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Irreducible representations of Bost–Connes systems

Takuya Takeishi�

Abstract. The classification problem of Bost–Connes systems was studied by Cornelissen and
Marcolli partially, but still remains unsolved. In this paper, we give a representation-theoretic
approach to this problem.We generalize the result of Laca and Raeburn, which is concernedwith
the primitive ideal space of the Bost–Connes system forQ. As a consequence, the Bost–Connes
C�-algebra for a number field K has h1

K
-dimensional irreducible representations and does not

have finite-dimensional irreducible representations for the other dimensions, where h1
K

is the
narrow class number ofK. In particular, the narrow class number is an invariant of Bost–Connes
C�-algebras.

Mathematics Subject Classification (2010). 46L55; 11R37.
Keywords. Bost–Connes systems, class field theory, representations of C�-algebras.

1. Introduction

For an arbitrary number field K, a C �-dynamical system .AK ; �t;K/ is defined in
the work of Ha–Paugam [4], Laca–Larsen–Neshveyev [5] and Yalkinoglu [14]. The
C �-dynamical system .AK ; �t;K/ is related to class field theory. It is called the Bost–
Connes system, after Bost and Connes [1], who defined such a system for the special
case of K D Q. It was a longstanding open problem to generalize Bost–Connes
systems to arbitrary number fields, but that problem has been solved in recent years
by the efforts of many researchers (especially, Yalkinoglu’s work [14] was the last
piece). So it is a good moment to start the investigation of those C �-dynamical
systems from both number theoretic and operator algebraic viewpoints. The operator
algebraic viewpoint naturally asks for the classification of Bost–Connes systems.
Concretely, we are interested in the following problem:
Problem 1.1. Does an R-equivariant isomorphism of .AK ; �t;K/ and .AL; �t;L/
imply an isomorphism of K and L?

This problem was studied by Cornelissen and Marcolli [2] under the condition
of preserving the daggered subalgebras, which has more information of number
�This work was supported by the Program for Leading Graduate Schools, MEXT, Japan and JSPS

KAKENHI Grant Number 13J01197.
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theoretic things. Without any additional assumption, works in the direction of the
full classification tries to recover number theoretic invariants from Bost–Connes
systems. The best known result is the classification theorem of the KMS-states by
Laca–Larsen–Neshveyev [5], obtaining the Dedekind zeta function �K.s/ from the
partition function of .AK ; �t;K/. In particular, Problem 1.1 is true if ŒK W Q� � 6 or
ŒL W Q� � 6, thanks to the work of R. Perlis [9].

In this paper, we provide a new invariant of Bost–Connes systems in Theorem 3.3,
that is, the narrow class number h1K . The narrow class number measures the distance
of the integer ring OK from being a principal ideal domain, and some information
of infinite primes is added. Hence, in principle, it is an independent invariant from
the zeta function, which collects the information of finite primes. Indeed, there
is an example of a pair of number fields which have the same zeta function but
different narrow class numbers (Remark 3.6). The difference between the Dedekind
zeta function and the narrow class number can be viewed from an operator algebraic
perspective. Since the flow �t;K on AK is determined by the norms of primes, we
know the information of primes by looking at flows. Looking at the algebra itself, we
get the information which is orthogonal to finite primes. In particular, our theorem
actually provides an invariant for C �-algebras AK .

In order to prove Theorem 3.3, we examine the primitive ideal space of AK .
There is a result of Laca and Raeburn [7] determining the primitive ideal space of the
original Bost–ConnesC �-algebraAQ. The key ingredient in that work wasWilliams’
Theorem [12], which is a structure theorem of the primitive ideal space for group
crossed products by abelian groups. That theorem also plays an important role in
this paper. As a complementary result, we also determine the primitive ideal space
of AK (Theorem 3.15), which is a generalization of the work of Laca and Raeburn.

Looking at flows on the primitive ideal space, we get another invariant . OP 1K ; �t;K/,
which is a dynamical system on the infinite-dimensional torus (Proposition 3.7). We
can also recover the norm map on P 1K from that dynamical system (Theorem 4.1).
This is a sort of results like reconstructing the normmap on the whole ideal group JK ,
which amounts to the reconstruction of the zeta function by [5], but from a different
perspective.

2. Preliminary

In this section, we recall the definition of Bost–Connes systems and summarize
general facts and observations which are needed to investigate the primitive ideal
space. For the investigation of primitive ideals, we adopt the same strategy as in the
case of Q (cf. [7]).

2.1. Definition of Bost–Connes systems. In this section, we quickly review the
definition of the Bost–Connes system of a number field. The reader can also
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consult [14, p. 388] for the construction of the Bost–Connes system. Throughout
this paper, JK denotes the ideal group of K and IK denotes the ideal semigroup
of K. The finite adéle ring is denoted by AK;f and the finite idéle group is denoted
by A�

K;f
(for the definition, see e.g. [6]).

Let K be a number field. Put

YK D OOK � OO�
K
Gab
K ;

where OOK is the profinite completion of OK , and OO�K acts on OOK �Gab
K by

s � .�; ˛/ D .�s; Œs��1K ˛/

for � 2 OOK ; ˛ 2 Gab
K and s 2 OO�K , where Œ��K is the Artin reciprocity map. Let

a 2 IK and take a finite idéle a 2 A�
K;f
\ OOK such that a D .a/. The action of IK

on YK is given by
a � Œ�; ˛� D Œ�a; Œa��1K ˛�:

Let AK D C.YK/ Ì IK . Define an R-action on AK by

�t;K.f / D f; �t;K.�a/ D N.a/
it�a

for f 2 C.YK/, a 2 IK and t 2 R, where N.�/ is the ideal norm.

Definition 2.1. The system .AK ; �t;K/ is called the Bost–Connes system for K.

It is convenient to extend the Bost–Connes system to a non-unital group crossed
product. Let

XK D AK;f � OO�
K
Gab
K

and define the action of JK on XK in the same way. Let QAK D C0.XK/ Ì JK .
Then AK is a full corner of QAK . Namely, we have AK D 1YK

QAK1YK
. The R-action

on QAK is defined in the same way, which is also denoted by �t;K .
For convenience, we fix notations of subspaces of XK and YK . Define four

subspaces by

Y �K D
OO�K � OO�

K
Gab
K Š G

ab
K ;

X0K D f0g � OO�
K
Gab
K Š G

ab
K=Œ
OO�K �K ;

X
\
K D .AK;f n f0g/ � OO�K Gab

K ;

Y
\
K D .

OOK n f0g/ � OO�
K
Gab
K :

2.2. Dynamics on OP1
K
. Since we use the dynamics on OP 1K later, we prepare it in

advance. We fix a notation of a dynamical system on a torus. For a (finite or infinite)
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sequence of positive numbers frj g,
�Q

j Tj ;
Q
j r

it
j

�
denotes the dynamical system

determined by
�t ..xj /j / D .r

it
j xj /j

for xj 2 T and t 2 R.
Let K be a number field and P 1K denote the group of principal ideals generated

by totally positive elements (i.e., P 1K Š K�C=O�K;C). We consider an action of R
on OP 1K (as a topological space) defined by

hx; �t ./i D N.x/
it
hx; i

for any x 2 P 1K ,  2 OP
1
K and t 2 R, where OP 1K is the Pontrjagin dual of P 1K . Note

that P 1K is a free abelian group, since it is a subgroup of the free abelian group JK .
Hence OP 1K is isomorphic to the infinite product of circles. If faj g is a basis of P 1K ,
then the dynamical system . OP 1K ; �/ is conjugate to

�Q
j Tj ;

Q
j N.aj /

it
�
.

2.3. R-equivariant imprimitivity bimodules.
Definition 2.2. Let .A; �At / and .B; �Bt / be C �-dynamical systems. An .A;B/-
imprimitivity bimodule E is said to be an R-equivariant imprimitivity bimodule if
there is a one-parameter group of isometries Ut on E such that

� AhUt�; Ut�i D �t .Ah�; �i/

� hUt�; Ut�iB D �t .h�; �iB/

for any �; � 2 Ep and t 2 R.
If there exists an R-equivariant imprimitivity bimodule, then the two C �-

dynamical systems are said to be R-equivariantly Morita equivalent.

Note that from the above axioms we have

�At .a/Ut .�/ D Ut .a�/; Ut .�/�
B
t .b/ D Ut .�b/

for any a 2 A; b 2 B and � 2 E.
Lemma 2.3. For a number field K, the Bost–Connes system .AK ; �t;K/ is R-equi-
variantly Morita equivalent to . QAK ; �t;K/.

Proof. SinceAK D 1YK
QAK1YK

and 1YK
is a full projection, the .AK ; QAK/ bimodule

E D 1YK
QAK is an imprimitivity bimodule. Define a one-parameter group of

isometries Ut on E by restricting the time-evolution of QAK . Then Ut satisfies
the desired property.

If two C �-algebras are Morita equivalent, then we have natural correspondences
between their representations and ideals. As a consequence, their primitive ideal
spaces are homeomorphic. The homeomorphism obtained in this way is called the
Rieffel homeomorphism (cf. [10, Corollary 3.33]). We need anR-equivariant version
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of this theorem. For a C �-dynamical system .A; �t /, then we consider the R-action
on PrimA defined by

t � ker� D ker.� ı �t / D ��t .ker�/;

where � is an irreducible representation of A.
Proposition 2.4. Let E be an R-equivariant imprimitivity bimodule between two
C �-dynamical systems .A; �At / and .B; �Bt /. Then the Rieffel homeomorphism
hX W PrimB ! PrimA is R-equivariant.

Proof. Let .�;H�/ be a representation ofB . We need to show that the representation
.idA ˝ 1;E ˝�ı�B

t
H�/ is unitarily equivalent to .�At ˝ 1;E ˝� H�/. Let Ut be

a one-parameter group of isometries on E which gives R-equivariance. Then it is
easy to check that the unitary

E ˝�ı�B
t
H� ! E ˝� H� ; x ˝�ı�B

t
� 7! Ut .x/˝� �

gives the unitary equivalence.

Note that the strong continuity of the one-parameter group of isometries Ut is
tacitly assumed in the definition ofR-equivariant imprimitivity bimodules. However,
the strong continuity is not needed for the sake of Proposition 2.4.

2.4. The primitive ideal space of crossed products by abelian groups. In order
to determine PrimAK , by Proposition 2.4, we may investigate Prim QAK instead. We
have a nice structure theorem of the primitive ideal space for group crossed products.
Let G be a countable abelian group acting on a second countable locally compact
space X . Define an equivalence relation on X � OG by

.x; / � .y; ı/ if Gx D Gy and ı�1 2 G?x ;

where OG is the Pontrjagin dual of G and Gx is the isotropy group of x. For
a representation .�;H�/ of Ax D C0.X/ Ì Gx , IndGGx

� denotes the induced
representation of A D C0.X/ ÌG on the Hilbert space A˝Ax

H� .
Theorem 2.5 (Williams [13, Theorem 8.39]). We have a homeomorphism

ˆ W X � OG= �! PrimC0.X/ ÌG

defined by
ˆ.Œx; �/ D ker.IndGGx

.evx Ì  jGx
//:

Remark 2.6. The quotient map X � OG ! X � OG= � is an open map (cf. [13,
Remark 8.40]). This fact is useful to determine the topology of the primitive ideal
space.
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In this section, we look into the dynamics of the primitive ideal space in a general
setting. Let N W G ! RC be a group homomorphism and define the time evolution
on A by

�t .f us/ D N.s/
itf us

for any f 2 C0.X/; s 2 G and t 2 R. Take x 2 X;  2 OG and let � D evx Ì  jGx
.

Then �x defines a character of Ax . By [12, Proposition 8.24], IndGGx
� is unitarily

equivalent to the representation �x; onHx; D C
�.G/˝C�.Gx/ C defined by

�x; .f /�s D f .sx/�s; �x; .ut /�s D �ts

for f 2 C0.X/ and s; t 2 G. The inner product ofHx; is defined by

h�s; �t i D

(
.s�1t / if s�1t 2 Gx;
0 if s�1t 62 Gx;

for any s; t 2 G. We would like to determine the representation �x; ı �t . We have
�x; ı �t .us/�r D N.s/

it�sr . Let QH D Hx; as a linear space. Define a linear map
U W Hx; !

QH by
U.N.s/it�s/ D Q�s

for s 2 G. To make U a unitary, the inner product on QH needs to be defined by

h Q�s; Q�ri D

(
N.s�1r/it.s�1r/ if s�1r 2 Gx;
0 if s�1r 62 Gx :

Then we can see that U�x; ı �tU � D �x; Q , where Q D N.�/it . Thus we have the
following proposition:

Proposition 2.7. Let A D C0.X/ Ì G and consider the R-action on PrimA D
X � OG= � defined in Section 2.3 (this action is also denoted by � ). Then we have

�t .Œx; �/ D Œx; N.�/
it�

for Œx; � 2 X � OG= �.

The Bost–Connes systems for global fields are not Type I C �-algebras, because it
is known that they have type III1 representations. So we cannot expect that Williams’
theorem gives complete classification of irreducible representations. However,
we can still get some information about irreducible representations, such as their
dimensions. We will treat that in the next section. The following lemma will be used:

Lemma 2.8. For .x; / 2 X � OG, let .�x; ;Hx; / be the representation of A D
C0.X/ Ì G defined as above. Then dimHx; D ŒG W Gx�. In particular, �x; is
finite-dimensional if and only if Gx has a finite index in G.
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Proof. Let fsig be a complete representative of G=Gx . Then the family f�si g is
orthogonal in Hx; . We can see that f�si g is an orthogonal basis. In fact, we have
�si t D .t/�si for t 2 Gx because

h.t/�si ; �si ri D .t
�1r/ D h�si t ; �si ri;

h.t/�si ; �sj ri D 0 D h�si t ; �sj ri;

for t; r 2 Gx and j ¤ i .

Remark 2.9. In fact, there is a canonical orthonormal basis of Hx; . If fsig
is a complete set of representatives of G=Gx , then the family f.s�1i /�si g is an
orthonormal basis and independent of the choice of fsig.

We need to study the dimensions of irreducible representations. Clearly, if E is
an .A;B/-imprimitivity bimodule and � is a finite-dimensional representation of B ,
E�Ind� may be infinite-dimensional (e.g., A D K.H/ and B D C). However, we
have the following criterion in our case.

Lemma 2.10. Let A be a C �-algebra and e 2 A be a full projection and Let
E D eA be the natural .eAe;A/-imprimitivity bimodule. Let � be a non-degenerate
representation of A. Then E�ind� is unitarily equivalent to .�jeAe; �.e/H/. In
particular, dim.E�ind�/ D dim�.e/H.

Proof. The unitary

eA˝A H� ! �.e/H� ; ea˝ � 7! �.ea/�

gives the desired unitary equivalence.

3. Irreducible representations of Bost–Connes systems

Hereafter, we restrict our attention to the case of Bost–Connes systems. We determine
the structure of the primitive ideal space of AK , investigate several examples of
irreducible representations and determine the induced action of R on that space.

3.1. Extraction of the narrow class number. First, we prepare some arithmetic
lemmas. For a number fieldK,OK;C denotes the set of totally positive integers ofK
and UK;C denotes the closure of OK:C in OO�K . The narrow ideal class group of K
is denoted by C 1K D JK=P

1
K . The following two lemmas are essentially contained

in [6, Proposition 1.1].

Lemma 3.1. The reciprocity map Œ��K W A�K ! Gab
K induces the isomorphism

A�
K;f

=K�C Š G
ab
K , where K�C is the closure of K�C in A�

K;f
.
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Lemma 3.2. The sequence

1 // UCK
// OO�K // A�

K;f
=K�C

// C 1K
// 1

is exact.
Note that the homomorphismA�

K;f
=K�C ! C 1K is defined by sending the class of

a 2 A�
K;f

to the class of .a/. The exact sequence in Lemma 3.2 plays a fundamental
role in determination of the primitive ideal space.

Combining above lemmas and Williams’ theorem, we get the first main theorem.
Theorem 3.3. Let .AK ; �t / be the Bost–Connes system for a number field K and
let h1K be the narrow class number of K. Then AK has h1K-dimensional irreducible
representations, and does not have n-dimensional irreducible representations for
n ¤ h1K and n <1.

Lemma 3.4. The statement of Theorem 3.3 holds for QAK .

Proof. Let x D Œ�; ˛� 2 XK D AK;f � OO�
K
Gab
K and let  2 OJK . By Lemma 2.8,

the dimension of �x; equals ŒJK W JK;x�. In general, if ker� D ker � holds for
irreducible representations �; � of a C �-algebra A, then we have dim� D dim �
because if either � or � is finite dimensional, then A= ker� Š Mdim�.C/ is
isomorphic to A= ker � ŠMdim�.C/. Hence it suffices to show the following:
(1) If � ¤ 0, then ŒJK W JK;x� D1.
(2) If � D 0, then ŒJK W JK;x� D h1K .
Suppose � ¤ 0 and let p be a prime of K such that �p ¤ 0. If a D .a/ 2 JK;x ,

then ap 2 O�Kp
because �as D � for some s 2 OO�K implies apsp D 1. Hence the

classes of pn’s for n 2 Z in JK=JK;x are distinct elements. Therefore the index
of JK;x is infinite.

Suppose � D 0. In this case, we consider the action of JK on X0K D G
ab
K=Œ
OO�K �

(X0K is defined in Section 2.1). We haveX0K D C
1
K by Lemma 3.2. The action of JK

on X0K D JK=P
1
K coincides with the multiplication. Hence the isotropy group JK;x

coincides with P 1K and its index equals jC 1K j D h
1
K .

Proof of Theorem 3.3. For x D Œ�; ˛� 2 XK and ˛ 2 OJK , let .�0x; ;H0
x; / D

.�x; jAK
; �x; .1YK

/Hx; /. We need to show that dim�x; D dim�0x; . If � D 0,
then we have �x; .1YK

/ D 1 by definition of �x; . Hence dim�x; D dim�0x;
holds by Lemma 2.10. So it suffices to show that�0x; is infinite dimensional if � ¤ 0.

Take an integral ideal a 2 IK such that ax 2 YK (we can always take such a
because �p 2 OKp for all but finitely many p). Let p be a prime of K such that
�p ¤ 0. Then we have seen in the proof of Lemma 3.4 that the classes of pn’s
are distinct in JK=JK;x . Hence so are for pna’s. This means that f�pnagn2Z is an
orthogonal family in Hx; . Since pnax 2 YK for n � 0, �pna 2 �a; .1YK

/Hx; for
n � 0. Therefore �a; .1YK

/Hx; is infinite dimensional.
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Corollary 3.5. Let K;L be number fields and let .AK ; �t;K/; .AL; �t;L/ be their
Bost–Connes systems. If AK Š AL as C �-algebras, then h1K D h

1
L.

Example 3.6. From the classification theorem of the KMS-states by Laca–Larsen–
Neshveyev [5], we know that the Dedekind zeta function is an invariant of Bost–
Connes systems. From Theorem 3.3, we know that the narrow class number is also
an invariant. We can see that this is actually a new invariant. Indeed, there exist
two fields which have the same Dedekind zeta function but different narrow class
numbers. For example, let K D Q. 8

p
a/; L D Q. 8

p
16a/ for a D �15. Then K

and L are totally imaginary fields, so their narrow class numbers h1K ; h
1
L are equal to

their class numbers hK ; hL. By the result of de Smit and Perlis [3], we have �K D �L
and h1K=h

1
L D hK=hL D 2.

From the proof of Theorem 3.3 and the fact OJK=P 1;?K D OP 1K , we can see that there
is an embedding of OP 1K into PrimAK . This is a distinguished subspace of PrimAK
that is homeomorphic to T1. By Proposition 2.7, R acts on OP 1K as in Section 2.2.
Hence we can get another invariant by restricting our attention to dynamics on OP 1K .
Proposition 3.7. Let K;L be two number fields. If their Bost–Connes systems
.AK ; �t;K/ and .AL; �t;L/ are R-equivariantly isomorphic, then OP 1K and OP 1L are
R-equivariantly homeomorphic.

Proof. Let ˆ W PrimAK ! PrimAL be the R-equivariant homeomorphism induced
from an isomorphism between the Bost–Connes systems. It suffices to show that
ˆ. OP 1K/ D

OP 1L. By Theorem 3.3, OP 1K coincides with the set of all primitive ideals
which have finite quotients. Since ˆ is induced from an isomorphism, it obviously
carries OP 1K to OP 1L.

We study the dynamics OP 1K in Section 4.

3.2. Examples of irreducible representations. In this section, we give an explicit
description of some irreducible representations. As in Section 2.4, for x 2 XK and
 2 OJK we have an irreducible representation of QAK defined by

.�x; ;Hx; / D IndJK

JKx
.evx Ì  jJK;x

/:

By Lemma 2.10, the representation of AK corresponding to .�x; ;Hx; / is

.�0x; ;H0
x; / D .�x; jAK

; �x; .1YK
/Hx; /:

First, we can determine an explicit form for the finite dimensional representations.
Since X0 D C 1K is a closed invariant set of JK , we have a canonical quotient map
qK W C.YK/ Ì IK ! C.C 1K/ Ì JK . Take a character  2 OJK . Then we have the
�-homomorphism ' W C.C

1
K/ Ì JK ! C.C 1K/ Ì C 1K defined by

' .f / D f for f 2 C.C 1K/; and ' .us/ D hs; iuNs;
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where Ns denotes the class of s in C 1K . Since C.C 1K/ Ì C 1K Š Mn.C/ for
n D jC 1K j D h

1
K , we obtain the surjection ' ı qK W AK ! Mn.C/. As usual,

the C �-algebra C.C 1K/ Ì C 1K acts on `2.C 1K/ by

.f �/.s/ D f .s/�.s/ for f 2 C.C 1K/; and .ut�/.s/ D �.t
�1s/:

So � D ' ı qK defines an irreducible representation. If two elements ; ı 2 OJK
satisfy ı�1 2 OP 1;?K , then � is unitarily equivalent to �ı . Indeed, for any element
! 2 P1;?K Š OC 1K , we have the isomorphism of C.C 1K/ Ì C 1K ŠMn.C/ defined by

f 7! f for f 2 C.C 1K/; and uNs 7! hNs; iuNs;

which is automatically implemented by a unitary. From now on, we assume that �
is associated to the element  2 OJK=P 1;?K Š OP 1K .

Using Remark 2.9, we can show that � is unitarily equivalent to �0
Œ0;1�;

(Œ0; 1�
is an element of X0K , not a closed interval). This implies that f�g2 OP 1

K
are not

mutually unitarily equivalent, and any finite dimensional irreducible representation
is unitarily equivalent to some � .

Benefiting from writing down representations associated to OP 1K in this form, we
can prove the following proposition:

Proposition 3.8. We have ker qK D
\
2 OP 1

K

ker � .

Proof. Let A D C.C 1K/ Ì JK and B D C.C 1K/ Ì C 1K . It suffices to show the
injectivity of the homomorphism

Q
' . We distinguish ' and 'ı for ı�1 2 P 1;?K

here. Then the range of the mapY
2 OJK

' W A!
Y
2 OJK

B

is contained inC. OJK ; B/ Š C. OJK/˝B . Letˆ W A! C. OJK/˝B be thatmap. Then
we haveˆ.f us/ D �s ˝ f uNs , where �s denotes the character on OJK corresponding
to s 2 JK . Let E1 W A ! C.C 1K/ be the canonical conditional expectation, and let
E2 D �˝ idB W C. OJK/˝ B ! B , where � is the Haar measure of OJK . Then E1
and E2 are both faithful conditional expectations, and the diagram

A
ˆ //

E2

��

C. OJK/˝ B

E2

��
C.C 1K/

// B D C.C 1K/ Ì C 1K

commutes. This implies the injectivity of ˆ.
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Corollary 3.9. Let K;L be number fields. Then any isomorphism from AK to AL
carries ker qK D C0.Y \K/ Ì IK to ker qL D C0.Y \L/ Ì IL.

Next, we visit another example. By the KMS-classification theorem in [5],
extremal KMSˇ -states for ˇ > 1 are obtained from irreducible representations. Let
us recall the definition of these representations. For g 2 Gab

K , we have an irreducible
representation �g on `2.IK/ defined by

�g.f /�s D f .s � g/�s for f 2 C.YK/;
and �g.�t /�s D �ts for t 2 IK ;

where g is identified with Œ1; g� 2 Y �K . We can check that �g is unitarily equivalent
to �0g;1 because �g;1.1YK

/ coincides with the projection `2.JK/! `2.IK/.
We can see directly that these representations are not unitarily equivalent.

Proposition 3.10. The representations f�ggg are not unitarily equivalent.

Proof. We have the tensor product decomposition of the Hilbert space as follows:

`2.IK/ Š
O
p

`2.Np/; �Q
p2F pkp 7!

O
p2F

�kp ˝
O
p62F

1;

where Np is a copy of N and F is a finite set of primes of K. In this decomposition,
the C �-subalgebra C �.IK/ of B.`2.IK//moves to

N
p Tp, where Tp is a copy of the

Toeplitz algebra (Tp is generated by the unilateral shift on `2.Np/). Since Tp contains
K.`2.Np//, its commutant is trivial. Hence the commutant of C �.IK/ is trivial.

Suppose that�g and�h are unitarily equivalent. Then the implementing unitaryU
commutes with C �.IK/. The above argument implies U D 1, so we have �g D �h.
Hence g D h.

We would like to see where these representations are located inside PrimAK .
Note that if x 2 Y �K then JK;x is trivial. So we have to determine JKx for x 2 YK .
Lemma 3.11 (cf. [7, Lemma 2.3]). For � 2 AK;f , we have

K�C� D f� 2 AK;f j �p D 0 implies �p D 0g:

Proof. We may assume � 2 OOK because K�Ca� D K�C� for any a 2 OK;C and the
right hand side is invariant under multiplication by an element ofA�

K;f
. Take � from

the right hand side. Enumerate the primes of K as p1; p2; : : : . Define � 2 AK;f by

�p D

(
��1p �p if �p ¤ 0;
0 if �p D 0:

Take a 2 OK;C satisfying a� 2 OOK . For each n, take kn 2 OK;C such that
kn � a�p mod pn for p D pk with 1 � k � n. Then we have a� 2 OOK and
kn�p � a�p mod pn for such p. This implies that kn� converges to a� in AK;f ,
so a�1kn� converges to � . The other inclusion is obvious.
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Lemma 3.12. For x D Œ�; ˛� 2 XK , we have

JKx D fy D Œ�; ˇ� 2 AK;f j �p D 0 implies �p D 0g:

Proof. Take y D Œ�; ˇ� from the right hand side. Take a finite idéle a 2 A�
K;f

such
that ˛Œa��1K D ˇ and let a be the ideal generated by a. Then aŒ�; ˛� D Œ�a; ˇ�. By
Lemma 3.11, there exists a sequence kn 2 K�C such that kn�a converges to � . Since
Œkn�K D 1, the sequence .kn/ax converges to y.

As a conclusion, �g ’s have the same kernel although they are not unitarily
equivalent. Indeed, by Theorem 2.5, ker�g D ker�h if and only if JKg D JKh.
The condition JKg D JKh is true for any g; h by Lemma 3.12.

In fact, we have the following proposition:

Proposition 3.13 (cf. [7, Proposition 2.10]). The representations �g ’s are faithful.

Proof. It suffices to see that the conditional expectation E W C.YK/ Ì IK ! C.YK/

is recovered by �g . From Lemma 3.12, we have IKg D YK . Indeed, if the
sequence ang for an 2 JK converges to some x 2 YK , then ang 2 YK for large n,
which implies an 2 IK for large n. Hence C.YK/ can be embedded into

Q
a2IK

C
by f 7!

Q
a2IK

f .ag/. For a 2 IK , let 'a be the vector state h��a; �ai onB.`2.IK//.
Define a unital completely positive map E 0 by

E 0 D
Y
a2IK

'a W B.`2.IK//!
Y
a2IK

C:

Then E D E 0 ı �g , which completes the proof.

3.3. The formal description of the primitive ideal space. The purpose of this
section is to study the equivalence relation that appeared in Section 2.4 in detail. So
this section amounts to an actual generalization of the work of Laca and Raeburn [7].
We have already studied quasi-orbits of JK in Lemma 3.12, so it suffices to see what
the isotropy group is. Let K be a number field. The symbol PK denotes the set of
all finite primes of K. For a finite subset S of PK , define the subgroup �S of JK by

�S D f.a/ j a 2 K
�
C � A�K;f ; ap D 1 for p 62 Sg:

Note that �S is a subgroup of P 1K , because K
�
C is contained in K�C OO�K . We can see

that �; D 1 and �PK
D P 1K .

For x D Œ�; ˛� 2 XK , let Sx D fp 2 PK j �p D 0g. By Lemma 3.12, for
x; y 2 XK , JKx D JKy if and only if Sx D Sy .

Lemma 3.14 (cf. [7, Lemma 2.1]). For x 2 XK , the isotropy group JK;x coincides
with �Sx

.
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Proof. Let a 2 JK;x . Take � 2 AK;f and ˛ 2 Gab
K such that x D Œ�; ˛�. Then we

can choose a finite idéle a 2 AK;f generating a and satisfies Œa�K D 1 and �a D �.
Hence a belongs to K�C and ap D 1 for p satisfying �p ¤ 0. This implies that
a 2 �Sx

. The converse inclusion can be shown in a similar way.

Combining Lemma 3.12, Lemma 3.14 and Theorem 2.5, we get the following
conclusion.
Theorem 3.15. We have PrimAK D

[
S�P

O�S , where S runs through all subsets ofP .

Theorem 3.15 does not say anything about the topology of PrimAK . Actually,
the only important fact is that the inclusion O�S ,! PrimAK is a homeomorphism
onto its range. However, we describe the topology of PrimAK explicitly for the sake
of completeness.
Definition 3.16 (cf. [7, p. 437]). Let 2P be the power set of P . The power-cofinite
topology of 2P is the topology generated by

UF D fS 2 2
P
j S \ F D ;g;

where F is a finite subset of P .
Note that fUF gF is a basis of the topology since we have UF1

\UF2
D UF1[F2

.
Proposition 3.17 (cf. [7, Proposition 2.4]). The canonical surjection

Q W 2P � OJK !
[
S�P

O�S D PrimAK ; .S; / 7!  j�S
2 O�S

is an open continuous surjection.

Proof. Define Q1 W XK � OJK ! 2P � OJK by sending .x; / to .Sx; /. Let
Q2 W XK � OJK ! PrimAK D XK � OJK= � be the natural quotient map. Then we
have Q2 D Q ıQ1. The quotient map AK;f � Gab

K ! AK;f � OO�
K
Gab
K D XK is

denoted by R. Then we can show in the same way as in [7, Proposition 2.4] that

Q1

0@R0@Y
p2F

Vp �
Y
p62F

OK;p � V

1A �W1A D UG �W;
and Q�11 .UF �W / D R

0@Y
p2F

K�p �
Ya
p62F

.Kp; OOKp/ �G
ab
K

1A �W
for a finite set F of P , non-empty open sets Vp ofKp, V ofGab

K andW of OJK , where
G D fp 2 F j 0 62 Vpg. This means that Q1 is open and continuous. Since Q1 is
surjective and Q2 D Q ıQ1 is open and continuous by Remark 2.6, Q is also an
open and continuous surjection.
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Let us briefly view when two points in PrimAK can be separated by open sets.
Take two distinct subsets S1; S2 of P . If S1 6� S2, then Q.UG � OJK/ \ O�S1

D ;

and Q.UG � OJK/ � O�S2
for any finite subset G of S1 n S2. Hence, if S1 6� S2

and S2 6� S1, then O�S1
[ O�S2

is Hausdorff with respect to the relative topology.
If S1 � S2, then any open set which contains O�S2

also contains O�S1
.

We can say that PrimAK is a bundle over 2P with fibers O�S . In other words,
PrimAK is considered as a net of compact groups indexed by subsets of P . It seems
difficult to determine the group �S in general. However, ifK D Q orK is imaginary
quadratic, then �S is trivial for S ¤ P becauseK�C is closed inA�

K;f
. In such cases,

we have
PrimAK D 2P n fPg [ OP 1K :

Proposition 3.18. Let K;L be imaginary quadratic fields. Then any R-equivariant
homeomorphism PrimAK ! PrimAL induces an R-equivariant homeomorphism
OP 1K !

OP 1L. In particular, if AK and AL are R-equivariantly Morita equivalent, then
the conclusion of Proposition 3.7 is true.

Proof. Let ˆ W PrimAK ! PrimAL be an R-equivariant homeomorphism. It
suffices to show that ˆ. OPK/ D OPL. By Proposition 2.7, R acts on 2P n fPg
trivially and acts on OPK as in Section 2. Let  2 OPK and suppose ˆ./ 62 OPL.
Then we have ˆ./ D x for some x 2 2P n fPg. Since ˆ is R-equivariant, we
have ˆ.R � / D x. However, the orbit of  is clearly an infinite set, which is
a contradiction. Therefore ˆ./ 2 OPL, so we have ˆ. OPK/ � OPL. Hence, by
symmetry, we have ˆ. OPK/ D OPL.

4. The dynamics of OP1
K

In this section, we prove the second main theorem.

Theorem 4.1. Let K;L be number fields. If their Bost–Connes systems .AK ; �t;K/
and .AL; �t;L/ are R-equivariantly isomorphic, then we have a group isomorphism
P 1K ! P 1L which preserves the norm map.

Since we have Proposition 3.7, the above theorem is reduced to the following
proposition:

Proposition 4.2. Let K;L be number fields. If OP 1K and OP 1L are R-equivariantly
homeomorphic, then there exists an R-equivariant isomorphism between them.

Remark 4.3. If O' W OP 1L ! OP 1K is an R-equivariant isomorphism, then the
isomorphism ' W P 1K ! P 1L induced by O' preserves the norm. Indeed, let a 2 P 1K
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and b D '.a/ 2 P 1L. Then, by taking the Pontrjagin duals, we have the following
commutative diagram:

OP 1L
�

O'

//

��

OP 1K

��

. ObZ; N.b/it /
� // . OaZ; N.a/it /:

The isomorphism O' is R-equivariant by assumption, and it is easy to show that the
vertical maps areR-equivariant. Using these facts, we can show that the isomorphism
ObZ ! OaZ is R-equivariant. This implies that N.a/ D N.b/.

Note that the isomorphism in Proposition 4.2 is not canonical. The key
observation is that the space OP 1K has a nice orbit decomposition.

Lemma 4.4. Let K be a number field. The compact group OP 1K is R-equivariantly
isomorphic to

�Q1
jD1 Tj � T1;

Q1
jD1 n

it
j � 1

�
, where nj > 1 and fnj g is linearly

independent over Z in the free abelian group Q�C.

Proof. Let N W P 1K ! Q�C be the ideal norm and let A D N.P 1K/. Then the exact
sequence

0 // kerN // P 1K
N // A // 0

splits, because kerN;P 1K and A are all free abelian groups. Let s W A! P 1K be the
splitting of N , and take a basis faj gj of s.A/. Then we have the decomposition

P 1K D
M
j

aZj ˚ kerN:

Taking the Pontrjagin duals, we have the desired decomposition.

Remark 4.5. The condition that fnj g is linearly independent in Q�C means that the
homeomorphism on

Q
j Tj by multiplying

Q
j n

it
j is minimal for appropriate t 2 R.

Indeed, the family f1; t
2�

lognj g is linearly independent overQ if we choose t D 2� .

Proof of Proposition 4.2. Let ' W OP 1K ! OP 1L be an R-equivariant homeomorphism.
Take the decomposition

P 1K D
M

aZj ˚ kerNK ; OP 1K D
�Y

j

Tj � T1;
Y
j

N.aj /
it
� 1

�
;

P 1L D
M

bZk ˚ kerNL; OP 1L D
�Y
k

Tk � T1;
Y
k

N.bk/
it
� 1

�
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as in Lemma 4.4. By Remark 4.5, We have the closed orbit decomposition

OP 1K D
a
x2T1

Y
j

Tj � fxg; OP 1L D
a
y2T1

Y
k

Tk � fyg:

Hence we have '
�Q

j Tj � f1g
�
D
Q
k Tk � fyg for some y 2 T1, so ' induces an

R-equivariant homeomorphism

N' W
�Y

j

Tj ;
Y
j

N.aj /
it
�
!

�Y
k

Tk;
Y
k

N.bk/
it
�
:

Let  D N'.1/�1 N' and x D
Q
j N.aj /

2�i ; y D
Q
k N.bk/

2�i . Then we have
 .al/ D bl for any l 2 Z. Hence  is an R-equivariant group isomorphism,
since a and b generates dense subgroups in

Q
j Tj and

Q
k Tk respectively. Taking

any group isomorphism � of T1, we obtain an R-equivariant group isomorphism
 � � W OP 1K !

OP 1L.

Remark 4.6. By the classification theorem of the KMS-states in [5], we know
that if the Bost–Connes systems of two number fields K;L are isomorphic then
their Dedekind zeta functions are the same, which implies that there exists a group
isomorphism JK ! JL which preserves the norm.

By Theorem 4.1, the pair .P 1K ; N W P
1
K ! Q�C/ is an invariant of Bost–Connes

systems. The difference between .P 1K ; N W P
1
K ! Q�C/ and .JK ; N W JK ! Q�C/

is thought to be very subtle because P 1K is of finite index in JK . We do not know
what difference exists between the two invariants. Instead, we can see that large
information which is obtained by .JK ; N W JK ! Q�C/ can also be obtained by
.P 1K ; N W P

1
K ! Q�C/. Here is an example:

Proposition 4.7. Let K;L be number fields with n D ŒK W Q� D ŒL W Q�. Suppose
that there exists a group isomorphism P 1K ! P 1L which preserves the norm. Then
for rational prime p, p is non-split in K if and only if p is non-split in L.

Proof. It suffices to show the equivalence of the following conditions:
(1) p is non-split in K.
(2) There does not exist an element a in K�C satisfying 1 � vp.N.a// < n,

where vp denotes the valuation of Q at p.
Suppose that p is non-split in K. Then any element a 2 K�C satisfying

1 � vp.N.a// is a multiple of p in K. Hence n � vp.N.a// holds for such a.
Suppose that p splits in K and let .p/ D

Q
p
ei

i be the prime decomposition
of p. Put p D p1. By assumption, we have 1 � vp.N.p// < n. Let m D

Q
pi and

let Jm
K =P

m
K be the ray class group modulo m. Since the natural map Jm

K =P
m
K !

JK=P
1
K is surjective, we can choose a fractional ideal b that is prime to .p/ and

satisfies bp 2 P 1K . Then a D bp satisfies 1 � vp.N.a// < n.
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Example 4.8. Two quadratic fields K;L can be distinguished by primes which are
non-split inK andL, because non-splitness of primes can be known by the Legendre
symbol (cf. [8, Chapter I, Proposition 8.5], [11, Chapter VI, Proposition 14]). Hence,
all Bost–Connes systems for quadratic fields are mutually non-isomorphic. This fact
can also be obtained by the KMS classification theorem. So Theorem 4.1 gives
another proof of this fact.

Acknowledgements. The author would like to thank to Gunther Cornelissen, Ya-
suyuki Kawahigashi, Marcelo Laca andMakoto Yamashita for fruitful conversations.

References

[1] J. Bost and A. Connes, Hecke algebras, type III factors and phase transitions
with spontaneous symmetry breaking in number theory, Selecta Math. (New
Series), 1 (1995), no. 3, 411–457. Zbl 0842.46040 MR 1366621

[2] G. Cornelissen and M. Marcolli, Quantum statistical mechanics, L-series and
anabelian geometry, 2011. arXiv:1009.0736

[3] B. de Smit and R. Perlis, Zeta functions do not determine class numbers, Bull.
Amer. Math. Soc., 31 (1994), no. 2, 213–215. Zbl 0814.11053 MR 1260520

[4] E. Ha and F. Paugam, Bost–Connes–Marcolli systems for Shimura varieties, I.
Definitions and formal analytic properties., IMRP Int. Math. Res. Pap, (2005),
no. 5, 237–286. Zbl 1173.82305 MR 2199962

[5] M. Laca, N. S. Larsen and S. Neshveyev, On Bost–Connes type systems
for number fields, J. Number Theory, 129 (2009), 325–338. Zbl 1175.46061
MR 2473881

[6] M. Laca, S. Neshveyev andM. Trifković, Bost–Connes systems, Hecke algebras,
and induction, J. Noncommut. Geom., 7 (2013), no. 2, 525–546. Zbl 1303.46061
MR 3054305

[7] M. Laca and I. Raeburn, The ideal structure of theHeckeC �-algebra of Bost and
Connes,Math. Ann., 318 (2000), no. 3, 433–451. Zbl 1032.46536 MR 1800765

[8] J. Neukirch, Algebraic number theory, Grundlehren der mathematischen
Wissenschaften, 322, Springer, 1999. Zbl 0956.11021 MR 1697859

[9] R. Perlis, On the equation �k.s/ D �K0.s/, J. Number Theory, 9 (1977), no. 3,
342–360. Zbl 0389.12006 MR 0447188

[10] I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace C �-
algebras, Mathematical Surveys and Monographs, 60, American Mathematical
Society, 1998. Zbl 0922.46050 MR 1634408

https://zbmath.org/?q=an:0842.46040
http://www.ams.org/mathscinet-getitem?mr=1366621
http://arxiv.org/abs/1009.0736
https://zbmath.org/?q=an:0814.11053
http://www.ams.org/mathscinet-getitem?mr=1260520
https://zbmath.org/?q=an:1173.82305
http://www.ams.org/mathscinet-getitem?mr=2199962
https://zbmath.org/?q=an:1175.46061
http://www.ams.org/mathscinet-getitem?mr=2473881
https://zbmath.org/?q=an:1303.46061
http://www.ams.org/mathscinet-getitem?mr=3054305
https://zbmath.org/?q=an:1032.46536
http://www.ams.org/mathscinet-getitem?mr=1800765
https://zbmath.org/?q=an:0956.11021
http://www.ams.org/mathscinet-getitem?mr=1697859
https://zbmath.org/?q=an:0389.12006
http://www.ams.org/mathscinet-getitem?mr=0447188
https://zbmath.org/?q=an:0922.46050
http://www.ams.org/mathscinet-getitem?mr=1634408


906 T. Takeishi

[11] J. P. Serre, A course in arithmetic, Graduate Texts in Mathematics, 7, Springer,
1973. Zbl 0256.12001 MR 0344216

[12] D. P. Williams, The topology on the primitive ideal space of transformation
groupC �-algebras and C.C.R. transformation groupC �-algebras, Trans. Amer.
Math. Soc., 226 (1981), 335–359. Zbl 0474.46057 MR 0617538

[13] D. P. Williams, Crossed Products of C �-algebras, Mathematical Surveys and
Monographs, 134, Amer. Math. Soc., 2007. Zbl 1119.46002 MR 2288954

[14] B. Yalkinoglu, On arithmetic models and functoriality of Bost–Connes systems
(with an appendix by Sergey Neshveyev),Invent. Math., 191 (2013), no. 2,
383–425. Zbl 1270.46066 MR 3010380

Received 18 January, 2015; revised 12 October, 2015

T. Takeishi, Department of Mathematics, the University of Tokyo, Komaba 3-8-1,
Meguro-ku, Tokyo 153-8914, Japan
E-mail: takeishi@ms.u-tokyo.ac.jp

https://zbmath.org/?q=an:0256.12001
http://www.ams.org/mathscinet-getitem?mr=0344216
https://zbmath.org/?q=an:0474.46057
http://www.ams.org/mathscinet-getitem?mr=0617538
https://zbmath.org/?q=an:1119.46002
http://www.ams.org/mathscinet-getitem?mr=2288954
https://zbmath.org/?q=an:1270.46066
http://www.ams.org/mathscinet-getitem?mr=3010380
mailto:takeishi@ms.u-tokyo.ac.jp

	Introduction
	Preliminary
	Definition of Bost–Connes systems
	Dynamics on K1
	R-equivariant imprimitivity bimodules
	The primitive ideal space of crossed products by abelian groups

	Irreducible representations of Bost–Connes systems
	Extraction of the narrow class number
	Examples of irreducible representations
	The formal description of the primitive ideal space

	The dynamics of K1

