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Bott type periodicity for the higher octonions
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Abstract. We study the series of complex nonassociative algebras On and real nonassociative
algebras Op;q introduced in [10]. These algebras generalize the classical algebras of octonions
and Clifford algebras. The algebras On and Op;q with p C q D n have a natural Zn

2
-grading,

and they are characterized by cubic forms over the field Z2. We establish a periodicity for the
algebras On and Op;q similar to that of the Clifford algebras Cln and Clp;q .
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1. Introduction

A series of noncommutative and nonassociative algebras Op;q over R and their
complexification On (where n D p C q) was recently introduced [10] and studied
in [8,9,11]. The algebrasOn andOp;q generalize the classical algebras of octonions
and split octonions in the sameway as theClifford algebras generalize the quaternions.
Note that the algebra of octonionsO appears in the series asO0;3, whereas the algebra
of split octonions is isomorphic toO3;0,O1;2 andO2;1. The properties of the algebras
On and Op;q are very different from those of the classical Cayley–Dickson algebras.

The series of algebras On and Op;q is illustrated by the Figure 1.
The complex algebras On and especially the real algebras O0;n have applications

to the classical Hurwitz problem of sum of square identities and related problems;
see [9, 11]. An application of On to additive combinatorics was suggested in [12].

The idea to understand the classical algebra of the octonionsO as a graded algebra
was suggested in [5], where, in particular, a Z32-grading was considered1. In [1], the
algebra O was understood as a twisted group algebra over Z32 which has a graded
commutative and graded associative structure.

1Throughout the paper we denote by Z2 the quotient Z=2Z understood as abelian group, and also as
a field of two elements f0; 1g.
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The algebras On and Op;q are graded algebras over the abelian group Zn2; the
algebra O0;3 is isomorphic to O. Moreover, they are characterized by a cubic form

˛ W Zn2 ! Z2;

where Zn2 is understood as a vector space of dimension n over the field Z2 of two
elements; see [10]. This is the main property of the algebras On and Op;q that
distinguish them from other series of algebras generalizing the octonions, such as the
Cayley–Dickson algebras.

Cayley–Dickson
algebrasR C H O : : :

Cl0;3

Cl0;4

:::

Clifford
algebras

O0;4

O0;5

:::

algebras
Op;q

Figure 1. Families of Zn
2
-graded algebras

The problem of classification of the real algebras Op;q with fixed n D p C q

depending on the signature .p; q/, was formulated in [10]. This problem was solved
in [8], the result is as follows. The classification table of Op;q for p and q 6D 0,
coincides with the well known table of the real Clifford algebras; the algebras O0;n
and On;0 are exceptional.

The present paper answers the following problem: how do the algebras On and
Op;q with p C q D n depend on the parameter n? Similarity with the Clifford
algebras allows one to expect properties of periodicity, in particular it is natural to
look for analogs of so-called Bott periodicity; see [3].

We consider the problem of periodicity in the complex and in the real cases
separately. We establish a periodicity modulo 4. In the complex case, we link
together the algebrasOn andOnC4. Note that for the complex Clifford algebras there
is a simple periodicity modulo 2. In the real case, for the algebras Op;q (provided
p > 0 and q > 0) we establish a result about periodicity modulo 4. The situation
for the exceptional algebras O0;n and On;0 is different, two different results about
periodicity modulo 4 are given. The results are compared to the well-known results
for the Clifford algebras Clp;q .
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2. The algebras On and Op;q

In this section, we recall definitions of the complex algebras On and of the real
algebras Op;q , as twisted group algebras over Zn2 characterized by a cubic form. We
then give an equivalent definition ofOn andOp;q in term of generators and relations.
Finally, we recall the main results of classification from [8].

2.1. On andOp;q as twisted group algebras over Zn
2
. We denote byK the ground

field assumed to be R or C. Let f be an arbitrary function in two arguments

f W Zn2 � Zn2 ! Z2:

The twisted group algebra A D .K
�
Zn2
�
; f / (for more detail see [4] and [10]) is

defined as the 2n-dimensional vector space with the basis fux; x 2 Zn2g, and equipped
with the product

ux � uy D .�1/
f .x;y/uxCy ;

for all x; y 2 Zn2 .
Example 2.1. (a) Recall that the real Clifford algebra denoted by Clp;q is the
associative algebra with n D p C q generators v1; : : : ; vn satisfying the relations

v2i D

(
1; 1 � i � p;

�1; p C 1 � i � p C q;

vi � vj D �vj � vi ;

(2.1)

for all i ¤ j � n. Obviously, dimClp;q D 2n, and a natural basis is˚
vi1 � � � vik j 1 � i1 < � � � < ik � n

	
:

The (real) algebra of quaternionsH (' Cl0;2), and more generally every complex
or real Clifford algebra with n generators can be realized as twisted group algebras
over Zn2; see [2]. Denote by x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ the elements
in Zn2 (where the components xi and yi are equal to 0 or 1) and defined two functions
given by

fCln .x; y/ WD
X

1�i�j�n

xiyj ;

fClp;q
.x; y/ WDfCln .x; y/C

X
1�i�p

xiyi .n D p C q/:

Then the defined twisted group algebras are isomorphic to Cln in the complex case,
and to Clp;q in the real case. In particular, fH .x; y/ D x1y1 C x1y2 C x2y2
corresponds to the algebra of quaternions.
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(b) The (real) algebra of octonions O is a twisted group algebra over Z32; see [1].
The twisting function is cubic:

fO .x; y/ D .x1x2y3 C x1y2x3 C y1x2x3/C
X

1�i�j�3

xiyj :

The next definition is the main object of the present paper.
Definition 2.2. [10] The complex algebra On and the real algebra Op;q with
p C q D n � 3 are the twisted group algebras with the twisting functions

fOn
.x; y/ D

X
1�i<j<k�n

.xixjyk C xiyjxk C yixjxk/C
X

1�i�j�n

xiyj ;

fOp;q
.x; y/ D fOn

.x; y/C
X
1�i�p

xiyi ;

respectively. Note that the element 1 WD u.0;:::;0/ is the unit of the algebra.
The real algebra O0;3 is nothing but the classical algebra O of octonions.

Definition 2.3. For both series of algebras Clp;q and Op;q the index .p; q/ is called
the signature, and throughout the paper we assume p C q D n.

2.2. Graded-commutative and graded-associative algebras. Every twisted
algebra .KŒZn2�; f / is a graded algebra over the group Zn2 . In general, a twisted
group algebra is neither commutative nor associative. The defect of commutativity
and associativity is measured by a symmetric function ˇ W Zn2 � Zn2 ! Z2, and a
function � W Zn2 � Zn2 � Zn2 ! Z2, respectively:

ux � uy D .�1/
ˇ.x;y/ uy � ux; (2.2)

ux � .uy � uz/ D .�1/
�.x;y;z/ .ux � uy/ � uz; (2.3)

where ˇ and � are given by

ˇ.x; y/ D f .x; y/C f .y; x/; (2.4)
�.x; y; z/ D f .x; y/C f .x; y C z/C f .x C y; z/C f .y; z/: (2.5)

Note that the second formula reads � D ıf where ı is the coboundary operator.
Therefore, the function � is a trivial 3-cocycle on Zn2 with coefficients in Z2.

Algebras satisfying the relations (2.2) and (2.3) are called graded-commutative
and graded-associative, respectively. In particular, the algebras On and Op;q are
graded-commutative and graded-associative.
Remark 2.4. Note also that the algebras On and Op;q are graded-alternative, i.e.,

u � .u � v/ D u2 � v;

for all homogeneous elements u; v.
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2.3. The algebrasOn andOp;q: generators and relations. We give here another,
equivalent definition of the algebras On and Op;q with the help of generators and
relations.

Let denote the basis elements of the abelian group Zn2 ,

ei D .0; : : : ; 0; 1; 0; : : : ; 0/ (2.6)

where 1 stands at the i th position. The homogeneous elements ui WD uei
, 1 � i � n

form a set of generators of the group algebra KŒZn2�.
Let u D ui1 � � �uik be a monomial in the generators, the degree of u is the element

of Zn2 given by
Nu WD Nui1 C � � � C Nuik ;

where the degree of the generator ui is Nui D ei . The monomials form a basis of the
group algebra KŒZn2�.

It was shown in [10] that there exists a unique trilinear form � WZn2�Zn2�Zn2!Z2
such that

�.ei ; ej ; ek/ D 1; (2.7)

for all distinct i; j and k in f1; : : : ; ng. The algebrasOp;q can be equivalently defined
as follows.
Definition 2.5. (a) The algebra Op;q is the unique real unital algebra, generated

by n elements u1; : : : ; un .p C q D n/, subject to the relations

u2i D

(
1; 1 � i � p;

�1; p C 1 � i � p C q;

ui � uj D �uj � ui ;

for all i ¤ j � n, together with the graded associativity

u � .v � w/ D .�1/�. Nu; Nv; Nw/.u � v/ � w;

where u; v;w are monomials, and where � is the unique trilinear form
satisfying (2.7).

(b) The algebraOn is the complexification ofOp;q , its generators satisfy the same
relations.

Clearly, the complexifications of Op;q and Op0;q0 with pC q D p0 C q0 D n are
isomorphic.

The following observation is important.
Remark 2.6. The trilinear form � is symmetric in three arguments, i.e.,

�.x; y; z/ D �.x; z; y/ D � � � D �.z; y; x/; (2.8)

for all x; y; z 2 Zn2 .



1206 M. Kreusch

2.4. Classification of Op;q . Classification of Op;q as Zn2-graded algebras was
obtained in [8]. It consists in the list of isomorphisms between these algebras that
preserve the structure ofZn2-graded algebra (i.e. isomorphisms sending homogeneous
elements into homogeneous) are as follows.

Proposition 2.7. If pq 6D 0, then there are the following isomorphisms of graded
algebras:

(i) Op;q ' Oq;p ;

(ii) Op;qC4 ' OpC4;q ;

(iii) For n � 5, the algebras On;0 and O0;n are not isomorphic, and are not
isomorphic to any other algebras Op;q with p C q D n.

All the isomorphisms between the algebras Op;q are as above.

Note that, apart for the algebras On;0 and O0;n which are exceptional, the above
classification is quite similar to the classification of Clp;q .

A kind of degeneracy occurs in the small dimensions, since for n D 3, one has :

O3;0 ' O2;1 ' O1;2 6' O0;3;

and for n D 4, one has :

O4;0 ' O2;2 6' O1;3 ' O3;1 6' O0;4:

Let us also mention the following criterion of simplicity from [10].

Proposition 2.8. The algebra Op;q is simple if and only if p C q 6� 0 mod 4, or
p C q � 0 mod 4 and p; q are odd.

3. The generating cubic form

We will be needing a theory, developed in [10], about a class of twisted algebras
over Zn2 that are characterized by a cubic form; this is the case for the algebras
On and Op;q . The structure of twisted group algebras that can be equipped with
generating function is much simpler than that of arbitrary twisted group algebras.
Note that this class contains such interesting algebras as the code loops [6] (see [10]),
whereas the Cayley–Dickson algebras higher that the octonions do not belong to this
class.
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3.1. The notion of generating function.
Definition 3.1. Given a twisted group algebra .K

�
Zn2
�
; f /, a function˛ W Zn2 �! Z2

is called a generating function if

(i) f .x; x/ D ˛.x/;

(ii) ˇ.x; y/ D ˛.x C y/C ˛.x/C ˛.y/;

(iii) �.x; y; z/ D ˛.x C y C z/C ˛.x C y/C ˛.x C z/C ˛.y C z/
C ˛.x/C ˛.y/C ˛.z/;

where x; y; z 2 Zn2 and where ˇ and � are as in (2.4) and (2.5).
The following statements were proved in [10].
(1) A twisted group algebra .K

�
Zn2
�
; f / has a generating function if and only if

the function � WD ıf is symmetric as in (2.8).
(2) The generating function ˛ is a polynomial on Zn2 of degree � 3.
(3) Given any polynomial ˛ on Zn2 of degree � 3, there exists a unique (up to

isomorphism) twisted group algebra .K
�
Zn2
�
; f / having ˛ as a generating

function.
It follows that if a twisted group algebra has a generating function then it is

completely characterized by this function.

3.2. Cubic forms on Zn
2

and twisted group algebras. Every cubic form
˛ W Zn2 ! Z2 is as follows:

˛.x/ D
X

1�i�j�k�n

Aijk xixjxk; (3.1)

where the coefficients Aijk D 0 or 1. Note that over Z2 one has x3i D x
2
i D xi , and

therefore, every polynomial of degree� 3 is a homogeneous cubic form. The general
theory of such cubic forms is not developed, and the classification is unknown; see [7].

One can define a twisting function f˛ associated with a cubic form ˛ according
to the following explicit procedure. To every monomial one associates:

xixjxk 7�! xixjyk C xiyjxk C yixjxk;

xixj 7�! xiyj ;

xi 7�! xiyi ;

(3.2)

where 1 � i < j < k � n. Then one extends the above map to the cubic
polynomial ˛ by linearity in monomials.
Proposition 3.2. Given a cubic function ˛, the corresponding function f˛ satisfies
Properties 1, 2 and 3 above.
Remark 3.3. Note that the procedure (3.2) is not the unique way to associate the
twisting function to a cubic form. However, any other procedure would lead to an
isomorphic algebra; see [10].
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3.3. The generating functions of On and Op;q . The algebras On and Op;q have
the following generating functions:

˛n.x/ D
X

1�i<j<k�n

xixjxk C
X

1�i<j�n

xixj C
X
1�i�n

xi ;

˛p;q.x/ D ˛n.x/C
X
1�i�p

xi :

The cubic form ˛n of On is invariant under the action of the group of permutations
of the coordinates. The value ˛n.x/ depends only on the weight (i.e. the number of
nonzero components) of x. More precisely, ˛n.x/ D 0 if and only if the weight of x
is congruent to 0 modulo 4.
Remark 3.4. In the case of Clifford algebra Cln or Clp;q , the generating functions
are the following quadratic form:

˛Cln.x/ D
X

1�i<j�n

xixj C
X
1�i�n

xi ;

˛Clp;q
.x/ D ˛Cln.x/C

X
1�i�p

xi :

This was also noticed in [10].

3.4. The problem of equivalence.
Definition 3.5. Two cubic forms ˛ and ˛0 on Zn2 are equivalent if there exists a linear
transformation G 2 GLn.Z2/ such that

˛.x/ D ˛0.Gx/:

The main method that we use to establish isomorphisms between twisted group
algebras with generating functions is based on the fact that two equivalent cubic forms
give rise to isomorphic algebras. More precisely, one has the following statement
which is an obvious corollary of the uniqueness of the generating function.
Proposition 3.6. Given two twisted group algebras, .K

�
Zn2
�
; f / and .K

�
Zn2
�
; f 0/

with equivalent generating functions ˛ and ˛0, then these algebras are isomorphic as
Zn2-graded algebras.

Let us mention that the general problem of classification of cubic forms on Zn2 is
an old open problem; see [7].

4. Periodicity

In this section, we formulate our main results in comparison with the classical results
about the Clifford algebras. The proofs will be given in Section 6. The main
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difference between the periodicity theorems that we obtain and the classical ones is
that all the periodicities for the algebras On and Op;q are modulo 4, whereas in the
case of Clifford algebras the simplest way to formulate the periodicity properties is
modulo 2.

4.1. Statement of the main theorem in the complex case. Let us recall that for
the complex Clifford algebras, one has the following simple statement:

ClnC2 ' Cln ˝ Cl2:

Note also that Cl2 is isomorphic to the algebra of complex 2 � 2-matrices. Our first
goal is to establish a similar result for the algebras On.

Consider the subalgebra of On ˝O5, denoted by P.On ˝O5/, consisting in the
elements of the form

u.x1;x2;:::;xn/ ˝ u.x1;y2;:::;y5/;

where .x1; x2; : : : ; xn/ 2 Zn2 and .x1; y2; : : : ; y5/ 2 Z52. The dimension of
P.On ˝O5/ is 2nC4 and some generators are given by

ue1Cei
˝ ue1

; ue1
˝ ue1Cej

; ue1
˝ ue1

where i 2 f2; : : : ; ng, ei D .0; : : : ; 0; 1; 0 : : : ; 0/ 2 Zn2 where 1 stands at the i th
position and j 2 f2; : : : ; 5g, ej D .0; : : : ; 0; 1; 0 : : : ; 0/ 2 Z52 where 1 stands at the
j th position. The modulo 4 periodicity on the algebras On involves the subalgebra
P.On ˝O5/. Here is the result.

Theorem 4.1. If n � 3, there is an isomorphism

OnC4 ' P.On ˝O5/:

4.2. Statement of the main theorem in the real case. In the real case, the result
is different in the case of algebras Op;q , where p; q > 0, and in the case of the
exceptional algebras On;0 and O0;n.
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Theorem 4.2. If n D p C q � 3 and pq > 0 (except for .p; q/ D .1; 4/ and
.p; q/ D .4; 1/), then there are the following isomorphisms of graded algebras

O0;nC4 ' P.O0;n ˝O5;0/ ' P.On;0 ˝O0;5/;
OnC4;0 ' P.On;0 ˝O5;0/ ' P.O0;n ˝O0;5/;

OpC2;qC2 ' P.Op;q ˝O2;3/:

In order to compare the above theorem with the classical results for the Clifford
algebras, we recall following periodicities:

ClpC2;q ' Clq;p ˝ Cl2;0;
Clp;qC2 ' Clq;p ˝ Cl0;2;

ClpC1;qC1 ' Clp;q ˝ Cl1;1:

This in particular implies

ClpC8;q ' ClpC4;qC4 ' Clp;qC8 ' Clp;q ˝Mat16.R/;

known as the Bott periodicity.

4.3. How to use the generating function. In order to illustrate our method and
the role of generating functions, let us give two simple proofs of the classical
isomorphisms ClpC2;q ' Cl2;0 ˝ Clq;p and Clp;qC2 ' Clq;p ˝ Cl0;2.

The algebras Cl2;0 ˝ Clq;p and Clq;p ˝ Cl0;2 have respectively the following
generating functions:

˛.x/ D x1x2 C
X

3�i�j�nC2

xixj C
X

pC3�i�nC2

xi ;

and
˛0.x/ D

X
1�i�j�n

xixj C
X

pC1�i�n

xi C xnC1xnC2 C xnC1 C xnC2:

It is easy to check that the coordinate transformations

x01 D x1 C x3 C � � � C xnC2; x0i D xi ; i � n;

x02 D x2 C x3 C � � � C xnC2; and x0nC1 D x1 C � � � C xnC1; (4.1)
x0i D xi ; i > 2; x0nC2 D x1 C � � � C xn C xnC2:

send respectively ˛ and ˛0 to the generating quadratic form of ClpC2;q and of
Clp;qC2. The last periodicity statement for the Clifford algebras, i.e. ClpC1;qC1 '
Cl1;1 ˝ Clq;p can be proved in a similar way.
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5. Triangulated graphs

In this section, we present a way to interpret a cubic form on Zn2 in term of a
triangulated graph2 and reformulate our main results. This will allow us to find the
simplest equivalent normal forms for the cubic forms ˛p;q , for which the periodicity
statements are very transparent.

5.1. The definition. Consider an arbitrary cubic form on Zn2:

˛.x/ D
X

1�i<j<k�n

Aijk xixjxk C
X

1�i<j�n

Bij xixj C
X
1�i�n

Ci xi :

Note that this is precisely the form (3.1) by we separate the terms for which some of
the indices coincide. We will associate a triangulated graph to every such function.
The definition is as follows.

Definition 5.1. Given a cubic form ˛, the corresponding triangulated graph is as
follows.

(1) The set of vertices of the graph coincides with the set fx1; x2; : : : ; xng. Write �
if Ci D 1 and ı if Ci D 0.

(2) Two distinct vertices, i and j , are joined by an edge if Bij D 1.

(3) Join by a triangle those (distinct) vertices i; j; k for which Aijk D 1.

Note that the defined triangulated graph completely characterizes the cubic form.

Example 5.2. Let us give elementary examples in the 2-dimensional case.

(1) The first interesting case is that of the classical algebra of quaternions H. The
quadratic form and the corresponding graph are as follows.

˛Cl0;2.x1; x2/ D x1x2 C x1 C x2;
� � ! x1 x2

(2) The other interesting case is that the Clifford algebra Cl2;0. The quadratic
form and the corresponding graph are as follows.

˛Cl2;0.x1; x2/ D x1x2;  ! x1 x2

2I am grateful to V. Ovsienko who explained me this method.
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Example 5.3. Let us give several examples in the 3-dimensional case.

(1) The first interesting case is that of the classical algebra of octonions O. The
cubic form and the corresponding graph are as follows.

˛0;3.x1; x2; x3/ D x1x2x3 C x1x2 C x1x3 C x2x3

C x1 C x2 C x3;

�
�

�
 ! x1

x2

x3

Amazingly, the above triangle contains the full information about the cubic
form ˛0;3 and therefore about the algebra O.

(2) The algebra of split octonions has the following cubic form:

˛1;2.x1; x2; x3/ D x1x2x3 C x1x2 C x1x3 C x2x3

C x2 C x3;

�

�
 ! x1

x2

x3

(3) The “trivial example”:

˛.x1; x2; x3/ � 0;
 ! x1

x2

x3

5.2. The forms Q̨ 0;n and Q̨ n;0. Let us now introduce a series of cubic forms
Q̨p;q . We will prove in Section 6 that they are equivalent to the forms ˛p;q . The
advantage of this new way to represent the cubic forms ˛p;q consists in the fact that
the corresponding graphs are very simple. The periodicity properties of the algebras
On and Op;q can be seen directly from the graphs.

Let us start with the case of signature .0; n/.
Definition 5.4. The cubic forms Q̨0;n are defined as follows.

(1) Q̨0;3 D ˛0;3.

(2) The next cases are:

Q̨0;4.x1; x2; x3; x4/ D x1x3x4 C x1x3 C x1x4

C x3x4 C x1 C x3 C x4;

�
�

�
 ! x1

x4

x3

x2

Q̨0;5.x1; : : : ; x5/ D x1x2x3 C x1x4x5 C x2x3

C x1x4 C x1x5 C x4x5 C x1

C x4 C x5;

�

�
 !

x5

x4x2

x3

x1

Q̨0;6.x1; : : : ; x6/ D x1x3x4 C x1x5x6 C x1x2

C x3x4 C x1x5 C x1x6

C x5x6 C x1 C x2 C x5 C x6:

�
�

�

�

 !

x6

x5x3

x4

x1

x2
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(3) In general, we have the following.

Q̨0;4kC3.x1; : : : ; x4C3k/ D Q̨0;3.x1; x2; x3/

C

kX
iD1

�
x1 C Q̨0;5.x1; x4i ; : : : ; x4iC3/

�
;

Q̨0;4k.x1; : : : ; x4k/ D Q̨0;4.x1; : : : ; x4/

C

k�1X
iD1

�
x1 C Q̨0;5.x1; x4iC1; : : : ; x4iC4/

�
;

Q̨0;4kC1.x1; : : : ; x4kC1/ D Q̨0;5.x1; : : : ; x5/

C

k�1X
iD1

�
x1 C Q̨0;5.x1; x4iC2; : : : ; x4iC5/

�
;

Q̨0;4kC2.x1; : : : ; x4kC2/ D Q̨0;6.x1; : : : ; x6/

C

k�1X
iD1

�
x1 C Q̨0;5.x1; x4iC3; : : : ; x4iC6/

�
:

The table below gives a series of examples of defined cubic forms.

�
�

�
Q̨0;3

�
�

��

�
Q̨0;7

�

�

�

�

�

� �

Q̨0;11

�
�

�
Q̨0;4

�
�

��

�
Q̨0;8

�

�

�

�

�

� �

Q̨0;12

�
�

�
Q̨0;5

�
�

�

� �

Q̨0;9 �
�

�
�
� �

�

Q̨0;13
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�
�

�

�

Q̨0;6

�
�

�

� �

�

Q̨0;10 �
�

�
�
� �

�

�

Q̨0;14

Figure 2. Examples of the cubic form Q̨0;n for n 2 f3; : : : ; 14g.

The property of periodicity modulo 4 is quite obvious.

Definition 5.5. The forms Q̨n;0 are defined according the following simple rule:

Q̨n;0.x1; : : : ; xn/ WD Q̨0;n.x1; : : : ; xn/C x1:

5.3. The forms Q̨ p;q . The cubic forms Q̨p;q with signature .p; q/ such that p > 0

and q > 0 are defined as follows.

Definition 5.6. (1) The first eleven cases are defined as follows.

�x1

x2

x3

Q̨1;2 �x1

x4

x3

x2

Q̨2;2 �
��

x1

x4

x3

x2

Q̨1;3

�

x5

x4x2

x3

x1
Q̨2;3 �

�

�

x5

x4x2

x3

x1
Q̨1;4

�

x6

x5x3

x4

x1

x2

Q̨3;3 �
�

�

� x6

x5x3

x4

x1

x2

Q̨2;4 �
�

�

x6

x5x3

x4

x1

x2

Q̨1;5

�
�

�x2

x3

x4 x5

x6

x7

x1
Q̨2;5 �

�

�
x2

x3

x4

x5 x6

x7

x8

Q̨2;6

x1
�

�

�

x1

x3 x2

x4

x5

x7x6

x8

x9

Q̨3;6

The coordinate formulas follow directly from the above graphs.
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(2) We define the forms Q̨p;q with arbitrary p > 0 and q > 0, except for .p; q/ D
.1; 4/ and .p; q/ D .4; 1/ in the last equation, using the following rules:

Q̨q;p WD Q̨p;qI

Q̨p;qC4 WD Q̨pC4;qI

Q̨pC2;qC2.x1; : : : ; xnC4/ WD Q̨p;q.x1; : : : ; xn/

C Q̨2;3.x1; xnC1; xnC2; xnC3; xnC4/C x1:

It is easy to check that the first eleven forms suffice to determine the rest.

5.4. An equivalent formulation of the main result. Let us give a different way to
formulate our main result.
Theorem 5.7. The cubic forms ˛p;q and Q̨p;q are equivalent for all p; q.
Theorems 4.1 and 4.2 will follow from Theorem 5.7 since the forms Q̨p;q have the
required periodicity.

6. Proof of Theorem 5.7

In this section, we give explicitly step by step the coordinate transformations that
intertwine the cubic forms ˛p;q and Q̨p;q . According to the number of generators
modulo 4, different cases appear. The cases where the number of generators is even
will be deduced from cases where the number of generators is odd. This is explained
in Sections 6.1 and 6.2. In Section 6.3, we focus on the two cases with odd number
of variables. Finally, we finish the proof of the Theorem 5.7 in Section 6.4.

6.1. The case .p; q/ with n D 4k. This first lemma shows that the case n D 4k

can be deduced from the case n D 4k � 1. The cubic form ˛p;q with pC q D 4k is
equivalent to a cubic form where the last generator completely disappears or is only
present in the linear part.

We introduce the following notation. Consider the projectionZn2 ! Zn�12 defined
by “forgetting” the last coordinate, xn. The cubic form on Zn2 obtained by the pull-
back of a cubic form ˛ on Zn�12 will be denoted by b̨. In other words,

b̨.x1; : : : ; xn/ D ˛.x1; : : : ; xn�1/:
Lemma 6.1. If n D pC q D 4k with k 2 Nnf0g then, one has the equivalent forms

˛0;n ' b̨0;n�1 and ˛n;0 ' b̨n�1;0;
˛p;q '

(b̨p;q�1 if p; q > 0 are even;b̨p;q�1 C xn if p; q � 1 are odd:
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Proof. To establish the equivalence in the cases .n; 0/, .0; n/ and .p; q/ where
p; q � 1 are odd, we choose the following coordinate transformation:

x01 D x1 C x4k;

x02 D x1 C x2 C x4k;

� � � D � � �

x0i D x1 C xi C x4k;

� � � D � � �

x02kC1 D x1 C x2kC1 C x4k;

x02kC2 D x2 C � � � C x2kC1 C 1x2kC2 C � � � C x4k;
� � � D � � �

x0i D x2 C � � � C xi�1 C bxi C xiC1 C � � � C x4k;
� � � D � � �

x04k�1 D x2 C � � � C x4k�2 C 1x4k�1 C x4k;
x04k D x4k;

(6.1)

whereb� denotes removed terms.
In the case where p; q > 0 are even, it suffices to consider the particular case

p � q. Indeed, it was proved in [8] that ˛p;q ' ˛q;p for every p; q > 0, and that
˛q�1;p ' ˛q;p�1 for every p; q > 0 if p and q are even and p C q D 4k C 3. If
0 < p � q are even, the coordinate transformation considered in this case is the
same as (6.1) for every elements x0i where i 2 f2; : : : ; n � 1g together with

x01 D x4k;

x04k D x1 C x4k :

Hence the lemma.

6.2. The case .p; q/with n D 4kC2 . This second lemma allows us to reduce the
case n D 4kC 2 to the case n D 4kC 1. The cubic form ˛p;q with pC q D 4kC 2
is equivalent to a cubic form where the last coordinate is only present in the quadratic
part and sometimes in the linear part.
Lemma 6.2. If n D p C q D 4k C 2 with k 2 Nnf0g then, one has the equivalent
forms

˛0;n ' b̨0;n�1 C xn C xn n�1X
iD1

xi ; (6.2)

˛n;0 ' b̨n�1;0 C xn C xn n�1X
iD1

xi ; (6.3)
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˛p;q '

8̂̂̂̂
<̂
ˆ̂̂:
b̨p�1;q C xn n�1X

iD1

xi if p; q � 1 are odd;

b̨p�1;q C xn C xn n�1X
iD1

xi if p; q > 0 are even:

(6.4)

Proof. To establish the equivalence, we choose the following coordinate transforma-
tion:

x01 D x4kC2;

x02 D x1 C x4kC2;

� � � D � � �

x0i D xi�1 C x4kC2;

� � � D � � �

x02kC1 D x2k C x4kC2;

x02kC2 D x1 C � � � C x4k C 1x4kC1 C x4kC2;
� � � D � � �

x0i D x1 C � � � C x6kC2�i C 2x6kC3�i C x6kC4�i C � � � C x4kC2;
� � � D � � �

x04kC2 D x1 C � � � C x2k C 1x2kC1 C x2kC2 C � � � C x4kC2:

(6.5)

If the signature is .n; 0/ and .0; n/, the equivalence is given by the above
transformation. If the signature is .p; q/ with p; q > 0, the transformation (6.5)
is taking into account only in the case p � q. The case q < p is then deduced from
the case p � q since it was proven in [8] that

˛p;q ' ˛q;p if p; q > 0;
˛p�1;q ' ˛p;q�1 if p C q D 4k C 1 and p � 1 is even,
˛q;p�1 ' ˛q�1;p if p C q D 4k C 1 and q is odd.

Lemma 6.2 is proved.

6.3. The case n D 4k C 3 and n D 4k C 1 . If n D p C q is odd, there exist
exactly four distinct algebras Op;q with p; q � 0 up to graded isomorphism; see [8].
We will treat each of these four cases independently.

Lemma 6.3. If n D 4k C 3 and k is odd, then

(1) the form ˛0;n is equivalent to

x1 C .x1 C 1/
�
˛Cl2kC2;0.x2; : : : ; x2kC3/C ˛

Cl
0;2k.x2kC4; : : : ; x4kC3/

�
;
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(2) the form ˛n;0 is equivalent to

.x1 C 1/
�
˛Cl2kC2;0.x2; : : : ; x2kC3/C ˛

Cl
0;2k.x2kC4; : : : ; x4kC3/

�
;

(3) the form ˛2kC1;2kC2 is equivalent to

x1 C .x1 C 1/
�
˛Cl2kC2;0.x2; : : : ; x2kC3/C ˛

Cl
0;2k.x2kC4; : : : ; x4kC3/

�
C

2kC3X
iD2

xi ;

(4) the form ˛2k;2kC3 is equivalent to

x1 C .x1 C 1/
�
˛Cl2kC2;0.x2; : : : ; x2kC3/C ˛

Cl
0;2k.x2kC4; : : : ; x4kC3/

�
C

2kX
iD2

xi C x2kC3:

If n D 4k C 3 and k is even, then

(1) the form ˛0;n is equivalent to

x1 C .x1 C 1/
�
˛Cl2k;0.x2; : : : ; x2kC1/C ˛

Cl
0;2kC2.x2kC2; : : : ; x4kC3/

�
;

(2) the form ˛n;0 is equivalent to

.x1 C 1/
�
˛Cl2k;0.x2; : : : ; x2kC1/C ˛

Cl
0;2kC2.x2kC2; : : : ; x4kC3/

�
;

(3) the form ˛2kC1;2kC2 is equivalent to

x1 C .x1 C 1/
�
˛Cl2k;0.x2; : : : ; x2kC1/C ˛

Cl
0;2kC2.x2kC2; : : : ; x4kC3/

�
C

4kC3X
iD2kC2

xi ;

(4) the form ˛2k;2kC3 is equivalent to

x1 C .x1 C 1/
�
˛Cl2k;0.x2; : : : ; x2kC1/C ˛

Cl
0;2kC2.x2kC2; : : : ; x4kC3/

�
C

4kC1X
iD2kC3

xi C x4kC3:
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Proof. If k is odd, chose the following coordinate transformation:

x01 D x2kC2 C x2kC3;

x02 D x2 C x2kC2;

� � � D � � �

x0i D xi C x2kC2;

� � � D � � �

x02kC1 D x2kC1 C x2kC2;

x02kC2 D x2kC2;

x02kC3 D x1 C � � � C x2kC1 C x2kC3 C � � � C x4kC1 C 1x4kC2 C x4kC3;
� � � D � � �

x0i D x1 C � � � C x2kC1 C x2kC3 C � � � C x6kC4�i C 2x6kC5�i C x6kC6�i
C � � � C x4kC3;

� � � D � � �

x04kC1 D x1 C � � � C x2kC1 C x2kC3 C 1x2kC4 C x2kC5 C � � � C x4kC3;
x04kC2 D x1 C � � � C x2kC1 C x2kC3 C � � � C x4kC2;

x04kC3 D x1 C � � � C x2kC1 C x2kC3 C � � � C x4kC3:

If k is even and k � 2, chose the following coordinate transformation:

x01 D x2kC2 C x4kC3;

x02 D x2kC2 C x2kC3;

� � � D � � �

x0i D x2kC2 C x2kC1Ci ;

� � � D � � �

x02kC1 D x2kC2 C x4kC2;

x02kC2 D x2kC2;

x02kC3 D x1 C bx2 C x3 � � � C x2kC1 C x2kC3 C � � � C x4kC3;
� � � D � � �

x0i D x1 C � � � C xi�2k�2 C 2xi�2k�1 C xi�2k C � � � C x2kC1 C x2kC3
C � � � C x4kC3;

� � � D � � �

x04kC2 D x1 C � � � C x2k C 1x2kC1 C x2kC3 C � � � C x4kC3;
x04kC3 D x1 C � � � C x2kC1 C x2kC3 C � � � C x4kC3:

These coordinate transformation provide the desired equivalence.
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Lemma 6.4. If n D 4k C 1, then
(1) the form ˛0;n is equivalent to

x1 C .x1 C 1/
�
˛Cl2k;0.x2; : : : ; x2kC1/C ˛

Cl
0;2k.x2kC2; : : : ; x4kC1/

�
;

(2) the form ˛n;0 is equivalent to

.x1 C 1/
�
˛Cl2k;0.x2; : : : ; x2kC1/C ˛

Cl
0;2k.x2kC2; : : : ; x4kC1/

�
;

(3) the form ˛2k;2kC1 is equivalent to

x1C.x1C1/
�
˛Cl2k;0.x2; : : : ; x2kC1/C ˛

Cl
0;2k.x2kC2; : : : ; x4kC1/

�
C

4kC1X
iD2kC2

xi ;

(4) If n D 4k C 1 and k is even, then ˛2k�2;2kC3 is equivalent to

x1C.x1C1/
�
˛Cl2k;0.x2; : : : ; x2kC1/C ˛

Cl
0;2k.x2kC2; : : : ; x4kC1/

�
C

4kC1X
iD2kC2

xi ;

If n D 4k C 1 and k is odd, then ˛2k�2;2kC3 is equivalent to

x1 C .x1 C 1/
�
˛Cl2k;0.x2; : : : ; x2kC1/C ˛

Cl
0;2k.x2kC2; : : : ; x4kC1/

�
C

2k�2X
iD2

xi C x2kC1:

Proof. If k � 2 is odd, the coordinate transformation is as follows:

x01 D x1 C x2kC1;

x02 D x1 C x2

� � � D � � �

x0i D x1 C xi ;

� � � D � � �

x02k D x1 C x2k;

x02kC1 D x1 C � � � C x4kC1;

x02kC2 D x2 C � � � C x4k�1 Cbx4k C x4kC1;
� � � D � � �

x0i D x2 C � � � C x6k�iC1 C 2x6k�iC2 C x6k�iC3 C � � � C x4kC1;
� � � D � � �

x04k D x2 C � � � C x2kC1 C 1x2kC2 C x2kC3 C � � � C x4kC1;
x04kC1 D x2 C � � � C x4k :

(6.6)



Bott type periodicity for the higher octonions 1221

If k � 2 is even, the coordinate transformation is as follows:
x01 D x1 C x4kC1;

� � � D � � �

x0i D x1 C x4kC2�i ;

� � � D � � �

x02k D x1 C x2kC2;

x02kC1 D x1 C � � � C x4kC1;

x02kC2 D bx2 C x3 C � � � C x4kC1;
� � � D � � �

x0i D x2 C � � � C xi�2k�1 C1xi�2k C xi�2kC1 C � � � C x4kC1;
� � � D � � �

x04kC1 D x2 C � � � C x2k C 1x2kC1 C x2kC2 C � � � C x4kC1:

(6.7)

The above transformations provide the equivalence in the cases where the
signature is .0; n/, .n; 0/ and .p; q/ with k odd.

Furthermore, in the case of signature .2k; 2kC1/with even k (which is equivalent
to the case of signature .2k C 1; 2k/), the transformation (6.7) has to be combined
with the following one

x01 D x1;

x02 D x2 C x1;

x0i D xi ; if 3 � i � 4k C 1:

Finally, if k is even and in the case of signature .2k � 2; 2k C 3/, the
transformation (6.6) has to be combined with the following change of coordinates

x0i D xi ; if 1 � i � 4k;
x04kC1 D x4kC1 C x1:

The results follow directly form these coordinate transformations.

The changes of coordinates (6.6) and (6.7) used in the proof of the lemma 6.4,
can be used for the case p C q D 4k C 2 D n where the last coordinate xn remains
unchanged.

6.4. The end of the proof. Consider some more properties on the quadratic form
of the Clifford algebras. Denote, as above, by ˛Cl0;2 the generating quadratic form of
the Clifford algebra Cl0;2 and by ˛Cl2;0 the generating quadratic form of the Clifford
algebra Cl2;0. Denote also

.˛Cl2;0/
l.x1; : : : ; x2l/ WD˛

Cl
2;0.x1; x2/C � � � C ˛

Cl
2;0.x2l�1; x2l/;

.˛Cl0;2/
l.x1; : : : ; x2l/ WD˛

Cl
0;2.x1; x2/C � � � C ˛

Cl
0;2.x2l�1; x2l/:
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The following lemma is useful in the Clifford case.
Lemma 6.5. If k is even, then

˛Cl2k;0 ' ˛
Cl
0;2k ' .˛

Cl
0;2/

k=2
C .˛Cl2;0/

k=2:

If k is odd, then

˛Cl2k;0 ' .˛
Cl
2;0/

kC1
2 C .˛Cl0;2/

k�1
2 ; ˛Cl0;2k ' .˛

Cl
2;0/

k�1
2 C .˛Cl0;2/

kC1
2 :

Lemma 6.5 means that the graph of the quadratic form of a Clifford algebra with
even generators, is equivalent to a disconnected graph consisting of components of
the type and .
Lemma 6.6. The form Q̨2;3 is equivalent to

�
�

�

�

�

x5

x4x2

x3

x1

and one has

Q̨0;5.x1; x2; : : : ; x5/C Q̨1;4.x1; x6; : : : ; x9/

D Q̨2;3.x1; x2; x3; x8; x9/C Q̨2;3.x1; x6; x7; x4; x5/

Proof. For the first part, the coordinate transformation is given by

x01 D x1;

x02 D x3 C x4 C x5;

x03 D x2 C x4 C x5;

x04 D x2 C x3 C x5;

x05 D x2 C x3 C x4:

The second part is deduced directly from the first one.

To finish the proof of the Theorem 5.7, we consider the four different cases.
(1) The case with the signature .0; n/. Suppose that n D 4k C 1, then according

to Lemma 6.5, ˛0;n is equivalent to the following form:

x1 C .x1 C 1/
�
.˛Cl2;0/

k
C .˛Cl0;2/

k
�
:

If n D 4k C 3, then ˛0;n is equivalent to the following form:

x1 C .x1 C 1/
�
.˛Cl2;0/

k
C .˛Cl0;2/

kC1
�
:

The desired equivalence follows from

x1 C .x1 C 1/
�
˛Cl2;0.x2; x3/C ˛

Cl
0;2.x4; x5/

� �

�
 !

x5

x4x2

x3

x1
Q̨0;5
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(2) The casewhere the signature is .n; 0/ directly follows from the case of signature
.0; n/ since we have the following fact

.x1 C 1/
�
˛Cl2;0.x2; x3/C ˛

Cl
0;2.x4; x5/

� �

�
 !

x5

x4x2

x3

x1
Q̨5;0

(3) When the signature is .2k; 2k C 1/ with n D 4k C 1 due to Lemmas 6.4, 6.5
and 6.6, the form ˛2k;2kC1 is equivalent to the following form

x1C .x1C 1/
�
.˛Cl2;0/

k.x2; : : : ; x2kC1/C .˛
Cl
0;2/

k.x2kC2; : : : ; x4kC1/
�
C

4kC1X
iD2kC2

xi

D .x1C 1/
�
.˛Cl2;0/

k�1.x2; : : : ; x2k�1/C .˛
Cl
0;2/

k�1.x2kC2; : : : ; x4k�1/
�
C

4k�1X
iD2kC2

xi

C Q̨2;3.x1; x2k; x2kC1; x4k; x4kC1/:

The conclusion is obvious since we have the following isomorphism

x1 C .x1 C 1/
�
˛Cl2;0.x2; x3/C ˛

Cl
0;2.x4; x5/

�
C x4 C x5

� !

x5

x4x2

x3

x1
Q̨2;3

When the signature is .2k C 1; 2k C 2/ with n D 4k C 3, also due to
Lemmas 6.3, 6.5 and 6.6, the form ˛2kC1;2kC2 is equivalent to the following
form

x1C.x1C1/
�
.˛Cl2;0/

k.x2; : : : ; x2kC1/C .˛
Cl
0;2/

kC1.x2kC2; : : : ; x4kC3/
�
C

4kC3X
iD2kC2

xi

D .x1C1/
�
.˛Cl2;0/

k.x2; : : : ; x2kC1/C .˛
Cl
0;2/

k.x2kC2; : : : ; x4kC1/
�
C

4kC1X
iD2kC2

xi

C Q̨1;2.x1; x4kC2; x4kC3/:

(4) When the signature is .2k; 2k C 3/ with n D 4k C 3, the form ˛2k;2kC3 is
equivalent to the following form

x1C.x1C1/
�
.˛Cl2;0/

k.x2; : : : ; x2kC1/C .˛
Cl
0;2/

kC1.x2kC2; : : : ; x4kC3/
�
C

4kC1X
iD2kC2

xi

D .x1C 1/
�
.˛Cl2;0/

k�1.x2; : : : ; x2k�1/C .˛
Cl
0;2/

k�1.x2kC2; : : : ; x4k�1/
�
C

4k�1X
iD2kC2

xi

C Q̨2;5.x1; x2k; x2kC1; x4k; x4kC1; x4kC2; x4kC3/:
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When the signature is .2k�1; 2kC2/with n D 4kC1, the form ˛2k�1;2kC2
is equivalent to ˛2k�2;2kC3 which is equivalent to the following form

x1C.x1C1/
�
.˛Cl2;0/

k.x2; : : : ; x2kC1/C .˛
Cl
0;2/

kC1.x2kC2; : : : ; x4kC1/
�
C

4k�1X
iD2kC2

xi

D .x1C 1/
�
.˛Cl2;0/

k�2.x2; : : : ; x2k�3/C .˛
Cl
0;2/

k�2.x2kC2; : : : ; x4k�3/
�
C

4k�3X
iD2kC2

xi

C Q̨3;6.x1; x2k�2; x2k�1; x2k; x2kC1; x4k�2; x4k�1; x4k; x4kC1/:

Theorem 5.7 is proved.
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