps in C; and S W H �! H is a morphism, to be called the antipode,
subject to

m ı .S ˝ id/ ı� D u ı " D m ı .id˝S/ ı�: (2.2)

As the usual case, one may naturally define ideals of algebras, coideals of
coalgeras, Hopf ideals of Hopf algebras, and the corresponding quotient structures
in braided tensor categories. The details are omitted.

2.2. The Yetter–Drinfeld category of .kG; ˆ/. Recall that the Yetter–Drinfeld
category HHYD of a quasi-Hopf algebra H may be defined as the center Z.H -mod/
of its module categoryH -mod and it is known to be braided tensor equivalent to the
module category of the quantum doubleD.H/ ofH; see [30,31] for more details. We
may define the Yetter–Drinfeld category of a finite-dimensional Majid algebra by the
canonical duality procedure, namely, the Yetter–Drinfeld category of a given finite-
dimensional Majid algebraM is defined to be M�M�YD whereM � is the quasi-Hopf
algebra dual toM .

In this paper we mainly concern with the Yetter–Drinfeld category of the group
Majid algebra .kG;ˆ/ of a finite abelian group G and a normalized 3-cocycle ˆ
on G. To emphasize ˆ; we denote such a category as kG

kGYDˆ: Now we recall
some more details of such categories as given previously in [12, 30, 31]. By abuse
of notation, we denote the dual of .kG;ˆ/ by .k.G/;ˆ/ where the latter ˆ is the
associator which is obtained by linear extension of the 3-cocycleˆ: Let fıggg2G be a
basis of k.G/where ıg is the Dirac function at the point g: ByDˆ.G/we denote the
quantum double of .k.G/;ˆ/: ThenDˆ.G/ is a quasitriangular quasi-Hopf algebra
with product and coproduct determined by

ıgx � ıhy D ıg;h
ˆ.g; x; y/ˆ.x; y; g/

ˆ.x; g; y/
ıgxy; (2.3)

�.ıgx/ D
X
hkDg

ˆ.h; k; x/ˆ.x; h; k/

ˆ.h; x; k/
ıhx ˝ ıkx; (2.4)

and with associator ' and universalR-matrix given by

' D
X

g;h;k2G

ˆ.g; h; k/�1ıg1˝ ıh1˝ ık1; (2.5)

R D
X
g2G

ıg1˝ ı1g: (2.6)

Clearly
P
g2G ıg1 is the identity of Dˆ.G/ by (2.3), so for any Dˆ.G/-module V

we have
V D ˚g2Gıg1V D ˚g2GVg ;

where ıg1V is written as Vg for brevity.
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For any v 2 Vg ; note that

ıgx � .ıgy � v/ D
ˆ.g; x; y/ˆ.x; y; g/

ˆ.x; g; y/
.ıgxy/ � v and ıhx � v D 0 if h ¤ g:

Let êg.x; y/ D ˆ.g;x;y/ˆ.x;y;g/
ˆ.x;g;y/

and by direct computation one can show that êg is
a 2-cocycle on G: That is to say, Vg is a projective G-representation with respect to
the 2-cocycle êg ; also called a .G; êg/-representation, see [16,22]. We remark that
in [16] the same symbol êg was used to denote a different 2-cocycle, however the
final projective representation as defined later in Lemma 3.1 is esentially identical to
that in [16]. Now we summarize some useful properties of kG

kGYDˆ in the following
proposition, see [31] for more details.
Proposition 2.3. Avector spaceV is an object in kG

kGYDˆ if and only ifV D ˚g2GVg
with each Vg a projectiveG-representation with respect to the 2-cocycle êg ; namely

e F .f F v/ D ê
g.e; f /.ef / F v: (2.7)

The associativity and the braiding constraints of kG
kGYDˆ are given respectively by

aVe ;Vf ;Vg ..X ˝ Y /˝Z/ D ˆ.e; f; g/
�1X ˝ .Y ˝Z/ (2.8)

R.X ˝ Y / D e F Y ˝X (2.9)

for all X 2 Ve; Y 2 Vf ; Z 2 Vg :

2.3. Nichols algebras in kG
kG

YDˆ . Nichols algebras are, roughly speaking, the
analogue of the familiar symmetric algebras inmore general braided tensor categories.
In the classification problem of finite-dimensional pointed Hopf algebras, Nichols
algebras in kG

kGYDˆ with trivialˆ play a key role, see for instance [3,4]. Naturally, in
order to tackle the classification problem of finite-dimensional pointedMajid algebras
we need to study first Nichols algebras in more general Yetter–Drinfeld categories of
form kG

kGYDˆ with nontrivial ˆ: An obvious difficulty we have to confront, in this
situation, is that though associative in the category kG

kGYDˆ these Nichols algebras
are generally nonassociative in the usual sense. To overcome this, we shall take
Majid’s braided Hopf algebra approach [27, 29] which starts with the tensor algebra
of any object in kG

kGYDˆ and by an appropriate quotient to obtain the desired Nichols
algebra.

Let V be a nonzero object in kG
kGYDˆ: By T .V / we denote the tensor algebra

in kG
kGYDˆ generated by V; that is, the algebra freely generated by V subject to the

associative condition

u˝ .v ˝ w/ � aV;V;V
�
.u˝ v/˝ w

�
; 8u; v;w 2 V:

It is clear that T .V / is isomorphic to
L
n�0 V

˝
�!
n ; where V ˝

�!
n means

.� � � ..„ƒ‚…
n�1

V ˝ V /˝ V / � � � ˝ V /:
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This induces naturally an N-graded structure on T .V /: Define a comultiplication on
T .V / by �.X/ D X ˝ 1C 1˝ X; 8X 2 V; counit by ".X/ D 0; and antipode by
S.X/ D �X: It is not hard to show that these provide a graded braided Hopf algebra
structure on T .V / within the braided tensor category kG

kGYDˆ:
Definition 2.4. The Nichols algebra B.V / of V in kG

kGYDˆ is defined to be the
quotient braided Hopf algebra T .V /=I where I is the unique maximal graded Hopf
ideal generated by homogeneous elements of degree greater than or equal to 2.

Nichols algebras in the Yetter–Drinfeld category of a Hopf algebra can be defined
by various equivalent ways, see [4]. Here we adopt the method of definition using the
universal property of Nichols algebras. Our definition works for the Yetter–Drinfeld
category of any finite-dimensional (co-)quasi-Hopf algebras. Needless to say, this
definition of Nichols algebras in kG

kGYDˆ reduces to that in kG
kGYD if ˆ is trivial.

2.4. Braided linear spaces. For our purpose, a braided linear space in kG
kGYDˆ

will be defined as an N-graded braided Hopf algebra S within kG
kGYDˆ generated by

a set fXig1�i�n of primitive elements subject to relations

X
�!
Ni
i D 0 for some positive integer Ni ; 1 � i � n; (2.10)

XiXj D qj;iXjXi for all i ¤ j; (2.11)

where X
�!
N means

.� � � ..„ƒ‚…
N�1

XX/X/ � � �X/:

Let V D S.1/ D ˚1�i�nkXi and V is an object in kG
kGYDˆ whose actions and

coactions are the restriction of those of S: Later in Theorem 3.6, we will show that S
is in fact theNichols algebraB.V / ofV in kG

kGYDˆ:Note also thatS is commutative in
the braided tensor category kG

kGYDˆ: By the philosophy of nonassociative geometry,
S may be viewed as the “coordinate algebra" of the linear space V in kG

kGYDˆ: In
the following we write S.V / instead of S to emphasize the deep relation between S
and V . We also say S.V / is of rank n if dimV D n:

3. Nichols algebras and quasi-quantum groups

Throughout this section, M is assumed to be a finite-dimensional graded pointed
Majid algebra generated by an abelian group G and a set of skew-primitive
elements unless otherwise stated. Hence we may write M D ˚n�0M.n/ such
that Mn WD ˚0�i�nM.i/ is the n-th term of its coradical filtration. Clearly, the
coradical M0 is exactly kG; and M0 admits a Majid subalgebra structure inherited
fromM with the associator determined by a normalized 3-cocycleˆ onG; and with
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an antipode .S; ˛; ˇ/ given by S.g/ D g�1; ˛.g/ D 1 and ˇ.g/ D 1
ˆ.g;g�1;g/

for
all g 2 G: On the other hand, the associator ˆ and the antipode .S; ˛; ˇ/ ofM0 can
be extended to those forM; see [15]. In particular,

ˆ.x; y; z/ D 0; ˛.x/ D ˇ.x/ D 0;

S.a1/˛.a2/a3 D ˛.a/; a1ˇ.a2/S.a3/ D ˇ.a/;

(3.1)
ˆ
�
a1; S.a3/; a5

�
ˇ.a2/˛.a4/ D ˆ

�1
�
S.a1/; a3; S.a5/

�
˛.a2/ˇ.a4/ D ".a/

for all x; y; z 2 ˚i�1M.i/ and a 2 M: Here and below we use Sweedler’s sigma
notation for the i -th iterated comultiplication

�i .a/ D a1 ˝ a2 ˝ � � � ˝ aiC1:

Let � W M ! M0 be the canonical projection. The associated coinvariant
subalgebra ofM is defined by

R WDM coinvM0 D fx 2M j.id˝�/�.x/ D x ˝ 1g: (3.2)

One can easily show thatR is closed under the multiplication ofM: The main task of
this section is to prove that endowed with an appropriate coalgebra structure R is in
fact a braided Hopf algebra, more precisely a Nichols algebra, in the Yetter–Drinfeld
category M0

M0
YDˆ; and to establish a quasi-version of Majid’s bosonization. We

remark thatMajid’s bosonizationwas explored in a very broad context in [10] by using
braided diagrams without considering nontrivial associators explicitly. Theoretically,
one can always give these form of cross product abstractly without considering
associator because of Coherence Theorem and Strictness Theorem. But for our
purpose, we need to present our Majid algebras by generators and relations, so these
braided diagrams are not very useful for us. Hence the exploration of explicit cross
product formulae with nontrivial associators are necessary.

3.1. R is a braided Hopf algebra in kG
kG

YDˆ .

Lemma 3.1. R is an object in kG
kGYDˆ.

Proof. Notice thatM is a kG-bicomodule naturally through

ıL WD .� ˝ id/�; ıR WD .id˝�/�:

Thus there is a G-bigrading onM , that is,

M D
M
g;h2G

gM h

where gM h D fm 2M jıL.m/ D g ˝m; ıR.m/ D m˝ hg.
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So by definition we haveR D ˚g2G1M g D ˚g2GRg , whereRg D 1M g :HenceR
admits a G-graded structure. According to Proposition 2.3, we only need to prove
that Rg is a .G; êg/-representation under the G-action defined by

f FX D
ˆ.fg; f �1; f /

ˆ.f; f �1; f /
.f �X/ � f �1 (3.3)

for all f 2 G; X 2 Rg : Here f �X means the product in the Majid algebraM:
For our purpose, first note that

Œ.f �X/ � f �1� � f D
ˆ.f; f �1; f /

ˆ.fg; f �1; f /
f �X;

hence

f �X D

�
ˆ.fg; f �1; f /

ˆ.f; f �1; f /
.f �X/ � f �1

�
� f D .f FX/ � f: (3.4)

Then for all e; f 2 G; we have

.ef / �X D ˆ.e; f; g/�1e � .f �X/

D ˆ.e; f; g/�1e � Œ.f FX/ � f �

D ˆ.e; f; g/�1ˆ.e; g; f /Œe � .f FX/� � f

D ˆ.e; f; g/�1ˆ.e; g; f /fŒe F .f FX/� � eg � f

D ˆ.e; f; g/�1ˆ.e; g; f /ˆ.g; e; f /�1Œe F .f FX/� � .ef /

D Œ.ef / FX� � .ef /;

where the last equality follows from (3.4). Finally by comparing the last two terms
we observe

e F .f FX/ D
ˆ.e; f; g/ˆ.g; e; f /

ˆ.e; g; f /
.ef / FX D ê

g.e; f /.ef / FX:

This says exactly that Rg is a .G; êg/-representation.
In the following, we use the lowercase letters such as x; xi , xj to present

respectively the degrees of the corresponding capital letters X;Xi ; Xj which are
homogeneous elements in R:

Proposition 3.2. R is a braided Hopf algebra in kG
kGYDˆ in which

(1) the multiplication mR is inherited from that ofM;

(2) the comultiplication is defined by

�R W R! R˝R; X 7! ˆ.x1; x2; x
�1
2 /X1 � x

�1
2 ˝X2;
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(3) the counit is defined by

"R W R! k; "R WD "jR;

and
(4) the antipode is defined by

SR W R! R; X 7!
1

ˆ.x; x�1; x/
x � S.X/:

Proof. Firstly we need to show that mR; �R; "R; SR are morphisms in GGYDˆ. We
only domR for an example. Obviously the productmR of R isG-bigraded. Now we
need to prove that

g FmR.X ˝ Y / D mR.g F .X ˝ Y //

for all g 2 G and G-homogeneous elements X 2 Rx; Y 2 Ry : On the one hand,

g FmR.X ˝ Y / D
ˆ.gxy; g�1; g/

ˆ.g; g�1; g/
Œg.XY /�g�1

D ˆ.xy; g; g�1/Œg.XY /�g�1:

On the other hand,

mR.g F .X ˝ Y //

D
ˆ.g; x; y/ˆ.x; y; g/

ˆ.x; g; y/
mR.g FX ˝ g F Y /

D
ˆ.g; x; y/ˆ.x; y; g/ˆ.x; g; g�1/ˆ.y; g; g�1/

ˆ.x; g; y/
Œ.gX/g�1�Œ.gY /g�1�

D
ˆ.g; x; y/ˆ.x; y; g/ˆ.x; g; g�1/ˆ.y; g; g�1/ˆ.g�1; gy; g�1/ˆ.g�1; g; y/ˆ.gx; y; g�1/

ˆ.x; g; y/ˆ.gx; g�1; y/ˆ.g; x; y/ˆ.g�1; g; g�1/

� Œg.XY /�g�1

D
ˆ.x; y; g/ˆ.x; g; g�1/ˆ.y; g; g�1/ˆ.g�1; gy; g�1/ˆ.g�1; g; y/ˆ.gx; y; g�1/

ˆ.x; g; y/ˆ.gx; g�1; y/ˆ.g�1; g; g�1/

� Œg.XY /�g�1

So it suffices to verify

ˆ.x; y; g/ˆ.x; g; g�1/ˆ.y; g; g�1/ˆ.g�1; gy; g�1/ˆ.g�1; g; y/ˆ.gx; y; g�1/

ˆ.x; g; y/ˆ.gx; g�1; y/ˆ.g�1; g; g�1/

D ˆ.xy; g; g�1/;

which follows from
ˆ.x; y; g/ˆ.x; g; g�1/ˆ.y; g; g�1/ˆ.g�1; gy; g�1/ˆ.g�1; g; y/ˆ.gx; y; g�1/

ˆ.x; g; y/ˆ.gx; g�1; y/ˆ.g�1; g; g�1/ˆ.xy; g; g�1/
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D
ˆ.x; g; g�1/ˆ.g�1; gy; g�1/ˆ.g�1; g; y/ˆ.gx; y; g�1/

ˆ.x; g; y/ˆ.gx; g�1; y/ˆ.g�1; g; g�1/ˆ.x; gy; g�1/

D
ˆ.x; g; g�1/ˆ.g�1; gy; g�1/ˆ.g�1; g; y/ˆ.gx; y; g�1/ˆ.g; y; g�1/

ˆ.x; g; y/ˆ.gx; g�1; y/ˆ.g�1; g; g�1/ˆ.x; gy; g�1/ˆ.g; y; g�1/

D
ˆ.x; g; g�1/ˆ.gx; y; g�1/ˆ.g�1; g; yg�1/

ˆ.gx; g�1; y/ˆ.g�1; g; g�1/ˆ.xg; y; g�1/ˆ.x; g; yg�1/

D
ˆ.x; g; g�1/ˆ.g�1; g; yg�1/

ˆ.g�1; g; g�1/ˆ.x; g; g�1/ˆ.g; g�1; y/

D
ˆ.g�1; g; yg�1/

ˆ.g�1; g; g�1/ˆ.g; g�1; y/

D 1:

The verification for �R; "R; SR are similar and so omitted.
Next we will show that R is an algebra and a coalgebra in kG

kGYDˆ: For any
G-homogeneous X; Y;Z 2 R; we have .X � Y / �Z D ˆ.x; y; z/�1X � .Y �Z/: This
clearly endows R an algebra structure in kG

kGYDˆ: So here we need to verify that�R
is coassociative in the category, that is, a ı .�R ˝ id/ ı�R D .id˝�R/ ı�R:

In fact, we have

.id˝�R/�R.X/ D ˆ.x1; x2; x�12 /X1x
�1
2 ˝�R.X2/

D ˆ.x1; x2x3; .x2x3/
�1/ˆ.x2; x3; x

�1
3 /X1.x2x3/

�1

˝ .X2x
�1
3 ˝X3/

and

.�R ˝ id/�R.X/ D ˆ.x1; x2; x�12 /�R.X1x
�1
2 /˝X2

D ˆ.x11x12; x2; x
�1
2 /ˆ.x11; x12; x

�1
12 /Œ.X11x

�1
2 /x�112 ˝X12x

�1
2 �

˝X2

D
ˆ.x1x2; x3; x

�1
3 /ˆ.x1; x2; x

�1
2 /ˆ.x2x3; x

�1
3 ; x2/

ˆ.x1x2x3; x
�1
3 ; x�12 /

� .X1.x2x3/
�1
˝X2x

�1
3 /˝X3:

So to show thatˆı .�R˝ id/�R.X/ D .id˝�R/�R.X/, it is enough to prove that

ˆ.x1; x2x3; .x2x3/
�1/ˆ.x2; x3; x

�1
3 /

D
ˆ.x1x2; x3; x

�1
3 /ˆ.x1; x2; x

�1
2 /ˆ.x2x3; x

�1
3 ; x2/

ˆ.x1x2x3; x
�1
3 ; x�12 /ˆ.x1; x2; x3/

: (3.5)

The fact @.ˆ/.x1; x2x3; x�13 ; x�12 / D 1 implies that

ˆ.x2x3; x
�1
3 ; x�12 /ˆ.x1; x2; x

�1
2 /ˆ.x1; x2x3; x

�1
3 /

ˆ.x1x2x3; x
�1
3 ; x�12 /ˆ.x1; x2x3; .x2x3/�1/

D 1:
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Then to show (3.5), it is enough to prove that

ˆ.x2; x3; x
�1
3 / D

ˆ.x1x2; x3; x
�1
3 /

ˆ.x1; x2x3; x
�1
3 /ˆ.x1; x2; x3/

:

But this is a direct consequence of @.ˆ/.x1; x2; x3; x�13 / D 1.
Thirdly we need to show that �R is an algebra morphism in GGYDˆ.
On the one hand, we have

�R.XY / D ˆ.x1y1; x2y2; .x2y2/
�1/.X1Y1/.x2y2/

�1
˝X2Y2:

On the other hand,

�R.X/�R.Y /

D ˆ.x1; x2; x
�1
2 /ˆ.y1; y2; y

�1
2 /.X1x

�1
2 ˝X2/.Y1y

�1
2 ˝ Y2/

D
ˆ.x1; x2; x

�1
2 /ˆ.y1; y2; y

�1
2 /ˆ.x1x2; y1; y2/ˆ.x1; y1; x2/ˆ.y1; x2; x

�1
2 /ˆ.x1; x2; y1x

�1
2 /

ˆ.x1y1; x2; y2/ˆ.x2; y1; x
�1
2 /ˆ.x1; x2; y1/ˆ.x1x2; x

�1
2 ; x2/

�
ˆ.x2; x

�1
2 ; x2/ˆ.y2; y

�1
2 ; x�12 /ˆ.x1x2; y1y2; .x2y2/

�1/

ˆ.y1y2; y
�1
2 ; x�12 /ˆ.x2; y2; .x2y2/�1/

.X1Y1/.x2y2/
�1
˝X2Y2:

Then the desired equality �R.XY / D �R.X/�R.Y / follows from

ˆ.x1; x2; x
�1
2 /ˆ.y1; y2; y

�1
2 /ˆ.x1x2; y1; y2/ˆ.x1; y1; x2/ˆ.y1; x2; x

�1
2 /ˆ.x1; x2; y1x

�1
2 /

ˆ.x1y1; x2; y2/ˆ.x2; y1; x
�1
2 /ˆ.x1; x2; y1/ˆ.x1x2; x

�1
2 ; x2/

�
ˆ.x2; x

�1
2 ; x2/ˆ.y2; y

�1
2 ; x�12 /ˆ.x1x2; y1y2; .x2y2/

�1/

ˆ.y1y2; y
�1
2 ; x�12 /ˆ.x2; y2; .x2y2/�1/

D
ˆ.y1; y2; y

�1
2 /ˆ.x1x2; y1; y2/ˆ.x1; y1; x2/ˆ.y1; x2; x

�1
2 /ˆ.x1; x2; y1x

�1
2 /

ˆ.x1y1; x2; y2/ˆ.x2; y1; x
�1
2 /ˆ.x1; x2; y1/

�
ˆ.y2; y

�1
2 ; x�12 /ˆ.x1x2; y1y2; .x2y2/

�1/

ˆ.y1y2; y
�1
2 ; x�12 /ˆ.x2; y2; .x2y2/�1/

D
ˆ.x1x2; y1; y2/ˆ.x1; y1; x2/ˆ.y1; x2; x

�1
2 /ˆ.x1; x2; y1x

�1
2 /

ˆ.x1y1; x2; y2/ˆ.x2; y1; x
�1
2 /ˆ.x1; x2; y1/

�
ˆ.y1; y2; .y2x2/

�1/ˆ.x1x2; y1y2; .x2y2/
�1/

ˆ.x2; y2; .x2y2/�1/

D
ˆ.x1; y1; x2/ˆ.y1; x2; x

�1
2 /ˆ.x1; x2; y1x

�1
2 /ˆ.x1x2y1; y2; .y2x2/

�1/ˆ.x1x2; y1; x
�1
2 /

ˆ.x1y1; x2; y2/ˆ.x2; y1; x
�1
2 /ˆ.x1; x2; y1/ˆ.x2; y2; .x2y2/�1/

D
ˆ.x1y1; x2; x

�1
2 /ˆ.x1x2y1; y2; .y2x2/

�1/

ˆ.x1y1; x2; y2/ˆ.x2; y2; .x2y2/�1/

D ˆ.x1y1; x2y2; .x2y2/
�1/:

Finally we prove that SR is an antipode of R in the category, that is, we need to
verify identity (2.2).
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Indeed, we have

.id�SR/.X/ D ˆ.x1; x2; x�12 /.X1x
�1
2 /SR.X2/

D
ˆ.x1; x2; x

�1
2 /

ˆ.x2; x
�1
2 ; x2/

.X1x
�1
2 /.x2S.X2//

D
ˆ.x1; x2; x

�1
2 /ˆ.x2; x

�1
2 ; x2/

ˆ.x2; x
�1
2 ; x2/ˆ.x1x2; x

�1
2 ; x2/

X1S.X2/

D
ˆ.x1; x2; x

�1
2 /ˆ.x2; x

�1
2 ; x2/

ˆ.x1x2; x
�1
2 ; x2/

X1
1

ˆ.x2; x
�1
2 ; x2/

S.X2/

D X1
1

ˆ.x2; x
�1
2 ; x2/

S.X2/

D ˇ.X/ D 0 D ".X/

for all X 2 R�1. Similarly, one can show that SR � id D "R.
We complete the proof of the proposition.

3.2. A quasi-version ofMajid’s bosonization. The aim of this subsection is to give
a quasi-version of the well-known Majid’s bosonization. Let H be a braided Hopf
algebra in kG

kGYDˆ: For our purpose, we assume further that H is N-graded with
H.0/ D k and H is generated by H.1/ as an algebra. We will say that X 2 H.n/
has length n: Note that R and B.V / are natural examples of such braided Hopf
algebras in kG

kGYDˆ: In the following, a homogeneous element means it is both N-
and G-homogeneous.
Proposition 3.3. Keep the assumptions onH as above. Define onH˝kG a product
by

.X ˝ g/.Y ˝ h/ D
ˆ.xg; y; h/ˆ.x; y; g/

ˆ.x; g; y/ˆ.xy; g; h/
X.g F Y /˝ gh; (3.6)

and a coproduct by

�.X ˝ g/ D ˆ.x1; x2; g/
�1.X1 ˝ x2g/˝ .X2 ˝ g/; (3.7)

thenH ˝ kG becomes a graded Majid algebra with an antipode .S; ˛; ˇ/ given by

S.X ˝ g/ D
ˆ.g�1; g; g�1/

ˆ.x�1g�1; xg; g�1/ˆ.x; g; g�1/
.1˝ x�1g�1/.SH .X/˝ 1/;

(3.8)
˛.1˝ g/ D 1; ˛.X ˝ g/ D 0; (3.9)

ˇ.1˝ g/ D ˆ.g; g�1; g/�1; ˇ.X ˝ g/ D 0; (3.10)

where g; h 2 G and X; Y are homogeneous elements of length � 1: By H#kG we
denote the Majid algebra so defined onH ˝ kG:
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Proof. First we show that H ˝ kG is a coalgebra under the given comultiplication.
By direct computation we have

.�˝ id/�.X ˝ g/
D .�˝ id/

�
ˆ.x1; x2; g/

�1.X1 ˝ x2g/˝ .X2 ˝ g/
�

D
1

ˆ.x1; x2; x3g/ˆ.x1x2; x3; g/
.X1 ˝ x2x3g/˝ .X2 ˝ x3g/˝ .X3 ˝ g/

and

.id˝�/�.X ˝ g/
D .�˝ id/

�
ˆ.x1; x2; g/

�1.X1 ˝ x2g/˝ .X2 ˝ g/
�

D
1

ˆ.x1; x2x3; g/ˆ.x2; x3; g/
.X1 ˝ x2x3g/˝ .X2 ˝ x3g/˝ .X3 ˝ g/:

Then .�˝ id/�.X ˝ g/ D .id˝�/�.X ˝ g/ follows from

X1 ˝ .X2 ˝X3/ D ˆ.x1; x2; x3/.X1 ˝X2/˝X3

and the definition of 3-cocycles.
Next we show thatH ˝kG is a quasi-algebra under the given multiplication, i.e.,

Œ.X ˝ g/.Y ˝ h/�.Z ˝ e/ D
ˆ.g; h; e/

ˆ.xg; yh; ze/
.X ˝ g/Œ.Y ˝ h/.Z ˝ e/�; (3.11)

for all homogeneous X; Y;Z 2 H and e; f; g 2 G: By a direct computation we have

Œ.X ˝ g/.Y ˝ h/�.Z ˝ e/

D
ˆ.xg; y; h/ˆ.x; y; g/

ˆ.x; g; y/ˆ.xy; g; h/
.X.g F Y /˝ gh/.Z ˝ e/

D
ˆ.xg; y; h/ˆ.x; y; g/

ˆ.x; g; y/ˆ.xy; g; h/

ˆ.xygh; z; e/ˆ.xy; z; gh/

ˆ.xy; gh; z/ˆ.xyz; gh; e/

� ŒX.g F Y /�.gh FZ/˝ ghe

D
ˆ.xg; y; h/ˆ.x; y; g/

ˆ.x; g; y/ˆ.xy; g; h/

ˆ.xygh; z; e/ˆ.xy; z; gh/

ˆ.xy; gh; z/ˆ.xyz; gh; e/

ˆ.g; z; h/

ˆ.z; g; h/ˆ.g; h; z/

� ŒX.g F Y /�.g F .h FZ//˝ ghe
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and

.X ˝ g/Œ.Y ˝ h/.Z ˝ e/�

D
ˆ.yh; z; e/ˆ.y; z; h/

ˆ.y; h; z/ˆ.yz; h; e/
.X ˝ g/.Y.h FZ/˝ he/

D
ˆ.yh; z; e/ˆ.y; z; h/

ˆ.y; h; z/ˆ.yz; h; e/

ˆ.xg; yz; he/ˆ.x; yz; g/

ˆ.x; g; yz/ˆ.xyz; g; he/
XŒg F .Y.h FZ//�˝ ghe

D
ˆ.yh; z; e/ˆ.y; z; h/

ˆ.y; h; z/ˆ.yz; h; e/

ˆ.xg; yz; he/ˆ.x; yz; g/

ˆ.x; g; yz/ˆ.xyz; g; he/

ˆ.y; z; g/ˆ.g; y; z/

ˆ.y; g; z/
ˆ.x; y; z/

� ŒX.g F Y /�.g F .h FZ//˝ ghe:

So (3.11) is equivalent to the following

ˆ.yh; z; e/ˆ.y; z; h/

ˆ.y; h; z/ˆ.yz; h; e/

ˆ.xg; yz; he/ˆ.x; yz; g/

ˆ.x; g; yz/ˆ.xyz; g; he/

ˆ.g; z; h/

ˆ.z; g; h/ˆ.g; h; z/

D
ˆ.g; h; e/

ˆ.xg; yh; ze/

ˆ.yh; z; e/ˆ.y; z; h/

ˆ.y; h; z/ˆ.yz; h; e/

ˆ.xg; yz; he/ˆ.x; yz; g/

ˆ.x; g; yz/ˆ.xyz; g; he/

�
ˆ.y; z; g/ˆ.g; y; z/

ˆ.y; g; z/
ˆ.x; y; z/: (3.12)

In order to verify this complicated equality, we need to apply the following
commutative diagram which holds in any abstract braided tensor category .C; a; c/,
here a is the associative constraint and c is the braiding.

Œ.A˝ B/˝ .A˝ B/�˝ .A˝ B/
aA˝B;A˝B;A˝B //

fA;B;A;B˝idA˝B
��

.A˝ B/˝ Œ.A˝ B/˝ .A˝ B/�

idA˝B ˝fA;B;A;B
��

Œ.A˝ A/˝ .B ˝ B/�˝ .A˝ B/

fA˝A;B˝B;A;B

��

.A˝ B/˝ Œ.A˝ A/˝ .B ˝ B/�

fA;B;A˝A;B˝B

��
Œ.A˝ A/˝ A�˝ Œ.B ˝ B/˝ B�

aA;A;A˝aB;B;B // ŒA˝ .A˝ A/�˝ ŒB ˝ .B ˝ B/�

(3.13)
for all objectsA;B 2 C:HerefC;D;E;F W .C˝D/˝.E˝F / �! .C˝E/˝.D˝F /

is an isomorphism defined by

fC;D;E;F D aC˝D;E;F ı.a
�1
C;D;E˝id/ı.id˝cD;E˝id/ı.aC;E;D˝id/ıa�1C˝E;D;F

(3.14)
for allC;D;E; F in C:The commutativity of the diagram follows from theCoherence
Theorem of braided tensor categories, see [21, Corollary 2.6].
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Let V 2 kG
kGYDˆ with Vg ; Vh; Ve ¤ 0: Replace A by H and B by V in the

diagram (3.13). Choose nonzero elements X 0 2 Vg ; Y 0 2 Vh; Z0 2 Ve: Then by a
direct computation we have

.aH;H;H ˝ aV;V;V / ı fH˝H;V˝V;H;V ı .fH;V;H;V ˝ idH˝V /
� .Œ.X ˝X 0/˝ .Y ˝ Y 0/�˝ .Z ˝Z0//

D
ˆ.yh; z; e/ˆ.y; z; h/

ˆ.y; h; z/ˆ.yz; h; e/

� .aH;H;H ˝ aV;V;V / ı fH˝H;V˝V;H;V .Œ.X ˝ g F Y /˝ .X
0
˝ Y 0/�˝ .Z ˝Z0//

D
ˆ.yh; z; e/ˆ.y; z; h/

ˆ.y; h; z/ˆ.yz; h; e/

ˆ.xygh; z; e/ˆ.xy; z; gh/

ˆ.xy; gh; z/ˆ.xyz; gh; e/

� .aH;H;H ˝ aV;V;V /.Œ.X ˝ g F Y /˝ gh FZ�˝ Œ.X
0
˝ Y 0/˝Z0/�/

D
ˆ.yh; z; e/ˆ.y; z; h/

ˆ.y; h; z/ˆ.yz; h; e/

ˆ.xygh; z; e/ˆ.xy; z; gh/

ˆ.xy; gh; z/ˆ.xyz; gh; e/
ˆ�1.x; y; z/ˆ�1.g; h; e/

� .ŒX ˝ .g F Y ˝ gh FZ/�˝ ŒX 0 ˝ .Y 0 ˝Z0/�/:

D
ˆ.yh; z; e/ˆ.y; z; h/

ˆ.y; h; z/ˆ.yz; h; e/

ˆ.xygh; z; e/ˆ.xy; z; gh/

ˆ.xy; gh; z/ˆ.xyz; gh; e/

ˆ.g; z; h/

ˆ.z; g; h/ˆ.g; h; z/

�ˆ�1.x; y; z/ˆ�1.g; h; e/.ŒX ˝ .g F Y ˝ g F .h FZ//�˝ ŒX 0 ˝ .Y 0 ˝Z0/�/:

Similarly we have

fH;V;H˝H;V˝V ı .idH˝V ˝fH;V;H;V / ı aH˝V;H˝V;H˝V
� .Œ.X ˝X 0/˝ .Y ˝ Y 0/�˝ .Z ˝Z0//

D ˆ�1.xg; yh; ze/
ˆ.yh; z; e/ˆ.y; z; h/

ˆ.y; h; z/ˆ.yz; h; e/

ˆ.xg; yz; he/ˆ.x; yz; g/

ˆ.x; g; yz/ˆ.xyz; g; he/

�
ˆ.y; z; g/ˆ.g; y; z/

ˆ.y; g; z/
.ŒX ˝ .g F Y ˝ g F .h FZ//�˝ ŒX 0 ˝ .Y 0 ˝Z0/�/:

So the previous two identities are equal. By comparing their coefficients, (3.12)
follows, and so does (3.11).

The proof of the fact that the product defined by (3.9) is a coalgebra map follows
by a direct verification and so we omit the details.

Finally we prove that .S; ˛; ˇ/ defined by (3.8–3.10) is a quasi-antipode of
H ˝ kG, i.e. the identities of (3.1) hold. It is enough to verify them for elements
X ˝ g with length.X/ � 1: Here we only prove S.a1/˛.a2/a3 D ˛.a/ and
a1ˇ.a2/S.a3/ D ˇ.a/ since other identities are obvious.
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Write .�˝ id/ ı�.X ˝ g/ D
P
.X ˝ g/1 ˝ .X ˝ g/2 ˝ .X ˝ g/3: Note that

˛..X ˝ g/2/ ¤ 0.ˇ..X ˝ g/2/ ¤ 0/

if and only if .X ˝ g/2 is a scalar of a group-like element, hence

S..X ˝ g/1/˛..X ˝ g/2/.X ˝ g/3

D ˆ.x1; x2; g/
�1S.X1 ˝ x2g/.X2 ˝ g/

D
ˆ.x�12 g�1; x2g; x

�1
2 g�1/

ˆ.x1; x2; g/ˆ.x�1g�1; xg; x
�1
2 g�1/ˆ.x1; x

�1
2 g�1; x�12 g�1/

� Œ.1˝ x�1g�1/.SH .X1/˝ 1/�.X2 ˝ g/:

D
ˆ.x�12 g�1; x2g; x

�1
2 g�1/ˆ.x1; x2; g/

ˆ.x1; x2; g/ˆ.x�1g�1; xg; x
�1
2 g�1/ˆ.x1; x

�1
2 g�1; x�12 g�1/ˆ.x�1g�1; x1; x2g/

� .1˝ x�1g�1/.SH .X1/X2 ˝ g/

D .1˝ x�1g�1/.SH .X1/X2 ˝ g/

D .1˝ x�1g�1/.".X/˝ g/ D 0:

So we have proved that S..X˝g/1/˛..X˝g/2/.X˝g/3 D ˛.X˝g/: In a similar
manner one can prove .X ˝ g/1ˇ..X ˝ g/2/S..X ˝ g/3/ D ˇ.X ˝ g/:

We complete the proof of the proposition.

Proposition 3.4. LetM andR be as before, andR#kG the Majid algebra as defined
in the previous proposition. Then R#kG ŠM:

Proof. Define a map

F W R#kG �! M

X ˝ g ! X � g:

It is clear that F is a quasi-algebra map. Moreover, as a linear map F is injective by
the assumptions onM and R: For any X 2 gM h, clearly Xh�1 2 R. This implies
that F is surjective and hence F is bijective. We verify in the following that F is
also a coalgebra map, i.e.

� ı F.X ˝ g/ D .F ˝ F / ı�.X ˝ g/: (3.15)

Then F is in fact an isomorphism of Majid algebras.
By direct calculation, the left hand side of (3.15) is

� ı F.X ˝ g/ D �.X � g/ D �.X/�.g/

D .X1 � x2/ � g ˝X2 � g

D ˆ.x1; x2; g/
�1X1 � .x2g/˝X2 � g;
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and the right hand side is

.F ˝ F / ı�.X ˝ g/ D .F ˝ F /.ˆ.x1; x2; g/
�1.X1 ˝ x2g/˝ .X2 ˝ g//

D ˆ.x1; x2; g/
�1X1.x2g/˝X2g:

Hence (3.15) is proved, i.e., F is a coalgebra map.
It is obvious that F preserves the quasi-antipodes of R#kG andM: So

F WR#kG !M

is the desired isomorphism of Majid algebras.

Remark 3.5. This proposition can be seen as a quasi-version ofMajid’s bosonization.
Needless to say, if the 3-cocycleˆ is trivial, then we recover the corresponding result
of Majid’s bosonization.

3.3. R is a Nichols algebra in kG
kG

YDˆ .
Theorem 3.6. Keep the assumptions on M and R: Then R is a Nichols algebra
in kG

kGYDˆ.

Proof. Choose a basis fXig of R.1/ such that the G-degree of Xi is gi : Denote
V D R.1/ and note that R is generated by V: On the other hand, note that V is a
natural object in kG

kGYDˆ and there is a Nichols algebraB.V / in the category. By the
universal property of B.V /; it is clear that there is an epimorphism of braided Hopf
algebras F W R! B.V / determined by F.Xi / D Xi : This induces an epimorphism
of Majid algebras eF W R#kG �! B.V /#kG;

Xi ˝ g ! Xi ˝ g:

Since R#kG and B.V /#kG are ordinary coalgebras, and eF is injective in group-
like elements and skew-primitive elements, hence so is the restriction of eF to the
first term of the coradical filtration of R#kG: Now by [34, Theorem 5.3.1], eF is
injective. Therefore, eF is a bijection and hence F W R ! B.V / is an isomorphism
by comparing dimensions.

4. Braided linear spaces in kG
kG

YDˆ

In this section, we give a classification of braided linear spaces in kG
kGYDˆ:We need

some notations about Gaussian binomials in our exposition. For any „ 2 k, define
l„ D 1C „ C � � � C „l�1 and lŠ„ D 1„ � � � l„. The Gaussian binomial coefficient is
defined by

�
lCm
l

�
„
WD

.lCm/Š„
lŠ„mŠ„

.
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4.1. Normalized 2-cocycles and 3-cocycles on G . Recall that a normalized
2-cocycle on a groupG is a function ! W G�G �! k

� such that !.e; f /!.ef; g/ D
!.e; fg/!.f; g/ and !.1; f / D !.e; 1/ D 1 for all e; f; g 2 G: A 2-cocycle ! of G
is called symmetric if !.e; f / D !.f; e/ for all e; f 2 G:

A function ˆ W G �G �G 7! k
� is called a 3-cocycle on G if

ˆ.ef; g; h/ˆ.e; f; gh/ D ˆ.e; f; g/ˆ.e; fg; h/ˆ.f; g; h/ (4.1)

for all e; f; g; h 2 G, and it is called normalized if ˆ.f; 1; g/ D 1: Let
G D Zm1 � Zm2 � � � � � ZmN and ei a fixed generator of Zmi . Denote by A the set
of all integer sequences

.a1; : : : ; al ; : : : ; aN ; a12 : : : ; aij ; : : : ; aN�1;N ; a123 : : : ; arst ; : : : ; aN�2;N�1;N /

(4.2)
such that 0 � al < ml , 0 � aij < .mi ; mj /, 0 � arst < .mr ; ms; mt / for
1 � l � N , 1 � i < j � N , 1 � r < s < t � N where aij and arst are
listed according to the lexicographic order. For brevity, the sequence of form (4.2)
will be denoted by a in the following. Now for any a 2 A, define a map
ˆa W G �G �G �! k

� by

ˆa.e
i1
1 � � � e

iN
N ; e

j1
1 � � � e

jN
N ; e

k1
1 � � � e

kN
N /

D

NY
lD1

�
al il Œ

jlCkl
ml

�

ml

Y
1�s<t�N

�
ast it Œ

jsCks
ms

�

mt

Y
1�r<s<t�N

�
arstkrjs it
.mr ;ms ;mt /

(4.3)

where Œx� means the integer part of x and �ml is an ml -th primitive root of unity.
According to [18, 19], fˆaja 2 Ag is a complete set of normalized 3-cocycles on G
up to cohomology.

4.2. Quasi-characters.
Definition 4.1. A function � W G �! k

� is called a quasi-character associated to a
2-cocycle ! on G if

�.f /�.g/ D !.f; g/�.fg/; �.1/ D 1 (4.4)

for all f; g 2 G:
It is clear that there is a quasi-character associated to ! if and only if ! is

symmetric. Recall that in Subsection 2.2, a set of 2-cocycles êg on G were defined
for a given 3-cocycle ˆ: For later applications we need the following definition
associated to such a set.
Definition 4.2. A series of quasi-characters f�1; : : : ; �ng of G is called admissible
with respect to ˆ if �i is associated to êgi with gi ¤ 1 for 1 � i � n such that
G D hg1; : : : ; gni and

�i .gj /�j .gi / D 1; �i .gi / ¤ 1 (4.5)

for all 1 � i; j � n:
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Note that, in the preceding definition, the gi ’s are not necessarily distinct.
Proposition 4.3. If there is a series of quasi-characters f�1; : : : ; �ng ofG such that�i
is associated to êgi for each i and G D hg1; : : : ; gni, then up to cohomology ˆ
must be of the form

ˆ.e
i1
1 � � � e

iN
N ; e

j1
1 � � � e

jN
N ; e

k1
1 � � � e

kN
N / D

NY
lD1

�
al il Œ

jlCkl
ml

�

l

Y
1�s<t�N

�
ast it Œ

jsCks
ms

�

mt : (4.6)

Proof. It is known thatˆ can be chosen as the formof formula (4.3). We need to prove
that the assumptions in the proposition lead to arst D 0 for all 1 � r < s < t � N:

AsG D hg1; : : : ; gni; one has er D gk11 � � �g
kn
n for somek1 < jg1j; : : : ; kn < jgnj.

Here and below, jgj denotes the order of g in a group. Write gi D e
ci1
1 � � � e

ciN
N for

1 � i � n; then we have
nX
iD1

kicil �

(
0 modml ; l ¤ r I

1 modmr ; l D r:

By (4.3) we can see that

ˆ.gi ; es; et / D
Y
1�j<s

�
cij ajst
.mj ;ms ;mt /

:

It follows that
nY
iD1

ˆ.gi ; es; et /
ki D

Y
1�j<s

�
ajst .

Pn
iD1 kicij /

.mj ;ms ;mt /
D �

arst
.mr ;ms ;mt /

:

On the other hand, by direct computation we have êgi .es; et / D 1 if s < t: Since
there is a quasi-character associated to the 2-cocycle êgi ; it is symmetric. This leads
to ê

gi .et ; es/ D
ê
gi .es; et / D 1:

This implies

ˆ.gi ; es; et / D
ˆ.es; gi ; et /

ˆ.es; et ; gi /
D

Y
s<p<t

�
cipaspt

.ms ;mp ;mt /

� Y
t<q<N

�
ciqastq

.ms ;mt ;mq/

��1
:

Then
nY
iD1

ˆ.gi ; es; et /
ki D

nY
iD1

� Y
s<p<t

�
cipaspt

.ms ;mp ;mt /

� Y
t<q<N

�
ciqastq

.ms ;mt ;mq/

��1�ki
D

Y
s<p<t

�
aspt .

Pn
iD1 kicip/

.ms ;mp ;mt /

� Y
t<q<N

�
astq.

Pn
iD1 kiciq/

.ms ;mt ;mq/

��1
D 1:
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So we get �arst
.mr ;ms ;mt /

D 1 which implies arst D 0 since 0 � arst < .mr ; ms; mt /:

From (4.6), it is easy to see that

ˆ.e; f; g/ D ˆ.e; g; f /; (4.7)
ˆ.ef; g; h/ D ˆ.e; g; h/ˆ.f; g; h/ (4.8)

for any e; f; g; h 2 G: Hence we have

ê
e.f; g/ D

ˆ.e; f; g/ˆ.f; g; e/

ˆ.f; e; g/
D ˆ.e; f; g/: (4.9)

4.3. Braided linear spaces. The aim of this subsection is to give a classification of
braided linear spaces in kG

kGYDˆ:Without loss of the generality, we may assume that
if a braided linear space S in kG

kGYDˆ is generated by a set fX1; : : : ; Xng of primitive
elements and theG-degree ofXi is gi for 1 � i � n; then hgi ; : : : ; gni D G: In fact,
if hgi ; : : : ; gni ˆ G; let G0 D hgi ; : : : ; gni; then S is actually a braided linear space
in kG0

kG0YDˆ0 such that hgi ; : : : ; gni D G0; where ˆ0 D ˆjG0 :
Lemma 4.4. Keep the assumptions of the braided linear space S in kG

kGYDˆ:
Then kXi is a 1-dimensional .G; êgi /-representation.
Proof. Let V D ˚1�i�nkXi : As mentioned in Subsection 2.4, V is an object
in kG

kGYDˆ: For i ¤ j; we have by the defining relations of S

�.XiXj � qj;iXjXi / D .XiXj � qj;iXjXi /˝ 1C .gi FXj � qj;iXj /˝Xi

C .Xi � qj;igj FXi /˝Xj C 1˝ .XiXj � qj;iXjXi /

D 0:

So we have
gi FXj D qj;iXj ; qj;igj FXi D Xi : (4.10)

It remains to consider gi F Xi : If there are gj D gi for some j ¤ i; then we
have gi F Xi D gj F Xi D qi;jXi : Then the G-action on kXi is stable and it is a
.G; êgi /-representation. Otherwise, gi ¤ gj for any j ¤ i; then it is obvious that
kXi D Vgi and so kXi is a .G; êgi /-representation as well by Proposition 2.3.

Lemma 4.5. Suppose that kX is a .G; êh/-representation with action g FX D qX:
Then we have

gk FX D

k�1Y
jD1

ˆ.h; gj ; g/�1qkX: (4.11)

Proof. This is obvious by induction on k:
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Corollary 4.6. Keep the assumptions of the previous lemma. Then

qln D

ln�1Y
jD1

ˆ.h; gj ; g/; (4.12)

where n D jgj:

Lemma 4.7. Let V 2kG
kG YDˆ whereˆ is of the form of (4.6). IfX 2 Vg is nonzero

satisfying g FX D qX; then we have in T .V /

�.X
�!
m / D

mX
iD0

 
m

i

!
q

X
�!
i e̋X��!m�i (4.13)

where X
�!
i e̋X��!m�i DQm�1�i

jD1 ˆ.gi ; gj ; g/�1X
�!
i ˝X

��!
m�i :

Proof. We prove this lemma by induction on m:
If m D 1; the identity is obvious.
Suppose the identity is correct for m; i.e., �.X

�!
m / D

Pm
iD0

�
m
i

�
q
X
�!
i e̋X��!m�i :

Now consider

�.X
���!
mC1/ D �.X

�!
m /�.X/ D

mX
iD0

 
m

i

!
q

.X
�!
i e̋X��!m�i /.X ˝ 1C 1˝X/: (4.14)

We have 
m

i

!
q

.X
�!
i e̋X��!m�i /.1˝X/
D

 
m

i

!
q

m�1�iY
jD1

ˆ.gi ; gj ; g/�1.X
�!
i
˝X

��!
m�i /.1˝X/

D

 
m

i

!
q

m�1�iY
jD1

ˆ.gi ; gj ; g/�1ˆ.gi ; g.m�i/; g/�1X
�!
i
˝X

�����!
mC1�i

D

 
m

i

!
q

m�iY
jD1

ˆ.gi ; gj ; g/�1X
�!
i
˝X

�����!
mC1�i

D

 
m

i

!
q

X
�!
i e̋X�����!mC1�i
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and 
m

i � 1

!
q

.X
��!
i�1e̋X�����!mC1�i /.X ˝ 1/

D

 
m

i � 1

!
q

m�iY
jD1

ˆ.gi�1; gj ; g/�1.X
��!
i�1
˝X

�����!
mC1�i /.X ˝ 1/

D

 
m

i � 1

!
q

m�iY
jD1

ˆ.gi�1; gj ; g/�1
ˆ.g.i�1/; g.mC1�i/; g/

ˆ.g.i�1/; g; g.mC1�i//

� ŒX
��!
i�1.g.mC1�i/ FX/�˝X

�����!
mC1�i

D

 
m

i � 1

!
q

m�iY
jD1

ˆ.gi�1; gj ; g/�1
m�iY
jD1

ˆ.g; gj ; g/�1q.mC1�i/X
�!
i
˝X

�����!
mC1�i

D

 
m

i � 1

!
q

m�iY
jD1

ˆ.gi ; gj ; g/�1q.mC1�i/X
�!
i
˝X

�����!
mC1�i

D

 
m

i � 1

!
q

qmC1�iX
�!
i e̋X�����!mC1�i :

Note that the third equality follows from (4.7) and Lemma 4.5, and the fourth follows
from (4.8).

By the previous two identities, we obtain 
m

i

!
q

.X
�!
i e̋X��!m�i /.1˝X/C  m

i � 1

!
q

.X
��!
i�1e̋X�����!mC1�i /.X ˝ 1/

D

 
mC 1

i

!
q

X
�!
i e̋X�����!mC1�i ;

hence

�.X
���!
mC1/ D

mC1X
iD0

 
mC 1

i

!
q

.X
�!
i e̋X�����!mC1�i /:

The lemma is proved.

Corollary 4.8. Suppose that X is a primitive element of S.V / of G-degree g such
that g F X D qX; then q ¤ 1 and the nilpotent order of X is jqj; i.e., jqj is the
minimal positive integer m such that X

�!
m D 0:
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Proof. If q D 1; then by Lemma 4.7 we have in T .V /

�.X
�!
m / D

mX
iD0

 
m

i

!
X
�!
i e̋X��!m�i :

This implies that in S.V / if X
�!
m ¤ 0 then X

���!
mC1 ¤ 0: It follows that fX

�!
m jm ¤ 0g

is a linearly independent set of S.V /: This is absurd as S.V / is assumed to be finite
dimensional.

So q ¤ 1; and clearly q is a root of a unity. Let l D jqj: Then by (4.13) we can
see that l is the unique number greater than 1 such that

�.X
�!
l / D X

�!
l
˝ 1C 1˝X

�!
l ;

i.e.,X
�!
l is a primitive element ofT .V / of degree l > 1; hencemust be 0 inS.V /:

Now we are ready to give one of the main results of this paper.
Theorem 4.9. The set of braided linear spaces of rank n in kG

kGYDˆ is in one-to-one
correspondence with the set of admissible series of quasi-characters f�1; : : : ; �ng
of G with respect to ˆ: More precisely, if an admissible series of quasi-characters
f�1; : : : ; �ng of G with respect to ˆ is given, the corresponding braided linear
space S in kG

kGYDˆ can be presented by

X
�!
Ni
i D 0 where Ni D j�i .gi /j; 1 � i � n; (4.15)

XiXj D �j .gi /XjXi ; 1 � i ¤ j � n (4.16)

and the coalgebra structure is determined by�.Xi / D Xi˝1C1˝Xi and ".Xi / D 0
for all i:

Proof. Suppose that S is a braided linear space of rank n in kG
kGYDˆ: Then by

Lemma 4.4, it is not hard to show that S.1/ provides an admissible series of quasi-
characters of G with respect to ˆ:

Conversely, given an admissible series of quasi-characters f�1; : : : ; �ng ofG with
respect toˆ; then there are one-dimensional .G; êgi /-representationskXi .1 � i � n/.
Let V D ˚1�i�nkXi and by Proposition 2.3 V becomes an object in kG

kGYDˆ if the
G-degree of Xi is set to be gi : Consider the tensor algebra T .V / in the category. As
the elements in

fX
Ni
i ; XiXj � �j .gi /XjXi jNi D j�i .gi /j; 1 � i � ng

are primitive in T .V /; the ideal I generated by this set is a braidedHopf ideal of T .V /
in the category kG

kGYDˆ: Now the quotient braided Hopf algebra S.V / D T .V /=I

is the desired braided linear space.
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Remark 4.10. Keep the notations and assumptions of the above theorem. ThenS.V /
is isomorphic to the Nichols algebra B.V / of V in kG

kGYDˆ: This is clear by
Proposition 3.3, Theorem 3.6 and the fact that ŒS.V /#kG�coinvkG D S.V /:
In other words, S.V / is a commutative Nichols algebra in the braided tensor
category kG

kGYDˆ:

5. Finite quasi-quantum linear spaces

In this section we give a classification of finite quasi-quantum linear spaces. As
mentioned earlier in the introduction, this amounts to a classification of finite-
dimensional graded pointed Majid algebras generated by an abelian group and a
set of skew-primitive elements which are mutually quasi-commutative.

Let M be a finite-dimensional graded pointed Majid algebra generated by
an abelian group G and a set of quasi-commutative skew-primitive elements
fXi j1 � i � ng. Assume further that�.Xi / D Xi ˝ 1C gi ˝Xi for 1 � i � n and
that G D hg1; : : : ; gni throughout this section. ThenM0 D kG and the associated
coinvariant subalgebra R is a braided linear space in kG

kGYDˆ: In fact, if we let
V D ˚1�i�nkXi as in Section 4, then by Remark 4.10 R Š S.V / as braided Hopf
algebras in kG

kGYDˆ:We apply the results of Sections 3 and 4 to determineM: First
we provide the explicit set of admissible sets of quasi-characters of G with respect
to a 3-cocycle ˆ on G; and then we carry out the bosonization procedure for the
corresponding braided linear spaces in the braided tensor category kG

kGYDˆ:
As in Section 4, we assume thatG D Zm1 �� � ��ZmN and ei is a fixed generator

of Zmi for 1 � i � N:We also keep the notations of Section 4.

5.1. Quasi-characters associated to Q̂ g . In view of Proposition 4.3, in this section
we only need to consider 3-cocycle ˆ of the following form

ˆ.e
i1
1 � � � e

iN
N ; e

j1
1 � � � e

jN
N ; e

k1
1 � � � e

kN
N / D

NY
lD1

�
al il Œ

jlCkl
ml

�

l

Y
1�s<t�N

�
ast it Œ

jsCks
ms

�

mt :

In this case, êg.e; f / D ˆ.g; e; f / and it is a symmetric 2-cocycle. Moreover, there
are quasi-characters associated to êg for any g 2 G: The following lemma gives an
explicit presentation of the quasi-characters associated to êg :
Lemma 5.1. Letˆ be a 3-cocycle onG of the form (4.6). Then � is a quasi-character
of G associated to êg for g D ei11 � � � e

iN
N if and only if

�.el/ D

�
�al ilml

Y
l<t�N

�alt itmt

� 1
ml

(5.1)

for 1 � l � N:
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Proof. By (4.4), we have

�.eal /�.e
b
l / D

ê
g.e

a
l ; e

b
l /�.e

aCb
l

/ D ˆ.g; eal ; e
b
l /�.e

aCb
l

/

D �
al il Œ

aCb
ml

�

ml

Y
l<t�N

�
alt it Œ

aCb
ml

�

mt �.eaCb
l

/:

From this identity it is easy to see that �.eai / D �.ei /
a for a < ml and that

�.e
ml
l
/ D ��al ilml

Y
l<t�N

��alt itmt
�.e

ml�1

l
/�.el/ D �

�al il
ml

Y
l<t�N

��alt itmt
�.el/

ml D 1;

then �.el/ D
�
�
al il
ml

Q
l<t�N �

alt it
mt

� 1
ml for 1 � l � N:

Conversely, assume �.el/ D
�
�
al il
ml

Q
l<t�N �

alt it
mt

� 1
ml for 1 � l � N: Define

�.e
r1
1 � � � e

sN
N / D �.e1/

s1 � � ��.eN /
sN :

Then by a routine calculation one can verify that � is a quasi-character associated
to êg :
5.2. Admissible series of quasi-characters. Let f�1; : : : ; �ng be an admissible
series of quasi-characters of G with respect to ˆ where �i is a quasi-character
associated to êgi for 1 � i � n: Suppose that gi D e

˛i1
1 � � � e

˛iN
N for 1 � i � n:

Then we get an n �N matrix .˛ij / with integer entries.

Lemma 5.2. Suppose A D .˛ij / is an n � N matrix as above. Then there is an
admissible series of quasi-characters f�1; : : : ; �ng of G with respect to ˆ with �i
associated to êgi if and only if

NY
lD1

�
�

2al˛il˛jl
ml

ml

Y
l<t�N

�

alt .˛it ˛jlC˛jt˛il /

ml
mt

�
D 1; 1 � i ¤ j � n; (5.2)

and

NY
lD1

�
�

al˛
2
il

ml
ml

Y
l<t�N

�

alt˛it ˛il
ml

mt

�
¤ 1; 1 � i � n: (5.3)

Proof. Assume that f�1; : : : ; �ng is an admissible series of quasi-characters of G
with respect to ˆ with �i associated to êgi : Then by Lemma 5.1, we have

�i .el/ D
�
�al˛ilml

Y
l<t�N

�alt˛itmt

� 1
ml ;
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hence

�i .gj / D

NY
lD1

�
�

al˛il˛jl
ml

ml

Y
l<t�N

�

alt˛it ˛jl
ml

mt

�
:

Now (5.2) follows from the condition �i .gj /�j .gi / D 1 for 1 � i ¤ j � n;

and (5.3) follows from the condition �i .gi / ¤ 1 for 1 � i � n:
Conversely, suppose (5.2) and (5.3) hold. Define quasi-characters �i associated

to êgi for 1 � i � n by

�i .el/ D

�
�al˛ilml

Y
l<t�N

�alt˛itmt

� 1
ml

; 1 � l � N:

By a direct verification, one can show that f�1; � � � ; �ng is an admissible series of
quasi-characters of G with respect to ˆ:

5.3. Classification results. By A.G;ˆ/ we denote the set of those n � N integer
matrices .˛ij / satisfying the conditions given in Subsection 5.2. Finally we are ready
to give the main classification result.

Theorem 5.3. Given an n � N matrix .˛ij / in A.G;ˆ/; we can define a finite-
dimensional graded pointedMajid algebraM generated byG and a set fX1; : : : ; Xng
of skew-primitive elements subject to relations

eiXj D

�
�
ai˛ji
mi

Y
i<t�N

�
ait˛jt
mt

� 1
mi

Xj ei ; 1 � i � N; 1 � j � n;

XiXj D

NY
lD1

�
�

al˛il˛jl
ml

ml

Y
l<t�N

�

alt˛jt˛il
ml

mt

�
XjXi ; 1 � i ¤ j � n;

X
�!
Ni
i D 0; Ni D

ˇ̌̌̌ NY
lD1

�
�

al˛
2
il

ml
ml

Y
l<t�N

�

alt˛it ˛il
ml

mt

�ˇ̌̌̌
; 1 � i � n:

The coproduct ofM is determined by �.g/ D g ˝ g for any g 2 G and �.Xi / D
Xi˝1Cgi˝Xi where gi D e

˛i1
1 � � � e

˛iN
N for 1 � i � n: The associator is obtained

by extending ˆ as in Section 3. Conversely, any finite-dimensional graded pointed
Majid algebra generated by G and a set fX1; : : : ; Xng of skew-primitive elements
satisfying the quasi-commutative condition is twist equivalent to one of the Majid
algebras defined above.

Proof. Direct consequence of Proposition 3.3 and Theorem 4.9.
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5.4. Examples of pointed Majid algebras over Z2 �Z2 �Z2. We conclude the
paper by an explicit classification of the finite quasi-quantum linear spaces over the
group G D Z2 � Z2 � Z2: On the one hand, these examples are new and are very
interesting in their own right. On the other hand, the method of computations here
provides a typical model for any finite abelian group.

LetM be a finite-dimensional graded pointed Majid algebra generated by G and
a set of quasi-commutative skew-primitive elements fXi j 1 � i � N g: As before
denote the degree of Xi by xi : We also assume that the set fxi j 1 � i � N g

generates the group G: Hence the pointed Majid algebras M is of rank � 3; i.e.,
N � 3: Besides, as hx1; : : : ; xN i D G; so three of them, say x1; x2; x3; generate G:
The following lemma is obvious.
Lemma 5.4. With the above assumptions, we have G D hx1i � hx2i � hx3i:

Then by Proposition 4.3, the 3-cocycles onG can be chosen in the following form

ˆ.x
i1
1 x

i2
2 x

i3
3 ; x

j1
1 x

j2
2 x

j3
3 ; x

k1
1 x

k2
2 x

k3
3 / D

Y
1�l�3

.�1/al il Œ
jlCkl
2 �

Y
1�s<t�3

.�1/ast it Œ
jsCks
2 �;

(5.4)
where al ; ast 2 f0; 1g: It turns out that as the associator of M the 3-cocycles ˆ
should be further restricted as follows.
Proposition 5.5. Keep the above assumptions onM: Then its associator ˆ must be
of the following form

ˆ.x
i1
1 x

i2
2 x

i3
3 ; x

j1
1 x

j2
2 x

j3
3 ; x

k1
1 x

k2
2 x

k3
3 / D

3Y
lD1

.�1/al il Œ
jlCkl
2 � (5.5)

with each al 2 f0; 1g:

Proof. Let V D kfX1; : : : ; XN g; then V 2 kG
kGYDˆ and M D B.V /#kG by

Theorem 3.6. According to Theorem 4.9, there is an admissible series of quasi-
characters f�1; : : : ; �N g with respect to ˆ which corresponds to B.V /; and each �i
is associated to ˆxi for all 1 � i � N: Then by (5.2), we get .�1/

ast
2 D 1 for all

1 � s < t � 3: Note that here we have used the facts ˛ij D ıij for all 1 � i; j � 3:
So we get ast D 0 for all 1 � s < t � 3 and the claim follows.

Now there are possibly seven nontrivial associators for finite quasi-quantum linear
spaces overG: For each casewe can compute the admissible series of quasi-characters
in the same manner. In the following, we will take

ˆ.x
i1
1 x

i2
2 x

i3
3 ; x

j1
1 x

j2
2 x

j3
3 ; x

k1
1 x

k2
2 x

k3
3 / D

3Y
lD1

.�1/il Œ
jlCkl
2 �

for example.
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In other words, we fix the ˆ as in (5.5) with a1 D a2 D a3 D 1: By Lemma 5.1, we
have

�1.x1/ D ˙i; �1.x2/ D ˙1; �1.x3/ D ˙1: (5.6)

Here and below, i stands for
p
�1: Similarly we have

�2.x1/ D ˙1; �2.x2/ D ˙i; �2.x3/ D ˙1I (5.7)
�3.x1/ D ˙1; �3.x2/ D ˙1; �3.x3/ D ˙i: (5.8)

Also by taking (4.5) into consideration, we obtain

�1.x2/ D �2.x1/ D ˙1; �1.x3/ D �3.x1/ D ˙1; �2.x3/ D �3.x2/ D ˙1:

(5.9)
From (5.6–5.9), we can easily get all cases of rank 3 admissible quasi-characters
f�1; �2; �3g of G with respect to the given ˆ: If N > 3; then according to
Definition 4.2 we have

�j .xi / D �
�1
i .xj / (5.10)

for all 1 � i � 3 and j > 3: As �1; �2; �3 are fixed, thus any other
character �j .j > 3/ which is compatible with f�1; �2; �3g; i.e., the conditions
of Definition 4.2 hold, is uniquely determined by xj due to (5.10) by noting that
x1; x2; x3 generate G and that �j is multiplicative. Since xi ¤ 1; so there are
possibly at most 7 other classes of quasi-characters than �1; �2; �3 which obviously
correspond to the set of non-identity elements ofG:For the convenience of exposition,
we make a convention for the notations of the quasi-characters �j .j � 4/: Let �0i
denote the quasi-character in the series f�j gj�4 corresponding to xi for 1 � i � 3;
�ij the quasi-character corresponding to xixj for 1 � i < j � 3; and �123 the
quasi-character corresponding to x1x2x3:With the above notations and assumptions,
we have

Proposition 5.6. Any admissible series of quasi-characters of G with respect to the
fixed ˆ must be one of the following:

(1) f�1; : : : ; �N g with 3 � N � 6; �4; : : : ; �N are distinct, and for each j � 4,
�j 2 f�

0
1; �
0
2; �
0
3g;

(2) f�1; : : : ; �N g with N � 5, �4 D �0
k
for some 1 � k � 3, �i .xi / D �j .xj /

for fi; j g D f1; 2; 3g n fkg, and �5 D � � � D �N D �ij ;

(3) f�1; : : : ; �N g with N � 4; �4 D � � � D �N D �ij for some 1 � i < j � 3;

and �i .xi / D �j .xj /;

(4) f�1; : : : ; �N g with N � 4, �4 D �123, �5 D � � � D �N D �ij for some
1 � i < j � 3, and �i .xi / D �j .xj /.
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Proof. The proof is divided into three cases. Note that all the rank 3 admissible
series of quasi-characters are contained in (1), so in (2–4) the ranks are assumed> 3.

Case 1. If there is a �j .j � 4/ corresponding to xi for some 1 � i � 3;

then by (5.10) it follows that �j .xi / D ��i .xi / and that �j .xk/ D �i .xk/ for
1 � k ¤ i � 3:

If there is another �k .k � 4/ corresponding to xl for some 1 � l � 3;

then we have l ¤ i since otherwise �k.xi / D ��i .xi / D ��j .xi /; which is
absurd. We also claim that there is no �r .r � 4/ corresponding to xsxt for some
1 � s < t � 3:Otherwise, one of fi; lg; say i; should be s or t: Then by (4.5) we have
�r.xi /�i .xsxt / D 1 D �r.xi /�j .xsxt /; which clearly contradicts with the previous
fact �i .xsxt / D ��j .xsxt /: Similarly, there is no quasi-character corresponding to
x1x2x3: Therefore, all the possible admissible series of quasi-characters discussed
above fall into (1) of our list. On the other hand, the admissibility of the series in (1)
can be easily verified.

Next we assume other than �j ; there is no other �k .k � 4/ corresponding
to xl for any 1 � l � 3: Suppose some �r .r � 4/ is corresponding to xsxt
for certain 1 � s < t � 3: By the above discussion, we have s ¤ i ¤ t: The
condition 1 ¤ �r.xsxt / together with (5.6–5.10) implies that �s.xs/ D �t .xt /:

Then such series fall into (2) of the list. As for their admissibility, we have by direct
computation that �r.xi /�j .xsxt / D 1; and that �r.xsxt / D �s.xs/�t .xt / D �1

since �s.xs/ D �t .xt / D ˙i:
Case 2. Assume that there is no �j .j � 4/ corresponding to xi for 1 � i � 3 or

to x1x2x3:
Since N � 4; so there is some �m corresponding to xkxl for certain 1 � k <

l � 3: We claim that there is no other �n .n � 4/ corresponding to xsxt with
xkxl ¤ xsxt : Otherwise, we have k D s; l ¤ t or k ¤ s; l D t: In either case, one
can show that �m.xn/�n.xm/ D �m.xsxt /�n.xkxl/ ¤ 1 which is a contradiction.
Thus, all the possible admissible series discussed previously fall into (3) of the list.

Case 3.Assume that there is no�j .j � 4/ corresponding to xi for any 1 � i � 3;
but there is some �k .k � 4/ corresponding to x1x2x3:

In this situation, if there is some �m corresponding to xkxl for certain
1 � k < l � 3, then by the preceding discussion we know that �m.xkxl/ ¤ 1

implies �k.xk/ D �l.xl/; and that there is no �n .n � 4/ corresponding to xsxt with
xkxl ¤ xsxt : In addition, there is no other �r .r � 4/ corresponding to x1x2x3 by
a simple checking of the admissibility. Then the admissible series discussed in this
case fall into (4) of our list. As for their admissibility, one only needs to do the easy
computation �m.x4/�4.xm/ D �m.x1x2x3/�4.xkxl/ D 1:

Corollary 5.7. The following list provides an explicit presentation of the quasi-
quantum linear spaces over Z2 �Z2 �Z2 associated to the list of admissible series
of quasi-characters in Proposition 5.6:
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(1)

xmXn D �n.xm/Xnxm; 1 � m � 3; 1 � n � N I

XmXn D �n.xm/XmXn; 1 � m ¤ n � N I

X
�!
4
m D 0; 1 � m � N:

The coproduct is determined by 4.g/ D g ˝ g for g 2 G, 4.Xm/ D
Xm ˝ 1C xm ˝ Xm for 1 � m � 3 and 4.Xn/ D Xn ˝ 1C xl ˝ Xn for
4 � n � N; here �n D �0l for some 1 � l � 3:

(2)

xmXn D �n.xm/Xnxm; 1 � m � 3; 1 � n � N I

XmXn D �n.xm/XmXn; 1 � m ¤ n � N I

X
�!
4
m D 0; 1 � m � 4I

X
�!
2
n D 0; 5 � n � N:

The coproduct is determined by 4.g/ D g ˝ g for g 2 G; 4.Xm/ D

Xm ˝ 1 C xm ˝ Xm for 1 � m � 3; 4.X4/ D X4 ˝ 1 C xk ˝ X4 and
4.Xn/ D Xn ˝ 1C xixj ˝Xn for 5 � n � N:

(3)

xmXn D �n.xm/Xnem; 1 � m � 3; 1 � n � N I

XmXn D �n.xm/XmXn; 1 � m ¤ n � N I

X
�!
4
m D 0; 1 � m � 3I

X
�!
2
n D 0; 4 � n � N:

The coproduct is determined by 4.g/ D g ˝ g for g 2 G; 4.Xm/ D

Xm˝ 1C xm˝Xm for 1 � m � 3; and4.Xn/ D Xn˝ 1C xixj ˝Xn for
4 � n � N:

(4)

xmXn D �n.xm/Xnxm; 1 � m � 3; 1 � n � N I

XmXn D �n.xm/XmXn; 1 � m ¤ n � N I

X
�!
4
m D 0; 1 � m � 4I

X
�!
2
n D 0; 5 � n � N:

The coproduct is determined by 4.g/ D g ˝ g for g 2 G; 4.Xm/ D

Xm ˝ 1C xm ˝Xm for 1 � m � 3;4.X4/ D X4 ˝ 1C x1x2x3 ˝X4 and
4.Xn/ D Xn ˝ 1C xixj ˝Xn for 5 � n � N:
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Remark 5.8. Our method of computation may be applied to give a complete
classification of finite quasi-quantum linear spaces, up to twist equivalence, over
Z2 � Z2 � Z2 with nontrivial associators. As for a coboundary associator, the
classification is reduced by gauge transformation to that of finite quantum linear
spaces over Z2 � Z2 � Z2 which was contained in [3]. It is worth to note that,
via a gauge transform of those quantum linear spaces over Z2 � Z2 � Z2 by the
Albuquerque–Majid cochain related to the octonions, one naturally obtains all the
finite octonionic quasi-quantum linear spaces!

Acknowledgements. The authors are very grateful to the anonymous referee for the
valuable comments and suggestions which highly improved the exposition.
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