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Gauge theory for spectral triples and the
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Simon Brain�, Bram Mesland�� and Walter D. van Suijlekom

Abstract. We explore factorizations of noncommutative Riemannian spin geometries over
commutative base manifolds in unbounded KK-theory. After setting up the general formalism
of unbounded KK-theory and improving upon the construction of internal products, we arrive
at a natural bundle-theoretic formulation of gauge theories arising from spectral triples. We
find that the unitary group of a given noncommutative spectral triple arises as the group of
endomorphisms of a certain Hilbert bundle; the inner fluctuations split in terms of connections
on, and endomorphisms of, this Hilbert bundle. Moreover, we introduce an extended gauge
group of unitary endomorphisms and a corresponding notion of gauge fields. We work out
several examples in full detail, to wit Yang–Mills theory, the noncommutative torus and the
� -deformed Hopf fibration over the two-sphere.
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1. Introduction

In this paper we use the internal product of cycles in unbounded KK-theory
to introduce a new framework for studying gauge theories in noncommutative
geometry. In the current literature one finds some equally appealing but mutually
incompatible ways of formulating the notion of a gauge group associated to a
noncommutative algebra. Herein we extend and then employ the formulation of the
unbounded Kasparov product to study fibrations and factorizations of manifolds in
noncommutative geometry, yielding a fresh approach to gauge theory which provides
a unifying framework for some of the various existing constructions.

Gauge theories arise very naturally in noncommutative geometry: rather
notably they arise from spectral triples [16]. In fact, one of the main features
of a noncommutative �-algebra is that it possesses a non-trivial group of inner
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automorphisms coming from the group of unitary elements of the algebra. In many
situations and applications, this group of inner automorphisms is identified with the
gauge group of the spectral triple. Moreover, the so-called inner fluctuations— again
a purely noncommutative concept — are recognized as gauge fields, upon which this
gauge group acts naturally.

In a more conventional approach, gauge theories are described by vector bundles
and connections thereon, with the gauge group appearing as the group of unitary
endomorphisms of the space of sections of the bundle. This approach has also been
extended to the noncommutative world (see [15] and references therein, also [31]).
The present paper is an attempt to see where these approaches can be unified, in the
setting of noncommutative gauge theories on a commutative base. That is to say, we
explore the question of whether (or when) the unitary gauge group of an algebra can
be realized as endomorphisms of a vector bundle and whether the inner fluctuations
arise as connections thereon.

We do this by factorizing noncommutative spin manifolds, i.e. spectral triples,
into two pieces consisting of a commutative ‘horizontal’ base manifold and a part
which describes the ‘vertical’ noncommutative geometry. The vertical part is
described by the space of sections of a certain Hilbert bundle over the commutative
base, upon which the unitary gauge group acts as bundle endomorphisms. Moreover,
the inner fluctuations of the original spectral triple decompose into connections on
this Hilbert bundle and endomorphisms thereof.

Thus, the setting of the paper is that of spectral triples, the basic objects of Connes’
noncommutative geometry [16]. Such a spectral triple, denoted .A;H;D/ consists
of a unital C �-algebra represented on a Hilbert spaceH, together with a self-adjoint
operator D with compact resolvent. Moreover, the �-subalgebra A � A consisting
of elements a 2 A for which a .Dom.D// � Dom.D/ and ŒD; a� is bounded on
Dom.D/ is required to be dense in A. The prototype of a spectral triple is obtained
by representing the �-algebra of continuous functions on a compact spin manifoldM
upon the Hilbert space of L2-sections of its spinor bundle, on which the Dirac
operator acts with all of the desired properties. Over thirty years of active research
on spectral triples has yielded a heap of noncommutative examples of such structures,
coming from dynamics, quantum groups and various deformation techniques.

The main idea explored in this paper is that of fibering an arbitrary spectral
triple .A;H;D/ over a second, commutative spectral triple .B;H0;D0/, that is
to say over a classical Riemannian spin manifold. The notion of fibration we
will be using is that of a correspondence, adopting the point of view of [18]
that bounded KK-cycles are generalizations of algebraic correspondences. In the
setting of unbounded KK-theory, a correspondence is defined in [35] as a triple
.E ; S;r/ consisting of: an A-B-bimodule E that is an orthogonal summand of the
countably generated free module HB; a self-adjoint regular operator S on E ; a
connection r W E ! E e̋B�

1.B/ on this module. The module E admits a natural
closure as a C �-module E over B , such that .E ; S/ is an unbounded cycle for
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Kasparov’s KK-theory [28] in the sense of Baaj and Julg [1], and hence represents
a correspondence in the sense of [18]. The datum .E ; S;r/ is required to relate the
two spectral triples, in the sense that .A;H;D/ is unitarily equivalent to

.E ; S;r/˝B .B;H0;D0/ WD .A; E e̋BH0; S ˝ 1C 1˝r D0/;

and thus in particular represents the Kasparov product of .E ; S/ and .B;H0;D0/.
In [35] this was shown to be the case when Œr; S� is bounded; a similar construction,
which is simpler and more general, was presented in [26]. In particular this allows
for the use of connections for which Œr; S�.S ˙ i/�1 is bounded.

Since the C �-algebra B is commutative, by Gel’fand duality it is isomorphic to
C.X/ for some (compact) topological Hausdorff space X . Moreover, by [38] the
C �-moduleE consists of continuous sections of a Hilbert bundle overX , uponwhich
the algebra A acts by endomorphisms. As a consequence, the unitary group U.A/
acts by unitary endomorphisms on this bundle, thus putting the inner automorphism
group of the algebra A in the right place, as a subgroup of the group of unitary
bundle endomorphisms. Moreover, the inner fluctuations of .A;H;D/ can be split
into connections on the Hilbert bundle and endomorphisms thereof. Summarizing,
this puts into place all ingredients necessary for doing gauge theory on X .

In order to deal with the examples in this paper, we enlarge the class of modules E
used to construct unboundedKasparov products. The class ofmodules used in [26,35]
is not closed under arbitrary countable direct sums. This inconvenience is due to
the fact that the module HB admits projections of arbitrarily large norm. The theta-
deformed Hopf fibration treated in the last section of the present paper illustrates
this phenomenon, which is present in full force already in the classical case. It is
proved in [25] that, for B commutative, the bounded projections in HB correspond
to bundles of bounded geometry, a class which indeed does not contain the bundle
appearing in the Hopf fibration.

Indeed, the Peter–Weyl theorem for SU.2/ tells us that module E necessary for
expressing theHopf fibration S3 ! S2 as aKasparov product is isomorphic to a direct
sum over n 2 Z of rank one modules Ln. As a C �-module this yields a well defined
direct sum, yet the projections pn defining the bundlesLn have the property that their
differential norms with respect to the Dirac operator on S2 grow increasingly with n.
To accommodate this phenomenon, we develop a theory of unbounded projections on
the free moduleHB. We show that the range of such projections define certain closed
submodules of HB and that such modules admit connections and regular operators.
We then proceed to show that the unbounded Kasparov product can be constructed
in this setting in very much the same way as in [26, 35].

In this waywe obtain an explicit description of the noncommutativeHopf fibration
in terms of an unbounded KK-product, thus going beyond the projectivity studied
in [19,20]. A similar construction, in the context of modular spectral triples, appeared
in [27] to construct Dirac operators on a total space carrying a circle action (namely,
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on SUq.2/). There the base space is the standard noncommutative Podleś sphere,
whereas here we aim for a commutative base.

Our proposal for gauge theories has a potential application in the study of instanton
moduli spaces. Namely, in [7–9] additional gauge parameters were introduced to
describe the moduli space of instantons on a certain noncommutative four-sphere S4

�
.

We expect that these extra gauge parameters can be accommodated inside the group
of unitary endomorphisms of the corresponding Hilbert bundle described above.

The paper is organized as follows. In Section 2 we set up the operator formalism
of unbounded KK-theory and describe the (unbounded) internal Kasparov product.
We then extend this to the setting of so-called Lipschitz modules, as called for by the
examples that we discuss later.

In Section 3 we explain how a factorization of a noncommutative spin manifold
gives rise to a natural (commutative) geometric set-up and describe how the inner
automorphisms and inner fluctuations can be described in terms of (vertical) Hilbert
bundle data.

In the remaining part of the paper we illustrate our factorization in unbounded
KK-theory by means of three classes of examples. Namely, in Section 4 we recall
[5, 12] how ordinary Yang–Mills theory can be described by a spectral triple and
explain how this is naturally formulated using a KK-factorization. Section 5 contains
another example of our construction, namely the factorization of the noncommutative
torus as a circle bundle over a base given by a circle [36]. Most importantly, Section 6
contains a topologically non-trivial example, which is the noncommutative Hopf
fibration of the theta-deformed three-sphere S3

�
over the classical two-sphere S2.

Notation and terminology. In this paper, all C �-algebras are assumed to be unital;
we denote them by A;B , etc., with densely contained �-algebras denoted by A;B,
respectively. For the general theory of C �-modules over a C �-algebra, we refer
for example to [30]. We write E ˛ B to denote a right C �-module E over a
C �-algebra B .

We assume some familiarity with the representation theory of C �-algebras on
C �-modules, writing End�B.E/ for theC �-algebra of adjointable operators on a right
C �-module E ˛ B . If E is equipped with a representation � W A ! End�B.E/,
we write A ! E ˛ B and say that E is a Hilbert A-B-bimodule. The algebra
of compact operators on E ˛ B is denoted by KB.E/. In the special case where
B D C and so E D H is simply a Hilbert space, we write K.H/ for the compact
operators and B.H/ for the C �-algebra of bounded operators onH.

By a grading of a vector space V we shall always mean a Z2-grading, i.e. a
self-adjoint linear operator � W V ! V such that �2 D 1V . By a representation
of a graded C �-algebra A on a graded Hilbert module E ˛ B , we shall always
mean a graded representation. We describe (possibly unbounded) linear operators
on E ˛ B using the notation D W Dom.D/ ! E , where Dom.D/ � E denotes
the domain ofD, a dense linear subspace of E .
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Similarly, we assume some familiarity with operator algebras and their
representation theory [4]. Recall that a linear map � W A ! B between operator
spacesA andB is said to be completely bounded if its extension �˝1 W A˝K.H/!
B˝K.H/ is bounded. We shall often abbreviate our terminology by describingmaps
such as completely bounded isomorphisms, completely bounded isometries etc. as
“cb-isomorphisms”, “cb-isometries” and so on. In this paper, the correct tensor
product of operator spaces A, B is given by the (graded) Haagerup tensor product,
which we denote by A e̋ B. Here it is understood that the tensor product is over the
complex numbers C. Its balanced variant, for a right operator module E and a left
operator module F over an operator algebra B is denoted E e̋BF .

For each i D 0; 1; 2; : : : ; we write Ci for the i th Clifford algebra, i.e. the graded
complex unital �-algebra generated by the even unit 
0 and the odd elements 
k ,
k D 1; 2; : : : ; i , modulo the relations 
k
 l C 
 l
k D 2ıkl and .
k/� D 
k . As a
complex vector space, the Clifford algebra Ci is 2i -dimensional.

Acknowledgements. We would like to thank Nigel Higson, Adam Rennie and
Magnus Goffeng for several useful discussions. We are very grateful to Alain Connes
for his helpful suggestions and invaluable help during the submission and publication
process. We are indebted to an anonymous referee for noticing a serious gap in an
earlier version of the paper.

2. Operator modules and unbounded KK-theory

As already mentioned, this article is concerned with the study of spectral triples
in noncommutative geometry and the extent to which these define a gauge theory
[12, 15, 16]. Our investigation will for the most part be facilitated by the unbounded
version ofKasparov’s bivariant KK-theory forC �-algebras. In this sectionwe explain
the main definitions and techniques that we shall need later in the paper.

2.1. Noncommutative spin geometries. Recall that a noncommutative spin mani-
fold (in the sense of Connes) is defined in terms of a spectral triple, which in turn is
defined as follows.
Definition 2.1. A spectral triple .A;H;D/ consists of:

(i) a unital C �-algebra A, a Hilbert space H and a faithful representation
� W A! B.H/ of A onH;

(ii) an unbounded self-adjoint linear operatorD W Dom.D/! H with compact
resolvent,

such that the �-subalgebra

A WD fa 2 A W ŒD; �.a/� extends to an element of B.H/g

is dense in A.
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Such a triple is said to be even if it is graded, i.e. if it is equipped with a self-adjoint
operator � W H! H with �2 D 1H such that �D CD� D 0 and ��.a/ D �.a/�
for all a 2 A. Otherwise the spectral triple is said to be odd. With 0 < m <1, the
triple .A;H;D/ is said to be mC-summable if the operator .1CD2/�1=2 is in the
Dixmier ideal LmC.H/.

The latter definition is motivated by the following classical example, which we
will need throughout the present paper. LetM be a closed Riemannian spin manifold
and letA D C.M/ be the unital C �-algebra of continuous complex-valued functions
onM . Write H D L2.M;S/ for the Hilbert space of square-integrable sections of
the spinor bundle S and denote by @=M the Dirac operator onM , which we recall is
defined to be the composition

@=M W Dom.@=M /! H; @=M WD c ı rS ;

where c denotes ordinary Clifford multiplication and rS is the canonical spin
connection on S for the Riemannian metric. ThenA is faithfully represented uponH
by pointwisemultiplication andA D Lip.M/ is nothing other that the pre-C �-algebra
of Lipschitz functions onM .
Definition 2.2. The datum .C.M/;L2.M;S/; @=M / is called the canonical spectral
triple over the closed Riemannian spin manifoldM .

The canonical spectral triple is even if and only if the underlying manifold M
is even-dimensional, with the grading of the Hilbert space H induced by the
correspondingZ2-grading of the spinor bundleS . IfM is anm-dimensionalmanifold
then the corresponding spectral triple can be shown to be mC-summable.

Crucially, every spectral triple admits a canonical first order differential calculus
over the dense �-algebraA. Indeed, given a spectral triple .A;H;D/, the associated
differential calculus is defined to be the A-A-bimodule

�1D.A/ WD f
X
j

aj ŒD; �.bj /� j aj ; bj 2 Ag � B.H/; (2.1)

where the sums are understood to be convergent in the norm topology of B.H/
(in contrast with the definition given in e.g. [15]). For the canonical spectral triple
.C.M/;H; @=M / over a closed Riemannian spin manifoldM , the differential calculus
�1D.A/ is isomorphic to the Lip.M/-bimodule �1.M/ of continuous one-forms
onM .

Next we come to recall the main definitions and techniques of the unbounded
version of Kasparov’s bivariant KK-theory for C �-algebras [1, 28]. Given a Banach
space X , recall that a linear operator D W Dom.D/ ! X is said to be closed
whenever its graph

G.D/ WD

��
x

Dx

�
j x 2 Dom.D/

�
� X ˚X (2.2)

is a closed subspace of X ˚X .
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A closed, densely defined, self-adjoint linear operator D on a C �-module E ˛ B

is said to be regular if and only if the operators D ˙ i W Dom.D/! E have dense
range, which in turn happens if and only if these operators are bijective.

With these concepts in mind, let A and B be graded C �-algebras, let E ˛ B be
a graded right C �-module overB equipped with a representation � W A! End�B.E/
and let D W Dom.D/ ! E be an odd unbounded self-adjoint regular operator. In
this situation, we make the following definition.
Definition 2.3 ([1]). The pair .E ;D/ is said to be an even unbounded .A;B/KK-cycle
if:

(i) the operatorD W Dom.D/! E has compact resolvents, that is

.D ˙ i/�1 2 KB.E/I

(ii) the unital �-subalgebra

A WD fa 2 A W ŒD; �.a/� 2 End�B.E/g � A

is dense in A.
We write ‰0.A;B/ for the set of even unbounded .A;B/ KK-cycles modulo unitary
equivalence.

It is clear from the definitions that every even spectral triple .A;H;D/ over a
C �-algebra A determines an unbounded cycle in ‰0.A;C/. We will deal with the
case of odd spectral triples at the end of this section.

Kasparov’s KK-groups [28] are homotopy quotients of the sets of unbounded
cycles ‰0.A;B/ in the following sense. Associated to a given self-adjoint regular
operatorD on E is its bounded transform

b.D/ WD D.1CD2/�1=2;

which determinesD uniquely (see [30] for details). The pair .E ; b.D// is aKasparov
module: these are the bounded analogues of the elements of‰0.A;B/, defined to be
pairs .E ; F / with F 2 End�B.E/ such that, for all a 2 A, we have

F 2 � 1; ŒF; a�; F � F � 2 KB.E/:

In [1] it is shown that, for every unbounded KK-cycle .E ;D/ 2 ‰0.A;B/, its
bounded transform .E ; b.D// is a Kasparov module; conversely every Kasparov
module arises in this way as the bounded transform of some unbounded KK-cycle.
Two elements in ‰0.A;B/ are said to be homotopic if their bounded transforms are
so; the set of homotopy equivalence classes is denoted KK0.A;B/. Kasparov proved
in [28] that this is an Abelian group under the operation of taking direct sums of
bimodules.

An important feature of the KK-groups KK0.A;B/ is that they admit an internal
product

˝B W KK0.A;B/ � KK0.B; C /! KK0.A; C /:
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Kasparov proved existence and uniqueness of this product at the homotopy level
but, as of yet, a concrete expression for the product of two bounded Kasparov
modules is still lacking and might not exist at all. As already mentioned, Connes and
Skandalis [18] gave an insightful interpretation of Kasparov’s product at the bounded
level in terms of correspondences, in which the fingerprints of the geometric nature
of the construction are clearly visible. On the other hand, in the unbounded picture,
the work of Kucerovsky [29] provides sufficient conditions for an unbounded cycle
to represent the product of two given cycles.

Indeed, the pair .E ;D/ is said to be the unbounded Kasparov product of the
cycles .E1;D1/ and .E2;D2/, denoted

.E ;D/ ' .E1;D1/˝B .E2;D2/;

if together they satisfy the conditions of [29, Thm 13]. The conditions of the latter
theorem give a hint of the actual form of the product operator in the unbounded
picture. Indeed, the constructions of [26, 35] yield an explicit description of the
unbounded Kasparov product, under certain smoothness assumptions imposed on
the KK-cycles involved. Later on we shall sketch the details of how this unbounded
product is formed: to do so we need first to introduce some background theory.

2.2. Projective operator modules and their properties. The key observation
in [26, 35] is that, in order to define the product of a pair of unbounded KK-cycles,
one needs to impose certain differentiability conditions upon the underlying C �-
modules. This section is devoted to giving a precise meaning to this notion of
differentiability and a description of the class of modules that we shall need in the
present paper.

The required notion of differentiability forC �-modules ismotivated by the special
case of spectral triples. Indeed, let .B;H;D/ be a spectral triple as in Definition 2.1.
The corresponding dense subalgebra

B WD fb 2 B W ŒD; �.b/� 2 B.H/g

will be called the Lipschitz subalgebra of B . We will always consider it with the
topology given by the representation

�D W B! B.H˚H/; b 7!

�
�.b/ 0

ŒD; �.b/� �.b/

�
: (2.3)

As such it is a closed subalgebra of the C �-algebra of operators on a Hilbert space,
that is to say it is an operator algebra. Moreover, the involution on B satisfies the
identity

�D.b/
�
D v �D.b

�/v�; where v D

�
0 �1

1 0

�
: (2.4)

More generally, recall that such algebras have a name [35].
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Definition 2.4. An involutive operator algebra is an operator spaceBwith completely
bounded multiplication B e̋ B ! B, together with an involution b 7! b� which
becomes a completely bounded anti-isomorphism when extended to matrices in the
usual way.

Note that C �-algebras in particular fit this definition, as do Lipschitz algebras
according to property (2.4). Throughout the remainder of this section, we let B
denote an arbitrary involutive operator algebra (although always keeping the special
Lipschitz case in mind). As one might expect, involutive operator algebras admit a
class of modules analogous to C �-modules, which we now describe.

First of all, let us denote OZ WD Z n f0g. Then the Hilbert space `2. OZ/ comes
equipped with a naturalZ=2-grading. We defineHB to be the rightB-moduleHB WD

`2. OZ/ e̋ B, where e̋ denotes the gradedHaagerup tensor product. Thismodule can be
visualized as the space of `2 column vectors with entries inB, in the sense that a given
column vector .ai /i2OZ is an element of HB if and only if

P
i �.ai /

��.ai / 2 B.H/
for some completely bounded representation � W B! B.H/.
Lemma 2.5. The moduleHB admits a canonical inner product defined by

h.ai /; .bi /i WD
X
i

a�i bi (2.5)

for each pair of column vectors .ai /; .bi / 2 HB.

Proof. We must show the series on the right-hand side converges. To this end we
write the inner product as a matrix product of column vectors and estimate (using
complete boundedness of the involution) that

kh.ai /; .bi /ik D k.a
�
i /
t
� .bi /k � Ck.a

�
i /
t
k k.bi /k � Ck.ai /k k.bi /k

for some constant C > 0. Now since .ai /; .bi / 2 HB, the norm of their tails will
tend to zero and so the above estimate shows the inner product series is indeed
convergent.

Remark 2.6. It is important to note that it is only in the case where B is an honest
C �-algebra that the inner product (2.5) determines the topology ofHB. Nevertheless,
just as in the C �-module case, we define End�B.HB/ to be the �-algebra of operators
onHB that admit an adjoint with respect to the inner product (2.5).

The elements of the �-algebra End�B.HB/ are automatically B-linear and
completely bounded. As such it is perfectly natural to consider stably rigged
B-modules, that is to say right B-modules which are cb-isomorphic to pHB for
some (completely bounded) projection p 2 End�B.HB/. Stably rigged modules were
the cornerstone of the construction in [26,35], however in the present paper we shall
need a larger class of modules.



144 S. Brain, B. Mesland and W. D. van Suijlekom

Definition 2.7. LetB be an involutive operator algebra. A projection operator onHB
is a densely defined self-adjoint operator p W Dom.p/! HB such that p2 D p.

The latter definition thus allows for the possibility of unbounded projection
operators. Note that for an unbounded idempotent operator we necessarily have
Im.p/ � Dom.p/. It is shown in [35] that a closed, densely defined, self-
adjoint operator D on HB is regular if and only if there is a unitary isomorphism
G.D/˚ vG.D/ Š HB ˚HB, with v as in (2.4) and the isomorphism being given
by coordinatewise addition. This fact yields the following characterization of when
a given projection is bounded.

Proposition 2.8. A projection p onHB is bounded if and only if it is regular.

Proof. If p is bounded then the operators p ˙ i are invertible, whence p is regular.
Conversely, suppose that p is regular. Then there is a unitary isomorphism

G.p/˚ vG.p/
�
�!HB ˚HB;��

x

px

�
;

�
�py

y

��
7!

�
x � py

px C y

�
;

and so in particular we have that

HB D fx � py j x; y 2 Dom.p/g:

Sincep is a projectionwe know thatpy 2 Dom.p/ and soHB � Dom.p/, whencep
is adjointable and therefore bounded.

Lemma 2.9. Let p be a closed idempotent operator on HB. Then Im.p/ D
p.Dom.p// is a closed submodule ofHB.

Proof. Let .pxn/ be a Cauchy sequence in Im.p/ � Dom.p/ with limit y. Since
p2xn D pxn and p is closed, we have that y 2 Dom.p/ and py D y, from which it
follows that y 2 Im.p/.

As already mentioned, C �-algebras and their modules are very well behaved
within the class of operator algebras and their modules. Indeed, in C �-modules there
are no unbounded projections, as the following lemma shows.

Lemma 2.10. LetB be aC �-algebra and p a projection onHB . Then p is bounded.

Proof. For all x in the domain of p we have the estimate

0 � h.1 � p/x; .1 � p/xi D hx; xi � 2hpx; xi C hpx; pxi D hx; xi � hpx; pxi:

Therefore hpx; pxi � hx; xi and so p is bounded.
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Later in the paper it will be necessary to consider modules which are not C � but
nevertheless have a certain projectivity property. The following definition makes this
idea precise.
Definition 2.11. Let B be an involutive operator algebra. A projective operator
module E ˛ B is a right operator B-module E , equipped with a completely bounded
B-valued inner product, with the property that E is completely isometrically unitarily
isomorphic to Im.p/ for some projection operator p onHB.
Remark 2.12. As opposed to the definition of a stably rigged module, we require
an isometric isomorphism with Im.p/ D pDom.p/ in the above definition. This
is in view of the following proposition concerning infinite direct sums: the isometry
condition is needed to prevent the norms going to infinity in the direct sum (clearly
not a problem for finite sums of stably rigged modules).
Proposition 2.13. Let .Ei /i2I be countable family of projective operator modules.
Their algebraic direct sum can be completed into a projective operator moduleL
i2I Ei , unique up to cb-isomorphism.

Proof. By assumption, each Ei is isometrically isomorphic to Im.pi / � HB for
some pi a projection. As HB is a rigged module, the direct sum

L
i2I HB is

canonically defined in [2] and isometrically isomorphic toHB. As such, the algebraic
direct sum of the modules Im.pi / sits naturally in HB and we define

L
i2I Im.pi /

to be its closure. It is straightforward to check that
L
i2I pi defines a self-adjoint

idempotent on HB. We define
L
i2I Ei by identifying it with

L
i2I Im.pi /. In the

case where I is finite, this yields a space which is cb-isomorphic to the column direct
sum

Lc
i2I Ei (cf. [2]).

Corollary 2.14. Let .Ei /i2I be a countable family of algebraically finitely generated
projective B-modules. Then

L
i2I Ei is a projective operator module.

Proof. Each of the finitely generated projectivemodulesEi is in particular a projective
operator module (for which the projection can be chosen to be bounded). The result
now follows from the previous proposition.

Remark 2.15. We stress that there is a difference here between internal and external
direct sums. For an unbounded projection p on HB, the internal direct sum
p.Dom.p// C .1 � p/.Dom.p// is orthogonal, but it is not closed. The external
direct sum p.Dom.p//˚ .1� p/.Dom.p// is closed by construction and therefore
cannot be isomorphic to the internal sum. This phenomenon illustrates the difference
between C 1- and C �-modules on one hand and projective operator modules on the
other.

Given a right projective B-module E , we define the algebra End�B.E/ to be the
collection of completely bounded maps T W E ! E which admit an adjoint T �, so
that hTe; f i D he; T �f i for all e; f 2 E . Note that unitary operators in End�B.E/
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are invertible but need not be isometric. We define the algebraKB.E/ � End�B.E/ of
compact operators to be the norm closure of the space of finite rank operators. Note
that the proof of self-duality E Š E� as described in [26, 35] in the case of bounded
projections breaks down for unbounded projections. The next results explain the
behaviour of projective operator modules upon taking their tensor products with
C �-modules. Indeed, let E ˛ B be a projective operator module, let F ˛ C be
a C �-module and let � W B ! End�C .F / be a completely bounded homomorphism
(but not necessarily a �-homomorphism).

Proposition 2.16. The Haagerup tensor product E e̋B F is canonically cb-isomor-
phic to a C �-module.

Proof. By definition we may identify E with a module p.Dom.p// � HB .
Replacing F with the essential submodule �.B/F , the closure of the linear span
of elements of the form �.b/f , we may assume that � is a unital homomorphism.
From [2] we know that there is a cb-isomorphism

HB e̋B F Š
M
i2OZ

F ;

where the left-hand side is a C �-module. We define the closed idempotent operator
p ˝ 1 via its graph, that is

G.p ˝ 1/ WD G.p/ e̋B F � .HB ˚HB/ e̋ F Š .HB e̋ F /˚ .HB e̋ F /;

so that

Dom.p ˝ 1/ D .pr1 ˝ 1/.G.p ˝ 1//; Im.p ˝ 1/ D .pr2 ˝ 1/.G.p ˝ 1//:

Then
E e̋B F Š Im.p ˝ 1/ � HB e̋ F ;

whence it is a closed submodule of a C �-module and hence itself a C �-module.

Corollary 2.17. If B is a Lipschitz algebra and � is a �-homomorphism then
E e̋BF Š E e̋BF , where B and E are the C �-envelopes of B and E respectively.

Proof. When � is a �-homomorphism, it is automatically continuous (even
contractive) with respect to the C �-norm on B. The idempotent p˝1 is a projection
which is bounded by Lemma 2.10. Therefore

E e̋B F Š .p ˝ 1/.HBe̋B F / D .pHB/e̋B F Š E e̋BF ;

and the latter is isomorphic to the standard C �-module tensor product, cf. [3].
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The notion of a self-adjoint regular operator extends to projective operator
modules. In this setting a densely defined self-adjoint operator D W Dom.D/ ! E
is said to be regular if the operators D ˙ i are surjective. In the C �-situation, the
resolvents .D ˙ i/�1 are automatically contractive and so there it is sufficient to
require that D ˙ i have dense range. To construct regular operators in practice the
following lemma is useful. It is proved in the same way as in [35].
Lemma 2.18. LetD be a densely defined closed symmetric operator on E . Then the
following are equivalent:

(i) D is self-adjoint and regular;
(ii) Im.D ˙ i/ are dense in E and .D ˙ i/�1 are completely bounded for the

operator space norm on E .
If either (and hence both) of these conditions holds, then .D ˙ i/�1 2 End�B.E/.

Proof. IfD is self-adjoint and regular, then the resolventsD˙ i W Dom.D/! E are
surjective. They are also injective by a standard argument. The inverses .D˙ i/�1 W
E ! Dom.D/ are mutually adjoint, whence they must be bounded and adjointable.

To obtain the converse, we denote by r˙ the extensions of the operators .D ˙ i/�1
from Im.D ˙ i/ to E . Given a sequence .xn/ � Im.D ˙ i/ converging to
x 2 E , boundedness implies that r˙xn ! r˙x and that D.r˙xn/ D .1 � ir˙/xn
is convergent. Since D is closed, we deduce that r˙x 2 Dom.D/ and so
Im.r˙/ � Dom.D/. Therefore r˙ D .D ˙ i/�1 and D ˙ i W DomD ! E are
bijective, soDom.D/ D Im.DC i/�1. Now for all e 2 E and each f 2 Dom.D�/
we compute that

h.D C i/�1e;D�f i D hD.D C i/�1e; f i D he; f i � hi.D C i/�1e; f i

and hence that

he; f i D h.D C i/�1e;D�f i C hi.D C i/�1e; f i D he; .D � i/�1.D� � i/f i:

It follows that f D .D � i/�1.D� � i/f 2 Dom.D/ and so D is self-adjoint, as
required.

Immediately we are led to the following result, which gives the aforementioned
practical characterization of self-adjoint regular operators on projective operator
modules.
Proposition 2.19. Let E be a projective operator module and D W Dom.D/! E a
self-adjoint regular operator on E . Then G.D/ is a projective operator module and
G.D/˚ vG.D/ Š E ˚ E .

Proof. By Lemma 2.18 the map

u W G.D/! E ;
�
e

De

�
7! .D C i/e;
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is a bijection whose adjoint is given by

u� W E ! G.D/; e 7!

�
.D C i/�1e

D.D C i/�1e

�
:

It is straightforward to check that thesemaps preserve the inner product and hence that
the map u W G.D/ ! E is a unitary isomorphism. Therefore G.D/ is a projective
operator module. Moreover, the matrix

g D

�
.D C i/�1 �D.D C i/�1

D.D C i/�1 .D C i/�1

�
defines a unitary operator mapping E ˚ E onto G.D/˚ vG.D/.

2.3. Lipschitz modules and connections. In the previous section we studied
projective modules over an arbitrary involutive operator algebra B. However, in
the special case where B is the Lipschitz algebra associated to a given spectral
triple .B;H;D/ there is a spectrally invariant dense embedding B ,! B . For such
algebras we will restrict to the subclass of projections that admit a decomposition
as a countable direct sum of projections in End�B.HB/. In other words, we restrict
to direct sums of stably rigged modules. The main motivation for this restriction
is to deal with connections and regularity of the operators they induce. In order to
establish this regularity and to deal with connections on projective operator modules
we need also to modify the notion of universal differential forms used in [35].

Recall that, given a spectral triple .B;H;D/, the associated space of one-forms
�1D.B/ defined in eq. (2.1) is a B-bimodule. It is in fact a left module over the
C �-algebra B: since B is dense in B , we can choose for each b 2 B a sequence
.bi / � B with bi ! b. Then for each ! 2 �1D.B/, the sequence .bi!/ � �1D.B/ is
Cauchy and hence has a limit in�1D.B/ which, by uniqueness of limits, must be b!.

In the case where the space of one-forms �1D.B/ is a central B-bimodule, one
can play a similar game to turn �1D.B/ into a right B-module. In the non-central
case this is not possible. The map

B! �1D.B/; b 7! ŒD; b�;

is thus a bimodule derivation into a .B;B/-bimodule. This motivates the following
Definition 2.20. The space of universal one-forms �1.B;B/ over a Lipschitz
algebra B is defined to be the kernel of the multiplication map

m W B e̋B! B; a˝ b 7! ab:

This is a .B;B/-bimodule map and the map

d W B! �1.B;B/; b 7! 1˝ b � b ˝ 1;

is called the universal derivation.



Gauge theory for spectral triples and the unbounded Kasparov product 149

Proposition 2.21. The derivation d is indeed universal: for any cb-derivation
ı W B!M into a .B;B/ cb-operator bimodule M , there is a unique completely
bounded .B;B/-bimodule map jı W �1.B;B/!M such that 1 �ı.b/ �1 D jı ıd.b/.

Proof. By replacing M by 1 �M � 1 and ı by 1 � ı � 1 we may assume that M is an
essential bimodule and ı.1/ D 0. The map

B � B!M; .a; b/ 7! a ı.b/;

is bilinear and completely bounded, whence it determines a unique completely
bounded linear map on the Haagerup tensor product B e̋ B ! M . We define jı to
be the restriction of this map to�1.B;B/. Then for each! D

P
ai˝bi 2 �

1.B;B/
we have

! D
X

ai ˝ bi D
X

ai ˝ bi � aibi ˝ 1 D
X

aidbi ;

since
P
aibi D 0 by definition of�1.B;B/. Thus jı is determined by the condition

jı.db/ D 1 � ı.b/ � b � ı.1/. It is obvious that jı is a left B -module map. For the
right B-module structure we have

jı.!b/ D jı

�X
ai ˝ bib

�
D

X
aiı.bib/

D

X
aibiı.b/C aiı.bi /b

D

X
aiı.bi /b D jı.!/b;

from which it follows that jı is a .B;B/-bimodule map.

Recall [35] that �1.B/ WD ker.m W Be̋B ! B/ is the universal module for
B-bimodule derivations, in the sense that for every B-module derivation ı W B!M

there is a unique bimodule map jı W �1.B/!M satisfying 1 � ı.b/ � 1 D jı ı d.b/.
Since every .B;B/-bimodule is a B-bimodule, the following observation relating the
the two universal structures is useful.
Lemma 2.22. The natural multiplication map

B e̋B�
1.B/! �1.B;B/;

is a complete isometry compatible with the induction map jı for any cb-.B;B/-
bimodule derivation, in the sense that j .B;B/

ı
D 1˝ j B

ı
.

Proof. The multiplication is completely contractive, so it suffices to show that the
inverse X

ai ˝ bi 7!
X

ai ˝ 1˝ bi

is completely contractive as well. By definition, the Haagerup norm can be computed
as

k

X
ai ˝ bikh D inffk.a0i /

t
kk.b0i /k W

X
a0i ˝ b

0
i D

X
ai ˝ big;
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where .a0i /
t denotes a row vector and .b0i / a column vector. Thus we can compute

k

X
ai ˝ 1˝ bik D inf k.a0i /

t
ikk.1˝ bi /ik

D inf k.a0i /
t
ikk.bi /ik

D k

X
ai ˝ bikh;

where themiddle equality follows since b 7! 1˝b is a complete isometryB 7! B˝B.
Compatibility with the induction maps is immediate since j B

ı
is a bimodule map

and j .B;B/
ı

is universal, so must therefore coincide with 1˝ j B
ı
.

The symmetric module of forms �1.B/ carries an involution ! 7! !� induced
by a˝ b 7! b�˝ a�. We have the following completely isometric maps relating the
various structures.
Lemma 2.23. The Haagerup tensor product Be̋B is an involutive operator algebra
for the involution a˝ b 7! b�˝ a�. This involution restricts to�1.B/. The natural
multiplication map

HB e̋B B ! HB ; (2.6)
is a complete isometry. Consequently, for a projective operator module E there are
pairings

E � E e̋B�
1.B;B/! B e̋B�

1.B/; E e̋B�
1.B;B/ � E ! �1.B/e̋BB; (2.7)

via he; f ˝ !i WD he; f i! and he ˝ !; f i WD !�he; f i.

Proof. The involution is completely anti-isometric:

k

X
b�i ˝ a

�
i k
2
h D inffk

X
�D.b

�
i /�D.b

�
i /
�
kk

X
�D.a

�
i /
��D.ai /kg

D inffk
X

v�D.bi /
��D.bi /v

�
kk

X
v�D.ai /�D.ai /

�v�kg

D inffk
X

�D.bi /
��D.bi /kk

X
v�D.ai /�D.ai /

�
kg

D k

X
ai ˝ bik

2
h:

It is straightforward to check that the involution preserves �1.B/. The map (2.6) is
completely contractive, since the inclusion map B ! B and the multiplication are
so. Moreover, the inverse map h˝ b 7! h˝ 1˝ b is completely contractive as well.
Consequently, there is a completely isometric isomorphism

E e̋B�
1.B;B/ ��! E e̋BB e̋B�

1.B/ ��! E e̋B�
1.B/;

and the formulae

he; f ˝ !i WD he; f i!; he ˝ !; f i WD !�he; f i;

give the well-defined pairings (2.7).
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The spaces �1.B/e̋BB and B e̋B�
1.B/ embed completely contractively into

the B-bimodule B e̋B�
1.B/e̋BB via b˝! 7! b˝!˝ 1 and !˝ b 7! 1˝!˝ b.

Definition 2.24. A connection on a projective operator module E is a completely
bounded map r W E ! E e̋B�1.B;B/ satisfying the Leibniz rule

r.eb/ D r.e/b C e ˝ db

for all e 2 E and all b 2 B. The connection r is Hermitian if it satisfies the equation

he;r.f /i ˝ 1C 1˝ hr.e/; f i D 1˝ dhe; f i ˝ 1 2 B e̋B�
1.B/e̋BB

for all e; f 2 E .
The reason for introducing the bimodule B e̋B�

1.B/e̋BB is that to state the
property of being Hermitian, we need to map the forms he;r.f /i and hr.e/; f i into
the same space. We will later see that this definition is compatible with the notion of
induced operator.
Proposition 2.25. Let p be a projection operator on HB. Then the module
Im.p/ � HB admits a completely contractive Hermitian connection

r W Im.p/! Im.p/ e̋B�
1.B;B/:

Proof. Consider the Grassmann connection

d W HB ! HB e̋B�
1.B;B/

.bi /i2Z 7! .dbi /i2Z;

which is Hermitian in the above sense because

h.ai /; .dbi /i ˝ 1 � 1˝ h.dai /; .bi /i D
X

a�i ˝ 1˝ bi ˝ 1 � a
�
i ˝ bi ˝ 1˝ 1

� 1˝ a�i ˝ 1˝ bi C 1˝ 1˝ a
�
i ˝ bi

D

X
1˝ 1˝ a�i bi ˝ 1 � 1˝ a

�
i bi ˝ 1˝ 1

D 1˝ dh.ai /; .bi /i ˝ 1:

Wewish to show that the compressionr WD .p˝1/dp W pHB ! pHB e̋B�1.B;B/
is completely contractive and Hermitian. It is obvious that the restriction

d W Im.p/! HB e̋B�
1.B;B/

is a completely contractive map. Thus it remains to show that the operator

p ˝ 1 W HB e̋B�
1.B;B/! HB e̋B�

1.B;B/

is completely contractive. This follows from the completely isometric isomorphism

HB e̋B�
1.B;B/! HB e̋B �1.B;B/;
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from Lemma 2.23 and from the fact that p extends to a bounded projection on HB

(cf. Lemma 2.10). Finally, the compression is Hermitian because for e1 D pe1,
e2 D pe2 2 pDom.p/ � HB we have

he1; pde2i˝1�1˝hpde1; e2i D he1; de2˝1i�1˝hde1; e2i D 1˝dhe1; e2i˝1;

since d is Hermitian.

Having dealt with the generalities of projective operator modules, we now restrict
to the class of such modules that we shall need in the present paper.

Definition 2.26. Let B be a Lipschitz algebra. An inner product operator module
E ˛ B over B is a Lipschitz module if there is a countable set I and a collection of
stably rigged modules fEi W i 2 I g, such that E is unitarily isometrically isomorphic
to the direct sum

L
i2I Ei .

We stress that a Lipschitz module is in particular a projective operator module.
To state the main theorem below, we need the following simple lemma on direct sums
of regular operators between C �-modules. Given a countable collection of regular
operators

Di W Dom.Di /! Fi ; Dom.Di / � Ei ; .i 2 I /;

we define the algebraic direct sum operator D WD ˚alg
i2IDi to be the operator acting

byDi in the respective component of the algebraic direct sum of the Ei . We remark
here that, although have already introduced the unadorned symbol ˝ to represent
algebraic tensor products, we have so far no such notation for algebraic direct sums:
we therefore write˚alg when we feel the need to stress an algebraic sum, whereas˚
denotes a completed direct sum.

Lemma 2.27. LetDi W Dom.Di /! Fi ; i 2 I , be a countable collection of regular
operators. Then

˚
alg
i2IDi W

algM
i2I

Dom.Di /!
M
i2I

Fi

is closable and its closure is a regular operator D WD ˚i2IDi between E WDL
i2I Ei and F WD

L
i2I Fi . The map

uD W
M
i2I

G.Di /! G.D/ � E ˚ F ;

�
ei
Diei

�
i2I

7!

�
.ei /i2I
.Diei /i2I

�
;

is a unitary isomorphism of C �-modules and D� D ˚i2ID�i . If each Di is self-
adjoint, then the direct sum extends to an essentially self-adjoint regular operator. If
Di 2 End�B.Ei ;Fi / and supi2I kDik <1, then

L
i2I Di 2 End�B.E ;F /.
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Proof. By definition of the direct sum completion, it is immediate that ˚algDi is
closable with the indicated graph isomorphism. We define D� to be ˚i2ID�i . To
prove regularity we argue as follows. For each i separately, regularity ofDi gives an
isomorphism

G.Di /˚ vG.D
�
i /
C
�! Ei ˚ Fi ;��

x

Dix

�
;

�
�D�i y

y

��
7!

�
x �D�i y

Dix C y

�
:

Therefore we find that

u�D ˚ u
�
D�

�
G.D/˚ vG.D�/

�
�

algM
i2I

�
G.Di /˚ vG.D

�
i /
� C
�!

algM
i2I

.Ei ˚ Fi / ;

and therefore G.D/ ˚ vG.D�/ is dense in
�L

i2I Ei ˚
L
i2I Fi

�
, which implies

thatD is regular. The statement about self-adjointness follows by a similar argument
and the statement about uniform bounded sequences is immediate.

Finally we arrive at the main result of this section. Suppose that we are given:
(i) a Lipschitz module E Š

L
i2I Ei ˛ B equipped with a Hermitian connec-

tion r W E ! E e̋B�
1.B;B/;

(ii) a C �-module F ˛ C equipped with a self-adjoint regular operator
T W Dom.T /! F ;

(iii) a �-homomorphism � W B ! End�C .F / such that b 7! ŒT; �.b/� is a
cb-derivation on B.

Then we define a linear operator 1˝r T W E ˝B Dom.T /! E e̋BF D E e̋BF on
the algebraic tensor product, by

.1˝r T /.e ˝ f / WD 
.e/˝ Tf CrT .
.e//f; e 2 E ; f 2 F ;

with rT W E ! E e̋B�
1
T .B/ the connection on E induced by r.

Lemma 2.28. The operator 1˝r T is symmetric on its domain.

Proof. Since r is Hermitian we have

he1;r.e2/i ˝ 1 � 1˝ hr.e1/; e2i D 1˝ dhe1; e2i ˝ 1

on the level of universal forms. After applying the map

1˝ jT ˝ 1 W B ˝B �
1.B/˝B 1! End�C .F /;

a˝ db ˝ c 7! �.a/Œ�.1/T�.1/; �.b/��.c/;
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this amounts to

he1;rT .e2/i�.1/ � �.1/hrT .e1/; e2i D �.1/Œ�.1/T�.1/; �.he1; e2i/��.1/

D �.1/ŒT; he1; e2i��.1/:

Replacing F with �.1/F if necessary, this in turn gives

he1 ˝ f1;rT .e2/f2i � hrT .e1/f1; e2 ˝ f2i D hf1; ŒT; he1; e2i�f2i

and we can compute

he1 ˝ f1; e2 ˝ Tf2 CrT .e2/f2i D hf1; he1; e2iTf2i C hf1; he1;rT .e2/if2i

D hf1; he1; e2iTf2i C hf1; hrT .e1/; e2if2i

C hf1; ŒT; he1; e2i�f2i

D hTf1; he1; e2if2i C hf1; hrT .e1/; e2if2i

D he1 ˝ Tf1 CrT .e1/f1; e2 ˝ f2i

on the algebraic tensor product.

Theorem 2.29. The operator 1 ˝r T is essentially self-adjoint and regular on
E e̋BF . The map

g W

 algM
i2I

Ei

!
˝B G.T /! G.1˝r T /; e˝

�
f

Tf

�
7!

�
e ˝ f

.1˝r T /.e ˝ f /

�
;

defined on the algebraic direct sum, extends to an everywhere-defined adjointable
operator with dense range,

g W E e̋BG.T /! G.1˝r T /;

given by the same formula.

Proof. First we observe that, since E is isomorphic to Im.p/ for a direct sum
projection operator p D

L
i2I pi on

L
i2I HB Š HB, the difference

r � pdp W E ! E e̋B�1.B;B/
is completely bounded (cf. Definition 2.24). The Haagerup tensor product is
functorial for completely bounded module maps, so

.r � pdp/˝ 1 W E e̋BF ! E e̋B�1.B;B/e̋BF

is completely bounded. Composition with the natural map induced by operator
multiplication

E e̋B�1.B;B/e̋BF ! E e̋BF
thus gives a skew-adjoint operator R W E e̋BF ! E e̋BF . Therefore, it suffices to
prove the statement for the connection pdp.
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For each Ei separately one shows just as in [35] (cf. [26]) that, with ri the
Grassmann connection on Ei , the operator ti WD 1˝ri T is self-adjoint and regular.
In this case the map

gi W Ei e̋B G.T /! G.1˝ri T /

is a topological isomorphism. The operator t WD 1˝r T can be identified with the
algebraic direct sum operator

˚
alg
i2I ti W

algM
i2I

Ei ˝B Dom.T /! Ei e̋BF :

Since each ti is self-adjoint in Ei e̋BF , the direct sum is essentially self-adjoint by
Lemma 2.27.

In fact we claim that gi is contractive. The this end, denote by d the Grassmann
connection onHB. The map

u W HBe̋BG.T /! G.1˝d T /

e ˝

�
f

Tf

�
7!

�
e ˝ f

.1˝d T /e ˝ f

�
;

is unitary, cf. [35, Theorem 5.4.1]. Since Ei D piHB, the operator 1˝ri T equals
the operator pi .1˝d T /pi on its domain, so we can write

gi

 
nX
kD1

ek ˝

�
fk
Tfk

�!
D

nX
kD1

�
ek ˝ fk

pi .1˝d T /ek ˝ fk

�
D

�
pi 0

0 pi

� nX
kD1

�
ek ˝ fk

.1˝d T /ek ˝ fk

�
D

�
pi 0

0 pi

�
u

 
nX
kD1

ek ˝

�
fk
Tfk

�!
;

and thus gi factors as piu, which shows that kgik � 1.
The direct sum of the gi defines a map

algM
i2I

gi W

algM
i2I

Ei e̋B G.Ti /!

algM
i2I

G.ti / � G.t/;

since each gi extends to theHaagerup tensor product Ei e̋BG.T /. Since supi kgik�1
by the above discussion, the direct sum extends to an everywhere-defined adjointable
operator

g W E e̋BG.T /! G.1˝r T /:

Since each gi is invertible, the direct sum has dense range, which proves the statement
on the graph map.
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2.4. The unbounded Kasparov product. Having now obtained a theory of
connections on Lipschitz modules, we are now ready to describe the product of
KK-cycles in the unbounded setting. The key ingredient in doing so will be the
following.

Definition 2.30. A Lipschitz cycle between spectral triples .A;H1;D1/ and
.B;H2;D2/ is a triple .E ; S;r/ consisting of:

(i) a Lipschitz .A;B/-bimodule E ;
(ii) an odd self-adjoint regular operator S in E such that .S ˙ i/�1 2 KB.E/;
(iii) the map a 7! ŒS; a� 2 End�B.E/ is a cb-derivation A ! End�B.E/.

In particular, the commutators ŒS; a� extend to bounded operators on the
enveloping C �-module E .

(iv) an even, completely bounded connection r W E ! E e̋B�
1.B;B/ such that

Œr; S� D 0.

Given a pair of Lipschitz algebras A;B, we denote by ‰`0.A;B/ the set of unitary
equivalence classes of .A;B/ Lipschitz cycles.

As in [26,35], the commutator condition on the connection in the latter definition
can be weakened, requiring more intricate self-adjointness proofs. This will be
dealt with elsewhere: the only examples we shall encounter in the present paper
are commuting connections. Given a Lipschitz cycle, the operator S extends to the
C �-completion E Š E e̋B B as S ˝ 1. The pair .E ; S/ is an unbounded KK-cycle
for .A;B/.

Definition 2.31. Two self-adjoint regular operators s and t on a Lipschitz module
E ˛ B are said to anti-commute if

Im
�
.s C i/�1.t C i/�1

�
D Im

�
.t C i/�1.s C i/�1

�
and st C ts D 0 on this submodule.

For an anti-commuting pair, the resolvent .s˙ i/�1 preserves the domain of t and
the resolvent .t ˙ i/�1 preserves the domain of s. We have the following relations:

t .s C i/�1 C .s � i/�1t D .s � i/�1Œs; t �.s C i/�1 D 0 on Dom.t/I (2.8)
s.t C i/�1 C .t � i/�1s D .t � i/�1Œs; t �.t C i/�1 D 0 on Dom.s/: (2.9)

From this it follows readily that s commutes with .1 C t2/�1 on Dom.s/ and t
commutes with .1C s2/�1 on Dom.t/. We therefore have equalities

.s˙i/�1.1Ct2/�1 D .1Ct2/�1.s˙i/�1; .t˙i/�1.1Cs2/�1 D .1Cs2/�1.t˙i/�1;

(2.10)
of bounded operators on the Lipschitz module E ˛ B.
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The proof of the following theorem is essentially contained in [35] yet, since in
our case of a commuting connection it simplifies greatly, we include it here for the
sake of completeness.
Theorem 2.32. The sum of anti-commuting operators s and t on a C �-module E is
self-adjoint and regular on Dom.s/ \Dom.t/ with core Im.s C i/�1.t � i/�1.

Proof. The sum is closed and symmetric by a standard argument. It is self-adjoint
and regular by the following argument. The operator x D .sC i/�1.tC i/�1 maps E
into Dom.s/ \Dom.t/ and by (2.10) we have

xx� D .sCi/�1.1Ct2/�1.s�i/�1 D .1Cs2/�1.1Ct2/�1 D .1Ct2/�1.1Cs2/�1:

The operators .s C t /x, .s C t /x� are bounded by (2.8) and (2.9); moreover we find
that .s C t /xx� D xx�.s C t /. Therefore the operator

g WD

�
x �.s C t /x

.s C t /x x

�
;

satisfies

gg� D

�
xx� C .s C t /xx�.s C t / 0

0 xx� C .s C t /xx�.s C t /

�
;

which is strictly positive since xx� is so. Thus g has dense range in E ˚E . It maps
E ˚E into G.D/˚ vG.D/, which must therefore be all of E ˚E . It follows that
s C t is self-adjoint and regular.

Let us fix some notation. Let B be a C �-algebra with a fixed Lipschitz
subalgebra B.
Definition 2.33. We denote by ‰0.B; C / the set of unitary equivalence classes of
.B; C / KK-cycles .F ; T / with the property that the map

B! End�C .F /; b 7! ŒT; b�;

is a cb-derivation.
Most importantly, there is a natural action of Lipschitz cycles upon such

KK-cycles, which in turn induces the bounded Kasparov product in the following
way.
Theorem 2.34. Let .E ; S;r/ be a Lipschitz cycle for .A;B/ and let .F ; T / be a
.B; C / KK-cycle. Then the pair

.E e̋B F ; S ˝ 1C 1˝r T /

is an .A; C / KK-cycle representing the Kasparov product of .E ; S/ and .F ; T /.
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Proof. We shall prove here that the operators s WD S ˝ 1 and t D 1 ˝r T anti-
commute, so that their sum sCt is self-adjoint on the intersection of the domains, and
we shall check thatA preserves the domain of the sum and has bounded commutators.
The sum has compact resolvent by the same considerations as [26, 35]: all of this is
enough to deduce that we do indeed have an .A; C / KK-cycle. Just as in [26, 35],
one can then check Kucerovsky’s conditions [29, Thm 13] to verify that the Kasparov
product is indeed represented in this way.

We first show that resolvents .s˙ i/�1 preserve the domain of t . The submodule

X WD .1˝ pr1/
�
E e̋BG.T /

�
D pr1.g.E e̋BG.T ///

is a core for t , since g has dense range in the graph G.1 ˝r T / by Theorem 2.29.
The operators .s ˙ i/�1 map this core into the domain of t , because .s ˙ i/�1 D
.S ˙ i/�1 ˝ 1 and .S ˙ i/�1 2 End�B.E/ by assumption. Thus, on X we can write

.s˙i/�1X D .s˙i/�1.1˝pr1/.E e̋BG.T // D .1˝pr1/..S˙i/�1E e̋BG.T // � X;

and thus .s˙ i/�1 preserve this core. Note that, since t is an odd operator, the graded
commutator Œt; a� is computed via

Œt; a� D ta � .�1/jt jjajat D ta � .�1/jajat D ta � 
.a/t:

Also note that, since s is odd, we have 
.s˙i/�1 D �.s�i/�1. For each elementary
tensor e ˝ f 2 X it holds that

.s ˙ i/�1.e ˝ f / D .S ˙ i/�1e ˝ f 2 X

and thus we can write

Œt; .s ˙ i/�1�e ˝ f D 
..S ˙ i/�1e/˝ Tf Cr.
.S ˙ i/�1e//f

� 
..s ˙ i/�1/.
.e/˝ Tf Cr.
.e//f /;

D �..S � i/�1
.e//˝ Tf � r..S � i/�1
.e//f

C ..S � i/�1
.e//˝ Tf C .s � i/�1r.
.e//f /

D .s � i/�1r.
.e//f � r..S � i/�1
.e//f

D Œr; .S � i/�1�
.e/f

D 0:

It follows that for e ˝ f 2 X we have

.s ˙ i/�1e ˝ f 2 Dom.t/; t.s ˙ i/�1e ˝ f D �.s � i/�1t .e ˝ f /: (2.11)

Since X is a core for t , for any x 2 Dom.t/ there is a sequence xn 2 X converging
to x in the graph norm of t . Then by (2.11)

t .s ˙ i/�1xn D �.s � i/
�1txn ! �.s � i/

�1tx
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and therefore .s ˙ i/�1x 2 Dom.t/. So the resolvents preserve the domain of t and

t .s ˙ i/�1 D .�s ˙ i/�1t; t .1C s2/�1 D .1C s2/�1t; (2.12)

on Dom.t/ (this is in fact a standard argument, see for example [23, Prop. 2.1] for
details). From this we obtain the identities

..s C i/�1.t C i/�1 C .t � i/�1.s � i/�1/

D .t � i/�1
�
.s � i/�1.t C i/C .t � i/.s C i/�1

�
.t C i/�1

D .t � i/�1
�
i.s � i/�1 � i.s C i/�1

�
.t C i/�1

D 2.t � i/�1.1C s2/�1.t C i/�1

D 2.1C t2/�1.1C s2/�1

D 2.s C i/�1.1C t2/�1.s � i/�1;

which implies that

.s C i/�1.t C i/�1 D .t � i/�1.s � i/�1.2.s C i/�1.t C i/�1 � 1/;

and

.t � i/�1.s � i/�1 D .s C i/�1.t C i/�1.2.t � i/�1.s � i/�1 � 1/:

From this it is immediate that

Im
�
.s C i/�1.t C i/�1

�
� Im

�
.t � i/�1.s � i/�1

�
� Im

�
.s C i/�1.t C i/�1

�
;

and that Œs; t � D 0 on this set. That is to say that s and t anti-commute and so the
self-adjointness proof is complete.

To show that the algebra A preserves the domain of the sum operator, we first
show that

Y WD 1˝ pr1..S C i/�1E e̋BG.T // D .s C i/
�1X � Im

�
.s C i/�1.t C i/�1

�
is a core for sCt . This follows becauseX is a core for t , so there is a dense submodule
Z � E e̋BF such thatX D .t C i/�1Z. Fix an arbitrary element w 2 E e̋BF and
choose a sequence zn 2 Z converging to w. Then

.sCt /.sCi/�1.tCi/�1zn D .1�i.sCi/
�1/.tCi/�1zn�.s�i/

�1.1�i.tCi/�1/zn;

which is convergent because zn is convergent. Therefore, for all w 2 E e̋BF we
have

.s C i/�1.t C i/�1w 2 Y sCt ;

the closure of Y in the graph norm of s C t . Thus Y sCt contains the core
Im.s C i/�1.t C i/�1 and therefore Y sCt is dense in the graph of s C t . Since
it is also closed in the graph norm, this shows that Y sCt D Dom.s/ \Dom.t/.
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Now since a 2 A preserves the domain of s, it maps Y into the domain of s.
Since both .s C i/�1 and a preserve the domain of t , we see that a maps Y into the
domain of t . So a is a map

a W Y ! Dom.s/ \Dom.t/ D Dom.s C t /:

The commutator obeys Œs; a� D ŒS; a� ˝ 1 and it is therefore bounded. Since
Y D .s C i/�1X � X , the commutator Œt; a� can be computed via the equalitites

Œt; a�e ˝ f D Œ1˝r T; a�e ˝ f D Œr; a�e ˝ f;

which is bounded because, by assumption, both r and a define completely bounded
operators on E . Thus, the elements of a 2 Amap the core Y into the domain of sC t
and the commutators are bounded on Y . Therefore a 2 A actually preserves the
domain of sC t and has bounded commutators there (once again see [23, Prop. 2.1]).
This completes the proof.

The situation of the previous theorem is captured in the following diagram:

‰`0.A;B/ � ‰0.B; C / - ‰0.A; C /

KK0.A;B/
?

� KK0.B; C /
?

- KK0.A; C /:
?

Remark 2.35. Of course, this method only gives a recipe for seeking the internal
product of even unbounded KK-cycles. In this paper we will also be interested in
taking the internal product of odd cycles. In the remainder of this section, we explain
how to adapt the above construction in order to achieve this in the various possible
cases.

We emphasise that all of the examples below are consequences of the theory
developed in this section for products of even cycles. The formulæ for the product
operators below are very convenient expressions, however they do not give short-cuts
for checking the above analysis (for example for checking Kucerovsky’s conditions).

An odd cycle for a pair of ungradedC �-algebras consists of an .A;B/-bimoduleE
and a self-adjoint regular operatorD with compact resolvent such that ŒD; a� extends
to an operator in End�B.E/ for all a in a dense subalgebra of A. The set of unitary
equivalence classes of such cycles is denoted ‰�1.A;B/. Odd spectral triples
constitute examples of elements in ‰�1.A;C/. Odd Lipschitz cycles are similarly
defined and denoted ‰`�1.A;B/.

Given a pair of C �-algebras A;B , it also makes sense to speak of unbounded
.A;B ˝ Ci /-cycles for each Clifford algebra Ci , i D 0; 1; 2; : : : . We thus define

‰i .A;B/ WD ‰0.A;B ˝ Ci /; i D 0; 1; 2; : : : :



Gauge theory for spectral triples and the unbounded Kasparov product 161

By construction, these unbounded cycles enjoy the periodicity property

‰i�2.A;B/ Š ‰i .A;B/

for each i D 1; 2; : : : . The same applies to Lipschitz cycles.
Remark 2.36. In particular, this use of Clifford algebras means that every odd
unbounded KK-cycle may be viewed as an even cycle by equipping A;B with trivial
gradings and then using the identifications

‰�1.A; B/ Š ‰1.A; B/ Š ‰0.A; B ˝ C1/:

Indeed, each odd cycle .E ;D/ in ‰�1.A; B/ determines an element .eE ; eD/ of
‰0.A; B ˝ C1/ with grading � W eE ! eE by setting

eE WD E ˝ C2; eD WD � 0 D

D 0

�
; � WD

�
0 �i

i 0

�
: (2.13)

The original cycle .E ;D/ is recovered from .eE ; eD/ by viewing E � eE as the diagonal
submodule.

The latter construction also applies to Lipschitz cycles .E ;D;r/ in ‰`�1.A;B/
by doubling the connection as

er WD �r 0

0 r

�
:

These observations now make the various combinations of products of unbounded
KK-cycles rather easy to describe. We sketch in turn how to form the product of
even-with-odd, odd-with-even and odd-with-odd unbounded KK-cyles.
Example 2.37. Let .E ; S;r/ 2 ‰`0.A;B/ and .F ; T / 2 ‰�1.B; C /. Then using
the ‘doubling’ construction described in Remark 2.36, we may identify .F ; T / with
an element .eF ;eT / of ‰0.B; C ˝ C1/. The internal product

‰`0.A;B/ �‰0.B; C ˝ C1/! ‰0.A; C ˝ C1/ Š ‰�1.A; C /

of the resulting elements is now well defined; the final step passing from even to odd
cycles as described in Remark 2.36 yields the cycle

.E e̋BF ; S ˝ 1C 1˝r T / 2 ‰�1.A; C /:

Example 2.38. Let .E ; S;r/ 2 ‰`�1.A;B/ and .F ; T / 2 ‰0.B; C /. Again using
the doubling construction, we may identify .E ; S;r/ with an element .eE ;eS;er/ of
‰`0.A;B˝C1/. Similarly, we may take the external product of .F ; T / in‰0.B; C /
with the trivial cycle .C2; 0/ in ‰0.C1;C1/ to obtain the cycle

.F ˝ C2; T ˝ 1/ 2 ‰0.B ˝ C1; C ˝ C1/;

graded by the tensor product of the grading �F W F ! F with the grading on C1.
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The internal product

‰`0.A;B ˝ C1/ �‰0.B ˝ C1; C ˝ C1/! ‰0.A; C ˝ C1/ Š ‰�1.A; C /

is now well defined. The final step in passing from even to odd cycles is made using
Remark 2.36, resulting in the cycle

.E e̋BF ; S ˝ �F C 1˝r T /

as an element of ‰�1.A; C /. If we decompose the module F into its graded
components,

F D FC ˚ F�; T D

�
0 TC
T� 0

�
; �F D

�
1 0

0 �1

�
;

the product operator has the explicit form�
S ˝ 1 1˝r TC
1˝r T� �S ˝ 1

�
(2.14)

as an operator from .Dom.S ˝ 1/ \Dom.1˝r T // to E e̋BF .
Example 2.39. Finally we consider the product of odd KK-cycles .E ; S;r/ an
element in ‰`�1.A;B/ and .F ; T / 2 ‰�1.B; C /. In this case we apply the doubling
construction to each of these to obtain unbounded cycles .eE ;eS;er/ 2 ‰`0.A;B˝C1/
and .eF ;eT / 2 ‰0.B; C ˝ C1/. Following this, we take the external product of
.eF ;eT / 2 ‰0.B; C ˝ C1/ with .C1; 0/ 2 ‰0.C1;C1/ to obtain the cycle .eF ˝ C1;eT ˝ 1/ 2 ‰0.B ˝ C1; C ˝M2.C//. We now have a well defined internal product

‰`0.A;B ˝ C1/ �‰0.B ˝ C1; C ˝M2.C//! ‰0.A; C ˝M2.C// Š ‰0.A; C /:

One finds that the resulting even .A; C / cycle is given by

.E e̋BF ˝ C2; S ˝ 1˝ 
1 C 1˝r T ˝ 
2/;

where 
1, 
2 are (real) generators of the Clifford algebra C1. Upon making explicit
choices of representatives for the gamma matrices, the product operator has the form�

0 S ˝ 1 � i1˝r T

S ˝ 1C i1˝r T 0

�
(2.15)

as an operator from .Dom.S ˝ 1/ \Dom.1˝r T //˝C2 to E e̋BF ˝C2 (cf. [26]).

3. Gauge theories from noncommutative manifolds and KK-factorization

In this section, we will show how spectral triples naturally give rise to (generalized)
gauge theories. Starting from a given spectral triple, we first recall from [15, 16]
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how to associate to it a gauge group together with a set of gauge potentials equipped
with a natural action of the former. This can be done in two ways: one in terms of
the unitary endomorphisms of a noncommutative vector bundle, which generalizes
the classical notion of gauge theory (cf. [15] and references therein), the other using
Connes’ notion of ‘inner fluctuations’ of the spectral triple arising via Morita self-
equivalences [16].

As already mentioned, however, these two approaches are in general mutually
incompatible. The goal of this section is to put these notions of gauge theory into
a commutative geometric context, starting with a factorization in unbounded KK-
theory of a Hilbert bundle over a commutative base manifold. The above gauge
groups and gauge potentials can then be naturally described in terms of the Hilbert
bundle in a unified way.

3.1. Gauge transformations and inner fluctuations. The motivation for our
proposal for gauge theories in noncommutative geometry comes from symmetries of
spectral triples. The first candidate for our attention is unitary equivalence. Let B1
and B2 be unital C �-algebras.

Definition 3.1. A pair of spectral triples .B1;H1;D1/ and .B2;H2;D2/ are said to
be unitary equivalent if B1 ' B2 and there exists a unitary operator U W H1 ! H2

such that

UD1U
�
D D2; U�1.b/U

�
D �2.b/;

for all b 2 B1.
In this situation we immediately find thatU implements an isomorphism between

the corresponding Lipschitz algebras B1 and B2 which is an isometry for the norms
induced by the Lipschitz representations (2.3), as the following result shows.

Proposition 3.2. Let .B1;H1;D1/ and .B2;H2;D2/ be unitarily equivalent spectral
triples. Then the corresponding Lipschitz algebras B1 and B2 are isometrically
isomorphic.

Proof. We simply compute that

�D2.b/ D

�
U�1.b/U

� 0

ŒD2; U�1.b/U
�� U�1.b/U

�

�
D

�
U 0

0 U

��
�1.b/ 0

ŒD1; �1.b/� �1.a/

��
U � 0

0 U �

�
D U�D1.b/U

�;

where the operators �Di .b/, i D 1; 2, are as in eq. (2.3).
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As a special case, we consider the situation where B D B1 D B2 and the unitary
equivalence is implemented by a unitary element of the Lipschitz algebra B, leading
to the following definition.
Definition 3.3. The gauge group of the spectral triple .B;H;D/ is defined to be
the group U.B/ of unitary elements of the Lipschitz algebra B equipped with the
multiplication induced by the algebra structure of B and the topology it inherits as a
subspace of B.

Each element u 2 U.B/ of the internal gauge group induces a perturbation of the
Dirac operator according to the transformation rule

D 7! Du
WD uDu� D D C uŒD; u��: (3.1)

This in turn implements a unitary equivalence between the spectral triples .B;H;D/
and .B;H;Du/ (cf. [16]).
Remark 3.4. Perturbing the Dirac operator according to the rule D 7! Du is
equivalent to acting upon the algebra B by the automorphism

˛u W B! B; ˛u.b/ WD ubu
�:

The set of automorphisms of B of this type form a group under the operation of
composition. The elements of this group, which we denote by Inn.B/, are called
inner automorphisms, in contrast to the group Out.B/ of outer automorphisms,
defined to be the quotient Out.B/ WD Aut.B/=Inn.B/. This is nicely summarized by
the short exact sequence

1! Inn.B/! Aut.B/! Out.B/! 1:

Note that if A D Lip.M/ � C1.M/ is the (commutative) algebra of Lipschitz
functions on a classical smooth manifold M , there are no non-trivial inner
automorphisms and so Out.A/ is the group of bi-Lipschitz homeomorphisms
M !M . In particular, there is an inclusion Diff.M/ � Out.A/.

In this way, we see that a non-Abelian gauge group appears naturally wheneverA
is a noncommutative algebra. Yet it turns out that we can do better than this.
Noncommutative algebras allow for a more general and much more natural notion
of equivalence than that afforded by inner automorphisms. Indeed, the most natural
notion of an invertible morphism between noncommutative C �-algebras is given by
Morita equivalence. Let us see if we can lift Morita equivalence to the level of
spectral triples.

Given a unital C �-algebra B , any unital Morita equivalent C �-algebra A is
necessarily isomorphic to the algebra of adjointable endomorphisms of some finitely
generated (right) Hilbert module E ˛ B ,

A D End�B.E/:
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In this situation, let .B;H;D/ be a spectral triple over B and let E ˛ B be a right
Lipschitz module over the Lipschitz algebra B whose C �-envelope is isomorphic
to E .

As already mentioned, the Lipschitz module E always admits a connection

r W E ! E e̋B�
1
D.B/:

Let us choose one. Then writingHE WD E e̋BH, we construct the operator

Dr W Dom.Dr/! HE ; Dr WD 1˝r D;

and define
A WD fa 2 A j ŒDr ; a� 2 End�B.E/g Š End�B.E/:

The last isomorphism follows from [35, Thm 5.5.1]. It follows immediately from
the definition that the datum .E ; 0;r/ determines an element of the set of Lipschitz
cycles ‰`0.A;B/. Upon choosing such a connection, we find the following result.
The construction first appeared in [16], here we recast it in terms of our KK-theoretic
language.
Proposition 3.5. The Kasparov product of the Lipschitz cycle .E ; 0;r/ 2 ‰`0.A;B/
with the spectral triple .B;H;D/ 2 ‰0.B;C/, given by the formula

.HE ;Dr/ D .E ˝A H; 1˝r D/ 2 ‰0.A;C/; (3.2)

yields a spectral triple over the C �-algebra A, with Lipschitz algebra cb-isomorphic
to A.

Proof. This is an immediate consequence of Theorem 2.34.

Let us now focus upon Morita self-equivalences, i.e. the situation in which A D
E D B . Let .A;H;D/ be a spectral triple over A as above. In this setting we look
at Hermitian connections

r W A! �1D.A/:

By the Leibniz rule we automatically have r D d C !, where

! � r.1/ D
X
j

aj ŒD; bj �

is a generic self-adjoint one-form in�1D.A/. Under the identification E ˝A H ' H
we have

1˝r D � D C !:

In otherwords, upon choosing a connectionr onE , theDirac operatorD is ‘internally
perturbed’ to D! WD D C !. The one-forms !� D ! 2 �1D.A/ will be interpreted
as gauge fields.
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Remark 3.6. The passage from the spectral triple .A;H;D/ to the spectral triple
.A;H;D!/ is called an inner fluctuation of the Dirac operator D, since it is the
algebra A that generates the gauge fields ! through Morita self-equivalences. In
terms of the unbounded Kasparov product described in Proposition 3.5, the internal
gauge fields ! are generated by taking the internal product of the spectral triple
.A;H;D/ 2 ‰0.A;C/ with the Lipschitz cycle .A; 0;r/ 2 ‰`0.A;A/.

Combining the twomain ideas presented in this section is now easy. The fluctuated
spectral triple .A;H;D!/ also carries an action of the internal gauge group group
U.A/ by unitary equivalences as in eq. (3.1), that is to say

D! 7! uD!u
�; u 2 U.A/;

or equivalently

! 7! u!u� C uŒD; u��; u 2 U.A/; ! 2 �1D.A/; (3.3)

which is the usual rule for the transformation of a gauge field.

3.2. KK-factorization and a proposal for gauge theories. In this way, we have
two different possibilities for perturbing a given spectral triple: the first via unitary
equivalences and the second via Morita self-equivalences. However, in place of this
noncommutative-geometric interpretation of these constructions, we would like to
make contact with the classical world, by finding a unifying description of these two
possibilities in terms of classical geometric objects, similar to the usual formulation
of gauge theory on a vector bundle over a classical manifold.

To this end, given a spectral triple .A;H;D/, let us assume that we can factorize it
in unboundedKK-theory over a classical spin manifold. That is to say, we assume that
there exist a commutative C �-algebra B equipped with a spectral triple .B;H0;D0/,
together with a Lipschitz cycle .E ; T;r/ for .A;B/ and such that .A;H;D/ factors
as an internal Kasparov product:

.A;H;D/ ' .E e̋B H0; T ˝ 1C 1˝r D0/ 2 ‰0.A;C/; (3.4)

cf. Theorem 2.34. Since B ' C.X/ for some compact Hausdorff space X , the
right B-module E WD E e̋BB consists of continuous sections of some Hilbert
bundle V ! X [38]. Our proposal is to consider this Hilbert bundle as the natural
geometrical object on which to define a gauge theory, as we will now describe.
Definition 3.7. In the above notation, we define the Lipschitz gauge group associated
to the factorization (3.4) to be

G.E/ WD
˚
U 2 End�B.E/ W UU � D 1E D U �U; UAU � D A; ŒT; U � 2 End�B.E/

	
:

The continuous gauge group is given similarly by G.E/, where we allow for the
possibility that U 2 End�B.E/ and drop the bounded commutator condition in the
definition above. The group G.E/ is the C �-closure of G.E/.
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For practical reasons which will become apparent, we would like this group to be
realized as the group of unitary elements of some C �-algebra eA which contains A,
with eA the smallest possible C �-algebra having this property. Inspired by the
definition of reduced group C �-algebras, we make the following definitions.
Definition 3.8. We define eA to be the closure of the linear span of G.E/ in the
operator space topology given by the representation

U 7!

�
U 0

ŒT; U � U

�
2 End�B˚B.E ˚E/; (3.5)

where B˚B denotes the matrix diagonal direct sum of involutive operator algebras.
We define eA to be the C �-closure of the algebra eA.
Proposition 3.9. TheC �-algebraeA is theminimalC �-algebra (ordered by inclusion)
with the property that U.eA/ contains G.E/. It is isomorphic to the closure in
End�B.E/ of the complex linear span of G.E/:eA ' SpanCG.E/: (3.6)

The C �-algebra eA contains A as a C �-subalgebra.

Proof. Let eB be the minimal C �-algebra such that G.E/ � U.eB/ and let B be an
arbitrary C �-algebra with the property that G.E/�U.B/. Then G.E/�U.B/�B ,
which by continuity implies that eB ,! B . Since clearly G.E/ � U.SpanCG.E//, it
follows that eB is the minimal C �-algebra with this property. It follows immediately
that eB is isomorphic to the C �-closure eA of the algebra eA.

Alternatively, eA can be described as those elements a 2 eA for which a 2 End�B.E/
and ŒT; a� 2 End�B.E/. This in turn contains A and by construction we have
.E ; T;r/ 2 ‰`0.eA;B/, so that the following definition makes sense.
Definition 3.10. With respect to the factorization (3.4), we define the space of scalar
fields Cs to be

Cs WD �1T .eA/ D fX
j

aj ŒT; bj � W aj ; bj 2 eAg;
a subset of End�B.E/, and the space of gauge fields Cg as the affine space of
connections r W E ! E e̋B�

1
D0
.B/, i.e.

Cg WD HomB.E ; E e̋B�
1
D0
.B//:

Note that such a use of unitary endomorphisms to generate the gauge fields (via
the algebra eA) has already been exploited in the context of physical applications of
noncommutative geometry (e.g. [33]), albeit in a topologically trivial context.
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Lemma 3.11. The following defines an action of G.E/ on C.E/ D Cs ˚ Cg :

G.E/ � C.E/! C.E/; .U;ˆ;r/ 7! .ˆU ;rU / WD .UˆU �; UrU �/:

Proof. Let ˆ D aŒT; c� be a scalar field with a; c 2 eA. Then

UaŒT; c�U � D .Ua/ŒT; cU �� � UacŒT; U ��:

SinceUa; cU �, Uac, andU � are elements in eA, the elementˆU is in�1T .eA/. Also,
if r W E ! E e̋B�

1
D0
.B;B/ is a connection on E , then we check that

UrU �.eb/ D UrU �.e/b C e ˝ ŒD0; b�

for all e 2 E ; b 2 B. In other words, rU satisfies the Leibniz rule and is a connection
on E .

Lemma 3.12. In the above notation we have:

(i) the internal gauge group U.A/ is a normal subgroup of G.E/;
(ii) the space �1D.A/ of internal gauge fields is a subspace of Cs ˚ Cg .

Proof. Indeed, for all u 2 U.A/ and U 2 G.E/ we have UuU � 2 A, which is at
the same time a unitary element. By Definition 2.30, the element u 2 A has the
property that ŒT; u� is a bounded operator in End�B.E/. For the second claim, write
D D T ˝ 1C 1˝r D0. Then for each element in �1T .eA/ we have

aŒD; c� D aŒT; c�C aŒr; c�I .a; c 2 eA/:
The first term is an element in �1T .eA/ whereas for the second we show that it is a
B-linear map from E ! E e̋B�

1
D0
.B/:

aŒr; c�.eb/ D ar.c.e/b/ � acr.eb/

D .ar.c.e///b C ace ˝ ŒD0; b� � .acr.e//b � ace ˝ ŒD0; b�

D .aŒr; c�.e//b

for all e 2 E and b 2 B. This concludes the proof.

We deduce that our proposal for a gauge theory associated to a factorization of
the form (3.4) encompasses the previous internal gauge theory determined by the
original spectral triple .A;H;D/. However, it does more than this: it allows us to
distinguish within �1D.A/ between scalar fields acting fibrewise upon the Hilbert
bundle V and gauge fields as connections thereon. Similarly, the gauge group G.E/
(containing the unitary group U.A/) acts fibrewise upon the space of Lipschitz
sections �`.X; V /. This action extends to an action of the C �-gauge group G.E/ on
the space of continuous sections �.X; V /.
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4. Yang–Mills theory

Next we turn to studying the implications and consequences of our new setting
for gauge theory in unbounded KK-theory. To set the scene for the more general
noncommutative case, in this section we recall how to use unbounded KK-theory to
describe Yang–Mills gauge theories over classical manifolds [5, 12]. We connect to
the usual theory of principal bundles and connections thereon.

4.1. The Yang–Mills spectral triple. LetM be a closed Riemannian spin manifold
with dimension m and spinor bundle S and let .C.M/;L2.M;S/; @=M / be the
canonical spectral triple of Definition 2.2.

Let E be a Hermitian vector bundle over M . We write A WD �.M;„/ for the
unital C �-algebra consisting of continuous sections of the endomorphism bundle
„ WD End.E/. From the Serre-Swan theorem for �-algebra bundles [5] and
holomorphic stability of the inclusion Lip.M/ � C.M/ it follows that „ admits
a Lipschitz structure and we write A D �`.M;„/ for the involutive operator
algebra of Lipschitz sections of End.E/, which sits densely inside A. The Lipschitz
subalgebra A acts as bounded endomorphisms on the Lip.M/-module

�`.M;E ˝ S/ ' �`.M;E/e̋Lip.M/�
`.M;S/:

Combining the Hermitian structure on E with the usual L2-inner product on the
spinor bundle S induces a natural inner product on the module �`.M;E ˝ S/,
giving a Hilbert space HE WD L2.M;E ˝ S/ of square-integrable sections of the
vector bundle E ˝ S .

This construction gives us the first two ingredients of a spectral triple: a pre-
C �-algebra and a Hilbert space. In order to define a Dirac-type operator on
L2.M;E ˝ S/ we twist @=M by a Hermitian connection on E,

r W �`.M;E/! �`.M;E/e̋Lip.M/�
1.M/;

writing r„ for its lift to the endomorphism bundle„. The associated Dirac operator
with coefficients in E is the unbounded operatorDE onHE defined by

DE W Dom.DE /! HE ; DE WD c ı .1˝rS Cr ˝ 1/; (4.1)

whererS denotes the canonical spin connection onS and c denotes ordinary Clifford
action of differential forms upon spinors. The following is a well-known result,
essentially already contained in [15] and [12] (cf. [5, Thm 3.10]).
Proposition 4.1. The datum .A;HE ;DE / constitutes an mC-summable spectral
triple over the C �-algebra A.

Proof. The action of the pre-C �-algebra A on �`.M;E ˝ S/ extends to an action
by bounded operators on HE . Since DE is a first order differential operator, the
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commutators ŒDE ; a� are bounded for all a 2 A. Since M is compact, the twisted
Dirac operator DE is elliptic, from which the compact resolvent and summability
conditions follow.

We shall refer to the spectral triple .A;HE ;DE / as the Yang–Mills spectral triple
over M determined by the vector bundle E and the connection r. To see why this
terminology is appropriate, it is useful to recall the following alternative description
of the geometry appearing in this section in terms of the parallel theory of principal
bundles.

As already mentioned, from the �-algebra bundle „ D End.E/ we obtain the
�-algebra A D �`.M;„/, which is finitely generated and projective as a Lip.M/-
module. Conversely, using the Serre-Swan theorem for �-algebra bundles [5], fromA
we can reconstruct the original bundle „ (up to isomorphism) as a locally trivial
�-algebra bundle overM . For simplicity, we assume that„ has typical fibre MN .C/.
Lemma 4.2. There exists a principal bundleP overM with structure group PSU.N /
such that

„ ' P �ad MN .C/ (4.2)
is the vector bundle associated to the adjoint representation ad W PSU.N /! MN .C/.
Moreover, under this identification, Hermitian connections r„ on „ correspond
bijectively to su.N /-valued connection one-forms ! on the principal bundle P .

Proof. Since all �-automorphisms of MN .C/ are inner, i.e. they are obtained by
conjugation by a unitary matrix u 2 MN .C/, the transition functions of the vector
bundle „ take values in the adjoint representation

AdU.N / D U.N /=Z.U(N)/ Š PSU.N /:

From these transition functions we construct a principal bundle P over M with
structure group PSU.N / to which „ D End.E/ is the associated vector bundle as
stated. It is not difficult to see that every such pair .P; !/ arises in this way from
the datum of a Yang–Mills spectral triple .A;HE ;DE /. We refer to [5] for full
details.

Now we are ready to recast the spectral triple description of Yang–Mills theory in
terms of the unbounded Kasparov product, beginning with the following easy result.
Lemma 4.3. The datum .�`.M;E/; 0;r/ is an element of the set ‰`0.A;Lip.M//

of classes of even Lipschitz cycles.

Proof. The right Hilbert C.M/-module �.M;E/ is the completion of the vector
space �`.M;E/ in the topology defined by the Hermitian structure on E. By
construction, it carries a bounded action of the C �-algebra A by left multiplication.
The C �-algebras A and C.M/ and the Hilbert module �.M;E/ are all trivially
graded, whence the zero operator is indeed odd. The remaining conditions are
automatically satisfied.
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For simplicity, let us assume that the manifoldM is even-dimensional, so that the
canonical spectral triple .C.M/;H; @=M / is even and defines an unbounded KK-cycle
in ‰0.Lip.M/;C/. It is not difficult to see how to extend the following results to the
case whereM is odd-dimensional.
Proposition 4.4. As an element of‰0.A;C/, the KK-cycle .HE ;DE / is a Kasparov
product of unbounded KK-cycles, namely

.HE ;DE / ' .�
`.M;E/; 0;r/˝Lip.M/ .H; @=M /;

where .�`.M;E/; 0;r/ 2 ‰`0.A;Lip.M// and .H; @=M / 2 ‰0.Lip.M/;C/.

Proof. This result is a slight strengthening of [5, Thm3.21]. We have an isomorphism
of Hilbert spaces

HE D L
2.M;E ˝ S/ ' �.M;E/e̋C.M/L

2.M;S/:

Under this identification, we clearly have that

DE ' 1˝r @=M :

The result now follows from Theorem 2.34.

With the aid of this result, we are now able to describe the Yang–Mills gauge
theory of the previous section in terms of unbounded KK-cycles. The gauge group
of the above KK-factorization is given by

G.�`.M;E// D U.End�Lip.M/.�
`.M;E/// ' U.A/:

In other words, in this case there is no difference between the internal gauge
group U.A/ and the gauge group as defined in Definition 3.7. Recall that we
can identify A with the space of Lipschitz sections of the adjoint algebra bundle
P �ad MN .C/ associated to a PSU.N /-principal bundle P . Consequently,

G.�`.M;E// ' �`.M;AdP /; where AdP WD P �Ad U.N /:

Let us now determine the gauge fields determined by the above KK-factorization,
following our prescription in Definition 3.10.
Proposition 4.5. The gauge fields of the aboveKK-factorization are given by the affine
space of connections r on �`.M;E/; the scalar fields of the above KK-factorization
all vanish.

Proof. First, since any C �-algebra is generated by its unitary group, we have thateA D A and similarly that eA D A. Moreover, since T D 0 we find that Cs D 0,
leaving only Cg , the affine space of connections on E.

This justifies our use of the term gauge field: the connections correspond
bijectively to connections on the principal bundle P . Since �1D.A/ D C.E/, they
also coincide with the internal gauge fields of Section 3.
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4.2. Almost-commutative manifolds. An immediate generalization of the Yang–
Mills spectral triple is given by the class of so-called almost-commutative spin
manifolds. Roughly speaking, these are spin geometries described by a spectral
triple whose function algebra is not commutative but rather consists of continuous
sections of a finite-rank algebra bundle over some classical spin manifold. A very
special example of such a manifold was constructed in [13] and subsequently applied
to the Standard Model of particle physics. In this section we examine the structure
of this class of (topologically trivial) almost-commutative manifolds from the point
of view of unbounded KK-theory and their associated gauge theory.

As in the previous section, let M be a closed Riemannian spin manifold with
dimension m and spinor bundle S . Let .C.M/;L2.M;S/; @=M / be the canonical
spectral triple overM . Moreover, let .AF ;HF ;DF / be a finite spectral triple, that
is to say a spectral triple in the sense of Definition 2.1 for which HF is a finite-
dimensional Hilbert space and so AF � B.HF / is a sum of matrix algebras.

We shall further assume for simplicity thatM is even-dimensional with grading
operator 
M W L2.M;S/ ! L2.M;S/. Let us fix a linear transformation
T W HF ! HF and define

A WD AF ˝ C.M/; H WD HF ˝ L
2.M;S/; DT WD T ˝ 
M C 1˝ @=M :

Then we have a trivial �-algebra bundle „ WD M � AF over M with typical
fibre AF such that A ' �.M;„/. We write A D �`.M;„/ for the Lipschitz
algebra of the resulting spectral triple .A;H;DT /, that is to say the �-subalgebra
of A consisting of elements a 2 A such that ŒDT ; a� extends to a bounded operator
on H. Since the algebra AF is finite and the operator T is bounded, this algebra is
just A D AF ˝ Lip.M/.
Lemma 4.6. The datum .�`.M;M � HF /; T; d/ determines a Lipschitz cycle in
‰`�1.A;Lip.M//.

Proof. In writing .�`.M;M �HF /; T; d/, we are equipping the bundle M �HF

with the trivial connection. It is obvious by definition that the space�`.M;M �HF /

is a Lipschitz A-Lip.M/-bimodule, equipped with the trivial gradings. Since
T W HF ! HF is a linear transformation of a finite-dimensional vector space, the
conditions of Definition 2.30 are vacuously satisfied.

Theorem4.7. The spectral triple .A;H;DT / defines an element of‰�1.A;C/which
factors as an unbounded Kasparov product of the KK-cycles

.�`.M;M�HF /; T; 0/ 2 ‰
`
�1.A;Lip.M//; .L2.M;S/; @=M / 2 ‰0.Lip.M/;C/:

Proof. This is an immediate consequence of Theorem 2.34 by using Example 2.38
to take the product of an odd cycle with an even cycle. We find rather easily that

H D HF ˝ L
2.M;S/ ' �.M;M �HF /˝C.M/ L

2.M;S/

and that, since the connection on the bundleM �HF is trivial, the product operator
1˝d @=M coincides with 1˝ @=M under this identification.
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In order to see how our proposal for gauge theories indeed captures physical
models, let us compute the gauge group of the above situation in a special case.
The gauge theory of more general (topologically non-trivial) examples can be found
in [6, 10].

Example 4.8 (Glashow–Weinberg–Salam electroweak model). We consider the
special case whereAF WD C˚M2.C/, acting upon the Hilbert spaceHF D C˚C2.
Together with the matrix

T D

0@ 0 z1 z2
z1 0 0

z2 0 0

1A ;
this gives rise to one of the spectral triples studied in [13] (cf. [21]),

.A;H;DT / D .AF ˝ C.M/;HF ˝ L
2.M;S/; T ˝ 
M C 1˝D/:

In fact, it is an external product of spectral triples [15, Section VI.3] (cf. [31]). It
is of the above almost-commutative type, being an internal Kasparov product of the
KK-cycle

.�.M;M �HF /; T; d/ 2 ‰`�1.A;Lip.M//

with the canonical spectral triple .L2.M;S/;D/ 2 ‰0.Lip.M/;C/.
Let us then compute the gauge group and the scalar and gauge fields for this

KK-factorization. The algebra eA is the algebra of endomorphisms of the bundle
M �HF which multiply the action of A, i.e.eA D �`.M;C˚M2.C// D A:

This implies that the gauge group U.eA/ D U.A/ ' Lip.M;U.1/�U.2// coincides
with the internal gauge group of the algebra A. (cf. Section 3). The gauge fields are
given by connections r on the U.1/ � U.2/-bundleM � .C˚ C2/, which take the
form

r D d C !.1/ C !.2/

for connection one-forms !.1/ 2 �1.M/˝ u.1/ and !.2/ 2 �1.M/˝ u.2/ taking
values in the Lie algebras u.1/ and u.2/ respectively. They transform under gauge
transformations .u.1/; u.2// 2 Lip.M;U.1/ � U.2// according to the familiar rules

!.1/ 7! !.1/ C u.1/du.1/�;

!.2/ 7! u.2/!.2/u.2/� C u.2/du.2/�:

In physics these two ‘gauge potentials’ respectively describe the B and W bosons
(ignoring for the moment the still required reduction in structure group from U.2/ to
SU.2/; this can be handled by replacing M2.C/ by the quaternions as in [13]).
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Similarly, the scalar fields are given by elements in �1T .eA/. We compute for
�; �0 2 C and m;m0 2 M2.C/ that�

�.x/ 0

0 m.x/

��
T;

�
�0.x/ 0

0 m0.x/

��
DW

0@ 0 �1.x/ �2.x/

�1.x/ 0 0

�2.x/ 0 0

1A :
The components of the pair .�1.x/; �2.x// of complex fields respectively transform
in the defining representations of U.1/ and U.2/. In physics, they describe the Higgs
boson.

5. The noncommutative torus

This section is dedicated to obtaining an understanding of the spin geometry of
the noncommutative torus T2

�
in our context. Following [14] (see also [15]), we

illustrate its geometry in terms of a canonical spectral triple and then demonstrate
how to factorize this geometry as a noncommutative principal bundle with a classical
base space. Although we concentrate on the special case of the noncommutative
two-torus, it is not difficult to imagine how one might extend the construction to
noncommutative tori of higher rank.

5.1. Isospectral deformations. One of the best knownways of obtaining interesting
examples of noncommutative spin manifolds is to ‘isospectrally deform’ a classical
spin manifold along the isometric action of a two-torus T2 [17]. This extends
the C �-algebraic deformation of [37] to the smooth (spin manifold) case. The
noncommutative manifolds (often called Connes-Landi deformations) that we shall
consider in the remainder of the present paper will be of this form, so here we briefly
recall the details of the construction, mainly in order to establish notation.
Definition 5.1. A spectral triple .A;H;D/ over a C �-algebra A is said to be torus-
equivariant if there exists a unitary group action U W T2 ! B.H/ and an isometric
action ˛ W T2 ! Aut.A/ such that

U.t/D D DU.t/; U.t/�.a/U.t/� D �.˛t .a//;

for all t 2 T2 and all a 2 A.
In particular, let .C.M/;H;D/ be the canonical spectral triple over a closed

Riemannian spin manifold M with representation � W C.M/ ! B.H/. Write
Lip.M/ for the corresponding Lipschitz algebra.
Example 5.2. Suppose that we are given a unitary action of T2 upon the spinor
bundle overM . We denote the corresponding action on sections by

U W T2 ! B.H/; t 7! U.t/: (5.1)
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This action descends to a group homomorphism T2 ! Isom.M/. We write

˛ W T2 ! Aut.C.M//; t 7! ˛t (5.2)

for the resulting isometric action of T2 upon continuous functions obtained by pull-
back of the action on M . Then by construction it follows that .C.M/;H;D/ is a
torus-equivariant spectral triple over C.M/. As already shown in Proposition 3.2,
the action (5.2) induces a completely isometric action upon the Lipschitz algebra
Lip.M/.

Let ı D .ı1; ı2/ be the infinitesimal generator of the action (5.1), meaning that
for each t 2 T2 we have

U.t/ D exp.i.t1ı1 C t2ı2//

for some real numbers 0 � t1; t2 � 2� . Using this, one obtains a grading of the
C �-algebraB.H/ by the Pontrjagin dual groupZ2 by declaring an operatorT 2 B.H/
to be of degree .n1; n2/ 2 Z2 if and only if

˛t .T / D exp.t1n1 C t2n2/T for all t 2 T2; (5.3)

where ˛t .T / D U.t/T U.t/� as above. As in [35], denote by Sobı.H/ the algebra
of operators T 2 B.H/ that preserve the domain of ı and for which Œı; T � extends to
an operator in B.H/. Any such operator may be written as a norm convergent sum
of homogeneous elements

T D
X

.n1;n2/2Z2
Tn1;n2 ;

where the operators Tn1;n2 are of degree .n1; n2/.
Let � WD exp.2�i�/, where � is a real deformation parameter. Then for each

operator T 2 Sobı.H/ we define its left twist L.T / to be the operator

L.T / WD
X

.n1;n2/2Z2
Tn1;n2�

n2ı1 :

In particular, for homogeneous operators x; y of respective degrees .n1; n2/ and
.m1; m2/, if we define

x ? y WD �m1n2xy;

then a simple computation [17] shows that L.x/L.y/ D L.x?y/. This new product ?
extends by linearity to an associative product on the vector space Sobı.H/.

In particular, by defining C1.M� / to be the vector space C1.M/ equipped with
the twisted product ?, we obtain a new �-algebra equipped with a representation

�� W C
1.M� /! B.H/; �� .a/ D L.a/

by bounded operators upon the same Hilbert spaceH as before. Upon completion in
this representation, we obtain the C �-algebra C.M� /.
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Since the Dirac operator commutes with the torus action (5.1), one immediately
finds by straightforward computation that

ŒD;L.a/� D L.ŒD; a�/

for all a 2 C 2.M/. This is enough to deduce as in [17] that the commutators
ŒD; �� .a/� are bounded operators for all a 2 C 2.M/ and then, sinceC 2.M/ is dense
in C.M� /, that the datum .C.M� /;H;D/ constitutes a torus-equivariant spectral
triple over C.M� /. We interpret this spectral triple as defining a spin geometry over
the noncommutative manifold M� , obtained by isospectral deformation of the spin
geometry of the classical manifold M . The Lipschitz algebra of .C.M� /;H;D/ is
Lip.M� /.

5.2. Spin geometry of the noncommutative torus. Following the construction
of the previous section, here we recall how to obtain the spin geometry of the
noncommutative two-torus T2

�
from that of its classical counterpart

T2 WD f.u1; u2/ 2 C2 j u�1u1 D u
�
2u2 D 1g:

The C �-algebra C.T2/ of the two-torus T2 is isomorphic to the universal unital
commmutative C �-algebra generated by the unitary elements U1, U2.

TheC �-algebraC.T2/ carries an action of the two-torusT2 by �-automorphisms,
determined by the formulæ

˛ W T2 ! Aut.C.T2//; Ui 7! ˛t .Uj / WD e
itjUj ; i D 1; 2; (5.4)

where for 0 � t1; t2 � 2� we use the notation t D .eit1 ; eit2/ to describe a general
element t 2 T2. This action is generated by a pair ı1; ı2 of fundamental vector fields,
obeying

ıj .Uk/ D ıjk; j; k D 1; 2; (5.5)

where ıjk denotes the Kronecker delta symbol. The spinor bundle S over T2 is
trivializable and of rank two, soH WD L2.T2;S/ ' L2.T2/˝C2. The action (5.5)
lifts to the diagonal action on Hilbert space H, upon viewing C.T2/ as a dense
subspace of L2.T2/.

Then, in terms of the (real) 2 � 2 matrix generators 
k , k D 1; 2, of the Clifford
algebra C1, the Dirac operatorD on the Hilbert spaceH is defined to be

D WD iı1 ˝ 

1
C iı2 ˝ 


2
D

�
0 ı1 C iı2

�ı1 C iı2 0

�
; (5.6)

the second equality following after choosing a pair of representatives for the gamma
matrices. It is straightforward to check that the action (5.4) makes the datum
.C.T2/;H;D/ into a torus-equivariant spectral triple.
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It is immediate that the generators U1; U2 of the algebra C.T2/ have respective
degrees .1; 0/ and .0; 1/ with respect to the action (5.4). Given a real deformation
parameter � and setting � WD exp.2�i�/, we obtain the twisted operators

L.U1/ WD
�
U1 0

0 U1

�
; L.U2/ WD

�
U2 0

0 U2

�
�ı1 :

One finds that these twisted operators satisfy the commutation relations

L.U1/L.U2/ D �L.U2/L.U1/

as elements of B.H/ and so, dropping the symbol L, we arrive at the following
definition of the noncommutative two-torus.

Definition 5.3. With � WD exp.2�i�/, the C �-algebra of continuous functions on
the noncommutative torus T2

�
is the universal unital C �-algebra generated by the

unitary elements U1; U2 obeying the relation

U1U2 D �U2U1:

We denote this C �-algebra by C.T2
�
/.

Aswedid in the previous section, by defining theHilbert spaceL2.T2
�
/ WD L2.T2/,

the operatorD of eq. (5.6) defines a Dirac operator on the Hilbert space

H� WD L
2.T2� ;S/ ' L

2.T2� /˝ C2:

Thus we recover the well known fact that the datum .C.T2
�
/;H� ;D/ constitutes a

2C-summable torus-equivariant spectral triple over the C �-algebra C.T2
�
/ [14]. We

denote the Lipschitz subalgebra of this spectral triple by Lip.T2
�
/. It coincides with

the algebra of elements a 2 C.T2
�
/ for which the function

T2 ! C.T2� /; t 7! ˛t .a/;

is a Lipschitz function.
The C �-algebra C.T2

�
/ continues to carry an action of the classical two-torus T2

by �-automorphisms, determined by the formulæ

˛ W T2 ! Aut.C.T2� //; Ui 7! ˛t .Uj / WD e
itjUj ; i D 1; 2; (5.7)

where we write t D .eit1 ; eit2/, 0 � t1; t2 � 2� , to denote a general element t 2 T2.
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5.3. The noncommutative torus as a fibration over the circle. In order to describe
the noncommutative torus T2

�
as the total space of a fibration over a classical base

space, let us now search for a commutative subalgebra of C.T2
�
/. Consider the action

U W T2 ! B.H� / and extend it to H� ˚H� diagonally. By definition of Lip.T2
�
/,

this action satisfies the equality�
U.t/ 0

0 U.t/

��
a 0

ŒD; a� a

��
U.t�1/ 0

0 U.t�1/

�
D

�
˛t .a/ 0

ŒD; ˛t .a/� ˛t .a/

�
; (5.8)

so that ˛t acts on Lip.T2
�
/ by isometries. We write T2 D T � T0, where

T WD f.eit ; 0/g 2 T2 j t 2 Rg; T0 WD f.0; eit / 2 T2 j t 2 Rg; (5.9)

and look for the fixed point subalgebra of Lip.T2
�
/ under the action of T induced by

eq. (5.8), which we continue to denote by ˛ W T! Aut.Lip.T2
�
//.

In terms ofDefinition 2.2, the canonical spectral triple on the classicalmanifold S1
is the 1C-summable datum .C.S1/;H; @= /, where H D L2.S1/ is the Hilbert space
of square-integrable functions on S1 and @= D id=dx is the Dirac operator on H.
The Lipschitz algebra of this spectral triple is the usual algebra Lip.S1/ of Lipschitz
functions on the circle. The pair .H; @= / defines an odd unbounded KK-cycle and
hence an element of ‰�1.Lip.S1/;C/.
Lemma 5.4. The T-invariant part .C.T2

�
/0; L

2.T2
�
;S/0;D0/ of .C.T2� /;H� ;D/ is

a spectral triple that is unitarily equivalent to .C.S1/;H; @= /.

Proof. It is clear by inspection of eq. (5.8) that the invariant subspace of the action
of U.t/ on H� is spanned by (the image in H� of) the vectors fU j2 j j 2 Zg and
that this subspace is isomorphic to L2.S1/. Similarly, the fixed-point subalgebra of
C.T2

�
/ under this action is the unitalC �-algebra generated byU2, i.e. it is isomorphic

to C.S1/. The invariant part ofD is the operator

D0 W Dom.D0/! L2.T2� ;S/0; D0 D

�
0 iı2
iı2 0

�
;

so the invariant spectral triple is exactly the spectral triple one obtains by applying
the doubling construction from Remark 2.36 to the datum .C.S1/;H; @= /.

Proposition 5.5. The fixed-point subalgebra Lip.T2
�
/0 of Lip.T2� / under the action of

T induced by (5.8) is isometrically isomorphic to the commutative operator algebra
Lip.S1/ of Lipschitz functions on the circle.

Proof. This now follows by observing that for a 2 C.T2
�
/0 \ Lip.T2

�
/, we have that��

0 ı1 C iı2
�ı1 C iı2 0

�
;

�
�.a/ 0

0 �.a/

��
D

�
0 iŒı2; �.a/�

i Œı2; �.a/� 0

�
:

From this it follows immediately that for such a we have k�D.a/k D k�@= .a/k.
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We can integrate elements of B.H� / along the orbits of the torus T � T2, this
time defining a completely positive map �0 W B.H� /! B.H� /. This map restricts to
�0 W C.T2� /! C.S1/ with values in the invariant subalgebra defined in Lemma 5.4:

�0 W C.T2� /! C.S1/; �0.a/ WD

Z
T
˛t .a/dt:

Lemma 5.6. The map Lip.T2
�
/! M2.B.H� // defined by�
a 0

ŒD; a� a

�
7!

�
a 0

ŒD0; a� a

�
is completely contractive.

Proof. Consider the odd self-adjoint unitary operator u 2 B.H� / that interchanges
the two copies of L2.T2

�
/. Since a acts by even endomorphisms, we have u�.a/u D

�.a/, and also uD0u D D0. Since u
�

0 ı1
�ı1 0

�
u D

�
0 �ı1
ı1 0

�
, we have that

�D.a/C u�D.a/u D 2�D0.a/:

Therefore k�D0.a/k � k�D.a/k. This clearly extends to matrices.

Since �0 is completely positive, its extension to B.H� ˚H� / Š M2.B.H� // is
positive, and it is immediate that �0 W Lip.T2� / ! Lip.S1/. We denote by E� the
completion of Lip.T2

�
/ in the norm

kakE� WD k�0.�D0.a/
��D0.a//k

1=2: (5.10)

The map �0 induces a Hermitian structure on C.T2
�
/ with values in the invariant

subalgebra C.S1/. To prove this, we denote by E� the completion of C.T2
�
/ in the

norm
kakE� WD kha; aik

1=2

C.S1/
;

where the C.S1/-valued inner product h�; �i is defined by

ha; bi WD �0.a
�b/ (5.11)

for each a; b 2 C.T2
�
/. It is clear that E� � E� densely and that E� is a C �-module.

Moreover, we find the following result.

Proposition 5.7. The completion E� is a right Lipschitz module over Lip.S1/
isomorphic to L2.S1/ e̋ Lip.S1/. Multiplication in Lip.T2

�
/ induces a completely

contractive �-homomorphism Lip.T2
�
/ ! End�Lip.S1/.E� /. Consequently, C.T2

�
/ is

represented upon E� by a �-homomorphism.
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Proof. It is clear that, on the dense right Lip.S1/-submodule of Lip.T2
�
/ spanned by

fU k1 j k 2 Zg, the norm (5.10) coincides with the norm

k

nX
kD�n

U k1 gkk
2
D k

nX
kD�n

�D0.gk/
��D0.gk/k;

and therefore its completion is isomorphic to L2.S1/e̋Lip.S1/, which is evidently a
Lipschitz module. From positivity of the map �0, and using Lemma 5.6, we find that
for a; b 2 Lip.T2

�
/ we have

�0
�
�D0.ba/

��D0.ba/
�
D �0.�D0.a/

��D0.b/
��D0.b/�D0.a//

� k�D0.b/
��D0.b/k�0.�D0.a/

��D0.a//

� k�D.b/
��D.b/k�0.�D0.a/

��D0.a//;

and therefore

kbak2E� D k�0.�D0.ba/
��D0.ba//k

D k�0.�D0.a/
��D0.b/

��D0.b/�D0.a/k

� k�D.b/
��D.b/kk�0.�D0.a/

��D0.a//k

D kbk2Lip.T2
�
/
kak2E� ;

proving that we have a contractive representation Lip.T2
�
/ ! End�Lip.S1/.E� /. The

second statement now follows by taking C �-envelopes.

The generator of the T-action on Lip.T2
�
/ defines an unbounded operator T D ı1

on the Lipschitz module E� , and the isomorphism

E� Š L2.S1/e̋Lip.S1/ Š `2.Z/e̋Lip.S1/
gives us a canonicalGrassmann connectionr W E� ! E� e̋Lip.S1/�

1.C.S1/;Lip.S1//.

Theorem 5.8. The triple .E� ; T;r/ is a Lipschitz cycle in ‰`�1.Lip.T2� /;Lip.S
1//.

Proof. The operator T is self-adjoint and regular with compact resolvent in E�
because, under the isomorphism

E� Š L2.S1/ e̋ Lip.S1/ Š `2.Z/ e̋ Lip.S1/ (5.12)

determined by U k1 ˝ f 7! ek ˝ f , it corresponds to the number operator

t ˝ 1 W ek ˝ f 7! kek ˝ f:

This operator is closed sinceG.t˝1/ Š G.t/e̋Lip.S1/. Therefore T ˙ i have dense
range in E� and .T ˙ i/�1 is bounded for the Lipschitz operator norm. Thus, by
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Lemma 2.18, T is self-adjoint and regular. The compact resolvent property follows
from the fact that

KLip.S1/.`
2.Z/ e̋ Lip.S1// Š K.`2.Z// e̋ Lip.S1/

and .t ˙ i/�1 2 K.`2.Z//. For a 2 Lip.T2
�
/, the commutators ŒT; a� are by

definition bounded for the norm in End�
C.S1/.E� /. Under the isomorphism (5.12),

the connection r corresponds to the connection ek ˝ f 7! ek ˝ df and is thus
completely bounded and satisfies Œr; T � D 0.

On the level of KK-theory, this theorem is a special case of the construction of
Kasparov modules from circle actions in [11]. Next we consider the Hilbert space
L2.T2

�
/ and its relation to the space L2.S1/ of square-integrable functions on the

base space S1, whose inner product we denote by .�; �/S1 . For this we consider the
tensor product of Hilbert modules E� ˝C.S1/ L2.S1/, which we equip with the inner
product �

e ˝ h; e0 ˝ h0
�
WD .h; he; e0ih0/S1 (5.13)

for each e ˝ h; e0 ˝ h0 2 E� ˝C.S1/ L2.S1/.
Proposition 5.9. The Hilbert space L2.T2

�
/ is isomorphic to the completion

E� e̋Lip.S1/L
2.S1/ Š E� e̋C.S1/L2.S1/ of the tensor product E� ˝C.S1/ L2.S1/

with respect to the inner product (5.13).

Proof. The first isomorphism follows directly from Corollary 2.17, while the second
follows from Proposition 5.7 and the corresponding isomorphism in the classical
case.

Together with the spectral triple on T2
�
, which in turn defines an even unbounded

cycle in ‰0.Lip.T2� /;C/, these considerations lead to the following theorem. The
spin geometry of the noncommutative torus has of course remained a fundamental
example since the beginning of the theory [14].

Theorem 5.10. As an element of ‰0.Lip.T2� /;C/, the Riemannian spin geometry of
T2
�
factorizes as a Kasparov product of unbounded KK-cycles, namely

.H� ;D/ ' .E� ; T;r/˝Lip.S1/ .H; @= /;

where .E� ; T;r/ 2 ‰`�1.Lip.T2� /;Lip.S
1// and .H; @= / 2 ‰�1.Lip.S1/;C/.

Proof. In order to compute the Kasparov product of these two odd cycles, we follow
the method of Example 2.39. Proposition 5.9 gives us the necessary isomorphism
at the level of modules. All of the necessary analytic details have been verified, so
it remains to check that the product operator agrees with the Dirac operator on T2

�
.

This follows immediately by inspection of the formula (2.15).
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This KK-factorization allows for the following gauge theoretical interpretation.
The C �-module E� is the space of continuous sections of some Hilbert bundle
V ! S1. Essentially, the fibers of V are copies of L2.S1/. The internal gauge group
U.Lip.T2

�
// is a normal subgroup of the group G.E� / of Definition 3.7, which acts

fibrewise on V . The internal gauge fields in �1D.Lip.T
2
�
// decompose according to

Lemma 3.12: the scalar fields act vertically on the Hilbert bundle V , whilst the gauge
fields are given by connections thereon.

We have thus cast the gauge theory as described by the spin geometry of the
noncommutative torus T2

�
into a geometrical setting consisting of a Hilbert bundle

over the circle S1, equipped with a connection and a fibrewise endomorphism.
Interestingly, in passing from U.Lip.T2

�
// to G.E� /we allow for more gauge degrees

of freedom, and in particular those of a type encountered in noncommutative instanton
searches [7–9] (and for an early appearance [32]). Namely, the Pontrjagin dual
group Z of T acts on E� through the bounded operators e2�in�T � �n�T for any
n 2 Z. One easily checks that thisZ is a subgroup ofG.E� / and the relevant extension
of U.Lip.T2

�
// to consider is the semi-direct product U.Lip.T2

�
// Ì Z < G.E� /.

6. The noncommutative Hopf fibration

Next we come to investigate the spin geometry of the toric noncommutative Hopf
fibration S3

�
! S2. In contrast with the example of the fibration T2

�
! S1 given

in the previous section, this ‘quantum principal bundle’ gives us an example of a
topologically non-trivial fibration of noncommutative manifolds.

This quantum fibration will be described at the topological level in terms of an
algebra inclusion C.S2/ ,! C.S3

�
/, as a noncommutative analogue of the familiar

classical Hopf fibration S3 ! S2 with structure group U.1/. The aim of this section
is to spell out the noncommutative spin geometry of this fibration in full detail, using
the language of Kasparov products in unbounded KK-theory.

6.1. The noncommutative three-sphere. We begin by describing the spin
geometry of the noncommutative three-sphere S3

�
, obtained as an isospectral

deformation of the Riemannian spin geometry of the classical sphere

S3 D f.v1; v2/ 2 C2 j v�1v1 C v
�
2v2 D 1g:

The latter has a natural parametrization in terms of polar coordinate functions

v1 D e
it1 cos�; v2 D e

it2 sin�;

where the toroidal coordinates 0 � t1; t2 � 2� together parametrize a two-torus and
0 � � � �=2 is the polar angle.
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Definition 6.1. The C �-algebra C.S3/ of continuous functions on S3 is the universal
commutative unital C �-algebra generated by the elements

V1 WD U1 cos�; V2 WD U2 sin�

for unitary elements U1; U2 and 0 � � � �=2 the polar angle.
The C �-algebra C.S3/ carries a natural action of the two-torus T2 by �-automor-

phisms, defined on generators by

˛ W T2 ! Aut.C.S3//; ˛t .Vj / WD e
itj Vj ; j D 1; 2; (6.1)

where we denote a general element of the torus T2 by t D .eit1 ; eit2/ for 0 � t1,
t2 � 2� .

Since the classical three-sphere S3 ' SU.2/ is in particular a group, the rank two
spinor bundle over S3 is trivializable. Thus we find that

H WD L2.S3;S/ ' L2.S3/˝ C2 (6.2)

is the Hilbert space of square-integrable sections of the spinor bundle S over S3.
Immediately we obtain a continuous representation � W C.S3/ ! B.H/ of C.S3/
onH acting as diagonal operators.

The Dirac operator D for the round metric on the classical sphere S3 is an
unbounded self-adjoint operator on the Hilbert spaceH. With 
2, 
3 the generators
of the Clifford algebra C1 and 
1 its Z2-grading, the Dirac operator has the explicit
form

D D iZ1 ˝ 

1
C iZ2 ˝ 


2
C iZ3 ˝ 


3
C
3

2
; (6.3)

where Zk , k D 1; 2; 3, denote the corresponding (right) fundamental vector fields
on the group manifold SU.2/ (cf. [24]).

Upon making an explicit choice of representatives for the gamma matrices, we
may write

D D

�
iZ1 Z2 C iZ3

�Z2 C iZ3 �iZ1

�
C
3

2
:

For later convenience we introduce the ‘laddering’ and ‘counting’ operators Z˙ WD
˙Z2 C iZ3 and T WD iZ1. These satisfy T � D T , Z�

˙
D Z� and the crucial

property
ŒT;Z˙� D ˙2Z˙; (6.4)

explaining their respective names. From now on we shall omit the tensor product
symbols from expressions such as eq. (6.3)

The spin lift of the torus action (6.1) on C.S3/ defines a unitary representation
U W T2 ! B.H/ generated by the pair of commuting derivations

H1 D �
1 � iZ1; H2 D ieZ1; (6.5)
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the latter coming from the left fundamental vector field eZ1 on the classical sphere
S3 ' SU.2/. Again we refer to [24] for further details (noting that the torus acting
on H is in fact a double cover of the torus acting on S3; we take the liberty of being
notationally sloppy about this point).

In terms of the resulting Z2-grading (5.3) of the algebra B.H/, one easily checks
that the generators V1; V2 of the C �-algebra C.S3/ have respective degrees .1; 1/ and
.1;�1/. It will be convenient to simplify our notation, often writing

a WD V1; b WD V2: (6.6)

This time taking � WD exp.�i�/ (due to the aforementioned issues regarding double
covers), the corresponding twisted operators are therefore given by the formulæ

L.a/ D
�
a 0

0 a

�
�H1 ; L.b/ D

�
b 0

0 b

�
��H1 :

Immediately one verifies the commutation relation L.a/L.b/ D �2L.b/L.a/, leading
to the following definition (cf. [34]).

Definition 6.2. With � WD exp.�i�/, the C �-algebra of continuous functions on the
noncommutative three-sphere S3

�
is the universal unital C �-algebra generated by the

elements

V1 D U1 cos�; V2 D U2 sin�;

where U1; U2 are unitary elements obeying the relation U1U2 D �2U2U1 and 0 �
� � �=2 is the polar angle. We denote this C �-algebra by C.S3

�
/.

Following the isospectral deformation procedure described in the previous section,
we take

H� D L
2.S3� ;S/ WD L

2.S3/˝ C2 (6.7)

for the Hilbert space of square-integrable sections of the spinor bundle S over the
noncommutative sphere S3

�
. Immediately we obtain a continuous representation

� W C.S3/! B.H� / of C.S3/ onH� acting as diagonal operators The formula (5.6)
continues to define a Dirac operator on the Hilbert spaceH� .

Proposition 6.3. The datum .C.S3
�
/;H� ;D/ constitutes a 3C-summable torus-

equivariant spectral triple over the C �-algebra C.S3
�
/.

Proof. By computing directly that �
1 � iZ1 commutes with D, as obviously
does eZ1, the result follows from checking that

U.t/DU.t/�1 D D; U.t/�.a/U.t/� D �.˛t .a//; (6.8)

for all a 2 C.S3
�
/ and all t 2 T2.
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The associated Lipschitz algebra is denoted Lip.S3
�
/. It consists of those elements

a 2 C.S3
�
/ for which the map t 7! ˛t .a/ is a Lipschitz function T2 ! C.S3

�
/.

Corollary 6.4. The datum .H� ;D/ constitutes a cycle in the set‰�1.Lip.S3� /;C/ of
odd unbounded KK-cycles.

Proof. This follows immediately from the fact that the datum .C.S3
�
/;H� ;D/

constitutes an odd spectral triple over C.S3
�
/ with Lipschitz algebra Lip.S3

�
/.

6.2. The classical two-sphere. This time we write T2 D T � T0, where

T WD f.eit ; eit / 2 T2 j t 2 Rg; T0 WD f.eit ; e�it / 2 T2 j t 2 Rg; (6.9)

and look for the fixed point subalgebra of C.S3
�
/ under the action of T induced by

eq. (6.1), which we continue to denote by ˛ W T ! Aut.C.S3
�
//. Starting with

the spectral geometry of S3
�
described by the above spectral triple, we compute its

T-invariant part and show that the resulting datum is unitarily equivalent to the
canonical spectral triple on the base space S2 of the Hopf fibration.
Proposition 6.5. The fixed-point subalgebra of C.S3

�
/ under the action of T induced

by (6.1) is isomorphic to the commutative C �-algebra C.S2/ of continuous functions
on the classical two-sphere.

Proof. It is clear by inspection that the fixed-point subalgebra of C.S3
�
/ under the

action of T is the universal unital C �-algebra generated by the complex element
W WD U �1 U2 sin� cos� and the real element x WD cos2 �, with 0 � � � �=2 the
polar angle. One readily checks that

W �W D WW � D x.1 � x/;

so this commutativeC �-algebra is nothing other than the algebraC.S2/ of continuous
functions on the classical two-sphere of radius 1=2.

Next we describe the geometry of the base space S2 of the Hopf fibration. Denote
by Lip.S3

�
/0 and L2.S3

�
;S/0 the T-invariant subspaces of Lip.S3

�
/ and L2.S3

�
;S/,

respectively. The space Lip.S3
�
/ decomposes into homogeneous spaces of weight

n 2 Z under the action of the operator T WD iZ1,

Ln WD fa 2 Lip.S3� / j T .a/ D nag:

Our choice of notation is deliberately suggestive of line bundles, whereLn is thought
of as the space of Lipschitz sections of the line bundle over S2 with first Chern
number n. This yields the familiar Peter–Weyl decomposition of Lip.S3

�
/ into weight

spaces
Lip.S3� / '

M
n2Z

Ln (6.10)

and from eq. (6.4) we find that Z˙ W Ln ! Ln˙2.
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In what follows, we shall say that each element x 2 Ln is homogeneous of degree
n 2 Z with respect to the decomposition (6.10).

The operator T is the infinitesimal generator of the T-action on Lip.S3
�
/ induced

by eq. (6.1) and so L0 is the algebra of invariant Lipschitz functions on S3
�
which

identifies with a dense �-subalgebra ofC.S2/. The product and involution in Lip.S3
�
/

therefore induce the identifications of (sections of) line bundles

Lm ˝L0 Ln ' LmCn; L�n ' L�n; (6.11)

as one should expect from the classical case. In particular, the generators a; b of
eq. (6.6) are elements of the L0-bimodule L1, whereas their conjugates a�; b� are
elements of L�1.

There are two combinations of these line bundles which are of particular interest,
respectively forming the Lipschitz sections of the spinor bundle S and the cotangent
bundle ƒ1 on S2, as the following result shows. These will prove useful in the final
section of the paper.
Lemma 6.6. There are explicit isomorphisms of L0-bimodules of Lipschitz sections

�`.S2; ƒ1/ ' L2 ˚ L�2; �`.S2;S/ ' L1 ˚ L�1:

Proof. By definition, the decomposition (6.10) is equivariant under the T-action
on Lip.S3

�
/, whence the L0-bimodules Ln are isomorphic as vector spaces to their

classical counterparts. The result now follows from the corresponding classical
isomorphisms.

More precisely, the latter result means that every one-form ! 2 �`.S2; ƒ1/ may
be written uniquely as

! D fC!C C f�!�; for some f˙ 2 L˙2; (6.12)

with !˙ the left-invariant one-forms on S3
�
which are dual to the vector fields Z˙.

The relationship between the vector bundles S andƒ1 is expressed through the usual
Clifford multiplication

c W �`.S2; ƒ1/! End�L0.�
`.S2;S//:

Recall our choice of representatives for the gamma matrices,


1 D

�
1 0

0 �1

�
; 
2 D

�
0 �i

i 0

�
; 
3 D

�
0 1

1 0

�
;

written in terms of the basis that decomposes �`.S2;S/ into a direct sum. Using
these, we introduce the matrices

�˙ WD 1
2
.˙i
2 C 
3/I �C D

�
0 1

0 0

�
; �� D

�
0 0

1 0

�
:
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The Clifford multiplication on S2 is then conveniently expressed in the form

c.!/.s/ D fCc.!C/s C f�c.!�/s D fC�Cs C f���s D .fCs�; f�sC/;

for each s D .sC; s�/ 2 L1 ˚ L�1. The grading on �`.S2;S/ determined by the
matrix 
1 makes the Clifford action into an odd representation of �`.S2; ƒ1/ on
�`.S2;S/.

From Proposition 6.3 we know that the Dirac operator D of eq. (6.3) is
T2-equivariant, whence it induces an unbounded self-adjoint operator D0 on
L2.S3;S/0. Since .
1/2 D 1, we may rewrite eq. (6.3) as

D D �.�
1 � iZ1/

1
C iZ2


2
C iZ3


3
C
1

2
:

The U.1/-invariant part L2.S3;S/0 is the closed subspace of the spinor space
L2.S3/˝ C2 that is annihilated by the operator H1 D �
1 � iZ1, the latter being
the spin lift of the infinitesimal U.1/ generator T D iZ1. We deduce that we may
write

D0 D Z2�
2
CZ3�

3
C
1

2
:

as an operator on the invariant spinorsL2.S3
�
;S/0. Since the matrices �˙ correspond

to the Clifford multiplication of the one-forms !˙, we deduce that the exterior
derivative on the two-sphere has the form

d W Lip.S2/! �1D0.C.S
2/;Lip.S2//; df D ŒD0; f � D ZC.f /!CCZ�.f /!�;

(6.13)
where Z˙ WD ˙Z2 C iZ3 are the vector fields appearing in the above form of the
Dirac operator and !˙ are the one-forms from eq. (6.12).
Proposition 6.7. The datum .C.S3

�
/0; L

2.S3
�
;S/0;D0/ constitutes a 2C-summable

spectral triple.

Proof. The only non-trivial condition to check concerns the summability. Since the
Dirac operator on S3

�
coincides with that of the classical sphere S3 acting on the

Hilbert space L2.S3;S/, we may as well carry out the computation there.
Recall [24] that the eigenvalues of the round Dirac operator on the three sphere

are labeled by integers as

�˙k D ˙.k C 3=2/; .k � 0/;

with multiplicities .k C 1/.k C 2/. Moreover, the �˙k-eigenspaces are precisely
the highest weight representations of Spin.4/ D SU.2/� SU.2/ with highest weight
.k C 1; k/ and .k; k C 1/ for the positive and negative eigenvalues, respectively.

As such, there is a unique eigenvector in each eigenspace that is invariant under
the action of one of the two copies of U.1/ in Spin.4/. It follows that, in passing
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from L2.S3
�
;S/ to L2.S3

�
;S/0, one simply removes part of the degeneracies of the

eigenvalues, so we have

L2.S3� ;S/0 '
M
n�0

V2nC1 ˚ V2nC1: (6.14)

where V2nC1 denotes the U.1/-invariant part of the highest weight .2n C 1/-
representation space for the relevant copy of SU.2/ in Spin.4/.

In this way, each of the spaces V2nC1 is an eigenspace for D0. Since D0
has eigenvalues 2n C 5=2 (in the first summand) and �.2n C 3=2/ (in the second
summand), each with multiplicity 2nC2, we conclude thatD0 is 2C-summable.

As a consequence we see that the base manifold for the Hopf fibration is two-
dimensional. Let us make the geometric structure of this manifold more explicit
by relating the operator D0 on L2.S3

�
;S/0 to the Dirac operator @= on the round

two-sphere S2.
Theorem 6.8. Under the isomorphism C.S3

�
/0 ' C.S2/, there is a unitary

equivalence between the spectral triples .C.S3
�
/0; L

2.S3
�
;S/0;D0 � 1

2
/ and�

C.S2/; L2.S2;S/; 2@=
�
:

In particular, there is a completely bounded isomorphism L0 Š Lip.S2/.

Proof. Recall that the spectrum of the Dirac operator @= on the round two-sphere S2 is
Z�f0gwithmultiplicities 2j`j for each ` 2 Z�f0g. The corresponding eigenfunctions
in L2.S2;S/ are the well known harmonic spinors on S2:

@= Y ˙jm D ˙.j C
1
2
/Y ˙jm; .j 2 NC 1

2
; m D �j;�j C 1; : : : ; j � 1; j /:

For each fixed half-integer j , the functions Y ˙jm for m D �j;�j C 1; : : : ; j � 1; j
span the highest weight representation space V2j for SU.2/. Then, upon writing
j D nC 1

2
we can identify this representation space (for ˙) with the spaces V2nC1

in the above decomposition (6.14) of L2.S3;S/0. Identifying the Hilbert spaces
L2.S3;S/ and L2.S3

�
;S/ yields the result.

Remark 6.9. Observe that the canonical spectral triple and, in particular, the Dirac
operator @= on S2 are written in terms of a sphere of radius one. On the other hand,
we have just seen that the torus-invariant part of the spectral triple on S3

�
has a

Dirac operator which is equivalent to 2@= C 1
2
. This is indeed consistent with the

aforementioned fact that the base space of the Hopf fibration is in fact a two-sphere
of radius 1=2. Since the constant operator 1=2 is not odd for the natural grading, the
invariant part is not an even spectral triple in the strict sense and we have to consider
D0 �

1
2
. Later on, this will be important to obtain the correct commutation relation

with the vertical KK-cycle.
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It now makes sense for us to write .C.S2/;H0;D0 �
1
2
/ unambiguously for the

spectral triple on the base space S2 of the noncommutative Hopf fibration.
Corollary 6.10. The datum .H0;D0 �

1
2
/ constitutes an element of the set of

unbounded even KK-cycles ‰0.Lip.S2/;C/.

Proof. The spinor bundle S on the two-sphere is trivializable and of rank two, giving
an obvious grading � W H0 ! H0 of the Hilbert space H0 D L2.S2;S/. The
result is now immediate from the fact that

�
C.S2/; L2.S2;S/; 2@=

�
is a spectral triple

which is even with respect to this grading and has Lipschitz algebra cb-isomorphic
to Lip.S2/.

6.3. The Lipschitz module of the Hopf fibration. The previous section described
the horizontal part of the geometry of the noncommutative Hopf fibration. Next we
come to describe its vertical geometry. To this end we use the completely positive
map

�0 W B.H/! B.H/; �0.a/ WD

Z
T
˛t .a/dt;

where ˛t is defined as in eq. (6.8). We saw in Proposition 6.3 that this restricts to
the C �-algebra valued map

�0 W C.S3� /! C.S2/; �0.a/ WD

Z
T
˛t .a/dt: (6.15)

However, yet more is true: just as it did for the noncommutative torus, the latter
induces a right Hermitian structure h�; �i defined by ha; bi WD �0.a

�b/ on Lip.S3
�
/

with values in the invariant subalgebra Lip.S2/.
The corresponding C �-norm is

kakE� WD kha; aik
1=2

C.S3
�
/
;

andwewish to identify the appropriate Lipschitz submodule E� ofE� . Writing .�/tr to
denote ordinary matrix transpose, we introduce for each n � 1 the partial isometries

‰n D .‰n;k/ WD
�
an c1a

n�1b � � � cn�1ab
n�1 bn

�tr
; (6.16)

‰�n D .‰�n;k/ WD
�
a�n c1a

�n�1b� � � � cn�1a
�b�n�1 b�n

�tr
; (6.17)

where a; b are the generators of theC �-algebraC.S3
�
/ and c2

k
WD
�
n
k

�
, so that each‰n

is normalized in the sense that

‰�n‰n D .jaj
2
C jbj2/jnj D 1: (6.18)

Note that, with the convention ‰0 D 1, the matrices ‰n are defined for all n 2 Z.
We write ‰n;k for the kth entry of the column vector ‰n, where k D 0; 1; : : : ; jnj.
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We will often employ the shorthand notation ŒD;‰n� to denote the column vector
with entries ŒD;‰n;k�, k D 0; 1; : : : ; jnj.

The following result describes the structure of the Lip.S2/-submodules Ln
appearing in the Peter–Weyl decomposition of Lip.S3

�
/. It will turn out to be a

key step in describing the Lipschitz cycle for the Hopf fibration.
Proposition 6.11. For each n 2 Z the operator pn WD ‰n‰

�
n is a projection in

MjnjC1.Lip.S2// and the map

L�n ! Lip.S2/jnjC1; x 7! .‰nx/;

implements a cb-isomorphism of finitely generated Lipschitz modules:

L�n ' pnLip.S2/jnjC1:

Proof. Since the generators a and b are in Lip.S3
�
/, it is immediate that ŒD;‰n� is

bounded. For x 2 L�n we have

�D.‰n/�D.x/ D �D.‰nx/ D �D0.‰nx/;

since .‰nx/ is a column vector consisting of elements of degree zero, whence

ŒD;‰nx� D ŒT CD0; ‰nx� D ŒD0; ‰nx�:

Hence we have

�D0.‰nx/
��D0.‰nx/ � k�D.‰n/k

2�D.x/
��D.x/;

showing that ‰n is completely bounded as a map L�n ! pnLip.S2/jnjC1. Its
inverse ‰�n is completely bounded since, for each v 2 pnLip.S2/jnjC1 we have

�D.‰
�
nv/ D �D.‰

�
n/�D.v/ D �D.‰

�
n/�D0.v/;

which holds because v is a column vector made up of elements of degree zero. Hence

�D.‰
�
nv/
��D.‰

�
nv/ � k�D.‰n/k

2�D0.v/
��D0.v/;

implying complete boundedness.

Corollary 6.12. There is a C �-module isomorphism

E� Š
M
n2Z

pnC.S2/jnjC1 � HC.S2/

which, on the dense subspace C.S3
�
/ � E� , is defined by x 7! .�0.‰nx//n2Z.

Proof. This follows by taking C �-completions of the Ln in the previous proposition
and observing that E� is the C �-module direct sum of these completions.
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We define the Lipschitz module E� to be the direct sum of the Lipschitz
modules Ln in the sense of Proposition 2.13. By definition, E� is the completion of
the dense subalgebra of finite sums of homogeneous elements x 2 Lip.S3

�
/ in the

norm

kxk2E� WD k
X
n2Z

�D0.�.‰nx//
��D0.�.‰nx//k D k

X
n2Z

�D0.‰nx�n/
��D0.‰nx�n/k

(6.19)
for x 2 E� , where we denote by x�n 2 L�n the component of x of homogeneous
degree �n. We will now analyze this norm in order to prove that multiplication in
Lip.S3

�
/ induces a cb-homomorphism Lip.S3

�
/! End�Lip.S2/.E� /.

Lemma 6.13. The derivatives of the generators a; b of the C �-algebra C.S3
�
/ with

respect to the operatorD0 are

ŒD0; �� .a/� D

�
0 0

2b� 0

�
�H1 ; ŒD0; �� .b/� D

�
0 0

�2a� 0

�
��H1 :

In particular they satisfy

�� .a/ŒD0; �� .a/� D ŒD0; �� .a/��� .a/; �� .b/ŒD0; �� .b/� D ŒD0; �� .b/��� .b/;

and the elements

�� .b
�/ŒD0; �� .b/�; �� .a

�/ŒD0; �� .a/�;

belong to the commutant of �� .C.S3� // in B.H� /.

Proof. For the generators of the classical algebra C.S3/ one computes rather easily
that

ŒD0; �.a/� D

�
0 0

2b� 0

�
; ŒD0; �.b/� D

�
0 0

�2a� 0

�
:

The first claim follows directly from the fact that L.ŒD0; �.a/�/ D ŒD0;L.�.a//� and
similarly so for the generator b. It follows immediately that the elements

�� .b
�/ŒD0; �� .b/�; �� .a

�/ŒD0; �� .a/�;

have bidegree .0; 0/ and therefore commute with all of �� .C.S3� //:

Since no confusion will arise, from now on we shall omit the subscript � from the
representation �� W C.S3� /! B.H� /. From the latter result it follows that, for each
k D 0; 1; : : : ; jnj, the commutator ŒD0; �.‰n;k/� is a lower triangular matrix when n
is positive and upper triangular when n is negative. For positive n we have

ŒD0; �.‰n;k/�

D

�
n

k

� 1
2 �
.n � k/ŒD0; �.a/��.a

n�k�1bk/C k�.an�kbk�1/ŒD0; �.b/�
�
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for each k D 0; 1; : : : ; n, with a similar formula for negative n. For positive n, each
component of the matrix ŒD; �.‰n/��ŒD; �.‰n/� is non-zero only in the upper left
corner, whereas for negative n it is non-zero only in the lower right corner.

From now on we assume n > 1, as the calculations are similar for n < �1. The
cases n D �1; 0; 1 are trivial and can be done by hand. A straightforward calculation
using the above lemma shows that the only non-zero entry of the kth component of
ŒD0; �.‰n/�

�ŒD0; �.‰n/� is equal to

4

nX
kD0

�
n

k

��
.n � k/2jaj2.n�k�1/jbj2.kC1/

C k2jaj2.n�kC1/jbj2.k�1/ � 2k.n � k/jaj2.n�k/jbj2k
�

D 4

nX
kD0

�
n

k

���
.n � k/C ..n � k/2 � .n � k//

�
jaj2.n�k�1/jbj2.kC1/

C
�
k C .k2 � k/

�
jaj2.n�kC1/jbj2.k�1/ � 2k.n � k/jaj2.n�k/jbj2k

�
:

(6.20)

Lemma 6.14. For n; k � 1, the binomial coefficients
�
n

k

�
satisfy the identities

k

�
n

k

�
D n

�
n � 1

k � 1

�
; .n � k/

�
n

k

�
D n

�
n � 1

k

�
:

Proof. These are verified by direct computation. For the first identity one uses the
fact that . nk / D n

k

�
n�1
k�1

�
. For the second claim one combines this with the fact that

. nk / D .
n
n�k /.

Corollary 6.15. For n � 2, we have

(i) for 2 � k � n : k.k � 1/
�
n

k

�
D n.n � 1/

�
n � 2

k � 2

�
I

(ii) for 1 � k � n � 1 : k.n � k/
�
n

k

�
D n.n � 1/

�
n � 2

k � 1

�
I

(iii) for 0 � k � n � 2 : .n � k/.n � k � 1/
�
n

k

�
D n.n � 1/

�
n � 2

k

�
.

Proof. These identities follow from applying the previous lemma twice.
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We will now split the expression (6.20) into four parts:

4.njaj2jbj2.n�1/ C njaj2.n�1/jbj2/I (6.21)

4

n�1X
kD1

n

�
n � 1

k

�
jaj2.n�k�1/jbj2.kC1/ C n

�
n � 1

k � 1

�
jaj2.n�kC1/jbj2.k�1/I (6.22)

4

nX
kD0

�
n

k

��
..n � k/2 � .n � k//jaj2.n�k�1/jbj2.kC1/

C .k2 � k/jaj2.n�kC1/jbj2.k�1/
�
I (6.23)

4

n�1X
kD1

�2k.n � k/

�
n

k

�
jaj2.n�k/jbj2k : (6.24)

By applying Lemma 6.14 to the expression (6.22), it is straightforward to check that
(6.21) and (6.22) precisely cancel some of the terms in eq. (6.23) and so together
these four terms add up to give the expression (6.20). We claim that equations (6.21)
and (6.22) add up to 4n, whereas (6.23) and (6.24) add up to zero.
Lemma 6.16. Equations (6.21) and (6.22) add up to 4n.

Proof. Omitting the constant 4, we observe that

njaj2jbj2.n�1/ C

n�1X
kD1

n

�
n � 1

k � 1

�
jaj2.n�kC1/jbj2.k�1/

D njaj2
nX
kD1

�
n � 1

k � 1

�
jaj2.n�k/jbj2.k�1/I

njaj2.n�1/jbj2 C

n�1X
kD1

n

�
n � 1

k

�
jaj2.n�k�1/jbj2.kC1/

D njbj2
nX
kD1

�
n � 1

k � 1

�
jaj2.n�k/jbj2.k�1/:

Adding these equations together yields

n.jaj2 C jbj2/

nX
kD1

�
n � 1

k � 1

�
jaj2.n�k/jbj2.k�1/ D n.jaj2 C jbj2/n D n;

as was required.
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Lemma 6.17. Equations (6.23) and (6.24) add up to zero.

Proof. Again omitting the constant 4, eq. (6.24) equals

n�1X
kD1

�2k.n � k/

�
n

k

�
jaj2.n�k/jbj2k D

n�1X
kD1

�2n.n � 1/

�
n � 2

k � 1

�
jaj2.n�k/jbj2k;

whereas (6.23) may be rewritten using Corollary 6.15 as

n.n�1/

 
n�2X
kD0

�
n � 2

k

�
jaj2.n�k�1/jbj2.kC1/ C

nX
kD2

�
n � 2

k � 2

�
jaj2.n�kC1/jbj2.k�1/

!
:

(6.25)
Now

nX
kD2

�
n � 2

k � 2

�
jaj2.n�kC1/jbj2.k�1/ D

n�1X
kD1

�
n � 2

k � 1

�
jaj2.n�k/jbj2k;

and
n�2X
kD0

�
n � 2

k

�
jaj2.n�k�1/jbj2.kC1/ D

n�1X
kD1

�
n � 2

k � 1

�
jaj2.n�k/jbj2k;

so (6.25) and (6.24) cancel one another.

Proposition 6.18. We have the following operator identities:

ŒD0; �.‰n/�
�ŒD0; �.‰n/� D

�
4n 0

0 0

�
.n > 0/I

ŒD0; �.‰n/�
�ŒD0; �.‰n/� D

�
0 0

0 4jnj

�
.n < 0/:

Proof. For n D 1 one checks directly that ŒD0; �.‰n/��ŒD0; �.‰n/� D diag.4; 0/.
For n � 2 the required equality follows from eq. (6.20) as a direct consequence of
Lemmata 6.16 and 6.17. The case where n < 0 is similar.

Lemma 6.19. We have �.‰�n/ŒD0; �.‰n/� D 0.

Proof. From Lemma 6.13 we already know that the matrix �.‰�n/ŒD0; �.‰n/� is
lower triangular. Using Lemmata 6.14 and 6.13 we directly compute the lower left
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entry of this matrix to be

�
�.‰�n/ŒD0; �.‰n/�

�
21
D 2a�b�

nX
kD1

k

�
n

k

�
jaj2.k�1/jbj2.n�k/

�

n�1X
kD0

.n � k/

�
n

k

�
jaj2kjbj2.n�k�1/

D 2a�b�
n�1X
kD0

n

�
n � 1

k

�
jaj2kjbj2.n�1�k/

�

n�1X
kD0

n

�
n � 1

k

�
jaj2kjbj2.n�k�1/

D 2n.jaj2 C jbj2/n�1a�b� � 2n.jaj2 C jbj2/n�1a�b�

D 0;

which is the result we were looking for.

Lemma 6.20. The maps Lip.S3
�
/! M2.B.H� // defined by

�D.a/ 7! �D0.a/; �D.a/ 7! �T .a/;

are completely bounded.

Proof. This is proved in the same spirit as Lemma 5.6. Consider the unitary
operator u interchanging the two copies of L2.S3

�
/ inH� , together with the unitary v

from eq. (2.4). We have the identities

uDu� D

�
�iZ1 �Z2 C iZ3

Z2 C iZ3 iZ1

�
C
3

2
;

vDv� D

�
�iZ1 Z2 � iZ3

�Z2 � iZ3 iZ1

�
C
3

2
;

and clearly u�.a/u� D v�.a/v� D �.a/. Therefore

2�D.a/C u�D.a/u
�
C v�D.a/v

�
D 4� 1

2D0
.a/:

Now since
�D0.a/ D g� 1

2D0
.a/g�1; with g D

�
1 0

0 2

�
;

we can write

k�D0.a/k D kg� 1
2D0

.a/g�1k � kgkkg�1kk�D.a/k D 2k�D.a/k;



196 S. Brain, B. Mesland and W. D. van Suijlekom

a fact which clearly extends to matrices. Using the same unitaries, we have

uvDv�u� D

�
iZ1 �Z2 � iZ3

Z2 � iZ3 �iZ1

�
C
3

2
;

from which it follows that

�D.a/C uv�D.a/v
�u� D 2�T .a/;

so that k�T .a/k � k�D.a/k as desired.

Proposition 6.21. For any homogeneous element x 2 Lip.S3
�
/�n we have

�D0.‰nx/
��D0.‰nx/ D

�
.4jnj C 1/x�x C ŒD0; x�

�ŒD0; x� ŒD0; x�
�x

x�ŒD0; x� x�x

�
:

Proof. From Lemma 6.20 it follows that ŒD0; x� is bounded whenever ŒD; x� is
bounded. By Lemma 6.19 we have

ŒD0; ‰nx�
�ŒD0; ‰nx� D x

�ŒD0; ‰n�ŒD0; ‰n�x C x
�ŒD0; ‰n�

�‰nŒD0; x�

C ŒD0; x�‰
�
n ŒD0; ‰n�x C ŒD0; x�

�ŒD0; x�

D x�ŒD0; ‰n�ŒD0; ‰n�x C ŒD0; x�
�ŒD0; x�

and similarly that

x�‰�n ŒD0; ‰nx� D x
�‰�n ŒD0; ‰n�x C x

�‰�n‰nŒD0; x� D x
�ŒD0; x�:

Therefore

�D0.‰nx/
��D0.‰nx/ D

�
x�xCx�ŒD0;‰n�

�ŒD0;‰n�xCŒD0;x�
�ŒD0;x� ŒD0;x�

�x

x�ŒD0;x� x�x

�
;

from which the desired equality follows by using Proposition 6.18.

Corollary 6.22. The norm (6.19) on the Lipschitz module E� is cb-isometric to the
norm

kxk2 D k�0.�D0.x/
��D0.x//C

X
n2Z

4jnjx�nxnk; (6.26)

where �0 W B.H� ˚H� /! B.H� ˚H� / is the map (6.15). Consequently, E� is the
completion of Lip.S3

�
/ in this norm.

Proof. This is now an easy computation using Proposition 6.21, extended to linear
combinations of homogeneous elements in E� . To see that this norm is defined on
all of Lip.S3

�
/, write

p D

�
1 0

0 0

�
;
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and estimateX
n2Z

4jnjx�nxn �
X
n2Z

4n2x�nxn � �0.p�T .2x/
��T .2x/p/ � k�T .2x/k

2�0.p/

D 4k�T .x/k
2:

Then apply Lemma 6.20 to obtain that

kxk2 D k�0.�D0.x/
��D0.x//C

X
n2Z

4jnjx�nxnk � 8k�D.x/k
2;

so E� is a completion of Lip.S3
�
/.

6.4. TheHopf fibration as aLipschitz cycle. Thework of the previous two sections
now places us in a position to describe the Hopf fibration as defining an odd Lipschitz
cycle in ‰`�1.Lip.S3� /;Lip.S

2//. First, we describe E� as a left Lip.S3� /-module.
We first need a lemma about circle actions onC �-algebras. LetA be aC �-algebra

with a circle action, F � A its fixed point algebra and �0 W A ! F the associated
conditional expectation. The C �-module E is defined by completing A in the norm
associated to theF -valued inner product ha; bi WD �0.a�b/. Multiplication induces a
�-homomorphismA! End�F .E/. The infinitesimal generator T of the circle action
is then a self-adjoint regular operator with spectrum Z � R and the commutators
ŒT; a� are bounded for all a in the dense subalgebra generated by homogeneous
elements.
Lemma 6.23. Let a 2 A be such that ŒT; a� 2 End�F .E/ and let 0 < ˛ < 1. There
is a positive constant C˛ independent of a such that

kŒjT j˛; a�kcb � C˛kŒT; a�kcb:

Proof. The proof relies on the fact that T has discrete spectrum, so the function
x 7! jxj˛ can be smoothened around 0 to a function g, without affecting the resulting
operator g.T / D jT j˛ . The presence of the spectral projectionspn W E ! An allows
one to proceed as in [22, Lem. 10.15, 10.17] to show that

kŒjT j˛; a�k �
1

2�

Z
R
jt Og.t/jdtkŒT; a�k;

where Og denotes the Fourier transform of g. By applying this reasoning to the finite
direct sums E˚n, one obtains the same bound for matrices aij for which ŒT; aij � is
bounded. Since g is smooth, we have t Og.t/ D bg0.t/, so it remains to show that bg0 is
integrable, which is done as in [22, Lem. 10.17].

Corollary 6.24. For any 0 < ˛ < 1 the map �T .a/ 7! �jT j˛ .a/ is completely
bounded.
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Proof. This now follows immediately by estimating

k�jT j˛ .a/k � kak C kŒjT j
˛; a�k � kak C C˛kŒT; a�k � .C˛ C 1/k�T .a/k

for all a 2 A such that ŒT; a� 2 End�F .E/.

Theorem 6.25. The norm (6.19) on E� is equivalent to the norm given by

kxk2

�0;kT j
1
2

D k�0
�
�D0.x/

��D0.x/
�
C h

�
x

2jT j
1
2x

�
;

�
x

2jT j
1
2x

�
ik:

Consequently, the module E� is cb-isomorphic to the completion of Lip.S3
�
/ in this

norm. Multiplication in Lip.S3
�
/ induces a completely bounded �-homomorphism

Lip.S3
�
/! End�Lip.S2/.E� /.

Proof. In Corollary 6.22 we showed that the norm (6.19) is cb-isometric to the
norm (6.26), and that this norm is defined on all of Lip.S3

�
/. By definition of jT j 12

we see that

h

�
x

2jT j
1
2x

�
;

�
x

2jT j
1
2x

�
i D

X
n2Z

.4jnj C 1/x�nxn;

So the above norm differs from (6.26) by a term

�0.x
�x/ D

X
n2Z

x�nxn;

and since �
x�x 0

0 0

�
� �D0.x/

��D0.x/

we have the estimate
kxk2 � kxk2

�0;jT j
1
2

� 2kxk2:

Furthermore, because �
jT j

1
2
is a homomorphism, for each b 2 Lip.S3

�
/ and x 2 E�

the estimate

h

�
bx

jT j
1
2 bx

�
;

�
bx

jT j
1
2 bx

�
i D h�

jT j
1
2
.b/

�
x

jT j
1
2x

�
; �
jT j

1
2
.b/

�
x

jT j
1
2x

�
i

� k�
jT j

1
2
.b/k2h

�
x

jT j
1
2x

�
;

�
x

jT j
1
2x

�
i

� .C 1
2
C 1/k�T .b/k

2
h

�
x

jT j
1
2x

�
;

�
x

jT j
1
2x

�
i

� .C 1
2
C 1/k�D.b/k

2
h

�
x

jT j
1
2x

�
;

�
x

jT j
1
2x

�
i;

holds by Lemma 6.20 and Corollary 6.24.
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Since �D0 is also a homomorphism, the estimate

�D0.bx/
��D0.bx/ � k�D0.b/k

2�D0.x/
��D0.x/

is immediate. For the norm k � k
�0;jT j

1
2
; we can now estimate that

kbxk2

�0;jT j
1
2

� .3CC 1
2
/k�D.b/k

2
k�0

�
�D0.x/

��D0.x/
�
Ch

�
x

jT j
1
2x

�
;

�
x

jT j
1
2x

�
ik;

which proves that multiplication induces a cb-homomorphism.

Proposition 6.26. The map T W Dom.T / ! E� defined on homogeneous elements
xn 2 Ln by

T W Dom.T /! E� ; xn 7! nxn;

is a self-adjoint regular linear operator with compact resolvent on the Lipschitz
module E� . The map a 7! ŒT; a� 2 End�

C.S2/.E� / is a cb-derivation Lip.S3
�
/ !

End�
C.S2/.E� /.

Proof. It is immediate that the operators T ˙ i have dense range, since they map
the algebraic direct sum

L
n2Z Ln onto itself. Using the norm (6.19), we see that

the operators .T ˙ i/�1 are contractive for this norm. By Lemma 2.18, the closure
of T is self-adjoint and regular in E� . The resolvents .T ˙ i/�1 are elements of
KLip.S2/.E� /, since they are the uniform limit of the operators

rk WD

kX
nD�k

.n˙ i/�1pn

with pn the projections x 7! ‰n�0.‰
�
nx/. Indeed, these are contractive as operators

in E� (as can be seen directly from the norm (6.19)) and thus for m > k we find

krk � rmkE� D k
X

k<jnj�m

.n˙ i/�1pnkE� �
1

p
1C k2

! 0

as k !1. The statement that the map a 7! ŒT; a� is a cb-derivation from Lip.S3
�
/

into the C �-algebra End�
C.S2/.E/ follows directly from Lemma 6.20 and the fact that

C �-algebra representations are completely contractive.

As with the noncommutative torus, the C �-module version of this proposition is
an example of a circle module as described in [11]. The Lipschitz structure we have
constructed allows us to study connections on this circle module.

Let us denote by rn W Ln ! Ln ˝Lip.S2/ �
1
D0
.S2/ the canonical Grassmann

connection on each of the projective modules Ln defined by rn WD pn ı d, where
pn D ‰n‰

�
n is the projection which defines the modules Ln for each n 2 Z.
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Proposition 6.27. Under the isomorphism E� Š
L
n2Z Ln, the linear map

r W E� ! E� e̋Lip.S2/�
1
D0
.C.S2/;Lip.S2// r WD ˚n2Zrn;

yields a well defined connection on the right Lipschitz Lip.S2/-module E� . It has the
property that Œr; T � D 0.

Proof. It is clear that the maps rn W Ln ! Ln ˝Lip.S2/ �
1
D0
.C.S2/;Lip.S2// make

sense as connections on the line bundlesLn for eachn 2 Z. Each of these connections
is completely contractive for the Lipschitz topology onLn and so the algebraic direct
sum ˚nrn extends to a well defined completely bounded map r on the Lipschitz
direct sum as claimed. The property that Œr; T � D 0 is immediate, since it evidently
holds on each Ln and the algebraic direct sum is a core for the operator T .

Recall that all along it was our goal to identify a Lipschitz unbounded KK-
cycle which captures the vertical part of the geometry of the noncommutative Hopf
fibration. Following the accomplishments to this point, finally we arrive at the desired
theorem.
Theorem 6.28. The datum .E� ; T;r/ is a Lipschitz cycle in‰`�1.Lip.S3� /;Lip.S

2//.

Proof. The above discussion shows that all of the conditions prescribed in
Definition 2.30 are indeed satisfied.

6.5. The noncommutative three-sphere as a fibration over the two-sphere. Just
as we did for the noncommutative two-torus, we are now ready to spell out the
factorization of the spin geometry of the noncommutative sphere S3

�
over a classical

base space. We shall present this factorization as a product in unbounded KK-theory
of the canonical spectral triple over the two-sphere S2 with the Lipschitz cycle
.E� ; T;r/ constructed in the previous section. That is to say, we claim that

.H� ;D �
1
2
/ ' .E� ; T;r/˝Lip.S2/ .H0;D0 �

1
2
/ (6.27)

as unbounded Lipschitz cycles in ‰�1.Lip.S3� /;C/, ‰
`
�1.Lip.S3/;Lip.S2// and in

‰0.Lip.S2/;C/, respectively.
We begin with the Hilbert modules appearing in (6.27). Let us write .�; �/S2 for

the inner product on the Hilbert space L2.S2/ and consider the tensor product of
Hilbert modules E� e̋C.S2/L2.S2/, which we equip with the inner product�

e ˝ h; e0 ˝ h0
�
WD .h; he; e0ih0/S2 (6.28)

for each e ˝ h; e0 ˝ h0 2 E� ˝C.S2/ L2.S2/. Recall also our notation H0 WD

L2.S2/˝ C2.
Proposition 6.29. TheHilbert spaceH� WD L

2.S3
�
/˝C2 is isometrically isomorphic

to the completion E� e̋C.S2/H0 of the tensor product E� ˝C.S2/ H0 with respect to
the inner product (6.28).
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Proof. This follows immediately from the identification of Hilbert spaces in eq. (6.7)
and the corresponding isomorphism in the classical case.

In order to form the product of an odd Lipschitz cycle with an even KK-cycle,
we follow Example 2.38. Proposition 6.29 establishes the necessary isomorphism at
the level of Hilbert spaces. Thus we turn to the connection prescribed in the datum
.E� ; T;r/.

Let us introduce for each n 2 Z the shorthand notation En WD pnLip.S2/jnjC1.
Recall from Proposition 6.11 that we have for each n 2 Z a cb-isomorphism

‰n W L�n ! En; f 7! .fk/ WD .‰n;kf /; (6.29)

where k D 0; 1; : : : n. The Grassmann connections

rn W Ln ! Lne̋Lip.S2/�
1
D0
.Lip.S2//

are in fact defined via these isomorphisms to be

rn W En ! Ene̋Lip.S2/�
1
D0
.Lip.S2//; rn WD pn ı d;

where d W Lip.S2/ ! �1D0.Lip.S
2// is the exterior derivative on the classical two-

sphere. On the other hand, just as we did for the exterior derivative in eq. (6.13), we
may express each of the Grassmann connections in terms of the vector fields Z˙ on
the total space S3

�
of the Hopf fibration, as the following result now shows.

Proposition 6.30. Under the module decomposition E� Š
L
n2Z Ln, the connection

r WD ˚nrn of Proposition 6.27 coincides with the linear map

rZ W E� ! E� e̋Lip.S2/�
1
D0
.C.S2/;Lip.S2//; rZ WD iZ2
2 C iZ3
3:

Proof. The analysis of the previous sections means that we are now free to check
everything purely at the algebraic level, safe in the knowledge that our computations
will extend to the level of Lipschitz modules. One readily verifies the equality

iZ2

2
C iZ3


3
D ZC�C CZ���

(in fact we already saw this in obtaining the expression (6.13)). Since the matrices �˙
represent the Clifford multiplication corresponding to the one-forms !˙ of eq. (6.12)
we therefore need to verify that, under each of the isomorphisms (6.29), we have a
commutative diagram

Ln
rZ - Lne̋L0.L2 ˚ L�2/

En

‰n

?

rn

- Ene̋Lip.S2/�
1
D0
.Lip.S2//;

‰n ˝ �

?
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where
rZ W Ln ! LnC2 ˚ Ln�2 ' Lne̋L0.L2 ˚ L�2/

and
� W .L2 ˚ L�2/! �1D0.Lip.S

2//

is the map induced by the identifications of modules in Lemma 6.6. To this end, we
compute that

.pnd.‰nf //k D pn;kld.‰n;lf /
D pn;kl‰n;l .ZC.f /!C CZ�.f /!�/C‰n;k‰

�
n;l ŒD0; ‰n;l �f

D ‰n;k .ZC.f /!C CZ�.f /!�/

D .‰n.ZC.f /!C CZ�.f /!�//k

where we have written pn WD .pn;kl/ for k; l D 0; 1; : : : ; n. The third equality
follows by using Proposition 6.19 to deduce the vanishing of the appropriate terms,
together with the identity ‰�n‰n D 1.

Theorem 6.31. As an element of ‰�1.Lip.S3� /;C/, the Riemannian spin geometry
of S3

�
factorizes as a Kasparov product of Lipschitz cycles, namely

.H� ;D �
1
2
/ ' .E� ; T;r/˝Lip.S2/ .H0;D0 �

1
2
/;

where .E� ; T;r/ 2 ‰`�1.Lip.S3� /;Lip.S
2// and .H0;D0 �

1
2
/ 2 ‰0.Lip.S2/;C/.

Proof. We have already established the necessary isomorphism of Hilbert spaces.
The operator in the Kasparov product on the Hilbert module E� e̋C.S2/H0 is given
by the expression (2.14), that is to say

f ˝ s 7! Tf ˝ �0s C .rf /s C f ˝D0s; for each f 2 E� ; s 2 H0;

where �0 W H0 ! H0 is the grading on the spinors over the two-sphere. We shall
check that this product operator agrees with the Dirac operator D on the three-
sphere S3

�
. To this end, let us consider the operator

1˝r D0 W Ln ˝L0 .L1 ˚ L�1/! Ln ˝L0 .L1 ˚ L�1/

The matrices �˙ appearing in r act on the Hilbert space H0, as does the Dirac
operatorD0. Upon using eq. (6.11) we deduce from the fact that both r andD0 can
be written in terms of Z˙ and �˙ that

1˝r .D0 �
1
2
/ ' iZ2


2
C iZ3


3;

through the identification Ln ˝L0 .L1 ˚ L�1/ ' LnC1 ˚ Ln�1. Next, we consider
how T ˝ �0 D iZ1


1 behaves under the latter identification of line bundles.
Correcting for the shift in n, we find that

T ˝ �0 ' .T C �/� D .iZ1 C 

1/.
1/ D iZ1


1
C 1:
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As a consequence we find that

T ˝ � C 1˝r .D0 �
1
2
/ ' iZ1


1
C iZ2


2
C iZ3


3
C 1:

This is the required explicit factorization of the Dirac operator on S3
�
in terms of a

vertical part T and a horizontal partD0, linked via the connection r.

In conclusion, we have cast the gauge theory described by the spin geometry
of the noncommutative three-sphere S3

�
into a geometrical setting, consisting of a

Hilbert bundle over S2 equipped with a connection and a fibrewise endomorphism.
Indeed, the C �-module E� is the space of continuous sections of some Hilbert

bundle V ! S2 whose fibres are essentially copies of the Hilbert space L2.S1/.
According to Definition 3.7, the internal gauge group U.Lip.S3

�
// of the fibration is

a normal subgroup of the gauge group G.E� /, acting fibrewise upon the Hilbert
bundle V . The internal gauge fields in �1D.Lip.S

3
�
// decompose according to

Lemma 3.12: the scalar fields Cs act vertically upon the Hilbert bundle V , whilst the
gauge fields Cg are given by connections thereon.

As in the case of the noncommutative two-torus considered in the previous section,
in passing from U.Lip.S3

�
// to G.E� / we find that the Pontrjagin dual group Z of T

acts vertically on the bundle V . In other words, we can consider the semi-direct
product U.Lip.S3

�
// Ì Z � G.E� / as a natural extension of U.Lip.S3

�
//. We leave

the potential application of our notion of gauge theories — after extending it to
four-dimensional examples such as S4

�
— to instanton moduli spaces [7–9] for future

work.
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