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1. Introduction

In the present paper we put in close relation two notions that seem to have touched
each other only occasionally in the recent literature. These are the notion of a Pimsner
(or Cuntz–Krieger–Pimsner) algebra on one hand and that of a noncommutative (in
general) principal circle bundle on the other.

At theC �-algebraic level one needs a selfMorita equivalence over aC �-algebraB ,
thus we look at a full Hilbert C �-module E over B together with an isomorphism
ofB with the compacts onE. Through a natural universal construction this data gives
rise to a C �-algebra, the Pimsner algebra OE generated by E. In the case where
both E and its Hilbert C �-module dual E� are finitely generated projective over B
one obtains that the �-subalgebra generated by the elements ofE and B becomes the
total space of a noncommutative principal circle bundle with base space B .

At the purely algebraic level we start from a Z-graded �-algebra A which forms
the total space of a quantum principal circle bundlewith base space the �-subalgebra
of invariant elements A.0/ and with a coaction of the Hopf algebraO.U.1// coming
from the Z-grading. Provided that A comes equipped with a C �-norm, which is
compatible with the circle action likewise defined by the Z-grading, we show that
the closure of A has the structure of a Pimsner algebra. Indeed, the first spectral
subspace A.1/ is then finitely generated and projective over the algebra A.0/. The
closureE of A.1/ will become a Hilbert C �-module over B , the closure of A.0/, and
the couple .E;B/ will lend itself to a Pimsner algebra construction.

The commutative version of this part of our program was spelled out in [11,
Prop. 5.8]. This amounts to showing that the continuous functions on the total space
of a (compact) principal circle bundle can be described as a Pimsner algebra generated
by a classical line bundle over the compact base space.

With a Pimsner algebra there come two natural six term exact sequences in
KK-theory, which relate the KK-theories of the Pimsner algebra OE with that
of the C �-algebra of (the base space) scalars B . The corresponding sequences
in K-theory are noncommutative analogues of the Gysin sequence which in the
commutative case relates theK-theories of the total space and of the base space. The
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classical cup product with the Euler class is in the noncommutative setting replaced
by a Kasparov product with the identity minus the generating Hilbert C �-module E.
Predecessors of these six term exact sequences are the Pimsner-Voiculescu six term
exact sequences of [19] for crossed products by the integers.

Interesting examples are quantum lens spaces over quantum weighted projective
lines. The latter spacesWq.k; l/ are defined as fixed points of weighted circle actions
on the quantum 3-sphere S3q . On the other hand, quantum lens spaces Lq.d lkI k; l/
are fixed points for the action of a finite cyclic group onS3q . For general .k; l/ coprime
positive integers and any positive integer d , the coordinate algebra of the lens space
is a quantum principal circle bundle over the corresponding coordinate algebra for
the quantum weighted projective space, thus generalizing the cases studied in [5].

At the C �-algebra level the lens spaces are given as Pimsner algebras over the
C �-algebra of the continuous functions over the weighted projective spaces (see §6).
Using the associated exact sequences coming from the construction of [18], we
explicitly compute in §7 the KK-theory of these spaces for general weights. A
central character in this computation is played by an integer matrix whose entries
are index pairings. These are in turn computed by pairing the corresponding Chern–
Connes characters in cyclic theory. The computation of the KK-theory of our class
of q-deformed lens spaces is, to the best of our knowledge, a novel one. Also, it is
worth emphasizing that the quantum lens spaces and weighted projective spaces are
in general not KK-equivalent to their commutative counterparts.

Pimsner algebras were introduced in [18]. This notion gives a unifying
framework for a range of important C �-algebras including crossed products by
the integers, Cuntz-Krieger algebras [8, 9], and C �-algebras associated to partial
automorphisms [10]. Generalized crossed products, a notion which is somewhat
easier to handle, were independently invented in [3]. More recently, Katsura has
constructed Pimsner algebras for general C �-correspondences [15]. In the present
paper we work in a simplified setting (see Assumption 2.1 below) which is close to
the one of [3].

Acknowledgements. We are very grateful to Georges Skandalis for many
suggestions and to Ralf Meyer for useful discussions. We thank Tomasz Brzeziński
for making us aware of the reference [17]. This paper was finished at the Hausdorff
Research Institute for Mathematics in Bonn during the 2014 Trimester Program
“Non-commutative Geometry and its Applications”. We thank the organizers of the
Program for the kind invitation and all people at HIM for the nice hospitality.



32 F. Arici, J. Kaad and G. Landi

2. Pimsner algebras

We start by reviewing the construction of Pimsner algebras associated to Hilbert
C �-modules as given in [18]. Rather than the full fledged generality we aim at
a somewhat simplified version adapted to the context of the present paper, and
motivated by our geometric intuition coming from principal circle bundles.

Our reference for the theory of Hilbert C �-modules is [16]. Throughout this
section E will be a countably generated (right) Hilbert C �-module over a separable
C �-algebra B , with B-valued (and right B-linear) inner product denoted h�; �iB ;
or simply h�; �i to lighten notations. Also, E is taken to be full, that is the ideal
hE;Ei WD spanC

˚
h�; �i j �; � 2 E

	
is dense in B .

Given two Hilbert C �-modules E and F over the same algebra B , we denote by
L .E; F / the space of bounded adjointable homomorphisms T W E ! F . For each
of these there exists a homomorphism T � W F ! E (the adjoint) with the property
that hT ��; �i D h�; T �i for any � 2 F and � 2 E. Given any pair � 2 F; � 2 E, an
adjointable operator ��;� W E ! F is defined by

��;�.�/ D �h�; �i ; 8 � 2 E :

The closed linear subspace ofL .E; F / spanned by elements of the form ��;� as above
is denotedK .E; F /, the space of compact homomorphisms. WhenE D F , it results
that L .E/ WD L .E;E/ is a C �-algebra with K .E/ WD K .E;E/ � L .E/ the
(sub) C �-algebra of compact endomorphisms of E.

2.1. The algebras and their universal properties. On top of the above basic
conditions, the following will remain in effect as well.
Assumption 2.1. There is a �-homomorphism � W B ! L .E/ which induces an
isomorphism � W B !K .E/.

Next, let E� be the dual of E (when viewed as a Hilbert C �-module):

E� WD
˚
� 2 HomB.E;B/ j 9 � 2 E with �.�/ D h�; �i 8� 2 E

	
:

Thus, with � 2 E, if �� W E ! B is the operator defined by ��.�/ D h�; �i, for all
� 2 E, every element of E� is of the form �� for some � 2 E. By its definition,
E� WD K .E;B/. The dual E� can be given the structure of a (right) Hilbert
C �-module over B . Firstly, the right action of B on E� is given by

�� b WD �� ı �.b/ :

Then, with operator ��;� 2K .E/ for �; � 2 E, the inner product on E� is given by

h�� ; ��i WD �
�1.��;�/ ;

and E� is full as well. With the �-homomorphism �� W B ! L .E�/ defined by
��.b/.��/ WD ���b� , the pair .��; E�/ satisfies the conditions in Assumption 2.1.
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We need the interior tensor product E b̋�E of E with itself over B . As a first
step, one constructs the quotient of the vector space tensor product E ˝alg E by the
ideal generated by elements of the form

�b ˝ � � � ˝ �.b/� ; for �; � 2 E ; b 2 B : (2.1)

There is a natural structure of right module over B with the action given by

.� ˝ �/b D � ˝ .�b/ ; for �; � 2 E ; b 2 B ;

and a B-valued inner product given, on simple tensors, by

h�1 ˝ �1; �2 ˝ �2i D h�1; �.h�1; �2i/�2i (2.2)

and extended by linearity. The inner product is well defined and has all required
properties; in particular, the null space N D f� 2 E ˝alg E I h�; �i D 0g is shown
to coincide with the subspace generated by elements of the form in (2.1). One takes
E ˝� E WD E ˝alg E=N and defines E b̋�E to be the Hilbert module obtained
by completing with respect to the norm induced by (2.2). The construction can be
iterated and, for n > 0, we denote by Eb̋�n, the n-fold interior tensor power of E
over B . Like-wise, .E�/b̋��n denotes the n-fold interior tensor power ofE� over B .

To lighten notation, in the following we define, for each n 2 Z, the modules

E.n/ WD

8̂<̂
:
Eb̋�n n > 0

B n D 0

.E�/b̋�� .�n/ n < 0

:

Clearly, E.1/ D E and E.�1/ D E�. We define the Hilbert C �-module over B:

E1 WD
M
n2Z

E.n/ :

For each � 2 E we have a bounded adjointable operator S� W E1 ! E1 defined
component-wise by

S�.b/ WD � � b ; b 2 B ;

S�.�1 ˝ � � � ˝ �n/ WD � ˝ �1 ˝ � � � ˝ �n ; n > 0 ;

S�.��1 ˝ � � � ˝ ���n/ WD ��2���1.��1;� /
˝ ��3 ˝ � � � ˝ ���n ; n < 0 :

In particular, S�.��1/ D ��1.��;�1/ 2 B .
The adjoint of S� is easily found to be given by S�� WD S

�
�
W E1 ! E1:

S�� .b/ WD �� � b ; b 2 B ;

S�� .�1 ˝ : : :˝ �n/ WD �.h�; �1i/.�2/˝ �3 ˝ : : :˝ �n ; n > 0 ;

S�� .��1 ˝ : : :˝ ���n/ WD �� ˝ ��1 ˝ : : :˝ ���n ; n < 0 I

and in particular S�� .�1/ D h�; �1i 2 B .
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From its definition, eachE.n/ has a natural structure of HilbertC �-module overB
and, withK again denoting theHilbertC �-module compacts, we have isomorphisms

K .E.n/; E.m// ' E.m�n/ :

Definition 2.2. The Pimsner algebra of the pair .�;E/ is the smallestC �-subalgebra
ofL .E1/which contains the operators S� W E1 ! E1 for all � 2 E. The Pimsner
algebra is denoted by OE and comes with an inclusion e� W OE ! L .E1/.

There is an injective �-homomorphism i W B ! OE . This is induced by the
injective �-homomorphism � W B ! L .E1/ defined component-wise by

�.b/.b0/ WD b � b0 ;

�.b/.�1 ˝ : : :˝ �n/ WD �.b/.�1/˝ �2 ˝ : : :˝ �n ;

�.b/.��1 ˝ : : :˝ ��n/ WD �
�.b/.��1/˝ ��2 ˝ : : :˝ ��n

D ��1�b� ˝ ��2 ˝ : : :˝ ��n ;

and which factorizes through the Pimsner algebra OE � L .E1/. Indeed, for all
�; � 2 E it holds that S�S�� D i.��1.��;�//, that is the operator S�S�� on E1 is
right-multiplication by the element ��1.��;�/ 2 B .

A Pimsner algebra is universal in the following sense [18, Thm. 3.12]:
Theorem 2.3. Let C be a C �-algebra and let � W B ! C be a �-homomorphism.
Suppose that there exist elements s� 2 C for all � 2 E such that
(1) ˛s� C ˇs� D s˛�Cˇ� for all ˛; ˇ 2 C and �; � 2 E ,

(2) s��.b/ D s�b and �.b/s� D s�.b/.�/ for all � 2 E and b 2 B ,

(3) s�
�
s� D �.h�; �i/ for all �; � 2 E ,

(4) s�s�� D �
�
��1.��;�/

�
for all �; � 2 E .

Then there is a unique �-homomorphism e� W OE ! C with e�.S�/ D s� for all
� 2 E.

Also, in the context of this theorem the identitye� ı i D � follows automatically.
Remark 2.4. In the paper [18], the pair .�;E/was referred to as aHilbert bimodule,
since the map � (taken to be injective there) naturally endows the right Hilbert
moduleE with a left module structure. As mentioned, our Assumption 2.1 simplifies
the construction to a great extent (see also [3]). For the pair .�;E/ with a general
�-homomorphism � W B ! L .E/, (in particular, a non necessarily injective one),
the name C �-correspondence over B has recently emerged as a more common one,
reserving the terminology Hilbert bimodule to the more restrictive case where one
has both a left and a right inner product satisfying an extra compatibility relation.
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2.2. Six term exact sequences. With a Pimsner algebra there come two six term
exact sequences in KK-theory. Firstly, since � W B ! L .E/ factorizes through the
compacts K .E/ � L .E/, the following class is well defined.
Definition 2.5. The class in KK0.B;B/ defined by the even Kasparov module
.E; �; 0/ (with trivial grading) will be denoted by ŒE�.

Next, let P W E1 ! E1 denote the orthogonal projection with

Im.P / D
�
˚
1
nD1 E

.n/
�
˚ B � E1 :

Notice that ŒP; S� � 2 K .E1/ for all � 2 E and thus ŒP; S� 2 K .E1/ for all
S 2 OE .

Then, let F WD 2P � 1 2 L .E1/ and recall that e� W OE ! L .E1/ is the
inclusion.
Definition 2.6. The class in KK1.OE ; B/ defined by the odd Kasparov module
.E1;e�; F / will be denoted by Œ@�.

For any separable C �-algebra C we then have the group homomorphisms

ŒE� W KK�.B; C /! KK�.B; C / ; ŒE� W KK�.C;B/! KK�.C;B/

and

Œ@� W KK�.C;OE /! KK�C1.C;B/ ; Œ@� W KK�.B; C /! KK�C1.OE ; C / ;

which are induced by the Kasparov product.
The six term exact sequences inKK-theory given in the following theorem were

constructed by Pimsner, see [18, Thm. 4.8].
Theorem 2.7. Let OE be the Pimsner algebra of the pair .�;E/ over the
C �-algebra B . If C is any separable C �-algebra, there are two exact sequences:

KK0.C;B/
1�ŒE�
����! KK0.C;B/

i�
����! KK0.C;OE /

Œ@�

x?? ??yŒ@�
KK1.C;OE /  ����

i�
KK1.C;B/  ����

1�ŒE�
KK1.C;B/

and

KK0.B; C /  ����
1�ŒE�

KK0.B; C /  ����
i�

KK0.OE ; C /??yŒ@� Œ@�

x??
KK1.OE ; C /

i�

����! KK1.B; C /
1�ŒE�
����! KK1.B; C /

with i�, i� the homomorphisms inKK-theory induced by the inclusion i W B ! OE .
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Remark 2.8. For C D C, the first sequence above reduces to

K0.B/
1�ŒE�
����! K0.B/

i�
����! K0.OE /

Œ@�

x?? ??yŒ@� :

K1.OE /  ����
i�

K1.B/  ����
1�ŒE�

K1.B/

This could be considered as a generalization of the classical Gysin sequence
in K-theory (see [14, IV.1.13]) for the ‘line bundle’ E over the ‘noncommutative
space’B and with the map 1� ŒE� having the role of the Euler class �.E/ WD 1� ŒE�
of the line bundle E. The second sequence would then be an analogue in K-
homology:

K0.B/  ����
1�ŒE�

K0.B/  ����
i�

K0.OE /??yŒ@� Œ@�

x?? :

K1.OE /
i�

����! K1.B/
1�ŒE�
����! K1.B/

Examples of Gysin sequences in K-theory were given in [2] for line bundles over
quantum projective spaces and leading to a class of quantum lens spaces. These
examples will be generalized later on in the paper to a class of quantum lens spaces
as circle bundles over quantum weighted projective spaces with arbitrary weights.

3. Pimsner algebras and circle actions

An interesting source of Pimsner algebras consists ofC �-algebraswhich are equipped
with a circle action and subject to an extra completeness condition on the associated
spectral subspaces. We now investigate this relationship.

Throughout this section A will be a C �-algebra and f�zgz2S1 will be a strongly
continuous action of the circle S1 on A.

3.1. Algebras from actions. For each n 2 Z, define the spectral subspace

A.n/ WD
˚
� 2 A j �z.�/ D z

�n � for all z 2 S1
	
:

Then the invariant subspace A.0/ � A is a C �-subalgebra and each A.n/ is a (right)
Hilbert C �-module over A.0/ with right action induced by the algebra structure on A
and A.0/-valued inner product just h�; �i WD �� �, for all �; � 2 A.n/.
Assumption 3.1. The data .A; �z/ as above is taken to satisfy the conditions:

(1) The C �-algebra A.0/ is separable.
(2) The HilbertC �-modulesA.1/ andA.�1/ are full and countably generated over

the C �-algebra A.0/.
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Lemma 3.2. With the �-homomorphism � W A.0/ ! L .A.1// simply defined by
�.a/.�/ WD a �, the pair .�; A.1// satisfies the conditions of Assumption 2.1.

Proof. To prove that � W A.0/ ! L .A.1// is injective, let a 2 A.0/ and suppose that
a � D 0 for all � 2 A.1/. It then follows that a � �� D 0 for all �; � 2 A.1/. But this
implies that a hv;wi D 0 for all v;w 2 A.�1/. Since A.�1/ is full this shows that
a D 0. We may thus conclude that � W A.0/ ! L .A.1// is injective, and the image
of � is therefore closed.

To conclude that K .A.1// � �.A.0// it is now enough to show that the operator
��;� 2 �.A.0// for all �; � 2 A.1/. But this is clear since ��;� D �.� ��/.

To prove that �.A.0// � K .A.1// it suffices to check that the operator
�.hv;wi/ 2 K .A.1// for all v;w 2 A.�1/ (again since A.�1/ is full). But this
is true being �.hv;wi/ D �v�;w� .

The condition that both A.1/ and A.�1/ are full over A.0/ has the important
consequence that the action f�zgz2S1 is semi-saturated in the sense of the following.
Definition 3.3. A circle action f�zgz2S1 on a C �-algebra A is called semi-saturated
if A is generated, as a C �-algebra, by the fixed point algebra A.0/ together with the
first spectral subspace A.1/.
Proposition 3.4. Suppose that A.1/ and A.�1/ are full over A.0/. Then the circle
action f�zgz2S1 is semi-saturated.

Proof. With cl.�/ refering to the norm-closure, we show that the Banach algebra

cl
� 1X
nD0

A.n/

�
� A

is generated by A.1/ and A.0/. A similar proof in turn shows that

cl
� 1X
nD0

A.�n/

�
� A

is generated by A.�1/ and A.0/. Since the span
P
n2ZA.n/ is norm-dense in A

(see [10, Prop. 2.5]), this proves the proposition. We show by induction on n 2 N
that

.A.1//
n
WD span

˚
x1 � : : : � xn j x1; : : : ; xn 2 A.1/

	
is dense in A.n/. For n D 1 the statement is void.

Suppose thus that the statement holds for some n 2 N. Then, let x 2 A.nC1/
and choose a countable approximate identity fumgm2N for the separable C �-algebra
A.0/. Let " > 0 be given. We need to construct an element y 2 .A.1//nC1 such that

kx � yk < " :
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To this endwe first remark that the sequence fx �umgm2N converges to x 2 A.nC1/.
Indeed, this follows due to x�x 2 A.0/ and since, for all m 2 N,

kx � um � xk
2
D kumx

�xum C x
�x � x�xum � umx

�xk :

We may thus choose an m 2 N such that

kx � um � xk < "=3 :

Since A.1/ is full over A.0/, there are elements �1; : : : ; �k and �1; : : : ; �k 2 A.1/ so
that x � um � kX

jD1

x � ��j � �j

 < "=3 :
Furthermore, since x � ��j 2 A.n/ we may apply the induction hypothesis to find
elements z1; : : : ; zk 2 .A.1//n such that kX

jD1

x � ��j � �j �

kX
jD1

zj � �j

 < "=3 :
Finally, it is straightforward to verify that for the element

y WD

kX
jD1

zj � �j 2 .A.1//
nC1

it holds that: kx � yk < ". This proves the present proposition.

Having a semi-saturated action one is lead to the following theorem [3, Thm. 3.1].
Theorem 3.5. The Pimsner algebra OA.1/ is isomorphic to A. The isomorphism is
given by S� 7! � for all � 2 A.1/.

3.2. Z-graded algebras. In much of what follows, the C �-algebras of interest with
a circle action, will come from closures of dense Z-graded �-algebras, with the
Z-grading defining the circle action in a natural fashion.

Let A D ˚n2ZA.n/ be a Z-graded unital �-algebra. The grading is compatible
with the involution �, this meaning that x� 2 A.�n/ whenever x 2 A.n/ for some
n 2 Z. For w 2 S1, define the �-automorphism �w W A ! A by

�w W x 7! w�nx for x 2 A.n/ ; n 2 Z :

We will suppose that we have a C �-norm k � k W A ! Œ0;1/ on A satisfying

k�w.x/k � kxk for all w 2 S1 ; x 2 A ;

thus the action has to be isometric. The completion of A is denoted by A.
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The following standard result is here for the sake of completeness and its use
below. The proof relies on the existence of a conditional expectation naturally
associated to the action.
Lemma 3.6. The collection f�wgw2S1 extends by continuity to a strongly continuous
action of S1 onA. Each spectral subspaceA.n/ agrees with the closure ofA.n/ � A.

Proof. Once A.n/ is shown to be dense in A.n/ the rest follows from standard
arguments. Thus, for n 2 Z, define the bounded operator E.n/ W A! A.n/ by

E.n/ W x 7!

Z
S1
wn �w.x/ dw ;

where the integration is carried out with respect to the Haar-measure on S1. We
have that E.n/.x/ D x for all x 2 A.n/ and then that kE.n/k � 1. This implies that
A.n/ � A.n/ is dense.

Let now d 2 N and consider the unital �-subalgebraA 1=d WD ˚n2ZA.nd/ � A .
ThenA 1=d is a Z-graded unital �-algebra as well and we denote the associated circle
action by �1=dw W A 1=d ! A 1=d . Let w 2 S1 and choose a z 2 S1 such that
zd D w. Then

�1=dw .xnd / D w
n
� xnd D z

nd
� xnd D �z.xnd / ; for all xnd 2 A.nd/ ;

and it follows that �1=dw .x/ D �z.x/ for all x 2 A 1=d . With the C �-norm obtained
by restriction k � k W A 1=d ! Œ0;1/, it follows in particular that

k�1=dw .x/k � kxk

by our standing assumption on the compatibility of f�wgw2S1 with the norm on A .
The C �-completion of A 1=d is denoted by A1=d .
Proposition 3.7. Suppose that f�wgw2S1 is semi-saturated on A and let d 2 N.
Then we have unitary isomorphisms of Hilbert C �-modules

.A.1//
b̋�d ' .A1=d /.1/ and .A.�1//

b̋�d ' .A1=d /.�1/
induced by the product  W x1 ˝ : : :˝ xd 7! x1 � : : : � xd .

Proof. We only consider the case of A.1/ since the the proof for A.�1/ is the same.
Observefirstly that .A 1=d /.1/ D A.d/. ThusLemma3.6 yieldsA.d/ D .A1=d /.1/.

This implies that the product  W .A.1//
˝A.0/

d
! .A 1=d /.1/ is a well-defined

homomorphism of right modules over A.0/ (here “˝A.0/” refers to the algebraic
tensor product of bimodules over A.0/). Furthermore, since

hx1 ˝ : : :˝ xd ; y1 ˝ : : :˝ yd i D x
�
d � : : : � x

�
1 � y1 � : : : � yd ;
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we get that  extends to a homomorphism  W .A.1//
b̋�d ! A

1=d

.1/
of Hilbert

C �-modules over A.0/ with h .�/;  .�/i D h�; �i for all �; � 2 .A.1//b̋�d .
It is therefore enough to show that Im. / � .A1=d /.1/ is dense. But this is a

consequence of [10, Prop. 4.8].

Lemma 3.8. Suppose that f�wgw2S1 satisfies the conditions of Assumption 3.1. Then
f�
1=d
w gw2S1 satisfies the conditions of Assumption 3.1 for all d 2 N.

Proof. We only need to show that the Hilbert C �-modules A.d/ and A.�d/ are full
and countably generated over A.0/.

By Proposition 3.4 we have that f�wgw2S1 is semi-saturated. It thus follows from
Proposition 3.7 that

A.d/ ' .A.1//
b̋�d and A.�d/ ' .A.�1//

b̋�d : (3.1)

Since both A.1/ and A.�1/ are full and countably generated by assumption these
unitary isomorphisms prove the lemma.

The following result is a stronger version of Theorem 3.5 since it incorporates all
the spectral subspaces and not just the first one.

Theorem 3.9. Suppose that the circle action f�wgw2S1 on A satisfies the conditions
in Assumption 3.1. Then the Pimsner algebra OA.d/ ' O

.A.1//
b̋d is isomorphic to

the C �-algebra A1=d for all d 2 N. The isomorphism is given by S� 7! � for all
� 2 A.d/.

Proof. This follows by combining Lemma 3.8, Proposition 3.7 and Theorem 3.5.

We finally investigate what happens when the C �-norm on A D ˚n2ZA.n/ is
changed. Thus, let k � k0 W A ! Œ0;1/ be an alternative C �-norm on A satisfying

k�w.x/k
0
� kxk0 for all w 2 S1 and x 2 A :

The corresponding completion A0 will carry an induced circle action f� 0wgw2S1 .
The next theorem can be seen as a manifestation of the gauge-invariant uniqueness
theorem, [15, Thm. 6.2 and Thm. 6.4]. This property was indirectly used already
in [18, Thm. 3.12] for the proof of the universal properties of Pimsner algebras.

Theorem 3.10. Suppose that kxk D kxk0 for all x 2 A.0/. Then f�wgw2S1
satisfies the conditions of Assumption 3.1 if and only if f� 0wg satisfies the conditions
of Assumption 3.1. In this case, the identity map A ! A induces an isomorphism
A! A0 of C �-algebras. In particular, we have that kxk D kxk0 for all x 2 A .
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Proof. Remark first that the identity map A.n/ ! A.n/ induces an isometric
isomorphism of Hilbert C �-modules A.n/ ! A0

.n/
for all n 2 Z. This is a

consequence of the identity kxk D kxk0 for all x 2 A.0/. But then we also have
isomorphisms

.A.1//
b̋�n ' .A0.1//b̋�n and .A.�1//

b̋�n ' .A0.�1//b̋�n
for all n 2 N. These observations imply that f�wgw2S1 satisfies the conditions of
Assumption 3.1 if and only if f� 0wg satisfies the conditions of Assumption 3.1. But
it then follows from Theorem 3.5 that

A ' OA.1/ ' OA0
.1/
' A0 ;

with corresponding isomorphismA ' A0 induced by the identity mapA ! A .

4. Quantum principal bundles and Z-graded algebras

We start by recalling the definition of a quantum principal U.1/-bundle.
Later on in the paper we shall exhibit a novel class of quantum lens spaces

as principal U.1/-bundles over quantum weighted projective lines with arbitrary
weights.

4.1. Quantum principal bundles. Define the unital complex algebra

O.U.1// WD CŒz; z�1�=h1 � zz�1i

where h1� zz�1i denotes the ideal generated by 1� zz�1 in the polynomial algebra
CŒz; z�1� in two variables. The algebraO.U.1// is a Hopf algebra by defining, for all
n 2 Z, coproduct� W zn 7! zn˝ zn, antipode S W zn 7! z�n and counit " W zn 7! 1.
We simply write O.U.1// D

�
O.U.1//;�; S; "

�
for short.

Let A be a complex unital algebra and suppose in addition that it is a right
comodule algebra overO.U.1//, that is we have a homomorphism of unital algebras

�R W A ! A ˝O.U.1// ;

which also provides a coaction of the Hopf algebra O.U.1// on A .
Let B WD fx 2 A j �R.x/ D x ˝ 1g denote the unital subalgebra of A

consisting of coinvariant elements for the coaction.
Definition 4.1. One says that the datum

�
A ;O.U.1//;B

�
is a quantum principal

U.1/-bundle when the canonical map

can W A ˝B A ! A ˝O.U.1// ; x ˝ y 7! x ��R.y/ ;

is an isomorphism.
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Remark 4.2. One ought to qualifyDefinition 4.1 by saying that the quantum principal
bundle is ‘for the universal differential calculus’ [6]. In fact, the definition above
means that the right comodule algebra A is aO.U.1//-Galois extension, and this is
equivalent (in the present context) by [12, Prop. 1.6] to the bundle being a quantum
principal bundle for the universal differential calculus.

4.2. Relation with Z-graded algebras. We now provide a detailed analysis of the
case where the quantum principal bundle structure comes from a Z-grading of the
‘total space’ algebra. This will lead to an alternative characterization of quantum
U.1/-principal bundles in this setting. While this description is not new (see for
instance [21, Lemma 5.1]), it is certainly more manageable. In particular, we will
apply it in §6 below for the case of quantum lens spaces as U.1/-principal bundles
over quantum weighted projective lines.

Let A D ˚n2ZA.n/ be a Z-graded unital algebra and let O.U.1// be the Hopf
algebra defined in the previous section. Define the unital algebra homomorphism

�R W A ! A ˝O.U.1// x 7! x ˝ z�n ; for x 2 A.n/ :

It is then clear that �R turns A into a right comodule algebra over O.U.1//. The
unital subalgebra of coinvariant elements coincides with A.0/.
Theorem 4.3. The triple

�
A ;O.U.1//;A.0/

�
is a quantum principal U.1/-bundle

if and only if there exist finite sequences

f�j g
N
jD1 ; fˇig

M
iD1 in A.1/ and f�j g

N
jD1 ; f˛ig

M
iD1 in A.�1/

such that there hold identities:
NX
jD1

�j�j D 1A D

MX
iD1

˛iˇi :

Proof. Suppose first that
�
A ;O.U.1//;A.0/

�
is a quantum principal U.1/-bundle.

Thus, that the canonical map

can W A ˝A.0/ A ! A ˝O.U.1//

is an isomorphism. For each n 2 Z, define the idempotents

P.n/ W O.U.1//! O.U.1// ; P.n/ W z
m 7! ınmz

m and

E.n/ W A ! A ; E.n/ W xm 7! ınmxm

where xm 2 A.m/ and where ınm 2 f0; 1g denotes the Kronecker delta. Clearly,

can ı .1˝E.�n// D .1˝ P.n// ı can W A ˝A.0/ A ! A ˝O.U.1// : (4.1)

for all n 2 Z.
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Let us now define the element

 WD can�1.1A ˝ z/ D

NX
jD1

0j ˝ 
1
j :

It then follows from (4.1) that

 D .1˝E.�1//./ D

NX
jD1

0j ˝E.�1/.
1
j /

To continue, we remark that

m./ D m ı can�1.1A ˝ z/ D .id˝ "/.1A ˝ z/ D 1A

where m W A ˝A.0/ A ! A is the algebra multiplication. And this implies that

1A D

X
jD1

0j �E.�1/.
1
j / D

NX
jD1

E.1/.
0
j / �E.�1/.

1
j / :

We therefore put,

�j WD E.1/.
j
0 / and �j WD E.�1/.

j
1 / ; for all j D 1; : : : ; N :

Next, we define the element

ı WD can�1.1A ˝ z
�1/ D

MX
iD1

ı0i ˝ ı
1
i :

An argument similar to the one before then shows that
PM
iD1 ˛i � ˇi D 1A , with

˛i WD E.�1/.ı
0
i / and ˇi WD E.1/.ı

1
i / ; for all i D 1; : : : ;M :

This proves the first half of the theorem.
To prove the second half we suppose there exist sequences f�j gNjD1, fˇig

M
iD1 in

A.1/ and f�j gNjD1, f˛ig
M
iD1in A.�1/ such that

PN
jD1 �j�j D 1A D

PM
iD1 ˛iˇi .

We then define the map can�1 W A ˝O.U.1//! A ˝A.0/ A by the formula

can�1 W x˝zn 7!

8̂<̂
:
P
J2f1;:::;N gn x �j1 � : : : � �jn ˝ �jn � : : : � �j1 ; for n � 0

x ˝ 1; for n D 0P
I2f1;:::;M g�n x ˛i1 � : : : � ˛i�n ˝ ˇi�n � : : : � ˇi1 ; for n � 0

:

It is then straightforward to check that

can�1 ı can D id and can ı can�1 D id :

This ends the proof of the theorem.
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Remark 4.4. The above theorem shows that
�
A ;O.U.1//;A.0/

�
is a quantum

principal U.1/-bundle if and only if A is strongly Z-graded, see [17, Lem. I.3.2].
Our next corollary is thus a consequence of [17, Cor. I.3.3]. We present a proof here
since we need the explicit form of the idempotents later on.
Corollary 4.5. With the same conditions as in Theorem 4.3, the right-modules A.1/

and A.�1/ are finitely generated and projective over A.0/.

Proof. With the �’s and the �’s as above, define the module homomorphisms

ˆ.1/ W A.1/ ! .A.0//
N ; ˆ.1/.�/ D

0BBB@
�1 �

�2 �
:::

�N �

1CCCA and

‰.1/ W .A.0//
N
! A.1/ ; ‰.1/

0BBB@
x1
x2
:::

xN

1CCCA D NX
iD1

�ixi :

It then follows that ‰.1/ˆ.1/ D idA.1/ . Thus E.1/ WD ˆ.1/‰.1/ is an idempotent in
MN .A.0// and this proves the first half of the corollary.

Similarly, with the ˛’s and the ˇ’s as above, define the module homomorphisms

ˆ.�1/ W A.�1/ ! .A.0//
N ; ˆ.�1/.�/ D

0BBB@
ˇ1 �

ˇ2 �
:::

ˇM �

1CCCA and

‰.�1/ W .A.0//
N
! A.�1/ ; ‰.�1/

0BBB@
x1
x2
:::

xM

1CCCA D MX
iD1

˛ixi :

Now one gets ‰.�1/ˆ.�1/ D idA.�1/ . Thus E.�1/ WD ˆ.�1/‰.�1/ is an idempotent
inMM .A.0// as well. This finishes the proof of the corollary.

Let d 2 N and consider the Z-graded unital C-algebra A 1=d WD ˚n2ZA.dn/.
As a consequence of Theorem 4.3 we obtain the following:

Proposition 4.6. Suppose
�
A ;O.U.1//;A.0/

�
is a quantum principal U.1/-bundle.

Then
�
A 1=d ;O.U.1//;A.0/

�
is a quantum principal U.1/-bundle for all d 2 N.

Proof. Let the finite sequences f�j gNjD1, fˇig
M
iD1 in A.1/ and f�j gNjD1, f˛ig

M
iD1 in

A.�1/ be as in Theorem 4.3. For each multi-index J 2 f1; : : : ; N gd and each
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multi-index I 2 f1; : : : ;M gd define the elements

�J WD �j1 � : : : � �jd ; ˇI WD ˇid � : : : � ˇi1 2 A.d/ and
�J WD �jd � : : : � �j1 ; ˛I WD ˛i1 � : : : � ˛id 2 A.�d/ :

It is then clear that X
J2f1;:::;N gd

�J �J D 1A 1=d D

X
I2f1;:::;M gd

˛I ˇI :

This proves the proposition by an application of Theorem 4.3.

Note that it follows from Proposition 4.6 and Corollary 4.5 that when�
A ;O.U.1//;A.0/

�
is a quantum principal bundle then the right modules A.d/

and A.�d/ are finitely generated projective over A.0/ for all d 2 N.

5. Quantum weighted projective lines

We recall the definition of the quantum weighted projective lines as fixed point
algebras of circle actions on the quantum 3-sphere. These algebras play the role of
the coordinate functions on the base space which parametrizes the lines generating
the quantum lens spaces (as total spaces). Corresponding C �-algebras will be the
analogues of continuous functions on the base and total space respectively. The latter
C �-algebra will be given as a Pimsner algebra coming from the line bundles.

5.1. Coordinate algebras. Let n 2 N0 and let q 2 .0; 1/.
Definition 5.1. The coordinate algebra O.S2nC1q / of the quantum sphere S2nC1q is
the universal unital �-algebra with generators z0; : : : ; zn and relations

zizj D qzj zi for i < j ; ziz
�
j D qz

�
j zi for i ¤ j ;

ziz
�
i D z

�
i zi C .q

�2
� 1/

nX
mDiC1

zmz
�
m ;

nX
mD0

zmz
�
m D 1 :

This algebra was introduced in [22]. Next, letL D .l0; : : : ; ln/ 2 NnC1 be fixed. We
then have a circle action f�Lw gw2S1 on O.S2nC1q / defined on generators by

�Lw W zi 7! wli zi for all i 2 f0; : : : ; ng :

Definition 5.2. The coordinate algebra O.Wq.L// of the quantum weighted
projective space Wq.L/ is the fixed point algebra of the circle action f�Lw gw2S1 .
Thus

O.Wq.L// WD
˚
x 2 O.S2nC1q / j �Lw .x/ D x for all w 2 S1

	
:
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From now on, we will suppose that n D 1 and that k WD l0 and l WD l1 are
coprime. By [5, Thm. 2.1], the algebraic quantum projective lineO.Wq.k; l// agrees
with the unital �-subalgebra of O.S3q / generated by the elements zl0.z�1 /k and z1z�1 .
Alternatively, one may identifyO.Wq.k; l// with the universal unital �-algebra with
generators a; b, subject to the relations

b� D b ; ba D q�2l ab ;

aa� D q2kl bk
l�1Y
mD0

.1 � q2mb/ ; a�a D bk
lY

mD1

.1 � q�2mb/ :

The identification is just a 7! zl0.z
�
1 /
k and b 7! z1z

�
1 (we have exchanged the names

of generators with respect to [5]). In particular O.Wq.1; 1// D O.CP 1q /, while
O.Wq.1; l// was named quantum teardrop in [5].

5.2. C �-completions. We fix k; l 2 N to be coprime positive integers.
Definition 5.3. The algebra of continuous functions on the quantum weighted
projective lineWq.k; l/ is the universal envelopingC �-algebra, denotedC.Wq.k; l//,
of the coordinate algebra O.Wq.k; l//.

Let K denote the C �-algebra of compact operators on the separable Hilbert
space l2.N0/ of all square summable sequences indexed by N0, with orthonormal
basis fepgp2N0 . It was shown in [5, Prop. 5.1] that C.Wq.k; l// is isomorphic to the
unital C �-algebra

C̊l
sD1K � L

�
˚
l
sD1 l

2.N0/
�
;

wheree� denotes the unitalization functor. The isomorphism is induced by the direct
sum of representations˚lsD1�s W O.Wq.k; l//! L

�
˚lsD1 l

2.N0/
�
where each �s

is defined on generators by

�s.z1z
�
1 /.ep/ WD q

2s q2lp ep ; �s.z
l
0.z
�
1 /
k/.e0/ WD 0 ;

�s.z
l
0.z
�
1 /
k/.ep/ WD q

k.lpCs/

lY
mD1

.1 � q2.lpCs�m//1=2 ep�1 ; p � 1 :
(5.1)

Note that the C �-algebra C.Wq.k; l// does not depend on k. As a consequence one
has the following corollary due to Brzeziński and Fairfax, see [5, Cor. 5.3].
Corollary 5.4. The K-groups of C.Wq.k; l// are:

K0.C.Wq.k; l/// D ZlC1 ; K1.C.Wq.k; l/// D 0 :

Notice that the K-theory groups of the quantum weighted projective lines do
not agree with the K-theory groups of their commutative counterparts: In the
commutative case, the K0-group is given by K0.C.W.k; l/// D Z2 independently
of both weights k and l , see [1, Prop. 2.5].
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Definition 5.5. The algebra of continuous functions on the quantum 3-sphere S3q is
the universal enveloping C �-algebra, C.S3q /, of the coordinate algebra O.S3q /.

The (weighted) circle action
˚
�
.k;l/
w

	
w2S1

on O.S3q / will be denoted simply by
f�wgw2S1 . It induces a strongly continuous circle action on C.S3q /. We let C.S3q /.0/
denote the fixed point algebra of this action.
Lemma 5.6. The inclusionO.Wq.k; l// � O.S3q / induces an isomorphism of unital
C �-algebras,

i W C.Wq.k; l//! C.S3q /.0/ :

Proof. Clearly, one has Im.i/ � C.S3q /.0/ and Im.i/ is dense by the argument used
in the proof of Lemma 3.6.

It therefore suffices to show that i W C.Wq.k; l// ! C.S3q / is injective. To this
end, consider the �-homomorphism

� WD ˚lsD1�s W O.Wq.k; l//! L
�
˚
l
sD1 l

2.N0/
�
:

Then, by [5, Prop. 2.4] there exist a �-homomorphism � W O.S3q /! L .l2.N0// and
an isomorphism � W L

�
˚lsD1 l

2.N0/
�
! L .l2.N0// such that

� ı � D � ı i W O.Wq.k; l//! L .l2.N0// :

Let now x 2 O.Wq.k; l//. It follows from the above, that

kxk D k�.x/k D k.� ı �/.x/k D k.� ı i/.x/k � ki.x/k :

This proves that i W C.Wq.k; l// ! C.S3q /.0/ is an isometry and it is therefore
injective.

Let L 1 denotes the trace class operators on the Hilbert space l2.N0/.

Lemma 5.7. The �-homomorphism � WD ˚lsD1�s W O.Wq.k; l// !
C̊l
sD1K

factorizes through the unital �-subalgebra C̊l
sD1L

1.

Proof. Let s 2 f1; : : : ; lg. We only need to show that �s.zl0.z�1 /k/; �s.z1z�1 / 2 L 1.
With notation a WD zl0.z

�
1 /
k and b WD z1z

�
1 , the operator �s.b/ W l2.N0/! l2.N0/

is positive and diagonal with eigenvalues fq2s q2lpg1pD0 each of multiplicity 1.
It is immediate to show that �s.b/1=2 2 L 1. Indeed, from (5.1),

Tr.�s.b/1=2/ D
1X
pD0

qs qlp D qs .1 � ql/�1 <1 ;

having restricted the deformation parameter to q 2 .0; 1/. From �s.b/
1=2 2 L 1 the

inclusion �s.b/ 2 L 1 follows as well.
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To obtain that �s.a/ 2 L 1 we need to verify that j�s.a/j 2 L 1. Recall that

a�a D bk �

lY
mD1

.1 � q�2mb/ :

Using this relation, we may compute the absolute value:

j�s.a/j D �s.b/
k=2
�

� lY
mD1

.1 � q�2m�s.b//

�1=2
:

Since L 1 is an ideal in L .l2.N0// we may thus conclude that j�s.a/j 2 L 1.

6. Quantum lens spaces

We define 3-dimensional quantum lens spaces O
�
Lq.d lkI k; l/

�
as fixed point

algebras for the action of a finite cyclic group on the coordinate algebra of the
quantum 3-sphere. We show that these spaces are quantum principal bundles over
quantum weighted projective spaces. Our examples are more general than those
of [5]. As said, the enveloping C �-algebras of the lens spaces will be given as
Pimsner algebras.

6.1. Coordinate algebras. Let k; l 2 N be coprime positive integers. For each
d 2 N define the action of the cyclic group Z=.dlk/Z on the quantum sphere S3q ,

˛1=d W Z=.dlk/Z �O.S3q /! O.S3q / ;

by letting on generators:

˛1=d .1; z0/ WD exp
�
2� i
dl

�
z0 and ˛1=d .1; z1/ WD exp

�
2� i
dk

�
z1 : (6.1)

Definition 6.1. The coordinate algebra for the quantum lens space Lq.d lkI k; l/
is the fixed point algebra of the action ˛1=d . This unital �-algebra is denoted by
O
�
Lq.d lkI k; l/

�
. Thus

O
�
Lq.d lkI k; l/

�
WD
˚
x 2 O.S3q / j ˛1=d .1; x/ D x

	
:

The elements zl0.z�1 /k and z1z�1 , generating the weighted projective space algebra
O.Wq.k; l//, are clearly invariant leading, for any d 2 N, to an algebra inclusion

O.Wq.k; l// ,! O
�
Lq.d lkI k; l/

�
:
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Next, for each n 2 N0, consider the subspaces of O.S3q / given by

A.n/.k; l/ WD

nX
jD0

.z�0 /
lj .z�1 /

k.n�j /
�O.Wq.k; l// ;

A.�n/.k; l/ WD

nX
jD0

.z0/
lj .z1/

k.n�j /
�O.Wq.k; l// :

(6.2)

By construction these subspaces are in fact right-modules over O.Wq.k; l//.
Recall that the algebraO.S3q / admits [23] a vector space basis given by the vectors

fep;r;s j p 2 Z; r; s 2 N0g, where

ep;r;s D

(
z
p
0 z

r
1.z
�
1 /
s for p � 0

.z�0 /
�pzr1.z

�
1 /
s for p � 0

:

Lemma 6.2. Let n 2 Z. It holds that

ep;r;s 2 A.n/.k; l/, pk C .r � s/l D �nkl

, �k;lw .ep;r;s/ D w
�nklep;r;s ; 8w 2 S

1 :

As a consequence, it holds that

x 2 A.n/.k; l/, �k;lw .x/ D w�nklx ; 8w 2 S1 :

Proof. Clearly one has that

ep;r;s 2 A.n/.k; l/)pk C .r � s/l D �nkl

,�k;lw .ep;r;s/ D w
�nklep;r;s ; 8w 2 S

1 :

Thus, it only remains to prove the implication

pk C .r � s/l D �nkl ) ep;r;s 2 A.n/.k; l/ :

Then, supposepkC.r�s/l D �nkl . Since k; l 2 N are coprime there exists integers
d0; d1 2 Z such that p D d0l and .r � s/ D d1k. Furthermore, d0 C d1 D �n.
Suppose first that .r � s/ ; p � 0. Then,

ep;r;s D z
p
0 z

.r�s/
1 .z1z

�
1 /
s
D z

ld0
0 z

kd1
1 .z1z

�
1 /
s
2 A.�d0�d1/.k; l/ D A.n/.k; l/ :

Suppose next that p � 0 and .r � s/ � 0. Then,

ep;r;s D z
p
0 .z
�
1 /
s�r.z1z

�
1 /
r
D z

ld0
0 .z�1 /

�d1k.z1z
�
1 /
r :

We now have two sub-cases: Either d0 � �d1 or �d1 � d0. When d0 � �d1, it
follows from the above that

ep;r;s D z
l.d0Cd1/
0 z

�d1l
0 .z�1 /

�d1k.z1z
�
1 /
r
2 A.n/.k; l/ :
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On the other hand, if �d1 � d0, we have that

ep;r;s D z
ld0
0 .z�1 /

kd0.z�1 /
.�d1�d0/k.z1z

�
1 /
r
2 A.n/.k; l/ :

The remaining two cases (when p � 0 and .r � s/ � 0 and when p ; .r � s/ � 0)
follow by similar arguments. This proves the lemma.

Proposition 6.3. The subspaces
˚
A.dn/.k; l/

	
n2Z gives O.Lq.d lkI k; l// the

structure of a Z-graded unital �-algebra.

Proof. We need to prove that the vector space sum provides a bijection

˚n2ZA.dn/.k; l/! O.Lq.d lkI k; l// :

Suppose thus that
P
n2Z xn D 0where xn 2 A.dn/.k; l/ for all n 2 Z and xn D 0

for all but finitely many n 2 Z. It then follows from Lemma 6.2 that the terms xn
lie in different homogeneous spaces for the circle action

˚
�
k;l
w

	
w2S1

on O.S3q /. We
may then conclude that xn D 0 for all n 2 Z. This proves the claimed injectivity.

Next, let x 2 O.Lq.d lkI k; l//. Without loss of generality we may take
x D ep;r;s for some p 2 Z and r; s 2 N0. The fact that x 2 O.Lq.d lkI k; l//
then means that

p=.dl/C .r � s/=.dk/ 2 Z , pk C .r � s/l 2 .dkl/ Z :

It then follows from Lemma 6.2 that ep;r;s 2
P
n2Z A.dn/.k; l/. This proves

surjectivity.
Finally, let x 2 A.dn/.k; l/ and y 2 A.dm/.k; l/. It only remains to prove that

x� 2 A.�dn/.k; l/ and xy 2 A.d.nCm//.k; l/. But these properties also follow
immediately from Lemma 6.2 since �k;lw is a �-automorphism of O.S3q / for each
w 2 S1.

6.2. Lens spaces as quantum principal bundles. The right-modules A.1/.k; l/

and A.�1/.k; l/ play a central role. Recall from (6.2) that they are given by

A.1/.k; l/ WD .z
�
1 /
k
�O.Wq.k; l//C .z�0 /l �O.Wq.k; l// and

A.�1/.k; l/ WD z
k
1 �O.Wq.k; l//C zl0 �O.Wq.k; l// :

Proposition 6.4. There exist elements

�1; �2; ˇ1; ˇ2 2 A.1/.k; l/ and �1; �2; ˛1; ˛2 2 A.�1/.k; l/

such that
�1�1 C �2�2 D 1 D ˛1ˇ1 C ˛2ˇ2 :
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Proof. Firstly, a repeated use of the defining relations of the algebra O.S3q / leads to

.z�0 /
lzl0 D

lY
mD1

.1 � q�2mz1z
�
1 / :

Then, define the polynomial F 2 CŒX� by the formula

F.X/ WD
�
1 �

lY
mD1

.1 � q�2mX/
�
=X :

Since z1z�1 D z�1z1 one has that

.z�0 /
lzl0 C z

�
1 F.z1z

�
1 / z1 D 1 :

In particular, this implies that

1 D
�
.z�0 /

lzl0 C z
�
1 F.z1z

�
1 / z1

�k
D

kX
jD0

�
.z�0 /

lzl0
�j �

z�1 F.z1z
�
1 / z1

�k�j  k
j

!

D .z�1 /
k
�
F.z1z

�
1 /
�k
zk1 C

kX
jD1

�
.z�0 /

lzl0
�j �

1 � .z�0 /
lzl0
�k�j  k

j

!

D .z�1 /
k
�
F.z1z

�
1 /
�k
zk1 C .z

�
0 /
l

8<: kX
jD1

�
zl0.z

�
0 /
l
�j�1�

1 � zl0.z
�
0 /
l
�k�j  k

j

!9=; zl0 :
Define now the polynomial G 2 CŒX� by the formula

G.X/ WD .1 � .1 �X/k/=X D

kX
jD1

Xj�1.1 �X/k�j

 
k

j

!
; (6.3)

so that
kX
jD1

�
zl0.z

�
0 /
l
�j�1�

1 � zl0.z
�
0 /
l
�k�j  k

j

!
D G

�
zl0.z

�
0 /
l
�
:

And this enables us to write the above identities as

1 D .z�1 /
k
�
F.z1z

�
1 /
�k
zk1 C .z

�
0 /
lG
�
zl0.z

�
0 /
l
�
zl0 : (6.4)

Notice that both F.z1z�1 / and G
�
zl0.z

�
0 /
l
�
belong to O.Wq.k; l//. We thus define

�1 WD .z
�
1 /
k
�
F.z1z

�
1 /
�k
; �1 WD z

k
1 ;

�2 WD .z
�
0 /
l G
�
zl0.z

�
0 /
l
�
; �2 WD z

l
0 ;

and this proves the first half of the proposition.
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To prove the second half, we consider instead the identity

zl0.z
�
0 /
l
D

l�1Y
mD0

.1 � q2mz�1z1/ ;

which again follows by a repeated use of the defining identities for O.S3q /.
The polynomial eF 2 CŒX� is now given by the formula

eF .X/ WD �1 � l�1Y
mD0

.1 � q2mX/

�
=X :

and we obtain that
zl0.z

�
0 /
l
C z1 QF .z1z

�
1 /z
�
1 D 1 :

By taking kth powers and computing as above, this yields that

1 D zk1
�
QF .z1z

�
1 /
�k
.z�1 /

k
C zl0

8<: kX
jD1

 
k

j

!�
.z�0 /

lzl0
�j�1�

1 � .z�0 /
lzl0
�k�j9=; .z�0 /l :

This identity may be rewritten as

1 D zk1
�eF .z1z�1 /�k.z�1 /k C zl0G�.z�0 /lzl0�.z�0 /l ;

where G 2 CŒX� is again the one defined by (6.3).
Since both eF .z1z�1 / and G�.z�0 /lzl0� belong to O.Wq.k; l// we define

˛1 WD z
k
1

�eF .z1z�1 /�k ; ˇ1 WD .z
�
1 /
k ;

˛2 WD z
l
0G

�
.z�0 /

lzl0
�
; ˇ2 WD .z

�
0 /
l :

This ends the proof of the present proposition.

The next proposition is now an immediate consequence of Proposition 6.3,
Proposition 6.4, Theorem 4.3, and Proposition 4.6.

Proposition 6.5. The triple
�
O.Lq.d lk/I k; l/;O.U.1//;O.Wq.k; l//

�
is a quantum

principal U.1/-bundle for each d 2 N.

6.3. C �-completions. We fix k; l 2 N to be coprime positive integers. Let d 2 N.
With C.S3q / the C �-algebra of continuous functions on the quantum sphere S3q , the
action of the cyclic groupZ=.dlk/Z given on generators in (6.1) results into an action

˛1=d W Z=.dkl/Z � C.S3q /! C.S3q / :
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Definition 6.6. The C �-algebra of continuous functions on the quantum lens space
Lq.d lkI k; l/ is the fixed point algebra of this action. It is denoted by C.S3q /1=d .
Thus

C.S3q /
1=d
WD
˚
x 2 C.S3q / j ˛

1=d .1; x/ D x
	
:

Lemma 6.7. The C �-quantum lens space C.S3q /
1=d is the closure of the algebraic

quantum lens space O.Lq.dkl I k; l// with respect to the universal C �-norm on
O.S3q /.

Proof. This follows by applying the bounded operator E1=d W C.S3q /! C.S3q /
1=d ,

E1=d W x 7!
1

dkl

dklX
mD1

˛1=d .Œm�; x/ ;

with Œm� denoting the residual class in Z=.dkl/Z of the integer m.

Alternatively, and in parallel with Definition 5.3, we could define theC �-quantum
lens space as the universal envelopingC �-algebra of the algebraic quantum lens space
O.Lq.dkl I k; l//. We will denote this C �-algebra by C.Lq.dkl I k; l//.
Lemma 6.8. For all d 2 N, the identity mapO.Lq.dkl I k; l//! O.Lq.dkl I k; l//
induces an isomorphisms of C �-algebras,

C.S3q /
1=d
' C.Lq.dkl I k; l// :

Proof. We use Theorem 3.10. Indeed, let d 2 N and let k � k W O.S3q / ! Œ0;1/

and k � k0 W O.Lq.dkl I k; l// ! Œ0;1/ denote the universal C �-norms of the
two different unital �-algebras in question. We then have kxk � kxk0 for all
x 2 O.Lq.dkl I k; l// since the inclusion O.Lq.dkl I k; l// ! O.S3q / induce a
�-homomorphism C.Lq.dkl I k; l// ! C.S3q /

1=d . But we also have kxk0 � kxk
since the restriction k � k W O.Wq.k; l// ! Œ0;1/ is the maximal C �-norm on
O.Wq.k; l// by Lemma 5.6.

From now on, to lighten the notation, denote by B WD C.Wq.k; l// the
C �-quantum weighted projective line. Furthermore, let E denote the Hilbert
C �-module over B obtained as the closure of the module A.1/.k; l/ in the universal
C �-norm on the quantum sphere O.S3q /. As usual, we let � W B ! L .E/ denote
the �-homomorphism induced by the left multiplication B � C.S3q /! C.S3q /.

We are ready to realize the C �-quantum lens spaces as Pimsner algebras.
Theorem 6.9. For all d 2 N, there is an isomorphism of C �-algebras,

O
Eb̋�d ' C.S3q /1=d ;

given by
S�1˝:::˝�d 7! �1 � : : : � �d for all �1; : : : ; �d 2 E :
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Proof. Recall from Proposition 6.3 that, for all d 2 N, it holds that

O.Lq.d lkI k; l// ' ˚n2ZA.dn/.k; l/ :

Let us denote by f�wgw2S1 the associated circle action on O.Lq.d lkI k; l//.
Then, we have k�w.x/k � kxk for all x 2 O.Lq.d lkI k; l// and all w 2 S1, where
k � k is the norm on C.S3q /1=d (the restriction of the maximal C �-norm on C.S3q /).
To see this, choose a z 2 S1 such that zdkl D w. Then � .k;l/z .x/ D �w.x/, where
the weighted circle action � .k;l/ W S1 � C.S3q / ! C.S3q / is the one defined at the
beginning of §5.1.

An application of Theorem 3.9 now shows that

O
Eb̋�d ' C.S3q /1=d

for all d 2 N, provided that f�wgw2S1 satisfies the conditions of Assumption 3.1. To
this end, taking into account the analysis of the coordinate algebra O.Lq.lkI k; l//
provided in §6.1, the only non-trivial thing to check is that the collections

hE;Ei WD span
˚
��� j �; � 2 E

	
and hE�; E�i WD span

˚
��� j �; � 2 E

	
are dense in C.Wq.k; l//. But this follows at once from Proposition 6.4.

7. KK-theory of quantum lens spaces

We now combine the results obtained until this point and, using methods coming
from the Pimsner algebra constructions, we are able to compute the KK-theory of
the quantum lens spaces Lq.dkl I k; l/ for any coprime k; l 2 N and any d 2 N.

As before we let E denote the Hilbert C �-module over the quantum weighted
projective line C.Wq.k; l// which is obtained as the closure of A.1/.k; l/ in C.S3q /.

The two polynomials in O.Wq.k; l// in the proof of Proposition 6.4, written as

.F.z1z
�
1 //

k
D

��
1 � .z�0 /

lzl0
�
=.z1z

�
1 /
�k

and

G
�
zl0.z

�
0 /
l
�
D
�
1 � .1 � zl0.z

�
0 /
l/k
�
=.zl0.z

�
0 /
l/ ;

are manifestly positive, since kz1z�1k � 1 and thus also kzl0.z�0 /lk; k.z�0 /lzl0k � 1 in
C.Wq.k; l//. Thus it makes sense to take their square roots:

�1 WD F.z1z
�
1 /
k=2
D

��
1 � .z�0 /

lzl0
�
=.z1z

�
1 /
�k=2

2 C.Wq.k; l// and

�0 WD G
�
zl0.z

�
0 /
l
�1=2
D

��
1 � .1 � zl0.z

�
0 /
l/k
�
=.zl0.z

�
0 /
l/
�1=2
2 C.Wq.k; l// :
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Next, define the morphism of Hilbert C �-modules ‰ W E ! C.Wq.k; l//
2 by

‰ W � 7!

�
�1z

k
1 �

�0z
l
0 �

�
;

whose adjoint ‰� W C.Wq.k; l//2 ! E is then given by

‰� W

�
x

y

�
7! .z�1 /

k�1 x C .z
�
0 /
l�0 y :

It then follows from (6.4) that ‰�‰ D idE . The associated orthogonal projection is

P WD ‰‰� D

�
�1 .z1z

�
1 /
k �1 �1 z

k
1 .z
�
0 /
l �0

�0 z
l
0.z
�
1 /
k �1 �0 z

l
0.z
�
0 /
l �0

�
2M2.C.Wq.k; l/// : (7.1)

7.1. Fredholm modules over quantum weighted projective lines. We recall [7,
Chap. IV] that an even Fredholm module over a �-algebra A is a datum .H; �; F; /

where H is a Hilbert space of a representation � of A , the operator F on H is
such that F 2 D F and F 2 D 1, with a Z=2Z-grading  , 2 D 1, which commutes
with the representation and such that F C F D 0. Finally, for all a 2 A the
commutator ŒF; �.a/� is required to be compact. The Fredholm module is said to be
1-summable if the commutator ŒF; �.a/� is trace class for all a 2 A .

Now, the quantum sphere S3q is the ‘underlying manifold’ of the quantum group
SUq.2/. The latter’s counit when restricted to the subalgebra O.Wq.k; l// yields a
one-dimensional representation " W O.Wq.k; l//! C, given on generators by,

".z1z
�
1 / D ".z

l
0.z
�
1 /
k/ WD 0 ; ".1/ D 1 :

Next, let H WD l2.N0/ ˝ C2. We use the subscripts “C” and “�” to indicate that
the corresponding spaces are thought of as being even or odd respectively, for a
Z=2Z-grading  : H˙ will be two copies of H . For each s 2 f1; : : : ; lg, with the
�-representation �s given in (5.1), define the even �-homomorphism

�s W O.Wq.k; l//! L
�
HC ˚H�

�
; �s W x 7!

�
�s.‰x‰

�/ 0

0 ".‰x‰�/

�
:

We are slightly abusing notation here: the element‰x‰� is a 2� 2matrix, hence �s
and " have to be applied component-wise. Next, define

F D

�
0 1

1 0

�
;  D

�
1 0

0 �1

�
: (7.2)

Lemma 7.1. The datum Fs WD
�
HC ˚H�; �s; F; 

�
; defines an even 1-summable

Fredholm module over the coordinate algebra O.Wq.k; l//.
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Proof. It is enough to check that �s.‰z1z�1‰�/; �s.‰zl0.z�1 /k‰�/ 2 L 1.H/ and
furthermore that �s.P / � ".P / 2 L 1.H/, for P the projection in (7.1).

That the two operators involving the generators z1z�1 and zl0.z�1 /k lie in L 1.H/

follows easily from Lemma 5.7. To see that �s.P / � ".P / 2 L 1.H/ note that

".P / D

�
0 0

0 1

�
:

The desired inclusion then follows since Lemma 5.7 yields that the operators
�s.z1z

�
1 /
k , �s.zl0.z�1 /k/, and �s.1 � zl0.z�0 /l/ are of trace class.

For s D 0, we take

�0 WD

�
" 0

0 0

�
W C.Wq.k; l//! L .C˚ C/

and define the even 1-summable Fredholm module

F0 WD
�
CC ˚ C�; �0; F; 

�
:

Remark 7.2. The 1-summable l C 1 Fredholm modules over O.Wq.k; l// we have
defined are different from the 1-summable Fredholm modules defined in [5, §4]. The
present Fredholm modules are obtained by “twisting” the Fredholm modules in [5]
with the Hilbert C �-module E.

7.2. Index pairings. Recall the representations �s of C.Wq.k; l// given in (5.1).
For each r 2 f1; : : : ; lg, let pr 2 C.Wq.k; l// denote the orthogonal projection

defined by the requirement

�s.pr/ D

(
e00 for s D r
0 for s ¤ r

; (7.3)

where e00 W l2.N0/ ! l2.N0/ denotes the orthogonal projection onto the closed
subspace Ce0 � l2.N0/. For r D 0, let p0 D 1 2 C.Wq.k; l//. The classes of these
l C 1 projections fpr ; r D 0; 1; : : : ; lg form a basis for the group K0.C.Wq.k; l///
given in Corollary 5.4.

On the other handwe have the classes in theK-homology groupK0.C.Wq.k; l///
represented by the even 1-summable Fredholm modules Fs , s D 0; : : : ; l , which we
described in the previous paragraph.

We are interested in computing the index pairings

hŒFs�; Œpr �i WD
1
2
Tr
�
F ŒF; �s.pr/�

�
2 Z ; for r; s 2 f0; : : : ; lg :



Pimsner algebras and Gysin sequences 57

Proposition 7.3. It holds that:

hŒFs�; Œpr �i D

8̂<̂
:
1 for s D r
1 for r D 0
0 else

:

Proof. Suppose first that r; s 2 f1; : : : ; lg. We then have:

hŒFs�; Œpr �i D Tr
�
�s.‰pr‰

�/
�
;

and the above operator trace is well-defined since �s.‰pr‰�/ is an orthogonal
projection in M2.K / and it is therefore of trace class. We may then compute as
follows:

Tr
�
�s.‰pr‰

�/
�
D Tr

�
�s.�1z

k
1pr.z

�
1 /
k�1/

�
C Tr

�
�s.�0z

l
0pr.z

�
0 /
l�0/

�
D Tr

�
�s.pr.z

�
1 /
k�21z

k
1 /
�
C Tr

�
�s.pr.z

�
0 /
l�20z

l
0/
�

D Tr
�
�s.pr/

�
D ısr ;

where the second identity follows from [20, Cor. 3.8] and ısr 2 f0; 1g denotes the
Kronecker delta.

If r 2 f1; : : : ; lg and s D 0, then �0.pr/ D 0 and thus hŒF0�; Œpr �i D 0.
Next, suppose that r D s D 0. Then

hŒF0�; Œp0�i D Tr
�
1 0

0 0

�
D 1 :

Finally, suppose that r D 0 and s 2 f1; : : : ; lg. We then compute

hŒFs�; Œp0�i D Tr
�
�s.P / � ".P /

�
D Tr

�
�s.�

2
1 .z1z

�
1 /
k/
�
C Tr

�
�s.�0z

l
0.z
�
0 /
l�0/ � 1

�
D Tr

�
�s.1 � .z

�
0 /
lzl0/

k
�
� Tr

�
�s.1 � z

l
0.z
�
0 /
l/k
�
:

We will prove in the next lemma that this quantity is equal to 1. This will complete
the proof of the present proposition.

Lemma 7.4. It holds that:

Tr
�
�s.1 � .z

�
0 /
lzl0/

k
�
� Tr

�
�s.1 � z

l
0.z
�
0 /
l/k
�
D Tr

�
�s.Œz

l
0; .z

�
0 /
l �/
�
D 1 :

Proof. Notice firstly that �s
�
1 � .z�0 /

lzl0
�
; �s

�
1 � zl0.z

�
0 /
l
�
2 L 1.l2.N0// by

Lemma 5.7. It then follows by induction that

Tr
�
�s.1 � .z

�
0 /
lzl0/

k
�
� Tr

�
�s.1 � z

l
0.z
�
0 /
l/k
�
D Tr

�
�s.Œz

l
0; .z

�
0 /
l �/
�
:
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Indeed, with x WD zl0, for all j 2 f2; 3; : : :g, one has that,

Tr
�
�s.1 � x

�x/j
�
� Tr

�
�s.1 � xx

�/j
�

D Tr
�
�s.1 � x

�x/j�1
�
� Tr

�
�s.xx

�.1 � xx�/j�1/
�
� Tr

�
�s.1 � xx

�/j
�

D Tr
�
�s.1 � x

�x/j�1
�
� Tr

�
�s.1 � xx

�/j�1
�
:

It therefore suffices to show that Tr
�
�s.Œz

l
0; .z

�
0 /
l �/
�
D 1. Now, one has:

Œzl0; .z
�
0 /
l � D

lX
mD0

.�1/mqm.m�1/

 
l

m

!
q2

.1 � q�2ml/ .z1z
�
1 /
m

where the notation
�
l
m

�
q2

refers to the q2-binomial coefficient, defined by the identity

lY
mD1

.1C q2.m�1/Y / D

lX
mD0

qm.m�1/

 
l

m

!
q2

Y m

in the polynomial algebra CŒY �. Then, as in [5, Prop. 4.3] one computes:

Tr
�
�s.Œz

l
0; .z

�
0 /
l �/
�
D

lX
mD1

.�1/mqm.m�1/

 
l

m

!
q2

.1 � q�2ml/
q2ms

1 � q2ml

D 1 �

lX
mD0

.�1/mqm.m�1/

 
l

m

!
q2

q2m.s�l/

D 1 �

lY
mD1

.1 � q2.s�m// D 1 ;

since, due to s 2 f1; : : : ; lg one of the factors in the product must vanish.

Remark 7.5. The non-vanishing of the pairings in Proposition 7.3 for r D 0

means that the class of the projection P in (7.1) is non-trivial in K0.C.Wq.k; l///.
(In this case the pairings are computing the couplings of the Fredholm modules
of [5, §4] with the projection P .) Geometrically this means that the line bundle
A.1/.k; l/ overO.Wq.k; l// and as a consequence the quantumprincipalU.1/-bundle
O.Wq.k; l/// ,! O.Lq.d lk/I k; l/ are non-trivial.

7.3. Gysin sequences. To ease the notation, we now let C.Wq/ WD C.Wq.k; l//

and C.Lq.d// WD C.Lq.dkl I k; l//. Also as before we let E denote the Hilbert
C �-module over C.Wq/ obtained as the closure of A.1/.k; l/ in C.S3q /. The
�-homomorphism � W C.Wq/! L .E/ is induced by the product on C.S3q /.
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For each d 2 N, let ŒEb̋d � 2 KK.C.Wq/; C.Wq// denote the class of the Hilbert
C �-module Eb̋�d as in Definition 2.5. Recall from Theorem 6.9 that the Pimnser
algebra O

Eb̋�d can be identified with C.Lq.d//:

O
Eb̋�d ' C.Lq.d// :

Then, given any separable C �-algebra B , by Theorem 2.7 we obtain two six term
exact sequences:

KK0.B; C.Wq//
1�ŒEb̋d �
������! KK0.B; C.Wq//

i�
����! KK0

�
B;C.Lq.d//

�
Œ@�

x?? ??yŒ@�
KK1.B; C.Lq.d///  ����

i�
KK1.B; C.Wq//  ������

1�ŒEb̋d � KK1.B; C.Wq//

(7.4)
and
KK0.C.Wq/; B/  ������

1�ŒEb̋d � KK0.C.Wq/; B/  ����
i�

KK0
�
C.Lq.d//; B

�
??yŒ@� Œ@�

x??
KK1

�
C.Lq.d//; B

� i�

����! KK1.C.Wq/; B/
1�ŒEb̋d �
������! KK1.C.Wq/; B/

:

(7.5)
We will refer to these two sequences as the Gysin sequences (in KK-theory) for the
quantum lens space Lq.dkl I k; l/.
Remark 7.6. For B D C, the first sequence above was first constructed in [2] for
quantum lens spaces in any dimension n (and not just for n D 1) but with weights all
equal to one; so that the ‘base space’ was a quantum projective space.

7.4. Computing the KK-theory of quantum lens spaces. We recall from [5,
Prop. 5.1] that C.Wq/ is isomorphic to eK l (see also §5.2). In particular, this means
that C.Wq/ is KK-equivalent to ClC1.

To show this equivalence explicitly, for each s 2 f0; : : : ; lg we define aKK-class
Œ…s� 2 KK.C.Wq/;C/ via the Kasparov module…s 2 E.C.Wq/;C/ given by:

…s WD
�
l2.N0/C ˚ l2.N0/�;e�s; F; � for s ¤ 0

and …0 WD .C; "; 0/ for s D 0 ;

with F and  the canonical operators in (7.2). The representation is

e�s D � �s 0

0 "

�
;

with the representation �s given by (5.1) and " is (induced by) the counit.
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Furthermore, for each r 2 f0; : : : ; lg we define the KK-class ŒIr � 2

KK.C; C.Wq// by the Kasparov module

Ir WD
�
C.Wq/; ir ; 0

�
2 E.C; C.Wq// ;

where ir W C ! C.Wq/ is the �-homomorphism defined by ir W 1 7! pr with the
orthogonal projections pr 2 C.Wq/ given in (7.3).

Upon collecting these classes as

Œ…� WD ˚lsD0Œ…s� 2 KK.C.Wq/;ClC1/ and

ŒI � WD ˚lrD0ŒIr � 2 KK.C
lC1; C.Wq// ;

it follows that ŒI �b̋C.Wq/Œ…� D Œ1ClC1 � and that Œ…�b̋ClC1 ŒI � D Œ1C.Wq/�, from
stability of KK-theory (see [4, Cor. 17.8.8]).

We need a final tensoring with the Hilbert C �-module E. This yields a class

ŒIr �b̋C.Wq/ŒE�b̋C.Wq/Œ…s� 2 KK.C;C/ ;

for each s; r 2 f0; : : : ; lg. Then, we letMsr 2 Z denote the corresponding integer in
KK.C;C/ ' Z, withM WD fMsrg

l
s;rD0 2MlC1.Z/ the corresponding matrix.

As a consequence the six term exact sequence in (7.4) becomes

˚lrD0K
0.B/

1�Md

����! ˚lsD0K
0.B/ ����! KK0

�
B;C.Lq.d//

�x?? ??y
KK1.B; C.Lq.d///  ���� ˚

l
sD0K

1.B/  ����
1�Md

˚lrD0K
1.B/

; (7.6)

while, withM t 2MlC1.Z/ denoting the matrix transpose ofM 2MlC1.Z/, the six
term exact sequence in (7.5) becomes

˚lsD0K0.B/  ������
1�.M t /d

˚lrD0K0.B/  ���� KK0
�
C.Lq.d//; B

�
??y x??

KK1
�
C.Lq.d//; B

�
����! ˚lrD0K1.B/

1�.M t /d

������! ˚lsD0K1.B/

:

(7.7)
In order to proceed we therefore need to compute the matrixM 2MlC1.Z/.
Lemma 7.7. The Kasparov product ŒE�b̋C.Wq/Œ…s� 2 KK.C.Wq/;C/ is repre-
sented by the Fredholm module Fs in Lemma 7.1 for each s 2 f0; : : : ; lg.

Proof. Recall firstly that the class ŒE� 2 KK.C.Wq/; C.Wq// is represented by the
Kasparov module �

E; �; 0
�
2 E.C.Wq/; C.Wq// ;

where � W C.Wq/! L .E/ is induced by the product on the algebra C.S3q /.
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It then follows from the observations in the beginning of §7 that .E; �; 0/ is equivalent
to the Kasparov module�

C.Wq/
2; ‰�‰�; 0

�
2 E.C.Wq/; C.Wq// :

Suppose next that s D 0. The Kasparov product ŒE�b̋C.Wq/Œ…0� is then represented
by the Kasparov module�

C.Wq/
2b̋"C; ‰�‰� ˝ 1; 0� 2 E.C.Wq/;C/ ;

which is equivalent to the Kasparov module�
CC ˚ C� ;

�
" 0

0 0

�
;

�
0 1

1 0

��
:

This proves the claim of the lemma in this case.
Suppose thus that s 2 f1; : : : ; lg. The Kasparov product ŒE�b̋C.Wq/Œ…s� is then

represented by the Kasparov module given by the Z=2Z-graded Hilbert space�
C.Wq/

2b̋�s l2.N0/�C ˚ �C.Wq/2b̋" l2.N0/�� ' HC ˚H�
with associated �-homomorphism

�s D

�
�s.‰�‰

�/ 0

0 ".‰�‰�/

�
W C.Wq/! L

�
HC ˚H�

�
;

and with Fredholm operator F and grading  the canonical ones in (7.2). This proves
the claim of the lemma in these cases as well.

The results of Lemma 7.7 and Proposition 7.3 now yield the following:
Proposition 7.8. The matrixM D fMsrg 2MlC1.Z/ has entries

Msr D hŒFs�; ŒIr �i D

8̂<̂
:
1 for s D r
1 for r D 0
0 else

:

A combination of Proposition 7.8 and the six term exact sequences in (7.6)
and (7.7) then allows us to compute the K-theory and the K-homology of the
quantum lens space Lq.d lkI k; l/ for all d 2 N.

When B D C, the sequence in (7.6) reduces to

0 �! K1.C.Lq.d// �! ZlC1 1�Md
// ZlC1 �! K0.C.Lq.d// �! 0

while the one in (7.7) becomes

0 � K1.C.Lq.d// � ZlC1 ZlC1  � K0.C.Lq.d// � 0 :
1�.M t /d
oo

Let us use the notation � W Z! Zl , 1 7! .1; : : : ; 1/ for the diagonal inclusion and
let �t W Zl ! Z denote the transpose, �t W .m1; : : : ; ml/ 7! m1 C � � � Cml .
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Theorem 7.9. Let k; l 2 N be coprime and let d 2 N. Then

K0
�
C.Lq.d lkI k; l//

�
' Coker.1 �M d / ' Z˚

�
Zl=Im.d � �/

�
K1
�
C.Lq.d lkI k; l//

�
' Ker.1 �M d / ' Zl

and

K0
�
C.Lq.d lkI k; l//

�
' Ker.1 � .M t /d / ' Z˚

�
Ker.�t /

�
K1
�
C.Lq.d lkI k; l//

�
' Coker.1 � .M t /d / ' Z=.dZ/˚ Zl :

We finish by stressing that the results on the K-theory and K-homology of the
lens spaces Lq.d lkI k; l/ are different from the ones obtained for instance in [13].
In fact our lens spaces are not included in the class of lens spaces considered there.
Thus, for the moment, there seems to be no alternative method which results in a
computation of the KK-groups of these spaces.
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