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Abstract. In this paper, we prove that infinitesimal equivariant Chern—Connes characters are
well defined. We decompose an equivariant index as a pairing of infinitesimal equivariant
Chern—Connes characters with the Chern character of an idempotent matrix. We compute the
limit of infinitesimal equivariant Chern—Connes characters when the time goes to zero by
using the Getzler symbol calculus and then extend these theorems to the family case. We also
prove that infinitesimal equivariant eta cochains are well defined and prove the noncommutative
infinitesimal equivariant index formula for manifolds with boundary.
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1. Introduction

The Atiyah—Bott—Segal—Singer index formula is a generalization of the Atiyah-Singer
index theorem to manifolds admitting group actions. In [6,22,24], various heat
kernel proofs of the equivariant index theorem have been given and each method
has its own advantage. For manifolds with boundary, the equivariant extension
of the Atiyah—Patodi—Singer index theorem was given by Donnelly in [13]. In
the equivariant Atiyah—Patodi—Singer index theorem, the equivariant eta invariant
appears and the regularity of the equivariant eta invariant was proved by Zhang
in [29]. An infinitesimal version of the equivariant index formula was established
in [6] and a direct heat kernel proof was given by Bismut in [7]. The infinitesimal
equivariant index formula for manifolds with boundary was established in [19] with
the introduction of the infinitesimal equivariant eta invariant.

The counterpart of the index formula in the noncommutative geometry is the
computation of the Chern—Connes character [11, 18,20]. The JLO character was
computed in [12] and [9] by using the Getzler symbol calculus in [17]. In [2, 10]
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and [24], these authors gave the computations of the equivariant JLO characters
associated to a G-equivariant 8-summable Fredholm module. In [26], we defined the
truncated infinitesimal equivariant Chern—Connes characters and computed the limit
of the truncated infinitesimal equivariant Chern—Connes characters when the time
goes to zero.

Compared with [26], there are several improvements in the present paper. In (2.2)
in [26], we defined truncated infinitesimal equivariant Chern—Connes characters. It
is only well defined when it is a polynomial of Lie algebra elements. In this paper,
we drop off the truncated order J (see (2.2)) and this consequently requires much
better estimates (see Lemma 2.2). As in [18], we decompose an equivariant index
as a pairing of infinitesimal equivariant Chern—Connes characters with the Chern
character of an idempotent matrix. Compared with Corollary 2.13 in [26], we drop
off the limit on the right hand side of Corollary 2.13. Next we compute the limit
of infinitesimal equivariant Chern—Connes characters when the time goes to zero
by using the Getzler symbol calculus. Since we have dropped off the truncated
order, (2.15) in [26] does not hold for our infinitesimal equivariant Chern—Connes
characters. So we can not directly apply the method of Theorem 2.12 in [26].
Instead, we first apply the Getzler symbol calculus to prove the existence of the
limit of infinitesimal equivariant Chern—Connes characters when time goes to zero
(Theorem 3.9) and then use Theorem 2.12 in [26] to get the result. On the direction,
in Section 3 in [26], we define the truncated infinitesimal equivariant eta cochains.
Again in this paper we drop off the truncated order and then give a proof of the
regularity at zero of infinitesimal equivariant eta cochains by using the method
in [24]. That is, we prove that (3.5) in [26] holds for any k. This allows us to
establish the noncommutative infinitesimal equivariant index formula for manifolds
with boundary (see Theorem 4.9). In this paper, we also define family infinitesimal
equivariant Chern—Connes characters and give the family generalization of the above
theorems which does not appear in [26].

This paper is organized as follows: In Section 2, we prove that infinitesimal
equivariant Chern—Connes characters are well defined. Then we decompose the
equivariant index as a pairing of infinitesimal equivariant Chern—Connes characters
with the Chern character of an idempotent matrix. In Section 3, We compute the
limit of infinitesimal equivariant Chern—Connes characters when the time goes to
zero by using the Getzler symbol calculus. In Section 4, we prove that infinitesimal
equivariant eta cochains are well defined and prove the noncommutative infinitesimal
equivariant index formula for manifolds with boundary. In Section 5, we extend
results in Sections 2 and 3 to the family case.
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2. The infinitesimal equivariant JLO cocycle and the index pairing

Let M be a compact oriented even dimensional Riemannian manifold without
boundary with a fixed spin structure and S be the bundle of spinors on M. Denote
by D the associated Dirac operator on H = L2?(M;S), the Hilbert space of
L?-sections of the bundle S. Let c(df) : S — S denote the Clifford action
with f € C*®(M). Suppose that G is a compact connected Lie group acting
on M by orientation-preserving isometries preserving the spin structure and g is
the Lie algebra of G. Then G commutes with the Dirac operator. For X € g,
let Xpr(p) = %h:oe_’Xp be the Killing field induced by X. Let c(X) denote
the Clifford action by Xjs, and £x denote the Lie derivative respectively. Define
g-equivariant modifications of D and D? for X € g as follows:

1 1
Dy :=D— Zc(X); Hy := D>y +Lx =(D + Zc(X))2 +L&x. (1)

Then Hy is the equivariant Bismut Laplacian. Let C[g*] denote the space of
formal power series in X € g and ¥, be the rescaling operator on C[g*] which is
defined by X — % fort > 0.

Let

A=CEM)={feC®M)| f(g-x)=f(x).g€ G.xe M},

then the data (4, H,D + ic(X ), G) defines a non selfadjoint perturbation of
finitely summable (hence 6-summable) equivariant unbounded Fredholm module
(A,H,D,G) in the sense of [21] (for details, see [10] and [21]). For
(A,H,D + %C(X), G), the infinitesimal equivariant JLO cochain ch®* (D, X) can
be defined by the formula:

Ch2k(D, X)(fo, o f2k) — /A Str |:e—2X fOe—CTO(D-{-%c(X))ZC(dfl)
2k

L DR (g2 )pm02n <D+%C<X)>2] dVola,,. (2.2)

where Ayr = {(0¢,...,02k) | 0o + -+ 02 = 1} is the 2k-simplex. For an integer
J > 0, denote by C[g*]s the space of polynomials of degree < J in X € g and let
()s : Clg*] — C[g*]s be the natural projection. Fix basis ey, ..., e, of g and let
X = Xx1e1+---xpe,. A J-degree polynomial on X is namely a J-degree polynomial
on xi, ..., xp. Now we prove that ch®* (D, X)(f°, ..., f2¥) is well defined.

Let H be a Hilbert space. For ¢ > 0, denote by |||, the Schatten p-norm on the
Schatten ideal L?. Let L(H ) denote the Banach algebra of bounded operators on H .

Lemma 2.1 ([25]). (i) Tr(AB) = Tr(BA),for A, B € L(H)and AB, BA € L.
(ii) For A € L', we have

ITe(A)| = Al 141 = 141,
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(iii) For A € LY and B € L(H), we have
[ABl, < IBIIIAll,, 1BAl, < IBIIIAll,-

(iv) (Holder inequality) If 1 = % + é’
AB € L" and | AB||, < [|All,[|Bll,-

Let Hy = D? + Fx, where Fyx is a first order differential operator with
degree > 1 coefficients depending on X.

p.q.r >0, A e LP, B e LY, then

Lemma 2.2. Forany 1 >u > 0,¢ > 0, we have:

le ™ Hx |1 < 2e3{1 + [|(1 + D)2 Fx| e~ wur]?}

- N+D2) 72 FxPetaur (1 =82 (9 3

Proof. By the Duhamel principle, it is that

— 2 — 2
Z(_u[)m/ e voutD Fye viutD
A

m=>0 m

—utH
||€ u X”u—1 =

. Fy .- vm—1utD? pp—vmutD? ) 2.4)

u—1

Also || (—ut)™ fAm e—voutDzer—vlutD2FX . "e_vm_lutDzFXe_vmszdv”u—l is
continuous and bounded by (2.7) in [26]. By the measure of the boundary of A,
being zero, we can estimate (2.4) in the interior of A, thatis v; > 0. It holds that

v 1—v;ut
le= P Fy || < (vjut) e~ 2 ||(14+ D> "2 Fx], 2.5)

where we use that Fy is a first order differential operator and the equality

—ut

sup{(1 + x)%e_%} = (ut)_ée_l 2, (2.6)

By the Holder inequality, (2.4) and (2.5), the conditions that 0 < u < 1 and
vo+ -+ Um—1 <1, we have

e Hx 1 < e2 Y e Fn (1 + D)2 Fx "

m=>0
-1 1 tD?
/ Vo~ v, du(tfe” 27 DY (2.7)

It holds that (see line 7 in [3, p. 21])

oS ki
Vo "'Um_ldU = —m+1) (28)
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By (x+1) =xT(x).T'(n) = (n —)!and T (3) = /7, then [' (L) = (21)!

when m is odd; F(mTH) = %E when m is even. By (2.8) and

2m — D!

e TR 2.9)

we know that the series (2.7) is absolutely convergent. When m is odd, then

nt _ 2n# (2.10)
F1\ — (m+1y" .
ST (5!
When m is even, then
T2 273
(2.11)

(L) = (@

By (2.7), (2.8), (2.10) and (2.11), we have

1 2 1 m
_ : 1+ D) 2Fx||“e 'nut)2
e Sze;[z (10 + D>~ ¥ F| )

m even (%)!
(I + DY) 2 Fx|Petmun | ip2
+ ) (=), (rle™ "2 D%, (2.12)
m odd 2 :
Therefore, (2.3) can be obtained. O

By (2.2), (2.3) and the Holder inequality as well as Vola,, = ﬁ, fort =1
and o7 < 1, we get

2%k
2% 0 2% 1 0 ;
lch** (D, X)(f°,..., f*9)] < _(2k)!”f ||(j|=|1||df1||)

‘e (1 + (I(1 + D)% Fyx [Pe m) HeH!
_e||(1+DZ)_%Fxllze‘ln(tr[e—DTz]), (2.13)

Thus, ch?* (D, X) is well defined. Recall that an even cochain {®,,} is called entire
if >, [|®anlln!z" is entire, where | ®| := sup||fj||151{|fb(f0,f1,...,ka)|}.
By (2.13), then {ch?*(D, X)} is an entire cochain. Let p € M,(C®(M)) and
p = p? = p* and p(gx) = p(x). Define the Chern character of p by (see [18])

@i)!

ch(p) := Tr(p) + Z(—l)’ﬁTr(zp —1,p,.... D)t (2.14)
l !

By (2.13), {ch*(D, X), ch(p)) is convergent.
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Similarly to Theorem A in [18], we have

Proposition 2.3. (1) The infinitesimal equivariant Chern—Connes character is
closed:

(B + b)(ch*(D, X)) = 0. (2.15)

(2) Let D =D +tVand D_x . = D_x + tV and V is a bounded operator
which commutes with e=X, then there exists a cochain ch* (D¢, X, V) such
that

d
d—ch*(Dr, X) = —(B + b)ch*(D,, X, V). (2.16)

T
By the Serre-Swan theorem, we denote the vector bundle over M with the fibre
p(x)(C") at x € M by Imp. Let Dinp be the Dirac operator twisted by the

bundle Imp. By Proposition 2.3, (B + b)ch(p) = 0 and Proposition 8.11 in [4], we
have by taking V = (2p — 1)[D, p] that (see Section 3 in [18])

Theorem 2.4. The following index formula holds
Ind,—x (Dimp,+) = (ch*™(D, X), ch(p)). (2.17)

In Theorem 2.4, X is unnecessarily small.

3. The computations of infinitesimal equivariant Chern—Connes characters

In this section, we will compute infinitesimal equivariant Chern—Connes characters
by Theorem 2.12 in [26] and the Getzler symbol calculus in [17] and [9]. Recall the
Getzler symbol calculus in [17] and [9]. Let E be a vector bundle over the compact
manifold M and 7 : T*M — M be the natural map and E° = 7*(Hom(E, E)) be
the pull-back of the bundle 7 *(Hom(E, E)) to a bundle over T*M.

Definition 3.1. A section p € E? is called a symbol of order / if for every multi-index
« and B we have the estimates:

II3Z3§p(x,E)II < Cop(1 + [E])"7 181, 3.1

We denote by X/ (E) the symbols of order /.

By the representative theorem of the Clifford algebra C[(T* M) ~ Hom(S(TM))
and the isomorphism CI(T*M) ~ A(T* M), note a map o defined by

o : Hom(S(TM) ® E) ~ HomE ® CI(T*M) ~ HomE @ A(T*M), (3.2)

and @ is the inverse of 7. Let L = 7*(Hom(E) ® A(T*M)) ® C[g*] and X € g.
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Definition 3.2. A section p € L is called a s-symbol of order / if

dim M
- Z (Z pj,axa) ®w;, (3.3)
J=0 "la|>0

where w; € Q/(M), pja € TTPNE) and 350l pja(x. 61X s
convergent. We denote the collection of s-symbol of order / by S/ (E, X).

Let xo be a fixed point in M and Tx,M be the tangent space and exp be
the exponential map respectively. Let & be a function that is identically one in
a neighborhood of the diagonal of M x M such that the exponential map is a
diffeomorphism on the support of 4. Let (xg, x) € supp(h). Let

T(x0,%) : (S(TM) ® E)xy — (S(TM) ® E)x

be a parallel translation about VS(TM)®E
s € I'(S(TM) ® E), then we define

Sxo(¥) = h(xo,x)T(x, Xx0)5(x). (3.4)

We write 5y, (Y') instead of Sy, (exp,, Y ).

Let Oy be the one-form associated with Xj3s which is defined by 0x(Y) =
g(X,Y) for the vector field Y. Let VSX be the Clifford connection VS — %GX on
the spinors bundle and Ay be the Laplacian on S(7TM) associated with VS-X . Let
w(X)() = VIMX)y LetU = {x € TyyM | |x|| < &}, where ¢ is smaller than the
injectivity radius of the manifold M at x¢. Define o : U x g — C via the formula

along the unique geodesic from xg to x. If

1 1
ax(x) = —7 / W(R)Ox)(tx)~"dt. p(X.x) = ¥, (3.5)
0
where R = Zl_l Xi a . Then p(X,0) = 1. Recall [4, Lemma 8.13] that the
following identity holds
Hy = —g' (x)(vaX Zr Vak) M (3.6)

where rjs is the scalar curvature and F{‘j is the connection coefficient of VL£.
Let 7% (xg,x) : (S(TM)® E)x, — (S(TM) ® E), be parallel translation about

VS®E.X along the unique geodesic from xo to x. If s € I'(S(TM) ® E), then we
define
?fo (x) = h(xg, %)% (x, x0)s(x). 3.7
Then
X (X) = S (X). (3.8)

where p = p(X, x) is defined by (3.5).
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Definition 3.3. Let p € SX(E,X)ands € ['(S(TM) ® E), then we define

6(p)(s)(x0) = / eVTIYEG(p) (xo, £, X)5K (V)d YdE, (3.9)

TxoMXT¥ M

Remark. The operator 6(p) is well defined since » ), 5ol P, (x,§)[[X*| and
elex ™l are convergent. The operator 6(p) depends on the choice of the cut off
function #, but the result does not depend on the cut off function for computations
of infinitesimal equivariant Chern—Connes characters. We denote by Op(E, X) all
such operators with smoothing operators.

Definition 3.4. Givens € I'(S(TM)® E), define Efo (x) = h(xo, x)7X (x0, x)s(x0)
and 5y, (x) = h(xo,x)r(xo,x)s(xo),thenEfo(x) = p 15y, (x). Let P € Op(E, X)
ands € I'(S(TM) ® E). Define 6(P) € End(E),, ® QM) ® C[g*] by

0 (P)(xo0. 6. X) = 5Py (e” W0 OHEX (1)), (3.10)

Lemma 3.5. Let P = ), Po X* € Op(E, X). If D I Pall1|X%] is convergent,
then o (P) is convergent.

Proof. Since ) || Pull;|X*| and elex ™ are convergent, this comes from Defi-
— —1

nition 3.4 and |eﬁ<exPx0 (y)’g>| = 1 and |h(x¢,x)| < 1 and 7(xp,x) being an

isometry. 0

Lemma3.6. Let Y =) c¢;0;, Z =) d;0j withc;, dj € R. we have

(V) (x,8) = V=1(Y,&),, G.11)
O(VEVE.E) =~ (VEZE) + 5 (RE 2000 fE A 1 4 L (0¥, 2),
(3.12)

where f* is the dual base of d.

Proof. By Definition 3.4, We have

—1{expx] R —1—

o (V) (x0.8) = o[V (O 15 ())lymye B13)

By
1 _ _
= ZGX)BA(,O Ylemro = 0 Vi (Fxp (¥)|xmxo = 0. (3.14)
J

similarly to the computations of Example 1 in [9], we get (3.11). We know that
pVEVE ™ = pV¥ p~1pVE p~l. By the appendix Il in [1], we have
1
4

Vy VzSxo (M)ly=xo = = (REY. Z2)3k. 3;) 5 A fls(x0). (3.15)
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In the trivialization of S(T'M), the conjugate p(X, x) (Vgi’x)p(X, x)~ ! is given by
Lemma 8.13 in [4] which is

pX TS5 p(X, 0™ = 0+ 5 3 (R 0))ea, en)eea)clen)n”

j.a<b

OO + Y fr@eteelen) + g + (i), X), (.16)
j<k

where fij(x) = O(x*). gi(x) = O(x|), and h;i(x) = O(x[*). By (3.15)
and (3.16), similarly to the computations of Example 2 in [9], we have (3.12). O

Proposition 3.7. The following equality holds

1
o(Hy) = |E]* + M (3.17)

The operator t*> Hy is an asymptotic pseudodifferential operator (see Definition 3.5

in [9]).

Proof. By Lemma 3.6 and (3.6) and g%/ (xo) = §¥, Flkj (xo) = 0 and RE(Y,Y) =
(/,LX (Y), Y) = 0, we get Proposition 3.7. O

Definition 3.8. If p(x, £, X) € SI(E, X), then

dim M

p(xEX)= > (Z p,,a(x,zs)tz'“'xw) ® w;t’, (3.18)

J=0 "la|>0

Lety;: X — % be the rescaling operator on the Lie algebra.
Theorem 3.9. For P =) Py, X* € OP(SX™°(E, X)) andt > 0, then

21 Py = (22 ) 1
2Tr(P) = (27) (ﬂ) fM/*MTrSU(P)t(xO,E)dde. (3.19)

X0

If P = P, and Py is an asymptotic pseudodifferential operator and o (P;)(x, €) tends
to zero when |&| tends to infinity, then

Y7 Tes(Py) = bo + O(1), (3.20)
where bg is a constant.

Proof. By Theorem 3.7 in [17], we have for any s > O that

a(2)
Tri(Po) = (27) ( ﬁ) [ o P gL (2D
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where
—1{ex =1 _
06 (P)(x0.£. X) = 5Py (¥ P05 (1)) s (3.22)

Since o (P;)(x, &) tends to zero when |&| tends to infinity, by using the equality which
will be proved in the following Lemma 3.11

/ Trso6 (P)s(xo, §)dEdx = / Trso6 (0Pp~')s(x0, §)dédx,  (3.23)
T M T M
we have for p(xg) = 1 that

Jrom

0

Troa (R0 )0 = [ Trog(Pup™ (o, 6008
0 (3.24)

[ Tryo (Pa)s (xo. £)dE.
T M

X0
So

o

Try(Pe X%) = (2;1)—"(Ji__1)g /M [T ) MTrsa(Pas)z(—a)s(xo,é)d%'dx. (3.25)

Lets = %, then

Try(PaX®) = (2n)—"(%)2 /M /T;OM Tryo (Po X*1210)  (xo, £)d Edx.
(3.26)

So

Y2Try(Pu X¥) = (zn)—"(%)z /M /T _ TRO(PaX )y (x0. §)dEdx. (327)

By taking the sum )_,, we get (3.19). By Definitions 3.8 and Definition 3.5 in [9],
for the asymptotic pseudodifferential operator P;, we have

400
o(P) =Y ' pi(x.6 X)s, (3.28)
=0
SO
+o00
o(P)r =) 1! pi(x.6.X), (3.29)
1=0

By (3.19) and (3.29), we get (3.20). O
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Let u™ be the Riemannian moment of X defined by u™ (X)Y = —Vy XM  Let
F QM (X) = u™ + R be the equivariant Riemannian curvature of M. The equivariant

E—genus of the tangent bundle of M is defined by

FM(X)/2 )5

DMy — geq [ T8 XD/2
A(Fg" (X)) = det <Sinh(FgM (X)/2)

Theorem 3.10. When 2k < dimM and X is small which means that || Xp | is
sufficiently small, then for f7 € C& (M),

1 _
lim ¥,ch®* (VID, X)(f°, ..., ) = —@av=1) "*
150 (2k)!
/ FONdft A AdfRAFM (X))dVolp.  (3.30)
M
Proof. In Theorem 3.9, let P, = 12k f0¢=00Hx ¢ (df1y...c(df 2k)eow!*Hx

then by Proposition 3.7, similarly to Lemma 3.13 in [9], we have P; is an asymptotic
pseudodifterential operator. By (3.20) and taking the J -jet, we have

lim VETrg(Pr) s = bo.y. (3.31)
t—

By Theorem 2.12 in [26], we have

. 1 —n/
I VPT(P) s = s G/ =) ’

-/M FONdfY A AdfRAFM (X)) gdVoly. (3.32)

By (3.31) and (3.32) and when J goes to infinity, we obtain

1 - ~
bg = ——Q2r~/—1) n/Z/ FORNdfIA- A dfzkA(FM(X))dVOIM. (3.33)
(2k)! M e
By (3.20) and (3.33), when ¢ goes to zero, we get (3.30). O

Lemma 3.11. The equality (3.23) holds.

Proof. Considering the equalities (70) and (71) in [23] (Note that these formulas hold
for any pseudodifferential operators defined by (3.22) and not only for asymptotic
pseudodifferential operators), let N = 0, then

o6 (Pp~)(x, &) = a(P)(x,£)p~" +ro(%). (3.34)
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where r¢(£) is defined by

v
rofE) = [T oo [ ate +snds m1FG N0y 335

(271 )”

and the Fourier transform F and fV are defined by (7) and (8) in [23] respectively,
a is the symbol of P. By (0.2) in [17], we have the leading symbol of e~/°D*
ise~"" €7 Asin (2.4), using the Duhamel principle, we expanse the operator P; and
the leading symbol of P; is the product of e~ *1€7 and a polynomial on §. Without

2
loss of generality, we assume a = e~ /§I". The following two well-known theorems
are necessary:

I. Let f(x,y) be continues on the domain x > a, y > b and fb+°° f(x,y)dy
be uniformly convergent about x on any finite interval included in [a,~+0o0]
and |, a+°° f(x,y)dx be uniformly convergent about y on any finite interval

included in [b, +00]. We assume that the integral fb+°°[fa+°°|f(x, y)|dx]dy or
LU 1 f G, y)dyldx exists, then

+oo +o00 +o00 +o0
/ [ f(x, y)dy]dx = / |: f(x, y)dx]dy = finite number.
a b b a

(3.36)
1. There exists B > 0, such that | f(x, y)| < F(x) forany x > Band y € I and
that |, a+°° F(x)dx exists, then |, a+°° f(x,y)dx is uniformly convergent.

By (3.35), we consider

/Tx*oM(é) ro(®)dE = (2n )” Z/T M) /TXOM(y)/ & ag, Erarsds

VIFDI)dyde. (3.37)

Since the Schwartz function [F(f¥)](y) is integral on T: M(y), we take some
estimates on the right hand side of (3.37) in the polar coordinates of 7 M (§) and
T M (y) and then we can verify that the right hand side of (3.37) satisfies the

cond1t10ns of Theorem I. Using fT* ME) ag [e _|5|25ﬂ]d$ = 0 and (3.37), we get

fT;o ro(§) = 0. Therefore we get (3.23). O
Let
Ch(Im(p)) = i(— 1 )kiTr[ (dp)**). (3.38)
= 2\ o) wre '
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We have

Corollary 3.12. When X is small, then

Ind,~x (Dimp +) = 27 J—T)"” 2 /M A(FM(X))Ch(Imp). (3.39)

Proof. Using the same discussions as those in [18], we have the homotopy property
of ch*(D, X) for tD_x. So by (2.17), we have

Ind,—x (Dimp,+) = (ch*(tD—x),ch(p)). (3.40)

where

ch®*(tD_x)(f°,..., f2*) = sz/

Aok
.e—a1t2(D+%C(X))2 . C(dek)e—Gthz(D-l-%C(X))z] dVola,,, (3.41)

Str [e—sx fOe—aolz(D+%c(X))zc(dfl)

In (3.40), lete X = e~*X and use (¥7)? acting on (3.40), then we get
Ind,~x (Dimp.+) = (E:E*(zD, X), ch(p)> : (3.42)

where

0’0[2

D, X)(f0,..., %) = z2k/ "X

A

Str [foe_
2k

ok —sztzHL
ce(df e | dVola,,. (3.43)

Since Ind,—x (Dimp,+) is independent of ¢, taking the limit as # — 0 in (3.42), we
get by Theorem 3.10 that

Indy—x (Dinp,+) = 22v/—1) "2 / A(FM(X))Ch(Imp)dVoly.  (3.44)
M

O
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4. The infinitesimal equivariant eta cochains

In this section, we prove the limit of truncated infinitesimal equivariant eta cochains
exists when J goes to infinity. By the Duhamel principle and (2.5), we have

” D—Xe_mHX ”u—l

<3 )" / ID—_x(1+ D)2 |[|(1 + D?)2e~ FUD |~ FuD>| o,
m>0 Am
2\—4 24 —%Lup? —ZLuip?
I Fx(1+ D)1 + D2)dem FuP? o= F U o
_1 1 _om 2 _om 2
o [[Fx(1+ DY)7R|[[(1 + D)2 D2 o= B uD o do

< [D_x(1+ D7 2||(eur)™2 Y (e "ur|| Fx (1 + D)2 %

m=>0

(S

ut . _ip2 - -1
e (tre” 2P )”/ Oy Opm do

Am
< ID—x(1 + D73 ||(ut)"22¢5 {1 + [| Fx (1 + D)7 |2e  ur] 3}

1
23— 512 _ip2
'€”FX(1+D ) 2| nut(tre 5D )u’

4.1)
where
-1 _%d n%
O’ "'U U:—, 42
/ G0 Om FE ) 2
and
m+1 m+1
T2 T hen 1 i 43)
= , when m is even, .
FZ+0 (@
m+1 m
T 2= when m is odd (4.4
r@+1 -~ (=hy ' '

Now let M be a compact oriented odd dimensional Riemannian manifold without
boundary with a fixed spin structure and S be the bundle of spinors on M. The
fundamental setup consists with that on page 2. Let K, = /1(D + %)f)), then

% = *ﬁ Dx.Foray, ..., ay € CZ(M), we define the infinitesimal equivariant
t
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cochain ch§(k (K, 5 ak; ;-) by the formula:

h2k (K,, d;?)(ao, .o, aog)

2 4 a’K

= > (=V{ao, [Ki,a1)..... [Ki,a;], ==, [Ki ajpal, . [Ke, azid)e (X).
j=0
: 4.5)

If A; (0 < j < q) are operators on I'(M, S(TM)), we define
(Ao, ... Aghi(X) = f trfe ™LX Age K7 41071 KT ... 4 679K do,  (4.6)
Aq

where A, = {(09,...,04) |00+ ---+04 =1, 0; > 0} isasimplex in RYand Ly
is the Lie derivative generated by X on the spinors bundle.

Formally, the infinitesimal equivariant eta cochain for the odd dimensional
manifold is defined to be an even cochain sequence by the formula:

1 [ dK
g(k(D):ﬁ/O chik(K,,d—tt>dt, (4.7

Then n())( (D)(1) is the half of the infinitesimal equivariant eta invariant defined by
Goette in [19]. In order to prove that the above expression is well defined, it is
necessary to check the integrality near the two ends of the integration. Firstly, the
regularity at infinity comes from the following lemma.

Lemma 4.1. Foray,...,az € CZ (M), we have
dK,
th(K,, - )(ao,...,azk) — 0(t2), ast — oo. (4.8)

mry o e (Kr ) ao. . aze)d

is well defined by Lemma 2.2 and (4.1). Slmllarly to Lemma 2.2 and (4.1), we know
that Lemma 3.5 in [26] holds when J goes to infinity. So — T ( ) f LOZ chg(k (K, % aK, Shdt

is well defined and Lemma 4.1 holds. O

Next, we prove the regularity at zero. Let Fy, = D? X and 77\* = Hy —dtDyx
where dt is an auxiliary Grassmann variable as shown in [8]. Then tiﬁ,ﬁ =
tHx —2t2dtdK’ Let

ct? (F)(aor. . caz) =t* [ pitlaoe 0 (D.a1] (D, asele ™o Fldo
: 4.9)
ch? (Fu)(ao, . .. ax) =t / Yitrlage "X D, ay] -+ [D. ayle " ¥ do.
fox (4.10)
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By the Duhamel principle and dt? = 0, we have

o101 P _ gmto U Hx +/
0

o
— o 10Vt Hyx + 2l%dt/ / e~ 0=ty Hy da{? e—téllftHng
0

By (4.5) and (4.9)-(4.11) and dt? = 0, we get

ch?* (F,)(ao. . . ., azy)
dK,

= ch* (F)(ao, . .., az) — 2t%ch§(k(K,, —)(ag, L ay)dt.

dt
Lemma 4.2. The following estimate holds

dK
chik (K,, d_tt) ~ O(1) whent — 0.

Proof. By (4.12), we only need to prove
ch? (F)(ao, . . ., ask) — ch® (Fy)(ao, . .., asg) = O(t2)dt.
Let
Q7 = ao(Fu + ) e(dar) -~ c(dazg) (Fu + )7,

OF, = ao(Fx + 8)'c(day) - c(dazg) (Fs + 0,) 7.

By using Lemma 8.4 in [24], we have

1
e—(l—tl)l‘ClelftHX (21%01[%)8_““”1/”}1)( d(O']a)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
(4.16)

“Ylace™ T [D.ar] - [D.azgle ™ )(x. y) = 17 Ko  (x.y.1):

4.17)

199 laoe " %HX D, a1] -+ [D, azgle 728X (x, y) = 799, Ko, (x,y,1).

So we only need to prove
Uyt [KQ? (x.x.1)— Ko (x,x,t)] — 0(t3)dt.

By the trace property, we have

4, tr [KQ,\ (x,x,1) = Ko, (x,x, t)]
Fx

=t_qwttr[KQ - (x,x,1)— Ko

hp Fx(hp)~1 PHx p

. (x,x,t)].

(4.18)

(4.19)

(4.20)
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By (3.15), (3.18) and (3.24) in [26] and dt? = 0 where we use d¢ instead of z in [26],
we have

g [thf*(hp)—l h QPHXV‘]
= —179dty; [ao(d; + pHxp ") 'u(d, + pHxp™ ") 'e(day) -
corc(dazg) @ + pHxp™ ) 4+ ao(d; + pHxp )7t
++-c(dazg) (0 + pHxp™ ) "'u(@ + pHxp™H7']. (421)

By Og(u) <0and Og((0; + pHxp~')~1) = —2, we have

O [0 + pHxp™ ") 'u(d; + pHxp™ ") 'c(day) -
ceec(darg)(0: + pHX,o_l)_l] =-2q—4, 422
which has odd Clifford elements. When we drop off the truncated order J in
Lemma 2.9 in [26] and consider the convergent series on X as in Definition 3.2, we

know that Lemma 2.9 in [26] holds for our operator in (4.22). By (4.20)—(4.22) and
Lemma 2.9 1) in [26] for j = n and m = —2¢q — 4, we get (4.19). O

Remark. Similarly to Proposition 1.2 in [28], We use the symbol calculus about the
connection V¥ in Section 3 instead of the Getzler symbol calculus in Proposition 1.2
in [28], then we can give another proof of Lemma 4.2.

Again Proposition 3.8 in [26] holds, we have

Proposition 4.3. Assume that D is invertible with A being the smallest positive
eigenvalue of |D| and ||dp|| < A, then the pairing (n (D), ch«(p)) is well defined.

We also have the following theorem.

Theorem 4.4. Assume D is invertible and ||dp| < A where A is the smallest
eigenvalue of | D|, then we have

1
S1x(p(D ® I)p) = (nx (D), ch«(p)), (4.23)

where nx (p(D & I,)p) is the Goette’s infinitesimal equivariant eta invariant.

Proof. We still use the same notations and discussions after Proposition 3.8 in [26].
The difference is that we add ; in the definition of A. That is, let A = d, ) +

w,]i;; be a superconnection on the trivial infinite dimensional superbundle with the
base [0, 1] x R x (0, +00) and the fibre H ® C* & H ® C'. Then we have

1
A% = Zthix’u —s5%/4—(1 —u)t%sa[D,p] + dso(p — 5)

dt
+t2dup — 1D, p] + 2—1th;(,”. (4.24)
12
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Since we prove the regularity at zero, we can take ¢ = 0 in (3.41)—(3.45) in [26]. By
the following lemma, Theorem 4.4 can be proved. O

Lemma 4.5. Let D, = D +u(2p — 1)[D, p] for u € [0, 1]. We assume that D be
invertible and ||dp|| < A, then we have nx (Do) = n(D1).

Proof. By ||dp| < A, then D,, = D +u(2p — 1)[D, p] is invertible for u € [0, 1].
Similar to the discussions of Proposition 4.4 in [28], the infinitesimal equivariant
eta invariant of D,, is well defined. So nx(D,,) is smooth. Let A = (2p — 1)dp.
Then by the definition of the infinitesimal equivariant eta invariant and the Duhamel
principle, we have

4 (D I X g0 P2 dvi+ L 4.5
—_ = — t _T'u t ’ M
om0 = o= [ e X T i 4 25)
where
t +oo —(1— )tD?2 —stD?
L= : / tr{ XD% ’ *%*“[D_%’M,Ahe ’ )r(“ds} dt.
(4.26)

By the trace property and direct computations, then

oo ) o 2]
+

1 2 2
—(1-s)tD —stD
/ tr{Ae _)t(-“[D X D)f ]+e _)t(”‘}ds
o , ,

1 —(1—s)tD? —stD?
:/ tr%D e UU-XuD y o Alee _)t(”‘}ds. (4.28)
0

U U’

~p<

By using the Duhamel principle and the Leibniz rule and (4.26)—(4.28), we get
9 t(D2,  +Ly) _x , D7y
a—vfttr[Dx,ue ZxatE0 g/t = —tr[tze Ae  —T]dt. (4.29)
u
So

d 1 tD
—onx(Dy) = ﬁtr[t%e_XAe —Fa s (4.30)

As D, is invertible, then
2

—tD
lim tfrzeXAde  ~T¥]=0. (4.31)

t——+00
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Using Lemma 2.9 in [26] for j = n and m = —1, similar to the discussions on
Line 14 in [28, p. 164], we have

—tD
lirr(l)tr[t%e_XAe t -
t—
-~ v-l1 4.32
= ¢ /M AFM (X)) ) 2p - 1)(dp)exp|:7(A/ AA 4 dA’)] (4.32)
=0,
where A" = u(2p — 1)dp. Then by (4.30)-(4.32), Lemma 4.5 is proved. ]

Let N be an even-dimensional compact manifold with the boundary M. We
endow N with a metric which is a product in a collar neighborhood of M. Denote
by D (Dyr) the Dirac operator on N (M). Let C°(N) = {f € C®(N) | f is
independent of the normal coordinate x, near the boundary }.

Definition 4.6. The infinitesimal equivariant Chern—Connes character on N, ty =
(). 1% T}Z(q .-+ } is defined by

(O f N ) = = (D) (O £ b 2% )
1 -
+—— | AFMX)fO%dfP A Adf, (433
T va el LGOI 24, @433)
where 0, f1,., f24 € C®(N).
Similarly to Proposition 4.2 in [27], we have

Proposition 4.7. The infinitesimal equivariant Chern—Connes character is b — B
closed (for the definitions of b, B, see [15]). That is, we have

b2 + Bty = 0. (4.34)

By Proposition 4.3, we have

Proposition 4.8. Suppose that Dy is invertible with A being the smallest positive
eigenvalue of | Dy |. We assume that ||d(p|y )|l < A, then the pairing (T, ch«(p))
is well defined.

We let C;(M) = M x (0,1], N =N Umxqy C1(M) and U be a collar

neighborhood of M in N. For ¢ > 0, we take a metric g° of N such that on

U Uprxqy Ci(M)
ga — d_r2 + ngM'
£

Let S = S T @ S~ be spinors bundle associated to (N ,g%) and H® be the set
{& € T'(N,S) | &€ and its derivatives are zero near the vertex of cone}. Denote by
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L2(N, S) the L2-completion of H> (similarly define L2(N, S*) and L2(N, S7)).
Let
Dy,: H® - H®; Di,: HPY —» H>®,

be the Dirac operators associated with (ZV , %) which are Fredholm operators for
the sufficiently small e. By ||d(p|am)| < A, then pDjyy p is invertible. Recall the
Goette’s infinitesimal equivariant index theorem for the twisting bundle Im p with the
connection pd in [19] that

Ind,—x (pDyep) = Y ),

-~ N 2r 1
> oy /N ACFY X)THp(dp)*") =5 1x (PDy ).

(4.35)
By the Stokes theorem and the trace property and p(dp)? = (dp)? p, we have

/M ACFEM (Xl par (g pa)* 1] = 0. 4.36)

By Lx(p) = txd(p) = 0, then tx[p(dp)?*~'] = 0. By the Stokes theorem and
(4.36), we get

f AFY (X)){(dy pn)*¥] = / (d +1x) [Z(FgN (X)te[p(dy pN)2k-1]]
N N

= | AEX COwlpa e paa ] = 0.
4.37)

By Theorem 4.4 and Definition 4.6 and (2.14) and (4.37), we get

Theorem 4.9. Suppose that Dy is invertible with A being the smallest positive
eigenvalue of | Dys|. We assume that || d(p|m)| < A and p € My, (CE°(N)), then

Ind,-x (pD+,ep) = (tx (D), ch«(p)). (4.38)

5. The infinitesimal equivariant Chern—Connes character for a family of Dirac
operators

In this section, we extend Sections 2 and 3 to the family case. Let us recall the
definition of the equivariant family Bismut Laplacian. Let M be a n + g dimensional
compact connected manifold and By be a ¢ dimensional compact connected manifold.
Assume that w : M — By is a fibration and M and B, are oriented. Taking the
orthogonal bundle of the vertical bundle 7'Z in TM with respect to any Riemannian
metric, determines a smooth horizontal subbundle T2 M ,ie. TM = THEM T Z.
Recall that By is Riemannian, so we can lift the Euclidean scalar product g g, of T'By
to TH M. And we assume that T Z is endowed with a scalar product gz. Thus we
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can introduce a new scalar product gg, ® gz in TM . Denote by VL the Levi-Civita
connection on TM with respect to this metric. Let V50 denote the Levi-Civita
connection on 7By and still denote by V20 the pullback connection on TH M. Let
VZ = Pz(V%), where Pz denotes the projection to TZ. Let V® = VBo g V2
and @ = VL — V® and T be the torsion tensor of V®. Now we assume that the
bundle T Z is spin. Let S(7 Z) be the associated spinors bundle and VZ can be lifted
to give a connection on S(7°Z). Let D be the tangent Dirac operator.

Let G be a compact Lie group which acts fiberwise on M. We will consider
that G acts as identity on By. We assume that the action of G lifts to S(7'Z) and
the G-action commutes with D. Let E be the vector bundle n*(AT*By) ® S(T Z).
This bundle carries a natural action m¢ of the degenerate Clifford module Cly(M).
Define the connection for X € g whose Killing vector field is in T Z,

VE-X® ._ pryBog 1419V, S.D

o(Y)U,V) :=g(V§U, V) — g(VEU, V), (5.2)
B B 1

Vy =y T Smo(@(Y)), (53)

for Y, U,V € TM. Then the equivariant Bismut superconnection acting on
I'(M,7* A(T*By) ® S(T Z)) is defined by

n q

1
-X _ R E,—X,0 * E,—X,0, -x _
BX =3 "c(eH)VE +> f; AV BT = Bt (X)), (54)
i=1 j=1
where ey, ...,e, and f1,..., fy are orthonormal basis of 7' Z and T By respectively,

and B is the Bismut superconnection defined by

VE® .—p*vBog1+1@VS; (5.5)
1
Vy * =y 4 Smo(@()): (5.6)
n q
B=Y ceHVEo+> c(fj*)vjfj’o. (5.7)
i=1 j=1

Define the equivariant family Bismut Laplacain as follows:
Hpx = (B~ %)+ LE, (5.8)
where L)L; is the Lie derivative induced by X on the bundle E. Then
Hpx =D*+ F, + Fy, (5.9)

where D? x = D?+ Fy and F+ = Hp x— D? x is a first order differential operator
along the fibre with coefficients in 251 (By).
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Definition 5.1. The infinitesimal equivariant family JLO cochain ch?* (B, X) canbe
defined by the formula for £, ..., f2¢ in CZ(M):

ch®*(B.X)(fO..... fF) = / Str[foe_"oHBsXc(dfl)e_"lHB'X

Aok

e c(df e X [d Vol (5.10)

where Str is taking the trace along the fibre.

Similarly to Section 2, we can prove that (5.10) is well defined and (ch* (B, X)), chp)
is convergent by the following lemma.

Lemma 5.2. Forany 1 > u > 0, we have:
_1 2
“e_“HB,X =1 < COe||FX(1+D2) 2 IInu(tr[e—DT])", (5.11)
where the constant Cy is independent of u.

Proof. By (5.10) and the Duhamel principle, we have

dim B
e HBX = oM HX 4 N (5.12)
r>0
where
I, =/ e SOUHAXTE  pmsiuHx | F o omsruty g (5.13)

In (4.1), we use F+ and su instead of D_y and u respectively and let # = 1, then
we have

- 3 1~ _1 Ssu
IFye suHx H(su)*l <2(su) 2| F+(1 + D2) 2|le 2
AL+ [IFx (14 D25 Pe wsulh)
.e||FX(1+D2)*%||2nsu(tre—%D2)S“, (5.14)
By Lemma 2.2 and (5.12)—(5.14) and the Holder inequality, we get Lemma 5.2. [

Similarly to Propositions 4.11 and 4.12 in [3], we have

Proposition 5.3. (1) The infinitesimal equivariant family Chern—Connes charac-
ter is closed:
(B + b+ dp,)(ch*(B, X)) = 0. (5.15)

(2) Let By = B™X + tV and V is a bounded operator which commutes with
e~ X then there exists a cochain ch* (Bz, X, V) such that

d
Jch*(Be. X) = ~[b + B + dp,Jch* (B X. V). (5.16)
T
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By taking V = (2p — 1)[B, p], we get
Theorem 5.4. The following index formula holds in the cohomology of By

Ch,—x [Ind(Dmp.+.2)] = (ch*(B. X).ch(p)). (5.17)

Let ¢; be the rescaling operator on €2(By) defined by dy; — dLﬁj fort > 0. By
the method in Section 4 in [26], similarly to Theorem 2.12 in [26], we get

Lemma 5.5. When 2k < n and X is small, then for f Je Ce (M),
lim g yich™ (VB X)(f°,.... f2*),
= —(2m/ n / FONdfY A AdfRAFZ (X)) . (5.18)
(2k)! z g

Extending Theorem 3.9 to the family case, we have by Lemma 5.5 by
Theorem 5.6. When 2k < n and X is small, then for 7 C& (M),

lim ¢ Y ch® (VIB. X)(f°..... f*)
t—
= —(zm/ " / FONdfY A AdfRAFZ(X)). (5.19)
(2k)! z ¢
By Theorems 5.4 and 5.6 and the following homotopy property, similarly to

Corollary 3.11, we have
Corollary 5.7. When X is small, then

Ch,—x [Ind(Dimp.+ 2)] = @rv—1) " /Z A(FZ(X))Ch(Imp). (5.20)

Let B; = /t¢;¥;(B~X) and F; = B?. Then we have the homotopy formula:

Proposition 5.8. There is a cochain ch(By, %, X) such that the following formula
holds

dCh(Bt, X) dBt
=+ B+ dBO)ch<B,, - ,X). (5.21)

Proof. We know that B; is a superconnection on the infinite dimensional bundle
C*®(M,E) — Bo which we write & — Bo. Let By = By x Ry, and £
be the superbundle n*é’ over Bo, which is the pull-back to Bo of £. Define a
superconnection Bon& by the formula

(BB).1) = (BC.0)() +di n P,

(5.22)

The curvature .7-" of B is

.F:./_'}—W/\dl‘, (5.23)
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where F; = B? is the curvature of B;. By the Duhamel principle, then

= ! dB;

e =t 4 (/ e_”ff—e_(l_”)ﬂdu) Adt. (5.24)
0 dt

Let f°,..., f2* be in C(M), then [B, /] = [B:, f/]. We replace K; in (4.5)

and (4.6) by the above B;, then we define the cochain ch(By, %, X). So by (5.24),

we get on C&° (M) that

ch(B, X) = ch(B,, X) + ch(B,, %, X)dt. (5.25)

Similarly to (5.15), we have
(b + B +dg;)ch(B,X) =0; (b+ B +dp,)ch(B;, X) = 0. (5.26)
By (5.25) and (5.26), we get Proposition 5.8. ]
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