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1. Introduction

Below k is an algebraically closed field. Artin–Schelter regular algebras were
introduced in [1] and subsequently classified in dimension three [1,3,20]. Throughout
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wewill only consider three-dimensional AS-regular algebras generated in degree one.
For such algebras A there are two possibilities:

(1) A is generated by three elements satisfying three quadratic relations (the
“quadratic case”). In this case A has Hilbert series 1=.1 � t /3, i.e. the same
Hilbert series as a polynomial ring in three variables.

(2) A is generated by two elements satisfying two cubic relations (the “cubic
case”). In this case A has Hilbert series 1=.1 � t /2.1 � t2/.

For use below we define .r; s/ to be respectively the number of generators of A and
the degrees of the relations. Thus .r; s/ D .3; 2/ or .2; 3/ depending on whether A is
quadratic or cubic.

IfB D kCB1CB2C� � � is anN-graded ring satisfying suitable conditions then
we can associate a non-commutative scheme ProjB to it whose category of quasi-
coherent sheaves is defined to be QGr.B/ def

D Gr.B/=Tors.B/ where Gr.B/ is the
category of right B-modules and Tors.B/ is the category of graded right B-modules
that have locally right bounded grading [5]. WhenA is a quadratic three-dimensional
AS-regular algebra then ProjA may be thought off as a non-commutative plane.
Similarly if A is cubic then ProjA may be viewed as a non-commutative quadric.
The rationale for this is explained in [23].

The classification of three-dimensional AS-regular algebras A is in terms of
suitable geometric data .Y; �;L/ where Y is a k-scheme, � is automorphism of Y
and L is a line bundle on Y .

More precisely: in the quadratic case Y is either P2 (the “linear case”) or Y is
embedded as a divisor of degree 3 in P2 (the “elliptic case”) and L is the restriction
ofOP2.1/. In the cubic case Y is either P1�P1 (the “linear case”) or Y is embedded
as a divisor of bidegree (2,2) in P1�P1 (the “elliptic case”) andL is the restriction of
OP1�P1.1; 0/. The geometric data must also satisfy an additional numerical condition
which we will not discuss here.

Starting from the geometric data .Y; �;L/ we construct a so-called “twisted
homogeneous coordinate ring” B D B.Y; �;L/. It is an N-graded ring such that

Bn D �.Y;L˝ L� ˝ � � � ˝ L�n�1

/ (1.1)

with product a � b D a ˝ b�
n for jaj D n. The corresponding AS-regular algebra

A D A.Y; �;L/ is obtained fromB by dropping all relations in degree> s. By virtue
of the construction there is a graded surjective k-algebra homomorphism A ! B

and this is an isomorphism in the linear case and it has a kernel generated by a normal
element g in degree s C 1 in the elliptic case.

According to [4] there is an equivalence of categories QGr.B/ Š Qch.Y /. In our
current language this can be written as

ProjB Š Y:
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So the non-commutative scheme X D ProjA contains the commutative scheme Y
(via the surjection A! B). In the linear case X D Y , and in the quadratic case Y
is a so-called “divisor” in X [22, Section 3.6].

If Y is a smooth elliptic curve, � is a translation such that � sC1 ¤ id and L is a
line bundle of degree r then we call the corresponding AS-regular algebra a Sklyanin
algebra. In that case the normal element g is actually central. Since any two line
bundles of the same degree on a smooth elliptic curve are related by a translation,
which necessarily commutates with � , it is easy to see that the resulting Sklyanin
algebra depends up to isomorphism only on .E; �/. So we sometimes drop L from
the notation. Furthermore ProjA does not change if we compose � with a translation
by a point of order s C 1 (see for example [2, §8]). In other words ProjA depends
only on � sC1.

A three-dimensionalAS-regular algebraA is a noetherian domain and in particular
it has a graded field of fractions Frac.A/ in whichwe invert all non-zero homogeneous
elements ofA. The part of degree zero Frac0.A/ of Frac.A/will be called the function
field of ProjA.

In this note we prove the following result announced in [19]. A similar result by
Rogalski–Sierra–Stafford was announced in [17].

Theorem 1.1. If A, A0 are a cubic and a quadratic Sklyanin algebra respectively
with geometric data .Y; �/ and .Y;  / such that �3 D  4. Then ProjA and ProjA0
have the same function field.

The proof of this result is geometric. In the commutative case the passage from
P1�P1 to P2 goes by blowing up a point p and then contracting the strict transforms
of the two rulings through this point. One may short circuit this construction by
considering a suitable linear system on P1 � P1 with base point in p. It is this
construction that we generalize first. To do this we have to step outside the category
of graded algebras and work in the slightly larger category of Z-algebras (additive
categories whose objects are indexed by Z, see §2 below).

So what we will actually do is the following: letA be a cubic Sklyanin algebra and
let A.2/ be its 2-Veronese with the corresponding Z-algebra being denoted by LA.2/.
Associated to a point p 2 Y we will construct a sub-Z-algebra D of LA.2/ which
is 3-dimensional quadratic Artin–Schelter Z-algebra in the sense of [23]. Again
invoking [23] this Z-algebra must correspond to a 3-dimensional quadratic Artin–
Schelter graded algebra A0. It will turn out that the geometric data of A and A0 are
related as in Theorem 1.1. Note that the use of Z-algebras is essential here as there
is no direct embedding A0 ,! A.2/ of graded rings.

Another classical birational transformation is the so-called “Cremona transform”.
It is obtained by blowing up the tree vertices of a triangle and then contracting
the sides. In this note we will also show that the Cremona transform has a non-
commutative version and that it yields an automorphism of the function field of a
three-dimensional quadratic Sklyanin algebra. The properties of this automorphism
will be discussed elsewhere.
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In §8we explain how in the non-commutative case the approach via linear systems
is related to the blowup construction introduced in [22].

Remark1.2. Amore ring-theoretic approach to blowups of noncommutative surfaces
was taken by Rogalski–Sierra–Stafford in [14]. They also used this technique in their
companion paper [13] to classify certain orders in a generic 3-dimensional Sklyanin
algebra.

Remark 1.3. Cubic 3-dimensional Artin–Schelter regular algebras are a special case
of the non-commutative quadrics introduced in [23]. Theorem 1.1 generalizes to
such quadrics but the proof becomes slightly more technical. For this reason we have
chosen to write down the proof of Theorem 1.1 separately.

2. Reminder on AS-regular Z-algebras

For background material on Z-algebras see [16] and also Sections 3 and 4
of [23]. Recall that a (k-)Z-algebra is defined as a k-algebra A (without unit)
with a decomposition A D

L
.m;n/2Z2 Am;n such that the multiplication satisfies

Am;nAn;j � Am;j and Am;nAi;j D 0 if n ¤ i . Moreover we require the existence
of local units en 2 Ann satisfying emx D x D xen whenever x 2 Am;n. The
category of Z-algebras is denoted by Alg(Z). Every graded k-algebra A gives rise
to a Z-algebra LA via LAm;n D An�m. Most graded notions have a natural Z-algebra
counterpart. For example we say that A 2 Alg(Z/ is positively graded if Am;n D 0

whenever m > n. A Z-algebra over k is said to be connected, if it is positively
graded, each Am;n is finite dimensional over k and Am;m Š k for all m.

If A 2 Alg.Z) then we sayM is a graded right-A-module if it is a module in the
usual sense together with a decompositionM D ˚nMn satisfyingMmAm;n � Mn

andMmAi;n D 0 if i ¤ m. We denote the category of graded A-modules by Gr(A).
(Obviously Gr.A/ D Gr. LA/ if A is a graded ring.) If A is a connected Z-algebra
over k we denote the graded A-modules Pn;A D enA and Sn;A Š k is the unique
simple quotient of Pn;A.

Definition 2.1. A Z-algebra A over k is said to be AS-regular if the following
conditions are satified:

(1) A is connected

(2) dimk.Am;n/ is bounded by a polynomial in n �m

(3) The projective dimension of Sn;A is finite and bounded by a number
independent of n

(4) 8n 2 N W
X
i;j

dimk
�
ExtiGr.A/.Sj;A; Pn;A/

�
D 1.
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It is immediate that if a graded algebra A is AS-regular in the sense of [3], then LA
is AS-regular in the above sense.

Z-algebra analogues of three dimensional quadratic and cubic Artin–Schelter
regular algebras were classified in [23] (following [6] in the quadratic case). We will
describe the quadratic case as this is the only case we will need. In this case the
classification is in terms of triples .Y;L0;L1/ where Y is either a (possibly singular,
non-reduced) curve of arithmetic genus 1 (the “elliptic case”) or Y D P2 (the “linear
case”) andL0;L1 are line bundles of degree 3 on Y such thatL0 6Š L1 in the elliptic
case and L0 D L1 D OP2.1/ in the linear case. The triple must satisfy some other
technical conditions which are however vacuous in the case that Y is a smooth elliptic
curve.

To construct a Z-algebra from this data we first introduce the “elliptic helix”
.Li /i2Z associated to .L0;L1/. This is a collection of line bundles satisfying

Li ˝OY
L�2iC1 ˝OY

LiC2 D OY

We put Vi D H 0.Y;Li / and

Ri D ker.H 0.Y;Li /˝H 0.Y;LiC1/! H 0.Y;Li ˝OY
LiC1//

By definition the quadratic AS-regular Z-algebra A D A.Y;L0;L1/ associated to
.Y;L0;L1/ is generated by Vi .D Ai;iC1/ subject to the relations Ri � Vi ˝ ViC1.
The “Hilbert function” of A is

dimAm;mCa D

(
.aC1/.aC2/

2
if a � 0

0 if a < 0
(2.1)

Using the line bundles .Li /i we may define a Z-algebra analogue B D

B.Y; .Li /i / of a twisted homogeneous coordinate ring (see the introduction) where

Bm;n D �.Y;Lm ˝ � � � ˝ Ln�1/

If A is the 3-dimensional AS-regular Z-algebra constructed above then there is a
surjective map

� W A! B

where A is obtained from B by dropping all relations in degree .m; n/ for n �
mC s C 1.

If A is 3-dimensional quadratic AS-regular algebra with geometric data .Y; �;L/
then the elliptic helix corresponding to LA is .L� i

/i . This follows immediately from
the construction of A from .Y; �;L/ as given in [3] (see the introduction for an
outline).
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3. Non-commutative geometry

It will be convenient to use the formalism of non-commutative geometry used in [22]
which we summarize here. For more details we refer to loc. cit. See also [18]. Wewill
change the terminology and notations slightly to be more compatible with current
conventions.

For us a non-commutative schemewill be a Grothendieck category (i.e. an abelian
category with a generator and exact filtered colimits). To emphasize that we think of
non-commutative schemes as geometric objects, we denote themby roman capitalsX ,
Y , . . . . When we refer to the category represented by a non-commutative scheme X
then we write Qch.X/.

A morphism ˛ W X ! Y between non-commutative schemes will be a right
exact functor ˛� W Qch.Y / ! Qch.X/ possessing a right adjoint (denoted by ˛�).
In this way the non-commutative schemes form a category (more accurately: a
two-category).

In this paper we often view commutative schemes as non-commutative schemes.
More precisely if X is a commutative scheme, then Qch.X/ will be the category of
quasi-coherent sheaves on X . It is proved in [8] that this is a Grothendieck category.
Furthermore X can be recovered from Qch.X/ [7, 9, 15].

IfX is a non-commutative scheme then we think of objects in Qch.X/ as sheaves
of right modules onX . To define the analogue of a sheaf of algebras onX however we
need a category of bimodules on X (see [21] for the case where X is commutative).
The most obvious way to proceed is to define the category Bimod.X � Y / of
X � Y -bimodules as the right exact functors Qch.X/ ! Qch.Y / commuting with
direct limits. The action of a bimodule N on an object M 2 Qch.X/ is written as
M˝X N .

If we define the “tensor product” of bimodules as composition then we can define
algebra objects on X as algebra objects in the category of X � X -bimodules and
in this we may extend much of the ordinary commutative formalism. For example
the identity functor Qch.X/! Qch.X/ is a natural analogue of the structure sheaf,
and as such it will be denoted by oX . If A is an algebra object on X then it
is routine to define an abelian category Mod.A/ of right-A-modules. We have
Mod.oX / D Qch.X/. Unraveling all the definitions it turns out that � ˝X �
(the “tensor product” (composition) in the monoidal category Bimod.X � X/) and
�˝oX

� (the tensor product over the algebra oX ) have the same meaning. We will
use both notations, depending on the context.

Unfortunately Bimod.X � Y / appears not to be an abelian category and
this represents a technical inconvenience which is solved in [22] by embedding
Bimod.X � Y / into a larger category BIMOD.X � Y / consisting of “weak
bimodules”. The category BIMOD.X � Y / is opposite to the category of left exact
functors Qch.Y /! Qch.X/. Since left exact functors are determined by their values
on injectives, they trivially form an abelian category. The category Bimod.X �Y / is
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the full subcategory of BIMOD.X � Y / consisting of functors having a left adjoint.
Or equivalently: functors commuting with direct products.

This being said, these technical complication will be invisible in this paper as all
bimodules we encounter will be in Bimod.X � Y /.

IfA is a graded algebra then the associated non-commutative schemeX D ProjA
is defined by Qch.X/ D QGr.A/ D Gr.A/=Tors.A/, as discussed above. Note that
ProjA is only reasonably behaved when A satisfies suitable homological conditions.
See [5, 12]. We denote the quotient functor Gr.A/! QGr.A/ by � . The object �A
is denoted by OX . The “shift by n” functor Qch.X/ is written as M 7! M.n/

and the corresponding bimodule is written as oX .n/. In particular oX D oX .0/ and
OX .n/ D O ˝oX

oX .n/ D �.A.n//.

4. Construction of the subalgebra D of LA.2/

We devote the rest of the paper to the proof of Theorem 1.1 as well as the construction
of the non-commutative Cremona transform. The treatment of both constructions
will be almost entirely parallel. So let A be a 3-dimensional Sklyanin algebra, which
may be either quadratic or cubic, and put X D ProjA.

As explained in the introduction (see also [3]) A corresponds to a triple .Y; �;L/,
where Y is smooth elliptic curve, � is a translation and L is a line bundle of degree r
on Y . The relation is given by the fact that there is a regular central element
g 2 AsC1 such that A=.g/ D B.Y; �;L/ where B D B.Y; �;L/ is a so-called
“twisted homogeneous coordinate ring” (see (1.1)).

Using the resulting equivalence of categories (see the introduction and [4])

ProjB Š Y

we will write oY .n/ 2 Bimod.Y � Y / for the shift by n-functor on ProjB . Then we
have

oY .1/ D ��.�˝OY
L/

(the tensor product takes place in the category of sheaves of Y -modules).
The inclusion functor Qch.Y / � Qch.X/ (i.e. the functor dual to the graded

algebra morphism A ! B) has a left adjoint which we denote by � ˝oX
oY (on

the level of graded modules it corresponds to tensoring by A=gA). Note that in this
way oY is viewed as a X � Y -bimodule.

Below we will routinely regard a sheaf of OY -modules N as an object in
Bimod.Y � Y / by identifying it with the functor � ˝OY

N . It is easy to see
that the resulting functor

Qch.Y /! Bimod.Y � Y / � BIMOD.Y � Y / (4.1)

is fully faithful and exact.
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Similarly we regard an Y � Y -bimodule M as an X � X -bimodule by defining
the corresponding functor to be

Qch.X/
�˝oX

oY

������! Qch.Y /
�˝oY

M
������! Qch.Y / ,! Qch.X/

In this way oY becomes anX�X -bimodule and one checks that it is in fact an algebra
quotient of oX . Note that oY now denotes both an algebra on X and an algebra on Y
(the identity functor) but for both interpretations we have Mod.oY / Š Qch.Y /.

For use in the sequel we write

oX .�Y / D ker.oX ! oY /

oX .�Y / is the ideal in oX corresponding to the graded ideal gA � A. Note that
since g is central we have in fact oX .�Y / D oX .�3/.

IfM 2 Qch.X/ then we define the “global sections” ofM as

�.X;M/ D HomX .OX ;M/

Similarly we define the global sections of an X � X�bimodule N as in [22,
Section 3.5]:

�.X;N / WD Hom.OX ;OX ˝oX
N /

Use of the functor �.X;�/ on bimodules requires some care since it is apriori not
left exact. However in our applications it will be.

Note thatN is an algebra object in the category of bimodules then �.X;N / is in
fact an algebra for purely formal reasons. The same holds true for graded algebras
and Z-algebras.

It is easy to see that An is equal to the global sections of oX .n/:

�.X; oX .n// WDHomX .OX ;OX .n//
DHomQGr.A/.�.A/; �.A.n///

DHomGr.A/.A;A.n// [5, Theorem 8.1(5)]
DAn

where the third equality follows from the AS-regularity of A. Thus for the Z-algebra
associated to the two-Veronese of A we have:

LA.2/m;n D �.X; oX .2.n �m/// D �.X; oX .�2m/˝oX
oX .2n//

Below .pi /i is a collection of points on Y : three distinct points in case .r; s/ D
.3; 2/ and one point in case .r; s/ D .2; 3/. Let d D

P
i pi be the corresponding

divisor on Y . As above we considerOd as a Y �Y -bimodule but to avoid confusion
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we write it as od . Following our convention above we also consider od as an
X -bimodule. Put

md;Y D ker.oY ! od / (4.2)
md D ker.oX ! od / (4.3)

Clearly md;Y 2 Bimod.Y � Y / as md;Y corresponds to an ordinary ideal sheaf
inOY (see (4.1) above). The fact thatmd 2 Bimod.X �X/ follows by applying [22,
Corollary 5.5.6] repeatedly for the different pi .

Finally consider the following bimodules over X , respectively Y :

.DY /m;n D
(
oY .�2m/˝oY

m��md;Y : : : m��nC1d;Y ˝oY
oY .2n/ if n � m

0 if n < m
(4.4)

Dm;n D
(
oX .�2m/˝oX

m��md : : : m��nC1d ˝oX
oX .2n/ if n � m

0 if n < m
(4.5)

where � D � sC1. Here m��kd : : : m��ld is the image of

m��ld ˝X � � � ˝X m��ld �! oX ˝X � � � ˝X oX D oX

A priori this image lies only in BIMOD.X � X/ but with the same method as the
proof of [22, Proposition 6.1.1] one verifies that it lies in fact in Bimod.X �X/.

The collections of bimodulesD def
D
L
m;nDm;n,DY

def
D
L
m;n.DY /m;n represent

Z-algebra objects respectively in Bimod.X � X/ and Bimod.Y � Y /. For example
the product

Dm;n ˝oX
Dn;p

is given by

oX .�2m/˝oX
m��md : : : m��nC1d ˝oX

oX .2n/˝oX
oX .�2n/˝oX

m��nd : : :

: : : m��pC1d ˝oX
oX .2p/!

oX .�2m/˝oX
m��md : : : m��nC1d ˝oX

m��nd : : : m��pC1d ˝oX
oX .2p/!

oX .�2m/˝oX
m��md : : : m��nC1dm��nd : : : m��pC1d ˝oX

oX .2p/:

Denote the global sections of D and DY by D, DY respectively. Thus D and DY
are both Z-algebras.

The inclusion Dm;n ,! oX .2.n � m// gives rise to an inclusion of Z-algebras
D ,! LA.2/ by using [22, Lemma 8.2.1] with E D OX . This is the sought sub-Z-
algebra of LA.2/.
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5. Analysis of DY

Our aim is to show that D is a quadratic AS-regular Z-algebra. The first step in
understanding D is showing that the quotient Z-algebra DY is a Z-analogue of a
twisted homogeneous coordinate ring (see §2). We do this next.

We have to find an elliptic helix fLigi as defined in §2 such that

.DY /m;n D B.Y; fLigi /m;n WD �.Y;Lm ˝ � � � ˝ Ln�1/

The functor � ˝oY
md;Y is given by � ˝OY

Md;Y where Md;Y is the ideal
sheaf of d on Y (see (4.1) above). Moreover as we have already mentioned
oY .1/ D ��.� ˝OY

L/ (using the notations of [21] we could write this as:
md;Y D 1.Md;Y /1 and oY .1/ D 1L� ). Using the fact that � ˝ oY .2n/ is an
autoequivalence we compute for n � m

.DY /m;n D Hom
�
OY ;OY .�2m/˝m��md;Y � � �m��nC1d;Y ˝ oY .2n/

�
D Hom

�
OY .�2n/;OY .�2m/˝m��md;Y � � �m��nC1d;Y

�
D Hom

� �
L˝ � � � ˝ L�2n�1

��1
;
�
L˝ � � � ˝ L�2m�1

��1
˝M��md;Y : : :M��nC1d;Y

�
D Hom

�
OY ;M��md;Y � � �M��nC1d;Y ˝ L�2m

˝ � � � ˝ L�2n�1
�

D �
�
Y;M��md;Y � � �M��nC1d;Y ˝ L�2m

˝ � � � ˝ L�2n�1
�

D � .Y;Lm ˝ � � � ˝ Ln�1/
(5.1)

with
Li DM��id;Y ˝ L�2i

˝ L�2iC1 (5.2)

A routine but somewhat tedious verification shows that the isomorphism constructed
in (5.1) sends the product on the left to the obvious product on the right corresponding
to the tensorproduct.

We now have to check that the .Li /i constitute an elliptic helix as introduced
in §2. Using our standing hypothesis that Y is smooth (since A was assumed to be a
Sklyanin algebra) we must verify the following facts

(1) degLi D 3

(2) L0 6Š L1.

(3) Li ˝ L�2iC1 ˝ LiC2 Š OY .
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We use the following lemma.
Lemma 5.1. If A is quadratic, one has

��.Li / Š LiC1

and if A is cubic
 �.Li / Š LiC1

where  is an arbitrary translation satisfying  3 D �4.

Proof. We compute in the quadratic case

��.Li /˝ L�1iC1 ŠM�
��id;Y

˝ L�2iC1

˝ L�2iC2

˝M�1
��i�1d;Y

˝ .L�2iC2

/�1 ˝ .L�2iC3

/�1

ŠM�
��id;Y

˝ L�2iC1

˝ .M�3

��id;Y
/�1 ˝ .L�2iC3

/�1:

Since � is a translation there is an invertible sheaf N of degree zero on Y such
that for each invertible sheafM on Y we have the following identities in Pic.Y /:

Œ��M� D ŒM�C deg.M/ � ŒN �:

(This statement is true in even higher generality, see [23, Theorem 4.2.3]) Thus

Œ��.Li /˝ L�1iC1� D
�
deg.M��id;Y /C deg.L�2i

/

� 3 deg.M��id;Y / � 3 deg.L�
2i

/
�
ŒN �

D 0

taking into account that in the quadratic case

deg.M��id;Y / D � deg d D �3

deg.��2iL/ D 3

Nowwe consider the cubic case. It will be convenient to introduce a translation �3
which is a cube root of �

�4
�

3 .Li /˝ L�1iC1 ŠM�4
3

��id;Y
˝ L�

6iC4
3 ˝ L�

6iC7
3 ˝ .M�12

3

��id;Y
/�1

˝ .L�
6iC6
3 /�1 ˝ .L�

6iC9
3 /�1

LetN3 be a line bundle of degree zero such that for any line bundleM

Œ��3M� D ŒM�C deg.M/ � ŒN3�:
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We obtain

Œ�4
�

3 .Li /˝ L�1iC1� D
�
4 deg.M��id;Y /C 4 deg.L�

6i
3 /C 7 deg.L�6i

3 /

�12 deg.M��id;Y / � 6 deg.L�
6i
3 / � 9 deg.L�6i

3 /
�
ŒN3�

D 0

taking into account that this time

deg.M��id;Y / D � deg d D �1

deg.L�6i
3 / D 2

We now verify that .Li /i is an elliptic helix. Condition (1) is immediate and
condition (3) follows from Lemma 5.1. Assume that (2) is false in the quadratic case.
Then ��.L0/ Š L0. In other words � is translation by a point of order three. But
this contradicts our assumption that A is a Sklyanin algebra. Now assume that (2)
is false in the cubic case. The  is a translation by a point of order three and from
the definition of  it follows that � is translation by a point of order four, again
contradicting the fact that A is Sklyanin algebra.

6. Showing that D is AS-regular

For use below recall some some commutation formulas. First note that since oY .1/ D
��.�˝OY

L/ we have

od ˝oY
oY .1/ D oY .1/˝oY

o�d

(wemay see this by applying both sides to an object in Qch.Y /). Using the definitions
of md , md;Y (see (4.2), (4.3)) we deduce from this

md;Y ˝oY
oY .1/ D oY .1/˝oY

m�d;Y

md ˝oX
oX .1/ D oX .1/˝oX

m�d :

Similar formulas also hold for longer products of m’s such as for example appear in
the definition of .DY /m;n and Dm;n.

IfM is a bimodule then we will write .a/M forOX .a/˝oX
M. Thus the “right

structure” ofM is .0/M. For the sequel we need a resolution of .a/Dm;mC1. In the
quadratic case we use the following lemma.

Lemma 6.1. Let A be a quadratic AS-regular algebra of dimension 3. Let q1; q2; q3
be distinct non-collinear points in Y and letQ1;Q2;Q3 be the corresponding point
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modules.1 Pick an m in .Q1 ˚Q2 ˚Q3/0 whose three components are non-zero
and letM D mA. Then the minimal resolution ofM has the following form

0! A.�3/˚2 ! A.�2/˚3 ! A!M ! 0

Proof. Let g be the normalizing element of degree three inA and letB D A=gA. By
using the explicit category equivalence Qch.B/ Š QGr.Y / [4] one easily proves that
the mapB�1 !M�1 is surjective. Whence the correspondingmap u W A�1 !M�1
is also surjective.

Look at the exact sequence

0! keru! A�1 !M�1 ! 0:

Tensoring this exact sequence with k yields an exact sequence

TorA1 .M�1; k/! keru˝A k ! A�1 ˝A k
Nu
�!M�1 ˝ k ! 0:

Now both A�1 and M�1 are generated in degree one and furthermore dimA1 D
dimM1. Hence it follows that Nu is an isomorphism. Therefore keru ˝A k is a
quotient of TorA1 .M�1; k/. From the fact thatM�1 is a sum of shifted point modules
we compute that TorA1 .M�1; k/ D k.�2/3. Thus keru is a quotient ofA.�2/3. Now
using the fact thatM has no torsion and hence has projective dimension two we may
now complete the full resolution ofM using a Hilbert series argument.

Note that

Dm;mC1 D oX .�2m/˝oX
m��md ˝oX

oX .2.mC 1//

and thus

OX .a/˝oX
Dm;mC1 D .OX ˝oX

m�2m�a��md /.aC 2/

where
OX ˝oX

m�2m�a��md D ker.OX ! O�2m�a��md /

ThusOX˝oX
m�2m�a��md is of the form�.ker.A!M//withM as in Lemma 6.1.

We conclude that we have a resolution of .a/Dm;mC1 of the form

0! OX .a � 1/˚2 ! OX .a/˚3 ! .a/Dm;mC1 ! 0: (6.1)

This resolution is actually of the form

0! OX .a � 1/˚2 ! OX .a/˝k Dm;mC1 ! .a/Dm;mC1 ! 0: (6.2)

1A point module over A is a graded right A-module generated in degree zero with Hilbert function
1; 1; 1; 1; 1; : : :. There is a 1-1 correspondence between points in Y and point modules overA. See [2].
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In the cubic case the resolution will follow from the next lemma:
Lemma 6.2. Let A be a cubic AS-regular algebra of dimension 3. Let p be a point
in Y and let P be the corresponding point module. Then there is a complex of the
following form:

0! A.�5/
.�;0/
���! A.�4/˚2 ˚ A.�3/! A.�2/˚3 ! A! P ! 0 (6.3)

where � is part of the minimal resolution of k as given in [1, Theorem 1.5]

0! A.�4/
�
�! A.�3/2

"
�! A.�1/2

ı0
�! A


�! k ! 0:

Moreover the complex (6.3) is exact everywhere except at A where it has one-
dimensional cohomology, concentrated in degree one.

Proof. From [2, Proposition 6.7] we know P has the following (minimal) resolution:

0! A.�3/! A.�2/˚ A.�1/! A! P ! 0:

Combining this with the minimal resolution for k we get the following diagram

0

k.�1/

0 A.�3/ A.�1/˚ A.�2/ A P 0

A.�2/˚2 ˚ A.�2/

A.�4/˚2

A.�5/

0

˛

9�

ˇ



'

ı0 ˚ id

."; 0/

�
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Put ı D ı0 ˚ id. The existence of the map � such that ı ı � D ˛ follows from the
projectivity of A.�3/ and the fact that  ı ˛ is zero by degree reasons. By diagram
chasing one easily finds that ker.ˇ ı ı/ D im."/˚ im.�/ and hence we end up with
the following complex:

0! A.�5/
�˚0
���! A.�4/˚2 ˚ A.�3/

�˚"
��! A.�2/˚3

ˇıı
��! A

'
�! P ! 0:

Using diagram chasing again one easily checks that this complex is exact everywhere
except at A. We then conclude with a Hilbert series argument.

In a similar way as in the quadratic case we conclude that .a/Dm;mC1 has a
resolution of the form

0! OX .a�3/
.�;0/
���! OX .a�2/˚2˚OX .a�1/! OX .a/˚3 ! .a/Dm;mC1 ! 0

(6.4)
which is actually of the form

0! J .a/˚OX .a � 1/! OX .a/˝k Dm;mC1 ! .a/Dm;mC1 ! 0 (6.5)

where
J def
D coker.OX .�3/

�
�! OX .�2/˚2/: (6.6)

We will now prove some vanishing results. An object in Qch.X/ will be said to have
finite length if it is a finite extension of objects of the form Op , p 2 Y . Likewise an
object in Bimod.X � X/ will be said to have finite length if it is a finite extension
of op for p 2 Y . The objects of finite length are fully understood, see [22, Chapter 5].
Note that by [22, Proposition 5.5.2] op is a simple object in Bimod.X � X/ so the
Jordan–Hölder theorem applies to finite length bimodules.
Lemma 6.3. A finite length object in Qch.X/ has no higher cohomology.

Proof. For an object of the form op this follows from [22, Proposition 5.1.2] with
F D OX . The general case follows from the long exact sequence for Ext.

Lemma 6.4. H 2.X; .�l/Dm;n/ D 0 for l � 2n � 2mC s.

Proof. We only need to consider the case n � m. This follows from the fact that
.�l/Dm;n � OX .2n � 2m � l/ with finite length cokernel and from the standard
vanishing properties on QGr.A/ (see for example [5, Theorem 8.1]).

Lemma 6.5. H 1.X; .a/Dm;n/ D 0 for a � �s C 1.

Proof. We only need to consider the case n � m. The proof for a � �1 is similar
in the cases .r; s/ D .2; 3/ and .r; s/ D .3; 2/ so we will give the proof for the first
case as it is slightly longer. Afterwards we will consider the case .r; s/ D .2; 3/ and
a D �2.
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Suppose .r; s/ D .2; 3/ and a � �1. We prove H 1.X; .a/Dm;n/ D 0 by
induction on n �m. As .a/Dm;m D OX .a/ the base case follows from the standard
vanishing on X .

For the induction step we proceed as follows: From [22, Theorem 5.5.10] and the
fact that Dm;n � oX .2n � 2m/ with finite length cokernel we may deduce that the
kernel of the obvious surjective map

Dm;mC1 ˝X DmC1;n ! Dm;n

has finite length. Using [22, Lemma 8.2.1] we see that this remains the case if we
left tensor with OX .a/. Thus we obtain a short exact sequence in Qch.X/

0! f.l.! .a/Dm;mC1 ˝X DmC1;n ! .a/Dm;n ! 0

from which we find H 1.X; .a/Dm;n/ D H 1.X; .a/.Dm;mC1 ˝X DmC1;n// by
Lemma 6.3. From (6.5) we obtain an exact sequence

ToroX

1 ..a/Dm;mC1;DmC1;n/! J .a/˝X DmC1;n ˚ .a � 1/DmC1;n
! Dm:mC1 ˝k .a/DmC1;n ! .a/Dm;mC1 ˝X DmC1;n ! 0: (6.7)

One deduces again, for example using [22, Theorem 5.5.10], that

ToroX

1 ..a/Dm;mC1;DmC1;n/

has finite length. It is clear that .a � 1/DmC1;n has no finite length subobjects.
We claim this is the same for J .a/ ˝X DmC1;n. Indeed tensoring the short exact
sequence

0! J .a/! OX .a/˚2 ! OX .aC 1/! 0

on the right with DmC1;n and using Tor-vanishing [22, Theorem 8.2.1] we obtain a
short exact sequence

0! J .a/˝X DmC1;n ! .a/D˚2mC1;n ! .aC 1/DmC1;n ! 0: (6.8)

Hence in particular J .a/ ˝X DmC1;n � .a/D˚2mC1;n is torsion free. We conclude
that (6.7) becomes in fact a short exact sequence

0! J .a/˝X DmC1;n ˚ .a � 1/DmC1;n ! Dm;mC1 ˝k .a/DmC1;n
! .a/Dm;mC1 ˝X DmC1;n ! 0 (6.9)

We find thatH 1.X; .a/.Dm;mC1˝X DmC1;n// is sandwiched between a direct sum
of copies of H 1.X; .a/DmC1;n/ (D 0 by the induction hypothesis) and a direct sum
of copies ofH 2.X;J .a/˝X DmC1;n/. NowH 2.X;J .a/˝X DmC1;n/ is trivial as
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well because it is sandwiched between a direct sum of copies ofH 2..a� 2/DmC1;n/
(D 0 by Lemma 6.4) andH 3.X; .a�3/DmC1;n/ (D 0 asH 3.X;�/ D 0). Finishing
the case a � �1.

We now prove H 1.X; .�2/Dm;n/ D 0 when .r; s/ D .2; 3/. This can also be
done by induction on n � m. The case n D m again follows from the standard
vanishing on X . For the induction step recall that for any point q there is an exact
sequence:

0! OX .�3/! OX .�2/˚OX .�1/! OX ˝X mq ! 0:

Applying �˝X DmC1;n yields an exact sequence

0! .�3/DmC1;n ! .�2/DmC1;n˚ .�1/DmC1;n ! OX˝X mq˝X DmC1;n ! 0

where the injectivity of .�3/DmC1;n ! .�2/DmC1;n ˚ .�1/DmC1;n is a
torsion/torsion free argument as above in the derivation of (6.9). In particular
we can consider a long exact sequence of cohomology groups. As in this
sequence H 1.X; .�2/Dm;n/ D H 1.X;m��m�1p ˝X DmC1;n/ is sandwiched
betweenH 1.X; .�2/DmC1;n/˚H 1.X; .�1/DmC1;n/ andH 2.X; .�3/DmC1;n/we
can conclude by the induction hypothesis, the case a � �1 which was already done
and Lemma 6.4.

We may now draw some conclusions.
Lemma 6.6. D is generated in degree one.

Proof. We need to show for n > m that

�.X;Dm;mC1/˝k �.X;DmC1;n/! �.X;Dm;n/

is surjective.
The kernel of Dm;mC1 ˝X DmC1;n ! Dm;n has finite length whence by

Lemma 6.3: �.X;Dm;mC1 ˝X DmC1;n/ ! �.X;Dm;n/ is surjective. Hence it
is sufficient to show that

�.X;Dm;mC1/˝k �.X;DmC1;n/! �.X;Dm;mC1 ˝X DmC1;n/

is surjective. In case .r; s/ D .3; 2/ we tensor (6.2) for a D 0 on the right with
DmC1;n. This gives

ToroX

1 ..0/Dm;mC1;DmC1;n/! .�1/DmC1;n
! Dm;mC1 ˝k .0/DmC1;n ! .0/Dm;mC1 ˝X DmC1;n ! 0

Since ToroX

1 ..0/Dm;mC1;DmC1;n/ has finite length and .�1/DmC1;n has no finite
length submodules the leftmost arrow is zero. Hence we must show that
H 1.X; .�1/DmC1;n/ D 0. This follows from Lemma 6.5.
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In case .r; s/ D .2; 3/ by (6.5) by a similar argument this amounts to showing
that H 1.X; .�1/DmC1;n/ D 0 and H 1.X;J .0/ ˝X DmC1;n/ D 0. The first of
these claims follows from Lemma 6.5. For the second of these claim we invoke the
definition ofJ (see (6.6)). It follows that we have to showH 1.X; .�2/DmC1;n/ D 0
and H 2.X; .�3/DmC1;n/ D 0 and these are known to hold by Lemma 6.5 and
Lemma 6.4.

Our next result is thatD has the “correct” Hilbert function. That is

dimDm;mCa D

(
.aC1/.aC2/

2
if a � 0

0 if a < 0
(6.10)

The case a < 0 is trivial so we consider a � 0. For this we have to check the cases
.r; s/ D .3; 2/ and .r; s/ D .2; 3/ separately. For the quadratic case a computation
similar to [22, Corollary 5.2.4] tells us that the colength ofDm;mCa inside oX .2a/ is

3
a.aC 1/

2

Using the fact thatH 1.X;Dm;n/ D 0 by Lemma 6.5 we obtain (for a � 0)

dimDm;mCa D
.2aC 1/.2aC 2/

2
� 3

a.aC 1/

2
D
.aC 1/.aC 2/

2

Similarly in the cubic case the colength of Dm;mCa inside oX .2a/ is

a.aC 1/

2

and again using the fact thatH 1.X;Dm;n/ D 0 we obtain (for a � 0)

dimDm;mCa D
.2aC 2/2

4
�
a.aC 1/

2
D
.aC 1/.aC 2/

2

Hence in both cases (6.10) holds.
Finally we prove the following.

Lemma 6.7. The canonical mapD ! DY is surjective.

Proof. As D and DY are both generated in degree 1 (for DY this is proved in the
same way as forB.Y; �;L/, see [3]), it suffices to check thatDm;mC1 ! .DY /m;mC1
is surjective.
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For this consider the following commuting diagram (with OX .�Y / D OX ˝oX

oX .�Y / the subobject of OX corresonding to the ideal gA � A)

0 0 0

OX .�Y / OX ˝X md OX ˝X md;Y

0 OX .�Y / OX OY 0

0 0 Od Od 0

0 0 0

The bottom two rows and the first column are obviously exact. The third column is
equal to

0!Md;Y ! OY ! Od ! 0

and hence is exact. The exactness of the middle column follows as usual from [22,
Lemma 8.2.1]. Hence we can apply the Snake lemma to the above diagram and find
the following exact sequence:

0! OX .�Y /! OX ˝X md ! OX ˝X md;Y ! 0

As the above obviously remains true when we replace d by ��md and as oX .2/ is
an invertible bimodule we get an exact sequence

0! OX .�Y /˝X oX .2/! OX ˝X Dm;mC1 ! OX ˝X .DY /m;mC1 ! 0

The surjectivity ofDm;mC1 ! .DY /m;mC1 then follows from

H 1.X;OX .�Y /˝X oX .2// D H 1.X;OX .�1// D 0

using that oX .�Y / D oX .�3/ (see §4) as well as the standard vanishing results forX
(see [5, Theorem 8.1]).

Since now the mapD ! DY is surjective, one checks using (6.10) thatDm;n !
DY;m;n is an isomorphism for n � mC 2. ThusD andDY have the same quadratic
relations. Let D0 be the quadratic AS-regular Z-algebra associated to .Y;L0;L1/
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(see §2). Then since D0 is quadratic, and has the same quadratic relations as DY
we obtain a surjective map D0 ! D. Since D0 and D have the same Hilbert series
by (6.10) we obtain D0 Š D. Hence D is the quadratic AS-regular Z-algebra
associated to .Y;L0;L1/.

7. Non-commutative function fields

As above let A be a 3-dimensional Sklyanin algebra, which may be either quadratic
or cubic, with geometric data .Y; �;L/ and let D be the AS-regular Z-subalgebra
of LA.2/ constructed in §4.

Let A0 be the 3-dimensional quadratic Sklyanin algebra with geometric data
.Y; �;L0/ if A is quadratic and .Y;  ;L0/ if A is cubic where .Li /i is as in (5.2).

By the discussion at the end of §2 together with Lemma 5.1 we conclude that
D Š LA0.

We will now show that there is an isomorphism between the function fields of
ProjA and ProjA0. In the case thatA is cubic this will be the final step in the proof of
Theorem 1.1. If A is quadratic then the relation between A and A0 is a generalization
of the classical Cremona transform.

By the graded version of Goldie’s Theorem [10, Corollary 8.4.6.] the non-zero
homogeneous elements of A form an Ore set S and hence the graded field of
fractions AŒS�1� of A exists. By the structure theorem for graded fields [11] it
is of the form

Frac.A/ D Frac0.A/Œt; t�1; ˛�

where Frac0.A/ is a division algebra concentrated in degree zero, jt j D 1 and ˛
is an automorphism ˛ W Frac0.A/ ! Frac0.A/ W a 7! tat�1. Frac0.A/ was
introduced in the introduction as “the function field” of ProjA. Our aim is to show
that Frac0.A/ Š Frac0.A0/.

It is straightforward to generalize the concept of an Ore set and its corresponding
localization to Z-algebras. In fact this is the classical concept of an Ore set in a
category (and its corresponding localization).

If S � A is a multiplicative closed Ore set consisting of homogeneous elements
then one defines a corresponding multiplicative closed Ore set LS � LA by putting
LSij D Sj�i . A straightforward check yields RAŒS�1� Š LAŒ LS�1�.

Now let S and S 0 be the set of nonzero homogeneous elements in A,
respectively A0. Then the inclusion LA0 ,! LA.2/ ,! LA restricts to LS 0 ,! LS and
hence for arbitrary i 2 Z there is an induced map �i :

Frac0.A0/ D
�
A0Œ.S 0/�1�

�
0
Š

�
LA0Œ LS 0

�1
�
�
i i
!

�
LAŒ LS�1�

�
2i;2i
Š
�
AŒS�1�

�
0

D Frac0.A/:
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Although this map depends on i we will show that it is always an isomorphism.
As Frac0.A0/ and Frac0.A/ are division rings and �i ¤ 0, it follows that �i is

always injective, so the only nontrivial thing to do, is proving its surjectivity. So
given any a; s 2 LA2i;2j1

nf0g we need to find a j2 2 Z and h 2 LA2j1;2j2
such that

ah; sh 2 LA0i;j2
. We claim we can find such an h only depending on n WD j1 � i and

not on a or s. For this consider the following map:

�
�
X; oX .2n/

�
˝ �

�
X; oX .2N /˝X I

�
! �

�
X; oX .2.nCN/˝X I/

�
where I is the ideal in oX such that oX .2.nCN//˝X I D Di1;i1CnCN (see (4.5)).

If we can choose an N such that

dimk �
�
X; oX .2N /˝X I

�
¤ f0g (7.1)

then there is an element 0 ¤ h 2 LA2iC2n;2iC2nC2N and an embedding
LA2i;2iC2n ,! LA0i;iCnCN W a 7! ah

which yields the surjectivity of Frac0.A0/ ! Frac0.A/ (as we may take j2 D
j1 C N D i C n C N in the above). So it suffices to prove (7.1). As the cases
.r; s/ D .3; 2/ and .r; s/ D .2; 3/ are completely similar, we only treat the first case.

Note that the codimension of�
�
X; oX .2N /˝X I

�
inside LA2i1C2n;2iC2nC2N is at

most 3N.NC1/
2

which grows like 3N2

2
. On the other hand dimk

�
LA2i1C2n;2i1C2nC2N

�
D

.2NC1/.2NC2/
2

which grows like 2N 2, so forN sufficiently large (7.1) will be fulfilled.

8. Relation with non-commutative blowing up

For the interested reader we now sketch how theZ-algebraD which was introduced in
a somewhat adhoc manner in §4 may be obtained in a natural way from the formalism
of non-commutative blowing up as introduced in [22].

First let us remind the reader how the commutative Cremona transformworks. Let
p1; p2; p3 2 P2 be three distinct non-collinear points on P2 and consider the linear
system of quadrics passing through those points. This is a 5 � 3 D 2 dimensional
linear system and hence it defines a birational transformation � W P2 //P2 with
fp1; p2; p3g being the points of indeterminacy.

The indeterminacy of � may be resolved by blowing up the points fp1; p2; p3g.
Let ˛ W QX ! P2 be the resulting surface and letL1; L2; L3 be the exceptional curves.
Then the Cremona transform factors as

QX

  

˛

~~
P2

�
// P2
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where the right most map is obtained from the sections of the line bundle O QX .1/ D
˛�.OP2.2//˝ QX O QX .�L1 � L2 � L2/ on QX .

Now we replace P2 by the non-commutative X given by ProjA where A is a
3-dimensional quadratic Sklyanin algebra. We will use again the standard notation
Y;L; �; p1; p2; p3; d; : : : . According to [22] we may blow up2 X in d to obtain a
map of non-commutative schemes ˛ W QX ! X . Then we need a substitute for the line
bundleO QX .1/ on QX . Actually in the non-commutative case it is more natural to look
for a substitute for the family of objects .O QX .n//n since then there is an associated
Z-algebra M

m;n

Dm;n D
M
m;n

Hom QX .O QX .�n/;O QX .�m//

This idea has been used mainly in the case that the sequence is ample in a suitable
sense (e.g. [12]), but the associated Z-algebra may be defined in general. Of course
in the non-ample case the relation between the sequence and the underlying non-
commutative scheme will be weaker.

Let us now carry out this program in somewhat more detail. According to [22]
we have QX D ProjD where D is a graded algebra in Bimod.X �X/ given by

oX ˚md .Y /˚mdm��1d .2Y /˚ � � � ˚md � � �m��nC1d .nY /˚ � � �

The inclusion oX ! D yields the map ˛ W QX ! X .
Suitable noncommutative analogue of the objectsO QX .�mL1�mL2�mL2/ turn

out to be the objects in Bimod.X � QX/ associated to the oX �D-bimodules given by

m�md � � �m�d ˚m�md � � �md .Y /˚m�md � � �m��1d .2Y /˚ � � �

� � � ˚m�md � � �m��nC1d .nY /˚ � � �

Up to right bounded oX � D-bimodules (which are invisible in Proj) these are the
same as

.oX .�mY /˝X D/Œm�

where Œ1� is the shift functor on D-modules (or bimodules, or variants thereof). So
the non-commutative analogues of the objects O QX .n/ turn out to be associated to

.OX .2n � nY /˝X D/Œn�

where we have written OX .aC bY / for OX .a/˝X oX .bY /.
Or ultimately

O QX .n/ D ˛
�.OX .2n � nY //Œn�:

2In [22] we discuss the case of a blowup of a single point. Blowing up a set of points is similar.
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We now compute (the fourth equality requires an argument similar to [22,
Proposition 8.3.1(2)])

Dm;n D Hom QX .O QX .�n/;O QX .�m//
D Hom QX .˛

�.OX .�2nC nY //Œ�n�; ˛�.OX .�2mCmY //Œ�m�/
D HomX .OX .�2nC nY /; ˛�.˛�.OX .�2mCmY //Œn �m�//
D HomX .OX .�2nC nY /;OX .�2mCmY /˝oX

Dn�m/
D HomX .OX .�2n/;OX .�2m/m��md � � �m��nC1d //

D �.X;OX .�2m/m��md � � �m��nC1d ˝ oX .2n//

Hence we find indeed the same result as in §4.

References

[1] M. Artin andW. F. Schelter, Graded algebras of global dimension 3, Adv. Math,
66 (1987), 171–216. Zbl 0633.16001 MR 0917738

[2] M. Artin, J. Tate and M. Van den Bergh, Modules over regular algebras
of dimension 3, Inventiones mathematicae, 106 (1991), no. 1, 335–388.
Zbl 0763.14001 MR 1128218

[3] M. Artin, J. Tate and M. Van den Bergh, Some algebras associated to
automorphisms of elliptic curves, in The Grothendieck Festschrift, P. Cartier
(ed.), 33–85, Modern Birkhäuser Classics, 1, Birkhäuser, Boston, 1990.
Zbl 0744.14024 MR 1086882

[4] M. Artin and M. Van den Bergh, Twisted homogeneous coordinate rings,
Journal of Algebra, 133 (1990), no. 2, 249–271. Zbl 0717.14001 MR 1067406

[5] M. Artin and J. J. Zhang, Noncommutative projective schemes, Advances in
Mathematics, 109 (1994), no. 2, 228–287. Zbl 0833.14002 MR 1304753

[6] A. Bondal and A. Polishchuk, Homological properties of associative algebras:
the method of helices, Russian Acad. Sci. Izv. Math, 42 (1994), 219–260.
Zbl 0847.16010 MR 1230966

[7] M. Brandenburg, Rosenberg’s reconstruction theorem (after gabber), 2013.
arXiv:1310.5978

[8] E. Enochs and S. Estrada, Relative homological algebra in the category of quasi-
coherent sheaves, Adv. Math., 194 (2005), no. 2, 284–295. Zbl 1090.16003
MR 2139915

[9] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), 323–
448. Zbl 0201.35602 MR 0232821

https://zbmath.org/?q=an:0633.16001
http://www.ams.org/mathscinet-getitem?mr=0917738
https://zbmath.org/?q=an:0763.14001
http://www.ams.org/mathscinet-getitem?mr=1128218
https://zbmath.org/?q=an:0744.14024
http://www.ams.org/mathscinet-getitem?mr=1086882
https://zbmath.org/?q=an:0717.14001
http://www.ams.org/mathscinet-getitem?mr=1067406
https://zbmath.org/?q=an:0833.14002
http://www.ams.org/mathscinet-getitem?mr=1304753
https://zbmath.org/?q=an:0847.16010
http://www.ams.org/mathscinet-getitem?mr=1230966
http://arxiv.org/abs/1310.5978
https://zbmath.org/?q=an:1090.16003
http://www.ams.org/mathscinet-getitem?mr=2139915
https://zbmath.org/?q=an:0201.35602
http://www.ams.org/mathscinet-getitem?mr=0232821


244 D. Presotto and M. Van den Bergh

[10] C. Nastasescu and F. van Oystaeyen, Methods of Graded Rings, Lecture Notes
in Mathematics, 1836, Springer, 2004. Zbl 1043.16017 MR 2046303

[11] C. Nastasescu and F. Van Oystaeyen, Graded and filtered rings and modules,
Springer, Berlin, 1979. Zbl 0418.16001 MR 0551625

[12] A. Polishchuk, Noncommutative proj and coherent algebras, Math. Res. Lett.,
12 (2005), no. 1, 63–74. Zbl 1074.14002 MR 2122731

[13] D. Rogalski, S. J. Sierra and J. T. Stafford, Classifying orders in the Sklyanin
algebra, 2013. arXiv:1308.2213

[14] D. Rogalski, S. J. Sierra and J. T. Stafford, Noncommutative blowups of elliptic
algebras, Algebr. Represent. Theory, (2014), 1–39. Zbl 06445654 MR 3336351

[15] A. L. Rosenberg, The spectrum of abelian categories and reconstruction of
schemes, inRings, Hopf algebras, and Brauer groups (Antwerp/Brussels, 1996),
257–274. Dekker, New York, 1998. Zbl 0898.18005 MR 1615928

[16] S. J. Sierra, G-algebras, twistings, and equivalences of graded categories,
Algebr. Represent. Theory, 14 (2011), no. 2, 377–390. Zbl 1258.16047
MR 2776790

[17] S. J. Sierra, Talk: Ring-theoretic blowing down (joint work with D. Rogalski
and J. T. Stafford), Workshop Interactions between Algebraic Geometry and
Noncommutative Algebra, 2014.

[18] S. P. Smith, Non-commutative Algebraic Geometry, Lecture notes, University
of Washington, 2000.

[19] J. T. Stafford and M. Van den Bergh, Noncommutative curves and
noncommutative surfaces, Bull. Amer. Math. Soc. (N.S.), 38 (2001), no. 2,
171–216. Zbl 1042.16016 MR 1816070

[20] D. R. Stephenson, Artin–Schelter Regular algebras of global dimension three,
Journal of Algebra, 183 (1996), 55–73. Zbl 0868.16027 MR 1397387

[21] M. Van den Bergh, A Translation Principle for the Four-Dimensional Sklyanin
Algebras, Journal of Algebra, 184 (1996), no. 2, 435 – 490. Zbl 0876.17011
MR 1409223

[22] M. Van den Bergh, Blowing up non-commutative smooth surfaces,Mem. Amer.
Math. Soc., 154 (2001), no. 734, 140pp. Zbl 0998.14002 MR 1846352

[23] M. Van den Bergh, Non-commutative quadrics, 2008. arXiv:0807.3753

Received 03 November, 2014

D. Presotto, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
E-mail: dennis.presotto@uhasselt.be
M. Van den Bergh, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
E-mail: michel.vandenbergh@uhasselt.be

https://zbmath.org/?q=an:1043.16017
http://www.ams.org/mathscinet-getitem?mr=2046303
https://zbmath.org/?q=an:0418.16001
http://www.ams.org/mathscinet-getitem?mr=0551625
https://zbmath.org/?q=an:1074.14002
http://www.ams.org/mathscinet-getitem?mr=2122731
http://arxiv.org/abs/1308.2213
https://zbmath.org/?q=an:06445654
http://www.ams.org/mathscinet-getitem?mr=3336351
https://zbmath.org/?q=an:0898.18005
http://www.ams.org/mathscinet-getitem?mr=1615928
https://zbmath.org/?q=an:1258.16047
http://www.ams.org/mathscinet-getitem?mr=2776790
https://zbmath.org/?q=an:1042.16016
http://www.ams.org/mathscinet-getitem?mr=1816070
https://zbmath.org/?q=an:0868.16027
http://www.ams.org/mathscinet-getitem?mr=1397387
https://zbmath.org/?q=an:0876.17011
http://www.ams.org/mathscinet-getitem?mr=1409223
https://zbmath.org/?q=an:0998.14002
http://www.ams.org/mathscinet-getitem?mr=1846352
http://arxiv.org/abs/0807.3753
mailto:dennis.presotto@uhasselt.be
mailto:michel.vandenbergh@uhasselt.be

	Introduction
	Reminder on AS-regular Z-algebras
	Non-commutative geometry
	Construction of the subalgebra D of (2)
	Analysis of DY
	Showing that D is AS-regular
	Non-commutative function fields
	Relation with non-commutative blowing up
	References

