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On the Hochschild homology of open Frobenius algebras

Hossein Abbaspour

Abstract. We prove that the shifted Hochschild homology H H+ (A, A)[m] of a symmetric open
Frobenius algebra A of degree m has a natural coBV-algebra structure which is defined at the
chain level. As a consequence HH * (A, AY)[—m]is aBV algebra. The underlying coalgebra and
algebra structure may not be resp. counital and unital. We also introduce a natural BV-algebra
structure on H Hy (A, A)[m] which is also defined at the chain level. Hence there is a BV-structure
on HH..(A, A)[m]. Moreover we prove that the product and coproduct on H H..(A, A)[m] satisfy
the Frobenius compatibility condition i.e. HH. (A, A)[m] is an open Frobenius algebras. If A
is commutative, we also introduce a natural BV structure on the shifted relative Hochschild
homology HH «(A)[m — 1]. We conjecture that the product of this BV structure is identical
to the Goresky—Hingston [10] product on the cohomology of free loop spaces when A is a
commutative cochain algebra model for M.
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1. Introduction

There have been many important works on providing algebraic models for the string
topology operations introduced by Chas—Sullivan [1,2] and Cohen—Godin [3]. One
approach is to use the Hochschild cohomology of closed Frobenius algebras [4, 13,
14,18-22]. In particular Félix—-Thomas [7] proved that over rationals and for any
closed simply connected manifold M the Chas—Sullivan BV-algebra H,(LM) is
isomorphic to HH*(A) := HH*(A, AY) where A is a finite dimensional model
(i.e. closed Frobenius algebra) for the cochains algebra M.

In [15] Kontsevich—Soibelman constructed an action of the chains of moduli
spaces of Riemann surfaces on the Hochschild complex of a closed Frobenius
algebras. This is a special case of Constello’s theorem [6] for Calabi—Yau categories
and induces a natural BV and coBV structure on the the Hochschild homology and
the Frobenius compatibility between the BV product and coBV coproduct.
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In this paper we assume that A is a symmetric open Frobenius algebra (unital)
therefore A is not necessarily endowed with a non-degenerate scaler product.
Instead A is equipped with a compatible pair of product and coproduct of degree m.
First we prove that the shifted Hochschild chain Cy(A, A)[m] is naturally a
homotopy coBV-algebra (Section 3) therefore H H..(A, A)[m] is a BV-algebra. Also
as a consequence C*(A, A)[-m] and HH*(A, AY) are respectively homotopy
BV-algebra and BV-algebra thus we recover Tradler’s [20] result for the closed
Frobenius algebras. In Section 4 we prove that C, (A, A)[m] has a natural homotopy
BV-structure and H4« (A, A)[m] is a BV-algebra. Moreover, in Section 5 we prove that
the product and coproduct on H H, (A, A)[m] satisfy the Frobenius compatibility as
well. Such a compatibility was expected in the light of Cohen—Godin work for the
free loop spaces (of not necessarily closed manifolds). Here, by homotopy BV or
coBV structure we mean that the product or coproduct and the BV-operator is defined
at the chain level and the BV-identities hold up to homotopy. The BV and coBV
structure on H H, (A, A) and their compatibility had been also noticed by Wahl and
Westerland in [22].

It is worth mentioning that HH.(A, A) is generally not a unital algebra (or
equivalently HH *(A, AY) is not counital), reflecting the fact (in the geometric side)
the free loop spaces are infinite dimensional manifolds thus their homology are not
conunital. We recall that a unit for the Chas—Sullivan algebra on H.(LM) exists
if and only if the underlying manifold is closed manifold in which case the cycle
consisting of constant loops is the unit. Similarly HH«(A, A) is not counital (or
equivalently HH*(A, AY) is not unital) because the underlying manifold of the
cochain complex A may not be a closed compact one.

We also identify a natural BV-product on the shifted relative Hochschild homology
HH.(A, A)[m—1]. We believe that this product is an algebraic model of the Goresky—
Hingston [10] product on the relative conomology H* (LM, M). As far as we know
this product was not known even for closed Frobenius algebras.

Our results can potentially be used to give an algebraic model for the string
topology of not necessarily closed manifolds. That would require generalizing our
results to an appropriate homotopic setting.

Throughout this paper k is a commutative ring and A = k @ A is a positively
graded augmented unital differential associative k-algebra with degdy = +1,
A = A/ki.e. A is the kernel of the augmentation € : 4 — k. See the appendix for
the sing conventions.

Acknowledgements. I am grateful to Nathalie Wahl for many helpful communi-
cations. The author thanks the Simons Center for its support during the algebraic
topology program in 2014-2015 where some parts of this paper were written.
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2. Open Frobenius algebras and BV-Algebras

We use the sign conventions explained in the appendix. A differential graded
(A, d)-module, or A-module for short, is a k-complex (M, d) together with an (left)
A-module structure - : Ax M — M such that dps(ax) = d4(a)x + (—1)ady (x).
The multiplication map is of degree zro i.e. deg(ax) = dega + deg x. In particular,
the identity above implies that the differential of M has to be of degree 1.

Similarly for a (M, djps) a differential graded (A, d)-bimodule, we have

dy(axb) = da(a)xb + (—=1)ady (x)b + (=)™ gxd 4b,

orequivalently, M isa (4¢ := AQA®, d4®1+1Qd 4) DG-module where AP is the
algebra whose underlying graded vector space is A with the opposite multiplication
of A, ie. a®b = (=1)l4blp . 4. All modules considered in this article are
differential modules. We will also drop the indices from the differential when there
is no possibility of confusion.

Definition 2.1 (DG open Frobenius algebra). A differential graded open Frobenius
k-algebra of degree m is a triple (4, -, §) such that:

(1) (A,-) is a unital differential graded associative algebra whose product has
degree zero,

(2) (A,6) is a differential graded coassociative coalgebra of degree m that is
b ®1)§ = (—1D)"(1 ® §)§ and § is chain map of degree m, ie. 6d =
“D)"dR1+1d)§.

(3) 6 : A > A®Aisarightand left differential A-module map. Using (simplified)
Sweedler’s notation, this reads

D) @ (xy) =) (D)"™xy’ @y =" ¥ ®@x")y.
xy) o) (x)

Here we have simplified Sweedler’s notation for the coproduct §x = }~; x/ ® x/, to
8x = ) (x) X" ® x” where (x) should be thought of as the index set for i’s. Since
the coproduct is assumed to have degree m therefore deg x’ + deg x” = m.

In particular we have

Z(dx)/ ® (dx)// — (_l)m(Z(dxl ® x// + (_1)‘x/|x/ ® dx//))
(dx) (x)
and

Z(x/)/ ® (x/)// ® X" = Z(_)mlx’l-l-mx/ ® (x//)/ ® (x//)//

We shall say (4, -, §) is symmetric if Y, 1" ® 1”7 = Z(l)(—l)“/‘“””ml” ® 1.
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We recall that a closed (DG) Frobenius algebra is a finite dimensional unital
associative differential graded k-algebra A = @;>0A4; equipped with a symmetric
inner product (—, —) such that the map

@i x> (¥ ax(y) = (D) = (=D, p)),

from A to A is a degree m isomorphism of differential graded A-bimodules.
We recall that symmetric means

(x.y) = (=DFPIy x) = (Il y),

Notice that « is of degree m therefore o being A-biequivarant must take into
account the degree. We spell this out in details since it is important to get the signs
right.

LetL: A® AY — AV and R : AY ® A — AV be respectively the left and right
action of A on AY We will use the same notation for the action of A4 on itself. Then «
being A-biequivariant means

Ll®a)=aolL
and R@®1)=aoR,

which after applying to elementa x,y € A, it reads (—1)"Ply . o, = ayx and
Qx Yy = Qyxy. It follows from the definition of closed Frobenius algebras that the
inner product is invariant

(xy,z) = {x,yz),
symmetric, and

(dx.y) = =(=D"(x.dy). 2.1)
We can now define a coproduct § : A — A ® A by requiring that the diagram

dual of the product

A .

(A® A)Y 2.2)

8 AV ® AY

aQo

AR A

to be commutative. Note that in the diagram above o, « ® @ and i4 ® i 4 (because
dim A < o0) are isomorphisms therefore § exists and is unique because of the non-
degeneracy of the inner product. The coproduct 8x = } () x" ® x" is characterized
by the identity

(x.ab) =Y (=D)"*Ux" a)(x'.b) . (2.3)
(x)
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Since the inner product has degree m, we obtain
(x.ab) = (=1)"PHFm N (3" a)(x'.b), (2.4)
(x)

which in the special case x = 1 it reads,

(a.b) = (1.ab) = (=1)™PH™ 31" a)(1'.b) . (2.5)
1
The coproduct § is coassociative of degree m and satisfies condition (3) of
Definition 2.1 because all the other maps in the diagram (2.2) are morphisms of
A-bimodules. We can also check this directly,

S () a) (xy). b) = (xy.ab) = (x, yab)
=Y )" ya) (' by (2.6)
= > (=" x"y. a)(x". b)
which together with the non-degeneracy of the inner product imply

Y@@y =) X ex"y,
(xy) )

Similarly
DD ey)" a){(xy) b) = (xy.ab) = (=DM (y abx)
= (=)D Ny iy a) (y' )
= > (=D"Py" a)(xy’.b)

= > (=D a) (xy' b)
22.7)

therefore
DGy @ () =) (=D)"xy @y
(xy) »
In other words a closed Frobenius algebra over a field is also an open Frobenius
algebra.
By replacing » = 1 in (2.3), we obtain

(x.a) = (x.al) =Y (=D)"*Ix" a)(x'. 1)
™)

= > ()" 1)x" a).
(x)
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which implies
x = (=)™ 1)x (2.8)
()
Similarly by taking for a = 1, we obtain

(x,b) = (Y _(=1)"™1(x", 1)x',b).

The non-degeneracy of the inner product implies that

x= ) (="l (2.9)
(x)

In other words n(x) = (x, 1) is a counit that is

x =Y (D" =Y (=DM )y (2.10)
€9 (x)

Again using the Frobenius property (or a diret computation) we have

x = Z(—l)m“”n(xl/)l” = Z(—l)m“/‘n(l”x)l’ 2.11)
) %)

and x =Y (=)p'xn)1” =Y (=1, (2.12)
(1) (1)

Example 1. An important example of symmetric open Frobenius algebras is
the cohomology with compact support H(M,Z) of an oriented n-dimensional
manifold M (not necessarily closed). Note that H (M, Z) is equipped with the usual
cup product and, using the Poincaré duality isomorphism (see [11, Theorem 3.35])

H*(M.,Z) ~ H,_(M.7),

one can transfer the natural coproduct A from H.(M,Z) to H}(M,Z). Then the
triple (H} (M, Z), U, A) is a symmetric open Frobenius algebra whose differential
is identically zero. The Frobenius compatibility condition is satisfied because the
Poincaré duality isomorphism above is a map of H (M, Z)-modules. Note that this
open Frobenius structure is only natural with respect to proper maps or inclusion (of
open sets).

If M is closed then H*(M,Z) = H}(M,Z) is indeed a closed Frobenius
algebra since H*(M,Z) has a counit given by [ : H*(M) — Z, the evaluation
on the fundamental class of M, while Poincaré duality is given by capping
with the fundamental class. The non-degenerate inner product is defined by
(x,y) = f[ mp XYYy Over the rationals it is possible to lift this Frobenius algebra
structure to the level of cochains. By a result of Lambrechts and Stanley [17], over
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rationals there is a connected finite dimensional commutative DG algebra A which is
quasi-isomorphic to the singular cochain algebra C * (M, Q) on a given n-dimensional
manifold M, equipped with a bimodule isomorphism A — A" inducing the Poincaré
duality H*(M) — Hy_«(M). The analogue of this result for open manifolds is
still not known. It is more reasonable to expect a kind of homotopy open Frobenius
model for open manifolds rather than an open Frobenius algebra model. This also
suggests the result of this paper need to be generalized to the homotopy Frobenius
algebra, a notion to be defined.

Example 2. It is known that the homology of the free loop space of a closed oriented
manifolds is an open Frobenius algebra [3]. Similarly the Hochschild cohomology
HH*(A) of a closed Frobenius algebra is an open Frobenius algebra [21].

Proposition 2.2. (1) A closed Frobenius algebra is a symmetric open Frobenius
algebra.

(2) A symmetric open Frobenius algebra A with a counit is finite dimensional and
in fact is a closed Frobenius algebra.

(3) A symmetric and commutative open Frobenius algebra is cocommutative.
(4) For all z in a symmetric open Frobenius algebra A, Z(z)(—1)|2”||z/‘z”z’

belongs to the center of A.

Proof. (1) It follows from the characterization (2.5). Indeed,

(_1)m|b|+m Z(_l)ll’\ll”l-i-m(l/’ a><1//’ b)
(e
— (_l)mlb\ Z(_l)(m—lal)(m—\bl)“/’a)(lu’ b)
(n
= (—1)lallbl+mlal+m Z(l/,a)(l”,b)
(1)
= (—1)!1Nb, a) = (a,b)

Z(_])ll/l‘l//l-‘rml// ® 1/ — Z 1/ ® 1//‘

(€] @
(2) The inner product is defined by (x, y) = n(xy). It is clearly invariant. The
identity

therefore

X = Z(_l)m|x/|n(x//)x/ — Z(_l)mll’ln(xlu)ll

proves that A = Span, {1’s} hence the finite dimensionality of A.
Now we must prove that (—, —) is symmetric. By the identity (2.10) we can write

xy =) (DN = =Dy,
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therefore for all x and y

3)

4
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(x.y) =Y (D" x)n(1'y).

Since A is symmetric, we have

(. ) =D (=)™ 1" x)n(1'y)
= Z(_1)m|1//H‘|1’||1'/|+mn(1/x)n(1//y)
= Z(_l)'n(m—l1’|)+(m—|x\)(m—|y|))+mn(l/x)n(l//y)

= > (=) 1x)n17y) = (—)FIM(y, x)

S ex =Y el
= Z(_l)mlxlﬂl”l\1’|+mx1// ®1
= Z(_l)mlxl-‘rll”l\1’|—|x||1”|+m1//x 21
= Z(_1)m|x|+(\x”\—le)lx’\—|X|(Ix”l—lxl)-i-mx// ® x'
= S (I D g
S

x Z(-l)'Z””Z’iz” "= Z(_l)\Z”I\Z’IXZ//Z/ - Z(_1)(|1”\+|z|)|1’|x1//21/

(2)

(2

¢y

= Z(_l)(|1’|+|2|)|1”|+\1’\|1”|+mx1/21n

ey

= Z(—l)‘z”l//l’mel’zl”

Y

4
= § :(_1)m|x|+lzllx l+m s oo

(x)

= Z(_1)m|x|+|z|(|1"|—|x|)+m 1/Zl/lx

(x)

= 3 (1R VI gy

1)

= Z(—1)’”'*'+'Z|(Iz/l—|x|)+|z/|(|z”|—|z|)Z”z/x

1)
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= (—1)(’"+‘Z')'x'(Z(—l)'z””z/'z“zf)x,
@

We recall that ) _,, (—=D)IZ"IZ1 272 s of degree m + |z|. O

Before explaining how an open Frobenius algebras gives rise to a (co)BV-algebra,
we recall the definition of the BV-algebras and the definition of Hochschild homology
and cohomology.

Definition 2.3. (Batalin—Vilkovisky algebra) A BV-algebra is a Gerstenhaber algebra
(V*,-,[-,—]) with a degree one operator A : V* — V**! whose deviation from
being a derivation for the product - is the Gerstenhaber bracket [—, —], i.e.

[a.b] := (=) A@ab) — (=1) A(a)b — aA(b),

and A2 = 0.

It follows from A2 = 0 that A is a derivation for the bracket. In fact the Leibniz
identity for [—, —] is equivalent to the 7-term relation [9]

A(abc) = A(ab)e + (—=1)aAbe) + (=1)14=DPIpA(ac)
— A(@)be — (=D1aAB)e — (—1)1AHPlgpac.  (2.13)

Definition 2.3 is equivalent to the following one:

Definition 2.4. A BV-algebra is a graded commutative associative algebra (4%, -)
equipped with a degree one operator A : A* — A*T! which satisfies the 7-term
relation (2.13) and A? = 0. It follows from the 7-term relation that

[a.b] := (=D)“A@ab) — (=) A(a)b — aA(b)

is a Gerstenhaber bracket for the graded commutative associative algebra (4™, -).

There are very interesting examples using the differential forms of Riemannian
or symplectic manifolds, which are essentially due to Kozsul [16]. The inspiring
example for us is the homology of the free loop space LM := C°(S!, M) of an
oriented manifold [1] for which an algebraic model can be obtained using Hochschild
cohomology of cochains algebras of M [12]. Let us recall the definition of the
Hochschild complex.

The (normalized) Hochschild chain complex with coefficients in M is defined to
be

Ci(A, M) :=M @ T(sA) (2.14)

and comes equipped with a degree +1 differential Dyoen, = do + d1. We recall that
TV = &un>o V' ®" denotes the tensor algebra of a k-module V.
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The internal differential is given by

do(mlay,...,an)) = dymlay,...,an] — Z(—l)s"m[al, oo daai, ... an]
i=1

(2.15)
and the external differential is

di(mlay,...,a,)) = (—1)|m|ma1[a2, o an)

n
+ Z(—l)efm[al, e Qi Qs .. Q) — (—1)‘”(|“”|+1)anm[a1, ey dn—1],
i=2
(2.16)

with g = |m| and ¢; = |m| + |ay| + -+ + |ai—1| — i + 1 for i > 1. Note that the
degree of mlay, ..., an]is |m| + > ;_; |ai| —n.

When M = A, by definition (C« (A4, A), Duoch = do+d1) is the Hochschild chain
complex of A and the Hochschild homology of A is by definition HH. (A, A) :=
ker D/ im D is the Hochschild cohomology of A.

Similarly we define the M -valued Hochschild cochain of A to be

C*(A, M) := Homy (T (sA), M).

For a homogenous cochain complex f € C" (4, M), the degree | f| is defined to be
the degree of the linear map f : (sA)®”_ — M. In the case of Hochschild cochains,
the external differential of /' € Hom(sA®", M) is

di(f)(ai,...,an) = —(=DHUHNV g, fay, ... ay)

=Y (=D flar.....aia;.. .. an) + (=D f(ar.....ap1)an. (2.17)
i=2

wheree; = | f|+]|ay|+---+]ai—1|—i+1. The internal differential of f € C*(A, M)
is
n
dof(@r.....an) = dy far.....an) + Y (=D f(ar,....daa;.....ap).
i=1

(2.18)
The Hochschild cohomology of A with coefficient in M is by definition

HH*(A, M) := ker DN/ jm pHoch,

Remark 2.5. Naturally one can consider k-dual Homy (C« (A4, A), k), Dy ) and its
cohomology ker Dy ./ im Dy..- The result is isomorphic to (C*(A, AY), DHoch),
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In fact the isomorphism ~: (C*(4, AY), DHoM) — Homy(Cx (4, A).K), Dy ,) is
givenby f +— f,

flag,ar,....an) = (=)D £y ay . ay)(ag) (2.19)

Therefore HH*(A, AY) ~ H*(Homy(C«(A).Kk), DY) All over this article
C*(A, AY) is identified with Hom(C« (A4, A), K) using the isomorphism above.

Gerstenhaber bracket and cup product. When M = A, for x € C™(A, A)
and y € C"(A, A) one defines the cup product x Uy € C™"(A, A) and the
Gerstenhaber bracket [x, y] € C™1"~1(A, A) by

(xUy(ay,...,amen) = (—l)lyl(ZiSm |“f‘+1)x(a1, cosam)Y(@nats ..o Gman),
(2.20)

and
[.y]i=x 0y — (1) FFEHDy oy, (221)

where
(x Oj y)@ai,....amyn-1)
= (=)W Zizi @@l Dy as, y(@js . @jem)s ).

and

Xoy=) xo;y. (2.22)
J

It turns out that the operations U and [—, —] are chain maps, hence they define
two well-defined operations on HH*(A, A). Moreover, U is commutative up to
homotopy which is given by — o —.

Theorem 2.6 (Gerstenhaber [8]). Let A be a differential graded associative alg-
ebra. (HH*(A, A),U,[—,—]) is a Gerstenhaber algebra that is for all x,y and
z € HH*(A, A) we have:

(1) U is an associative and graded commutative product,

) [x,yUz] =[x, y] Uz + (=)E=Dly U [x, 2] (Leibniz rule),

3) [x,y] = =(=D)=DLIEDY, ],

@ [, y].2] =[x v 2] = () DUy [ 2]) (Jacobi identity).

The Hochschild homology and cohomology of an algebra have an extra feature,
which is the existence of the Connes operators B, respectively BY [5]. On the chains
we have

n+1

B(aolai,az...,a,]) = Z(_l)eil[ai+] cedy,do, ..., di] (2.23)
i=1
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and on the dual theory C*(4) = Homy(T(sA), AY) = Hom(4 ® T(sA),k) we
have

n+1
(BY9)(aolar, az, ..., an])) = (=) Y " (=1)¢(1[a; ---an, ao, ..., ai-1]),
i=1
where ¢ € C"t1(4) = Hom(4 ® (sA)®"*1 k) and ¢; = (lag| + -+ |ai—1| —i) -
(la;| + -+ + |an| —n + i — 1). In other words

BY(¢) = (-1)¢'p 0 B.

Note that deg(B) = —1 and deg BY = +1. The following theorem shows how a
closed Frobenius algebra gives rise to a BV-algebra.
Theorem 2.7 (Tradler [20]). The Hochschild cohomology HH* (A, A) of a Frobenius
algebra A has natural a BV-structure whose underlying Gerstenhaber structure is the
standard one [8]. The BV-operator corresponds to the Connes operator BY using
the natural isomorphism HH*(A, A) ~ HH*(A, AY)[m].

The main idea here is that we try to identify the homotopy (co)BV-structures
directly on Cy (A, A) (and its dual) rather than C *(4, A).

3. coBV structure on Hochschild homology

In this section we present a natural homotopy coBV-structure on the shifted
Hochschild chain complex C.(A4, A)[m] of a symmetric open Frobenius algebra
(A,-,8) of degree m. The natural candidate for the coBV operator is the Connes
operator B, so we just need a degree m coproduct on the Hochshild chains C« (A4, A).
This is given by formula (before the shift)

O(aolay.....an]) = Z + (—1)"‘6"’f(a8[a1, o ai-1.ai)) @ (aglaita, . .. an))
(ap),0<i<n
(3.1
where 0; = ag 4+ay +az +---+ a; +i. This coproduct is of degree m and is a
chain map i.e.
QDHoch = (_1)m(DHOCh RI+1® DHoch)

The proof that 6 is a chain map, uses A being symmetric. The most nontrivial part
of the proof is that
Z(_1)|a6|(|08|+|al [+++lapl+p)+apl+D(agl+lar [+++lap—1|+p—1)

/4 /
(ao) ~apaglay,....ap—1] ®aglap+i,...,an)
— Z(_l)la{)l(la{)’lHal\+--~+\ap—1\+p—1)+|a6’\+|a1|+-~~+\ap—1\+p—1+|a6|

(a0) caglay,....ap—1]l ® agaplapsi, ..., anl.
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appears in (Dgoch ® 1 + 1 ® Dyoen) twice but with opposite signs. The proof of the
identity above is as follows:

Z(_l)la6|(|a8|+|al [+++lapl+p)+apl+D(agl+lar|+-+lap—1|+p—1)

(aO) " /
~apaglay,....ap—1] ® a,

:Z(_1)|l/l(l1//|+‘a0‘+“'+|ap‘+P)+(|apH‘l)(l1//|+|a0|+"'+|ap71 [+p—1)

(@0) capl”aglay,...,ap—1] @1

:Z(_l)l1”\(Iao|+~--+|ap|+P)+(|ap|+1)(|1’\+|ao|+-"+|ap—1 [+p—1)+m

(ap) caplaglay,....ap—1] ® 1"

:Z(_1)m|ap|+|a;$I(Iao|+~-+|ap|+p)+(|ap|+1)(\a’p|+|ao|+---+|ap|+p—1)+m

(ao) / "
-apao[al,...,ap_l] ® a,

ZZ(_l)mlap|+(|1”|+|ap\)(|a0|+---+|ap|+p)+(|ap|+1)(|1’|+\a0\+---+\ap\+p—1)+m

@o) Maglay,...,ap—1]®1"a,

ZZ(_l)Il”Hl’Hm\apl-i-(\l’H-IapI)(\ao|+"'+|ap\+P)+(|ap|+1)(|1”|+|aol+"'+|ap|+17—1)
(ao)

1aglay,...,ap—1) @ 'a,
(agl+laoDlagl+mlap|+(lag|+lay(aol+-+lapl+p)+(apl+1)
:Z(_l) (la§|+lay | +++lap|+p—1)
1 !/
@o) aglai,...,ap—1] ® agap

:Z(_l)laél(lag\ﬂal [+-lap—1l+p—D+lajl+lat |++lap—1 |+ p—1+|aj|

(ao) " ’
caglai,...,ap—1] ® agap.

This gives rise to a product on Hochschild cochains as follows: For f ,& € Hom(A®
T(sA), k) we set

fog=pu®"(f®d) =1y (f2z)06

where  : k ® k — Kk is the multiplication. Note that this product is of degree —m,
therefore in order to obtain a product of degree zero we should shift the grading by —m.
The new degree zero product on Hom(C« (A4, A), k)[—m] is (see the appendix)

fog=n"1fog.
More explicitly, for f and § € Hom(Cx(A4, A),k)[—m] we have

(f © &)aolar,. .. an))

= Y (—1ymEtacoitmtEbei fgtiay, . aioy.ai))g(aplaiti. .. .. an)).

(ao),1<i<n
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In the case of a closed Froebnius algebra this product corresponds to the standard
cup product on HH *(A, A) using the isomorphism

HH*(A, A) ~ HH*(A, AY)[—-m] ~ H*(Hom(Cx (4, A))[-m]

induced by the inner product on A. More explicitly we identify A with AV, as
bimodules, using the map x +— (ay := (—1)*(x,—)) which identifies C*(A4, A)
with C*(A, AY). The latter itself is identified with Hom(Cx (A4, A),K) using the
isomorphism (2.19). Overall we have an isomorphism of cochain complexes which
sends f € C*(A, A), f : (sA)®" — Atothecochain f € Hom(A® (s4)®",k)[m],

Flag.ai,....an) = (=)@t a0 flay,... an)).

Using the identity
x =Y (=)"¥p")x" =Y (= 01

we can write

f(alv ... ,Cln) = Z(_l)lfl(l-'_ll”‘)f(l”, at,..., an)ll.
(1)

which is an explicit formula for the inverse of the isomorphism f +— f .

Let f:(sA)®” — Aand g : (sA)®? — A in C*(4, A) be two cochains. First
note that the degrees of f and g as elements of Hom(Cy (A, A), k)[m] are respectively
equal to | /| and |g].

fUg(ag.a,....aprq) = (=)@ TDUIHED (45 (U g)ay,....ap1q))
= 3 (—1)@+ DS HlgDtm-+ag g oplag)

(@o) : (aé’, flay,... ,ap))(aé), g@pt1,.-.,aptq))
— Z(_1)(ao+1)(|f\+|g|)+m(1+|a6|)+|g\(Up—la{)’\)+(l+|a(’)’|)|f|+(l+|a(’)|)|g|

(@o) -f(ag,al,...,ap)g(ag,apﬂ,...,ap+q).
Since 0, = | f| + m it follows that fﬁg = f * g, therefore (HH*(A, A), U) and
(H*(A, AY)[m], ®) are isomorphic as algebras.

Theorem 3.1. For a symmetric open Frobenius algebra (A,-,8) of degree m, the
shifted Hochschild chain complex (C«(A, A)[m], 0, Duoen) is a homotopy co-BV
algebra. As a consequence (HH«(A, A)[m],0, B) and (HH*(A, AY)[m], ®, BY)
are respectively BV-algebra and coBV-coalgebra. In particular if A is a closed
Frobenius algebra, then using the natural isomorphism

(C* (A, AY)[m], ®) ~ (C*(4, A), V), (3.2)
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HH*(A, A) is endowed with a BV-algebra whose underling Gerstenhaber algebra is
the standard one and the BV-operator is the image of the Connes operator BY under
the isomorphism (3.2). This recovers Tradler’s result [20], Theorem 2.7 for closed
Frobenius algebras.

Proof. The homotopy for co-commutativity is given by

h(aolay. ..., as)) == Z(—l)tiao[al, conai 1" aj, . anl®[aigr, ... a -]
(1),0<i<j=n+1

where

ti = (1" + D(laol + -+ + lai| + 1) + |U[(laol + lar| + -+ + |ai| +i + [17])
(VT +laiga|l + -+ lajal+j—i = D(laj] + -+ lan| +n—j + 1)

= [1"|[V'| + (m + D) (lao| + -+ + |ai| + i)
+ (V| +laigvl + -+ lajal+j —i —D(aj| + -+ lan| +n—j + 1)

and for j = n 4 1 andi = 0 the corresponding terms are respectively

+aplay,....a;, 1" @ Ulait1, ..., a4

and +ao[l” a;,...,a,) ® V[ay,...,a;—1).
We have
(DHoch ® 1 + 1 ® DHoch)h - (_1)m+1hDHoch = (_l)m‘[ © 0 - 0 (33)

where 7 : Cy(A4, A)®2 — C,(A, A)®2is given by 7(a; Q) = (—1)l*1lle2lg, @y
To see this, note that in (Dgoen ® 1 + 1 ® Dyoen)h the term corresponding to the
last term of the external part of the Hochchsild differential of the first factor of
+aolar,....a;, "] ® Ulai+1,...,ax] is

+1"aplay, ..., a;) ® Vait1,...,a,] = £agla,...,a;) @ aglait+i, ..., an)

which is precisely 8; and the term corresponding to the first term of the external

Hochchsild differential of the first factor of £ao[1”,a;,...,a,] ® V'[ay....,a;—1]
istaol”laj,...,a,)@V[ay,...,a;j—1] = xaol'la;,...,ap|®1"[ay,...,a;—1] =
tagla;j,...,an) @ aglay,....,a;—1] which is (—1)" 8.

To prove that the 7-term (coBV) relation holds, we use the Chas—Sullivan [1]
idea (see also [20]) in the case of the free loop space adapted to the combinatorial
(simplicial) situation. First we identify the Gerstenhaber co-bracket explicitly.
Consider the operation

S:=h+(-1)"to0h

on the Hochschild complex before the shift of degree of m. Once proven that S
is, up to homotopy, the deviation of B from being a coderivation for €, the 7-term
homotopy coBV relation is equivalent to the homotopy co-Leibniz identity for S.
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Compatibility of B and S. We prove that S = 6B — (—1)"(B ® id+id ® B)6 up
to homotopy. To this end, we prove that / is homotopic to (6B), — (—1)"(B ® id)8
and similarly th ~ (6B); — (id ® B)8 where 6B = (6B)1 + (0B),, with
(93)1(00[&1, cen ,an])
= Z Z:I:(l”[ai,...,aj]) ® (I'lajt1,--. an,ao-..,ai—1)).

0<i<j<n (1)

and

(93)2(&0[&1, N ,an])
= Z Z:I:(l”[aj, ceesln,do,dr, ..., ai]) @ (U'aiy1,....a;-1]).

O<i<j<n (1)

The homotopy between 4 and (6B), — (—1)™(B ® id)0 is given by

H(aplay,...,an))
= Z Z((_I)Vklj 1[ak+1’ .. 'ai’ 1//,61]‘, LI 9anva07 .. ak])

0<k<i<j<n+1 (a;)
® (U'[ai+1,.-.,a;-1]),
where
Vi = (@it + -+ laj-1|l +j =i+ D(laj| +--+lan| +n—j +1)
+ (lao| + -+ lak| + k + D(|lags1| + -+ + |ai| + |aj| +---

ot lagl +n—j+i—k+ 1)+ V(1] + |ao]l + - + lai| + |aj| + -
ot lanl +n—j + 0+ (V1 + Dllaga] + -+ lail + 1 = k).

In the formulae describing H, the sequenceaj, ..., a;—1 canbe empty. In Dyoen H +
(=)™ 2 H(Dyoen ® id + id ® Dyjoen), the terms corresponding to k = 0, k = i and
j = n + 1 are respectively h, —(6B), and

(=D™(B ® 1)b(aolar. - ... an])
= D)"Yt (Ufaksr . ai dyar, . ak]) ® @laisrs - anl).
Similarly one proves that th ~ (8B); — (—1)"(id ® B)0.

Co-Leibniz identity. The idea of the proof is identical to Lemma 4.6 [1]. We prove
that up to some homotopy we have

O ®id)S = (([d®7)(S ®id)d + (Id®S)0 . (3.4)
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At the chain level, we have
(0 ®id)h = (d®1)(h ® id)0 + (id ®h)0,
so to prove (3.4) we should prove that up to some homotopy
O ®@id)th = (d®t)(th ®id)0 + (id ®Th)6.

The homotopy is given by G : C*(4) — (C*(A))®?

Glaolay.....an))
=>" > (a1 ..a) ® ajii.....ax))
O<l<i<j<k (1),(1)

/ /
®a0[a1,...,al,ll,ai+1,...,aj,12,ak+1"'an,ao,...,al—l],

that is

GDyoch + (=1 2(Dpoeh ® id ® id + id ® Dyoeh ® id +id ® id ® Driocn) G
=0 ®id)th — (id®7)(th ® id)0 — (id @Th)6.

The signs in G are determined using Koszul sign rule just like the previous examples

As for the last part of the theorem, we have already proved that ©® corresponds
to the cup. It only remains to prove that underlying Gerstenharber bracket of the
BV-structure of (C*(A4, A), V) is the standard one. To that end, it suffices to prove
that 7 (C*(A4, A)[m],U) — (C*(A4, AY)[m], ®) (see (2.19)) sends the homotopy
of the commutativity o of U to the homotopy of the commutativity (— ® —)h of ©:
Let x € Hom((sA4)®?, A) and y € Hom((s4)®?, A). Then the degrees of X and y
as element of Hom(C«(A, A),K)[m] are respectively |x| and |y|. Similarly to the
definition of ©®, the homotopy for the commutativity of X and y is given

W(E, 7) = (D" ® )k

where u : k ® k — Kk is the product of the ground ring:

V(x, y)(ao,ai,...,dpt+q—1)

E = " S01/
= :l:x(a()’alv""aial 7al+q+17"'9ap+q—1)y(l’al+15"‘7al+q)
£,(1)
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and on the other hand (see (2.21)):

x o y(aop.ar,.. Adptq—1)

= (—D){aoE DD (4o (x 0 y)(ar, ... aprg—1))

= Z +(ao,x(ai,....ai,y(@ix1,...Yitq), Qitg+1,---Aptg—1))
i

=Y Hao, x(@r,....ai, Y V(U y(@it1, - Gitg)), Gigi1s - Apig—1))
i ey}

= Z +{ap, x(ay,...,a;, 1”,61,‘+q+1, - ,Clp+q_1))<1,, v(@it1,. .- ,a,-+q))

i,(1)

Z(_1)|(|J’|+1)((\ao\+|1’\+|a1|+"'+|ai|+i)+\1/\

; ~ 1 ~ /
(1) X(aog,...,a;,1 s di+q+1s--- 7ap+q—l)y(1 N2 RS P ,ai+q)

A comparison of the signs by using the identity |y |+ 1’|+ |ai4 1|+ +|@itq|| = m,
finishes the proof. O

Remark 3.2. By Félix-Thomas [7] theorem, this cup product on HH*(A, AY)
provides an algebraic model for the Chas—Sullivan product on H, (L M) the homology
of the free loop space of closed oriented manifold M. Here one must work over a
field of characteristic zero and for A one can take the closed (commutative) Frobenius
algebra provided by Lambreschts-Stanley result [17] on the existence of an algebraic
model with Poincaré duality for the rational singular cochain algebra of a closed
oriented maniflold.

4. BV structure on Hochschild homology

Although there is no action of the chains of the moduli space of Riemann surfaces
on the Hochschild complex of an open Frobenius algebra, some parts of such action
in the case of closed Frobenius algebras can be formulated using the product and
coproduct of the underlying algebra (see also [22]). Therefore one can write down
various operations in the Hochschild homology of an open Frobenius algebra, but
the desired identities have to be proved directly by giving explicitly the required
homotopies. Here is one example.

Theorem 4.1. For A a symmetric open Frobenius algebra, the shifted Hochschild
homology HH.(A, A)[m] can be naturally equipped with a BV-structure whose



On the Hochschild homology of open Frobenius algebras 727

BV-operator is the Connes operator and the product at the chain level (before the
shift of degree) is given by degree m — 1

0 ifp>0

dolar.-aplebolbr-bgl =y el qnar pofir. . . byl.

4.1)

Proof. Proposition 2.2(4) implies that e is a chain map (of degree m). The product e
is strictly associative. We only have to check this for x = a[ ], y = b[ ] and
z =clcy, ..., cy]. Using Proposition 2.2, we have

(xoy)oz =Y (Dl H@ DTl (4"’ by" (a"a'b) coley. . ... ca]
= (1l e G D+HB N 4D S g g e ey ]
— (_1)\a’l|a”|+m(|a’\+|a”\)+|b”||b’|+|b”|(|a’\+|a”|)+|b”|(\a’|+|a”|)
. Za”a/b”b/co[cl, ey Cnl
= (=)l e G DHB DD S gy ol ]
= (=1)@lla"I+mlal+m?+b" 16| Za”a’b"b’co[cl, ey Cnl
On the other hand
xo(yez)=(—1)llla"I+b"IE’] Za”a’b”b’co[cl, s Cnl
= (1)l lla”1+1B71Ib’| Za"a'b”b’co[cl, e
= (—1)m|x|+m(x e))ez

Next we prove that the product is commutative up to homotopy. Indeed the homotopy
for x = aglai.....ap]and y = bo[b, ..., by] is given by

K(x.y) =Y (=nlaoltDlagitlarit-+arlt2)gtia, . a, apbo.by. ... by,
(ao)
that is

Do K — (=1)" VK (Dioeh ® 1 4+ 1 ® Diioen) = x @ y — (=) I¥1+7m, o »

Note that deg K = m — 1. It is instructive to verify the case p = 0. The most
nontrivial case of cancellation in Dyocn K — (—1)" ' K(Dgoeh ® 1 + 1 ® Dyoct)
follows from the identity

ol+Dlag|+(bg+1)(lag | +lag+1bol++1bg—1 |+ uru
Z(_l)(lao\ MNagl+(bg|+1)(lagl+lag|+lbol lbg—1l q)bqao[aobo,...,bq—l]

= (_1)"’_1 Z(_1)|“0|+|“6|(|‘16|+1)+(|bﬂ|+1)(‘b0|+“'+|bq*1 [+¢g—1)

. ag[a{)bqbo, ey bq_l]
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whose proof is as follows:

3 (— 1) bl Dlagl- g+ ag Hag +Hbol-Hbas1+0p g [t b, .. byy]
:Z(_l)(l1’\+1)(|1”\+|ao|)+(|bq|+1)(\1”|+|1/|+|ao|+\bo|+---+|bq—1|+q)
. bq llla()[llbo, ey bq—l]

=Z(_1)(I1’\+1)(|1”\+|ao|)+(|bq|+1)(m+|ao|+|bo|+---+|bq—1|+q)
. bqlﬂao[l/bo, ey bq_l]
ZZ(_l)m+|1”||1’|+(|1”\+1)(|1’|+|aol)+(|bq|+1)(m+|ao|+|bo|+---+|bq71|+q)
. bql/ao[ll/bo, ey bq_l]
m+m|bg |+1bg (165 1+1bp )+ (167 1+ 1) (165 |+1b p|+laol)
=Y (-1 +(bpl+1)(n+lag|+|bo|+-+bg—11+q)
. bqao[bqbo, ey bq_l]
m+m|bg |+ (117 |+1bg N(11'|+1bg )+ (117 |+1bg |+ D (11| +bg | +|aol)
=Y (-1 +(Ibg |+ D (m+laol+-+bg—11+4)
. 1/ao[ll/bqb0, ey bq_l]
ZZ(_I)mHl”II1’|+\bp\+(\1”|+|bp|+1)(|1’\+|bp|+|aol)+(|bp|+1)(m+|ao|+~-+|bp—1|+q)
. 1’a0[1”bqb0, ey bq_l]

:Z(_l)lbqlﬂ\1’\+Ibq|+1)(|1”I+\bq|+\aol)+(|bq\+1)(m+|ao|+|bo|+---+|bq—1|+q)
. 1//a0[1/bqbo, ey bq_l]

:E :(_1)|bq|+(\06\+|bq|+1)(|a()’|+|bq\)+(|bq|+1)('n+|ao|+|bo|+--'+|bq71H—q)
"r !
~aglagbgbo. . ... bg—1]
:§ (_1)m—1+|aol+\a8|(|u<’)|+l)+(\bq|+1)(|bo|+"-+|bq—1|+q—1)
Ay
N ao[aobqbo, ceey bq_l].

Let us examine the case of p = ¢ = 0. Forx = a[ ]and y = b[ |: for the
external differential we have

diK(x,y) = Z(_1)|a”\+(\a’|+1)\a”|a”a/b[ ]
+ 3 (=)l I B D+ DI g g
=xey— Y (=D Pla’ba"[ ]
=xey— Z(_l)(“”|+|a|)|b|llbllla[ ]
=Xe y — Z(_l)(‘1/‘+|a|)|b‘+|1/||1”|+mlllblla[ ]
=xey— Z(_1)(\b’\+Ial)lb\+|b’\(\b”|+|b|)+mbub,a[ ]
=xey— (_l)laHb|+m Z(_l)(lb’llb’|b//b/a[ ]
=xey— (_1)|x\|y|+my °x.
As for the internal differential dy, we have

doK(x,y) = (D)™ 'K(do ® 1 +1® do)(x ® y),
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therefore
Dioen K = (=1)" "' K(Dptoch ® 1 + 1@ Dptocp)(x 0 y) = x 0y — (=D)¥P ¥y 0 .
The Gerstenhaber bracket is naturally defined to be

{x,y} = K(x,y) + (=DFPFm g (3 x). 4.2)
Next we prove that the identity
{x,y} = B(x e y) — (=1)"(Bx o y — (1)*lx o By) (4.3)

holds up to homotopy. First note that Bx e y = 0 for all x and y. A homotopy
between all the remaining three terms is given by H + (—1)!*" K(1 ® B) where

H(x,y) = > (=) 1[bg.....bg.a5.a1....ap.asho.by. ... be_1],
(a),1<k=<qg+1
with
o = (gl + Dag] + lar| + -+ lapl +p)
+ (Ibk| + -+ + [bg| + g —k — D) (lag| + lag| + lar| +---
o+ lap| + bol + [ba| + -+ |br—1| + kK + p+ 1.
First notice that [Dgoen, K © (1 ® B)](x ® y) is exactly x e By. To analyse the
rest we have to consider two cases:

Case p > 1. In this case B(x e y) = 0. In computing [Dyoch, H](x ® y) only two
term survives. Those are the ones corresponding to k = 1 and k = g + 1. The
one corresponding to k = g + 1 gives us exactly K(x, y) and for k = 1 we obtain
(=1)m+IYIK(y, x). This terms is produced when we compute the last term of the
external part of Dyoen H :

(_1)(|a6\+1)(|a/0’|+|a1 [+++lapl+p)+Ubi|++Ibgl+q)ag|+lag|+lar |+-+lap|+bol+ p)

(_1)(|a6|+|bo|+1)(|b1 |+-+lbgl+lagl+lar|+++p+1+g)+1

/ 1
~agbo[by, ... by, ag.ai,....ap]
— (_1)|a6|+(|bo|+|b1 [++lbg|+q)(ag+lat |++lap|+p+1)
i 1
'aObO[blv"' ’bq,ao’al e 7ap]
— (_1)|1’|+(|b0|+|b1 [+++1bg|+@) (11" |+]aol+lat [+++lap|+p+1)
. I,bo[bl, Cen ,bq, 1”(10,(11 e ,ap]
= (_1)m+|1'||1”\+|1”|+(|bo|+|b1 [++1bg|+@) (11| +]aol+lay [+++lapl+p+1)
. l//bo[bl, Ce ,bq, 1/610,611, . ,Clp]
— (_1)m+(|b6\+1)(|b(’)’\+|bo\)+(|bo|+|b1 [++lbg|+a)(1bj|+laol+lar|+++lap|+p+1)
" !/
~bylbi.....bg,byag.au, ... ap]
/7 14 .
— (_1)m+IXI|y|+(\b0|+1)(|b0|+\b1|+ +|b"|+q)bg[b1, ... by béao,al, )

— (_1)m+|x||YIK(y, )C),
therefore [Dyocn, H](x ® y) = {x, y}.
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Case p = 0. In this case, comparing to the previous case, an extra term in
[Dtioch, H](x ® y) shows up. This is the term where a; and agbo are multiplied.
This is precisely

n

B(xey) =% *lb.....bg.agagbo.b1.....bi1]

i=1 (a)

which is not necessarily zero if p = 0. Finally we prove the that Leibniz identity
(before the shift of the grading)

{x,yez}={x,y}oz+ (=1 IHDly ¢ 1x 7}

holds up to homotopy. We prove that it in fact it holds strictly. First note that
if y € @p>0(A ® (s4)®") then all the terms vanish. Therefore we suppose that
y = b[ ]. Since {x,y} € ®p>0(4 ® (s4)®"), it suffices to prove that

e yezy= (DT o fx 2
and to that end we check the follow identities
K(x,yez)=(=1)m"1+xDly o K(x, 2)
and
K(y o z,x) = (=)= 1HIxDIyI+Ixllyl+m o g7 1)

We prove the first identity, the second one is similar. For x = aglai,...,a,] and
z = colci, ... ¢q], we have

K(x.y o z) = (—1)" I +(apl+Dag|+lar | ++lap|+7)
aglay,...,ap,agh"b'co,c1, ... cq]

and

Vo K(x.z) = (—1)b" 15" Fag+D(agl+ar +--+apl+p)

"y’ 1 /
-b"b'aglay,....,ap,ayco.cC1. ..., Cq]
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The claimed equality is proved as follows:

2 ’ ”
(= 1)+ G+ D Hlar = +Hapl 2 g gt b o ]
— (_1)m|00|+\b"||b’|+(|t10|+|1’|+1)(\1”|+|611|+~--+|ap|+p)
1"[ay,...,a0l'b"b'c, ..., cq)
(_1)m|a0|+|b”\|b/|+|1'||1”\+m+(|a0|+|1”\+1)(|1’|+|Il1|"'+|ﬂp|+17)
Aay,....a0l"b"b'cy, ..., cq)

mlao|+16”1161+](d" ") 116" b")|+]b"b" ) +m
=(-1) +(aol+1@"0)|+1b"b [+ DBV [+]ai|+++lap|+p)

("D [ar,...,ao("b") ¢, ..., cq]

mlao|+m(m+|b))+[b"[16’ |4+ (167’ |+[1")(1”]+]6" b)) +m
=(-1) +(aol+117[+16"' [+ D (1 [+]67d' |+|ay |+-+lap|+Pp)

V/ANET 1
-b"b'l'lay,...,apl"co, ..., cql

mlag|+m(m+|b))+|b"||b’|4-(m+|b|+[1) (|17 |[+m+|b)+m
=(-1) +(laol+1"1+|bl+m+1) (| |+m+|b|+|a1 |++lapl+p)

/AREYA "
-b"b'1'[ay,...,a0l"co, ..., cq]

mlag|+b"||b’|+[1/|[1”|+m+|b|+m
=(-1) +(laol+117[+|bl+m+1) (|1 |+m+|bl+|ai |+-+lap|+p)

VANET "
-b"b'1 [al,...,aol C(),...,Cq]
= (_1)m|a0|+|b”\|b/|+|b|+m+(|a0|+|1’|+|b|+m+1)(\1”|+m+|b|+|a1|+-~+|ap\+p)
b"b'1"[ay, ... a0l'co, ..., cq)

— (_1)|b”||b’|+|b|+m+(|a6|+|b|+m+1)(m+|b\+|a6’\+|a1 [+-+lapl+p)

"yt 1 /
-b"baglay,l,... ayco, ..., cql
— (_1)mIXI+(m—1+|xI)IYI+\b”lIb’|+(|a()|+1)(\a{)’|+\al [+-+lapl+p)
"yt I !
-b"b'aglay, ..., ap.ayco.c1,...,cql.
O

5. Frobenius compatibility of the product and coproduct

As we mentioned previously we are inspired by the algebraic structures of the
homology of free loop spaces. Cohen—Godin [3] result holds even for the manifolds
which are not closed. The difference with the closed case would be that there won’t be
a counit for the underlying algebra structure. The coalgebra structure generically has
no counit, otherwise the homology of the free loop space would have the homotopy
type of a finite dimensional manifold which is not true except for very special kind
of aspherical manifolds. Therefore it is natural to expect a Frobenius compatibility
condition (Definition 2.1, (3)) between the product and coproduct.
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Theorem 5.1. Let A be a symmetric open Frobenius algebra. The product e (4.1) and
coproduct 6 (3.1) on HH«(A, A)[m] satisfy the Frobenius compatibility conditions,
Definition 2.1, (3).

Proof. We have to prove that 8 is a map of (degree m) left and right HH. (A, A)-
modules, that is (—1)"(1 ® @) o (6§ ® 1) = 6 o e at homology level. First we
consider the right HH.(A)-module structure. Let x = aglay,...,am] and y =
bolb1,...,by] € Cx(A, A). If m > 1,then O(x @ y) = 0, and

Ox ey = ( Z(—l)aklaélag[al, coak] @ aglag4r, - ,am]) oy

(ao),1<k=<m

= ( Z (_1)ak|a6|ag[a1, v ak] @ (aglak+1s .- am) e y))

(ao),1<k<m

=Y (—1)omlaol @)@ 14 ay . ay] ® (al) (ah) bolbr.. . .. bn)

(a0),(ag)

= Z (_l)m-‘ram|d(/)|+|d6”(ug)’|(ag)//[al’ o, am] ® (ag /aé)b()[bl, o bn]
(a0),(1)

= Z (—1ymtomlagl+lag (V" 1+lagh 17 g gy . ay] @ Valbolby. . . ., bal.
(a0),(1)

So we have to prove the latter is homotopic to zero. The homotopy is given by

H(x,y) = Z (—1)mFom(agl+D-+lag (17 +lagh-+1'|
(@) 1allay.....am] ® Ulahbo.by. ... byl

Two non-trivial cancellations occur in computing
DHochH - (_1)2mH(DHoch QI+I® DHoch))

as consequences of the follow identities (we omit the signs for the sake of simplicity):

aml"aglay, ..., am—1] ® Vagbolb, ..., byl
=aml'aglay,...,am-1] ® 1"agbolbs, ..., by]
=ayaplay,...,am—1] ® aagbolby, ..., byl
= 1’ag[a1, e 1] ® 1”ama6b0[b1, -

= l'(amao)’lai.....am-1] ® 1"(amao)'bolb1. . ... bn]
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and

aglay, ... ,am] ® bul'lagho, b1, ..., bu—1]
= bpaglai,...,am] ® by lagho, b1, ..., by—1]
= 1"byaglay,...,am) ® U'[agho, b1, ..., by—1]
— "by1"[ay, .., am] ® Ulao1'bo. b, .. byl
— "boUlay, .. am] ® Ulaol"bo, b1, ... bp_i]
— 1Bl [ar, ... dm] ® V[aoh!bo. b1, ... bn-1]
— "Vlay, .. ..am] ® V'lao!"bubo. b1, . .. byl
1"1ay, ... am] ® Vlaobubo, b1, -+ by_i]
— 1alar... .. am] ® V[dybubo. b1, ... bu_i]

If m = 0, then for x = a[]

O(xey) = 9(2(—1)'“"“”a”a’bo[bl, . ,b,,])

(a)
= Z(_1)Ia’lIa”|+|(a”a’bo)’l(I(a”a’bo)”|+|b1|+--~+|bk|+k))
(a)diaigi;,b()) <(@"a'by)’[by,....bk] ® (@"a’bo) [brs1,- ... bnl
= _Z(_1)Ia’lIa”|+mIa”\+(\(a’bo)’|+|a”|)(|(a’bo)”|+|b1|+~~-+|bk|+k)
@m (a'by)'[by,....br]l ® a"(a'bo) [brs1, .- -, byl
= _Z(_l)la’lla”|+m|a”\+(\1’|+\a”l)(|1”|+\a’|+|bo|+|b1|+---+|bk|+k)
éu<)];(<l’)1 1"d'bglby,....bg ] @ a"V[bgs1,....by].
On the other hand,

[(D"(1®e)o (0 @ D](x ®y)

= Y (e e ) @ (@[] )
(a)
= Y (D @ @[] e )
(@)
= Z (_1)m+la”|(|a\+|a”\)+|(a’)’|I(a/)”la”[] ® (@) (@) bolb1. .. .. bu]
(a),(a”)
= 3 (1)@ @ D4 (Y | (0 ol ba]
(a),(a”)
_ Z (_l)mla”l—i-mla/l-i-l1”|(|a|+\1”|)+|a/|(|a”\+|1/|)1//[] ® a”l’a/bo[bl, oo byl
(a),(@”)
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= Z(_1)m|a'|+m|a”\+|1’|(\£¢|+\1’|)+|a’|(|ﬂ/'|+|1”|)+\1/||1/'|+m
(a),(@”) [1®a”1"a’bylby, ..., byl
= Z (_l)m(la’|+\a”|)+|1'|(|a\+m)+|a’|(|a”|+|1”\)+m1/[] ® a”l”a’bo[bl, oo byl

(a),(@”)
= Z(_1)m(|a/\+|a”\)+|(a’bo)’l(la\+m)+|a’|(|a”|+|(a’bo)”|+\a’bol)+m

(a).(a”) <(@'by) [1®a"(a’by)'[by,....bn]
_ Z(_1)m(|ﬂ’H—la”D+m|a’b0|+(|a'bo\+|1’\)(|a|+m)+|a’\(\a”|+|1”|+|a’b0|)+m

(@),(a”) ca'bol'[]®@a’1"[by, ..., by
_ Z(_l)m(la’H-Ia”\)+m|d’b0|+(|d’bo\+|l”l)(lal+m)+|a’|(|a”|+|1’|+|d’b0|)+|1’\|1”|

(@),(a”) ca'bol'[1®a"1"[by, ..., by

= Z (_1)m|b|+m\a’|+m|a”|+|1’\1”|+|a”|b|+|1”||a”|a/b01//[] ®a’1[by.....by].
(@),(a”)

The homotopy between (—1)" (1 ® ®) o (# ® 1)(x ® y) and 0 o (x ® y) is given by

Glx,y) = 3 (— )+l Fomla 41 Ha” DAL 41a’ +1bol +-+1bel 40
().(1) 1"[a'bo. by, ....be] @ a"Vlbgy1.. ... bal.

0<k<n
The left HH, (A, A)-module condition (—1)"6 c e = (e ® 1)(1 ® ) actually
holds at the chain level. The only nontrivial case is when m = 0, otherwise both
x e 0(y) and O(x e y) are zero. For x = a[ ] we have,

(exN(1ROH(x®y)
= (=1)"*Ix e 0(y)

= > (—1ymlalHbol(bgT bR (o pfi[by. ... bi]) ® bylbrt1. .- - . bl
(bo)

0<k<n

_ Z (_1)m|a|+|a”\Ia'|+|b6|(|b(')’|+-~+|bk|+k)a//a/bg[b1’ o b ® BY[bksts - .- bal.

(bo),(ao)
0<k=<n

On the other hand,

()"0 0 9)(x ® )
= (~1)"8(x » y)

- 9(Z(—1)m+'“’”“”|a"a'bo[b1, - b,,])
(@)

= 9(Z(_1)m+Ia/lIa//|+|bo|(m+Ial)boa//a/[bl, L bn])
(@)
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= Z(_1)m+|¢l’\la”|+|bo\(|a”|+la’\)+|(boa”a’)’\(|(boa”a’)"|+"'+|bk |+k)
< (boa"a")'[by,....bi) ® (boa"a’) [bry1,....bu)
- Z(_I)WH-IG’\la"l+Ibo\(|a”|+|a’D+|b6|(la"|+|a’|+\b{)'|+|b1|+"'+|bk\+k)
Bla"d'[by, ... bg] ® by[bkr.- ... bl
— Z(_1)m+la’\Ia"l+(|b6/|+|b0I)(la"|+Ia’|)+|b6|(|a"|+|a’|+|b()'|+|b1|+"'+|bk|+k)
cd"d'bj[by. ... bk] ® by[bksi.- ... bl
— _ym+la’lla”|+bgl+1bol+1bg D (a” |+la’)+1bo | (1bg |+ 16y | +-...+ b | +)
(=1
cd"d'bj[by. ... bk] ® by[brs.- ... bl
— Z(_1)m+la’\Ia”l+m(|a\+m)+|b6|(|b(’)’|-Hbl|+'"+|bk|+k)
cd"d'bj[by. ... bk] ® by[bkri.- ... bl
= Z(_1)\tl'l|a”|+m|a|+\b(’)l(lb({|+|b1|+"~+|bk|+k)
ca"a'bllby.. ... bi) @ by[brs.- ... bal.

O

6. Suspended BV structure on the relative Hochschild homology of commutative
open Frobenius algebras

In this section we exhibit a BV structure on the relative Hochschild homology of a
commutative symmetric open Frobenius algebra. In particular we introduce a product
on the shifted relative Hochschild homology of symmetric commutative Frobenius
algebras which should be an algebraic model for Goresky—Hingston [10] product on
H*(LM,M).

For a commutative DG-algebra A the relative Hochschild chains are defined to be

Cu(A, A) = By A @ A®",

equipped with the Hochschild differential. Since A is commutative, 5*(A, A) is
stable under the Hochschild differential and fits in the split short exact sequence of
complexes,

0——>(A,dg) — Cx(A, A) —= C (A, A) ——=0

The homology of C+(A, A) is denoted HH (A, A) and is called the relative
Hochschild homology of A.

Theorem 6.1. The shifted relative Hochschild homology HH «(A, A)[m — 1] of a
degree m commutative symmetric open Frobenius algebra A is a BV algebra whose
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BV-operator is the Connes operator and the product at the chain level on Cy(A, A)
(before the shift) is given by

X*xy= Z (_1)I(aobo)’\+(\(aobo)”|+|bo\+1)(|ul|+-~-+|ap|+p)

(@obo) -(aobo)'[ai, ....ap, (aoho)” by, ....b4]
= Z (_1)|46|+(|08|+1)(|a1|+~-+|ap|+p)a6[a1’ . ap,agbo, b.....b,]
ap
— Z(_1)(m+1)|ao|+|b()|+(|b8\+|bo\+1)(|al|+~~+|ap|+p)
bo -aob{)[al,...,ap,bg,bl,...,bq]

forx =aplay,...,aplandy = bo[by,....by] € 6*(A).

Proof. Note that the identities above hold because A is an open Frobenius algebra.
Before the shift, the product is degree is a chain map and strictly associative of degree
m — 1, that is

Droen(x % y) = (=1)" " (Duacn (x) * ¥ + (=1)*x % Dytoen(y))
and
(xxy)xz= (DT 0x (y % 2)).
It is noteworthy to mention that commutativity is used in proving that * is a chain

map and associative, as it is shown below. For instance, the term corresponding to
first term of the external part of the Hochschild differential Dyoen(x * y) is

Z(_l)\a6\+(la{)’|+l)(la1 |+"'+‘“1’|+p)+‘“6‘af)al[az, Cdp.agbo. by, ... byl
(ao)
— Z(_l)(ll”l+1)(|a1\+-..+\ap|+p)+m|aolaoI/al[az’ L ap, 1"bo, by, ..., by
(ao)
= Z(_1)(|1"|+1)(|a2|+---+|ap|+p—1)+mlao|+la1|\1’|+(Ia1|+1)(|1”|+1)
(ap)

. aoall/[az, c..,dp, 1//b0, bl, ey bq]
— Z(_1)(|1”|+1)(|a2|+-~~+|ap|+p—1)+m(lao|+|a1|)+Ia1|+|1”|+1

(@0) ~a0a11’[a2,...,ap,1"b0,b1,...,bq]
— _1\(@oa)”|+D(laz|+~+lapl+p—1)+lail+l(aoar)”|+1
(=1
(@o) (aoa1) [az. ... .ap. (@oa1)"bo.bi.. ... bg]
— Z(_1)((aoa1)”|+1)(|a2|+--~+|ap|+p—1)+|a1|+|ao|+la1|+|(aoa1)’|+m+1)
(@0 (aoar)'az, ....ap, (aoa1)"bo.b1, ..., byl
= (_1)'"—1 Z(_1)|(a0a1)'|+(|(ﬂoa1)"|+1)(|ﬂ2|+'"+|ap\+P—1)+|aol

(@0) (aoa1) [az. ... .ap. (@oa1)"bo. by.. ... by,
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This is precisely the term which corresponds to first terms corresponding to
the external part of the differential in Dyonx * y. The commutativity and
cocommutativity (or equivalently, commutativity and being symmetric) of A is
required for the associativity of % as well: we have

(x*xy)*xz

(Z(—1)Ia6|+<“6’|+1><lxl—ao%[al, . ap.albo.by. ... bq]) %z

= Z(_1)|a6|+(|a8\+1)(|x|—|ao|)+(m+1)|a()|+|C(’)|+(|C{)’\+ICo\+1)(|x|—|ao|+|a(’)'|+|y\+1))

/AN 14 VA
~agcolar,....ap.apbo, ... by, cqy,....crl.

On the other hand
(=D x5 (y x 2)

= x % (Z(_l)(m—l)IXH(m-i-l)bo|+|66+(cg|+|60|+1)(|y|+|bo)

! 14
~bocylbf,....bg.cy.....cr]
— Z(_1)(m—1)Ix\+|a6|+(Ia8|+1)(|x|—\ao\)+(m+1)\bol+\c(’)\+(IC{,’|+ICOI+1)(|y|+\bo|))
/ 14 / 1
“(aglat,...,ap,agbocy. by, ... . by, cy, ... cr]
(m=1)|x|+lcllbol+lag 1 +(lag | +1)(1x|—laol)
— Z(_l) +(m+1)bo|+lcyl+ (g |+lcol+D) (¥ 410 1))
/ /BN 1
“(aglai,....ap,agcobo, ... by, cq. ... .cr
(m=D)|x|+lc{llbol+I(aoco) [+(aoc))” |+l |+ 1D (x| —laol)
— Z(_l) +(m+1)|bo|+lci+cf | +lecol+ 1)y [+1bol))
N/ AN/ 1
“(aocy)'lar,....ap, (aocy) 'bo, ..., bg.cy, ... cr
(m=1)|x|+lcjllaol+lcgllbol+I(chao) |+ (chao)” | +Icf |+ 1D (1x|=|aol)
— Z(_l) +(m+1)|bo|+lcjl+cg [+lcol+ 1D (v [+1bol))
! / i 1 1
(coao)'lar,....ap.(coao)'bo,....bg.cqy,....cr
(m=1)|x|+lcllaol+mlcyl+Icgbol+1af |+l +ad+Ich |+ D (| x|—laol)
— Z(_l) +(m+1)|bo|+lcil+cf | +lcol+ 1Dy [+1bol))
! ! " 1
~codplar,....ap,apbo, ... by, cy. ... cr
(m=1)|x|+l|cgllagl+legllaol+mlcy|+lcgllbol+lag | +leg 1+ (ag [+Icg | +1) (1x|—laol)
— Z(_l) +(m+1)bo|+lcyl+ (g | +lcol+D (¥ 410 1))
! /! 14 VA
~agcolar,....ap,apbo, ... by, cy.....cr].

After comparing the coefficient the associativity follows.
However the commutative holds only up to homotopy, and the homotopy is given
by

q
T(x.y) =Y Y (=DMboby.....bi.ap.a1.....ap.ag.biti.....byl.
i=0 (ag)
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where

i = (|bo| + [by] -~ |bi| + ) (m + |ao| + lar| 4 --- + lap| + p)

+ lagl + (lag| + D(lai]| + -+ + |ap| + p).

By doing the computation we see that for i = 0, the first term of the external
differential of Dy 7 (X, y) is precisely x * y, and for i = ¢ the last term of the
external differential Dyoen 7' (x, y) is —(—1)¥IPF7=1y, & x For the latter, one has

to use the commutativity and cocommutativity.

To prove that the 7-term relation holds, we adapt once again Chas—Sullivan’s [1]
idea to a simplicial situation. First we define the Gerstenhaber bracket directly

{x,y} =T y) + ()" HEVITG X
Next we prove that the bracket {—, —} is homotopic
B(x xy) — (=1)" Y (Bx x y + (=1)*|x % By).

For that we decompose B(x * y) in two pieces:

q
Bi(x.y):= > Y *l[bjt1.....bg. (aoho).a1.....ap. (aobo)" . br. ...

J=1(aobo)

p
Ba(x.y) =Y Y *laji1.....ap.(aobo)" . bi.....bg.(aoho) . ar....

J=1(aobo)

sothat B = B; + B,. The homotopy between
T(x,y) and Bi(x,y)— (=1)"""*lx« By

is given by

H(x,y)

=Y Y (=D l[bjyr.....biag.ar.....ap.a0.bit1.. ... bg.bo. ...

0<j<i<q (ap)

where

si,j = (|bo| + |b1]---1bi| +i)(m + |ao| + |ai| + -+ + |ap| + p)
+ lagl + (lag| + D(ai| + -+ lap| + p) + (|bo| + [b1] + -+

byl

ot bl i+ Dbyl 1bil +m +laol + lai] - lap| + [bita] -+
olbgl g —j+i+2).
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The terms in Dyoecn H — (1)™ H(Dyoch ® 1 + 1 ® Dyoen) corresponding to j = 0,
j =iandi = ¢ are respectively, T(x, y), (—=1)""1+*lx « By and —B;(x, y).
Similarly for (—1)~'**I¥IT (3 x) and By(x - y) — (=1)" "1 Bx % y. Therefore we
have proved that on HH «(A, A) the bracket {—, —} is the deviation of B from being
a derivation for .

Now proving the 7-term relation is equivalent to proving the Leibniz rule for the
bracket and the product x, i.e.

ey rzy = {eyhez + DOy s 2,
It turns out that at the chain level
T(x.(y*2) = T(x.y)*z+ (DRl T (x, 2)
and T ((y * z), x) is homotopic to
(_1)\X\(|Z|+m—1)T(y’x) %z + (_1)m(IXI—|y|)+IXIy * T(z, x)
using the homotopy
H3(x,y,z) = Z:I:ao[al,...,a,-,bf,,bl,...,bp,bg,ai+1,...
ey Ay COsCly ey Cry €Oy Ajgls s dp)

Here z = co[c1, ..., c¢p)]. This proves that the Leibniz rule holds up to homotopy. [

A. Ten commandments for signs

(1) Morphism. A Kk-linear map f of degree | f| between differential k-modules A
and B is said to be a morphism of differential graded k-modules if

fda=(-Dldgf. (A1)

(2) Tensor product of morphisms. We use the following sign rule for the tensor
product of graded maps f € Hom(A®?, M) and g € Homy(A®9, N)

(f ®g(a1® - ®aptq)
— (_1)\g|(lal\+...+\ap|)f(a1 R ®ay) ®gAp+1 ® - ®apiy). (A2)

So as a result the associativity condition u(u ® 1) = p(1 ® w) for a binary operator
w: A®2 — A of degree m means that

ppla ®b) ® ¢)) = (=)™ ula, n(b ® c)). (A.3)
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(3) Tensor product of algebra. If A and B are differential k-modules then A ® B
is also a differential k-module whose differential is giveby dy ® 1 + 1 ® dp. If A
and B are differential graded algebras then A ® B is also a differential graded algebra
whose product is defined by

@®x)(b®y) = (-D""ab g xy.

An important case is when B = A°P. The differential A ® A°°-modules are precisely
differential A-bimodules.

(4) Differential of the dual. The dual k-module AY = homy (A4, K) is negatively
graded i.e. AY, = Homy(A;,k) and equipped with the differential d" which is
defined by

dav (@) (x) = =(=DMa(da(x) = (=)a(da(x)), €A,

and also of degree one. Our choice of sign makes the evaluationmapev : AQAY — k
achain map of degree zero. We apply the same rule for a general A-bimodule M . That
is MY, = homy(M;, k) is equipped with the differential dpsv¢p = (=D)lp o dyy.

(5) Transpose of morphisms. If f/ : A — B is a homogeneous morphism of
differential graded k-modules then the induced map fV on the k-duals is defined by

@) =nelfog.

Using the previous sign conventions fV is also a (homogeneous) morphism of
differential graded k-module of degree | f|.

(6) Module structure of the dual. There is a natural A right and left A-module
structure on AV given by x.o : y — a(yx) and a.x : y — (—1)*la(xy). The maps
(x,a) = x.a@ and (x, @) — «.x are chain maps.

We apply the same rule for a general A-bimodule M. That is MV is equipped
with the A-bimodule structure (x.a)(y) := a(yx) and (a.x)(y) := (—D)*la(xy),
where @ € MV.

(7) Dual of tensor product. Foreach pair of right A-module M and left A-module N,
note that M ® N is an A-bimodule, so is (M ® N)V. There is a natural inclusion of
A-bimodules the inclusion iy pr:NY @ MY — (M ® N)V given by

¢ ® ¢ — (—1)1911%21g, @ ¢;.

(8) Transpose and tensor product. If f : A®! — A® s graded (homogenous)
morphism of degree | f| then then adjoint map fV : (AY)®* — (4Y)®! is defined
by

Y1 ® - ® ) = (=) 111+ FDI (g @ ... @ gy ) o f. (A.4)
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(9) Shift of Grading. The shift of the degree by m to the right is denoted by
Sm : A > A and deg(sy,(a)) = deg(a) + m, or in other words A[m]x = Ag—m.
Using the shift operation one can pullback other operations, for instance a product
n:A®A— Aispulled back to

o = 553(1) = $m 0 110 (571 @ s3,1), (A5)

or more explicitly ftm (s (@), sm(b)) = (—1)™4ls, u(a, b).
Soif p is of degree m then i, is of degree zero and ., is associative (of degree 0)
product on A[m] if p is associative (of degree m) i.e.

pp®1) =pul®p)
(@, bye) = (=)™ u(a, u(b, e)).
The commutativity condition for ' is equivalent to u = (—1)"u o T where
1A®A— A® Aisgivenby t1(x ® y) = (—1)*IPly @ x.
Similarly the coassociativity rule for coprodcut § of degree m is obtained

by writing down the usual associative rules of the the degree zero coproduct
8 = (s—m ® s_m)8s_}, which translates to

B®1)8 = (—1)"(1 ®8)s.

Using the same argument the equations defining a degree m (right and left)
counit for § are id =~ o(n ® 1)§’ =~ o(1 ® )8’ where ~ stands for the natural
isomorphisms 4 @k k ~ A and k ® A ~ A. Said explicitly,

¥ = Z(_l)mlx’\n(x/)x// _ Z(_l)m\xﬂn(x//)x/.
(x) x)

The cocommutativity condition for §’ becomes § = (—1)"1§.

(10) Grading shift and derivations. A degree |D| derivation D : A — A for a
degree m bilinear map i : A ® A — is k-linear map which satisfies the identity

Du=-DPHyDe1+1® D).

After a shift of degree to the right, D is a still derivation of degree | D| on A[m] with
respect to the degree zero binary operation [,,. In particular if |[D| = 1, D? = 0
and p is associative then (A[m], u,, D) is a differential graded associative algebra.
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