
J. Noncommut. Geom. 10 (2016), 245–264
DOI 10.4171/JNCG/233

Journal of Noncommutative Geometry
© European Mathematical Society

Perturbation semigroup of matrix algebras
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Abstract. In this article we analyze the structure of the semigroup of inner perturbations in
noncommutative geometry. This perturbation semigroup is associated to a unital associative
�-algebra and extends the group of unitary elements of this �-algebra. We compute the
perturbation semigroup for all matrix algebras.
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1. Introduction

Recently, a semigroup structure has been introduced [4] in the context of
noncommutative geometry [5]. This perturbation semigroup is associated to a
(unital associative) �-algebra A, and implements the inner perturbations [7] of
the metric — described in terms of a ‘Dirac operator’ D acting on a Hilbert
space H — in a spectral triple .A;H;D/ (cf. [6]). Moreover, the perturbation
semigroup allows for a description of such fluctuations when the so-called first-order
condition is not satisfied. The physical applications requiring such an extension were
subsequently discussed in [3], thereby going beyond the noncommutative description
of the Standard Model [2]. A crucial role in these applications is played by finite
spectral triples, that is, spectral triples for whichA andH are finite-dimensional (and
accordingly, D is a hermitian matrix). It is the subject of this paper to determine
the perturbation semigroup for all such finite-dimensional �-algebras A. Since A
is faithfully represented on H, this amounts to considering only matrix algebras. In
other words, we consider the �-algebra of block-diagonal matrices of the form

A D
NM

iD1

Mni
.Fi /; (1.1)

where n1; : : : ; nN are the fixed dimensions of the block-matrices and Fi D C, R,
or H (which may vary with i ). We stress that the algebra A is a complex �-algebra
only if all Fi D C, otherwise we consider it as a real �-algebra.
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In Section 2 we introduce and analyze the general structure of the perturbation
semigroup Pert.A/ associated to a �-algebra and show how it extends the groupU.A/
of unitary elements in A. We then show how Pert.A˚ B/ is related to Pert.A/ and
Pert.B/. This allows for a determination of the perturbation semigroup of all matrix
algebras by the computation of Pert.MN .F// for F D C;R or H in Section 3. In all
these examples we identify the map from the group of unitaries inA to Pert.A/, and
relate it to the representation theory of U.N/ D U.MN .C//, O.N/ D U.MN .R//
and Sp.N/ D U.MN .H// in the respective cases.

Acknowledgements. The first author is supported by the Radboud Honours Aca-
demy of the Faculty of Science. He thanksMatildeMarcolli at Caltech for hospitality
and support. The second author thanks the Hausdorff Institute for Mathematics in
Bonn for hospitality and support.

2. The perturbation semigroup

Throughout this paper, we let A be an associative unital �-algebra, referring to it
simply as a �-algebra. We allow both complex and real �-algebras, i.e. the base field
is either C or R. This is important when we consider tensor products: A˝ B will
then denote either A˝C B or A˝R B, depending on whether A;B are considered
as complex or real algebras.

Associated to any �-algebra, we can define a group as follows.
Definition 2.1. The group of unitary elements in a �-algebra A will be denoted by
U.A/, i.e.

U.A/ D fu 2 A j uu� D 1 D u�ug:

The unitary group U.A/ plays the role of a gauge group in noncommutative
geometry and its applications to particle physics [7]. In fact, if A is represented on
a Hilbert space H, then the unitary group is represented on H by, indeed, unitary
operators. Moreover, any self-adjoint operator D on H can be transformed into a
unitarily equivalent operator, via

D 7! uDu�;

which can be rewritten as

D 7! uDu� D D C uŒD; u��:

We interpret this as a perturbation of D by the unitary element u 2 U.A/. A
more general class of perturbations associated to A is given by the perturbation
semigroup [4] that we now define. This perturbation semigroup is a generalization
of the gauge group. First, we recall the definition of the opposite algebra.
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Definition 2.2. LetA be an algebra, then the opposite algebra ofA is denoted byAı
and is given by A as a vector space but with opposite product aıbı D .ba/ı for
a; b 2 A.
Definition 2.3. The perturbation semigroup is given by

Pert.A/ D

8<:X
j

aj ˝ b
ı
j 2 A˝Aı

ˇ̌̌̌ P
aj bj D 1P
aj ˝ b

ı
j D

P
b�j ˝ a

�ı
j

9=; ;
where the sums are finite and 1 is the unit inA. The multiplication is inherited from
the algebra structure on A˝Aı.

We will refer to the two conditions on the sums in Pert.A/ as normalization
condition and self-adjointness condition, respectively.
Proposition 2.4. Pert.A/ is a semigroup and has a unit.

Proof. Multiplication in Pert.A/ is associative because A ˝ Aı is an associative
algebra. We show that themultiplication is closed, i.e. that the product of two elements
is again in the perturbation semigroup. For

P
j aj ˝eaıj ;Pk bk˝

ebı
k
2 Pert.A/, we

have 0@X
j

aj ˝eaıj
1A X

k

bk ˝
ebık! DX

j;k

aj bk ˝

�ebkeaj

�ı
:

That this element is both normalized and self-adjoint follows from a simple
computation. It is normalized:X

j;k

.aj bk/
�ebkeaj

�
D

X
j;k

aj

�
bk
ebk

�eaj

D

X
j

aj

 X
k

bk
ebk

!eaj D

X
j

ajeaj D 1;

because both
P

k bk ˝
ebı

k
and

P
j aj ˝eaıj are normalized, and it is self-adjoint:X

j;k

�ebkeaj

��
˝ .aj bk/

�ı

D

X
j;k

ea�jeb�k ˝ a�ıj b
�ı
k D

0@X
j

ea�j ˝ a�ıj

1A X
k

eb�k ˝ b�ık

!

D

0@X
j

aj ˝eaıj
1A X

k

bk ˝
ebık! DX

j;k

.aj bk/˝
�ebkeaj

�ı
;

because both
P

k bk ˝
ebı

k
and

P
j aj ˝eaıj are self-adjoint. The unit is given by

1˝ 1ı, where 1 is the unit in A.
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The name perturbation semigroup is motivated by the following action of Pert.A/
on self-adjoint operators onH :

D 7!
X

j

ajDbj D D C
X

j

aj ŒD; bj �;

where
P

j aj ˝ b
ı
j 2 Pert.A/. This general class of perturbations play an important

role in physics where they are recognized as gauge potentials, thus defining the
(bosonic) particle content of particle physics models. We refer to [7, 8] (cf. [9]) for
more details.

That this indeed generalizes the action of U.A/ on D is due to the following
result.
Proposition 2.5. Let A be a �-algebra, then we have

U.A/! Pert.A/
u 7! u˝ u�ı:

(2.1)

Note that the kernel of this map is given by the unitary elements of the base field.
We end this section by determining the perturbation semigroup of the direct sum

of �-algebras.
Proposition 2.6. Let A;B be �-algebras, then

Pert.A˚ B/ Š Pert.A/ � Pert.B/ � .A˝ Bı ˚ B ˝Aı/s:a: (2.2)

where s:a: stands for self-adjoint elements, i.e. those of the form
P
ai˝b

ı
i Cb

�
i ˝a

�ı
i .

Proof. We start with the following isomorphism of �-algebras:

.A˚ B/˝ .A˚ B/ı Š A˝Aı ˚ B ˝ Bı ˚A˝ Bı ˚ B ˝Aı:

Imposing the normalization and self-adjointness condition to obtain Pert.A ˚ B/
on the left-hand side translates on the right-hand side to give Pert.A/ � Pert.B/ �
.A ˝ Bı ˚ B ˝ Aı/s:a:. Indeed, normalization only affects the first two terms
A˝Aı˚B˝Bı where, together with the self-adjointness condition it gives rise to
Pert.A/ � Pert.B/. The self-adjointness condition on A˝ Bı ˚ B ˝Aı gives rise
to elements of the form stated above.

3. Perturbation semigroup for matrix algebras

In this section, we will derive the structure of the perturbation semigroup for all
matrix algebras of the form (1.1). In view of Proposition 2.6 it is enough to compute
Pert.MN .F// for F D C;R;H. However, let us start with the following basic
example.
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3.1. Perturbation semigroup Pert.CN /. For A D CN we have A Š Aı and
A˝Aı Š CN 2 . As a basis for A we take the standard basis feig

N
iD1.

Proposition 3.1. For any N � 1 we have

Pert.CN / Š CN.N�1/=2

with the semigroup structure given by componentwise multiplication.

Proof. In terms of the above standard basis wewrite an arbitrary element in Pert.CN /

as
P
Cij ei ˝ e

ı
j . The normalization condition states that Ci i D 1 for all i : indeedX

i;j

Cij eiej D

X
i

Ci iei ;

which should be equal to
P

i ei D 1, the unit in CN . The self-adjointness condition
states that Cij D Cj i for all i; j , as follows fromX

i;j

Cij ei ˝ e
ı
j D

X
i;j

C �ij e
�
j ˝ e

�ı
i D

X
i;j

Cij ej ˝ ei D

X
i;j

Cj iei ˝ e
ı
j :

In other words, among theN 2 variables Cij ,N are equal to one, while the others are
pairwise conjugated.

Note that this is compatible with Proposition 2.6. In fact, with CN Š CN�1˚C
and the fact that Pert.C/ D f1g we find that

Pert.CN / Š Pert.CN�1/ � CN�1

thus giving a different proof of Proposition 3.1.
We end this subsection by considering the map from the unitary group to the

perturbation semigroup of CN , leaving its elementary proof to the reader.
Proposition 3.2. The map U.CN /! Pert.CN / is given explicitly by

.�1; : : : ; �N / 7! 1C
X
i¤j

�i�j ei ˝ e
ı
j :

3.2. Perturbation semigroup of complex matrix algebras. We determine the
perturbation semigroup ofMN .C/.
Lemma 3.3. We have the following identification

MN .C/ı !MN .C/
Aı 7! AT:

where T denotes matrix transposition. Consequently,

MN .C/˝MN .C/ı ŠMN 2.C/;

as �-algebras.
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Under this identification we thus have

eıij $ ej i

in terms of the standard basis feij g
N
i;jD1 for MN .C/. We will write an arbitrary

element inMN .C/˝MN .C/ı as a sumX
i;j;k;l

Cij;kleij ˝ e
ı
kl :

3.2.1. A D M2.C/. As a warming-up, we first look at A D M2.C/. Note that we
have four basis elements for which the normalization condition becomes

.C11;11 C C12;21/e11 C .C11;12 C C12;22/e12

C .C21;11 C C22;21/e21 C .C21;12 C C22;22/e22 D e11 C e22:

This amounts to the conditions

C11;11 C C12;21 D 1; C21;12 C C22;22 D 1;

C11;12 C C12;22 D 0; C21;11 C C22;21 D 0:

The self-adjointness condition reads Cij;kl D Clk;j i (cf. Section 3.2.2 below).
Using Lemma 3.3 we can identify

M2.C/˝M2.C/ı !M4.C/; eij ˝ e
ı
kl 7! eij ˝ elk;

in terms of the basis elements, and then extend this linearly to all ofM2.C/˝M2.C/ı.
The normalization and self-adjointness conditions onCij;kl translate to 4�4-matrices
to arrive at the following general form for an element A 2 Pert.M2.C//:

A D

0BB@
x1 z3 z3 1 � x1

z1 z2 z5 �z1

z1 z5 z2 �z1

x2 z4 z4 1 � x2

1CCA ; z1; : : : z5 2 C; x1; x2 2 R: (3.1)

The semigroup law ensures that the product of two such matrices again has this
general form, something which is not immediately clear. Let us make this point more
transparent and establish conditions on 4�4matrices that give rise to the above form.

For an element A 2 M4.C/ to be of the form (3.1) is equivalent to demanding
that

A.f1 C f4/ D .f1 C f4/;

b�A D Ab�; where b� D
0BB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1CCA
in terms of the standard basis ffig for C4.
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Equivalently, the matrix b� can be rewritten as a block matrix

b� D �e11 e21

e12 e22

�
D

�
eT

11 eT
12

eT
21 eT

22

�
D

X
i;j

eij ˝ ej i :

Especially the last identity is useful, since we see that the eigenvectors of b� are given
by e1 ˝ e1 ˙ e2 ˝ e2, with eigenvalue 1, and e1 ˝ e2 ˙ e2 ˝ e1, with eigenvalue 1
and �1 depending on theC or � sign. Hence, upon changing to the basis

fe1˝ e1C e2˝ e2; e1˝ e1 � e2˝ e2; e1˝ e2C e2˝ e1; e1˝ e2 � e2˝ e1g (3.2)

of eigenvectors we will get

� D

�
I3 0

0 �1

�
: (3.3)

Moreover, the vectorf1Cf4 which is left invariant byA is given by e1˝e1Ce2˝e2 2

C2 ˝ C2, which is also an eigenvector of b�. Hence with respect to the basis (3.2)
we arrive at the following characterization of Pert.M2.C//:

Pert.M2.C// Š
n
A 2M4.C/ j A! D !; �A D A�

o
;

with

! D

0BB@
1

0

0

0

1CCA ; � D

�
I3 0

0 �1

�
:

It now readily follows that if A;B 2 Pert.M2.C// then so is their product AB .
More explicitly, elements in Pert.M2.C// are thus 4 � 4 matrices of the form

A D

0BB@
1 v1 v2 iw

0 x1 x2 iy1

0 x3 x4 iy2

0 iy3 iy4 x5

1CCA ; (3.4)

where v1; v2; w; x1; : : : ; x5; y1; : : : ; y4 2 R.
The invertible elements in the perturbation semigroup are given by the invertible

matrices in M4.C/ which moreover fulfill the above conditions. Thus the group of
invertible elements is given by

Pert.M2.C//� Š
n
A 2 GL4.C/ j A! D !; �A D A�

o
:

We end this section by showing how the unitary group U.2/ D U.M2.C// maps
to this group of invertible elements. Recall that there is a group homomorphism

U.2/! Pert.M2.C//�

u 7! u˝ u�ı:
(3.5)
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After identifying M2.C/ı with M2.C/ using Lemma 3.3, the element u ˝ u�ı on
the right-hand side of (3.5) corresponds to the element u˝ u 2 M2.C/˝M2.C/,
where u is componentwise complex conjugation. In terms of representation theory,
this means that the map in (3.5) corresponds to the representation of u 2 U.2/ on
the tensor product C2 ˝ C2 of the defining representation C2 and the conjugate
representation C2 of U.2/. It is well known that this representation has the following
decomposition in irreducible representations:

C2
˝ C2 Š C˚ C3

where C is the trivial representation space of U.2/ and C3 is the complexified
adjoint representation space su.2/C. Moreover, the basis vector spanning the trivial
representation is given by e1 ˝ e1 C e2 ˝ e2. If we compare this to the basis
of eigenvectors for b� that we found above, we conclude that the decomposition
of C2 ˝ C2 into irreducible representations corresponds precisely to the block
decomposition of the matrix A in (3.4).

3.2.2. A D MN .C/. With this example in mind we now proceed and determine
Pert.MN .C//. First note that with Lemma 3.3 the matrices in the perturbation
semigroup Pert.MN .C// will be elements of MN 2.C/. Again, we aim for defining
conditions on such matrices using a suitable matrix b� that are equivalent to the
normalization and self-adjointness condition.
Lemma 3.4. Let A D

P
i;j;k;l Cij;kleij ˝ e

ı
kl
, then the normalization condition is

equivalent to X
j

Cij;jl D ı
i
l :

Proof. For such an element A the normalization condition readsX
i;j;k;l

Cij;kleij ekl D 1 �
X

i

ei i ;

or, equivalently, X
i;j;k;l

Cij;kleilı
j

k
D

X
i;j;l

Cij;jleil D

X
i

ei i :

Reading off the coefficients gives the desired result.

Remark 3.5. Note that this result, and hence the normalization condition, is
equivalent to the condition that

P
i ei ˝ ei is an eigenvector for such a matrix A

in the perturbation semigroup with eigenvalue 1.
Lemma 3.6. For A D

P
Cij;kleij ˝ e

ı
kl

the self-adjointness condition is equivalent
to demanding

Cij;kl D Clk;j i :
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Proof. The condition A D A� becomesX
Cij;kleij ˝ e

ı
kl D

X
Cij;kle

�
kl ˝ e

�ı
ij D

X
Cij;klelk ˝ e

ı
j i :

If we now relabel the last expression, we get
P
Clk;j ieij ˝ e

ı
kl
; so that Cij;kl D

Clk;j i .

We now have the following proposition.
Proposition 3.7. Let A D

P
Cij;kleij ˝ e

ı
kl
. Then Cij;kl D Clk;j i if and only ifb�A D Ab� with b� DP eij ˝ e

ı
ij 2MN .C/˝MN .C/ı.

Proof. We can write b� as b� DP ır
mı

s
nemn˝ e

ı
rs . Starting with the right hand side

of the equation we get

Ab� D �XCij;kleij ˝ e
ı
kl

��X
ır

mı
s
nemn ˝ e

ı
rs

�
D

X
Cij;klı

r
mı

s
neij emn ˝ .ersekl/

ı

D

X
Cij;klı

r
mı

s
nı

m
j ı

k
s ein ˝ e

ı
rl

D

X
Cij;kleik ˝ e

ı
jl :

The left hand side of the equation reads

b�A D �X ır
mı

s
nemn ˝ e

ı
rs

��X
Cij;kleij ˝ e

ı
kl

�
D

X
Cij;klı

r
mı

s
nemneij ˝ .eklers/

ı

D

X
Cij;klı

r
mı

s
nı

n
i emj ˝ ı

l
re
ı
ks

D

X
Cij;klelj ˝ e

ı
ki

D

X
Clk;j ieik ˝ e

ı
jl :

Thus we have Cij;kl D Clk;j i if and only if b�A D Ab�.

We now make the following identification

MN .C/˝MN .C/ı !MN 2.C/; eij ˝ e
ı
kl 7! eij ˝ elk; (3.6)

after which we can bring b� into a more appealing form as a block matrix:b� DX
i;j

eij ˝ ej i :

Lemma 3.8. The eigenvectors of b� are given by ek ˝ el ˙ el ˝ ek with respective
eigenvalues 1 (for any k; l D 1; : : : ; N ) and �1 (for k ¤ l).
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Proof. This follows by elementary matrix multiplication:X
i;j

eij ek ˝ ej iel ˙

X
i;j

eij el ˝ ej iek D el ˝ ek ˙ ek ˝ el ;

in terms of the bases feij g ofMN .C/ and feig of CN .

Since ek ˝ ek is an eigenvector with eigenvalue 1 for all k, we see that their sum
must be an eigenvector with eigenvalue 1 as well, i.e. we have

b� X
i

ei ˝ ei

!
D

X
i

ei ˝ ei :

We change to a basis consisting of eigenvectors, where we take
P
ei ˝ ei to be

identified with the first eigenvector. This gives us

� D

�
IN.NC1/=2 0

0 �IN.N�1/=2

�
: (3.7)

As we have seen before
P
ei ˝ ei is an invariant vector for a matrix A in the

perturbation semigroup. We summarize the above results by the following
Proposition 3.9. We have

Pert.MN .C// Š
n
A 2MN 2.C/ j A! D !; �A D A�

o
(3.8)

where

! D

0BBB@
1

0
:::

0

1CCCA ; � D

�
IN.NC1/=2 0

0 �IN.N�1/=2

�
:

The semigroup structure is given by matrix multiplication.

This allows for the following explicit description of elements in the perturbation
semigroup Pert.MN .C//. Let A 2MN 2.C/ with A! D !, then we get that

A D

�
1 v

0 B

�
; (3.9)

where v is a row vector of lengthN 2 � 1, while B 2MN 2�1.C/. The condition that
�A D A� then implies that

�0B D B�0;

and
v D v�0:
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in terms of the matrix

�0 D

�
IN.NC1/=2�1 0

0 �IN.N�1/=2

�
D

�
I.NC2/.N�1/=2 0

0 �IN.N�1/=2

�
:

If we work this out we see that

v D
�
v1 iv2

�
;

where v1 and v2 are real row vectors of length .N C 2/.N � 1/=2 and N.N � 1/=2,
respectively. We also see that

B D

�
B1 iB2

iB3 B4

�
;

where B1 2M.NC2/.N�1/=2.R/; : : : ; B4 2MN.N�1/=2.R/.
This motivates the definition of a real vector space V and semigroup S by

V D
˚
v 2 CN 2�1

j v D v�0
	
;

S D
˚
B 2MN 2�1.C/ j �0B D B�0

	
;

and to consider the semidirect product V Ì S of V and S . The semigroup law of
V Ì S is given by

.v; B/ � .v0; B 0/ D .v0 C vB 0; BB 0/:

Proposition 3.10. For V and S as above we have an isomorphism of semigroups:

Pert.MN .C// Š V Ì S:

Proof. Let A;A0 2 Pert.MN .C//, then we have

A D

�
1 v

0 B

�
; A0 D

�
1 v0

0 B 0

�
for suitable v; v0 2 V and B;B 0 2 S . If we now multiply A and A0 we get

AA0 D

�
1 v

0 B

��
1 v0

0 B 0

�
D

�
1 v0 C vB

0 BB 0

�
:

This coincides with the semigroup law in V Ì S , thus completing the proof.

Corollary 3.11. Let V be as above and define the group G as

G D
˚
A 2 GLN 2�1.C/ j �0A D A�0

	
:

Then the invertible elements in Pert.MN .C// form the semidirect product group

Pert.MN .C//� Š V ÌG:
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Proof. This follows at once from Proposition 3.10 and the fact that

.V Ì S/� D V Ì S�

which holds for any semigroup S acting linearly on a vector space V .

As in the previous section, we show how the unitary group U.N/ D U.MN .C//
maps to this group of invertible elements. Again, there is a group homomorphism

U.N/! Pert.MN .C//�

u 7! u˝ u�ı:
(3.10)

The corresponding element u ˝ u 2 MN .C/ ˝MN .C/ defines the representation
of u 2 U.N/ on the tensor product CN ˝ CN . Moreover, the block form that
we found in (3.9) parallels the decomposition of this representation into irreducible
representations of U.N/:

CN
˝ CN Š C˚ CN 2�1:

Here C is the trivial representation space and CN 2�1 is the complexified adjoint
representation space su.N /C of U.N/.

3.3. Perturbation semigroup of real matrix algebras. Now that we have the
semigroup Pert.MN .C// we consider the perturbation semigroup of the real matrix
algebrasMN .R/ andMN .H/.

3.3.1. A D MN .R/. In order to determine the perturbation semigroup forMN .R/
we can search the results we found for Pert.MN .C// for complex conjugation and
subsequently ignore it. This means we get

Pert.MN .R// Š
n
A 2MN 2.R/ j A! D !; �A D A�

o
;

where

! D

0BBB@
1

0
:::

0

1CCCA I � D

�
IN.NC1/=2 0

0 �IN.N�1/=2

�
:

Proposition 3.12. We have an isomorphism of semigroups:

Pert.MN .R// Š
�
R.N�1/.NC2/=2 ÌM.N�1/.NC2/=2.R/

�
�MN.N�1/=2.R/:



Perturbation semigroup of matrix algebras 257

Proof. The conditions for a matrix A 2 MN 2.R/ to be in Pert.MN .R// brings it in
the following general form:

A D

0@1 v1 0

0 B1 0

0 0 B2

1A (3.11)

from which the proof of the statement follows.

Corollary 3.13. The invertible elements of Pert.MN .R// are given by

Pert.MN .R//� Š
�
R.N�1/.NC2/=2 ÌGL.N�1/.NC2/=2.R/

�
�GLN.N�1/=2.R/

Proof. From the general form of A in Equation (3.11) it follows that det.A/ D
det.B1/ det.B2/. Hence A is invertible if and only if both B1 and B2 are invertible.

Again, let us consider the map from the unitary group U.MN .R// to
Pert.MN .R//. Actually, U.MN .R// Š O.N/ and we have a map

O.N/! Pert.MN .R//

u! u˝
�
uT�ı :

Upon identifyingMN .R/ı withMN .R/, the element u˝
�
uT�ı corresponds to the

element u ˝ u 2 MN .R/ ˝MN .R/. Hence, this defines a representation on the
tensor product CN ˝ CN of two copies of (the complexification of) the defining
representation of O.N/. As opposed to the unitary groups encountered earlier, this
tensor product has the following decomposition as O.N/-representations:

CN
˝ CN

Š C˚ C.NC2/.N�1/=2
˚ CN.N�1/=2:

The first summand is the trivial representation space ofO.N/ (spanned by the vectorP
i ei ˝ ei ), the second consists of the symmetric tensors (spanned by the vectors

of the form ei ˝ ej C ej ˝ ei ) and the third consists of the skew-symmetric tensors
(spanned by the vectors ei ˝ ej � ej ˝ ei ). This gives rise to the dimensions 1,
.N C 2/.N � 1/=2, and N.N � 1/=2 in the above decomposition. Moreover, this
decomposition agrees with the block matrix form of A in Equation (3.11).

3.3.2. A D H. We determine the perturbation semigroup of the quaternions H. A
convenient characterization of H is as the following set of 2 � 2 matrices:

H D

(�
˛ ˇ

�ˇ ˛

�
j ˛; ˇ 2 C

)
:
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Equivalently, for A 2 M2.C/ to be in H it should satisfy the condition bJA D AbJ
where bJ D � 0 1

�1 0

�
D e12 � e21:

The quaternions thus form a real subalgebra of M2.C/ and in order to determine
Pert.H/ we can start by looking at the matrices that form Pert.M2.C//. Recall that
the general form of elements therein was given by

A D

0BB@
x1 z2 z2 1 � x1

z1 z4 z5 �z1

z1 z5 z4 �z1

x2 z3 z3 1 � x2

1CCA ;
where zi 2 C, for i D 1; : : : ; 5; x1; x2 2 R. We impose the commutation relation
with bJ in order to get a matrix in Pert.H/. In fact, bJ extends to the tensor product
M2.C/˝M2.C/ı: for A˝ Bı 2M2.C/˝M2.C/ı to be in H˝Hı we need

.bJ ˝bJ ı/.A˝ Bı/ D .bJ ˝bJ ı/.A˝ Bı/ D .A˝ Bı/.bJ ˝bJ ı/:
Once again using the identification

M2.C/˝M2.C/ı !M4.C/; eij ˝ e
ı
kl 7! eij ˝ elk;

we find that

bJ ˝bJ ı 7! eJ D .e12 � e21/˝ .e12 � e21/
T
D

0BB@
0 0 0 �1

0 0 1 0

0 1 0 0

�1 0 0 0

1CCA : (3.12)

So for a matrix A 2 Pert.H/ we need to have eJA D AeJ : In other words, for the
matrix A 2 Pert.M2.C// to be in Pert.H/ it should be of the form

A D

0BB@
x z2 z2 1 � x

z1 z3 z4 �z1

z1 z4 z3 �z1

1 � x �z2 �z2 x

1CCA ;
where x 2 R; z1; z2; z3; z4 2 C. Since this is the same form as for A 2 Pert.M2.C//
it follows that we have a similar commutation relation for this A with b�, namelyb�A D Ab�.

As in the case of Pert.M2.C// we can diagonalize b� to

� D

�
I3 0

0 �1

�
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where the new basis consists of eigenvectors, given by

e1 ˝ e1 ˙ e2 ˝ e2;

e1 ˝ e2 ˙ e2 ˝ e1:

We also write eJ D bJ ˝bJ ı in terms of this new basis. Since�
.e12 � e21/˝ .e21 � e12/

�
.e1 ˝ e1 ˙ e2 ˝ e2/ D �.e1 ˝ e1 ˙ e2 ˝ e2/;�

.e12 � e21/˝ .e21 � e12/
�
.e1 ˝ e2 ˙ e2 ˝ e1/ D ˙.e1 ˝ e2 ˙ e2 ˝ e1/;

we retrieve the following expression for eJ in terms of the new basis

J D

0BB@
�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1CCA :
With this we can find the general expression for Pert.H/.

Proposition 3.14. In the above notation,

Pert.H/ Š
˚
A 2M4.C/ j A! D !;�A D A�; JA D AJ

	
:

Proof. The conditions A! D ! and �A D A� ensure that the matrix is in
Pert.M2.C//, while JA D AJ ensures that such a matrix is in fact an element
of H˝Hı.

Since � and J have the same commutation relation with A 2 Pert.H/, also the
sum and difference of � and J must have this commutation relation with A. We
define ‡ D .� � J /=2 D e11 and � D .�C J /=2 D e22 C e33 � e44, i.e.

‡ D .� � J /=2 D

0BB@
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1CCA ;

� D .�C J /=2 D

0BB@
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1CCA :
Proposition 3.15. We have

Pert.H/ Š
n
A 2M4.C/ j A! D !;‡A D A‡;�A D A�

o
:
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This readily leads to the following explicit characterization of elements in Pert.H/:

A D

0BB@
1 0 0 0

0 x1 x2 iy1

0 x3 x4 iy2

0 iy3 iy4 x5

1CCA ; (3.13)

where x1; : : : ; x5; y1; : : : ; y4 2 R. The form of the 3� 3 block matrix is dictated by
the following matrix � 0:

� 0 D

0@1 0 0

0 1 0

0 0 �1

1A :
Proposition 3.16. The perturbation semigroup for H is given by

Pert.H/ Š fA 2M3.C/ j � 0A D A� 0g:

Corollary 3.17. The group of invertible elements in Pert.H/ is

Pert.H/� Š fA 2 GL3.C/ j � 0A D A� 0g:

The unitary group U.H/ is SU.2/, so that there is a map

SU.2/! Pert.H/

similar to the map U.2/ ! Pert.M2.C// in Section 3.2.1. Again, the block form
of A in Equation (3.13) corresponds to the decomposition of the representation of
SU.2/ on C2 ˝ C2 into irreducible summands C and C3 Š su.2/C.

3.3.3. A D MN .H/. Finally, we determine the perturbation semigroup forMN .H/.
A matrix in Pert.MN .H// is characterized by a matrix similar to eJ that we had for
Pert.H/. In fact, we have the following

Lemma 3.18. The perturbation semigroup of Pert.MN .H// can be obtained from
Pert.M2N .C// as follows:

Pert.MN .H// Š
˚
A 2 Pert.M2N .C// j eLA D AeL	

with eL D IN 2 ˝eJ .
Proof. Let A 2 M4N 2.C/ and let eL D IN 2 ˝ eJ . We write A D

P
eij ˝ Aij for

Aij 2 H and i; j D 1; : : : ; N . It is clear that eLA D AeL amounts to imposingeJAij D Aij
eJ for all i; j . In other words, this amounts to Aij to be inH˝Hı hence

completing the proof.



Perturbation semigroup of matrix algebras 261

We now want to simultaneously diagonalize b� and eL, just as we did for H. Note
that b� D b�N ˝b�2 in terms of the matrices of Equations (3.7) and (3.3) forMN .C/
andM2.C/, respectively. Hence, diagonalizing b�2 andeJ as in Section 3.3.2, we can
write:

� D

�
IN.NC1/=2 0

0 �IN.N�1/=2

�
˝

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1CCA ;

L D

�
IN.NC1/=2 0

0 IN.N�1/=2

�
˝

0BB@
�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1CCA :
These matrices are equivalent to the following diagonal matrices inM4N 2.C/:

� D

0BB@
IN 2 0 0 0

0 �IN.N�1/ 0 0

0 0 �IN 2 0

0 0 0 IN.NC1/

1CCA ;

L D

0BB@
�IN 2 0 0 0

0 IN.N�1/ 0 0

0 0 �IN 2 0

0 0 0 IN.NC1/

1CCA :
We thus get

Pert.MN .H// Š
n
A 2M4N 2.C/ j A! D !;�A D A�;LA D AL

o
:

As up to conjugation A commutes with both � and L, every linear combination
of the latter two must satisfy a similar commutation relation with A. We introduce
block-diagonal matrices

‰ D .� � L/=2 DW

0@1 0 0

0 ‰0 0

0 0 0N.2NC1/

1A ;
and

‚ D .�C L/=2 DW

�
0N.2N�1/ 0

0 ‚0

�
;

where we have implicitly defined matrices ‰0 2 M.2NC1/.N�1/.C/ and ‚0 2
MN.2NC1/.C/ by

‰0 D

�
IN 2�1 0

0 �IN.N�1/

�
; ‚0 D

�
IN 2 0

0 �IN.NC1/

�
:
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The reason for this particular block decomposition will become clear in the following
proposition; first note that we have by linearity

Pert.MN .H// Š
n
A 2M4N 2.C/ j A! D !;‰A D A‰;‚A D A‚

o
:

Proposition 3.19. We have

Pert.MN .H// Š .V Ì S/ � T;

where

V D
n
v 2 C.2NC1/.N�1/

j v D v‰0
o
;

S D
n
B 2M.2NC1/.N�1/.C/ j ‰0B D B‰0

o
;

T D
n
C 2MN.2NC1/.C/ j ‚0C D C‚0

o
:

Proof. Let us start with a matrix A 2 M4N 2.C/ that leaves ! invariant and write A
in the following suggestive form

A D

0@1 v w

0 B B 0

0 C 0 C

1A ;
where B 2 M.2NC1/.N�1/.C/ and C 2 MN.2NC1/.C/ and the other block
matrices B 0, C 0 and the vectors v;w chosen in a compatible way. Applying the
commutation relations of A with ‰ and ‚ gives

A D

0@1 v 0

0 B 0

0 0 C

1A ;
with v D v‰0, ‰0B D B‰0 and ‚0C D C‚0.

Note that this result is in concordance with the perturbation semigroup that we
have found previously for H, with the semidirect product vanishing for N D 1.

Again we can trace the unitary elements u in MN .H/ in Pert.MN .H//
(cf. Proposition 2.5). Note that U.MN .H// can be identified with the Lie group
Sp.N/ D Sp.2N;C/ \ U.2N/, which is of dimension N.2N C 1/. Then, the
above block-diagonal decomposition of A 2 Pert.MN .H// corresponds to the
decomposition of the tensor product representation C2N ˝ C2N of Sp.N/ into
irreducible representations of Sp.N/:

C2N
˝ C2N ' C˚ C.2NC1/.N�1/

˚ CN.2NC1/:

Here C is the trivial representation space, C.2NC1/.N�1/ is the (complexification
of the) representation space of traceless hermitian N � N quaternionic matrices on
which Sp.N/ acts by conjugation, and CN.2NC1/ is the (complexification of the)
adjoint representation space sp.N /C.
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4. Conclusions

In this paper we have analyzed for finite-dimensional �-algebras the perturbation
semigroup introduced in [4]. We have determined the structure of Pert.A/ for all
matrix algebras, i.e. �-algebras of the form

A D
NM

iD1

Mni
.Fi /;

where Fi D C;R or H. The gauge group U.A/ can be mapped to Pert.A/ and
the structure for Pert.A/ was shown to be compatible with the representation theory
of U.A/.

As an application of the perturbation semigroup for matrix algebras we discuss
its form in the context of the noncommutative description of the Standard Model of
particle physics [2, 8]. For the Standard Model we have A D C˚ H˚M3.C/, for
which our results give:

Pert .C˚H˚M3.C// Š Pert.C/ � Pert.H/ � Pert.M3.C//
� .C˝Hı ˚H˝ Cı/s:a

� .H˝M3.C/ı ˚M3.C/˝Hı/s:a:

� .C˝M3.C/ı ˚M3.C/˝ Cı/s:a:

As before, s:a: stands for the self-adjoint elements. The finite Dirac operator D
is in this context defined in terms of lepton and quark masses and its perturbations
are known to give rise to the Higgs field [2]. The term in the above perturbation
semigroup that is responsible for this is .C˝Hı ˚H˝ Cı/s:a: it parametrizes the
Higgs field.

Another interesting case is given by the matrix algebra A D H˚ H˚M4.C/,
introduced in the context of the noncommutative StandardModel in [1,2], and further
analyzed in connection to Pati–Salam unification in [3]. We find for the perturbation
semigroup

Pert .H˚H˚M4.C// Š Pert.H/ � Pert.H/ � Pert.M4.C//
� .H˝Hı/s:a

�
�
.M4.C/˝Hı ˚H˝M4.C/ı/s:a:

�2
:

The scalar particle content of the Pati–Salam model was obtained by inner
perturbations in [3] to include additional fields as compared to the Standard Model
Higgs sector. For instance, there are two Higgs doublets for which the term H˝Hı
in the perturbation semigroup is responsible. The other scalar fields that appear in
loc.cit. are generated by one of the terms .M4.C/˝Hı ˚H˝M4.C/ı/s:a: and, in
the absence of lepton quark coupling unification, by Pert.M4.C//.
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