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Abstract. In this paper, we prove that infinitesimal equivariant Chern–Connes characters are
well defined. We decompose an equivariant index as a pairing of infinitesimal equivariant
Chern–Connes characters with the Chern character of an idempotent matrix. We compute the
limit of infinitesimal equivariant Chern–Connes characters when the time goes to zero by
using the Getzler symbol calculus and then extend these theorems to the family case. We also
prove that infinitesimal equivariant eta cochains are well defined and prove the noncommutative
infinitesimal equivariant index formula for manifolds with boundary.
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1. Introduction

TheAtiyah–Bott–Segal–Singer index formula is a generalization of the Atiyah-Singer
index theorem to manifolds admitting group actions. In [6, 22, 24], various heat
kernel proofs of the equivariant index theorem have been given and each method
has its own advantage. For manifolds with boundary, the equivariant extension
of the Atiyah–Patodi–Singer index theorem was given by Donnelly in [13]. In
the equivariant Atiyah–Patodi–Singer index theorem, the equivariant eta invariant
appears and the regularity of the equivariant eta invariant was proved by Zhang
in [29]. An infinitesimal version of the equivariant index formula was established
in [6] and a direct heat kernel proof was given by Bismut in [7]. The infinitesimal
equivariant index formula for manifolds with boundary was established in [19] with
the introduction of the infinitesimal equivariant eta invariant.

The counterpart of the index formula in the noncommutative geometry is the
computation of the Chern–Connes character [11, 18, 20]. The JLO character was
computed in [12] and [9] by using the Getzler symbol calculus in [17]. In [2, 10]
�This work was supported by NSFC No.11271062 and NCET-13-0721.
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and [24], these authors gave the computations of the equivariant JLO characters
associated to a G-equivariant � -summable Fredholm module. In [26], we defined the
truncated infinitesimal equivariant Chern–Connes characters and computed the limit
of the truncated infinitesimal equivariant Chern–Connes characters when the time
goes to zero.

Compared with [26], there are several improvements in the present paper. In (2.2)
in [26], we defined truncated infinitesimal equivariant Chern–Connes characters. It
is only well defined when it is a polynomial of Lie algebra elements. In this paper,
we drop off the truncated order J (see (2.2)) and this consequently requires much
better estimates (see Lemma 2.2). As in [18], we decompose an equivariant index
as a pairing of infinitesimal equivariant Chern–Connes characters with the Chern
character of an idempotent matrix. Compared with Corollary 2.13 in [26], we drop
off the limit on the right hand side of Corollary 2.13. Next we compute the limit
of infinitesimal equivariant Chern–Connes characters when the time goes to zero
by using the Getzler symbol calculus. Since we have dropped off the truncated
order, (2.15) in [26] does not hold for our infinitesimal equivariant Chern–Connes
characters. So we can not directly apply the method of Theorem 2.12 in [26].
Instead, we first apply the Getzler symbol calculus to prove the existence of the
limit of infinitesimal equivariant Chern–Connes characters when time goes to zero
(Theorem 3.9) and then use Theorem 2.12 in [26] to get the result. On the direction,
in Section 3 in [26], we define the truncated infinitesimal equivariant eta cochains.
Again in this paper we drop off the truncated order and then give a proof of the
regularity at zero of infinitesimal equivariant eta cochains by using the method
in [24]. That is, we prove that (3.5) in [26] holds for any k. This allows us to
establish the noncommutative infinitesimal equivariant index formula for manifolds
with boundary (see Theorem 4.9). In this paper, we also define family infinitesimal
equivariant Chern–Connes characters and give the family generalization of the above
theorems which does not appear in [26].

This paper is organized as follows: In Section 2, we prove that infinitesimal
equivariant Chern–Connes characters are well defined. Then we decompose the
equivariant index as a pairing of infinitesimal equivariant Chern–Connes characters
with the Chern character of an idempotent matrix. In Section 3, We compute the
limit of infinitesimal equivariant Chern–Connes characters when the time goes to
zero by using the Getzler symbol calculus. In Section 4, we prove that infinitesimal
equivariant eta cochains are well defined and prove the noncommutative infinitesimal
equivariant index formula for manifolds with boundary. In Section 5, we extend
results in Sections 2 and 3 to the family case.
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2. The infinitesimal equivariant JLO cocycle and the index pairing

Let M be a compact oriented even dimensional Riemannian manifold without
boundary with a fixed spin structure and S be the bundle of spinors onM . Denote
by D the associated Dirac operator on H D L2.M IS/, the Hilbert space of
L2-sections of the bundle S . Let c.df / W S ! S denote the Clifford action
with f 2 C1.M/. Suppose that G is a compact connected Lie group acting
on M by orientation-preserving isometries preserving the spin structure and g is
the Lie algebra of G. Then G commutes with the Dirac operator. For X 2 g,
let XM .p/ D d

dt
jtD0e

�tXp be the Killing field induced by X . Let c.X/ denote
the Clifford action by XM , and LX denote the Lie derivative respectively. Define
g-equivariant modifications ofD andD2 for X 2 g as follows:

DX WD D �
1

4
c.X/I HX WD D

2
�X C LX D .D C

1

4
c.X//2 C LX : (2.1)

Then HX is the equivariant Bismut Laplacian. Let CŒg�� denote the space of
formal power series in X 2 g and  t be the rescaling operator on CŒg�� which is
defined by X ! X

t
for t > 0.

Let

A D C1G .M/ D ff 2 C1.M/ j f .g � x/ D f .x/; g 2 G; x 2 M g;

then the data .A;H;D C 1
4
c.X/;G/ defines a non selfadjoint perturbation of

finitely summable (hence � -summable) equivariant unbounded Fredholm module
.A;H;D;G/ in the sense of [21] (for details, see [10] and [21]). For
.A;H;D C 1

4
c.X/;G/, the infinitesimal equivariant JLO cochain ch2k.D;X/ can

be defined by the formula:

ch2k.D;X/.f 0; : : : ; f 2k/ WD
Z
42k

Str
h
e�LXf 0e��0.DC

1
4 c.X//

2

c.df 1/

� e��1.DC
1
4 c.X//

2

� � � c.df 2k/e��2k.DC
1
4 c.X//

2
i
dVol�2k ; (2.2)

where42k D f.�0; : : : ; �2k/ j �0 C � � � �2k D 1g is the 2k-simplex. For an integer
J � 0, denote by CŒg��J the space of polynomials of degree � J in X 2 g and let
.�/J W CŒg�� ! CŒg��J be the natural projection. Fix basis e1; : : : ; en of g and let
X D x1e1C� � � xnen:A J -degree polynomial onX is namely a J -degree polynomial
on x1; : : : ; xn: Now we prove that ch2k.D;X/.f 0; : : : ; f 2k/ is well defined.

LetH be a Hilbert space. For q � 0, denote by k:kq the Schatten p-norm on the
Schatten idealLp . LetL.H/ denote the Banach algebra of bounded operators onH .
Lemma 2.1 ([25]). (i) Tr.AB/ D Tr.BA/, forA; B 2 L.H/andAB;BA 2 L1.

(ii) For A 2 L1; we have

jTr.A/j � kAk1; kAk � kAk1:
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(iii) For A 2 Lq and B 2 L.H/, we have

kABkq � kBkkAkq; kBAkq � kBkkAkq:

(iv) (Hölder inequality) If 1
r
D

1
p
C

1
q
; p; q; r > 0; A 2 Lp; B 2 Lq; then

AB 2 Lr and kABkr � kAkpkBkq .
Let HX D D2 C FX , where FX is a first order differential operator with

degree � 1 coefficients depending on X .
Lemma 2.2. For any 1 � u > 0, t > 0, we have:

ke�utHXku�1 � 2e
t
2 f1C Œk.1CD2/�

1
2FXk

2e�1�ut�
1
2 g

� ek.1CD
2/
� 1
2 FXk

2e�1�ut .trŒe�
tD2

2 �/u: (2.3)

Proof. By the Duhamel principle, it is that

ke�utHXku�1 D

X
m�0

.�ut/m
Z
4m

e�v0utD
2

FXe
�v1utD

2

� FX � � � e
�vm�1utD

2

FXe
�vmutD

2

dv


u�1

: (2.4)

Also k.�ut/m
R
4m

e�v0utD
2
FXe

�v1utD
2
FX � � � e

�vm�1utD
2
FXe

�vmutD
2
dvku�1 is

continuous and bounded by (2.7) in [26]. By the measure of the boundary of 4m
being zero, we can estimate (2.4) in the interior of4m, that is vj > 0. It holds that

ke�
vj
2 utD

2

FXk � .vjut/
� 12 e�

1�vj ut

2 k.1CD2/�
1
2FXk; (2.5)

where we use that FX is a first order differential operator and the equality

supf.1C x/
l
2 e�

utx
2 g D .ut/�

l
2 e�

l�ut
2 : (2.6)

By the Hölder inequality, (2.4) and (2.5), the conditions that 0 < u � 1 and
v0 C � � � C vm�1 � 1 , we have

ke�utHXku�1 � e
t
2

X
m�0

e�
m
2 .ut/

m
2 k.1CD2/�

1
2FXk

m

�

Z
4m

v
� 12
0 � � � v

� 12
m�1dv.trŒe

� tD
2

2 �/u: (2.7)

It holds that (see line 7 in [3, p. 21])Z
4m

v
� 12
0 � � � v

� 12
m�1dv D

�
m
2

m
2
�.mC1

2
/
: (2.8)
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By �.x C 1/ D x�.x/; �.n/ D .n� 1/Š and �.1
2
/ D
p
�; then �.mC1

2
/ D .m�1

2
/Š

when m is odd; �.mC1
2
/ D

.m�1/ŠŠ
p
�

2
m
2

when m is even. By (2.8) and

lim
m!C1

.2m � 1/ŠŠ

.2m/ŠŠ
D 0; (2.9)

we know that the series (2.7) is absolutely convergent. When m is odd, then

�
m
2

m
2
�.mC1

2
/
�

2�
m
2

.mC1
2
/Š
: (2.10)

When m is even, then
�
m
2

m
2
�.mC1

2
/
�
2�

m
2

.m
2
/Š
: (2.11)

By (2.7), (2.8), (2.10) and (2.11), we have

ke�utHXku�1 � 2e
t
2

" X
m even

.k.1CD2/�
1
2FXk

2e�1�ut/
m
2

.m
2
/Š

C

X
m odd

.k.1CD2/�
1
2FXk

2e�1�ut/
m
2

.mC1
2
/Š

#
.trŒe�

tD2

2 �/u: (2.12)

Therefore, (2.3) can be obtained.

By (2.2), (2.3) and the Hölder inequality as well as Vol42k D
1

.2k/Š
, for t D 1

and �l � 1, we get

jch2k.D;X/.f 0; : : : ; f 2k/j �
1

.2k/Š
kf 0k

� 2kY
jD1

kdf j k

�
� Œ2e

1
2 .1C .k.1CD2/�

1
2FXk

2e�1�/
1
2 /�2kC1

� ek.1CD
2/
� 1
2 FXk

2e�1�.trŒe�
D2

2 �/: (2.13)

Thus, ch2k.D;X/ is well defined. Recall that an even cochain fˆ2ng is called entire
if
P
nkˆ2nknŠz

n is entire, where kˆk WD supkf j k1�1fjˆ.f
0; f 1; : : : ; f 2k/jg.

By (2.13), then fch2k.D;X/g is an entire cochain. Let p 2 Mr.C1.M// and
p D p2 D p� and p.gx/ D p.x/. Define the Chern character of p by (see [18])

ch.p/ WD Tr.p/C
X
l

.�1/l
.2l/Š

2 � lŠ
Tr.2p � 1; p; : : : ; p/2l : (2.14)

By (2.13), hch�.D;X/; ch.p/i is convergent.
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Similarly to Theorem A in [18], we have

Proposition 2.3. (1) The infinitesimal equivariant Chern–Connes character is
closed:

.B C b/.ch�.D;X// D 0: (2.15)

(2) Let D� D D C �V and D�X;� D D�X C �V and V is a bounded operator
which commutes with e�X , then there exists a cochain ch�.D� ; X; V / such
that

d

d�
ch�.D� ; X/ D �.B C b/ch�.D� ; X; V /: (2.16)

By the Serre–Swan theorem, we denote the vector bundle overM with the fibre
p.x/.Cr/ at x 2 M by Imp. Let DImp be the Dirac operator twisted by the
bundle Imp. By Proposition 2.3, .B C b/ch.p/ D 0 and Proposition 8.11 in [4], we
have by taking V D .2p � 1/ŒD; p� that (see Section 3 in [18])

Theorem 2.4. The following index formula holds

Inde�X .DImp;C/ D hch�.D;X/; ch.p/i : (2.17)

In Theorem 2.4, X is unnecessarily small.

3. The computations of infinitesimal equivariant Chern–Connes characters

In this section, we will compute infinitesimal equivariant Chern–Connes characters
by Theorem 2.12 in [26] and the Getzler symbol calculus in [17] and [9]. Recall the
Getzler symbol calculus in [17] and [9]. Let E be a vector bundle over the compact
manifoldM and � W T �M !M be the natural map and E0 D ��.Hom.E;E// be
the pull-back of the bundle ��.Hom.E;E// to a bundle over T �M .

Definition 3.1. A sectionp 2 E0 is called a symbol of order l if for everymulti-index
˛ and ˇ we have the estimates:

k@˛x@
ˇ

�
p.x; �/k � C˛ˇ .1C j�j/

m�jˇ j: (3.1)

We denote by †l.E/ the symbols of order l .

By the representative theoremof theClifford algebraCl.T �M/ ' Hom.S.TM//

and the isomorphism Cl.T �M/ ' ^.T �M/, note a map � defined by

� W Hom.S.TM/˝E/ ' HomE ˝ Cl.T �M/ ' HomE ˝^.T �M/; (3.2)

and � is the inverse of � . Let L D ��.Hom.E/˝^.T �M//˝ CŒg�� and X 2 g.
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Definition 3.2. A section p 2 L is called a s-symbol of order l if

p D

dimMX
jD0

� X
j˛j�0

pj;˛X
˛

�
˝ !j ; (3.3)

where !j 2 �j .M/, pj;˛ 2 †l�j�2j˛j.E/ and
P
j˛j�0kpj;˛.x; �/kjX

˛j is
convergent. We denote the collection of s-symbol of order l by S†l.E;X/.

Let x0 be a fixed point in M and Tx0M be the tangent space and exp be
the exponential map respectively. Let h be a function that is identically one in
a neighborhood of the diagonal of M � M such that the exponential map is a
diffeomorphism on the support of h. Let .x0; x/ 2 supp.h/. Let

�.x0; x/ W .S.TM/˝E/x0 ! .S.TM/˝E/x

be a parallel translation about rS.TM/˝E along the unique geodesic from x0 to x. If
s 2 �.S.TM/˝E/, then we definebsx0.x/ D h.x0; x/�.x; x0/s.x/: (3.4)

We writebsx0.Y / instead ofbsx0.expx0Y /:
Let �X be the one-form associated with XM which is defined by �X .Y / D

g.X; Y / for the vector field Y . Let rS;X be the Clifford connection rS � 1
4
�X on

the spinors bundle and 4X be the Laplacian on S.TM/ associated with rS;X . Let
�.X/.�/ D rTM� XM . Let U D fx 2 Tx0M j kxk < "g, where " is smaller than the
injectivity radius of the manifoldM at x0. Define ˛ W U � g! C via the formula

˛X .x/ WD �
1

4

Z 1

0

.�.R/�X /.tx/t�1dt; �.X; x/ D e˛X .x/; (3.5)

where R D
Pn
iD1 xi

@
@xi
: Then �.X; 0/ D 1. Recall [4, Lemma 8.13] that the

following identity holds

HX D �g
ij .x/

�
r
X
@i
r
X
@j
�

X
k

�kijr
X
@k

�
C
1

4
rM ; (3.6)

where rM is the scalar curvature and �kij is the connection coefficient of rL.
Let �X .x0; x/ W .S.TM/˝E/x0 ! .S.TM/˝E/x be parallel translation about

rS˝E;X along the unique geodesic from x0 to x. If s 2 �.S.TM/˝ E/, then we
define bsXx0.x/ D h.x0; x/�X .x; x0/s.x/: (3.7)

Then bsXx0.x/ D �bsx0.x/: (3.8)

where � D �.X; x/ is defined by (3.5).
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Definition 3.3. Let p 2 S†.E;X/ and s 2 �.S.TM/˝E/, then we define

�.p/.s/.x0/ D

Z
Tx0M�T

�
x0
M

e�
p
�1hY;�i�.p/.x0; �; X/bsXx0.Y /dYd�: (3.9)

Remark. The operator �.p/ is well defined since
P
j˛j�0kpj;˛.x; �/kjX

˛j and
ej˛X .x/j are convergent. The operator �.p/ depends on the choice of the cut off
function h, but the result does not depend on the cut off function for computations
of infinitesimal equivariant Chern–Connes characters. We denote by Op.E;X/ all
such operators with smoothing operators.
Definition 3.4. Given s 2 �.S.TM/˝E/, define sXx0.x/ D h.x0; x/�

X .x0; x/s.x0/

and sx0.x/ D h.x0; x/�.x0; x/s.x0/, then s
X
x0
.x/ D ��1sx0.x/. LetP 2 Op.E;X/

and s 2 �.S.TM/˝E/. Define �.P / 2 End.E/x0 ˝�.M/˝ CŒg�� by

�.P /.x0; �; X/ D �Py.e
p
�1
D
exp�1x0 .y/;�

E
sXx0.y//jyDx0 : (3.10)

Lemma 3.5. Let P D
P
˛ P˛X

˛ 2 Op.E;X/. If
P
˛kP˛k1jX

˛j is convergent,
then �.P / is convergent.

Proof. Since
P
˛kP˛k1jX

˛j and ej˛X .x/j are convergent, this comes from Defi-

nition 3.4 and je
p
�1
D
exp�1x0 .y/;�

E
j D 1 and jh.x0; x/j � 1 and �.x0; x/ being an

isometry.

Lemma 3.6. Let Y D
P
ci@i ; Z D

P
dj @j with ci ; dj 2 R. we have

�.rXY /.x; �/ D
p
�1 hY; �ix ; (3.11)

�.rXY r
X
Z /.x; �/ D �hY; �i hZ; �i C

1

4

˝
RL.Y;Z/@k; @l

˛
f k ^ f l C

1

4

˝
�X .Y /;Z

˛
;

(3.12)

where f k is the dual base of @k .

Proof. By Definition 3.4, We have

�.rXY /.x0; �/ D �Œr
X
Y .e

p
�1
D
exp�1x0 .y/;�

E
��1sx0.y//�jyDx0 : (3.13)

By �
d �

1

4
�X

�
@j
.��1/jxDx0 D 0I rY .sx0.x//jxDx0 D 0; (3.14)

similarly to the computations of Example 1 in [9], we get (3.11). We know that
�rXY r

X
Z �
�1 D �rXY �

�1�rXZ �
�1. By the appendix II in [1], we have

rYrZsx0.y/jyDx0 D
1

4

˝
RL.Y;Z/@k; @l

˛
f k ^ f ls.x0/: (3.15)
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In the trivialization of S.TM/, the conjugate �.X; x/.rS;X
@i

/�.X; x/�1 is given by
Lemma 8.13 in [4] which is

�.X; x/.r
S;X
@i

/�.X; x/�1 D @i C
1

4

X
j;a<b

˝
R.@i ; @j /ea; eb

˛
c.ea/c.eb/x

j

�
1

4
�Mij .X/x

j
C

X
j<k

fijk.x/c.ej /c.ek/C gi .x/C hhi .x/; Xi ; (3.16)

where fijk.x/ D O.jxj2/; gi .x/ D O.jxj/, and hi .x/ D O.jxj2/: By (3.15)
and (3.16), similarly to the computations of Example 2 in [9], we have (3.12).

Proposition 3.7. The following equality holds

�.HX / D j�j
2
C
1

4
rM : (3.17)

The operator t2HX is an asymptotic pseudodifferential operator (see Definition 3.5
in [9]).

Proof. By Lemma 3.6 and (3.6) and gij .x0/ D ıij , �kij .x0/ D 0 and RL.Y; Y / D˝
�X .Y /; Y

˛
D 0, we get Proposition 3.7.

Definition 3.8. If p.x; �; X/ 2 S†.E;X/, then

pt .x; �; X/ D

dimMX
jD0

� X
j˛j�0

pj;˛.x; t�/t
2j˛jX˛

�
˝ !j t

j ; (3.18)

Let  t W X ! X
t
be the rescaling operator on the Lie algebra.

Theorem 3.9. For P D
P
P˛X

˛ 2 OP.S†�1.E;X// and t > 0, then

 2t Trs.P / D .2�/
�n

�
2
p
�1

�n
2
Z
M

Z
T �x0M

Trs�.P / 1
t
.x0; �/d�dx: (3.19)

IfP D Pt andPt is an asymptotic pseudodifferential operator and �.Pt /.x; �/ tends
to zero when j�j tends to infinity, then

 2t Trs.Pt / D b0 CO.t/; (3.20)

where b0 is a constant.

Proof. By Theorem 3.7 in [17], we have for any s > 0 that

Trs.P˛/ D .2�/�n
�

2
p
�1

�n
2
Z
M

Z
T �x0M

Trs�G.P˛/s.x0; �/d�dx; (3.21)
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where

�G.P /.x0; �; X/ D �Py.e
p
�1
D
exp�1x0 .y/;�

E
sx0.y//jyDx0 : (3.22)

Since �.Pt /.x; �/ tends to zero when j�j tends to infinity, by using the equality which
will be proved in the following Lemma 3.11Z

T �x0M

Trs�G.P /s.x0; �/d�dx D
Z
T �x0M

Trs�G.�P��1/s.x0; �/d�dx; (3.23)

we have for �.x0/ D 1 thatZ
T �x0M

Trs�G.P˛/s.x0; �/d� D
Z
T �x0M

Trs�G.P˛��1/s.x0; �/d�

D

Z
T �x0M

Trs�.P˛/s.x0; �/d�:
(3.24)

So

Trs.P˛X˛/ D .2�/�n
� 2
p
�1

�n
2

Z
M

Z
T �x0M

Trs�
�
P˛

X˛

s2j˛j

�
s
.x0; �/d�dx: (3.25)

Let s D 1
t
, then

Trs.P˛X˛/ D .2�/�n
� 2
p
�1

�n
2

Z
M

Z
T �x0M

Trs�.P˛X˛t2j˛j/ 1
t
.x0; �/d�dx:

(3.26)
So

 2t Trs.P˛X
˛/ D .2�/�n

� 2
p
�1

�n
2

Z
M

Z
T �x0M

Trs�.P˛X˛/ 1
t
.x0; �/d�dx: (3.27)

By taking the sum
P
˛ , we get (3.19). By Definitions 3.8 and Definition 3.5 in [9],

for the asymptotic pseudodifferential operator Pt , we have

�.Pt / D

C1X
lD0

t lpl.x; �; X/t ; (3.28)

so

�.Pt / 1
t
D

C1X
lD0

t lpl.x; �; X/; (3.29)

By (3.19) and (3.29), we get (3.20).
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Let �M be the Riemannian moment of X defined by �M .X/Y D �rYXM : Let
FMg .X/ D �M CR be the equivariant Riemannian curvature ofM . The equivariantbA-genus of the tangent bundle ofM is defined by

bA.FMg .X// D det

 
FMg .X/=2

sinh.FMg .X/=2/

! 1
2

:

Theorem 3.10. When 2k � dimM and X is small which means that kXMk is
sufficiently small, then for f j 2 C1G .M/,

lim
t!0

 tch2k.
p
tD;X/.f 0; : : : ; f 2k/ D

1

.2k/Š
.2�
p
�1/
�n=2

�

Z
M

f 0 ^ df 1 ^ � � � ^ df 2kbA.FMg .X//dVolM : (3.30)

Proof. In Theorem 3.9, let Pt D t2kf 0e��0t
2HX c.df 1/ � � � c.df 2k/e��2k t

2HX ,
then by Proposition 3.7, similarly to Lemma 3.13 in [9], we have Pt is an asymptotic
pseudodifferential operator. By (3.20) and taking the J -jet, we have

lim
t!0

 2t Trs.Pt /J D b0;J : (3.31)

By Theorem 2.12 in [26], we have

lim
t!0

 2t Trs.Pt /J D
1

.2k/Š
.2�
p
�1/
�n=2

�

Z
M

f 0 ^ df 1 ^ � � � ^ df 2kbA.FMg .X//JdVolM : (3.32)

By (3.31) and (3.32) and when J goes to infinity, we obtain

b0 D
1

.2k/Š
.2�
p
�1/
�n=2

Z
M

f 0 ^ df 1 ^ � � � ^ df 2kbA.FMg .X//dVolM : (3.33)

By (3.20) and (3.33), when t goes to zero, we get (3.30).

Lemma 3.11. The equality (3.23) holds.

Proof. Considering the equalities (70) and (71) in [23] (Note that these formulas hold
for any pseudodifferential operators defined by (3.22) and not only for asymptotic
pseudodifferential operators), let N D 0, then

�G.P�
�1/.x; �/ D �G.P /.x; �/�

�1
C r0.�/: (3.34)
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where r0.�/ is defined by

r0.�/ D

p
�1

.2�/n

nX
jD1

Z
T �x0M.y/

Z 1

0

@

@yj
a.� C sy/ds � yj ŒF.f  /�.y/dy; (3.35)

and the Fourier transform F and f  are defined by (7) and (8) in [23] respectively,
a is the symbol of P . By (0.2) in [17], we have the leading symbol of e�t2D2

is e�t2j�j
2

. As in (2.4), using the Duhamel principle, we expanse the operator Pt and
the leading symbol of Pt is the product of e�t

2j�j2 and a polynomial on � . Without
loss of generality, we assume a D e�j�j

2

. The following two well-known theorems
are necessary:

I. Let f .x; y/ be continues on the domain x � a; y � b and
R C1
b

f .x; y/dy

be uniformly convergent about x on any finite interval included in Œa;C1�

and
R C1
a

f .x; y/dx be uniformly convergent about y on any finite interval
included in Œb;C1�. We assume that the integral

R C1
b

Œ
R C1
a
jf .x; y/jdx�dy orR C1

a
Œ
R C1
b
jf .x; y/jdy�dx exists, thenZ C1

a

� Z C1
b

f .x; y/dy

�
dx D

Z C1
b

� Z C1
a

f .x; y/dx

�
dy D finite number:

(3.36)
II. There exists ˇ > 0, such that jf .x; y/j � F.x/ for any x > ˇ and y 2 I and

that
R C1
a

F.x/dx exists, then
R C1
a

f .x; y/dx is uniformly convergent.

By (3.35), we considerZ
T �x0M.�/

r0.�/d� D

p
�1

.2�/n

nX
jD1

Z
T �x0M.�/

Z
T �x0M.y/

Z 1

0

@a

@�j
j�Csysds

� yj ŒF.f  /�.y/dyd�: (3.37)

Since the Schwartz function ŒF.f  /�.y/ is integral on T �x0M.y/, we take some
estimates on the right hand side of (3.37) in the polar coordinates of T �x0M.�/ and
T �x0M.y/ and then we can verify that the right hand side of (3.37) satisfies the
conditions of Theorem I. Using

R
T �x0M.�/

@
@�j
Œe�j�j

2

�ˇ �d� D 0 and (3.37), we getR
T �x0M

r0.�/ D 0: Therefore we get (3.23).

Let

Ch.Im.p// D
1X
kD0

�
�

1

2�
p
�1

�k
1

kŠ
TrŒp.dp/2k�: (3.38)
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We have

Corollary 3.12. When X is small, then

Inde�X .DImp;C/ D .2�
p
�1/
�n=2

Z
M

bA.FMg .X//Ch.Imp/: (3.39)

Proof. Using the same discussions as those in [18], we have the homotopy property
of ch�.D;X/ for tD�X . So by (2.17), we have

Inde�X .DImp;C/ D hch�.tD�X /; ch.p/i ; (3.40)

where

ch2k.tD�X /.f 0; : : : ; f 2k/ WD t2k
Z
42k

Str
h
e�LXf 0e��0t

2.DC 14 c.X//
2

c.df 1/

� e��1t
2.DC 14 c.X//

2

� � � c.df 2k/e��2k t
2.DC 14 c.X//

2
i
dVol�2k ; (3.41)

In (3.40), let e�X D e�t2X and use . t /2 acting on (3.40), then we get

Inde�X .DImp;C/ D
Dech�.tD;X/; ch.p/E ; (3.42)

where

ech2k.tD;X/.f 0; : : : ; f 2k/ WD t2k Z
42k

Str
�
f 0e

��0t
2HX

t2 c.df 1/

� � � c.df 2k/e
��2k t

2HX

t2

�
dVol�2k : (3.43)

Since Inde�X .DImp;C/ is independent of t , taking the limit as t ! 0 in (3.42), we
get by Theorem 3.10 that

Inde�X .DImp;C/ D .2�
p
�1/
�n=2

Z
M

bA.FMg .X//Ch.Imp/dVolM : (3.44)
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4. The infinitesimal equivariant eta cochains

In this section, we prove the limit of truncated infinitesimal equivariant eta cochains
exists when J goes to infinity. By the Duhamel principle and (2.5), we have

kD�Xe
�utHXku�1

�

X
m�0

.ut/m
Z
4m

kD�X .1CD
2/�

1
2 kk.1CD2/

1
2 e�

�0
2 utD

2

kke�
�0
2 utD

2

k.u�0/�1

� kFX .1CD
2/�

1
2 kk.1CD2/

1
2 e�

�1
2 utD

2

kke�
�1
2 utD

2

k.u�1/�1

� � � kFX .1CD
2/�

1
2 kk.1CD2/

1
2 e�

�m
2 utD

2

kke�
�m
2 utD

2

k.u�m/�1d�

� kD�X .1CD
2/�

1
2 k.eut/�

1
2

X
m�0

.e�1utkFX .1CD
2/�

1
2 k
2/
m
2

� e
ut
2 .tre�

t
2D

2

/u
Z
4m

�
� 12
0 � � � �

� 12
m d�

� kD�X .1CD
2/�

1
2 k.ut/�

1
2 2e

ut
2 f1C ŒkFX .1CD

2/�
1
2 k
2e�1�ut�

1
2 g

� ekFX .1CD
2/
� 1
2 k
2�ut .tre�

t
2D

2

/u;

(4.1)

where Z
4m

�
� 12
0 � � � �

� 12
m d� D

�
mC1
2

�.m
2
C 1/

; (4.2)

and

�
mC1
2

�.m
2
C 1/

D
�
mC1
2

.m
2
/Š
; when m is even; (4.3)

�
mC1
2

�.m
2
C 1/

�
2�

m
2

.m�1
2
/Š
; when m is odd: (4.4)

Now letM be a compact oriented odd dimensional Riemannian manifold without
boundary with a fixed spin structure and S be the bundle of spinors on M . The
fundamental setup consists with that on page 2. Let Kt D

p
t .D C c.X/

4t
/, then

dKt
dt
D

1

2
p
t
DX

t
: For a0; : : : ; a2k 2 C1G .M/, we define the infinitesimal equivariant
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cochain ch2kX .Kt ;
dKt
dt
/ by the formula:

ch2kX
�
Kt ;

dKt

dt

�
.a0; : : : ; a2k/

D

2kX
jD0

.�1/j ha0; ŒKt ; a1�; : : : ; ŒKt ; aj �;
dKt

dt
; ŒKt ; ajC1�; : : : ; ŒKt ; a2k�it .X/:

(4.5)

If Aj .0 � j � q/ are operators on �.M; S.TM//, we define

hA0; : : : ; Aqit .X/ D

Z
4q

trŒe�LXA0e��0K
2
t A1e

��1K
2
t � � �Aqe

��qK
2
t �d�; (4.6)

where4q D f.�0; : : : ; �q/ j �0C � � � C �q D 1; �j � 0g is a simplex in Rq and LX
is the Lie derivative generated by X on the spinors bundle.

Formally, the infinitesimal equivariant eta cochain for the odd dimensional
manifold is defined to be an even cochain sequence by the formula:

�2kX .D/ D
1
p
�

Z 1
0

ch2kX
�
Kt ;

dKt

dt

�
dt; (4.7)

Then �0X .D/.1/ is the half of the infinitesimal equivariant eta invariant defined by
Goette in [19]. In order to prove that the above expression is well defined, it is
necessary to check the integrality near the two ends of the integration. Firstly, the
regularity at infinity comes from the following lemma.
Lemma 4.1. For a0; : : : ; a2k 2 C1G .M/, we have

ch2kX
�
Kt ;

dKt

dt

�
.a0; : : : ; a2k/ D O.t

� 32 /; as t !1: (4.8)

Proof. LetL0 be afixed large number. Then 1

�. 12 /

R L0
"

ch2kX .Kt ;
dKt
dt
/.a0; : : : ; a2k/dt

is well defined by Lemma 2.2 and (4.1). Similarly to Lemma 2.2 and (4.1), we know
that Lemma 3.5 in [26] holds when J goes to infinity. So 1

�. 12 /

R1
L0

ch2kX .Kt ;
dKt
dt
/dt

is well defined and Lemma 4.1 holds.

Next, we prove the regularity at zero. Let F� D D2
�X and cF� D HX � dtDX

where dt is an auxiliary Grassmann variable as shown in [8]. Then t tcF� D
tHX

t
� 2t

3
2dt dKt

dt
: Let

ch2k.cF�/.a0; : : : ; a2k/ D tk Z
42k

 t trŒa0e�t�0bF� ŒD; a1� � � � ŒD; a2k�e�t�2kbF� �d�;
(4.9)

ch2k.F�/.a0; : : : ; a2k/ D tk
Z
42k

 t trŒa0e�t�0HX ŒD; a1� � � � ŒD; a2k�e�t�2kHX �d�:

(4.10)
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By the Duhamel principle and dt2 D 0, we have

e�t�j tbF� D e�t�j tHX C Z 1

0

e�.1�a/t�j tHX
�
2t

3
2dt

dKt

dt

�
e�at�j tHXd.�ja/

D e�t�j tHX C 2t
3
2dt

Z �j

0

e�.�j��/t tHX
dKt

dt
e�t� tHXd�

(4.11)

By (4.5) and (4.9)–(4.11) and dt2 D 0, we get

ch2k.cF�/.a0; : : : ; a2k/
D ch2k.F�/.a0; : : : ; a2k/ � 2t

3
2 ch2kX

�
Kt ;

dKt

dt

�
.a0; : : : ; a2k/dt: (4.12)

Lemma 4.2. The following estimate holds

ch2kX
�
Kt ;

dKt

dt

�
� O.1/ when t ! 0: (4.13)

Proof. By (4.12), we only need to prove

ch2k.cF�/.a0; : : : ; a2k/ � ch2k.F�/.a0; : : : ; a2k/ D O.t
3
2 /dt: (4.14)

Let

QbF� D a0.cF� C @t /�1c.da1/ � � � c.da2q/.cF� C @t /�1; (4.15)

QF� D a0.F� C @t /
�1c.da1/ � � � c.da2q/.F� C @t /

�1: (4.16)

By using Lemma 8.4 in [24], we have

tq t Œa0e
�t�0bF� ŒD; a1� � � � ŒD; a2q�e�t�2qbF� �.x; y/ D t�q tKQbF� .x; y; t/I

(4.17)
tq t Œa0e

�t�0HX ŒD; a1� � � � ŒD; a2q�e
�t�2qHX �.x; y/ D t�q tKQF� .x; y; t/:

(4.18)

So we only need to prove

t�q t tr
h
KQbF� .x; x; t/ �KQF� .x; x; t/i D O.t 32 /dt: (4.19)

By the trace property, we have

t�q t tr
h
KQbF� .x; x; t/ �KQF� .x; x; t/i

D t�q t tr
h
KQ

h�bF�.h�/�1 .x; x; t/ �KQ�HX��1 .x; x; t/i : (4.20)
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By (3.15), (3.18) and (3.24) in [26] and dt2 D 0where we use dt instead of z in [26],
we have

t�q t

h
Q
h�bF�.h�/�1 �Q�HX��1i

D �t�qdt t
�
a0.@t C �HX�

�1/�1u.@t C �HX�
�1/�1c.da1/ � � �

� � � c.da2q/.@t C �HX�
�1/�1 C � � � C a0.@t C �HX�

�1/�1 � � �

� � � c.da2q/.@t C �HX�
�1/�1u.@t C �HX�

�1/�1
�
: (4.21)

By OG.u/ � 0 and OG..@t C �HX��1/�1/ D �2, we have

OG
�
.@t C �HX�

�1/�1u.@t C �HX�
�1/�1c.da1/ � � �

� � � c.da2q/.@t C �HX�
�1/�1

�
D �2q � 4; (4.22)

which has odd Clifford elements. When we drop off the truncated order J in
Lemma 2.9 in [26] and consider the convergent series on X as in Definition 3.2, we
know that Lemma 2.9 in [26] holds for our operator in (4.22). By (4.20)–(4.22) and
Lemma 2.9 1) in [26] for j D n and m D �2q � 4, we get (4.19).

Remark. Similarly to Proposition 1.2 in [28], We use the symbol calculus about the
connectionrX in Section 3 instead of the Getzler symbol calculus in Proposition 1.2
in [28], then we can give another proof of Lemma 4.2.

Again Proposition 3.8 in [26] holds, we have
Proposition 4.3. Assume that D is invertible with � being the smallest positive
eigenvalue of jDj and kdpk < �; then the pairing h��X .D/; ch�.p/i is well defined.

We also have the following theorem.
Theorem 4.4. Assume D is invertible and kdpk < � where � is the smallest
eigenvalue of jDj, then we have

1

2
�X .p.D ˝ Ir/p/ D h�

�
X .D/; ch�.p/i; (4.23)

where �X .p.D ˝ Ir/p/ is the Goette’s infinitesimal equivariant eta invariant.

Proof. We still use the same notations and discussions after Proposition 3.8 in [26].
The difference is that we add  t in the definition of A. That is, let A D d.u;s;t/ C

 t eD�X be a superconnection on the trivial infinite dimensional superbundle with the
base Œ0; 1� � R � .0;C1/ and the fibreH ˝ Cr ˚H ˝ Cr: Then we have

A2 D t tD2�X;u � s
2=4 � .1 � u/t

1
2 s�ŒD; p�C ds�

�
p �

1

2

�
C t

1
2du.2p � 1/ŒD; p�C

dt

2t
1
2

 tDX;u: (4.24)
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Since we prove the regularity at zero, we can take " D 0 in (3.41)–(3.45) in [26]. By
the following lemma, Theorem 4.4 can be proved.

Lemma 4.5. Let Du D D C u.2p � 1/ŒD; p� for u 2 Œ0; 1�. We assume that D be
invertible and kdpk < �, then we have �X .D0/ D �.D1/.

Proof. By kdpk < �, then Du D D C u.2p � 1/ŒD; p� is invertible for u 2 Œ0; 1�.
Similar to the discussions of Proposition 4.4 in [28], the infinitesimal equivariant
eta invariant of Du is well defined. So �X .Du/ is smooth. Let A D .2p � 1/dp.
Then by the definition of the infinitesimal equivariant eta invariant and the Duhamel
principle, we have

d

du
�X .Du/ D

1
p
�

Z C1
0

trŒe�XAe
�tD2
�Xt ;u �d

p
t C L; (4.25)

where

L D �
t
1
2

2
p
�

Z C1
0

Z 1

0

tr
�
e�XDX

t ;u
e
�.1�s/tD2

�Xt ;u ŒD
�Xt ;u

; A�Ce
�stD2

�Xt ;uds

�
dt:

(4.26)
By the trace property and direct computations, then

@

@t

�
p
tDu C

c.X/

4
p
t

�2
D
1

2

�
Du C

c.X/

4t
;Du �

c.X/

4t

�
C

; (4.27)

Z 1

0

tr
�
Ae
�.1�s/tD2

�Xt ;u ŒD
�Xt ;u

;DX
t ;u
�Ce
�stD2

�Xt ;u

�
ds

D

Z 1

0

tr
�
DX

t ;u
e
�.1�s/tD2

�Xt ;u ŒD
�Xt ;u

; A�Ce
�stD2

�Xt ;u

�
ds: (4.28)

By using the Duhamel principle and the Leibniz rule and (4.26)–(4.28), we get

@

@u
 t trŒDX;ue�t.D

2
�X;u

CLX /�d
p
t D

@

@t
trŒt

1
2 e�XAe

�tD2
�Xt ;u �dt: (4.29)

So
d

du
�X .Du/ D

1
p
�
trŒt

1
2 e�XAe

�tD2
�Xt ;u �

ˇ̌
C1
tD0 : (4.30)

AsDu is invertible, then

lim
t!C1

trŒt
1
2 e�XAe

�tD2
�Xt ;u � D 0: (4.31)
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Using Lemma 2.9 in [26] for j D n and m D �1, similar to the discussions on
Line 14 in [28, p. 164], we have

lim
t!0

trŒt
1
2 e�XAe

�tD2
�Xt ;u �

D c0

Z
M

bA.FMg .X//tr

(
.2p � 1/.dp/exp

�p
�1

2�
.A0 ^ A0 C dA0/

�)
D 0;

(4.32)

where A0 D u.2p � 1/dp. Then by (4.30)–(4.32), Lemma 4.5 is proved.

Let N be an even-dimensional compact manifold with the boundary M . We
endow N with a metric which is a product in a collar neighborhood of M . Denote
by D .DM / the Dirac operator on N .M/. Let C1� .N / D ff 2 C1.N / j f is
independent of the normal coordinate xn near the boundary g:
Definition 4.6. The infinitesimal equivariant Chern–Connes character on N , �X D
f�0X ; �

2
X ; : : : ; �

2q
X � � � g is defined by

�
2q
X .f 0; f 1; �; f 2q/ WD ��

2q
X .DM /.f

0
jM ; f

1
jM ; �; f

2q
jM /

C
1

.2q/Š.2�
p
�1/q

Z
M

bA.FMg .X//f 0df 1 ^ � � � ^ df 2q; (4.33)

where f 0; f 1; �; f 2q 2 C1� .N /.
Similarly to Proposition 4.2 in [27], we have

Proposition 4.7. The infinitesimal equivariant Chern–Connes character is b � B
closed (for the definitions of b; B , see [15]). That is, we have

b�
2q�2
X C B�

2q
X D 0: (4.34)

By Proposition 4.3, we have
Proposition 4.8. Suppose that DM is invertible with � being the smallest positive
eigenvalue of jDM j. We assume that kd.pjM /k < �, then the pairing h��X ; ch�.p/i
is well defined.

We let C1.M/ D M � .0; 1�; eN D N [M�f1g C1.M/ and U be a collar
neighborhood of M in N . For " > 0, we take a metric g" of eN such that on
U [M�f1g C1.M/

g" D
dr2

"
C r2gM :

Let S D SC ˚ S� be spinors bundle associated to .eN; g"/ and H1 be the set
f� 2 �.eN;S/ j � and its derivatives are zero near the vertex of coneg: Denote by
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L2c.
eN;S/ the L2-completion ofH1 (similarly define L2c.eN;SC/ and L2c.eN;S�/).

Let
D" W H

1
! H1I DC;" W H

1
C ! H1� ;

be the Dirac operators associated with .eN; g"/ which are Fredholm operators for
the sufficiently small ". By kd.pjM /k < �, then pDMp is invertible. Recall the
Goette’s infinitesimal equivariant index theorem for the twisting bundle Imp with the
connection pd in [19] that

Inde�X .pDC;"p/ D
1X
rD0

.�1/r

rŠ.2�
p
�1/r

Z
N

bA.FNg .X//TrŒp.dp/2r �� 12�X .pDMp/:
(4.35)

By the Stokes theorem and the trace property and p.dp/2 D .dp/2p, we haveZ
M

bA.FMg .X//trŒpM .dMpM /2k�1� D 0: (4.36)

By LX .p/ D �Xd.p/ D 0, then �X Œp.dp/2k�1� D 0. By the Stokes theorem and
(4.36), we getZ

N

bA.FNg .X//trŒ.dNpN /2k� D Z
N

.d C �X /
hbA.FNg .X//trŒp.dNpN /2k�1�i

D

Z
M

bA.FMg .X//trŒpM .dMpM /2k�1� D 0:

(4.37)

By Theorem 4.4 and Definition 4.6 and (2.14) and (4.37), we get
Theorem 4.9. Suppose that DM is invertible with � being the smallest positive
eigenvalue of jDM j. We assume that kd.pjM /k < � and p 2Mr�r.C

1
� .N //, then

Inde�X .pDC;"p/ D h��X .D/; ch�.p/i: (4.38)

5. The infinitesimal equivariant Chern–Connes character for a family of Dirac
operators

In this section, we extend Sections 2 and 3 to the family case. Let us recall the
definition of the equivariant family Bismut Laplacian. LetM be a nCq dimensional
compact connectedmanifold andB0 be a q dimensional compact connectedmanifold.
Assume that � W M ! B0 is a fibration and M and B0 are oriented. Taking the
orthogonal bundle of the vertical bundle TZ in TM with respect to any Riemannian
metric, determines a smooth horizontal subbundle THM , i.e. TM D THM ˚TZ.
Recall thatB0 is Riemannian, so we can lift the Euclidean scalar product gB0 of TB0
to THM . And we assume that TZ is endowed with a scalar product gZ . Thus we
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can introduce a new scalar product gB0 ˚ gZ in TM . Denote by rL the Levi-Civita
connection on TM with respect to this metric. Let rB0 denote the Levi-Civita
connection on TB0 and still denote by rB0 the pullback connection on THM . Let
rZ D PZ.r

L/, where PZ denotes the projection to TZ. Let r˚ D rB0 ˚ rZ
and ! D rL � r˚ and T be the torsion tensor of r˚. Now we assume that the
bundle TZ is spin. Let S.TZ/ be the associated spinors bundle andrZ can be lifted
to give a connection on S.TZ/. LetD be the tangent Dirac operator.

Let G be a compact Lie group which acts fiberwise on M . We will consider
that G acts as identity on B0. We assume that the action of G lifts to S.TZ/ and
the G-action commutes withD. Let E be the vector bundle ��.^T �B0/˝ S.TZ/.
This bundle carries a natural action m0 of the degenerate Clifford module Cl0.M/.
Define the connection for X 2 g whose Killing vector field is in TZ,

r
E;�X;˚

WD��rB0 ˝ 1C 1˝rS;�X ; (5.1)
!.Y /.U; V / WDg.rLY U; V / � g.r

˚

Y U; V /; (5.2)

r
E;�X;0
Y WDr

E;�X;˚
Y C

1

2
m0.!.Y //; (5.3)

for Y;U; V 2 TM . Then the equivariant Bismut superconnection acting on
�.M;�� ^ .T �B0/˝ S.TZ// is defined by

B�X D

nX
iD1

c.e�i /r
E;�X;0
ei

C

qX
jD1

f �j ^ r
E;�X;0
fj

I B�X D B C
1

4
c.X/: (5.4)

where e1; : : : ; en and f1; : : : ; fq are orthonormal basis of TZ and TB0 respectively,
and B is the Bismut superconnection defined by

r
E;˚
WD��rB0 ˝ 1C 1˝rS I (5.5)

r
E;0
Y WDr

E;˚
Y C

1

2
m0.!.Y //I (5.6)

B D

nX
iD1

c.e�i /r
E;0
ei
C

qX
jD1

c.f �j /r
E;0
fj
: (5.7)

Define the equivariant family Bismut Laplacain as follows:

HB;X D .B
�X /2 C LEX ; (5.8)

where LEX is the Lie derivative induced by X on the bundle E. Then

HB;X D D
2
C FC C eFC; (5.9)

whereD2
�X D D

2CFC and eFC D HB;X�D2
�X is a first order differential operator

along the fibre with coefficients in ��1.B0/.
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Definition 5.1. The infinitesimal equivariant family JLO cochain ch2k.B;X/ can be
defined by the formula for f 0; : : : ; f 2k in C1G .M/:

ch2k.B;X/.f 0; : : : ; f 2k/ WD
Z
42k

Str
h
f 0e��0HB;X c.df 1/e��1HB;X � � �

� � � c.df 2k/e��2kHB;X
i
dVol�2k ; (5.10)

where Str is taking the trace along the fibre.
Similarly to Section 2, we can prove that (5.10) iswell defined and hch�.B;X/; chpi

is convergent by the following lemma.
Lemma 5.2. For any 1 � u > 0, we have:

ke�uHB;Xku�1 � C0e
kFX .1CD

2/
� 1
2 k�u.trŒe�

D2

2 �/u; (5.11)

where the constant C0 is independent of u.

Proof. By (5.10) and the Duhamel principle, we have

e�uHB;X D e�uHX C

dimB0X
r>0

Ir ; (5.12)

where
Ir D

Z
4r

e�s0uHXeFCe�s1uHX � � �eFCe�sruHXds: (5.13)

In (4.1), we use eFC and su instead of D�X and u respectively and let t D 1, then
we have

keFCe�suHXk.su/�1 � 2.su/� 12 keFC.1CD2/�
1
2 ke

su
2

� f1C ŒkFX .1CD
2/�

1
2 k
2e�1�su�

1
2 g

� ekFX .1CD
2/
� 1
2 k
2�su.tre�

1
2D

2

/su: (5.14)

By Lemma 2.2 and (5.12)–(5.14) and the Hölder inequality, we get Lemma 5.2.

Similarly to Propositions 4.11 and 4.12 in [3], we have
Proposition 5.3. (1) The infinitesimal equivariant family Chern–Connes charac-

ter is closed:
.B C b C dB0/.ch

�.B;X// D 0: (5.15)

(2) Let B� D B�X C �V and V is a bounded operator which commutes with
e�X , then there exists a cochain ch�.B� ; X; V / such that

d

d�
ch�.B� ; X/ D �Œb C B C dB0 �ch

�.B� ; X; V /: (5.16)
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By taking V D .2p � 1/ŒB; p�, we get
Theorem 5.4. The following index formula holds in the cohomology of B0

Che�X ŒInd.DImp;C;z/� D hch�.B;X/; ch.p/i : (5.17)

Let �t be the rescaling operator on �.B0/ defined by dyj !
dyjp
t
for t > 0. By

the method in Section 4 in [26], similarly to Theorem 2.12 in [26], we get
Lemma 5.5. When 2k � n and X is small, then for f j 2 C1G .M/,

lim
t!0

�t tch2k.
p
tB;X/.f 0; : : : ; f 2k/J

D
1

.2k/Š
.2�
p
�1/
�n=2

Z
Z

f 0 ^ df 1 ^ � � � ^ df 2kbA.FZg .X//J : (5.18)

Extending Theorem 3.9 to the family case, we have by Lemma 5.5 by
Theorem 5.6. When 2k � n and X is small, then for f j 2 C1G .M/,

lim
t!0

�t tch2k.
p
tB;X/.f 0; : : : ; f 2k/

D
1

.2k/Š
.2�
p
�1/
�n=2

Z
Z

f 0 ^ df 1 ^ � � � ^ df 2kbA.FZg .X//: (5.19)

By Theorems 5.4 and 5.6 and the following homotopy property, similarly to
Corollary 3.11, we have
Corollary 5.7. When X is small, then

Che�X ŒInd.DImp;C;z/� D .2�
p
�1/
�n=2

Z
Z

bA.FZg .X//Ch.Imp/: (5.20)

Let Bt D
p
t�t t .B

�X / and Ft D B2t . Then we have the homotopy formula:
Proposition 5.8. There is a cochain ch.Bt ; dBtdt ; X/ such that the following formula
holds

dch.Bt ; X/
dt

D �.b C B C dB0/ch
�
Bt ;

dBt

dt
; X
�
: (5.21)

Proof. We know that Bt is a superconnection on the infinite dimensional bundle
C1.M;E/ ! B0 which we write E ! B0. Let fB0 D B0 � RC, and eE
be the superbundle ��E over fB0, which is the pull-back to fB0 of E . Define a
superconnection bB oneE by the formula

.bBˇ/.x; t/ D .Btˇ.�; t //.x/C dt ^ @ˇ.x; t/
@t

: (5.22)

The curvature bF of bB is bF D Ft �
dBt

dt
^ dt; (5.23)



402 Y. Wang

where Ft D B2t is the curvature of Bt . By the Duhamel principle, then

e�bF D e�Ft C �Z 1

0

e�uFt
dBt

dt
e�.1�u/Ftdu

�
^ dt: (5.24)

Let f 0; : : : ; f 2k be in C1G .M/, then ŒbB; f j � D ŒBt ; f
j �. We replace Kt in (4.5)

and (4.6) by the above Bt , then we define the cochain ch.Bt ; dBtdt ; X/. So by (5.24),
we get on C1G .M/ that

ch.bB;X/ D ch.Bt ; X/C ch
�
Bt ;

dBt

dt
; X
�
dt: (5.25)

Similarly to (5.15), we have

.b C B C deB0/ch.bB;X/ D 0I .b C B C dB0/ch.Bt ; X/ D 0: (5.26)

By (5.25) and (5.26), we get Proposition 5.8.
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