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The Batalin—Vilkovisky structure over the Hochschild
cohomology ring of a group algebra
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Abstract. We realize explicitly the well-known additive decomposition of the Hochschild
cohomology ring of a group algebra at the chain level. As a result, we describe the cup product,
the Batalin—Vilkovisky operator and the Lie bracket in the Hochschild cohomology ring of a
group algebra.
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1. Introduction

Let k be a field and G a finite group. Then the Hochschild cohomology ring of the
group algebra kG admits an additive decomposition:

HH*(kG) ~ P H*(Cs(x).k)
xeX

where X is a set of representatives of conjugacy classes of elements of G and Cg (x)
is the centralizer of x € G. The proof of this isomorphism can be found in [2]
or [17]. The usual proof is abstract rather than giving an explicit isomorphism. For
example, one of the key steps is to use the so-called Eckmann—Shapiro Lemma,
one needs to construct some comparison maps between two projective resolutions
in order to write it down explicitly, and this is usually difficult. In [17], Siegel
and Witherspoon used techniques and notations from group representation theory to
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interpret the above additive decomposition explicitly. For our purpose, we need to
give an explicit isomorphism at the chain level.

A priori, the additive decomposition gives an isomorphism of graded vector
spaces. The left side has a graded commutative algebra structure given by the cup
product, a graded Lie algebra structure given by the Gerstenhaber Lie bracket [8], and
a Batalin—Vilkovisky (BV) algebra structure given by the A operator [19]. It would
be interesting to describe these structures in terms of pieces from the right side.

For graded algebra structure, it was done by Holm for abelian groups using
computations [10], then Cibils and Solotar gave a conceptual proof in [4]. The
general case was dealt with by Siegel and Witherspoon [17], they described the cup
product formula by notations from group representation theory. Our goal in the
present paper is to represent the cup product, the Lie bracket and the BV operator
in the Hochschild cohomology ring in terms of the additive decomposition. This is
based on the explicit construction of an isomorphism in the additive decomposition
(although there is no canonical choice for such an isomorphism).

The main obstruction in realizing an isomorphism in the additive decomposition
comes from the fact that, it is usually difficult to construct the comparison map
between two projective resolutions of modules. There is a way to simplify such
construction, namely, one can reduce it to construct a setwise self-homotopy over
one projective resolution, which is often much easier. This method was already used
in a recent paper by the second author jointly with Le [12]. For convenience, we shall
give a brief introduction to this idea in Section 2.

The article is organized as follows. In Section 2, we recall Le and Zhou’s method
on constructing comparison maps. In Section 3 and 4, we review the definitions of
various structures over Hochschild cohomology and group cohomology, using the
normalized bar resolutions. We always use the normalized bar resolutions since they
are easy to describe and can greatly simplify the computations.

In Section 5, we give a way to realize explicitly the additive decomposition of the
Hochschild cohomology of a group algebra. The main line of our method follows
from [17]. In Section 6, we shall use some idea from [4] to give another way to
realize the additive decomposition.

We give the cup product formula in Section 7. Our formula shows that the group
cohomology H*(G, k) can be seen as a subalgebra of the Hochschild cohomology
HH*(kG) at the complex level, and that the additive decomposition naturally gives
an isomorphism of graded H*(G, k)-modules.

We deal with the A operator and the graded Lie bracket in the next section. In
particular, we show that the operator A restricts to each summand under the additive
decomposition, and that H*(G, k) is indeed a BV subalgebra of HH*(kG).

In the final section, we use our formulae to compute the BV structure of the
Hochschild cohomology ring for symmetric group of degree 3 over 3. This paper,
with [11], should be the first attempts of concrete computation for the BV structure
of a non-commutative algebra.
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2. How to construct comparison morphisms [12, Appendix]

Definition 2.1 (cf. [1]). Let A be an algebra over a field k. Let

dn-i—l d
C*:"'—>Cn+1 —> Cn —H)Cn_l e R

be a chain complex of A-modules. If there are maps (just as maps between sets)
Sp o Cp —> Cy4q such that s,—1d, + dyy15, = idc, for all n, then the maps {s,}
are called a setwise self-homotopy over the complex C*.

Remark 2.2. (i) There is a setwise self-homotopy over a complex C* of A-modules
if and only if C* is an exact complex, that is, C* is a zero object in the derived
category D(Mod A). Compare this with the usual self-homotopy, which is equivalent
to saying that C * is split exact, and hence it is a zero object in the homotopy category
K(Mod A).

(ii) Usually a setwise self-homotopy can be taken to be linear maps, so it is a
self-homotopy in the usual sense in the category of complexes of k-vector spaces. In
case that the exact complex is a right bounded complex of A-A-bimodules, a setwise
self-homotopy can even be chosen as homomorphisms of one-sided modules.

We will show how to use a setwise self-homotopy to construct a comparison
map. Let M and N be two A-modules, and let f : M —> N be an A-module
homomorphism. Suppose that P* = (P;, d;) is a free resolution of M, and that
0* = (Q;.d;) is a projective resolution of N. Suppose further that there is a
setwise self-homotopy s = {s,} over O* (including N):

d3 d> d do

0> 01 Qo N 0

AAAA!

o 0> % 01 7 Qo 2 N 0.

For each i > 0, choose a basis X; for the free A-module P; (the ith term
of P*). We define inductively the maps f; : X; —> Q; as follows: for x € X,
Jo(x) = s_1 fdo(x); fori > 1 and for x € X;, f;(x) = s;—1 fi—10;(x). Extending
A-linearly the maps f; we get A-homomorphisms f; : P; —> Q;. It is easy to
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verify that { f; } gives a chain map between the complexes P* and Q*. We illustrate
the above procedure in the following diagram:

A n

Py —= Ppy x ————— 0 (x)
, jﬁq § Lﬁq
T On—1 a Sn—10n(x)
e . //6f/

On Sn—1fn—10n(x)

We shall use the following standard homological fact.

Lemma 2.3. Let A and B be two rings and let F : Mod A —> Mod B be an additive
contravariant (resp., covariant) functor. If C* and D* are two projective resolutions
of an A-module M, then the cochain complexes FC* and FD* of B-modules are
homotopic. In particular, if ¢ : C* — D* and  : D* — C™ are two chain
maps inducing identity maps idy : M —> M, then Fo : FD* — FC* (resp.
Fo: FC* — FD*)and F : FC* — FD* (resp., F{y : FD* — FC*) are
inverse homotopy equivalences.

3. Reminder on Hochschild cohomology

In this section, we recall the definitions of various structures over Hochschild
cohomology. For the cup product and the Lie bracket in the Hochschild cohomology
ring, we refer to Gerstenhaber’s original paper [8]; for the Batalin—Vilkovisky algebra
structure, we refer to Tradler [19].

Let k be a field and A an associative k-algebra with identity 14. Denote by A the
quotient space A/(k - 14). We shall write ® for ®; and A®" for the n-fold tensor
product A ® --- ® A. The normalized bar resolution (Bar«(A), dx) of A is a free
resolution of 4 as A-A-bimodules, where

Bar_;1(4) = A4,
and forn > 0,
Bar,(4) = A® A°" ® 4,

do :Barg(A) = A® A— A, ag® a; —> apa; (multiplication map),
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and forn > 1, d, : Bar,(A) — Bar,_1(A4) sends g ® a1 Q -+ Q d;, Q ap+1 to

n—1
apa1 ®a @ @ a, @ an+1 + Z(—l)lao Q- ®aidi+1 Q- Qdn+1
i=1
+(-1)"a0® a1 ® -+ ® Gn—1 ® anln+1.
The normalized bar resolution is a natural quotient complex of the usual bar
resolution. The exactness of the normalized bar resolution is an easy consequences

of the following fact: there is a setwise self-homotopy s, : Bar, (4) —> Bar,+1(A)
over Bar, (A) given by

Sn(aO ®a®"'®a®an+l) = 1®%®ﬂ®~--®@®an+1.

Notice that here each s,, is just a right A-module homomorphism. For simplicity, in
the following we will write a; for a;.

Let 4M4 be an A-A-bimodule. Remember that any A-A-bimodule can be
identified with a left module over the enveloping algebra 4¢ = A ® A°®. We
have the Hochschild cohomology complex (C*(A, M), 8.):

C"(A, M) = Hom 4e (Bar, (A), M) ~ Homk(zm,M), forn > 0,

§p 1 CM(A, M) — C" YA, M), f — 8,(f),

where 8, (f) sendsa; ® -+ ® an+1 to

n
a1 flaz ® - Qapi1) + Y (1) fa1 ® - ® ai@ip1 ® -+ ® dpy1)

i=1

+ D" far ® - @ an)anr

For n > 0, the degree-n Hochschild cohomology group of the algebra A with
coefficients in M is defined to be

HH"(A, M) = H"(C*(A, M)) ~ Ext’,. (A, M).

If in particular, A = kG the group algebra of a finite group G, then the Hochschild
cohomology complex (C*(A, M), §+) has the following form:

C"kG,M) ~ Homk(ﬁm,M) ~ Map(En,M), forn >0,

where G = G — {1} and Map(@xn, M) denotes all the maps between the sets G
and M, and the differential is given by

Sp Map(axn, M) — Map(@an, M), [+ 68u(f).
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where 8,(f) sends (g1,...,8gn+1) € "o
g1/ (82, .. gn+1)

n
+ Y (D f(81e e igit1e - gni) + (DT f (g1 gn)gnr
i=1

When M = A with the obvious A-A-bimodule structure, we write C"(A)
(resp. HH"(A)) for C"(A, A) (resp. HH"(A, A)). Let f € C"(A), g € C™(A).
Then the cup product f U g € C"T™(A) is defined as follows:

—®(n+m)

fug: A — A, a1® - Qapim — f(a1Q - Ran)g(An+1® ntm)-

This cup product is associative and induces a well-defined product over

HH*(A) = @ HH"(A) = @) Ext}. (4, A),

n>0 n>0

which is called the Hochschild cohomology ring of A. Moreover, HH *(A) is graded
commutative, that is,c U 8 = (—1)""B Ua fora € HH"(A) and B € HH™(A).
As usual, we call an element @« € HH"(A) homogeneous of degree n, and its degree
will be denoted by |«|.

The Lie bracket is defined as follows. Let f € C"(A,M), g € C™(A). If
n,m > 1,thenfor1 <i < n, the so-called brace operation fo;g € C"*™"1(A, M)
is defined by

Soiglar ® -antm—1)
=fa1® - ®ai-108A; @ Qaitm—1) Uitm @ ® dntm—1);
ifn >1landm = 0,theng € Aandfor 1 <i <n, set
foiglar® +an-1)=fa1Q--Qai-1 ®gRa; ® - ® an_1);
for any other case, set f o; g to be zero. Define

n
fog=>) (=) DD o geCrtm (4 M)

i=1
and for f € C"(A), g € C™(A), define
[fgl=fog— (=" D" Dgofecmm(4).
The above [, ] induces a well defined (graded) Lie bracket in Hochschild cohomology
[,]: HH"(A) x HH™(A) — HH"T™"1(4)

such that (HH™*(A),U,[, ]) is a Gerstenhaber algebra, that is, for homogeneous
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elements «, B,y in HH *(A), the following three conditions hold:

e (HH*(A), V) is an associative algebra and it is graded commutative, that
is, the cup product U is an associative multiplication and satisfies « U § =
(=D)BlIg U a;

e (HH*(A),[, ]) is a graded Lie algebra, that is, the Lie bracket [ , ] satisfies
[a, B] = —(—=1)(el=DUBI=D[B ] and the graded Jacobi identity;

* Poisson rule: [@ U B,y] = [e, y] U B + (=D W=De U [, y].

We now assume that A is a symmetric k-algebra, that is, A is isomorphic to its dual
D(A) = Homg (A, k) as A°-modules, or equivalently, if there exists a symmetric
associative non-degenerate bilinear form (, ) : A x A —> k. This bilinear form
induces a duality between the Hochschild cohomology and the Hochschild homology.
In fact, for any n > O there is an isomorphism between HH"(A) and HH,(A)
induced by the following canonical isomorphisms

Homy (A ® 4¢ Bar, (A), k) >~ Homge (Bar,(A), D(A)) ~ Homye (Bar,(A), A).
Via this duality, we have, for n > 1, an operator A : C*(A) — C"~!(A) which
corresponds to the Connes’ B-operator (denoted by B) on the Hochschild homology

complex. More precisely, for any f € C"(A), A(f) € C"1(A) is given by the
equation

(A(f)a1 @+ ® an—1),an)

n
=Y D[ @ a1 ®an ®ar ® - @ ai—), ).
i=1

From the well known properties of the Connes’ B-operator B (cf. [13, Chapter 2]),
it is easy to see that the operator A is a chain map such that the induced operation A
on Hochschild cohomology HH *(A) squares to zero (in fact, A? = 0 holds on
normalized Hochschild cochain complex level). It turns out that the Gerstenhaber
algebra (HH*(A),U, [, ]) together with the operator A is a Batalin-Vilkovsky
algebra (BV-algebra), that is, in addition to be a Gerstenhaber algebra, (HH *(A), A)
is a complex and

for. ] = —(=D Pl (A@ U B) = Al@) U B~ (=D"ler U AB))
for all homogeneous elements «, B € HH*(A).

Remark 3.1. The sign in the definition of a BV-algebra depends on the choice of the
definitions of cup product and Lie bracket. If we define «U'f = (—1)!*/8lg U B and
A (o) = (=DU=D A (), then we get

[, B] = (=D)/(A (@U'B) — A (@)U'B — (=1l A’ (B)),

which is the equality in the usual definition of a BV-algebra (see, for example [9, 15]).
We choose the sign convention from [19] because of our convention of the definitions
of cup product and Connes’ B-operator in the Hochschild (co)homology theory.



818 Y. Liu and G. Zhou
4. Reminder on group cohomology

Let G be a finite group and U a left kG-module. The group cohomology of G
with coefficient in U is defined to be H"(G,U) = Exty,(k,U). The complex
Bar,(kG) Qg k is the standard resolution of the trivial module k. In fact, as
the setwise self-homotopy s, over Bar.(kG) are right module homomorphisms,
Bar,(kG) ®¢ k is exact and thus a projective resolution of kG Qrg k ~ k. We
write the complex C *(G, U) = Homy g (Bar« (kG)®ig k, U). Therefore, forn > 0,

C"(G,U) ~ Homg (kG @ kG ® kG) g k. U)
~ Homig (kG @ kG ", U)
~ Homk(ﬁm, U) ~Map(G ", U),
and the differential is given by

So(x)(g) = gx — x,
forx e U and g € G, and

Sn(@)(g1,---. &n+1) = 190(g2, ... gn+1)

n
+ Y (D (g1 gigit1e - gnr1) + (=) (g1. . gn),

i=1

for ¢ G —U and g1,....8n41 €G.

Of particular interest to us are the following two cases which relate group
cohomology to Hochschild cohomology and in fact which underly our two realisations
of the additive decomposition of the Hochschild cohomology of a group algebra.

Note that we have an algebra isomorphism (kG)¢ ~ k(G x G) given by
g1 ® g2 —> (g1.85"), for g1,¢2 € G. Thus we can also identify each kG-kG-
bimodule M as a left k(G x G)-module by (g1, g2) - x = g1xg, . In the sequel, we
shall write the Hochschild cohomology complex for the group algebra kG in terms
of k(G x G)-modules.

Case 1: M = kG. The module kG with the obvious kG-kG-bimodule, or
equivalently, the k(G x G)-module kG with action: (g1,g2) - x = g1xg, ' for
g1.82 € G. Consider G as a subgroup of G x G via the diagonal embedding
G - GxG,g+— (g,8), and it is easy to verify that there is a k(G x G)-module
isomorphism InngG k = k(G xG)®rg k ~ kG, (g1,82) ® 1 —> g1g5'. So
we have

HH"(kG.kG) ~ Ext} g, (kG.kG) =~ Ext} g, (Indg"% k.kG)

~ Ext!; (k,Res&* kG) = Ext} - (k, -k G)
= H"(G, kG),
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where the third isomorphism is given by the adjoint equivalence and kG is
considered as a left k G-module by conjugation: g - x = gxg~! for g,x € G. This
verifies a well known fact observed by Eilenberg and MacLane [5]: the Hochschild
cohomology HH"(kG,kG) of kG with coefficients in kG is isomorphic to the
ordinary group cohomology H"(G,kG) of G with coefficients in kG under the
conjugation.

Case 2: M = k. The trivial kG-kG-bimodule, or equivalently, the k(G x G)-
module k with action: (g1, g2) -1 = 1for g1, g € G. Since we have
HH"(kG,k) ~ Extz(GxG)(kG, k) ~ Extz(GxG)(k(G X G) Qrag k., k)
~ Exty; (k. k) = H"(G, k),
the Hochschild cohomology HH" (kG, k) of kG with coefficients in k is isomorphic
to the ordinary group cohomology H" (G, k). Another way to see this lies in the fact
that the two complexes C*(kG, k) and C *(G, k) coincide.

We can deduce the second case from the first one. In fact, the subspace
k(3 gec & S kG is a sub-(G x G)-module of kG (and also sub-G-module
of .k G), which is isomorphic to the trivial module. Via the isomorphisms in Case 1,
HH*(kG,k(}_zec &)) corresponds to H*(G, k(D _4ec 8))-

We can in fact define a cup product and Lie bracket over

H*(G.k) =P H"(G.k)
n>0
such that it becomes a Gerstenhaber algebra. One sees that the cup product and the
Lie bracket over HH *(kG) restrict to H*(G, k) by [7, Corollary 2.2], so H*(G, k)
is a Gerstenhaber subalgebra of HH *(kG). In fact, as in [7, Proof of Theorem 1.8],
there is a chain map at the cohomology complex level:
Homyg (Bar, (kG) Qg k. k) = C"(kG,k) — C"(kG)
= Homy(gxg)(Bar, (kG), kG),

(¢ G k) — (¢ A kG), Y¥(g1,.-..8n) =@(g1,---.8n)81" " &n.
This inclusion map preserves the b_rgce operations in the following sense.

Let ¢; € C"(kG,k) ~ Map(G n,k), > € C"™(kG,k), and let ¢, € C"(kG),
@2 € C™(kG) be the corresponding elements under the above inclusion map. Then
P10 @2 = ¢1 0 P2 € C"1(KG).

Recall that kG is a symmetric algebra with the bilinear form

(,): kG xkG —k,
1 ifg=hnt,
(g.h) = .
0 otherwise,

for g,h € G. So there is a well-defined BV-algebra structure on HH*(kG). We
shall see later that H*(G, k) is furthermore a sub-BV-algebra of HH* (kG).
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5. The first realization of the additive decomposition

Let k be a field and G a finite group. Then the Hochschild cohomology ring of the
group algebra kG admits an additive decomposition:

HH*(kG) ~ P H*(Cg(x). k),
xeX

where X is a set of representatives of conjugacy classes of elements of G and
Cg(x) = {g € G | gx = xg} is the centralizer subgroup of G. In this section, we
give an explicit construction of the additive decomposition. The main technique we
used here is to construct comparison maps based on some setwise self-homotopies.

The following is a proof of the additive decomposition which consists of a series
of isomorphisms. Our first realization of the additive decomposition will follow this
series of isomorphisms.

HH*(kG.kG) = Extly e (kG.kG) =~ Ext} g, (kG.kG)

(1)
~ Extfgxg)(IndG*% k. kG)

because k((;x(;)kG :InngG k :k(GxG)k(G X G) Qg k where k(G x G)
is endowed with the right kX G-module structure via the diagonal map
G—>GxG, g+ (g8

2
@ Ext}; (k,Res&*C kG) = Ext} ; (k, HomgGxg) (k(G x G),kG))

= Bxt! g (k.ckG) = H*(G. ckG)
by the adjoint pair
(k(Gx6) k(G x G) Qkc — Homy(gxG) (k(Gx6)k(G X G)kG.—))

(3) %
>~ Dxex EthG (k,ckCy)

because kG = Dyex kCx where .k C; is the k G-module generated by the
elements in the conjugacy class Cx = {gxg~!|g € G}

(4)
~ @xex Bxtfg(k, Coindg . k)

because as left k G-modules, kC ~ CoindgG ) k = Homgc, (x)(kG, k)

%)
~ @rex BXG e v (Resg, (o) k. k)
by the adjoint pair (xc; (x)kG ®kc — Homic, (x) (ke )k GrG>—))
(6)
~ @Oxex EXtZCG(x)(k’k)) = @xeXH*(CG(x),k)

We shall express explicitly these isomorphisms step by step using the bar
resolution.
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The first step. By definition, the Hochschild cohomology groups HH*(kG,kG)
can be computed using the bar resolution Bar.(kG). On the other hand,
Bar«(kG) Q¢ k is a free resolution of k as left k G-module, and therefore

k(G x G) @i Bars(kG) @i k

is also a free resolution of the k(G x G)-module k(G X G) ®rg k ~ kG. Notice
that the terms in Bar,(k G) are still viewed as the usual k G-k G-bimodules when we
do the above tensor products.

Let us write explicitly the resolution k(G X G) ®xg Bar«(kG) Qi k. Under
the identification

k(G x G) ®1 Barn(kG) @i k ~ k(G x G) @i (kG ® kG @ kG) @ k
~ k(G XxG)RKG"
~kGRkGRKG ",

and the differential is as follows (we only write down the maps on base elements here
and later):
kG ®kG — kG, x®y+—> xy~
kG kG ®kG — kG ® kG, XR®YRgIH—>Xg1® Vg1 — X QY;

kG@kG@E‘g”—>kG®kG®ﬁ®"_l,x®y®g1®---®gnn—>
n—1

X ®YHN®LO Qg+ Y (xR yR® - ®Ligit1 ® Qg

i=1

+D"XQR YR g ® - Q gn—1.
We also have
Homk(Gxc) (k(G x G) ®g Bty (kG) ®g k. kG) ~ Homg (kG . kG)
~ Map(G ", kG).

Using this identification, H*(Homg g xc)(k(G X G) ®r¢ Bark(kG) ®kc k. kG))
is given by the following cochain complex:

§ — § — 8n
0 — kG —% Map(G,kG) —> -+ —> Map(G " kG) > -+

where the differential is given by

1

So(x)(g) = gxg ! —x forx €ekGand g € G,
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and for ¢ G — kG and g1,...,8n41 € G,

$n(@)(g1. -+  gn+1) = 19(82+ - Gn41)81

n
+ Y D81 gigitt - gni) + ()" ogr. L gn).
i=1

We will show that the two complexes k(G x G) ®xg Barx(kG) Qrg k and
Bar,(kG) are isomorphic and therefore there is an isomorphism

H*(Homy g xg)(Bar(kG), kG))
~ H*(Homg(gxq)(k(G x G) ®kg Barx(kG) ®xg k.kG)) (1)
To do this, we need to construct the comparison maps between the two free resolutions
Barx(kG) and k(G x G) Qg Bark(kG) ®¢ k of the above k(G x G)-module kG.
As explained in Section 2, this is reduced to construct setwise self-homotopys over
these resolutions. Our principle here is to choose those setwise self-homotopys so

that the computations and results are as simple as possible.
We choose a setwise self-homotopy over Bar, (kG) as follows:

Uu_1:kG->kGRkG, grH—gQ®I1,
and forn > 0,

1w, kG kG ®kG — kG RKG" @ kG,
S0®g ® Qg1 (—1)'"g®g1 ® - ®gut1 ® L.

Using {u,} we can construct a comparison map

s k(G x G) @ Bars(kG) @6 k = kG @ kG @ kG —> Bary (kG)
=kG @ kG®* @ kG

as follows (as before we only write down the maps on base elements):

o_1:kG— kG, xr—x,
0o kGRkG — kG Q kG, x®y|—>x®y_1,
@ kG RkG kG — kG kG kG, xQy®g +— —xg1 ®g; @y,

a0, kG RkGRKG — kG ®KkG"" ®kG.

nn+1) 1 -1 -1
XRY®egI® g+ (1) 2 xg1-gn®g, Qg Vy .
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Similarly, we choose a setwise self-homotopy over k(G X G) Qg Bar« (kG) Qi gk
as follows:

V-1 : kG > kG RkG, grHg®1,
and forn > 0,
—®n —Q®n
UV kGRKkGRKG —kGQRKkGRKG
XRYRH® QLX) ' Q1lQ®y®gI ® - ® gn.

Using {v,} we can construct a comparison map

B+ : Bary(kG) = kG ® kG®* @ kG —> k(G x G) ®y¢ Bary(kG) Qg k
= kG kG @ kG®*

as follows:

B-1:kG — kG, x+—x,
Bo: kG kG — kG kG, x®y+—xQy L,
B1:kG®kGRKG — kGRKkG®KG, x®g ®yr— —xg1®y ' @grl,

By kG RKG " @kG — kG RKG RKG ",

nn+1) -1 -1 -1
X®L® - ®g®yr—=>(=1) 2 xg1--gn®y ®g, @ ®g .

It is easy to check that the chain maps {o,} and {8,} are inverse to each other,
and therefore we get an isomorphism

Homk(GXg)(Bar*(kG),kG) — Homk(GXg)(k(G X G) Rkc Bar*(kG) RrG k,kG),

(¢ G — kG) — (¢ G — kG),
nn+1) _ _
181, 8n) = (1) 2 gregnplgy 8T -

Its inverse is given by

Homy g xG)(k(G x G) Qi Bark(kG) Qi k. kG) — Homygxg)(Bark(kG),kG),

(¢1: ¢ — kG) — (¢ I CAMN kG),

nn+1) _ _
P81, gn) = (1" 2 gi-gupi(gy ' g7 h).

Passing to the cohomology, we realize an isomorphism in (1) and its inverse.
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The second step. Since

(k(GxG)k(G x G) @k — Homg(gx6) (k(6x6)k(G X GG, —))

is an adjoint pair, we have an isomorphism (here k(G x G) is viewed as a right
k G-module by diagonal action)

Homk(GXg)(k(GXG)®kgBar*(kG)®kgk, kG) ~ Homgg (Bar. (kG)Rrgk, kG).
Passing to the cohomology, we get an isomorphism
H*(Homk(Gxg)(k(G X G) Qg Bark(kG) Qg k,kG))
~ H*(Homyg(Bar(kG) Qkc k. kG)). (2)

Recall that the right hand side is just the ordinary group cohomology H*(G,kG)
of G with coeflicients in .k G. We also have

Homyg (Bar, (kG) @ k. kG) ~ Hompg (kG @ kG, kG)
~ Homg (kG ", kG) ~ Map(G ", kG).
Using this identification, H*(G,kG) = H*(Homyg(Bark(kG) Qg k,kG)) is
given by the following cochain complex:
S — ) — n
0 —> kG ~% Map(G, kG) %> ... —> Map(G " kG) > ...,

where the differential is given by

So(x)(g) = gxg™' —x

forx € kG and g € G, and
8n(©)(g1. .- 8n+1) = 819(82. ... gn+1)&T

n
+Y D81 gigit1e- - gnt1) + (D" o(gr. . gn).
i=1

for ¢ : G" — kG and g1.....8n+1 € G. So formally the left hand side and the
right hand side in (2) are identical, though they have different meaning. It is also easy
to check that under the above identifications, the adjoint isomorphisms are identity
maps:

Homy (gxg)(k(G x G) k¢ Bark(kG) ®kg k., kG)
—> Homy g (Bary (kG) kg k., kG),

(01:G " —kG)—> (¢2:G " —> kG), @a(g1. . gn) = 01(81.** + gn).
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Its inverse is given by

Homy g (Bark(kG) Qg k, kG)
—> Homy(gx6)(k(G X G) ®kg Bark(kG) ®kg k. kG),

(@2 A CAN kG) — (@1 N CAEN kG), ¢1(g1,---,8n) = ¢2(g1,---,8n)-

Passing to the cohomology, we realize an isomorphism in (2) and its inverse.

The third step. We choose a complete set X of representatives of the conjugacy
classes in the finite group G. Take x € X. Then C, = {gxg~'|g € G} is the
conjugacy class corresponding to x and Cg(x) = {g € G|gxg™! = x} is the
centralizer subgroup. Clearly the k-space kC, generated by the elements in Cy, is a
left k G-module under the conjugation action. We choose a right coset decomposition
of Cg(x)in G: G = Ce(x)y1x U Cg(X)y2,x U---U Cg(x)yn, x (equivalently,
G = Vf,,lCCG (x) U yz_,)lcCG x)u-.-u V,,_XI,XCG (x) is a left coset decomposition of
Cg(x) in G), and such that C, = {x = yl_,;xyl,x, yz_’)lcxyz,x, R )/n_xl’xxynx,x}.
(We will always take y; » = 1, and we write x; for Vi xlxyi,x.) Then we have the
following k G-module isomorphisms:

ckCy ~ Indgg(x)k = rgkG RkCs(x) k, x;+— )/;x1 ®1,

ckCx = Coindg ) k = Homcg () (ke 0k Gk ko (k).
Xi > Vi kG — k. yi(yjx) = 8ij,

where in the first isomorphism, the left kK G-module structure on kG is the usual left
multiplication and the right k C (x)-module structure on kG is given by restriction,
and k is the trivial kCg (x)-module, and the same as in the second isomorphism.

In the second step, we have arrived at the ordinary group cohomology H* (G, kG)
of G with coefficients in .k G. This .k G has a k G-module decomposition:

kG = @B kCx.
xeX

Denote by 7y : kG —> kCy and iy : kC, —> kG the canonical projection and the
canonical injection, respectively. Then we have the following isomorphism

Homy.g (Bar. (kG) ®xg k.ckG) — @) Homgg (Bars(kG) ®kg k. kCx).
xeX

(¢2 : " — kG) — @3 = {p3x|x € X}, where g3 x» = 50> G — kCy.
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Its inverse is given by

P Homyg (Bar.(kG) ®g k.kCy) —> Homyg (Bar. (kG) ®xc k.kG),
xeX

03 = {P3x G — kCy|lx € X} +—> ((p2 = Z ix¥3.x G — kG).
xeX

Passing to the cohomology, we realize an isomorphism:

H*(G.ckG) ~ P H*(G. kCx). (3)
xeX

The fourth step. We have stated in the third step the following kG-module
isomorphism

ckCyx ~ Homgcy ) (kG k),  xi > yi : kG —> k,yi(yjx) = 8ij-
Therefore we have the following isomorphism
Homy g (Bars(kG) Qg k, ckCx)
—> Homyg (Bar« (kG) Qkg k, Homgcy, (x)(k G, k)),
(3.0 : G " —>kCx) = (a5 : G —> Homicg (0 (kG k),

where if we write ¢3.x(g1,82,...,8n) = Z?ﬁl aixXi, then @4 x(g1,82,--.,8n)
maps y; x to a; x for any i. The inverse isomorphism is given by

Homyg (Bary (kG) Qi k., Homyicg; (x)(kG, k))
—> Homy g (Bark(kG) ®xg k. kCy),
(@ax: G —> Homycgy(n (kG k) — (935 : G —> kCy).

where if 94 x (g1, 82, ..., gn) Maps yi x toa; x forany i, then ¢3 (g1, 82, ..., 8n) =
Z;’;l a; xX;. Passing to the cohomology, we realize an isomorphism:

H*(G,kCy) ~ H*(Homgg (Bary (kG) ®rg k, Homgc,, (x) (kG k))). (4)

The fifth step. Since (kG ®x —, Homg ¢ (x)(kG, —)) is an adjoint pair (restriction
and coinduction), we have the following isomorphism

Homy g (Barx (kG) ®xc k., Homgc, (x) (kG k))
—> Homygc (x) (Bar«(kG) ®rg k. k).
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Passing to the cohomology, we get an isomorphism

H*(Homyg (Barx(kG) ®kg k, Homgcg (x) (kG k)))
~ H*(Homkc,, (x)(Bar(kG) ®kg k., k)), (5)
where the right hand side is isomorphic to the ordinary group cohomology

H*(Cg(x),k) of Cg(x) with coeflicients in the trivial module k. Since there
are k Cg (x)-module isomorphisms

nx

Bar, (kG) ®k6 k =~ @D kCo(x)yix ®KG .

i=1

we have

nx
HokaG(x)(Bar*(kG) ®rg k, k) ~ Homy, (@k%‘,x ® ﬁ@)"’ k)

i=1
>~ Map(Sy x Exn, k),
where Sy = {V1x,.-.,Vny,xs (cf. the third step). Using this identification, the

adjoint isomorphism is given by

Homy g (Bark(kG) Qg k, HokaG (x) (kG,k))
— HokaG(x)(Bar*(kG) kg k. k),
(04, G Homgcp; (x) (kG k)) —> (@55 + Sx X [CAN k),

where if 94,2 (g1, 82, - ... §») Maps yj x toa; x forany i, then ¢s x (Vi x, 1. 82, - - -, n)
= a; , for any i. The inverse isomorphism is given by

Homyc,; (x)(Barx (kG) Qg k. k)
—> Homy g (Bark (kG) ®kg k, Homkc, (x)(kG. k)), s

(@51 Sx X G —> k) > (94 : G —> Homgcg () (kG K)),

where if @5 x (Vi x, 81,82, ..,8n) = ai x for any i, then ¢4 x(g1, g2, .. .. gn) maps
Vi x to a; x for any i. Passing to the cohomology, we realize an isomorphism in (5)
and its inverse.

The sixth step. In the fifth step, we have arrived at the ordinary group cohom-
ology H*(Cg(x),k) of Cg(x) with coefficients in the trivial module k, where
H*(Cg(x), k) is computed by the cochain complex

HokaG (%) (Bar* (kG) Rrc k, k).
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By the identification in the fifth step, this is given by the following cochain complex:

s _ § — 8n
0 —> k™ = Map(Sy x G, k) —> --- —> Map(Sx x G k) > -+,

where the differential is given by o({a;i x})((V)x,g1)) = as;.x — aj x, such that
as; x is determined as follows: for {aix} e k™™, yjx €Sk, 81 € G, we have

Vix81 = hj,lVSj,x

for some /11 € Cg(x) and for some 1 < s; < ny, and
Sn(@)(Vjxs&1s- - &n+1) = @(Vs; x, 825> &n+1)

n
+D D @Wx 81 &iit1 - &) + (D) oy 810 gn)
i=1

for ¢ : Sy xG " k,Vjx € Sx.81:-..,8n+1 € G such that Yjx81 = hj,l)/sj,x.
(Remark that for a fixed g, € G, {s1,52, ..., Sn. yis apermutation of {1,2,...,n.}.)

The above computation for H*(Cg(x),k) uses the projective resolution
Bar«(kG) ®¢ k of the trivial kCg (x)-module k, which is identified as the following
complex. (Itis in fact a projective resolution of the trivial K G-module k, but we view
it as a complex of kCg (x)-modules by restriction.)

—®n dy —_d d
s kG RKGT s kG ®KG 5 kG S k —> 0,
where the differential is given by
do(go) =1,

for gg € G, and

dn(80,81:---,8n) = 8081 Qg2 - R gn

n—1

+D (-D'go® - ®gigit1® - ®gn+ (—1)"g R g1 @ ® gno1

i=1

for go € G,g1,....8» € G. We now use another projective resolution
Bary(kCg (X)) ®kcg(x) k of the trivial kCg (x)-module k, which is identified as
the following complex

i kCo(0) @ kCo ()™ s ..

e kCe(x) ® KCo (1) 5 kCo(x) 2% k —> 0,
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where the differential is given by
do(ho) = 1,

for hg € Cg(x), and

dn(ho,hl,...,hn) :hoh] ®h2®®hn
n—1
+Y (Do ® @ hihit1 ® - @ hy + (—1)"ho @ h1 ® +++ ® hy_1.

i=1
for hg € Cg(x),hy,... . hy € T(x) We have
Homycg (v (Bar (kC6 (¥)) ®keq( ko k) = Map(C(x) k),
so H*(Cg(x), k) can also be computed by the following cochain complex
0 —> k % Map(C (), k) ~> - —> Map(Cg (x) " ) > -+ ,
where the differential is given by
So(a)(h1) =0,

fora € k, h; € Cg(x), and
Sn(@)(h1, ... hnt1) = @(ha, ... hyy1)

+ Y D hihisr ) + G e ),
i=1

for ¢ : Cc;(x)xn —> k,hy,...,hy4+1 € Cg(x). Clearly, we have

H* (Homcy o) (Bary (kG) @i k. k)
~ H*(Homgc,, (x)(Bar (kCg (x)) ®kcg (x) k. k). (6)

To give an explicit isomorphism in (6), we need to construct the comparison maps
between two projective resolutions Barx (kG) ®k¢ k and Bar«(kCg (X)) Qkcs(x) k
of the trivial kCg (x)-module k.

The comparison map from Bar (kCg (X)) ®kc (x) k to Bark(kG) Q¢ k is just
the inclusion map

L kCo(x) @ kCa () <> kG @ kG .

This is obvious or can be obtained using a setwise self-homotopy on Bar (kG) @ k
(see below for its explicit form).
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To construct the comparison map on the reverse direction, we use a setwise
— ®%*
self-homotopy over kCg(x) ® kCg(x)  as follows:

kCq(x) @ kCa(x)"" —> kCa(x) @ kCq (),

ho@h1 @+ @hp—>1Q@hg @h1 &+ Q hy,
for hg € Cg(x),h1,.... h, € T(x) Then we get a comparison map
p:Bary(kG) ®rc k — Bary(kCg(x)) ®rcg(x) k
as follows:

p—1:k—k, 1r—1,
po kG — kCg(x), hyix+— h, forh e Cg(x),
p1:kG kG — kCg(x) @ kCq(x), hyix® g1 +— h®hi,,

where i xg1 = hi1Vs; x for hi € Cg(x),

pn kG @KG" — kCs(x) @ kCa(x) ",
hyix®g1®Qgnt+—h®hi1 ® - ®hjn,

where h;1,...,hin € Cg(x) are determined by the sequence {gi,...,gn} as
follows:
Yi,x81 = hi,l)/sil,xv Vsil,ng = hi,ZVsiZ,x’ Tt Vsl”_l,xg” = hi,n)/sl’?,x-

Notice that p ot = Id and ¢ o p # Id. It follows that we have two homomorphisms:
Homyc; (x)Bars(kG) ®kg k, k) —> Homgc, (x)(Bark (kCg (x)) Qkcg(x) k. k),
(@52 x G —> k) = (o : Co(x)  —> k),
§06,x(h17 v hy) = §05,x(1’ hi,....,hy) = al,x

where a; x is the coefficient of x in @3 x(h1,...,hy) = Z;’il ai xx;; and
HokaG(x)(Bar* (kCg(x)) QkCs (x) k,k)y — HokaG(x) (Bar (kG) ®rq k. k),
& _
(@ox : Ca(x) " —> k) —> (psx: Sx x G " —> k),
(/)S,X(Vi,x’ g17 L) gn) - (/76,x(hi,17 L) hi,n)7

where for h; 1,...,hi, € Cg(x) are determined by the sequence {g1,...,gxn} as
follows:

Vi1 = hitVl oo Vsl x82 = higVe2 oo 0t Vept 1 8n = hinVsp x
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Since both ¢ and p induce the identity map 1 : kK —> k, by Lemma 2.3, we have
inverse isomorphisms between H*(Homyc, (x)(Bar«(kG) Qk¢ k., k)) and

H ™ (Homgc,; (x) (Barx (kCg (X)) ®kcg (x) k. k).

The correspondence is induced by ¢s » <— ¢s x, as we stated above. So we realize
an isomorphism in (6) and its inverse.
Summarizing the above six steps, we get the following main result in this section.

Theorem 5.1. Let k be a field and G a finite group. Consider the additive decomp-
osition of Hochschild cohomology ring of the group algebra kG :

HH*(kG) ~ P H*(Cs(x).k).
xeX

where X is a set of representatives of conjugacy classes of elements of G and Cg(x)
is the centralizer subgroup of G. Recall that we choose a right coset decomposition

of Ca(x)inG:

G =C(x)y1x UCg(x)y2,x U---UCG(X)nyx
equivalently,

G =y1:Ce(x) UysrCo(x) U+ Uy, Calx)
is a left coset decomposition of Cg(x) in G, and such that

Cx ={X = Y12 XV1x VaxXV2xe - Vo xXVngux )

We will always take y1,x = 1, and we write x; for yifxlxy,-,x.
We compute the Hochschild cohomology

HH*(kG) = H*(Homy(gxg)(Bar. (kG).kG))

by the classical normalized bar resolution, and we compute the group cohomology
H*(Cg(x), k) by

H™(Homy ¢, (x) (Barx (kCg (x)) ®kcg (x) k. k).

Then, we can realize an isomorphism in additive decomposition as follows:

HH*(kG) — €D H*(Cs(x).k),
xeX
lp: G — kGl — @] = PPx). 9x:Ce(0)" — k.
xeX
ax(hla o ,hn) = al,Xa

nn+1) _ —
where i (1) 2 hy--hpo(hy", ... hTY) = Y0 aixx;i.



832 Y. Liu and G. Zhou
In other words, @x(h1, ..., hy) is just the coefficient of x in
(D" hy e b hTY) € kG

The inverse of the above isomorphism is given as follows:

P H*(Co(x).k) — HH*(KG).

xeX
o~ o~ o~ —X JR—
@] = Plexl. 9x:Cex) " —kr—p:G " — kG,
xeX
n(t1) N ,
OG- gn) = (=1 2 gregn DY Pxlhfy.... ) )xi,
xeX i=1
where for x € X,h:.’l,...,h;,n € Cg(x) are determined by the sequence

(g, ', ... g7} as follows:

yiaxg;1 = h;,lys[l X ysl»l ,xg;—ll = h;’,ZysiZ,x’ e ys?_l,xgl_l = h;,nysf,x'
Proof. This is a direct consequence by applying the above isomorphisms from (1)
to (6) and their inverses. For an element ¢ : G — kG in the nth term
C"(kG) ~ Map(@xn,kG) of the Hochschild cohomology complex, [¢] denotes
the corresponding element in the Hochschild cohomology group HH"(kG). Note
that the elements h;,l, e, h;‘,n depend on x € X and the sequence {g,',..., g7}
For the simplicity of notations, we avoid to write them down explicitly. O

Remark 5.2. (a) The correspondence in Theorem 5.1 makes use of the same line
employed by Siegel and Witherspoon in [17]. The difference is: they realize each
step between cohomology groups using standard operations like restriction, induction,
conjugation, etc., while we construct maps directly in each step on the cohomology
complex level.

(b) In [17], as the authors proved that HH*(kG) ~ H*(G, ckG) as graded
algebras, they concentrated on H*(G, .kG) instead of HH*(kG) in most part of
their paper. If we only consider the isomorphisms (2)—(5), then the correspondence
in Theorem 5.1 become simpler:

H*(G.ckG) — @D H*(Co(x). k),
xeX
[p:G" — kGl [3] = P@x]. @x:Colx)  —k,
xeX
Ox(h1,...,hy) = a1, the coefficient of x in ¢(hy,...,h,) € kG;
P H*(Co(x).k) — H*(G. k).

xeX
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@1 = P@sl. 7x:Cex)  —k—1lp:G " — kG,

xeX
nx
0(&1,- 2 8n) = D Y Pxlhin,.. hig)xi,
xeX i=1
where for x € X,h;j1,...,hi, € Cg(x) are determined by the sequence
{g1,...,gn} as follows:
Vix81 = hitVl oo Vsl x82 = higVe2 oo ot Vept 180 = hinVsp x-

6. Another realization of the additive decomposition

In [4], Cibils and Solotar constructed a subcomplex of the Hochschild cohomology
complex for each conjugacy class, and then they showed that for a finite abelian
group, the subcomplex is isomorphic to the complex computing group cohomology.
We will generalize this to any finite group: for each conjugacy class, this complex
computes the cohomology of the corresponding centralizer subgroup. As a result,
we give a second way to realize the additive decomposition.

As before, let k be a field and G a finite group. Recall that the Hochschild
cohomology H H ™ (kG) of the group algebra kG can be computed by the following
(cochain) complex:

$ — 8 —X On
0 —> kG —> Map(G,kG) —> --- —> Map(G ", kG) —> .-, (H*)
where the differential is given by

So(x)(g) = gx —xg

forx €e kG and g € G, and

Sn(@)(g1, .-, 8&n+1) = 810(82. ... &n+1)

n
+ Y (D081, gigit1s - gnt) + (D" (g1, gn) gt

i=1

for ¢ : G" — kG and g1.....8n+1 € G. We keep the following notations in
Section 3: X is a complete set of representatives of the conjugacy classes in the finite
group G. For x € X, Cx = {gxg~!|g € G} is the conjugacy class corresponding
to x and Cg(x) = {g € G|gxg~! = x} is the centralizer subgroup. Now take a
conjugacy class Cy and define

HO = kCy,
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and forn > 1,
HE =1{p:G " —> kGlo(g1,...,gn) € k[g1---gaCx] CkG,¥g1,...,gn € G},

where gp---g,Cy denotes the subset of G by multiplying g;---g, on Cx and
k[g1---gnCx] is the k-subspace of kG generated by this set. Note that we have

gl.-.ganZngl.-.gn and k[gl.-.gncx]:k[ngl...gn].

Let HY = ,>¢ H%. Cibils and Solotar [4, p. 20, Proof of the theorem] observed
that 7} is a subcomplex of H* and H* = @, .y H}.

Lemma 6.1. H} is canonically isomorphic to the complex

Homy g (Bark (kG) Qg k, kCy),

which computes the group cohomology H*(G,kCy) of G with coefficients in kCy,
where kCy, is a left k G-module under conjugation.

Proof. We know from Section 3 that the complex Homg g (Bar«(kG) Qrg k,kCy)
is identified as the following complex:

S — S — 8
0 —> kCyx —> Map(G,kCy) —> -+ —> Map(G ", kCy) —> -,

where the differential is given by

So(x)(g) = gxg ™' —x

forx € kCy and g € G, and
8n(0)(81. .- 8n+1) = 19(82. .. Gn+1)&T "

n
+ Z(_l)lw(glv ceey gigi+la c.. 7gn+1) + (_1)n+1(p(g19 o .. 7gn)
i=1

for ¢ : " — kCyand g1,...,gn+1 € G. A direct computation shows that the
following map is an isomorphism of complexes:

H¥ —> Homgg (Bark (kG) Qg k,kCy),
(91:G " —kG) > (92:G " —> kCy),
02(81.- - 8n) = P1(g1.- - 8n)gy 8T
Its inverse is given by
Homy g (Bary(kG) ®g k,kCx) — HJ,
@2:G " —kC) = (91:G " — kG,
P1(81.---.8n) = ¢2(81.-- . &n)&1 " &n-
Passing to the cohomology, we have H*(H}) ~ H*(G,kCy). O
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Remark 6.2. Since the first three steps of the previous section realize
HH*(kG) ~ H*(G, :kG) ~ ®xex H*(Cg(x), k),

these isomorphisms also give a decomposition of the complex H*, which computes
HH*(kG). Infact, during these three steps, we establish the following isomorphisms
of complexes
H* = Homy(gxg (Bark(kG), kG)

1

~ Homy (g xG) (k(G x G) ®rg Bars(kG) Qrg k,kG)

@

2 Homyo (Bars (kG) ®i¢ k. kG)

2 D Homyg (Bary (kG) kg k. ckC).
xeX

So the complex Homy g (Barx (kG) Qig k, kCy) is isomorphic to a subcomplex
of H* and we verify easily that this subcomplex is just the above defined 3.
However, the isomorphism between these two complexes is as follows:

Hy —> Homgg (Bary(kG) Qkg k,kCy),

(01:G " —kG)— (92: G " —> kCy),

nn+1) _ —
0281, gn) = (1" 2 gi-gnpr(gy 8T ).

Its inverse is given by
Homy g (Bark(kG) Qrg k, kCy) — H;,

(02: G " — kCy) — (¢1: G " — kG),
nn+1) 1 1
P1(81,--ngn) = (=) 27 g1 gugn (8,081 )
Note that this isomorphism differs from the one in Lemma 6.1 by an automorphism
of the complex Homy g (Bar« (kG) ®xg k, -k Cy), which sends ¢ : G = kCy to
¢ G " > kCyx with

nn—+1) _ _ — —
(g1 ... gn) =1 2 gi-guol(g, ... g7 Dg, g

On the other hand, we have shown that the complex

Homyg (Bark(kG) Qg k,kCy)

is isomorphic to the complex

Homyc; (x)Bar« (kCg (X)) ®rcg (x) k. k),

which computes the group cohomology H*(Cg(x),k) of the centralizer sub-
group Cg(x) with coefficients in the trivial module k. (cf. Section 5, from the
fourth step to the sixth step.) Therefore we get another realization to the additive
decomposition.
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Theorem 6.3. Let k be a field and G a finite group. Consider the additive
decomposition of Hochschild cohomology ring of the group algebra kG :

HH*(kG) ~ ) H*(Cg(x). k)
xeX

where X is a set of representatives of conjugacy classes of elements of G and
Cg(x) is the centralizer subgroup of G. We compute the Hochschild cohomology
HH*(kG) = H*(Homygxg)(Bars(kG),kG)) by the classical normalized bar
resolution, and we compute the group cohomology H*(Cg(x), k) by

H*(Homycg (x)(Bark (kCg (X)) ®kcg (x) k. k).

Then, we can realize an isomorphism in additive decomposition as follows:

HH*(kG) — P H*(Cg(x).k),

xeX
[px : G " — kG, ¢x € H! r— [@x: Co(x)  —> K,
ax(hl, o hy) = ai,x,
where
nx
ox(hy.. .. h)hy ' h7t =" aixxi € kCy.
i=1
Inotherwords, Px(h1, ..., hy) is just the coefficient of x in x (h1, . .., hy)h - - hi'€ k Cy.
The inverse of the above isomorphism is given as follows:
P H*(C(x).k) — HH*(kG),
xeX
[@x: Co(x) " —kl—>[px: G " — kG], ¢x € H",

nx
(Px(gl,...,gn) = Zax(hi,lﬂ"‘7hi,n)xigl ...gn’

i=1

where hii1,...,hin € Cg(x) are determined by the sequence {gi,...,8gn} as
follows:
Vix81 = hiaysl oo Vol 82 = iy oo Vipo1 1 8n = MinVshx

Proof. This is a combination of Lemma 6.1 and the correspondence from the fourth
step to the sixth step in Section 3. 0

By Remark 6.2, the two realizations of the additive decomposition in Theorem 5.1
and Theorem 6.3 are essentially the same on the cohomology group level. In the
sequel, we prefer to the second realization since it is simpler.
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7. The cup product formula

We keep the notations of the previous sections: k is a field, and G is a finite group,
and so on. We describe the cup product formula for the Hochschild cohomology ring
HH*(kG) in terms of the additive decomposition.

We shall define a product over ) ..y H*(Cg(x), k) such that the isomorphism

HH*(kG) ~ P H*(Cg(x). k)
xeX

realized in Theorem 6.3 becomes an isomorphism of graded algebras.
Let [px] € H*(Cg(x), k) (respectively [¢,] € H™(Cg (), k)) represented by
the map ¢y : Cg x) " —k (respectively by ¢, : Cg ()" —> k). Define

[ U] = D (@ Uey):] € @ H*(Co(2),k)

zeX zeX

with (¢x U ¢y); : Cg (z)xn+m — k as follows:

(Q/D;U Q/D;)Z(hlv- -'1hn’hn+17-- ,hn+m)
= Glhin.... . hin)@y(hj.....hjm),
(,j)el]
where
e I is the set of pairs (7, j) such that x;hy ---h,y;(h; coihy) T =z
* Viaht = hiavel o Vel e = higve o Vot e = hinVsp
Vivhner = haYe e Vel yhnea = hi2ve
)/s’/ﬂ—l,jhn-i-m = hj,mVs’jﬁ,y'

Theorem 7.1. With the product defined above, the isomorphism in Theorem 6.3 is
an isomorphism of graded algebras.

Proof. We shall show that with respect to the isomorphism in Theorem 6.3, the
product defined above coincide with the cup product on the cohomology complex
level.

Let

o~ o~ AT X ey . ——X
@)@ : Cax) " — k) and [3]@ : Ca(y)  — k)
be two elements in H" (Cg(x), k) and in H™(Cg(y), k), respectively. Denote by

[px: G —> kGl(px € H") and [py: G —> kG](py € H™)
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the corresponding elements in HH *(kG). By Theorem 6.3,

nx
oG kG, (g1.....gn) > D @xlhin.. . hin)Xig1 e gn,

i=1

with
Vix81 = hiaVl oo Vsl 282 = higVe2 oo 0t Vept 1 8n = hinVsp x

A similar formula for ¢,, works as well.

Now denote by ¢y U ¢y, : 6X(n+m) —> kG the cup product. By the definition

of the cup product, for any z € X, we obtain (px U ¢y), € H?1™ given by

(px U@y)z: 6X(n+m)

(g17-~-agn,~--’gn+m)

nz
> Y Y Gahine . hi)@y (R hm)Zk g1 Entms
k=1 (i,j)el

— kG,

where
o Iy is the set of pairs (i, j) such that x; g1+~ gny; (g1~ gn) "' = zi3
® yi,xgl = hiyl)/sl.l ,X° )/Sll ,xgz = hi,zySiz,x’ e ysl’.'l_l’xgn = hi,nysi”,x;
* Viv8n+r = hjaVel e Vsl y8nt2 = hjave .
Vs;ﬂ—l,jgn-i-m = hj,mys;?',y-

Note that /; depends on the elements g1, ..., g,. Again by Theorem 6.3, we obtain
an element in H*(Cg(z), k) of the following form:

X(n+m)

Cg(2) — k
(hla LR ] hnv hn+17 cec hn+m) > Z @(hi,lﬂ st hi,n)@(hj,h MR hj,m)v
G, )eh
which is just (¢x U @) defined before. O

Similarly we can prove the following result.

Theorem 7.2. The isomorphism in Theorem 5.1 is an isomorphism of graded algebras
with respect to the following product defined on @,y H™(Cg(x), k).
Let

[6:)@x: Co(x) " — k) and [§,]@y:Ca(y)  —> k)

be two elements in H"(Cg(x), k) and in H™(Cg(y), k), respectively. Define

[Bx U@y = D (@ Ugy):] € @D H*(Co(2). k)

zeX zeX
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o~~~ ———_Xn+
with (¢x U @y); : Cg (z)xn "k as follows:

(@x U@ z(ha, .o hp, by, .o hyem)
— (_1)nm Z @(h;,l’ ey h;,n)@(h/],l g e ooy h/j,m)’
@,0)el

where

e [y is the set of pairs (i, j) such that hy - - - hyyx; (hy ---hm)_lyj =7z =2z

¢ Vi,th+1 = h;,lysil,x’ ysil,th‘f'z = h;,2ys,-2,x’

)/s?_l,xhn“rm = h;,nys?,x;

. )’j,yhl = h},lys},y’ )/S}’yhz = h/j’z)/sg’y’ e ys’;’_l,jhm = h/j’m)/s;{’l’y.
Remark 7.3. (1) By Remark 5.2 (a), our cup product formulae in Theorems 7.1
and 7.2 are consistent with Siegel and Witherspoon’s formula in [17, Theorem 5.1]

up to an isomorphism.
(2) From our realization of the graded algebra isomorphism

HH*(kG) ~ @ H*(Cs(x).k) = H*(G.k) & ( D H*(CG(x),k)),

xeX xeX—{1}

it is clear that H*(G, k) can be seen as a graded subalgebra of HH*(kG) and
each H*(Cg(x), k) is a graded H* (G, k)-submodule of HH *(kG). Therefore, the
additive decomposition gives an isomorphism of graded H* (G, k)-modules.

8. The A operator formula

Let k be afield and G a finite group. Recall that the group algebra kG is a symmetric
algebra with the bilinear form

(,): kG xkG —k,
1 ifg=hn"!

0 otherwise

(g.h) =

for g,h € G. Forn > 1, the operator A : HH"(kG) — HH" ' (kG) on the
Hochschild cohomology is defined by the equation

n

(A@)(E1 - gnm1),8n) = Y (D" p(gi ... gn1,&n. 815 gim1), ),
i=1

where ¢ € C"(kG) ~ Map(G ", kG), A(p) € C"1(kG) ~ Map(G """, kG).
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Equivalently,

A(p)(g1,---s8&n—1)

n
=Y > D"V (gin . gn. gne g1e - gim) 1)y

gneG i=1
For example, when n = 1, A : HH'(kG) — HH°(kG) is given by A(p) =

> geclv(2), 1) g~ . This operator together with the cup product U and the Lie
bracket [, | defines a BV algebra structure on HH*(kG).

We know from Section 4 that, for a conjugacy class Cx of G, H} = P, H}
is a subcomplex of the Hochschild cohomology complex H*, where

HE = {op N CAN kGlo(gr....,8gn) €klg1---gnCx] CkG,Vg1,..., g0 € G}.

Lemma 8.1. The operator A : H" —> H" 1 restricts to Ay @ H: —> H! for
each conjugacy class Cy.

Proof. We need to show that A(¢) € H" ! foreachp € H". Letgy,...,gn—1 € G.
Since

A ((p)(gls LI ,gn—l)

n
= Z Z(_l)l(n_l)((p(gl’ e 7g7’l—17gn7 g15 e 7gl—1)7 l)g;17

gneG i=1
it suffices to prove the following statement: if

(w(gi’"’7gn—l’gn’g17”-agi—l)7 1) # 0

for some i, then g;l € g1 gn—1Cx. Indeed,

(p(gis. - 8&n—1,8n.81,---,&i-1),1) #0

impliesthat 1 € g; --- g,—18n81 - &i—1Cx, or equivalently

g, ' €gi - gi—1Cxgi+ gn—1 = g1 gn-1Cx. O

Now we can determine the behavior of the operator A under the additive
decomposition.
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Theorem 8.2. Let A, : H"(Cg(x),k) — H" Y(Cg(x),k) be the map induced
by the operator Ay : HH"(kG) — HH "=1(kG) via the isomorphism established
in Lemma 6.1. Then Ay is defined as follows:

Ax(W)(hi, .. hnet)

oD G Lk (T NUUOY MENTY WLPRERY PREL PRV Ty

i=1

Jory : Cg (x)Xn —> k and for hy, ..., hy—1 € Cg(x). For example, whenn = 1,
Ayt HY(Cg(x), k) — H°(Cg(x),k) sends ¢ : Cg(x) —> k to yr(x71).

Proof. We shall prove that the following diagram

H (MY —25 s gl

L

H"(Cg(x). k) —= H""(Cg(x). k)

is commutative, where the vertical isomorphisms are given in Lemma 6.1.
—F XN
Take an element ¥ : Cg(x) — kin

Homy ¢, (x)(Bar, (kCg (X)) ®kce(x) k. k)

and denote by ¢ : G — kG the corresponding element in H’. By Theorem 6.3,
for any hy,...,h, € Cg(x), ¥(hy,...,hy) is equal to the coefficient of x in
o(hy.....hy)h;t---h7' € kCy. We should prove that A,(y) corresponds
to Ax (@) via the isomorphism in Lemma 6.1.

Now

Ax ((p)(gl’ . -’gn—l)

n
=Y > D"V (gin . gn1. gne g1e - gim) 1)y

gneG i=1
Forany hy,...,h,—1 € T(x), consider the coefficient of x in
Ax(@)(hys .. g Y bt € kCy,
or equivalently the coefficient of x/; --- h,_1 in

Ax((p)(hl, oo ’hn—l) € k[hl "'hn—lcx].
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This coefficient is equal to
(Ba@)r, o hne) B LT

—Z( DO Dohy, gy kb T Ry i), 1),

On the other hand, we also know that

Uiy .. by B R X T Ry his)

is equal to the coefficient of x in

Y0 TIY RY SLPRREY Sy PUNUNNY TN ) PESRERY PRk PP Y SRRy P

_(p(hl7"' n—1, nll ”h_lx_lahla"'7hi—1)xEkCX7
which is again equal to (p(h;, ..., hp—1,h, -7 X7 by, oo ki), 1), T
follows that

Ax(W) (1, .. huet)
—Z( DDy by i e h T T Ry i),

i=1

We have proved that Kx () corresponds to Ax(¢) via the isomorphism in
Lemma 6.1 and the diagram is commutative (even at the cohomology complex
level). ]

Remark 8.3. By [7, Corollary 2.2], we know that H*(G,k) is a Gerstenhaber
subalgebra of HH *(kG) under the inclusion map:

Homy g (Bary(kG) ®kg k., k) — Homggxg)(Bark(kG), kG),
(p G — k) — (¥ G — kG),
Vg1, 8n) = (81, &n)&1 """ &n

which is in fact induced by the isomorphism in Lemma 6.1 corresponding to x = 1.

Notice that by notations in Section 6, ¥ € H. So motivated by Theorem 8.2,
we can similarly define an operator Ay : H"(G,k) — H""!(G, k) in the group
cohomology H*(G, k) as follows:

n

A@)E1 - 8n-1) = ) (=D Do(gi,. . gnor, gk g g1 gim1)
i=1

forg : G — k and for g1,---,8n—1 € G.In particular,
Ay HY G, k) — H°(G, k)

is given by ¢ +— ¢(1).
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We prove that H*(G, k) is in fact a BV subalgebra of HH*(kG).

Corollary 8.4. Let k be a field and G a finite group. Then H*(G, k) — HH*(kG)
is a BV subalgebra.

Proof. The inclusion in known to preserve the product structure. In fact this is a
direct consequence of Theorem 7.1. In that result, taking x = 1 = y, we always has
z = 1 if the set /] is not empty.

As the inclusion H"(G,k) — HH*(kG) induced by the isomorphism in
Lemma 6.1 corresponding to x = 1, Theorem 8.2 shows that it preserves the
A-operator. Since this operator together with the cup product U and the Lie bracket
[, ] define a BV algebra structure on H H *(kG), via the isomorphism in Lemma 6.1,
we deduce that the Lie bracket [, ] restricts to H*(G,k) = H*(Cg(1), k). O

Now we specialize to the case of abelian groups. Let G be an abelian group.
In this case, the Hochschild cohomology ring HH *(kG) of the group algebra kG
is isomorphic to the tensor product algebra of kG and the group cohomology ring
H*(G,k): HH*(kG) ~ kG ®; H*(G,k). According to [4], this isomorphism
is given as follows. For G an abelian group, conjugacy classes are elements of G,
hence a cochain ¢, of H? for x € G attributes a scalar multiple of g; --- g,x for
each (g1,...,8n) € G " and we obtain in this way a map @y : G — k. ltis
easy to see that the map @ in Theorem 6.3 is just this scalar.

Now Theorem 7.1 shows that the map ¢ > Yy eg(x ® @x) defines a ring
isomorphism C*(kG) — kG ® C*(kG, k) compatible with the differentials, and
therefore it induces the above isomorphism. Theorem 8.2 specializes to the following
statement.

Proposition 8.5. Ler k be a field and G a finite abelian group. Under the above
isomorphism HH*(kG) ~ kG ®; H*(G, k), the operator

A:HH"(kG) — HH" Y (kG)
corresponds to the sum of operators
X®Ax:x® H"(G.k) — x ® H" (G, k),
where x € G and Ay : H"(G, k) —> H" (G, k) is defined as follows:

Ax@)(g1,. .-\ gn-1)

n
= (D" V% g gty g T g gim1)
i=1
for@:ﬁxn —s k and forgi,...,gn—1 € G. Whenn = 1,
Ay HY(G, k) — H°(G,k)

is given by ¢ — @(x~1).
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Remark 8.6. We could also use the first realization to deduce a formula of the A
operator. However, this formula is much more complicated than that of Theorem 8.2.
We refrain from giving it here.

In a BV-algebra, we have the following equation (see [9]; Here we have changed
the original equation according to the sign convention in Remark 3.1 and we omit the
sign U in the equation):

A (@fy) = DPIMEDYT A @By + & (By) + (=D IPIB A (@)
= (DA @By — (DA (B))y
— (=D)leHBIHYIg8 A ()],

where «, 8,y € HH™(A) are homogeneous elements. So in order to compute the
A operator in HH *(A), it suffices to find the value of A on each generator and on
the cup product of every two generators. Finally, let us mention that we can use the
cup product formula, the A operator formula and the following formula to compute
the Lie bracket:

o, B] = —(=1)1DIBI(A(@ U B) — A@) U B — (=)l U A(B)).

9. The symmetric group of degree 3

There are a few computations in literature on the BV structures of the Hochschild
cohomology rings of some commutative algebras, see for example, [20]. As far as
we know, there is no concrete computation in non-commutative case. In this section,
we use our method to compute the BV structure of the Hochschild cohomology rings
of the group algebra F3S3. The associative ring structure has been determined by
Siegel and Witherspoon [17] using their cup product formula. So we only need to
compute the A operator and the Lie bracket.

Let G = S3 = (a.b | a® = 1 = b?,bab = a~!). Choose the conjugacy class
representatives as 1,a,b. The corresponding centralizers are H, = G, H, = (a)
and H3 = (b). So HH*(F3S;) ~ H*(S;) & H*({a)) & H*({b)). The
ring structures of H™*(S3), of H*({a)), and of H*({(b)) are well-known (see for
example, [6]). H*(S3) = Fi[u,v]/(u?), where u and v have degrees of 3 and 4,
respectively. H*({(a)) = Fs[wy,wz]/(w1?), where w; and w, have degrees of
1 and 2, respectively. H*({b)) = T3, since F3(b) is semisimple. Identify the
elements u, v with their images in HH *(F3S3) and denote by X1, X, the images
of the elements (resp.) w;,w, under the additive decomposition. Then Siegel
and Witherspoon proved in [17] the following presentation for the Hochschild
cohomology ring HH *(F3S3): HH*(F3S3) is generated as an algebra by elements
u,v,Ci =14+a+a%C =b(14+a+ad?, X1, X of degrees (resp.) 3,4,0,0,1
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and 2, subject to the relations

MXI = O, UX1 = MXz, MC2 =0= sz,
CiX;=0=CC;(i,j €{1,2}), X1X2 =uCy, X3=vC

in addition to the graded commutative relations.

Our formula in Theorem 8.2 for A operator is based on the normalized bar
resolution. However, the real computations of the Hochschild cohomology or
the group cohomology are based on the minimal projective resolutions. So we
need to construct comparison maps between the minimal projective resolution and
normalized bar resolution (by the same technique introduced in Section 2), and then
we can transfer our formula in Theorem 8.2 to the minimal Hochschild cohomology
level. By Theorem 8.2, the operator A : HH"(F3S3) —> HH" 1(IF353) restricts
to the operators A, : H'({(b)) —> H" 1((b)), Ay : H"((a)) — H" '({a)),
and A; : H"(S3) — H"'(S3). Since F3(b) is semisimple and H*({b)) is
concentrated in degree zero, ﬁb is trivial.

To compute E,,, we first recall the minimal projective resolution P of the trivial
F3{a)-module F5:

_ 2 _
o> Fsla) 5 Fafa) Y Fyfa) L5 Fsfa) - Fy — 0,

where the differential € is given by €(A; + Aza + A3a?) = Ay + Ay + A3, and the
differential @ — 1 means multiplying by a — 1, etc.. There is a setwise self-homotopy
over P} as follows:

l_11F3—>F3(a>, 11,

3{a) > F3{a), 1~ 0,a— l,a’+— 1+a,

3{a) > F3(a), 1~ 0,a— 1,a>—~1+a,

F
t1 : F3{a) - Fs{a), 1+ 0,a0,a%+—1,
F

13 ZF3(CI) —>F3(a),

1r—>0,a|—>0,a2r—>1,

We also have the normalized bar resolution Bary(F3(a)) ®p,(q) F3 of the trivial
F3{a)-module F3, which is identified as the following complex

— ®n dy — 4 d
s Fs{a) @ Fs{a) s s (a) @ Fa(a) —> Fala) =5 Fy —> 0,

where the differential is given by

do(go) =1
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for g¢ € {(a), and

dn(g0:81..--.8n) = 8081 R 2R R gn
n—1

+Y (D'g0® - ®gigit1 ® Qg+ (—1)"g O g1 Q@ gn
i=1

for go € (a).g1.....gn € (a). There is a setwise self-homotopy over
Bary (F3{(a)) ®r;(q) F3 as follows:

sn i Fala) @ Fa(a) " —> Fla) @ Fa(a) .

80 ®EIV Qe+ 10g ®g1 & ® gn,
where go € (a),g1....,8n € (a). Using {s,} and {z,} we get comparison maps
® : P — Bar«(F3(a)) ®ry(q) F3 and ¥ : Bary(F3(a)) ®r;(q) F3 — P;. We
write down the maps up to degree 4 explicitly:

®: P —> Bar«(F3(a)) Qps(a) F3

q)—l =id: IF:; —> IF:;,

q)() =id: F3(a) — F3(a),

CDI ZF3(CI) — F3(Cl> ®F3(Cl), g g®a,

forg = 1,a,a?,

®2
®, : F3{a) — F3(a) ® F3(a) , g~ g®a®a+g®a’*Qa,

forg = 1,a,a?,

®3
O3 :F3(a) — F3(a) ®F3{a) , g~ g®aQ@Ra®a+g®a®a’Qa,

for g = 1,a,a?,

®4
Q4 : F3{a) —> F3(a) ® F3(a) ,
g gR®a®Ra®Ra®Ra+gR®aRa®a’Ra+gR®a’Ra®Ra®a
+g®a*®a®a’a,
forg = 1,a,a?;
U : Bar,(F3(a)) ®p;(q) F3 — P
qJ_1=1d1F3—>F3,
Yy =id: IF3(a) — F3(a),
Y :F3{a) @ F3{a) — F3{a), gR®ar> g, g®a2l—>g(1+a),

for g = 1,a,a?,
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®2
U, :F3{a) ® F3{a) —> F3{a), g®a®ar0,
gR®a®ad* g gRd’Rarg, gRA*Rd> g,

for g = 1,a,a?,

\P3:F3(a)®F3(a)®3—>F3(a), gRaRaRar0, gRa®a®a’r0,
gRa®ad’Qar0, gR®aRa’*®a’—~0, gRa*’QRaar 0,
g®a’®a®a>—g(l+a), g®a’>®a’>Qar— g(l+a),
g®a2®a2®a2|—>ga,

forg =1,a,a?,

Wy Fala) @ Fs(a) — Fala), g@a®a®@a®ars0,
gR®a®aRa®a’*~0,g®aQaa>Qar 0,
g®a®a®a2®a2|—>0, g®a®a2®a®a|—>0,
gRa®d*®aRa’ g gRaARa’Ra’Qar g,
g®a®ad’®a’Qa*—g.gQa*®aQaar 0,
g®a’Qa®a®a’*—~0, gRa’*Qa®a*Qar 0,
g®a2®a®a2®a2»—>0, g®a2®a2®a®a»—>0,
gRa’R®ad’R®a®ad’ > g.g®a’*R®a*Ra’*RVat> g,

g®a*®a*®a’>®a’ >0,

forg = 1,a,a>.

We have the following commutative diagram:

uy‘

F3 F3

uV

Fya) LEada® gy a=l g€ p - 0
Al ol el ]
Fs(a) ® F3a)” =2 Fs(a) @ Falal—2tr Fafa) — 2% F; —— 0

Clearly both the representatives of w; and w, in the group cohomology

H*({(a)) = F3[w, wp]/(w1?)
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can be chosen as
€:Fz(a) — F3, A1 + Ara + )&302 = A+ Az + As.

By abuse of notation, we have

Ba(wr) = Ba(w W) o Do,
Aa(w2) = Dg(wr¥2) 0 @y
A straightforward calculation shows that ga (w;) = —1and ga (wy) = 0. Similarly,

we can get that

Aa(wiwz) = Dg((wiW1)(wa¥2)) o Dy,
Aaw3) = Ag((w2¥2)?) 0 3.
By direct computation, we have (w; W) (w, W) ®@3(1) = 1and (w,W2)?)P4(1) = 1,
which imply that both the representatives of w;w, and w% in the group cohomology
H*({a)) = Fa[wi, wa]/ (wy?) are given by €. So again a straightforward calculation
shows that A, (wjws) = —w, and A, (w3) = 0.
Next we compute A;. First of all, we need to construct a minimal projective

resolution Py of the trivial F3S3-module [F3. Recall that the group algebra F3S3 can
be identified as the F3-algebra A given by the following quiver and relations:

o 2
o . o, afa=paB =0.

Let 4A = Ae; ® Aey = (e1, a, Ba)® ez, B, af) be the decomposition of the regular
module into the indecomposable projective modules. Then we have the following
(recall that all the computations take place over F3):

er =—(1+0b),ea=—(1-0),
o =—-a(l—a)(1+b)=—(1-ba(l —a) = —(a —a* + ab — a*b),
B=—-a(l—a)l—>b)=—(1+b)a(l —a) =—(a—a®*—ab + a®b),
Ba=(1+b)(1+a+a®>(1+b)=—(1+a+b+a®+ab+ a®b),
afp=0-b)1+a+a*>(1—-b)=—(14+a—b+a®>—ab—ad?b),
l=e1+e, a=ei1+ex—a—p—aff —Pa, b=e; —ey,
a>=e+er+a+p—af—Pa, ab=e; —es;—a + B +af — Pa,
a’h =e; —ey +a— B +af — Ba.

Ae; is the projective cover of the trivial module I3 since a and b act trivially on
Aeq/rad(Aeq); Aey is the projective cover of the sign module sgn since a (resp., b)
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acts trivially (resp., by multiplying —1) on Ae,/ rad(Ae,). Now it is easy to write
down the minimal projective resolution P} of the trivial F3S3-module F3 is as

follows:

02

04 03 01 o
-oo —> Aey —> Aey —> Aey —> Aey —> Aey — F3 — 0,

where the differential is given as follows:

do:e1—~> 1L,a—~0,Ba 0,

01 :ex>a, B Ba,aff — 0,

0r:ex—>af, B0, 0,

dz3:e1 = B,a>af, o0,

04 11— Ba,a—>0,Ba 0,

ds5:ex—>a, B Ba,af — 0,
dg:ex—>aB, B 0,aB8 — 0,

d7:e1~ B,a>af, fa 0,

dg :e1 — Ba,a—0,Ba 0,

Using the Lowey diagram structures of Ae; and Ae,, we can easily construct a
setwise self-homotopy over P;" as follows:

fo

1

%)
I3
14
t5
le

t7

1g :

t_1:F3—> Ae;, 1 eq,

Aey — Aes,

Aez —> Aez,

: Aey — Aeq,
. A€1 — Ael,
1 Aep — Aes,
tAey — Aes,
1 Aey — Aeq,

1 Aey — Aeq,

Ae1 — Aez,

e1 = 0,0 e, fa> B,
es > 0,81 0,a8 > es,
e~ 0,8 e1,aB8 > a,
e~ 0,00, Ba > ey,
e 0,a ey, fa > B,
er 0,8+ 0,a8 — e,
er > 0,81 e1,08 — «,
e1—~ 0, 0,80+ e,

e1—~ 0,0 ez, fa B,

We also have the normalized bar resolution Bar, (A) ® 4F'5 of the trivial A-module F3,
which is identified as the following complex

—on dy —d d
i AR AT A A A F, 0,
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where the differential is given by

do(go) =1

for go € S3, and

dn(g0.81,---.8n) = 8081 ® &2 ® -+ @ gn
n—1
+Y (D'go® - ®gigit1 ® Qg+ (—1)"g O g1 Q@ gne

i=1

for go € S3,81,...,8n € S3. There is a setwise self-homotopy over Bar, (4) ® 4 F3
as follows:

5, AQ A —> A A%

0R®EI® - Qgr—>10g g1 ® - ® gn,
where go € S3,81.....8n € S3. As before, we want to use {s,} and {z,} to get
comparison maps A : Pj* — Bary(4) ®4 F3 and O : Bary(4) ® 4 F3 — P
Here the situation is a bit different, since P;" is not a free resolution. However, if
we replace s, (x) by 5, (x) = e1s,(e1x) + eas,(e2x), then the method introduced in
Section 2 still works. We write down the comparison maps up to degree 8 explicitly:
A Pl —> Bary(A) ®4 F3
Ay =id:F3 — F3,
Ao : Aey — A,
aey — aey,
A1 Aes; — AR A,
er>e®a, B pRQuaf— af a,
Ay:Aey — AR A%,
e eaufRu,f>BfRufu,af —af Qaf R a,
As:Aey — AR A",
e e RPFRuPRar,a»aRPFRafRu,far> fa®P el R a,
Ay Adeg — A ®Z®4,
e~ eRPeRPRASRu,at>a®PaRP Raf R a,
far>Pa@Pa®@PRaf @,
As:Ae; — A® A%,
e ea®aRpaRLRafRa,f>fRaRLaRLRAS R,
> afR@a®Pa®PRaf R,
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AG:Aez—>A®Z®6,
e eHnufReRPeRPRIUBRAfHLRPRURParRLReS R,
af > afR@afRaRPaRP Raf a,
A7 Aeq —>A®Z®7,
e eRRAPRARParRLRaf Ra,

e a®PfRufRePaRPRaf a,
o> BaRBLRaBRaR Pa P Raf ®a,
Ag:Ae; — A® A",
1> e RPuRBRABVARPa B Ruf Ra,
a>aRBeRBRIBRaRPeRLRaf R a,
Bar> BaRPerRLRJaBRaRPaRP Raf a;
© : Bary(A) ® 4 F3 — P/

O_1y =id : F3 — 3,

O : A —> Aeq,

araey,
fora € A,

®1IA®Z—>A€2,
1®gl '_)_62_ﬂ70’62_ﬁa_62_ﬂ162_ﬁ7

for g = a,b,a?,ab,a’b,

@2 : A®Z®2 —)Aez,
1® g1 ®gar> —e2,0,0,0,e;

for g1 = a,b,a?, ab,a’b, and where

01(1® g2) =—e2— B,

for g1 = a,b,a?, ab,a’b, and where

01(1® g2) =e2— B,
1®g1 ®g2+0,

for any other case,

O3 : A®Z®3 —> Aeyq,
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1981 ®g®g3+—>—e1—a,0,e1 —a,e1 +a,—e; +a,
for g = a,b,a?,ab,a?b, and where

O,(1® g2 ® g3) = e2,
I1®g1®g2Q®g3—~e1+0,0,—e; +a,—e1 —a,e; —a,

for g1 = a,b,a?, ab,a’b, and where

02(1 ® g2 ® g3) = —ea,
I1®g1®g Qg3 0,

for any other case,
Q4 AR A 5 Aoy,
181 ®g:®8g3®g4+>¢1,0,0,0,e;
for g = a,b,a?,ab,a?b, and where

O3(1® g, VL3 ®gs) =e1 +a,
I1®g1®g Qg ®gst+>0,0,e1,e1,0

for g = a,b,a?,ab,a’b, and where

O3(1® g Vg3 Vg4 =e1 —a,
1®g1 ®g2®g3®g4'_>_€1,01070,_31

for g1 = a,b,a?, ab,a’b, and where

O3(1®82®83®g4) = —e1 —q,

for g = a,b,a?,ab,a’b, and where

O:3(1Rg Vg3V g4) =—e1 +q,
1Rg1 Qg ®g3Q g4+ 0,

for any other case,

Os: AR AY — Aes,
181 R RVEIVLsVgs+— —ex—P,0,ep— B, —exa — B,er — B,

for g = a,b,a?,ab,a?b, and where

O4(1 R g ® g3 ® a4 ®gs) = ey,
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I1®g1®8:083084@g —ex+p,0,—ex+ B,exa+ B, —ex+ B,

for g = a,b,a?,ab,a?b, and where

O4(1 ® g2 ® g3 ® g4 ® g5) = —ey,
I®g1®g®g3Q g1V gs— 0,

for any other case,
O¢: A ®Z®6 —> Aey,
1®Rg1 R VL VgtV gs Vg €2,0,0,0,—e3

for g1 = a,b,a?, ab,a’b, and where

O;(1R0g2 Vg3V g1V g5V gs) = e+ P,
1®Rg1®g VL RVLIV L RV gs > 0,0,e3,—€2,0

for g = a,b,a?,ab,a?b, and where

Os5(1® g Vg3V Ls® g5V gs) =e2— P,
1810820830840 85 g6 —e2,0,0,0, e

for g = a,b,a?,ab,a’b, and where

Os5(1® g2 Vg3 ®gGs Vg5 ®gs) =—e2— P,
IRV RVEIRLEIV L5 g 0,0,—e3,e3,0

for g1 = a,b,a?, ab,a’b, and where

O:;(108: 830 81® g5 gs) = —e2+ P,
I1®g1®g2Vg3Q g4V g5 gs — 0,

for any other case,
7 : A®Z®7 —> Aey,
1®g1®grRVE3VELiVE Vg Vg1 —e1 —a,0,e1 —a,e; +a,—e; +«

for g1 = a,b,a?, ab,a’b, and where

Ol R VLIV L4V g5 ® g6 ® g7) = €2,
IRgI®ERVLEIVLEVERLR®EI—>e1+a,0,—e +a,—e1 —a,e1 —«

for g = a,b,a?,ab,a?b, and where

Os(1 2R3V g1V g5V 86 ® g7) = —e2,
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1081 R®g®EIVLiVE R Vg7 0,
for any other case,
®8ZA®Z®8 —>Ael,
I1®g1R®g®Eg3VLiVE VL VLTV g ¢1,0,0,0,¢1

for g = a,b,a?,ab,a’b, and where

7108, V83081V VLV g7V gs) =e1 +a,
I1Rg1®g:0g30g1Vg Vg g7 ®gs—0,0,e1,e1,0
for g = a,b,a?,ab,a?b, and where
108083081V g VgV gTVgZs) =e1—q,
1081082083081 085Q86Rg7®gs > —e1,0,0,0,—e;
for g1 = a,b,a?, ab,a’b, and where
O7(1 R g VLI VL1V g5V ge®gT®gs) =—e1 —q,
1®2g1 RV VLIV L QL ®gT®gs > 0,0,—er,—e1,0
for g = a,b,a?,ab,a?b, and where
7108, V8301V gV L Vg7V gg) = —e1 +«a,
I®g1®EgRVLEIRVLIVE VL VLT Vg0,

for any other case. Note that both the representatives of ¥ and v in the group
cohomology H*(S3) = F3[u,v]/(u?) can be chosen as Ae; —> F3, e; — 1,
a0, Ba — 0. Since |u| = 3 and |v| = 4, we have ﬁl(u) = 0 and zl(v) = Au
for some A € [F3. We have

A1(v) = A1(v8Oy4) 0 As,
and Ay (v®4) can be computed by our formula in Theorem 8.2. Since
A1(vO4g) 0 As(er) = e1A1(v04) (B ® 4B ® @)
= —A1(0)(B® af ® @) —bA(vO4)(B ® af ® )
= —24,(004)(f ® ap ® @)
= A1 (104)(B R af ® ).

By a MAP/IiE calculation (see [14]: A MAPLE program for computing Zl.), we
obtain that A (vO4)(BRaB®«a) = 0, and therefore A1 (v) = 0. Since |[uv| = 7 and
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[v2| = 8, we have A1 (uv) = pu? and Aq(v2) = p/uv for some w, u' € Fs. Since
u? =0, zl(uv) = 0, and we only need to compute 21(v2). The representative
of v? in the group cohomology H *(S3) = F3[u, v]/(u?) can also be chosen (up to
asign) as Aey —> F3,e1 —~ 1, — 0, B — 0. We have

A (v?) = A (v?Og) 0 A,
A1(v205) 0 Az(e1) = e1 A1 (1®°O7) (B R af ®a ® Pa @ B ® af @ )
= 21(v2®7)(,3 RQufRa®PaRPRaf ).

Similarly by a MAPLE calculation (see [14]: A MAPLE program for computing Ay ),
we obtain that 21(v2®8) o A7(ey) = 0, and therefore zl(vz) =0.

Finally, based on the above computations, we deal with the Lie brackets. Since
we have the following Possion rule: [e U B, y] = [a, y]UB + (=D)I@l¥I=Dg U (B, y],
it suffices to write down the Lie brackets between generators in HH *(IF3S3). Recall
that HH*(F3S3) is generated as an algebra by elements u, v, C; = 1 + a + a2,
Cy = b(1 +a + a?), X1, X, of degrees (resp.) 3,4,0,0,1, and 2, subject to the
relations

MXl :O, UXI :qu, uCZZOZ'l)Cz,
CiX]' :O:C,Cj(l,] 6{1,2})’ X1X, =uCy, X22=UC1

in addition to the graded commutative relations. Using the formulas (Here we omit
the sign U in the equation)

o, B] = —(=D)1=DBI(A@B) — A(@)B — (=)l & (B))

and
o, B = = (===, o,

we do the concrete computations as follows:

[u,u] =0, [u,v] = zl(uv) — gl(u)v + uzl(v) =0,[v,u] =0,

[u,C1] = —(A@WCy) — AW)Cy +u A (Ch)) = —Aa(X1X2) = X2, [Cr.u] = —X,,
[u, o] = —(AuCy) — AW)Cr +u A (C2)) = 0,[Co,u] =0,

[u, X1] = —(A(uX1) — Aw) X1 +u A (X1) = u, [X1,u] = —u,
. Xa] = —(A@X2) — A Xz + u A (X2)) = —AuXs) = 0. [Xp.u] =0,
[v.v] = —=(AQW?) — A@)v—v A (v) =0,

[v.C1] = —(A(WC)) — A@W)Cy + v A (Cy)) = —Dg(X2) = 0,[C1.v] =0,
v,C] = —(AWCy) — A()Cr + v A (Cr)) =0,[Ca,v] =0,
[v,X1] = AWwXy) — AW) Xy —v A (Xy) = —v,[X1,v] = v,
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[0, Xa] = —~(A(0X2) = A@) X2 — v A (X2)) = £84(X3) = 0,[X2,0] =0,
[C1, C1] = [C1, o] = [C2, C1] = [C2, G5] =0,
[C1, X1] = A(C1X1) — A(C) X1 — C1 A (Xy) = Cy, [ X1, Cr] = —Cy,
[C1, X2] = —=(A(C1X2) — A(C1) X2 — C1 A (X32)) = 0,[X3,C1] =0,
[C2, X1] = A(C2Xy) — A(C) X1 — G2 A (X)) = Co, [ X1, Co] = —Cy,
[C2, X2] = —(A(C2X2) — A(C2) X2 — G2 A (X3)) = 0,[X2, C2] =0,
[X1, X1] =0, [X1, X2] = —(A(X1X2) — A(X1) X2 + X1 A (X2)) =0,[X1, X2] =0,
[X2, Xa] = —(A(X3) = A(X2) X2 — X5 A (X2)) = 0.

In the fifth line of the above computation, we use the fact that K(uX 2) = 0. The
reason is as follows: u X, is an element of degree 5, under the additive decompositon,
it corresponds to an element in H *({a)) and has the form +w;w,2. It follows from
the formula in the last paragragh of Section 8 that K(qu) = za(:lzwlwzz) = 0.

Remark 9.1. By a recent result of Menichi (see [16, p. 321]), the Lie bracket of
the group cohomology H*(G) for a finite group G must be trivial. The above
computation shows that this is indeed the case for H*(S3) = F3[u,v]/(u?). Note
that to verify [v, v] = 0, we have used the MAPLE program in [14].

Remark 9.2. Observe in the above example that the generators of HH *(F3.S3) are
“multiplicative closed” under Lie bracket: the Lie bracket [, B] of two generators o
and f is a scalar multiple of another generator. Also if ¢, 8] # 0, then [«, 8] is equal

to —[B, «].
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