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Matrix factorizations and semi-orthogonal decompositions
for blowing-ups

Valery A. Lunts and Olaf M. Schniirer

Abstract. We study categories of matrix factorizations. These categories are defined for any
regular function on a suitable regular scheme. Our paper has two parts. In the first part we
develop the foundations; for example we discuss derived direct and inverse image functors
and dg enhancements. In the second part we prove that the category of matrix factorizations
on the blowing-up of a suitable regular scheme X along a regular closed subscheme Y has a
semi-orthogonal decomposition into admissible subcategories in terms of matrix factorizations
on Y and X. This is the analog of a well-known theorem for bounded derived categories
of coherent sheaves, and is an essential step in our forthcoming article [23] which defines a
Landau—Ginzburg motivic measure using categories of matrix factorizations. Finally we explain
some applications.
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1. Introduction

Let X be a separated regular Noetherian scheme of finite Krull dimension over a
field k, for example a regular quasi-projective scheme over k. Let W € T'(X, Ox)
be a regular function on X. A matrix factorization E of W is a diagram

E=(E ==E)

€o

of locally free sheaves of finite type (= vector bundles) on X such thatege; = Widg,
and ejeg = Widg,. These diagrams are the objects of a differential Z,-graded
category. Its homotopy category is a triangulated category, and the category
MF(X, W) of matrix factorizations of W is defined as a certain Verdier quotient
of this triangulated category, see [29].
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Let7: X — X bethe blowing-up of X along a regular equi-codimensional closed
subscheme Y. Consider the pullback diagram

E—X
]
Yy —X.

The usual construction of the blowing-up endows X with a line bundle Ox(1).
We denote its restriction to E by Og(1). We denote the pullback functions of W
toY, X and E by the same symbol. Then m and p induce (left derived) inverse
image functors 7*: MF(X, W) — MF(X, W) and p*: MF(Y, W) — MF(E, W).
Similarly, j gives rise to a (right derived) direct image functor Jxl MF(E, W) —
MF(X, W) (strictly speaking this functor does not land in MF(X, W) but in an
equivalent bigger category). Now we can state our main theorem. It is the analog of
a well-known result for bounded derived categories of coherent sheaves.

Theorem 1.1 (see Theorem 3.5). Assume that the codimension r of Y in X is > 2,
and let | € Z. Then the functors

7*:MF(X,W) —> MF(X, W)
and jx(Oe() ® p*(=)):MF(Y, W) - MF(X, W)

are full and faithful. — Their essential images w*MF(X, W) and MF(Y, W),
in MF(X, W) are admissible subcategories, and we have a semi-orthogonal
decomposition

MF(X, W) = (MF(Y, W)_r11,...,ME(Y, W)_1, n*MF(X, W)).

This result is proved in the second part (Section 3) of this article. As a predecessor
we prove Theorem 3.2 which provides semi-orthogonal decompositions for projective
space bundles. We also discuss some applications.

In the first part (Section 2) we discuss general results on categories of matrix
factorizations. Certainly categories of global matrix factorizations have been around
for a while [18,29] but there is no systematic treatment of the general theory, with the
exception of [32,33] which contains many of our results (usually in a more general
context). Here is an outline of the main results. First we define triangulated categories
DCoh(X, W) and DQcoh(X, W) in essentially the same way as MF(X, W) by using
coherent (resp. quasi-coherent) sheaves instead of vector bundles. There are natural
functors

MF(X, W) — DCoh(X, W) — DQcoh(X, W).

We show that the first functor is an equivalence and the second one is full and faithful
(see Theorem 2.9).

Assume that Y is another separated regular Noetherian scheme of finite Krull
dimension over k. Let m:Y — X be a morphism of schemes over k. The
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usual direct and inverse image functors 74« and 7* between categories of quasi-
coherent sheaves give rise to functors R,: DQcoh(Y, W) — DQcoh(X, W) and
Lz*:DQcoh(X, W) — DQcoh(Y, W). This is deduced from the general theory of
derived functors. Moreover, there is an adjunction (Lz*, Ry) (see Theorem 2.35).
Similarly, we define functors R Hom (—, —) and (— ® —).

We then describe several (differential Z,-graded) enhancements of MF(X, W)
(and DQcoh(X, W)) and show that they are equivalent (see Section 2.6). They are
constructed using injective quasi-coherent sheaves, Drinfeld dg quotient categories,
and Cech resolutions, respectively. Finally we show that the subcategory of compact
objects in DQcoh(X, W) is the Karoubi envelope of MF(X, W), and that MF (X, W)
has a classical generator (see Section 2.7).

In two appendices we collect some results on admissible subcategories and semi-
orthogonal decompositions (Appendix A) and on embeddings of Verdier quotients
(Appendix B).

This article is part of our project to construct motivic measures using categories of
matrix factorizations. We sketch our main results. They will appear in forthcoming
articles.

We now assume that k is algebraically closed and of characteristic zero. Denote
by Ko(Var,1) the motivic Grothendieck group of varieties over Al := A}c. Given
W:X - Aland V:Y — Al wedefine W x V: X xY — Al by (W x V)(x,y) =
W(x) + V(y). This operation turns Ko(Vars1) into a commutative ring. By a
Landau—Ginzburg motivic measure we mean a morphism of rings from Ko(Var,1)
to some other ring.

Given a smooth variety X and W: X — A! we define the category of singularities
of W as

MF(W) := [ [MF(X. W —a).
ack
Only finitely many factors of this product are non-zero, and MF(W) vanishes if and
only if W is a smooth morphism. Let MF(W)dg’n be a suitable enhancement of the
Karoubi envelope of MF(W). If W is a proper morphism, MF(W )% is a saturated
dg (= differential Z,-graded) category.

We denote by K (sat%z) the free abelian group generated by the quasi-equivalence
classes of saturated dg (= differential Z,-graded) categories with relations coming
from semi-orthogonal decompositions into admissible subcategories on the level of
homotopy categories. The tensor product of dg categories induces a ring structure
on K (sat?). One may think of Ko(satfz) as a Grothendieck ring of suitable
pretriangulated dg categories. Here is the main result of the forthcoming article [23].

Theorem 1.2. There is a unique morphism
w: Ko(Varg1) — Ko(satzz) (1.1)

of rings (= a Landau—-Ginzburg motivic measure) that maps [X, W] to the class of
MF (W) whenever X is a smooth variety and W: X — Al is a proper morphism.
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In particular, u is a morphism of abelian groups and maps [X, W] to the class
of MF(W )42t whenever X is a smooth (connected) variety and W:X — Al is a
projective morphism. These two properties determine [ uniquely.

Since Ko(Var,1) has a presentation whose relations come from suitable blowing-
ups (see [3, Thm. 5.1]), Theorem 1.1 and its predecessor Theorem 3.2 essentially
imply that there is a unique morphism p: Ko(Vary1) — K (sat%z) of abelian groups
sending [X, W] to the class of MF(W)%! if X is a smooth variety and W is a proper
morphism. Here we implicitly use the fact mentioned above that MF(W )%t is a
saturated dg category for proper W. This fact and multiplicativity of u is established
in [23]. We also give a careful definition of K (satZz) there.

Theorem 1.2 above was motivated by and is a relative version of a result by
A. Bondal, M. Larsen and the first author (see [8, 8.2]): they construct a morphism
of rings

Ko(Vary) — Ko(sat%)

(= a motivic measure) that maps the class of a smooth projective variety X over k to
the class of the standard enhancement of D?(Coh(X)) by bounded below complexes
of injective sheaves with bounded coherent cohomologies; here Ko(Varg) is the
Grothendieck group of varieties over k, and K (sat%) is defined similarly as Ky (sat%z)
starting from saturated differential Z-graded categories.

In the article [35] the second author shows that the above two motivic measures
are connected by a commutative diagram

Ko(Vary) — Ky (sat%)

|

Ko(Varg1) . Ko (satfz)

of ring morphisms where the vertical morphism on the left maps [X] to [ X, 0] and the

vertical morphism on the right is induced by folding a differential Z-graded category

into a differential Z,-graded category (and taking its triangulated envelope). The

upper (resp. lower) horizontal arrow maps L := [A!] (resp. Lat ) = [AL,0])to 1.
In the article [22] we prove that the motivic vanishing cycles map

¢: Ko(Varg1) — M;:

to the equivariant Grothendieck ring /\/l;: is also a Landau—Ginzburg motivic measure
(here fi is the projective limit of the group schemes u, of n-th roots of unity). We
show that it is related to the above measure (1.1) via Euler characteristics with
compact support on one hand and Euler characteristics of periodic cyclic homology
on the other hand.
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2. Categories of curved dg sheaves

As described in the introduction we discuss foundational results on categories of
matrix factorizations. Our main references for this section were [29,32,33]. Some
of the ideas are also contained in [18].

Let k be a fixed field. All schemes considered are schemes over k. We say that a
scheme X satisfies condition (srNfKd) if

(stNfKd) X is a separated regular Noetherian scheme of finite Krull dimension.

For example, any regular quasi-projective scheme satisfies condition (srNfKd). Note
that any coherent O y -module on an (stNfKd)-scheme X is a quotient of a locally free
Ox-module of finite type (by theorems of Kleiman [14, Ex. II1.6.8] and Auslander
and Buchsbaum [24, Thm. 20.3]); in particular, such a scheme satisfies condition
(ELF) in [29].

Fix a scheme X satisfying condition (stNfKd). Let W € I'(X, Oyx) be a global
regular function which we consider as a morphism W: X — Al := A}C = Speck[T].
We do not assume that the morphism W is flat, for example W may be the zero
function.

In this section graded means Z,-graded (where Z, = 7Z/27Z) if not explicitly
stated otherwise, and differential graded is often abbreviated by dg. We use lower
indices when referring to the graded components of a Z,-graded object.

The usual notions and results for differential Z-graded categories (quasi-
equivalence, pretriangulated dg category, (Drinfeld) dg quotient, etc.) have obvious
counterparts in the world of differential Z,-graded categories.

2.1. Definition of various categories. By a sheaf on X we mean an Oy -module.
We denote by Sh(X) the category of all sheaves on X, and by Qcoh(X) and Coh(X)
the full subcategories of quasi-coherent and coherent sheaves, respectively. By
InjSh(X) (resp. InjQcoh(X)) we denote the full subcategory of injective objects
in Sh(X) (resp. Qcoh(X)). We write Locfree(X) (resp. FlatQcoh(X)) for the full
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subcategory of Qcoh(X) consisting of locally free sheaves (of possibly infinite rank)
(resp. of quasi-coherent sheaves that are flat over Oy).

We recall some results from [13, I1.§7] and deduce some well-known conse-
quences.

Theorem 2.1 ([13, I1.§7]). (Here X can be any locally Noetherian scheme.)

(a) Every object of Qcoh(X) can be embedded in an object of
InjSh(X) N Qcoh(X).

(b) The injective objects in Qcoh(X) are precisely the injective objects of Sh(X)
that are quasi-coherent, InjQcoh(X) = InjSh(X) N Qcoh(X).

(¢) If I € Qcoh(X) is an injective object and U C X is open,
then I |y € Qcoh(U) is again injective.

(d) Any direct sum of objects of InjSh(X) (resp. InjQcoh(X)) is in InjSh(X)
(resp. InjQcoh(X)).

Proof. (a): This is [13, Thm. I1.7.18].

(b): The inclusion D is obvious. For the inclusion C let ' € Qcoh(X). Then
F C J for J € InjSh(X) N Qcoh(X) by (a). If F is injective in Qcoh(X), this
inclusion splits, and hence F is an injective object of Sh(X).

(¢c): By (b), I is an injective Ox-module. Let j: U — X be the inclusion. We
have the adjunction (ji, j' = j*) (of functors between Sh(X) and Sh(U)). Since j
is exact this shows that j*(7I) is an injective Oy -module. It is quasi-coherent, so we
can use (b) again.

(d): The statement for InjSh(X) is precisely [13, Cor. 7.9], and the statement for
InjQcoh(X) then follows from (b) since the inclusion Qcoh(X) C Sh(X) preserves
direct sums (for Noetherian X one can also use [13, Prop. 7.2] and the example before
that proposition). O

Definition 2.2. The dg (differential Z,-graded) category Sh(X, W) is defined as
follows. Its objects are W -curved dg sheaves on X, i.e. diagrams

E=(E ==E)
€o
in Sh(X) satisfying e; 1¢; = W idg,, fori € Z,. The morphism space between two
W -curved dg sheaves E, E’ is the graded module

Homgyx.w)(E. E') := P (@ Homo, (E;, E,~/+1))

€7, €7

with differential d(g) = ¢’ 0 g — (—1)!€lg o e where g is homogeneous of degree |g|.
Denote by Qcoh(X, W), Coh(X, W), MF(X, W), InjQcoh(X, W), Locfree(X, W),
and FlatQcoh(X, W) the full dg subcategories of Sh(X, W) consisting of objects



Matrix factorizations and semi-orthogonal decompositions 913

whose components are quasi-coherent sheaves, coherent sheaves, locally free sheaves
of finite type (= vector bundles), injective quasi-coherent sheaves, locally free sheaves,
and flat quasi-coherent sheaves, respectively. Objects of MF(X, W) are called matrix
factorizations of IV.

The shift [1]E of a W-curved dg sheaf E as above is defined as
—eo
[E = (Eo=>Er).

Given a dg category C, the category Zo(C) and the homotopy category [C] of C
are defined as usual: they have the same objects as C, but

Homz,c)(E. E') = Zo(Home(E, E'))
and Homyc|(E, E') = Ho(Hom¢(E, E')).

Remark 2.3. The categories Zo(Sh(X, W)), Zo(Qcoh(X, W)) and Zy(Coh(X, W))
are abelian categories. A sequence in Zo(MF(X, W)), Zy(InjQcoh(X, W)),
Zo(Locfree(X, W)) or Zy(FlatQcoh(X, W)) will be called exact if it is exact in
the ambient abelian category Zo(Qcoh(X, W)).
CdR
Let F = (- — F' L Fitl --+) be a complex in Zy(Sh(X, W)). We

define its totalization Tot(F) =: T = ( T — To ) € Sh(X, W) by

t
to

lez@F}

i€Z, jJE€EL,,
i+j=Il mod 2
for [ € Z, and 1;|pi = dL); + (—1)ifj", for l,j € Z, and i € Z satisfying
J
i+ j=1[mod2.
If g:E — E’ is a morphism in Zy(Sh(X, W)) we define its cone Cone(g)

to be the totalization of the complex (--+ — 0 — E S5 E S50 --+) with
E’ in degree zero. This shows that Sh(X, W) is a pretriangulated dg category, and
similarly for Qcoh(X, W), Coh(X, W), MF(X, W), InjQcoh(X, W), Locfree(X, W)
and FlatQcoh(X, W). In particular, the homotopy categories

[Sh(X, W)], [Qcoh(X,W)], [Coh(X,W)], [MF(X,W)],
[InjQcoh(X, W)], [Locfree(X,W)] and [FlatQcoh(X, W)]

are triangulated! categories.

! Qur (standard) triangles and the (standard) triangles in [29] differ in the sign of the last morphism.
However the associated homotopy categories are equivalent as triangulated categories. For this one may
use [16, 10.1.10.i] or the equivalence that multiplies the differentials eg, e of all objects E by —1 and
is the identity on morphisms.
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Remark 2.4. Notice that one cannot define the cohomology of an object £ €
Sh(X, W) (unless W = 0), but we can define the cohomology of a complex F as
above. In particular, it makes sense to ask whether F is exact.

Definition 2.5. Denote by Acycl[Sh(X, W)] the full triangulated subcategory of
[Sh(X, W)] classically generated by the totalizations of all short exact sequences
0->F!'>F>>5F3*>0

with F? € Sh(X, W). (Instead of short exact sequences one can take all bounded
exact complexes, see Lemma 2.7.(b) below.) By definition, Acycl[Sh(X, W)] is a
thick subcategory of [Sh(X, W)], i.e. a strict full triangulated subcategory closed
under direct summands.

Following [32, 33] we define the absolute derived category DSh(X, W) of
W -curved dg sheaves as the Verdier quotient

DSh(X, W) := [Sh(X, W)]/ Acycl[Sh(X, W)].
Similarly, we consider the full subcategories

Acycl[Qcoh(X, W)] C [Qcoh(X, W)], Acycl[Coh(X, W)] C [Coh(X, W)],
Acycl[MF(X, W)] C [MF(X, W)], Acycl[Locfree(X, W)] C [Locfree(X, W)],
Acycl[FlatQcoh(X, W)] C [FlatQcoh(X, W)],

and the corresponding Verdier quotients

DQcoh(X, W) = [Qcoh(X, W)]/ Acycl[Qcoh(X, W)],
DCoh(X, W) = [Coh(X, W)]/ Acycl[Coh(X, W)],
MF (X, W) = [MF(X, W)]/ Acycl[MF(X, W)],
DLocfree(X, W) = [Locfree(X, W)]/ Acycl[Locfree(X, W)],
DFlatQcoh(X, W) = [FlatQcoh(X, W)]/ Acycl[FlatQcoh(X, W)].
The triangulated category MF (X, W) is called the category of matrix factorizations
of W.

There is another characterization of Acycl[MF(X, W)] given in Corollary 2.59
below. We will be mainly interested in the category MF(X, W).

Remark 2.6. Let X1, ..., X}, be the connected components of X. Then

m
DSh(X, W) = [ [ DSh(X;. W).
i=1
and similarly for all other categories defined above. So to study these categories one
may assume that X is connected (if needed), and then the map W is either flat or else
constant (here constant means that W(X) consists of a single point in A! which is

then necessarily closed; if we think of W as an element of I'(X, Oy) it means that
W ek C T'(X,Oyx)).
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Here is a useful lemma.

Lemma2.7. Let M be Sh(X, W), Qcoh(X, W), Coh(X, W), MF(X, W), Locfree(X, W),
or FlatQcoh(X, W).

(a) Any short exact sequence 0 — F~1 5 FO L5 F1 5 0in Zo(M) gives rise
to a triangle

F1A2 0L pt S F!
inD M (where DMF(X, W) := MF(X, W)).
(b) Let

f! f? f3
F=(+—>0->F' "S5 F? S5 F S5 F'5...5F" 50—

be a bounded exact complex in Zo(M). Then Tot(F) € Acycl[M].

© IfF=(+—0—>P%—>...> P05 bl . ¢ 0..)is
a bounded complex in Zy(M) that is composed of two bounded complexes P
and I as indicated, there is a standard triangle

[1] Tot(P) = Tot(I) — Tot(F) — Tot(P)

in [M]. If F is exact, [1] Tot(P) 5 Tot(1) is an isomorphism in D M.

(d) Let F be a bounded complex in Zo(M). If each F' is isomorphic to 0
in [M], then Tot(F) = 0 in [M)]. Similarly, if each F' is in Acycl[M], then
Tot(F) € Acycl[M].

Proof. (a): We have standard triangles

[(1)] 1]

F1 A po Cone(p) [0—> [1]F~1,

where Cone(p) = F° @ [1]F~! as a graded sheaf, and

1
Cone(p) ﬂ F! M Cone([4 0]) M [1] Cone(p)

in [M]. Note that
Cone([¢ 0]) = F! @ [1]Cone(p) = F' @ [1]F° @ F!

! g o
has differential |: 0 —f9 —p j| and hence is the totalization of the exact complex
o o f!

0-F 1A F L Fl 5

0
with F° in odd degree. This implies that Cone(p) M F! becomes an

isomorphism in D M.
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(b): Factor F2 — F3 in Zy(Sh(X, W)) into an epimorphism followed by a

monomorphism, F? 2 (0] L F 3, and note that Q € M (for example, if M =
MF(X, W), the kernel of F*~! — F" is in MF(X, W), and we can iterate this
argument). Consider the vertical morphism of horizontal complexes

R: 0 0 0 0t 3 =1 pe 0
FI T L O
s: 0 Pl o 0 0 0

We leave it to the reader to check that the mapping cone Cone(u) of this morphism
is isomorphic to F in the homotopy category of complexes in Zy(M). Hence
Tot(Cone(u)) =~ Tot(F) in [M]. On the other hand we have a short exact
sequence 0 — Tot(S) — Tot(Cone(u)) — [1] Tot(R) — 0 in Zy(M) and hence
a triangle Tot(S) — Tot(Cone(u)) — [1] Tot(R) — [1] Tot(S) in D M by (a). By
induction Tot(S) and Tot(R) are in Acycl[M], and hence Tot(F') = Tot(Cone(u)) €
Acycl[M].

(c): Obvious. If F' is exact, use (b).

(d): We argue by induction on the number of i with F? # 0 in M. If this number
is < 1 the claim is obvious. Otherwise let i € Z be non-maximal with F°? # 0. Let
w<; I be the complex obtained from F by replacing all terms in degrees > i by 0,
and define w~; F similarly. As in (c), there is a standard triangle

[1] Tot(w<; F) — Tot(ws; F) — Tot(F) — Tot(w<; F)

in [M]. By induction the first two terms are isomorphic to zero in [M] (resp. are
in Acycl[M)]), hence so is Tot(F). O

2.2. Matrix factorizations and the category of singularities. Incase the morphism
W:X — A!is flat we recall an important theorem proved in [29]. Recall that the
category of singularities Ds,(Y) of a Noetherian scheme Y is defined as the Verdier
quotient
Dsy(Y) := D”(Coh(Y))/Rerf(Y),

where D?(Coh(Y)) is the bounded derived category of coherent sheaves on ¥ and
Perf(Y) is the category of perfect complexes.

Let Xy be the scheme-theoretical zero fiber of the morphism W: X — Al. Given

E=(E % Ey) € MF(X, W) the cokernel of the map e; is annihilated by W,

hence it comes from an object in Coh(Xg). We denote this object by cok e;.

Theorem 2.8 ([29]). Assume that the morphism W: X — Al is flat. Then the above
construction induces a functor

cok: MF(X, W) — Ds,(Xo)

which is an equivalence of triangulated categories.
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The above theorem is useful because it gives us two completely different
descriptions of the same triangulated category.

2.3. Some embeddings and equivalences. Our nextaim s to prove the equivalences
and embeddings stated in the following theorem.

Theorem 2.9.
(a) The functor [InjQcoh(X, W)] — DQcoh(X, W) is an equivalence.
(b) The functor DCoh(X, W) — DQcoh(X, W) is full and faithful.
(¢) The functor MF(X, W) — DCoh(X, W) is an equivalence.
(d) The functor DLocfree(X, W) — DQcoh(X, W) is an equivalence.
(e) The functor DFlatQcoh(X, W) — DQcoh(X, W) is an equivalence.

Proof. Consider the commutative diagrams of inclusions of full triangulated cate-
gories

Acycl[MF(X, W)] < Acycl[Coh(X,W)] < Acycl[Qcoh(X,W)] > {0}
n (@1) n (®m2) n (®3) n
[MF(X, W)] c [Coh(X, W)] c [Qcoh(X, W)] > [InjQcoh(X, W)]

and

Acycl[Locfree(X, W)] <  Acycl[Qcoh(X,W)] > Acycl[FlatQcoh(X, W)]
n (®4) n (®@5) N
[Locfree(X, W)] C [Qcoh(X, W)] > [FlatQcoh(X, W)].

We will show that the three equivalent conditions (ff1)°?, (ff2)°P, (ff3)°P of
Proposition B.2 hold for the squares (& 1) and (E2) (and then also for the rectangle
formed out of these two squares), and for the squares (®4) and (&5), and that the
three equivalent conditions (ff1), (ff2), (ff3) hold for the square (&3). This will imply
that all five functors in Theorem 2.9 are full and faithful.

The following lemma is essentially contained in [33, Thm. 3.6]. It shows that
the functors considered in parts (a), (c), (d) and (e) of Theorem 2.9 are essentially
surjective.

Lemma 2.10.
(a) Forany F € Qcoh(X, W) there exists an exact sequence

0>F—>I1">...51">0

in Zo(Qcoh(X, W)) with all 17 € njQcoh(X, W). In particular, the obvious
morphism F — Tot(I) has its cone in Acycl[Qcoh(X, W)] and hence becomes
an isomorphism in DQcoh(X, W).
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(b) Let E € Coh(X, W). Then there exists an exact sequence
0>P'">...> PS5 E—>0

in Zo(Coh(X, W)) with all P* € MF(X,W). In particular, the obvious
morphism Tot(P) — E has its cone in Acycl[Coh(X, W)] and hence becomes
an isomorphism in DCoh(X, W).

(¢c) Let E € Qcoh(X, W). Then there exists an exact sequence
0—>P"—>...>P" 5 E—>0

in Zo(Qcoh(X, W)) with all P! € Locfree(X, W) C FlatQcoh(X, W).
In particular, the obvious morphism Tot(P) — E has its cone in
Acycl[Qcoh(X, W)] and hence becomes an isomorphism in DQcoh(X, W).

Proof. (a) Choose injective morphisms go: Fo — Jo and g: F; — Ji, such that Jy
and J; are injective quasi-coherent sheaves (use Theorem 2.1). Consider the object
I’ € InjQcoh(X, W), where I = 1] = Jo® Jiand iy = W @id, i] = id@W.
We denote I’ by G~ (J) for future reference. Note that G~ (J) only depends on the
graded sheaf J.

Let h = (ho,hy1): F — I’ be the injective morphism in Zo(Qcoh(X, W) given
by ho = (g0, g1 /0)" h1 = (go f1.g1)". Now define 1° := I’, replace F by cok h
and repeat the procedure. Since X is regular of finite Krull dimension we eventually
arrive at the desired finite resolution (the global dimension of all local rings Oy
is bounded by the Krull dimension of X, and injectivity of a quasi-coherent sheaf
can be tested on the stalks by [13, Prop. 7.17] and Theorem 2.1). The isomorphism
F > Tot(/) in DQcoh(X, W) follows from Lemma 2.7.(c).

(b) We apply the dual process. Namely, our assumptions on X allow us to
choose vector bundles Ny and N; with surjective morphisms go: Ng — E( and
g1: N1 — E;. Consider the object P" € MF(X, W) where P; = P{ = No & N;
and py = id®W, pj = W & id. We denote P’ by GT(N) for future reference. It
only depends on the graded sheaf N.

Let h: P/ — E be the surjective morphism in Zo(Coh(X, W)) given by hy =
(go,e181), h1 = (eogo,g1). Now replace E by kerh and repeat the procedure.
Since X is regular of finite Krull dimension we eventually arrive at the desired finite
resolution. The last statement follows from Lemma 2.7.(c).

(c): Since any quasi-coherent sheaf is the union of its coherent subsheaves [14,
Exercise 11.5.15(e)] there are locally free sheaves Ny and N; with epimorphisms
gi: Ni = E;. We then proceed as in the proof of (b), using [1, Corollary 4.5]. [

Remark 2.11. If X is any quasi-coherent sheaf on X, then

( K%W& K ) € Qecoh(X, W)
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is obviously zero in [Qcoh(X, W)] and in DQcoh(X, W). So if

n

0>F—->I">...> "0

is the exact sequence constructed in the proof of Lemma 2.10.(a), all objects
1%, ..., 1" ! are zero in DQcoh(X,W). This implies that F and [n]I" are
isomorphic in DQcoh(X, W) (use Lemma 2.7.(a)). Similar conclusions hold for
the exact sequences constructed in the proof of parts (b) and (c) of Lemma 2.10.

Remark 2.12. Let p: E — F be a morphism in Zy(Qcoh(X, W)), and let
0—>E—>A" >4 > ...

be an exact sequence in Zy(Qcoh(X, W)). Then there is a resolution F — I as in
Lemma 2.10.(a) and a morphism A — [ of resolutions that lifts p.

Namely, in the notation of the proof of Lemma 2.10.(a), find morphisms
qi: A? — J; that restrict to g; p; on Ey, for [ = 0,1. Then

(C]o,qlao)tlz‘lg — 18 =Jo®dJ; and (qul,ql)tIA(l) — 110 =Jod J;

define a morphism A° — 790 that lifts p: E — F. Pass to the cokernels and proceed.

Lemma 2.13. We have
Hom{qeon(x,w)) (Acycl[Qcoh(X, W)], [InjQcoh(X, W)]) = 0.
In particular, condition (ff2) of Proposition B.2 holds for the square (®3).

Proof. Let J € InjQcoh(X,W). Let0 — E! — E? — E3 — 0 be a short
exact sequence in Zo(Qcoh(X, W)) with totalization Tot(£). The dg module
Homgeon(x,w)(Tot(E), J) is the totalization of the short exact sequence

0 — Homqeonx,w)(E>, J) — Homqeon(x,w)(E?, J) = Homgeon(x,w) (E', J) — 0

of dg modules. Hence it is obviously (or by Lemma 2.46 below) acyclic, so
Hom{geon(x,w)(Tot(E), J) = 0. This implies the lemma. O

Remark 2.14. For any F' € [Qcoh(X, W)] and I € [InjQcoh(X, W)] the canonical
map
Homyqeon(x,w)] (F, 1) — Hompqeon(x,w) (F, 1)

is an isomorphism, since condition (ff3) holds for the square (E3).

Lemma 2.15. Condition (ff2)°P of Proposition B.2 holds for the square ([2).
Namely, let L € [Coh(X, W)] and A € Acycl[Qcoh(X, W)]. Then any morphism
L — A in [Qcoh(X, W)] factors through some object A’ € Acycl[Coh(X, W)].
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Proof. Step 1. Let E = ( E; % Eo) € Qcoh(X, W) and let K C E be a graded
0

coherent subsheaf, i.e. K; C E; is a coherent subsheaf for i = 0,1. Then there
exists F' € Coh(X, W) such that F C E in Z¢(Qcoh(X, W)) and K C F as graded
sheaves. Indeed, take F; = K; + eg Ky, Fop = K¢ + e1K;.

Step 2. Given an exact sequence

1 n—1
E:(O—>E1d—>E2—>---—>E"_1d—>E"—>O)

in Zo(Qcoh(X, W)) and graded coherent subsheaves K! C E’, there exists an exact
sequence

0> Fl—>...> F">0

in Zo(Coh(X,W)) which is a subsequence of E such that K* C F' for all
i=1,...,n.

Indeed, first we may assume that d*(K?) C K'*! (by replacing K'*1 with
Ki*t1 4+ di(K')). Using Step 1, we find a subobject F* C E", such that
F" € Coh(X,W) and K" C F". Between K"~! and (d"~!)~!(F") there is a
graded coherent sheaf surjecting onto F” (use [14, Ex. I1.5.15]). Step 1 again then
shows that there is an object F"~! € Coh(X, W) such that K"~! ¢ F*~! c E"!
and " Y(F"7 1) = F".

Now proceed by induction with F”~!Nkerd”~! C kerd” ! instead of F" C E"
and note that d"2(K"2) ¢ K" ' Nkerd"!.

Step 3. Assume that A = Tot(E) is the totalization of an exact sequence E
as above and let g: L — A be a morphism in [Qcoh(X, W)]. Represent g by a
morphism g: L. — A in Zy(Qcoh(X, W)] and let K C A be the image of g. Let Kli
be the image of Kj4; under the obvious projection Tot(E);+; — E; of sheaves.
This defines the graded sheaves K*. Step 2 applied in this setting yields an exact
sequence F in Zy(Coh(X, W)) such that g factors through A" = Tot(F) C A.
Hence g factors through A’ € Acycl[Coh(X, W)].

Now use that condition (ff4)°? in Proposition B.2 implies condition (ff2)°P (it
would have been sufficient to consider totalizations of short exact sequences only).
This finishes the proof. 0

Lemma 2.16. The three equivalent conditions (ff1)°P, (ff2)°P, (ff3)°P hold for the
square (H1).

We will give two proofs of this key fact. The first proof from [18] is short but
uses Theorem 2.8 and hence only works in case the morphism W: X — Al is flat.
The second proof is essentially the one given in [32, Prop. 1.5] (in a slightly different
language) and works in general.
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Lemma 2.17. Assume that X is affine.
(a) Then
Homqeon(x,w)1 (IMF(X, W), Acycl[Qcoh(X, W)]) = 0.

In particular,

[ME(X, W)] N Acycl[Qcoh(X, W)] = 0,
[MF(X, W)] N Acycl[Coh(X, W)] =0 and Acycl[MF(X,W)] = 0.

(b) [MF(X,W)] = MF(X, W) canonically.

Proof. Clearly (a) implies (b). To prove (a) we argue as in the proof of Lemma 2.13.
Namely let P € MF(X, W) and let E be the totalization of a short exact sequence

0— E'-E>?>E3>0

in Zo(Qcoh(X, W)). Then the dg module Homgeon(x,w) (P, E) is the totalization
of the short exact (since X is affine we can view both P; as projective I'(X, Ox)-
modules) sequence

0 — Homqeon(x,w) (P, E') = Homgeon(x,w)(P. E?) — Homqeonx,w) (P, E®) — 0
of dg modules and hence is acyclic. This implies all the assertions in (a). 0

Proof of Lemma 2.16 in case W: X — Al is flat. We show that condition (ff1)°P
holds for the square (®1): Lets: E — P in [Coh(X, W)] with P € [MF(X, W)] and
cone in Acycl[Coh(X, W)]. Then there exists t: P’ — E with P’ € [MF(X, W)]
such that the cone of st is in Acycl[MF(X, W)].

By Lemma 2.10.(b) we can find ¢ and P’ as required such that the cone of ¢
is in Acycl[Coh(X, W)]. Hence the cone of st is in Acycl[Coh(X, W)], and
obviously in [MF(X, W)]. We need to show that [MF(X, W)]NAcycl[Coh(X, W)] =
Acycl[MF(X, W)]. Namely, let F € [MF(X, W)] N Acycl[Coh(X, W)]. It suffices
to show that its image cok F' in Dge(Xo) under the equivalence of Theorem 2.8 is
zero. But this is true locally by Lemma 2.17, and hence globally. O

Proof of Lemma 2.16 for arbitrary W: X — Al. It suffices to prove the following
claim (use condition (ff4)°P of Proposition B.2): Let £ € [MF(X, W)] and let L be
the totalization of a short exact sequence

0-USVv2L o0

in Zo(Coh(X,W)) (with U of odd degree). Then any morphism £ — L in
[Coh(X, W)] factors through an object of Acycl[MF(X, W)].

Step 1. Let G € Coh(X, W). Let y:G — L be a degree zero morphism in
Coh(X, W). Then y = (a,b,c) where a:G — U, b:G — V and c:G — Q are
morphisms in Coh(X, W) of degrees 1, 0, 1, respectively. Notice that the differential
of y is given by the formula dy = d(a, b,c) = (—da,ia + db, pb — dc).
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Lemma 2.18. In this setting assume that the degree zero morphism y =
(a,b,c):G — L is closed and that ¢ can be lifted to a degree one morphism
t:G — VinCoh(X,W), ie pt =c. Theny is homotopic to zero.

Proof. Let Hom = Homcqp(x,w). We have an exact sequence of dg modules

0 — Hom(G, U) it Hom(G, V) 2 Hom(G, Q).

Note that dc = d(pt) = pdt. Then p(b — dt) = pb —dc = 0, so there
exists a degree zero morphism s € Hom(G, U) such that b — d¢t = is. Then
ids =d(is) = db = —ia, hence —ds = a and d(s,t,0) = (a,b,c) = y. O

Step 2. Now assume that N is a graded coherent sheaf. Recall the object
GT(N) € Coh(X, W) freely generated by N (see the proof of Lemma 2.10 above)
and note that there is a canonical inclusion N C G+ (N) of graded sheaves. For any
S € Coh(X, W) a degree zero morphism r: G (N) — S is uniquely determined by
the restrictions r |y and (dr)|n; conversely, given two graded morphisms N — § of
degrees 0 and 1 respectively, they arise from such a morphism r. A similar statement
holds for degree one morphisms GT(N) — S.

Let viN — L be a degree zero morphism of graded sheaves. Similarly as
above we represent it as a triple v = (a’,b’,¢’) where a’: N — U, b": N — V and
¢’ N — Q are morphisms of graded sheaves of degrees 1, 0, 1, respectively.

Lemma 2.19. In this setting assume that the degree one morphism ¢': N — Q of
graded sheaves can be lifted to a degree one morphism s:N — V, i.e. ps = c'.
Let V:GT(N) — L be the closed degree zero morphism uniquely determined by
Vv = viN — L (and dv = 0), and letV = (a, b, ¢) be its components. Then
the degree one morphism c: Gt (N) — Q can be lifted to a degree one morphism
t:GY(N) = V,ie pt=c.

Proof. Extend the degree one morphismss: N — V to a unique degree one morphism
t:GT(N) — V such that (dt)|y = b’. Note that D]y = v implies b|y = b’ and
¢|ny = ¢/, and that dV = 0 implies pb = dc. So pt|y = ps = ¢’ = ¢|y and
(d(p)In = p(dD)|y = pb" = pb|y = (dc)|n. Hence pt = c. O

Step 3. To complete the proof assume that we are given a morphism £ — L
in [Coh(X, W)], which we represent by a closed degree zero morphism morphism
e=(a",b",c"). E — Lwherea”,b"”,c" are as explained above. Let N be a graded
vector bundle mapping surjectively onto the "fiber product” V x g E of the morphisms
p:V — Qand ¢" E — Q (for | € Zy we have (V xg E); = Vi1 xg,,, Ep).
This yields a surjective degree zero morphism g: N — E of graded sheaves such
that ¢”’q: N — Q can be lifted to V.
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Let v := &¢q:N — L; its third component is ¢’ := ¢"q. LetV =
(a,b,c):GT(N) — L be the closed degree zero extension of v. By Lemma 2.19 the
morphism ¢ can be lifted to a degree one morphism t: G*(N) — V,i.e. pt = c.

Similarly g: N — E extends uniquely to a (surjective) closed degree zero
morphism §: Gt (N) — E, and we have ¢ = V. Let p: R — G1(N) be the
kernel of §. Then R € MF(X, W) (since the kernel of a surjective morphism
of vector bundles is a vector bundle). Let C := Cone(p). As a graded sheaf
C = GY(N) @ [1]R, so C € MF(X,W). The natural closed degree zero
morphism (¢, 0): C — E has cone Cone((q, 0)) in Acycl[MF(X, W)], cf. the proof
of Lemma 2.7.(a).

(.0
The composition C E—L E 5 L isaclosed degree zero morphism and given
by (£¢4,0) = (v, 0); its third component is (¢, 0): C = GT(N)®[1]R — Q and can

,0
be factored as C Q v & Q. Hence Lemma 2.18 shows that this composition

~

(¢,0) € . . . . .
C —— E — L is homotopic to zero. So it is zero in the triangulated category

[Coh(X, W)], and the morphism ¢: E — L factors there through Cone((¢,0)) €
Acycl[MF(X, W)]. This proves our claim. O

Lemma 2.20. The three equivalent conditions (ff1)°P, (ff2)°P, (ff3)°P hold for the
squares (R4) and (H5).

Proof. The proof of Lemma 2.16 for arbitrary W: X — A! can easily be modified
to show this result. Observe that the kernel of a surjective morphism of locally
free sheaves (resp. flat quasi-coherent sheaves) is again locally free (resp. flat quasi-
coherent). L]

The proof of Theorem 2.9 is complete. O

We deduce some corollaries from the proof of Theorem 2.9.
Corollary 2.21. We have

[InjQcoh(X, W)] N Acycl[Qcoh(X, W)] = 0,
[MF(X, W)] N Acycl[Coh(X, W)] = Acycl[MF(X, W)],

[Coh(X, W)] N Acycl[Qcoh(X, W)] = Acycl[Coh(X, W)],
[Locfree(X, W)] N Acycl[Qcoh(X, W)] = Acycl[Locfree(X, W)],
[FlatQcoh(X, W)] N Acycl[Qcoh(X, W)] = Acycl[FlatQcoh(X, W)].

Proof. The first equality follows immediately from Lemma 2.13. Let E €
[MF(X, W)]NAcycl[Coh(X, W)]. We have seen in Lemma 2.16 that condition (ff2)°P
holds for the square (®1). Applied to idg, this condition shows that E is a direct
summand of an object of Acycl[MF(X, W)] and hence in Acycl[MF(X, W)]. This

proves the second equality. The remaining equalities are proved similarly using
Lemmata 2.15 and 2.20. 0
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Corollary 2.22 (cf. proof of [33, Thm. 3.6]). Let strict([InjQcoh(X, W)]) be the
strict closure of [InjQcoh(X, W)] in [Qcoh(X, W)]. Then

[Qcoh(X, W)] = (strict([InjQcoh(X, W)]), Acycl[Qeoh(X, W)])

is a semi-orthogonal decomposition (see Def. A.10). In particular, Acycl[Qcoh(X, W)]
is the left orthogonal of [InjQcoh(X, W) in [Qcoh(X, W)].

Proof. Lemma 2.10.(a) yields for each F € [Qcoh(X, W)] a triangle A — F —
J — [1]4 with A € Acycl[Qcoh(X, W)] and J € [InjQcoh(X, W)]. Together
with Lemma 2.13 this proves the first claim. The second claim follows from
Lemma A.11.(b). ]

Corollary 2.23. The categories [Qcoh(X, W)], [InjQcoh(X, W)], Acycl[Qcoh(X, W)],
and DQcoh(X, W) are cocomplete (closed under arbitrary direct sums) and therefore
Karoubian, and the functor [Qcoh(X, W)] — DQcoh(X, W) preserves direct sums.

Proof. 1t is clear that [Qcoh(X, W)] is cocomplete. Note that [InjQcoh(X, W)]
is cocomplete by Theorem 2.1.(d), and that Acycl[Qcoh(X, W)] is cocomplete as
the left orthogonal of [InjQcoh(X, W)] in [Qcoh(X, W)], see Lemma 2.22. Now
use [4, Lemma 1.5 and Prop. 3.2]. Cocompleteness of DQcoh(X, W) follows also
from Theorem 2.9.(a). O

The following definition should be compared with Definition 2.5. Note that
[Sh(X, W) and [Qcoh(X, W)] are cocomplete.

Definition 2.24. Denote by Acycl®[Sh(X, W)] the full triangulated subcategory
of Sh(X, W) that contains Acycl[Sh(X, W)] and is closed under arbitrary direct
sums. Following [32,33] again we define the coderived category DSh*° (X, W) of
W -curved dg sheaves as the Verdier quotient

DSh®(X, W) := [Sh(X, W)]/ Acycl®°[Sh(X, W)].
If we define DQcoh®(X, W) similarly, Corollary 2.23 shows that
DQcoh(X, W) = DQcoh® (X, W).
Theorem 2.25.

(a) The functor [InjSh(X, W)] — DSh®°(X, W) is an equivalence.
(b) The functor DQcoh(X, W) — DSh*°(X, W) is full and faithful.

Proof. (a)implies (b): Note that we have a full and faithful functor InjQcoh(X, W) —
InjSh(X, W) by Theorem 2.1.(b). Hence [InjQcoh(X, W)] — [InjSh(X, W)] is full
and faithful, and we can use Theorem 2.9.(a).

(a): Adapting the proof of Lemma 2.10.(a) shows: For any F' € Sh(X, W) there
exists an exact sequence 0 — F — 1% — I' — ... in Zo(Sh(X, W)) with all
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I’ € InjSh(X, W). It follows from Lemma 2.26 below that the obvious morphism
F — Tot(/) has cone in Acycl®[Sh(X, W)] and hence becomes an isomorphism
in DSh®°(X, W). Theorem 2.1.(d) shows that Tot(/) € InjSh(X, W). This implies
that [InjSh(X, W)] — DSh® (X, W) is essentially surjective.

Adapting the proof of Lemma 2.13 shows that the left orthogonal of [InjSh(X, W)]
in [Sh(X, W)] contains Acycl[Sh(X, W)] and hence Acycl°[Sh(X, W)] since any left
orthogonal is stable under direct sums. Now use condition (ff2) of Proposition B.2.

O

Lemma 2.26. If F is a bounded below exact complex in Zy(Sh(X, W)), then
Tot(F) € Acycl®[Sh(X, W)].

Proof. We can assume that F = (- - 0 — F® — F! — ...), Let F<, be
the subcomplex that coincides with F in degrees < n, is zero in degrees > n, and
whose degree n component is the kernel of F — F"*1 We have monomorphisms
F<9y - F<1 — F<; — --- of bounded exact complexes, and F' = colim F<,. Note
that there is a short exact sequence

Oa@an%@an%F—)O

neN neN

of complexes in Zy(Sh(X, W)). Totalizing yields a short exact sequence

0 — @D Tot(F<n) — @D Tot(F<p) — Tot(F) — 0

neN neN

in Zo(Sh(X, W)). Part (a) of Lemma 2.7 shows that this short exact sequence yields
a triangle in DSh(X, W) and a fortiori in DSh*®(X, W), and part (b) of the same
lemma shows that @, o Tot(F<,) € Acycl®[Sh(X, W)]. Hence Tot(F) becomes
zero in DSh® (X, W). The claim follows. O

Remark 2.27. We don’t know whether Sh(X) has finite injective dimension. If
this is the case the method used to prove Theorem 2.9.(a) easily implies that
[InjSh(X, W)] — DSh(X, W) is an equivalence; moreover Theorem 2.25.(a) then
shows that DSh(X, W) = DSh* (X, W) and Acycl[Sh(X, W)] = Acycl®[Sh(X, W)].

2.4. Case of constant W. We study the case that W is a constant function; recall
that this means that W(X) consists of a single point of A! = Spec k[T] which is
then necessarily closed. First we note that the case of a constant nonzero W is not
interesting.

Lemma 2.28. Assume that the function W is constant but W # 0. Then
[Sh(X, W)] = 0. Inparticular, all the subcategories [Qcoh(X, W), ..., [MF(X, W)]
and all the quotient categories DSh(X, W), DQcoh(X, W), ..., MF(X, W) are zero.
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Proof. The assumption implies that the morphism k£[T] — T'(X,Ox), T +— W,

factors as k[T] — k[T]/p — T'(X, Ox) where p C k[T] is a maximal ideal # (T).

In particular T is invertible in the field k[T']/p, so W is invertible in T'(X, Ox).
Hence for any £ € Sh(X, W) the degree one morphism

h = (W~ 'eg,0) € Endsnx,w)(E)1 = Homgy(x)(Eo. E1) & Homgy(x)(E1, Eo)
satisfies dh = idg, i.e. E is isomorphic to zero in [Sh(X, W)]. O

Hence let us study the case W = 0. Given an object £ € Qcoh(X, 0) we may
consider its cohomology H(E) which is just a graded quasi-coherent sheaf with
components Ho(E) and H;(E). Let

Ex[Qcoh(X,0)] := {E € [Qcoh(X,0)] | Hp(E) = 0forall p € Z,},

and define Ex[Coh(X, 0)], ..., Ex[FlatQcoh(X, 0)] accordingly. These categories are
thick subcategories of [Qcoh(X, 0)], ..., [FlatQcoh(X, 0], respectively, and we can
form the corresponding Verdier quotients. The next proposition shows that this yields
alternative definitions of the categories DQcoh(X,0), ..., DFlatQcoh(X, 0).

Note that any morphism f: E — F in Zy(Qcoh(X,0)) induces a morphism
H(f): H(E) — H(F) on cohomology objects; it is called a quasi-isomorphism if
H(f) is an isomorphism. It is easy to see that Hy: [Qcoh(X,0)] — Qcoh(X) is a
cohomological functor.

Remark 2.29. These definitions clearly also make sense for [Sh(X, 0)]. If we knew
that Sh(X) has finite injective dimension, the obvious modification of the proof of
the following proposition would show that Ex[Sh(X, 0)] = Acycl[Sh(X, 0)].

Proposition 2.30. Let M be Qcoh(X,0), Coh(X,0), MF(X,0), InjQcoh(X,0),
Locfree(X, 0), or FlatQcoh(X, 0). Then

Ex[M] = Acycl[M]

and in particular DM = [M]/Ex[M] (where DMF(X,0) := MF(X,0)). A
morphism f in Zo(M) becomes an isomorphism in D M if and only if H(f) is a
quasi-isomorphism.

Proof. We first prove that Ex[Qcoh(X, 0)] = Acycl[Qcoh(X,0)]. A diagram chase
(or Lemma 2.46 below) shows that the totalization of any short exact sequence (or any
bounded exact complex) has vanishing cohomology. By applying the cohomological
functor Hy, any triangle in [Qcoh(X,0)] gives rise to a (6-periodic) long exact
cohomology sequence, and obviously any direct summand of an object with vanishing
cohomology has vanishing cohomology. This implies that Ex[Qcoh(X,0)] D
Acycl[Qcoh(X, 0)].
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Conversely let £ € Ex[Qcoh(X,0)]. Let U := kerep and V := kere;. Let

a9 d} dn—1
U-0H=U—-1°51'"5...— 1" >0),

do dl n—1
(V—)J):(V—>J0—1>J1—J>---d—>J”—>O),

be finite injective resolutions in Qcoh(X). Note that we have a short exact sequence
U — Ey — V. The injective resolutions of U and V combine to an injective
resolution of Ey : there is a morphism r: [—1]J — I of complexes in Qcoh(X) such
that its cone Cone(r) (which equals I @ J if we forget the differential) fits into the
following commutative diagram

(6) (01)

I —=— Cone(r) ——=J

]

UcC Eo Vv

whose columns are injective resolutions. Similarly there is a morphisms: [—1]1 — J
and a commutative diagram

(6) (01)

J ——= Cone(s) —— 1

]

Ve E, U.

Let A = (A % Ag ) be the complex in Zy(Qcoh(X,0)) with A9 = Cone(r),
0

Ay = Cone(s) and ag = (§§) and a; = (3 ). Note that we obtain the bounded
exact complex

B=(E—->A)=(-—>0>E->A"54'"5... 54" 50— -..)
in Z¢(Qcoh(X, 0)). From Lemma 2.7.(c) we obtain a triangle

E — Tot(A) — Tot(B) — [1]E
in [Qcoh(X, 0)]. Note that A7 is the direct sum of the two objects J? .—% J? and

1? <—01_> 1?7 . Hence Lemma 2.7.(d) implies that Tot(4) = 0 in [Qcoh(X, 0)]. Hence

Tot(B) — [1]E in [Qcoh(X, 0)], s0 E € Acycl[Qcoh(X, 0)] by Lemma 2.7.(b). This
proves Ex[Qcoh(X, 0)] = Acycl[Qcoh(X, 0)].
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Now let M be as in the proposition. Then Ex[M] D Acycl[M] is proved as
above, and Corollary 2.21 yields

Ex[M] C [M] N Ex[Qcoh(X, 0)] = [M] N Acycl[Qcoh(X, 0)] = Acycl[M].

The last statement is clear: f becomes an isomorphism if and only if its cone
is in Ex[M]; now use the six-periodic long exact sequence obtained from the
cohomological functor Hy. O

Remark 2.31. In fact we have proved that each object of Ex[Qcoh(X,0)] =
Acycl[Qcoh(X, 0)] is isomorphic to the totalization of a bounded exact complex
in Z¢(Qcoh(X, 0).

2.5. Derived functors. We recall first some general results about derived functors
and then apply them to direct and inverse image functors, and to Hom and tensor
functors.

2.5.1. Reminder on derived functors. We recall results and terminology from
the elegant exposition of derived functors in [25] and refer the reader to this note
for more details. Let D be a triangulated category D with a strict full triangulated
subcategory C, and let F: D — 7T be atriangulated functor to some other triangulated
category 7. The question is whether F has a right derived functor RF:D/C — T
with respect to C. More precisely, a right derived functor of F with respect to C
is a pair (RF,¢) of a triangulated functor RF:D/C — T and a suitable natural
transformation ¢ satisfying some universal property.

Definition 2.32. An object A € D is right F-acyclic (with respect to C) if the
following condition holds: given any morphism s: A — D with cone in C, there is a
morphism ¢: D — D’ with cone in C such that F(¢s) is an isomorphism.

Note that F(A4) = 0 if A is right F-acyclic and in C (apply the defining property
to A — 0).

Theorem 2.33 ([25, Thm. 116]). In the above setting we additionally assume that
C C D is athick subcategory. Suppose that for every D € D there exists a morphism
np:D — Ap with cone in C and Ap right F-acyclic with respect to C. Then F
admits a right derived functor (RF, {) with respect to C with the following properties:

(a) Forany D € D we have RF(D) = F(Ap) and {p = F(np).

(b) An object D € D is right F-acyclic with respect to C if and only if {p is an
isomorphism in T .

We will apply this theorem several times. When we then write RF later on we
implicitly have used some fixed morphisms np: D — Ap as in the theorem, or we
say explicitly which morphism np we use for a particular object D. Usually we
assume that np = idp whenever D is right F-acyclic.
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Remark 2.34. We explain how the functor RF from Theorem 2.33 is defined on
morphisms. Let A C D be the full subcategory of all right F-acyclic objects, and
assume that the assumptions of Theorem 2.33 hold. Then in fact A is a triangulated
subcategory, and F vanishes on .4 N C. We obtain an induced triangulated functor
F: A/ANC — T. Moreover, the natural functor A4/ ANC — D/C is an equivalence,
with a quasi-inverse induced by D +— Ap. Then RF is just the composition of this
quasi-inverse with F. This determines RF on morphisms.

Similar results hold for left derived functors.

2.5.2. Direct and inverse image. Let Y be another scheme satisfying condi-
tion (stNfKd), and let #:Y — X be a morphism. We denote the pullback
function 7*(W) on Y again by W.

The usual direct image functor 7,: Qcoh(Y') — Qcoh(X) induces the dg functor
7x: Qcoh(Y, W) — Qcoh(X, W) and on homotopy categories the triangulated
functor m.:[Qcoh(Y, W)] — [Qcoh(X,W)]. Similarly, the usual inverse image
functor 7*:Qcoh(X) — Qcoh(Y) induces a dg functor n*:Qcoh(X,W) —
Qcoh(Y, W) and a triangulated functor 7*: [Qcoh(X, W)] — [Qcoh(Y, W)]. The
adjunction (7r*, r4) in the usual setting induces an adjunction of dg functors,

Hochoh(Y,W)(jT*(E)’ F) :) Hochoh(X,W)(E, ”*(F))’

and then an adjunction on triangulated functors. We also denote the compositions

[Qcoh(Y, W)] iy [Qcoh(X, W)] — DQcoh(X, W)
and [Qcoh(X, W)] 2> [Qcoh(Y, W)] — DQcoh(Y, W)

by 7« and 7*, respectively.
Theorem 2.35.

(@) The functor m: [Qcoh(Y, W)] — DQcoh(X, W) has a right derived functor
R,.: DQcoh(Y, W) — DQcoh(X, W) with respect to Acycl[Qcoh(Y, W)].

(b) The functor *: [Qcoh(X, W)] — DQcoh(Y, W) has a left derived functor
Lz*:DQcoh(X, W) — DQcoh(Y, W) with respect to Acycl[Qcoh(X, W)].
This left derived functor maps DCoh(X, W) to DCoh(Y, W) and MF(X, W)
to MF(Y, W). We can assume that Lx* = n*: MF(X, W) — MF(Y, W).

(¢) There is an adjunction (Lz*, Rmy) of triangulated functors.

Proof. (a): Lemma 2.10.(a) provides for each £ € [Qcoh(Y, W)] a morphism
ng: E — Ig with Ig € [InjQcoh(Y, W)] and cone in Acycl[Qcoh(Y, W)]. Hence
to apply Theorem 2.33 we need to show that any object / € [InjQcoh(Y, W)] is
right m.-acyclic with respect to Acycl[Qcoh(Y, W)]. Let s: I — F be a morphism
in [Qcoh(Y, W)] with cone in Acycl[Qcoh(Y, W)]. Apply Hom[qcon(y,w)](—, I) and
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use Lemma 2.13. This shows that there is a (unique) morphism g: FF — [ in
[Qcoh(Y, W)] with gs = idy. The octahedral axiom implies that g has cone in
Acycl[Qcoh(Y, W)], and gs = id; certainly implies that 774 (gs) is an isomorphism
in [Qcoh(X, W)] and DQcoh(X, W).

(b): Lemma 2.10.(c) yields foreach £ € [Qcoh(X, W)]amorphismeg: P — E
with Pg € [Locfree(X, W)] C [FlatQcoh(X, W)] and cone in Acycl[Qcoh(X, W)].
We want to use the left version of Theorem 2.33. We need to show that any
object P € [FlatQcoh(X, W)] is left & *-acyclic with respect to Acycl[Qcoh(X, W)].
Let s: F — P be a morphism in [Qcoh(Y, W)] with cone in Acycl[Qcoh(Y, W)].
Consider the morphism ¢ := ep:Pr — F. We need to show that 7*(st)
is an isomorphism in DQcoh(Y, W). The cone of st is in Acycl[Qcoh(X, W)],
and we can assume that it is in [FlatQcoh(X, W)]. Hence it is enough to show
that 7*(Q) = 0 in DQcoh(Y, W) for any QO € Acycl[FlatQcoh(X,W)] =
[FlatQcoh(X, W)] N Acycl[Qcoh(X, W)] (see Corollary 2.21). Certainly we can
reduce to the case that Q9 = Tot(G), where G is a short exact sequence in
Zo(FlatQcoh(X, W)). But then 7 *(G) is a short exact sequence in Zo(Qcoh(Y, W)),
and hence 7*(Q) = Tot(x*(G)) is zero in DQcoh(Y, W).

Lemma 2.10.(b) shows that we can take Pg € [MF(X, W)]for E € [Coh(X, W)].
For E € [MF(X, W)] we take Pg = E.

(c): Apply [25, Thm. 122], whose assumptions are satisfied by the proof of [25,
Thm. 116]. O

Remark 2.36. Both Lz* and R, preserve direct sums, cf. Corollary 2.23. This is
clear for Lzt * from the adjunction (L7t *, R,). For R, this follows from the above
proof: use Corollary 2.23 and the fact that . preserves direct sums since Noetherian
schemes are quasi-compact.

Lemma 2.37. Assume that the map mw is proper. Then the functor R, maps
MEFE(Y, W) to (the essential image of) MF(X, W), and (7*,Rmy) is an adjoint pair
of functors between the categories MF(X, W) and MF(Y, W).

Proof. Let E € MF(Y, W). Choose a finite resolution £ — [ asin Lemma 2.10.(a).
Then R, (E) is isomorphic to w4« (Tot(/)) = Tot(m«(/)) and the cohomologies of
the complex 74 (/) all lie in Coh(X, W), by [12, Thm. 3.2.1]. Hence Ru«(E) is
isomorphic to an object of DCoh(X, W) by Lemma 2.40.(a) below, and also to an
object of MF(X, W) by Theorem 2.9.(c). This proves the first claim. The second
claim is a direct consequence of Theorem 2.35. O

The proof of Theorem 2.35 shows that all objects of [InjQcoh(Y, W)] are right
my-acyclic and that all objects of [FlatQcoh(X, W)] are left & *-acyclic. Here is an
improvement.

Lemma 2.38. Let E € [Qcoh(Y, W)] and assume that its components Eqy, E; are
right mwe-acyclic quasi-coherent sheaves in the sense that R'ny(E,) = 0 for all
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pE€Zyandi € Z\ {0}. Then E is right mwy-acyclic, so in particular 7« (E) =
R, (E) canonically.

Similarly, if the components of F € [Qcoh(X, W)] are left n*-acyclic quasi-
coherent sheaves, then F is left w*-acyclic, and Lzt* (F) N 7*(F) canonically.

Proof. Lemma 2.10.(a) provides a finite resolution £ — [ in Z(Qcoh(Y, W))
with components I’ € InjQcoh(Y, W). Since all involved quasi-coherent sheaves
are mi-acyclic, m«(E) — m(l) is still a resolution in Zy(Qcoh(X, W)).
Hence the obvious morphism 7, (E) — Tot(«(/)) becomes an isomorphism
in DQcoh(X, W). On the other hand, if we use £ — Tot(/) for computing
R (E), we have R4 (E) = m«(Tot(1)) = Tot(w«(1)) in DQcoh(X, W). Now
Theorem 2.33.(b) shows our first claim. The second claim is proved similarly using
Lemma 2.10.(¢c). L]

Remark 2.39. If 7 is an affine morphism, all objects of [Qcoh(Y, W)] are
right m.-acyclic by Lemma 2.38, so 74:[Qcoh(Y, W)] — DQcoh(X, W) maps
Acycl[Qcoh(Y, W)]to zero. The induced functor 7z,: DQcoh(Y, W) — DQcoh(X, W)
is canonically isomorphic to R,

If  is proper and affine (for example a closed embedding), then all objects of
[Coh(Y, W)] are right acyclic for m«: [Coh(Y, W)] — DCoh(X, W) with respect
to Acycl[Coh(Y, W)], and hence 7« = Rum,:DCoh(Y,W) — DCoh(X, W)
canonically.

Similarly, if 7 is flat (for example an open embedding), we have 7* = Lx*
canonically.

m n—1
Lemma 2.40. Let F = (0 — F™ Ao pmit ot 0) be
a complex in Zy(Qcoh(X, W)).

(a) Consider the cohomologies H'(F) and the totalization Tot(F) as objects
of DQcoh(X, W). Assume that each H'(F) is isomorphic to an object of
MF(X, W) (resp. DCoh(X, W)). Then the same is true for Tot(F).

(b) Assume that
Hompqeon(x,w)(H? (F), [v]HY(F)) =0

forall p > q and v € Z; (enough: withv = q +1— p mod 2). Then
Tot(F) =~ ®;_,,[i]H' (F) in DQcoh(X, W).

Proof. If m = n all statements are trivial, so assume m < n. Consider the (vertical)
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short exact sequence of complexes

T<n—1(F): oo —> F"2 s kerd"! 0 0
F: SR -y IJ" (l)
toni(F): oo 0——imd" ! —= F" — ()

It induces an exact sequence of their totalizations which becomes a triangle in
DQcoh(X, W), by Lemma 2.7.(a). The shortexact sequenceim d” !« F"—» H"(F)

gives rise to an isomorphism Tot(ts,—1(F)) = [#]H"(F) in DQcoh(X, W) by
Lemma 2.7.(c). Hence we obtain the triangle

Tot(t<p—1(F)) — Tot(F) — [n]H" (F) — [1] Tot(t<pn—1(F)) (2.1)

in DQcoh(X, W).

(a): By induction and our assumptions the first and third object of the triangle (2.1)
are isomorphic to objects of MF (X, W) (resp. DCoh(X, W)). The same is then true
for Tot(F).

(b): By induction the triangle (2.1) is isomorphic to the triangle

n—1 n—1
PlilH! (F) - Tou(F) — [n]H"(F) — [1] PIi]H' (F).

By assumption the third morphism in this triangle vanishes, and hence Tot(F) is the
direct sum of the first and the third object. O

2.5.3. Sheaf Hom and tensor product. Let W and V' be arbitrary morphisms
X — A'. For P € Qcoh(X,W) and Q € Qcoh(X, V) consider the following
diagram?

[*pg q1x ]
qox —pY
[*p’f q1x ]
qox —pg
(2.2)

in the category Sh(X). It is easy to check that both compositions are multiplication
by V' — W : note for example that pj py = —(p1po)* by the usual sign convention,
since po and p; both have degree one. Hence this diagram defines an object
Hom (P, Q) of Sh(X,V — W).

21f A and B are complexes with differentials d 4 = a and dp = b, the differential d in the Hom-

complex Hom(4, B) is given by d(f) = b o f — (—1)/'| £ o a for homogeneous f of degree | f|.
This explains the signs.

Hom Ox (Pl, Qo) [S5) Hom Ox (Pg, Ql) Hom Ox (Po, Qo) (&) Hom Ox (Pl, Ql)
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Remark 2.41. In case W = V note that Hom (P, Q) is in Sh(X,0), i.e. itis a dg
sheaf, and that

Homqeon(x,w) (P, Q) = I'(X, Hom (P, Q)) (2.3)

as a dg abelian group.
In fact (P, Q) — Hom (P, Q) is a dg bifunctor

Hom (—, —): Qcoh(X, W) x Qcoh(X, V) — Sh(X,V — W).
It induces a bifunctor
Hom (—, —): [Qcoh(X, W)]? x [Qcoh(X, V)] — [Sh(X,V — W)]

of triangulated categories. For fixed P € [Qcoh(X, W)] the obvious composition
Hom (P, —):[Qcoh(X, V)] — DSh(X,V — W) has a right derived functor with
respect to Acycl[Qcoh(X, V)] : we construct it by choosing morphisms Q — Io with
Io € [InjQcoh(X, V)] and cone in Acycl[Qcoh(X, V), for every O € [Qcoh(X, V)],
and then proceed as in the construction of R, in the proof of Theorem 2.35.

For fixed I € [InjQcoh(X, V)], the functor Hom (—, I): [Qcoh(X, W)|? —
DSh(X, V — W) maps Acycl[Qcoh(X, W)] to zero since Hom (—, ) maps short
exact sequences in Zo(Qcoh(X, W)) to short exact sequences in Zo(Sh(X, V — W))
(use Theorem 2.1.(b)). We define

RHom (—, —): DQcoh(X, W)? x DQcoh(X, V) — DSh(X,V — W),
(P,Q)— Hom (P,Ig),

and leave it to the reader to check that this defines a bifunctor of triangulated
categories. Note that for (P, Q) € [Qcoh(X, W)]° x [Qcoh(X, V)] there is a natural
morphism

Hom (P, Q) = RHom (P, Q) = Hom (P, 1)

in DSh(X,V — W) induced by Q — Ip. It is an isomorphism if P is in
[MF(X, W)] (or in [Locfree(X, W)]), or of course if Q is in [InjQcoh(X, V')]. This
also shows that if P is in Coh(X, W) and we choose Fp — P in [Coh(X, W)] with
Fp € [MF(X, W)] and cone in Acycl[Qcoh(X, W)], then the morphisms

Hom (Fp, Q) — Hom (Fp,lg) < Hom (P,1g)

become isomorphisms in DSh(X, V — W). This gives another way of computing
RHom (P, Q) for P € Coh(X, W).

Note also that R Hom (P, Q) is in DQcoh(X,V — W) it P € DCoh(X, W),
and in (the essential image of) DCoh(X,V — W) if P € DCoh(X, W) and
Q € DCoh(X, V).
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We can also directly obtain a bifunctor
Hom (—,—):MF(X, W)*® x MF(X,V) > MF(X,V — W) (2.4)

of triangulated categories. It is isomorphic to the restriction of R Hom (—, —) to
MF(X, W) x MF(X, V). Slightly more general this works also for

Hom (—,—):MF(X, W) x DCoh(X, V) — DCoh(X,V — W).
For P € Qcoh(X, W) and Q € Qcoh(X, V) note that

[id ®q0 po®id]
p1®id id®q
(P1 ®oy 00) ® (Po®oy 01) : : (P1 ®oy 01) ® (Po ®oy Qo)
[1d®q1 po®1d]
p1®id id ®qq

defines an object P ® Q of Qcoh(X, V 4+ W). We obtain a dg bifunctor
(— ® —): Qcoh(X, W) x Qcoh(X, V) — Qcoh(X,V + W)

and a bifunctor of triangulated categories on homotopy categories. For fixed
Pe[Qcoh(X, W)] the obvious composition (P® —): [Qcoh(X, V)] —DSh(X, V+W)
has a left derived functor with respect to Acycl[Qcoh(X, V)]: for each Q €
[Qcoh(X, V)] we fix a morphism Fp — Q with Fp € [Locfree(X,V)] C
[FlatQcoh(X, V)] and cone in Acycl[Qcoh(X, V)] and proceed then as in the
construction of L™ in the proof of Theorem 2.35. It is then easy to see that

(— ®" —): DQcoh(X, W) x DQcoh(X, V) — DQcoh(X, V + W),

(P,Q)—~ P Q® Fop,

defines a bifunctor of triangulated categories. Again we have for (P, Q) €
[Qcoh(X, W)] x [Qcoh(X, V)] a natural morphism

PR“Q0=P®Fp—>P®Q

in DSh(X, V 4+ W) induced by Fp — Q which is an isomorphism if P or Q has
flat components.
Note that there is an obvious isomorphism

Homgeon(x,w+v) (P ® Q, R) = Homgeon(x.w) (P, Hom (Q, R)) (2.5)

of dg modules which is natural in P € Qcoh(X,W), Q € Coh(X,V), and
R € Qcoh(X, W + V).

Lemma 2.42. We have

Hompqgeonx,w+v) (P ®" Q. R) = Hompgeon(x,w) (P, RHom (Q, R))
naturally in P € DQcoh(X, W), Q € DCoh(X, V), and R € DQcoh(X, W + V).
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Proof. First note that we can assume that Q € MF(X, V') and that moreover R €
InjQcoh(X, W+V). Then P®%Q 5 P®Q and Hom (Q, R) = RHom (Q,R).
Note also that Hom (Q, R) € InjQcoh(X, W) by [13, Prop. 7.17]. Now take Hy of
the above isomorphism (2.5) of dg modules and use Remark 2.14. O

2.5.4. External tensor product. Let Y be a scheme such that Y and X x Y satisfy
condition (srNfKd), and let V:Y — A! be a morphism. Let p: X x ¥ — X and
q: X xY — Y be the projections. We define W x V = p*(W) + ¢*(V), so
(W % V)(x,y) = W(x) 4+ V(y). We define the dg bifunctor X by

(—X-) = (p*(-)®q*(—)): Qcoh(X, W) x Qcoh(Y, V) — Qcoh(X x Y, W x V).
This functor immediately induces the bifunctor
(— X —): DQcoh(X, W) x DQcoh(Y, V) — DQcoh(X x Y, W % V)
of triangulated categories. This functor coincides with the composition
(- ®" =)o (Lp* xLg")
(since p and g are flat we have Lp* = p* and Lg* — ¢*, and moreover
o) > (-®-)

on objects of the form (p*(P), ¢*(Q)), cf. the proof of Lemma 2.38). Note also that
PXQisin MF(X x Y, W % V) (resp. DCoh(X x Y,V % W)) if P € MF(X, W)
and Q € MF(Y, V) (resp. P € DCoh(X, W) and Q € DCoh(Y, V).

2.5.5. Duality. We introduce a duality Dy on the category of matrix factorizations.
Let Dy := (0 == Oy ) € MF(X, 0); note that Oy sits in even degree. Then

Dy := ()" := Hom (-, Dx):MF(X, W) — MF(X, —W)®
is a equivalence of dg categories and induces an equivalence
Dx := (=)Y := Hom (-, Dx):MF(X, W) — MF(X,—W)® (2.6)

of triangulated categories. This is just the functor (2.4) with Dy as its fixed second
argument. We refer to Dy as the duality since D2 = id naturally. Explicitly, Dx

mapsP:(Pl%Po)to

pY=-p§

Dx(P) = PV = (PIV — Hom (P1, Ox) Py = Hom (Po. Ox). )

py=—r}
2.7)
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Occasionally we view the duality as the functor
Dx = RHom (—, Dx):DCoh(X, W) — MF(X,—W).

The next lemma says that the inverse image functor and duality commute.

Lemma 2.43. Let w: Y — X be a morphism of schemes satisfying condition (srN-
fKd), and let W: X — A be a morphism. Then there is an isomorphism

n*oDyx — Dy orn*
of functors MF(X, W) = MF(Y, —W)°P.
Proof. For F € Qcoh(X) consider the morphism
Hom oy (F,Ox) = Hom oy (F, 1:0y) = ws Hom o, (n*F, Oy).

The arrow is induced by Oy — 7,.Oy, and the equality is the usual adjunction. It
corresponds under the adjunction to a morphism

7* Hom oy (F,Ox) — Hom oy (n*F, Oy).

This morphism is an isomorphism if F is a vector bundle. From this we obviously
obtain the isomorphism we want. O

2.6. Enhancements. In this section we define several enhancements of MF (X, W)
and show that they are equivalent (see e.g. [21] for the definitions). Similarly we
define two equivalent enhancements of DQcoh(X, W).

2.6.1. Enhancements using injective quasi-coherent sheaves. Recall that the obvi-

ous functor [InjQcoh(X, W)] — DQcoh(X, W) is an equivalence (Theorem 2.9.(a)),
in other words InjQcoh(X, W) is an enhancement of the triangulated category
DQcoh(X, W). This enhancement induces an enhancement for the full subcategory
MF(X, W) 5 DCoh(X, W) C DQcoh(X, W) (cf. Theorem 2.9). Namely, let
InjQcohyr (X, W) C InjQcoh(X, W) be the full dg subcategory consisting of objects
which are isomorphic in DQcoh(X, W) to an object of MF(X, W). Then

[InjQcohye (X, W)] ~ MF(X, W),

so InjQcohyp (X, W) is an enhancement of MF (X, W).

2.6.2. Enhancements by dg quotients. There is a different enhancement of
MF(X, W). Namely, let AcycIMF(X, W) C MF(X, W) be the full dg subcategory
consisting of objects that belong to Acycl[MF(X, W)]. Consider the Drinfeld dg
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quotient category MF(X, W)/ AcycIMF(X, W) (which is pretriangulated, cf. [21,
Lemma 1.5]). Then by [9, Thm. 1.6.2, Thm. 3.4] there is an equivalence

MF(X, W) = [MF(X, W)]/ Acycl[MF(X, W)] = [MF(X, W)/ AcycIMF(X, W)],

(2.8)
hence MF(X, W)/ AcycIMF(X, W) is an enhancement of MF (X, W). Similarly, by
defining AcyclCoh(X, W) C Coh(X, W) to consist of those objects that belong to
Acycl[Coh(X, W)], we see that Coh(X, W)/ AcyclCoh(X, W) is an enhancement of

DCoh(X, W) < MF(X, W).
The same approach works for the category DQcoh(X, W): Let AcyclQcoh(X, W)
C Qcoh(X, W) be the full dg subcategory consisting of objects that belong to
Acycl[Qcoh(X, W)]. Then
DQcoh(X, W) = [Qcoh(X, W)]/ Acycl[Qcoh(X, W)]
5 [Qeoh(X, W)/ AcyclQeoh(X, W),

that is, the dg quotient Qcoh(X, W)/ AcyclQcoh(X, W) is an enhancement of
DQcoh(X, W).

The two enhancements of DQcoh(X, W) using injectives resp. dg quotients are
equivalent, and similarly for the three enhancements of MF (X, W). Namely we have
the following lemma.

Lemma 2.44.
(a) The dg categories

InjQcoh(X, W) and Qcoh(X, W)/ AcyclQcoh(X, W)

are quasi-equivalent.

(b) The dg categories

MF(X, W)/ AcycIMF(X, W), Coh(X, W)/ AcyclCoh(X, W)
and InjQcohyp (X, W)

are quasi-equivalent.
Proof. (a): The Drinfeld dg quotient comes with the canonical quotient dg functor
Qcoh(X, W) — Qcoh(X, W)/ AcyclQcoh(X, W).
Restriction to the dg subcategory InjQcoh(X, W) yields the desired quasi-equivalence
a:InjQcoh(X, W) — Qcoh(X, W)/ AcyclQcoh(X, W).
(b): Consider the dg functor
o: InjQcohyp (X, W) — Qcoh(X, W)/ AcyclQcoh(X, W)
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obtained by restriction and the canonical dg functor
B:MF(X, W)/ AcycIMF(X, W) — Qcoh(X, W)/ AcyclQcoh(X, W).

The induced homotopy functors [«] and [8] are full and faithful and have the same
essential image in [Qcoh(X, W)/ AcyclQcoh(X, W)]. Let

A C Qcoh(X, W)/ AcyclQcoh(X, W)

be the full dg subcategory consisting of objects that belong to this essential image.
Then the dg functors

InjQcohyp (X, W) > A £ MF(X, W)/ AcycIMF(X, W)
are the desired quasi-equivalences. Similarly we prove that
Coh(X, W)/ AcyclCoh(X, W) and InjQcohyp(X, W)

are quasi-equivalent. O

2.6.3. Morphism oriented Cech enhancement. After some preparations we will
define an enhancement for MF(X, W) whose morphism spaces are defined using
Cech complexes.

LetUd = (Uj)ies be an open covering of X and let F be a dg sheaf on X, i.e. an
object of Sh(X, 0). We define a Z, x Z-graded abelian group C*(U, F) as follows:
Its component of degree (p, q) € Z X Z is

CIU.Fp) = [| FpUix N---NTy,).
(#0ye-sig)ET9 T

We turn C*(U, F,) into a double complex as follows: its first differential (in the
p-direction) is induced by that of F and its second differential is the usual Cech
differential. The Cech complex C (i, F) is the total complex of C* (U, Fy): Its m-th
component for m € Z, is given by

CU.Fym= P Cc?U.Fp)
P€L2,q€L,
pt+g=m

There is an obvious map
rx,) —Ccu,r (2.9)

of dg abelian groups.

A different perspective on C(U, F) is as follows. Taking the Cech complex
defines a functor from Sh(X) to the category of complexes of vector spaces over k,
and hence maps F € Sh(X,0) to a complex C*(Uf, F) in Zy(Sh(Speck,0)). Its
totalization is C (U4, F).
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Lemma 2.45. The morphism (2.9) is a quasi-isomorphism if F is componentwise
flabby (i. e. Fo and F; are flabby).

Proof. This follows from [10, Thm. 5.2.3] and part (a) of the following Lemma 2.46.
O

Lemma 2.46. Let f: A — B be a morphism of Z, x Z-graded double complexes
A = (AP) pez,y,qer, B = (BP?) pey,, qen of abelian groups. We assume that
AP = 0 and BP? = 0 forall ¢ < M, for some fixed M € 7. Assume that one of
the following two conditions is true:

a) f induces isomorphisms *) — ) forall p € Z,.
(a) f ind ] hisms H(AP-* H(BP-* Il Z

(b) f induces isomorphisms H(A*%) — H(B*1) for all ¢ € 7Z, and A and B
are bounded in the g-direction, i. e. there is N € 7 such that AP*? = 0 and
BP% =0forallq > N and p € Z,.

Then f induces a quasi-isomorphism Tot(f): Tot(A) — Tot(B) of the total
complexes associated to A and B.

Proof. In this proof we view A and B in the obvious way as Z x Z-graded double
complexes that are 2-periodic in the p-direction.
Assume that (a) holds. Let F;, A be the double subcomplex of A defined by

AP ifg <n,
(FrA)P? = {ker(AP" — AP"Fl) ifg =n,
0 ifg >n,

and similarly for B. Then f induces maps Fy, f: FyA — F,B for all n € N, and
these maps induce quasi-isomorphisms on total complexes by [16, Thm. 1.9.3]. This
obviously implies the claim.

If (b) is satisfied we can immediately apply [16, Thm. 1.9.3]. 0

Let us apply the above now to sheaf Hom object Hom (E,I) defined in
section 2.5.3.

Lemma 2.47. Let E € Qcoh(X, W) and I € InjQcoh(X, W). Then
Homgeonx,w) (E, 1) = T(X, Hom (E, 1)) — C(U, Hom (E, I))
(cf. 2.3) and (2.9)) is a quasi-isomorphism. In particular,
Hompoeon(x,w) (E. [pl1) = Hp(CU, Hom (E. 1))

canonically, for p € 7.
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Proof. Since any injective object of Qcoh(X) is also an injective object of Sh(X), by
Theorem 2.1.(b), Hom (E, I) is componentwise flabby. Thus Lemma 2.45 shows
that the first map is a quasi-isomorphism, and then Remark 2.14 proves the second
claim. O

Lemma 2.48. Let F — G be a quasi-isomorphism in Zy(Qcoh(X,0)). IfU =
(Uy)ier is an affine open covering of X, then CU,F) — CU,G) is a quasi-
isomorphism.

Proof. Since X is quasi-compact there is a finite subset I’ C [ such that U’ :=
(Up)ier is a covering of X. If A is any quasi-coherent sheaf on X, the Cech
cohomologies H(U, A) and H(U', A) are canonically isomorphic to H (X, .A), since
our coverings are by affine open subsets. This together with part (a) of Lemma 2.46
shows that C(U’, F) — C(U, F) is an isomorphism.

The usual Cech complex of a sheaf contains the alternating subcomplex and its
inclusion is a homotopy equivalence. Similarly, the Cech complex C(I/’, F) has a
homotopy equivalent subcomplex Cy (U, F).

These arguments show that it is sufficient to show that Cy (U, F) — Cat(U’, G)
is a quasi-isomorphism. This follows from part (b) of Lemma 2.46: any finite
intersection U’ of elements of U’ is affine, and hence F(U’) — G(U’) is a quasi-
isomorphism by assumption. O

Corollary 2.49. Let E — F be a morphism in Zy(Qcoh(X, W)) that becomes an
isomorphism in DQcoh(X, W), let P € MF(X, W), and let U be an affine open
covering of X. Then

CU, Hom (P,E)) > CU, Hom (P, F))
is a quasi-isomorphism.

Proof. The morphism Hom (P, E) — Hom (P, F) in Z¢(Qcoh(X, 0)) becomes
an isomorphism in DQcoh(X, 0), cf. section 2.5.3. Hence it is a quasi-isomorphism
by Proposition 2.30. Now use Lemma 2.48. O

We fix an affine open covering U = (U;);ey of X for defining the morphism
oriented Cech enhancement. We define a dg category MF¢, . (X, W) as follows
(it depends on the affine open covering &/ = (U;)ies but we suppress this in the
notation). The objects of MFg, (X, W) coincide with the objects of MF(X, W),
and the morphisms are given by

Homy,  (x.w)(P, Q) := CU, Hom (P, Q)).

The composition in this category is defined using the cup-product for Cech complexes
as defined in [36], Chapter 18, Section 19 “Cech cohomology of complexes” (adapted
to our differential Z,-graded situation in the obvious way).
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We can repeat this construction starting with any dg subcategory C C
Qcoh(X, W) to obtain the corresponding dg category Ce, ... We always have an
obvious dg functor C — Cg,,,., obtained from (2.3) and (2.9) and the induced functor

[C] = [C¢pmoy) On homotopy categories.

Proposition 2.50. The dg categories InjQcohyp(X, W) and MFg, (X, W) are
quasi-equivalent, i.e. connected by a zig-zag of quasi-equivalences (explicitly
constructed in the proof).

Moreover, MFy, . (X, W) is a pretriangulated dg category, and the func-
tor [IMF(X,W)] — [MFs_ (X, W)] factors through the Verdier localization
[MF(X, W)] — MF(X, W) to an equivalence

Cmor

MF(X, W) = [MFs_ (X, W)]

Cmor

of triangulated categories. This shows that MFy, (X, W) is a dg enhancement
of MF(X, W) naturally. We call it the morphism oriented Cech enhancement of

MF(X, W).

In particular this shows that the enhancements InjQcohyy (X, W) and MFg, (X, W)
of MF (X, W) are equivalent.

Proof. We construct the zig-zag of quasi-equivalences first. To ease the notation we
abbreviate C := InjQcohyp(X, W). We use the auxiliary dg category Cg,,.. With

mor

the dg functor y:C — Cg,,., as explained above. Lemma 2.47 shows that y induces
quasi-isomorphisms on morphism spaces. It is bijective on objects and hence a
quasi-equivalence.

It remains to prove that the dg categories MFy, (X, W) and Cg,, . are quasi-
equivalent. For this we define a new dg category B and two dg functors

MFg, . (X, W) £ B Ce
which are quasi-equivalences.

By definition the objects of B are triples (P, I,§), where P € MF(X, W),
I € C and §: P — [ is a morphism in Zy(Qcoh(X, W)) which becomes an
isomorphism in DQcoh(X, W). Given objects (P, I, §) and (Q, J, €), the dg module
Homg((P, 1,4), (Q, J,¢)) can be conveniently written in matrix form

[(1, ) [P, J)}
0 (P, Q)

where (—, —) = Homqcon(x, W), (— —)- The differential is defined by

2l dr el —ré +di_yyp,;ym _ dr el —r8§—dcp,ym
10 |/ 0 dl 0 dl ’
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and composition by

o M rom| _[pr pm+pll [or (=DPlom 4+ ul

[o A]O[o l]_[o Al ]_[0 Al }
where m is considered as an element of [—1](P, J) in the middle term and as an
element of (P, J) in the right term, and similarly for p.

The obvious projections MFg, (X, W) Zpa Cémor are dg functors. These
functors are surjective on objects (use Theorem 2.9 and Remark 2.14). Hence in
order to show that they are quasi-equivalences we need to see that they induces
quasi-isomorphisms on morphism spaces.

Let us prove this for p first. The map §: P — [ yields a closed degree zero
morphism §*:(/,J) — (P,J) in the dg category of dg modules. The shift
of its cone Cone(6*) is the kernel of the map p:Homg((P,1,6),(Q,J,&)) —
Homwg, (P, Q). Hence it is sufficient to show that Cone(§*) is acyclic.
Equivalently we show that §* is a quasi-isomorphism. But this is true by Lemma 2.47
and Remark 2.14 and our assumption that § is an isomorphism in DQcoh(X, W).

Similarly, when considering ¢, we have to show that &.: (P, Q) — (P,J) is a
quasi-isomorphism. But this follows from Corollary 2.49. This shows that p and ¢
are quasi-equivalences, and finishes the proof of the first statement.

Our zig-zag of quasi-equivalences yields the equivalences

[y] lq] [p]

[C] = [Cemor] < [B] — [MFg, (X, W)]

Cmor

on the level of homotopy categories.  This shows that MFy (X, W) is
pretriangulated. Moreover, if we fix for any P € MF(X, W) an object (P, Ip,ép)
of BB, this implies that P + Ip is an equivalence [MF¢, (X, W)] — [C].

On the other hand MF(X, W) — [C], P — Ip, is also an equivalence. These
two equivalences and the obvious functors fit into the commutative diagram

[ME(X, W)] —— [MF¢,,,. (X, W)]

| )

MF(X, W) —=~[C]

(commutativity is obvious for objects; for morphisms go through the above equiva-
lences) which shows that the upper horizontal functor vanishes on Acycl[MF(X, W)].
We obtain an induced functor MF(X, W) — [MFg_ (X, W)] of triangulated

Cmor
categories which is then obviously an equivalence. 0

Corollary 2.51. The category MFy_ (X, W) does not depend (up to quasi-

Cmor

equivalence) on the choice of the affine open coveringU = (Uj)ier of X.
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2.6.4. Object oriented Cech enhancement. In [23] we will introduce another
equivalent enhancement MFg (X, W) of MF(X, W) whose objects are defined
using Cech resolutions.

2.6.5. Enhancement for affine X. If X is affine Lemma 2.17.(b) says that
MF(X, W) is an enhancement of MF(X, W). In fact this enhancement is a special
case of the object oriented Cech enhancement (for the trivial affine open covering { X }
of X). It is equivalent to the enhancement InjQcohy s (X, W) (use the method of
proof of Proposition 2.50).

2.7. Compact generators. Recall that the category DQcoh(X, W) is cocomplete
(Corollary 2.23).

Proposition 2.52.
(a) The objects of MF(X, W) are compact in DQcoh(X, W).

(b) The triangulated category DQcoh(X, W) is generated by the objects of
MF(X, W).

(¢) The subcategory DQcoh(X, W)€ of compact objects in DQcoh(X, W) is
a Karoubi envelope of MF(X, W). We denote this Karoubi envelope by
MF (X, W).

Proof. Results of Neeman [26] imply [6, Thm. 2.1.2 (and Prop 2.1.1)]. In particular
assertions (a) and (b) imply (c).

(a): Follows from Theorem 2.9.(a), Remark 2.14, and Corollary 2.23. Use [14,
Exercise 11.1.11].

(b): We essentially copy the proof of [33, 3.11 Thm. 2].

Assume that J € InjQcoh(X, W) is such that every morphism £ — J in
Zo(Qcoh(X, W)) with E € Coh(X, W) is homotopic to zero. By Theorem 2.9 and
Remark 2.14 it suffices to prove that J = 0 in [InjQcoh(X, W)].

Apply Zorn’s lemma to the ordered set of pairs (M, h), where M is a subobject
of J and h: M — J is a contracting homotopy of the embedding ¢: M — J,
i.e. d(h) = . It suffices to check that given (M,h) with M < J there exists
M < M’ C J and a contracting homotopy h’: M’ — J for the embedding
M’ < J such that i'|py = h. Let M’ C J be a subobject such that M & M’
and M'/M € Coh(X, W) (use [14, Ex. I1.5.15.(¢)] and the first step in the proof
of Lemma 2.15). Since J has injective quasi-coherent components, the degree one
morphism 4: M — J can be extended to a degree one morphism A”: M’ — J.
Let :M — J and /: M’ — J denote the embeddings. The map ¢/ — d(h")
is a closed degree zero morphism and vanishes on M, so it induces a morphism
g:M'/M — J in Zo(Qcoh(X, W)). By our assumption, there exists a contracting

homotopy ¢: M'/M — J for g. Denote the composition M" — M’/ M 5 J also
by c. Then i’ = h” + ¢: M’ — J is a contracting homotopy for ¢’ extending 7. [
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Proposition 2.53. Assume in addition that X is of finite type over k. Then the
triangulated category MF(X, W) has a classical generator. Hence so does the
category MF (X, W).

Proof. By Remark 2.6 we may assume that X is connected. Then we distinguish two
cases: the map W: X — Al is flat or else W = 0. The remaining case of a constant
nonzero W is trivial since then MF(X, W) = 0 by Lemma 2.28.

Assume that W: X — A! is flat. Then by Theorem 2.8 MF(X, W) ~ Ds,(Xo).
It is well-known that the triangulated category D? (Coh(Xy)) has a classical generator
(the proof of this fact in [20, 6.3.(a)] also works if k is not perfect). Hence also the
quotient category Dge(Xo) = D?(Coh(Xy))/%Perf(Xo) has a classical generator.

Assume now that W = 0. In this case we will use the equivalence
MF(X, 0) 5 DCoh(X,0) from Theorem 2.9 and the description DCoh(X,0) =
[Coh(X, 0)]/ Ex[Coh(X, 0)] from Proposition 2.30. Consider the usual bounded
derived category D?(Coh(X)) of coherent sheaves on X. We have the obvious
triangulated folding functor D?(Coh(X)) — DCoh(X, 0) which takes a Z-graded
complex of coherent sheaves to the corresponding Z,-graded one. Since the category
D®(Coh(X)) has a classical generator it suffices to show that DCoh(X, 0) is the
triangulated envelope of the collection of objects which are in the image of the
folding functor.

For every E € Coh(X, 0) we have a short exact sequence

0 0
(imeo<—0_>ime1 )~ E —»(El/imeo<—0_>E0/ime1)

in Zy(Coh(X,0)) and hence a triangle in DCoh(X, 0), by Lemma 2.7.(a). But it is
obvious that any object in DCoh(X, 0) with zero differential is in the image of the
folding functor. 0

The folding functor appearing in the above proof will be studied in detail in [35].

Remark 2.54. The above proof shows that the folding of a classical generator G of
D?(Coh(X)) is a classical generator of DCoh(X,0). By replacing G by the direct
sum of its cohomologies one can assume that G € Coh(X). Then G has a finite
resolution by vector bundles, and by replacing G by the direct sum of the involved
vector bundles we can assume that G itself is a vector bundle. Then the folding of G
has the form (0 == G ) € MF(X, 0) and is a classical generator of MF(X, 0).

2.8. Some useful results.

Lemma 2.55. Let E, F € Qcoh(X, W) and assume that

Hom pqeon(x)) (Ep. [[]1Fpr) =0
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forall p, p' € Zy and i € 7. Then
Hompgeon(x,w) (E, [q]F) = 0
forall q € Z,.

Proof. Let F — I be as in Lemma 2.10.(a). Then the isomorphism F = Tot(/) in
DQcoh(X, W) and Remark 2.14 imply that we obtain isomorphisms

Hompgeon(x,w) (E, [q]F) — Hompgeonx.w) (E, [¢] Tot(1))
< Hy(Homgeon(x.w) (E, Tot(1))).

Hence we need to show that dg module Homgeon(x,w) (E, Tot(1)) is acyclic. This
dg module is the totalization of the (finite) complex

0 — Homqeon(x,w)(E, 1°) — Homgeoncx,w) (E, 1)

— Homqeon(x,w) (E, 12) — e,

This complex is exact by assumption since Fyp — Iy and F; — [ are (finite) injective
resolutions in the abelian category Qcoh(X). Hence Homgcon(x,w)(E, Tot(1)) is
acyclic by Lemma 2.46.(a). O

Lemma 2.56 ([32, Rem. 1.3]). Let U be an open covering of X and let E be an
object of DQcoh(X, W). Assume that E|y = 0 in DQcoh(X, W) for all U € U.
Then E = 0 in DQcoh(X, W).

Remark 2.57. The corresponding result for £ € MF(X, W) can also be shown
using Remark 2.6, Lemma 2.28, Proposition 2.30, and Theorem 2.8 (being a perfect
complex is defined locally).

Proof. We repeat the proof of [32, Rem. 1.3]. We can assume that ¢/ is finite and
consists of affine open subsets. For V' C X open let jy: V' — X be the inclusion.
The Cech resolution

0> E—> @ jusitoE > P Jvonvixitonu, E—
Uopeu Up,Uyeu

is a bounded exact complex in Zy(Qcoh(X, W)). For any finite intersection V' of
(a positive number of) elements of I/ we have j;(E) € Acycl[Qcoh(V, W)] by
assumption. Since X is separated, jy is affine and hence

jyeji(E) € Acycl[Qeoh(X, W)
by Remark 2.39. Lemma 2.7.(b)—(d) then shows that

E € Acycl[Qcoh(X, W)]. O
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Corollary 2.58. Ler f:E — E’ be a morphism in DQcoh(X, W). Assume that
flu: Elu = E'|u is an isomorphism for all elements U of an open covering of X.
Then f is an isomorphism.

Proof. A morphism in a triangulated category is an isomorphism if and only if its
cone is zero. In our case, this can be checked locally by Lemma 2.56. O

Corollary 2.59. An object E in [MF(X, W)] belongs to Acycl[MF(X, W)] if and
only if E is locally contractible, i. e. any point of X has an open neighborhood U
such that E = 0 in [MF(U, W)].

Proof. If E is locally contractible then £ = 0 in MF(X, W) by Lemma 2.56, hence
E € Acycl[MF(X, W)].

Conversely, let E € Acycl[MF(X,W)]. Let U C X be any affine open
subscheme. Then E|y = 0 in MF(U, W). But [MF(U, W)] N MF(U, W) by
Lemma 2.17, so E|y is contractible. ]

Proposition 2.60 (Locality of orthogonality). Let U be an open covering of X and
let A, B € Qcoh(X, W). Assume that Hompgeonw,w)(Alv, [p)Blu’) = 0 for all
finite intersections U’ of elements of U and all p € Z,. Then

HomDQcoh(X,W) (A, [P]B) =0
forall p € Z».

Proof. Lemma 2.10.(a) allows us to assume that B € InjQcoh(X, W). Then
Lemma 2.47 shows that it is enough to prove that C(U, Hom (A, B)) is acyclic.
Since X is quasi-compact we can assume that I/ is finite. We order the elements
of U,sayU = {Uy,...,Uy,}.

As in the proof of Lemma 2.48 it is enough to show that C, (U, Hom (A, B)) is
acyclic. Instead of the alternating Cech complex we can work with the isomorphic
ordered Cech complex Cyq(U, Hom (A, B)) (defined in the obvious way).

In order to apply Lemma 2.46.(b) it is enough to show the following: forallg € N
and 1 <ip <iy <--- < iz <n thedg module Hom (A, B)(U’) is acyclic, where
U':=Uj,nN---NUj,. But

Hom (A, B)(U") = T(U"; Hom (A|y, Bly’)) = Homgeonw’,w)(Alv’, Blu’)

by (2.3), and the latter is acyclic by Theorem 2.1.(c), Remark 2.14, and our
assumptions. O

Proposition 2.61. Let X and W: X — A be as before. Let Z be a closed subscheme
of X defined by a sheaf of ideals T C Oy, andletU = X —Z be its open complement.
Let M € MF (X, W) be such that M |y = 0 in MF(U, W). Then, for every n > 0,
the canonical morphism p: M — M/I"M has a left inverse | in DCoh(X, W),
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i.e. the composition | o p: M — M is the identity of M. In particular, M is
isomorphic to a direct summand of M/Z" M in DCoh(X, W).

Proof. Let M — I be a morphism in Z(Qcoh(X, W)) with I € InjQcoh(X, W)
that becomes an isomorphism in DQcoh(X, W) (Lemma 2.10.(a)).

We recall some results from [13, II.§7, cf. proof of Thm. 7.18] (see also
Theorem 2.1). Any injective quasi-coherent sheaf on X is isomorphic to a direct sum
of indecomposable injective quasi-coherent sheaves. Every indecomposable injective
quasi-coherent sheaf is isomorphic to some J(x) := ix«(/(x)), where x € X is a
point, ix:Spec Ox x — X is the natural inclusion and /(x) is the injective hull of
the Ox x-module k(x).

If a nonzero morphism J(x) — J(y) exists, then y € {x}: use that J(x)
considered as a sheaf of abelian groups is the skyscraper sheaf at x with stalk /(x);
this follows from [13, Prop. 7.5].

In particular, the components of / are direct sums of indecomposable quasi-
coherent sheaves. Denote by Iz C [ the graded subsheaf consisting of all
summands J(z), forz € Z. Then Iz isin factasubobject,i.e. Iz € InjQcoh(X, W).
Let &:U — X denote the inclusion. The object £*I is in [InjQcoh(U, W)]
by Theorem 2.1.(c), and becomes zero in DQcoh(U, W) by assumption. By
Theorem 2.9.(a) ¢*I = 0 in [InjQcoh(U, W)], i.e. €*I is contractible. Hence
the object e«e*I € [InjQcoh(X, W)] is also contractible. It is easy to check (use
that e, preserves coproducts) that the sequence

0> 1z > 1 — e8] >0

in Zo(InjQcoh(X, W)) is short exact. Hence Iz — [ is an isomorphism in
[InjQcoh(X, W)]. Let I — Iz in Zy(InjQcoh(X, W)) represent an inverse. Thus
the composition «: M — [ — [z becomes an isomorphism in DQcoh(X, W).
Since the components of M are coherent sheaves and every local section of 7z has
support in Z, by [13, Prop. 7.5], it follows that for some ny >> 0 the morphism «
factors as

M= mzom S1y,
in Z¢(Qcoh(X, W)). But then, in DQcoh(X, W), the composition
atoB:M/T"M - M
is the splitting of the projection M — M/Z"0. Similarly one obtains a splitting of

the projection M — M/I"M for any n > ng. For the last statement fit p: M —
M /T" M into a triangle in DCoh(X, W) and note that its third morphism is zero. [J
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3. Semi-orthogonal decompositions for matrix factorizations arising from
projective space bundles and blowing-ups

There are well-known semi-orthogonal decomposition theorems for bounded derived
categories of coherent sheaves on projective space bundles and blowing-ups. We
recall them and then state and prove the corresponding results for categories of
matrix factorizations. For the definitions of an admissible subcategory and of a
semi-orthogonal decomposition we refer to Appendix A.

3.1. Projective space bundles. Let Y be a scheme satisfying condition (stNfKd),
and let A be a locally free coherent sheaf on Y of rank r. Let E := P(N) be the
associated projective space bundle. It comes with a projection morphism p: E — Y
and an invertible sheaf O(1) = Og(1). Recall the following semi-orthogonal
decomposition theorem from?3 [5,30], [15, Cor. 8.36].

Theorem 3.1. Assume thatr > 1. Letl € Z.

(Cohl)g The functor O(l) ® p*(—): D’(Coh(Y)) — DP(Coh(E)) is full and
faithful.

We denote the essential image of this functor by O(l) ® p* D?(Coh(Y)).
(Coh2)g The subcategory O(l) ® p* D?(Coh(Y)) C D?(Coh(E)) is admissible.
(Coh3)g The category D?(Coh(E)) has the semi-orthogonal decomposition

D?(Coh(E)) = (O(=r + 1) ® p* D (Coh(Y)),...,
...,O(=1) ® p*D®(Coh(Y)), p* D®(Coh(Y))).

Now let W: ¥ — Al be a morphism. We denote the composition E = ¥ LAY
also by W. We have Lp* = p*: MF(Y, W) — MF(E, W) (see Theorem 2.35.(b)),
and tensoring with the line bundle O(/) induces autoequivalences of the category
MF(E, W). The analog of Theorem 3.1 for matrix factorizations is the following
theorem.

Theorem 3.2. Assume thatr > 1. Let | € Z.

(MFI)g The functor O(l) ® p*(—): MF(Y, W) — MF(E, W) is full and faithful.
We denote the essential image of this functor by O(l) @ p*MF(Y, W).

(MF2)Eg The subcategory O(l) @ p*MF(Y, W) C MF(E, W) is admissible.
(MF3)g The category MF(E, W) has the semi-orthogonal decomposition*

MF(E, W) = (O(-=r + 1) ® p*MF(Y, W), ...,
....O(=1)® p*MF(Y, W), p*MF(Y, W)).

3 The assumption there is that Y is a smooth projective variety over a field.
4 This is also true for 7 = 0 since then £ = .
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Proof of (MF1)E. Note that Oy = Rp.OFf. If V is a vector bundle on Y, this
implies that the adjunction morphism V' — Rp, p*V is an isomorphism. This means
that if p*V — J is a (finite) resolution by injective quasi-coherent sheaves, then
the obvious morphism V' — p.(J) is a resolution of V. Now let F € MF(Y, W)
and let p*F — I be an exact sequence as in Lemma 2.10.(a). Then the obvious
morphism F — p.(I) is an exact sequence in Zy(Qcoh(Y, W)), and Lemma 2.7.(c)
implies that the adjunction morphism F — Rp,p*F is an isomorphism. Hence
p*:MF(Y,W) — MF(E, W) is full and faithful, and this clearly implies (MF1)g.

O

Proof of (MF2)g. Tt is certainly enough to show that p*MF (Y, W) C MF(E, W)
is admissible. By Remark A.5 and its dual version we need to prove that the full
and faithful functor p*: MF(Y, W) — MF(E, W) has a right and a left adjoint.
Lemma 2.37 provides a right adjoint Rp.: MF(E, W) — MF(Y, W). On the other
hand, we see from Lemma 2.43 that Dy o Rp, o D is left adjoint to p*. O

It remains to prove (MF3)g. More precisely we need to prove that the
specified sequences of admissible subcategories are semi-orthogonal and complete
(see Definition A.10).

Proof of semi-orthogonality in (MF3)g. Lemma 2.55 shows that this is a direct
consequence of Theorem 3.1.(Coh3)g (and this statement is not difficult to prove
using the local-to-global Ext spectral sequence). O

We now prepare for the proof of completeness in (MF3) .

Recall that the projection p: E — Y is a P"~!-bundle. Let Qg,y be the sheaf
of relative differentials of £ over Y (= the relative cotangent bundle on E) and let
QL Yy = A'QEy (and QY )y = OF). Consider the pullback diagram

EXYELE

T

E_” vy

where p; = p» = p. We define F X G := q{F ® q;G for F, G € Coh(E).
Denote by A C E xy E the diagonal subscheme.
In this situation we have an exact sequence

0> Op(-r+1DRQL L (r—1) > = Op(—1) B QY (1) > -
e —> OE(—l) X QE/Y(I) — OEXyE — OAE — 0 (31)

in Coh(E xy E) (cf. [15, Remark 8.35]). We denote this locally free resolution
of Orp as F — Opp,ie. F1 = Op(-1) K Q’E/Y(t) fort > 0.
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Proof of completeness in (MF3)g. We essentially adapt the proof of [15, Cor. 8.29].
Lett > 0. For any 7 € Coh(FE) we have

R (F~ ®43(1)) = Ra1 (47 (05 (-0) ® 43 (R)y () @ 7))
= Or(~1) ® Rq1+45 ()y () ® T) (3:2)
= Op(=1) ® p3Rp1(Q% )y () T)

in D?(Qcoh(E)) (or D?(Coh(E)), cf. proof of Lemma 2.37). Indeed the second
equality is the projection formula and the third one is flat base change.

In the following we use the exact functor Coh(E xy E) — Zy(Coh(E xy E, 0)),
S +— (0==17S), in order to view coherent sheaves as matrix factorizations. For ex-
ample, (3.1) can be viewed as a resolution of (0 == O, ) in Zo(Coh(E xy E,0)).

We claim that for T € DCoh(E, W) equation (3.2) is also true in DQcoh(E, W)
(or DCoh(E, W)). Just observe that projection formula and flat base change also
hold for matrix factorizations. This is easy to prove for the projection formula. For
flat base change note that there is a natural morphism and use the following: if /
is in [InjQcoh(E, W)], then the usual flat base change shows that g3 (/) is right
g1+-acyclic, by Lemma 2.38.

We break the exact sequence (3.1) up into short exact sequences

FrHl oy o2 g o3 ot o ot g ot
...,’CO<—>J—"O —»OAE.
These short exact sequences give rise to triangles in DCoh(E xy E,0).

Let T € DCoh(E, W). Form the derived tensor product of ¢;(7") with these
triangles and apply R¢x. Using induction and (3.2) we see that

Rq14(Oa, ®"¢5(T)) € tria (O (—r+1)® p; DCoh(Y, W), ..., p3 DCoh(Y, W)).

The object on the left is the image of 7' under the Fourier-Mukai transform with
kernel Op ,, (in the setting of matrix factorizations). Hence it is isomorphic to 7" :
for §: E — E xy E the (affine) diagonal inclusion we have

Onr ®" ¢5(T) = 6+(OF) ®" ¢5(T) = 6.(Op ®" §*(¢5(T))) = 8+(T)

by the projection formula, and hence Rg1+(Oa, ®" ¢5(T)) = Rq1(8+(T)) = T.
Now completeness in (MF3) g is immediate from Theorem 2.9.(c). O

This finishes the proof of Theorem 3.2

The following result lifts the semi-orthogonal decomposition from Theorem 3.2
to the dg level. We will need it in [23]. We use the enhancement by dg quotients
explained in Section 2.6.2.
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Corollary 3.3. There are full dg subcategories Y; of ME(E, W)/ AcycIMF(E, W)
(for | € 7Z) which are quasi-equivalent to MF(Y, W)/ AcycIME(Y, W) such
that the semi-orthogonal decomposition into admissible subcategories from The-
orem 3.2.(MF3)g is given by

[ME(E, W)/ AcycMF(E, W)] = ([Y—r+1], .., [V-1]. [Yo))
if we identify MF(E, W) with the left-hand side along (2.8).

Proof. The functor O(l) ® p*(—): MF(Y, W) — MFE(E, W) maps AcycIMF(Y, W)
to AcycIMF(E, W) and hence induces a dg functor

O() ® p*(—):MF(Y, W)/ AcycIMF(Y, W) — MF(E, W)/ AcycIMF(E, W).
On homotopy categories this is the full and faithful functor
O()® p*(—):MF(Y,W) — MF(E, W)

from (MF1)g; here and in the following we identify along (2.8). Define ) to be
the full dg subcategory of MF(E, W)/ AcycIMF(E, W) consisting of objects that
belong to O(l) ® p*MF(Y, W). All claims follow now from Theorem 3.2. O

3.2. Blowing-ups. Now we describe the setting of a blowing-up. Let X be a scheme
satisfying condition (stNfKd) and leti: ¥ < X be the embedding of a regular equi-
codimensional closed subscheme. Let 7: X — X be the blowing-up of X along Y,
cf. [19, 8.1] and [11, 13], and denote by j: E — X the inclusion of the exceptional
divisor. We have the following pullback diagram

_J.x
» jn
_ilox

By the usual construction of the blowing-up, X is endowed with the line bundle
O(1) = Ozx(1)._This line bundle is the ideal sheaf corresponding to the closed
subscheme E C X, i.e. we have a short exact sequence

~<—t

0x(1) = Oz —» Ok. (3.3)

We often denote the restriction Og (1) of O(1) = Ox(1) to E by O(1) as well.

Let J C Oy be the ideal sheaf of ¥ C X. Note that i is a regular immersion of
a fixed codimension by [19, 6.3.1]; we denote this codimension by r. In particular
J/J? is locally free of rank r on Y. Moreover, the projection p: E — Y is a
P~ !_bundle (as in subsection 3.1), more precisely it is isomorphic to P(7 / J?) — Y
(use [19, Thm. 8.1.19], cf. [14, Thm. 11.8.24]).
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Recall the following semi-orthogonal decomposition theorem from> [5,30]°, [15,
Prop. 11.18].

Theorem 3.4. Assume thatr > 2.
(Coh0) g The functor Lz*: Db(Coh(X)) — D?(Coh(X)) is full and faithful.
Let | € Z and consider the functor

11(=) == j«(O() ® p*(-)): D*(Coh(Y)) — D?(Coh(X)).

(Cohl) g The functor t; is full and faithful.

Denote by D?(Coh(Y)); the essential image of t;, and by La* D?(Coh(X)) the

essential image of Lt*: D?(Coh(X)) — Db(Coh(y)).

(Coh2) ¢ The subcategories D®(Coh(Y)); and Lir* D?(Coh(X)) are admissible in
D?(Coh(X)).

(Coh3) g The category Db(Coh(f )) has the semi-orthogonal decomposition

D®(Coh(X)) = (D?(Coh(Y))—r+1, ..., D?(Coh(Y))_1,
Lr*D®(Coh(X))).

Now assume that we are given a morphism W: X — Al. It induces morphisms
from Y, X and E to A! which we again denote by W. Note that X, Y, X, and F
satisfy condition (sTNfKd). Consider the commutative diagram

MF(E. W) <1 MF(X., W)

A
MF(Y, W) < MF(X, W).
Here Lz* = x*, and similarly for the other functors in this diagram. We also
have the functor j. = Rj.:MF(E, W) — DCoh(X, W), see Remark 2.39. Note
that tensoring with the line bundles O(1) induces autoequivalences of the categories
MF(E, W) and MF(X, W).
Our goal now is to prove the following analog of Theorem 3.4.

Theorem 3.5. Letr > 2.
(MFO0) g The functor x*: MF(X, W) — MF(?, W) is full and faithful.
For any integer | consider the functor

s1(=) 1= j«(O() ® p*(=)):MF(Y, W) — DCoh(X, W)

and recall that the latter category is equivalent to MF(?, w).

5 The assumption there is that Y is a smooth projective variety over a field.
6 The proof of Theorem 3.4 in [5,30] is incomplete. We thank A. Kuznetsov for explaining to us how
to fill in the gap. We use his suggestion to prove our Theorem 3.5 below.
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(MF1)g The functor s; is full and faithful.

Denote by m*MF (X, W) the essential image of t*: MF(X, W) — Mj(?, W), and
by MF (Y, W), the intersection of the essential image of s; with MF (X, W).

(MF2) g The subcategory n*MF(X, W) C ME(?, W) is admissible, and so are
the subcategories MF(Y, W); C MF(X, W), for anyl € Z.

(MF3)g The category MF(’)?, W) has the semi-orthogonal decomposition”
MF(X, W) = (MF(Y, W)_r41,.... ME(Y, W)_1, T*MF(X, W)).
Proof of (MF0) 3. We can proceed as in the proof of (MF1)g since
Oy = Ru Ln*0Oy = ROy
(this follows for example from [34, Thm. 8, Rem. 9]). ]
Proof of (MFI) . Fix M, N € MF(Y, W) and [ € Z. Put
M:=00)®p*M, N:=0()® p*N.

We already know (MF1) g. Hence it suffices to show that the morphism

J«: Homypg, wy(M, N) — HomDCOh(')}"W) (j«M, j«N) 3.4

is an isomorphism.

Using the short exact sequence (3.3) and the method used in the proof of
Lemma 2.10.(b) we find an exact sequence 0 — Q! - 0% — j,M — 0in
Zo(Coh(X, W)) with 0°, 0! € MF(X, W). Let

0=(¢+-—0->0150"-0--...),

and let r:Tot(Q) — j«M be the obvious morphism. Then by the definition
of Lj* we can assume that Lj*j, M = j*(Tot(Q)) = Tot(j*(Q)). Consider
the composition

x - A Lo
0:Lj"jx«(M) = j™(Tot(Q)) —— j " jxM — M
where the last morphism is the obvious one. It is enough to show that the morphism
0*: Homyp(e,w) (M, N) — Homyr(ze,w) (™ (Tot(Q)), N) (3.5)

is an isomorphism: if we compose the morphism (3.5) with the isomorphism given
by the adjunction in Theorem 2.35, we obtain the morphism (3.4).

7 This is also trivially true forr = O and r = 1.
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Fit 0 into a triangle

C = Tot(j*(0)) > M — [1]C

in MF(E, W). Applying the cohomological functor Homypg,w)(?, N) to this
triangle shows that we need to prove that

Homwypg,w)([v]C,N) =0 forallv € Z,.

By Proposition 2.60 it is sufficient to prove this under the additional assumption
that X (and hence Y) are affine. Moreover we can and will assume that M and N
are free Oy -modules of finite rank; then M and N are finite direct sums of copies of
the line bundle Og (I).

It is easy to see that M = H°(j*(Q)) and that M’ := H~'(j*(Q)) coincides
with M (1) as a graded vector bundle on E (use the short exact sequence (3.3)). We
claim that C =~ [1]M’ in this case, i. e. the morphism 6: Tot(j *(Q)) — M fits into

a triangle [1]M’ — Tot(j *(Q)) YoM 2]M'.

Let A := j*(Q). Let 7<—1(A) be the kernel of the obvious surjective morphism
A — H°(A) = M of complexes in Zo(MF(E, W)), where M is concentrated in
degree 0. We obtain a short exact sequence

< 1(A) > A — H(A) =M

of complexes in Zo(MF(E,W)). Taking totalizations we obtain a short ex-
act sequence in Zo(MF(E, W) which becomes a triangle in MF(E, W) (by
Lemma 2.7.(a)). On the other hand note that there is an obvious quasi-isomorphism
M’ = H™'(A) — 1<—1(A) of complexes in Zo(MF(E, W)), where M’ is put in
degree -1. It gives rise to a morphism [1]M’ — Tot(z<—;(A)) in Zo(MF(E, W))
and to an isomorphism in MF(E, W). Altogether we obtain the triangle

(1M’ = Tot(j*(Q)) > M — [2]M’

we claimed to exist, in particular C = [1]M’ in MF(E, W).
Hence we are reduced to proving that

Homypg, w)([v]M'.N) =0 forallv € Z,.

Since M’ and M (1) coincide (at least) as graded vector bundles this follows from
Lemma 2.55 and our assumptions on M and N since

Hom p(qeon(£)) ([WIOE(I +1),0p()) = H"(E,Og(-1)) =0

for all v € Z. Here we use that p: E — Y is a P"~!-bundle and that r — 1 > 1. This
finishes the proof of (MF1) . O
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Proposition 3.7 below is essential for the proof of (the second part of) (MF2) 5. It
says how j, commutes with the duality (2.6). Its proof will use the following trivial
result.

Lemma 3.6. Let A be a ring. Let p: P — M be a surjection of A-modules and
let g: Q — M be any morphism of A-modules with Q projective. Consider the
morphism (p,q): P & Q — M. Then there is a morphism l: Q — P such that the
diagram

(p,0)

P®QO—M
S
P&O (p,q9) M
commutes.
Proof. Since p is surjective and Q is projective there is [: Q — P such that p/ = q.

O

Proposition 3.7. There is an isomorphism t: jx« o Dg = [1](1) D% o j« of functors
MF(E, W) — DCoh(X —W)°p,

Proof. We first define the morphism 7 globally and show afterwards locally that it is
an isomorphism.

The short exact sequence (3.3) gives rise to a short exact sequence in
Z(Coh(X,0)) and then to a triangle

£0<—_> (1)0@ < [02035} N @]i (1)O% =0

in DCoh(X,0). For later use we describe § explicitly. Consider the obvious

morphisms

in ZO(Coh(X 0)) where the inclusion (1)(’) < Oy is denoted by . The
morphism p becomes invertible in DCoh(X , 0), and there we have § = §' o p~!
Now define 7 to be the composition

T jxo DE
= j:RHom o, (= (0== 0k )) > RHom o (ju(=), j(0== 0k ))
% RHom o;(j*(—), ((HOz==0 ))
= [1](1) D5 o j« (3.6)

where the first morphism is the obvious one and the second one is induced by §. The
last equality is obvious.
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Our aim is now to show that 7 is in fact an isomorphism. It is enough to test this
locally on an affine open subset Spec A C X (use Corollary 2.58). We can moreover

assume that (3.3) is given by A i) 45 A/ f,for some f € A.

Let M = ( M, % My ) € MF(Spec A/ f, W). By further shrinking Spec A we

0

can and will assume that the components of M are free A/ f modules of finite rank,
My = (A/f)®%0 and M| = (A/f)®51 for suitable s9,s; € N.

Let P; := A®Si. We denote the morphisms ¢®%: P; — M; and f®%: P; < P;
simply by ¢ and f respectively.

The method of Lemma 2.10.(b) (with a little help from Lemma 3.6) pro-

vides the following (vertical) short exact sequence Q! AN 0° s J«M in
Zo(Coh(Spec A, W)), atwo-step resolution of j. (M) by objects of MF(Spec A, W).

]*M M1 o MO

r [0 c] [c 0]
Sfur B
- 1

Q° Py @ Py p Py ® Py
l —_
o )

N o Y]

0 f 0 1

7]
- f

o~ Py® P Py & Py

{

)

Here «, B, ug, u are suitable morphisms satisfying

ca = moc, W = fu, + Ba, Ul = Uy,
cB=myec, W= fuo+af,  Puo=up.

Note that Q0 is isomorphic to zero in [Coh(Spec A, W)], as observed in Remark 2.11.
Let T := Tot(Q~! % 0°) be the cone of ¢. Then r defines a morphism

T — j«M

in Zo(Coh(Spec A, W)) that becomes an isomorphism in DCoh(Spec A, W).
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Explicitly r’ is given by the upper part of the following diagram.

J«M: M, o M,

p 0 ¢ o 0 i B F o [c 0 o o0
—o 1 0 1
o o —f B
L 0 0 —«o Uuo

T: Py® P ® Po® Py

4 4 B 1 0

'—‘O‘O

H 0 ." |

: o -1 oo 10
ey n=ly ’_ “'*[0 00 1%

. 0 . -

[I]Q_li Poé Py

Py @ Py.

EE
o« —f
The morphism u in the lower part of this diagram is the obvious projection morphism

in the triangle Q! kN 0° - T = [110~! in [Coh(Spec A, W)]. We have
observed above that Q° = 0 in [Coh(Spec A, W)], so u is an isomorphism. The
dotted morphism ¢ in the diagram in Zy(Coh(Spec A, W)) represents the inverse of u
in [Coh(Spec A4, W)].

Hence the morphism r” := r’ o t:[1]Q0™! — j.M in Zy(Coh(Spec A, W))
becomes an isomorphism in DCoh(Spec A, W). It is given by

mi

]*M M1 "o M()
r” ri/=[0 —c] r6/=[—c 0]
-f B }
— —Uo
o Py Py Py @ P.
—u; B
a —f

We need to prove that the composition
Homy, ¢ (M, ( 0=A/f ))

— £ := Homy (j*M,(O<—_>A/f )) 2 F:= Homy ([1]Q—1,(0<—_>A/f ))

(p*_)*‘) G := Homy ([I]Q_l,(A%—)A )) & H := Homy ([I]Q_l, ( A<—_>0)>

in DCoh(Spec A, —W) is an isomorphism. The first arrow clearly is an isomorphism.
The first (resp. last) two arrows correspond to the first (resp. second) arrow in the
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definition (3.6) of tps. The following diagram in Zo(Coh(Spec A, —W)) depicts

sl r& g g H explicitly, cf. (2.7) and (2.2) (we write P; for P;/fP;; note
that Hom4(A/f, A/f) = A/f and Homu4(A, A/f) = A/f and Hom4 (A4, A) = A
canonically, so that we can for example identify Hom4(M;, A/f) = M; and
Hom(Py, A/f) = P; note that some matrix entries are zero since f: A/f — A/f
is zero; we indicate the transpose of a matrix by an upper index t).

t
mg

£ M1 MO
_mll
1% 0 1% -1
SIS =0
.
_Y_ B —f=0 _ v
F Po&® P,y Po® P,y
f=0 a
=
P+ Px1=canopry, Pxo=canopry,
—-uy o f
-t —f
N —.
B ug
g Py® P ® Py® P Po®PL® Py P
4 4 S f 4
; ; B uy f ;
o 0] uy —o -1 0]
, o 1| |, _ B f 1 o olil, _
s 8% su= 1 ol 8L1=pra4 so=| 1 ol 8ho=Pr34
0 1]} 0o 1|}
: -f - :
H Py ® Py Py ® Py.

Additionally we have added the dotted morphism s which shows that the surjection &,
splits in Z¢(Coh(Spec A, —W)). Note that p. maps s(H) onto r"*(E), so we can
consider the commutative diagram

£ €y <2 s(H) 2y

|, o
£ r’’* F O G 85 U

in Zo(Coh(Spec A,—W)). Our aim is to show that the lower row defines an
isomorphism 8§/, o (p«) ™! o 7”* in DCoh(Spec A, —W). For this it is clearly sufficient
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to show that s
H 2 s(H) 25 7€)

becomes an isomorphism in DCoh(Spec A, —W). This morphism occurs as the
epimorphism in the short exact sequence

I"”*(g)I Pl = PO
_E[
P08 cano[O 1] canO[—l 0]
¥ o)
Bt —up
'H PO &) P1 PO ® Pl
utl _al
B f }
o o]
0o —-f 0 1
1 ot
b
Py ® Py Py @ Py

B
—Bt -1

in Zo(Coh(Spec A,—W)). The lower object in this short exact sequence becomes
zero in [Coh(Spec A, —W)] (use the homotopy with components &, = [8 0 ] and
ho = [43]). This implies that px o s:H — r”*(E) becomes an isomorphlsm in
DCoh(Spec A, —W) and finishes the proof of Proposition 3.7. O

Remark 3.8. Lemma 2.43 shows that the subcategory 7 *MF(X, W) C MF(X, W)
is invariant under the duality D% MF(X W) — MF(X —W)°P. This duality takes

the subcategory MF(Y, W); to the subcategory MF(Y,—W)_;_4, as follows from
Proposition 3.7 and Lemma 2.43 again.

Proof of (MF2) . The method used to prove (MF2) g also shows that
T*MF(X, W) C MF(X, W)

is admissible. _
Let us prove that MF(Y, W); C MF(X, W) is admissible.
From the proof of (MF2)g it is clear that the functor

O()® p*(—):MF(Y,W) — MF(E, W)

has a right and a left adjoint functor. Let us view j as a functor MF(E, W) —
MF (X, W); it has a left adjoint j* by Lemma 2.37. Proposition 3.7 shows that
F — Dg(j*[1](1) Dx(F)) is right adjoint to j«. As above Remark A.5 and its dual
show that MF(Y, W); C MF (X W) is admissible. O
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Proof of semi-orthogonality in (MF3) 3. Lemma 2.55 shows that this is a direct

consequence of Theorem 3.4.(Coh3) ; (and this statement is not difficult to prove

using the local-to-global Ext spectral sequence). O
It remains to prove completeness in (MF3) 5.

Proposition 3.9. The condition (MF3) 3 is equivalent to the following condition

(MF4) ¢ There is a semi-orthogonal decomposition

MF(X,~W) = (x*MF(X, =W),MF(Y,=W)o, ..., MF(Y,~W),_5).

Proof. This follows from Remark 3.8. O

This proof of course shows that semi-orthogonality holds in (MF4) ¢ since it
holds in (MF3) . Hence we have to prove completeness in (MF4) 5 (obviously we
can replace W by —W there). Our first aim is to prove the weaker statement of
Proposition 3.11 below.

Lemma 3.10. Let B € MF(X, W).

(a) The condition B € J‘(JI*MF(X, W) is equivalent to R« (D% (B)) = 0. In
particular, it is local on X in the following sense: if U is any open covering of
X, then B € ~(x*MF(X, W)) if and only if B|,-1yy € “(x*MF(U, W))
forallU € U.

(b) Letl € Z. The condition B € J‘(MF(Y, W) is local on X.
Proof. (a): In somewhat risky notation we have

Homyp .y (B, 7*MF(X, W)) = Homy % _y (n"MF(X, =W), D%(B))

= Homyg(x,—w) (MF(X. ~ W), Rt Dz (B)).
3.7

The first equality uses the duality D3 and Remark 3.8, the second equality uses

the adjunction of Lemma 2.37. Hence B € J_(JT*MF (X, W)) is equivalent to
R« (D% (B)) = 0, and this condition is clearly local on X (use Lemma 2.56).
(b): We have

HomMF('}}*,W)(B, MF (Y, W);)
= Homyp(z,w)(j* B, Op (1) ® p*MF(Y, W))
= Homwr(e,w)(Op (=) ® j*B, p*MF(Y, W))
= Homyp(y,—w)(MF(Y, —W), Rp«(Dg(Op (=) ® j* B)))
The first equality follows from the adjunction of Lemma 2.37, the second equality is

just the twist, and the last equality is obtained similarly as (3.7) (for p instead of ).
Clearly the condition Rp,(Dg(Og(—!) ® j*B)) = 0islocal on X. O
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Proposition 3.11. The left orthogonal of the full triangulated subcategory
C := tria(x*MF(X, W),MF(Y, W)y, ....MF(Y, W),_1)
in MF(F)?, W) is zero, e =o.

Proof. Let B € 1C. From Lemma 3.10.(a) we obtain Rr«(Dx(B)) = 0. Let
U C X be the open complement of £ C X. Then Ru.(Dy(B|y)) = 0, and the
restriction B|y is zero in MF(U, W).

Recall that the line bundle Z := Ox(1) C Oy is the ideal sheaf defining E.
Note that the obvious morphism B(1) = O3(n) ® B — I" B is an isomorphism for
alln > 0, in particular Z" B € MF(X, W).

Consider for n > 0 the short exact sequence

0—-71I"B—B— B/I"B—0

in ZO(Coh(f, W)). Since B|ly = 0, Proposition 2.61 shows that B is a direct
summand of B/Z" B for n > 0. Fix n > 0. It suffices to prove that B/Z" B = 0 in
DCoh(X, W).

Since B € 1C the adjunction of Lemma 2.37, implies that

j*B et tria(p*MF(Y, W),...,O(r — 1) ® p*MF(Y, W)).

Hence (MF3) g implies that j*B = 0in MF(E, W). Butthen B/B(1) =~ B/ZB =
jxj*B = 0 in MF(? ,W). Hence B(l) — B becomes an isomorphism in
MF(}, W); the same is then true for B(n) — B, and hence 0 = B/B(n) =~ B/1I"B
in DCoh(X, W). O

We give a local description of the inclusion Y C X around a closed point y € Y.
Let Spec R be an affine open neighborhood of y in X, and let I C R be the
ideal defining ¥ N Spec R. By possibly shrinking Spec R we can find r elements
X1,...,Xr € R that can be extended to a system of uniformizing parameters on
Spec R such that I = (x1,...,x;) (this follows for example from [19, Cor. 4.2.15]
applied to R localized at the maximal ideal corresponding to y).

In the following subsection 3.2.1 we prove some results, in particular completeness
in (MF4) g, for the local situation Spec R/I C Spec R just described. In
subsection 3.2.2 we then deduce completeness in (MF4)  in the global setting.

3.2.1. Local considerations. Let R be a regular Noetherian k-algebra (with Spec R
of finite Krull dimension) and let / C R be an ideal that is generated by elements
X1,...,Xr € R which are part of a system of uniformizing parameters on Spec R.
Abbreviate R := R/I. We assume in this whole subsection 3.2.1 that the inclusion
i:Y — X is given by Spec R C Spec R. Then X = Proj(R® I ® I?> @ ---), where
R@® 1@ I1?®--- is the Rees algebra of I C R. We define

Yai=Xx, €I CROIBI*’D---,
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i.e. y, is x, considered as an element of gegree 1 in the Rees algebra. Since
X1,...,Xr is a regular sequence in R, the R-module //1? is free with basis the
images y, of the y,, and the natural map

R[yy,....7,) =Symg,; (I/I*) > R/T &I/ I?S1?/ P & -

is an isomorphism. Hence E = Proj(R/I @ [ /I> ® I?/I* & ---) = ]P%—l,
Let
9" ry 0T
Kg = (0 — Og(—r) — Og(-r + 1)@(r—1) = ...
052

N 07!
0 (-1)®0) £ 0p —0),

be the acyclic Koszul complex Kg on E defined as the following tensor product of

complexes,
;

Kg = ® (OE(—I) &> OE)

a=1
Remark 3.12. The kernel of 9% is canonically isomorphic to the vector bundle 2%, Y

(for example Og(—r) = QEIY) Indeed, it is a nice exercise to show that the
complex Kg can also be obtained as follows: the dual of the Euler sequence gives
rise to several short exact sequences (see [28, 1.1.1.(3)]); combining these in the
obvious manner yields a long exact sequence which coincides with Kg.

Corollary 3.13. For any s > 0 we have
Q% /y(s) ® p*MF(Y, W) C tria (p*MF(Y, W),...,Or(s) ® p*MF(Y, W)).
inMF(E, W).

Proof. Remark 3.12 provides an acyclic subcomplex of Kg which vanishes in

degrees < —s — 1, whose component in degree —s — 1 is isomorphic to Q7% /Y

and which coincides with Kg in degrees > —s. Given an object M € MF(Y, W),
tensor p* (M) with this complex and twist by Og (s). Now use Lemma 2.7.(c) and
the method used to prove part (d) of the same lemma. 0

Proposition 3.14. The cohomology sheaves of L*(i+Oy) € D? (Coh(f)) are
given as follows.

(a) H*(Ln*(i«Oy) = j*QE/Y(s)for —s e [-r+ 1,0];
(b) H'(Lz*(i«Oy) =0fort ¢ [-r + 1,0].

In fact, for —s € [—r + 1, 0], there is an isomorphism

H™ (L (i () = jo(@5y (5) @ p*(=)) (38)
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of functors free(Y) — Coh(}), where free(Y) C Coh(Y) is the full subcategory
consisting of free Oy-modules of finite rank, and the functor on the left is the
composition

free(Y) C Coh(Y) C D?(Coh(Y))
2 pP(Coh(X) X DP(Con(X)) Z—= Con(X).
Proof. Consider the Koszul complex Kg := (R; x1,...,x;) which is a resolution
of R,

(Kr — R) = (0—>R—>R€Br ... > R®() _, ROr —>R—>E—>O)
Then Lz *(ix«QOy) = n*(Kg). This already implies that the cohomology sheaves
of Ln*(i«Oy) are zero outside [—r, 0]. Note that K is the tensor product of the
complexes (R; x;) = (R e R), hence

,
Xa
7*(KR) = ® (O = O3).
a=1

We will calculate the cohomology of the complex 7* (K g) by comparing it to the
acyclic Koszul complex

K% = (O — O}'(—r) — O}’(—r + 1)®(r£l) — e — (9}'(—1)@(7) — O}' — O)

which is defined to be the following tensor product,
r
Ya
Kz = Q) (Oz(-1) = O3).
a=1

Note that the Koszul complex Kg above is the restriction K3|g of K5 to the
divisor E.

Consider the global section y of the line bundle O3 (—1) defined by y|(,, 0} = ’;—;’)
(on the chart {y, # 0}) for 1 < b < r. It corresponds to a morphism
y: Oz — Ox(=1) (which is just the (—1)-twist of the first morphism in (3.3)).
The vertical arrows in the commutative square

@%,L> Ox
ll’ lid
Ox(-1) == 03

define an injective morphism of two-term complexes indexed by 1 < a < r. Their
tensor product is an injective morphism 7*(Kg) — K. In degree (—s) it is given by
the (7})-fold coproduct of the map

y®s: Ox — Oz(-s).
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We denote its cokernel by K and obtain a short exact sequence
0—>n*(Kgr) > Kz > K—0

of complexes of sheaves on X. Its middle term is acyclic, so H' (7*(KR)) =
H'1(K). In particular, it becomes clear that H " (Lz *(i+Oy)) vanishes; hence (b)
is proved. "

For n > 0 denote by E™ the n-th infinitesimal neighborhood of E in X, i.e. the
closed subscheme of X defined by the (1 + 1)-st power of the ideal sheaf Z = Ox(1)
of E. The cokernel of the map y®*: Oz — Ox(=s) is Ogs—1(—s). Hence K’ =0
and K ° = Ofps—1 (—s)@(g) = ";(-'SlEsfl for s > 1. Note that the complex K has
the finite descending filtration K D ZK D Z?K D --- D I"K = 0. We include a
picture of

7 e 02 (=3)806) — 0,1 (-2)20) —~ O (1) ——0,

and of the (non-trivial) associated graded complexes

@E): 05320 e 0220 T 01y
el () o —— 05220 L 0p(c1)e®) 0 0,
e2(K): o —= Op(-1)20) 0 0 0,

in degrees between —3 and 0. Remark 3.12 shows that the cohomology of gr(K) is
concentrated in degree —s—1 and canonically isomorphic toker(d7° (s)) = Q% /Y (s),
or more precisely to j*Q%/Y (s).

It is straightforward to see that spectral sequence associated to our filtered
complex K (whose Eg-page is gr*(K) depicted above, up to a coordinate change)
satisfies E; = E, = --- = Eq, and that the induced filtration on each H?(K) has
at most one non-trivial subquotient. We hence obtain canonically

H™*(Lr*ixOy) = H*(7*(Kg)) = H*'(K) = H* (g (K))

= ker(d5°(s)) = j*Q%/Y(S)
(3.9)

for —s € [—r + 1, 0]. This proves (a). . o
It remains to construct the isomorphism (3.8). Given M = R" a free R-module
of finite rank, we take the m-fold coproduct of the above construction and obtain

an isomorphism H =S (Lz*(i.(M))) 5 Jx (Q%/Y(s) ® p*(M)) in Coh(?) as the
m-fold coproduct of (3.9). This defines (3.8) on objects. We claim that this is
compatible with morphisms M — N in free(Y). It is certainly sufficient to treat

the case M = N = R. Then any morphism M — N is given by some f € R.
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Choose f € R with image f in R. Componentwise multiplication with 1 lifts
f:M = R — N = R to the Koszul resolution Kg, and we can use this lift to
compute the image of f under H *(Lz*(i«(—))) (and this image does not depend
on the choice of f since all objects in (3.8) are supported on E). The image of f
under ;. (2% / y (8) ® p*(—)) is obvious. Now note that all constructions involved
in the definition of the isomorphism (3.8) are compatible with multiplication by f.
This proves our claim. O

Corollary 3.15.

(a) Let M € MF(Y,W) and assume that its components My and M; are
free R-modules of finite rank. Let 0 — Q" — .- — 0% — i, (M)
be an exact sequence in Zo(Coh(X,W)) with all Q' € MF(X, W),
¢f. Lemma 2.10.(b). Then the cohomologies of n*(Q), considered as a
complex in Z (Coh(f , W), are given as follows.

(i) H(7*(Q)) = jx(QF,y(s) ® p*(M)) in Coh(X, W),
for —s € [-r +1,0];

(ii)) H'(7*(Q)) =O0fort ¢ [-r + 1,0].
(b) We have

MF(Y, W)_; C tria(z*MF(X, W),MF(Y, W),. ..., MF(Y, W),_,).

Proof. (a): The image of the morphisms my: My — M; and my: My — My
under the functor H (L ™*(i«(—))): free(Y) — Coh(y ) can be computed using
the morphisms go: Q9 — Q1 and g1: Q1 — Q¢ of complexes in Coh(X). Now use
the isomorphism of functors (3.8) (and (b)) in Proposition 3.14.

(b) Let S be the specified triangulated envelope.

Let M € MFE(Y, W) have free components, and let 9 — i«(M) be as in (a). We
claim that j,(Og(—1) ® p*(M)) € S.

Note that j4(Og(=1)® p*(M)) = j*(sz;;/ly(r —1)® p*(M)) by Remark 3.12.
Hence, by (a), j«(Opg(—1) ® p*(M)) is the (—r + 1)-st cohomology of the
complex 7*(Q) whose totalization Lz * (i, M) trivially belongs to 7*MF(X, W).
The other cohomologies of this complex are in the full triangulated subcategory
generated by MF(Y, W)y, ..., MF(Y, W),_5, by part (a) again and Corollary 3.13.
The claim follows (by the technique used in the proof of Lemma 2.40.(a)).

Now let N € MF(Y, W) be arbitrary. Certainly we find R-modules P and Q
such No@® P and N| @ Q are free ‘R-modules of finite rank. Note that the components
of

1 1
M.:N@[l]N@(P<;—>P)eB(Q$Q)

are free R-modules of finite rank. We already know that j,(Og (—1)® p*(M)) € S.
Hence j«(Og(—1) ® p*(N)) is a direct summand of an object of S. But § is an
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admissible subcategory of MF(X, W), by Lemma A.9 since (MF2); and semi-
orthogonality in (MF4) 3 are already known. In particular, it is a thick subcategory
by Corollary A.7. Hence j«(Op(—1) ® p*(N)) € S. O

Proof of completeness in (MF4) g (in the local situation). 1f we twist the semi-orth-
ogonal decomposition in (MF3) g by O(r — 2) we see that

O(r—1DQp*MF(Y, W) C tria(O(—=1)Q p*MF (Y, W), ..., O(r-2)Qp*MF(Y, W)).
Apply j« to this inclusion. This yields the first inclusion in

MF(Y, W),_; C tria(MF(Y, W)_;, MF(Y, W), ..., MF(Y, W),_,)
C D := tria(x*MF(X, W), MF(Y, W)y, ..., MF(Y, W),_»),

and the second inclusion follows from Corollary 3.15.(b). This and Proposition 3.11
imply that 2D = 0. Note that D is admissible by (MF2) ¢ and Lemma A.9 since
we already know semi-orthogonality in (MF4) ;. But then Remark A.2 shows that
D =MF(X,W). O

Now the proof of Theorem 3.5 is complete in the local situation described at the
beginning of this subsection 3.2.1.

3.2.2. Back to the global setting. We now return to the global blowing-up setting
described in subsection 3.2.

Proof of completeness in (MF4) g (in the global setting). If U C X is an open
subscheme, we define Sy to be the subcategory of MF(~1(U), W) defined by

Sy := tria(w*MF(U, W),MF(Y N U, W)o.....MF(Y N U, W),_5).

Each Sy is admissible by Lemma A.9 since (MF2)y; and semi-orthogonality
in (MF4) ; are already known. Let S := Sy. Weneed to show that S = MF(X, W).
By Remark A.2 it suffices to prove that the left orthogonal 18 is zero.

Let B € LS. Lemma 3.10 shows that Bl € L(Sy) for all open U C X.

Each point of Y has an open neighborhood U in X such that the inclusion
Y NU C X NU is isomorphic to Spec R/I C Spec R with I C R as described
at the beginning of subsection 3.2.1. Since we already proved (MF4)y for this
local setting we know that Sy = MF(x~'(U), W). Hence Blz-1@y = 0 in
MF(n~1(U), W).

Trivially we have Sy\y = MF(? \ E, W) and hence B |}“\E = 0in MF(? \E).
Now Lemma 2.56 shows that B = 0 in MF(?, w). O

This finishes the proof of Theorem 3.5.
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We will also need the following lift of this result to the dg level.

Corollary 3.16. In the situation of Theorem 3.5, there is a full dg subcategory X of
Coh(X, W)/ AcyclCoh(X, W) which is quasi-equivalent to

Coh(X, W)/ AcyclCoh(X, W),

and there are full dg subcategories Y| of Coh(f W)/ AcychOh(y W) (forl € Z)
which are quasi-equivalent to

Coh(Y, W)/ AcyclCoh(Y, W),

such that the semi-orthogonal decomposition into admissible subcategories from
Theorem 3.5.(MF3) 5 is given by

[Coh(X, W)/ AcyclCoh(X, W)] = (V. 1], - -, V.11, [X])

if we identify MF(?, W) 5 DCoh(Y, W) with the left-hand side as explained in
section 2.6.2.

Proof. This is proved as Corollary 3.3. We could have used the dg categories
Coh(—, ?) and AcyclCoh(—, ?) instead of MF(—, ?) and AcycIMF(—, ?) there. Here
we need to do this since we have to deal with the functor j.(O(l) ® p*(—)). O

3.3. Applications. Certainly we can apply Theorem 3.2 to P} — Speck and
W = 0. We obtain a semi-orthogonal decomposition of MF(IP?, 0) into admissible
subcategories. Let us denote the object (0==Opx (i) ) € MF(P},0) by Opx (i)
(by abuse of notation). Then it is not difficult to see that the objects

OPZ (—n), ey OPZ

define a strong full exceptional collection (in the Z,-graded sense) in MF (P, 0). We
will explain this in [35] using the folding functor.
We mention some corollaries of Theorem 3.5.

Corollary 3.17. Let X be a scheme satisfying condition (SINfKd) and let X be
the blowing-up of X along a regular equi-codimenisonal closed subscheme Y of
codimension r > 2. Let W: X — A be a morphism.

(a) Assume that W is flat and that the scheme-theoretic zero fiber Xy of
W:X — Alisregular. Then the category MF(?, W) has a semi-orthogonal
decomposition into r — 1 admissible subcategories that are all equivalent to
MF(Y, W). In particular, if the codimensionr = 2, then j.p*: MF(Y, W) —
DCOh(Y, W) induces an equivalence MF(Y, W) N MF(?, w).

(b) Assume that Wy:Y — is flat and that its scheme theoretic zero fiber Yy is
regular. Then w*:MF(X, W) 5 MF(?, W) is an equivalence.
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(¢) If both W and W |y are flat and have regular scheme-theoretic zero fibers Xo
and Yy, respectively, then MF(X, W) = 0.

Proof. Theorem 2.8 shows that MF(X, W) = 0 (resp. MF(Y, W) = 0). All claims
then follow from Theorem 3.5. O

Example 3.18. Let

X = A,zc = Speck[x,y], W=x
and Y = Speck[x, y]/(x,y) = {(0,0)}.

Then Corollary 3.17.(a) shows that
MF(Spec k, 0) = MF(X, W).

Write X = Proj k[x, y][u,v]/(xv — yu) and let U C X be the affine open subset
defined by v # 0. Then U = Speck[y, z] = A,zc wherez = u/v,and W = x = yz.
Theorem 2.8 and [31, Prop. 1.14] imply that MF(X,W) — MF(U,W) is an
equivalence. Altogether we obtain an equivalence

MF(Speck,0) = MF(A?, yz).

This is, of course, well known.

Definition 3.19. Let Z be a scheme satisfying condition (srNfKd) and let
W:Z — A! be a regular function. We call W resolved if the ideal sheaf generated
by W is locally monomial, i.e. Zg = {W = 0} is a simple normal crossing divisor.
We then also call the corresponding category MF(Z, W) resolved.

In the rest of this section we assume in addition that chark = 0. Let X be a
separated connected smooth scheme of finite type and let W: X — A! be a non-
zero regular functlon By [17, Thm. 3.35] there exists an “embedded resolution of
singularities” 7: X — X of the divisor Xo = {W = 0} such that W: X — Alis
resolved. It is obtained by a sequence of blowing-ups with smooth centers Y1, ..., Ys
which are contained in the zero sets of the pullbacks of W (as confirmed to us by
Janos Kollar). We can assume that the Y; are connected.

Corollary 3.20. In the above setting the triangulated category MF(} ,W) has a
semi-orthogonal decomposition into admissible subcategories that are equivalent
to MF(Y;,0) (for 1 < i < s) or MF(X,W). More precisely, the multiplicity
of MF(Y;,0) is equal to the codimension of Y; minus 1, and MF(X, W) appears
with multiplicity one. In particular, the category MF(X, W) is a semi-orthogonal
summand in a resolved category MF(?, w).

Proof. This follows from the above and Theorem 3.5. O
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Corollary 3.20 may allow us sometimes (depending on the problem we are
interested in) to reduce the study of the category MF(X, W) to the case that the
divisor X is a simple normal crossing divisor. In view of this result we would like
to ask the following question.

Question 3.21. Can one give a “reasonable” description of a resolved category
MF(Z,W)? Or, at least, of its idempotent completion? The simplest non-trivial
example would be that of the category MF(A2, W = xy?).

A. Admissible subcategories and semi-orthogonal decompositions

We remind the reader of some definitions and facts from [7,8]. Let 7 be a triangulated
category.

Let S C 7T be a subcategory. Recall that the right orthogonal S+ to S in 7 is
the full subcategory of T consisting of all objects C € T such that 7(S,C) = 0
for all S € S. Tt is a triangulated subcategory of 7. Similarly one defines the left
orthogonal ~S.

Definition A.1. A right admissible (resp. left admissible) subcategory of 7T is a
strict full triangulated subcategory S of 7 such that for any A € T there is a triangle
As > A — Agi — [1]As (resp. A1 g > A > As — [1]A1g) with As € S and
AgL € St (resp. AL s € 1S). An admissible subcategory is a subcategory which
is both right and left admissible.

Remark A.2. Let S be a right (resp. left) admissible subcategory of 7. If St = 0
(resp. =S = 0), then obviously S = 7.
Lemma A.3 ([7, Prop. 1.5]). Let S be a strict full triangulated subcategory of a
triangulated category T. Then the following are equivalent.

(a) S is right (resp. left) admissible.

(b) The inclusion functor S — T has a right (resp. left) adjoint.

(¢) T is the triangulated envelope of S and S* (resp. of *S and S).
Remark A.4. If S is right (resp. left) admissible and we fix for any A € T a triangle
As > A = Ag1 — [1]As (resp. ALg — A — As — [1]ALg) as above, then
A +— Ags extends uniquely to a right (resp. left) adjoint functor to the inclusion

S—T.

Remark A.5. Let F: B — T be a full and faithful functor of triangulated categories,
and assume that F' admits a right adjoint functor. Then the essential image of F'is a
right admissible subcategory of 7. This is obvious from Lemma A.3.

Lemma A.6 (cf. [8, Lemma 2.20]). Let T be a triangulated category, and let U, V
be strict full triangulated subcategories of T satisfying T (V,U) = 0. Assume that
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there is a full subcategory £ C T such that for each E € & there is a triangle
EV — F — Eu — []]EV

with E\, € V and Ey € U. Assume that one of the following two statements is true.
(a) We have tria(£) = T, where tria(€) is the triangulated envelope of £ in T .

(b) The categoriesU andV are thick subcategories of T, one of U, V is idempotent
complete, and thick(E) = T, where thick(E) is the thick envelope of € in T,
i. e. the objects of € classically generate T .

Then V is right admissible in T, U is left admissible in T, we have U = VL and
V = YU, and T is the triangulated envelope of U U V. In the terminology of
Definition A.10 below this says that T = (U, V) is a semi-orthogonal decomposition
of T.

Proof. Let S be the full subcategory of T consisting of those objects X € T such
that there is a triangle
Xy = X - Xy — [1]1Xy (A1)

with Xy € Vand Xy € U. We claim that S = 7.

Obviously S is a strict subcategory containing £, V and U, and it is closed
under all shifts. Assume that X — Y — Z — [1]X is a triangle with X, Y € S.
Assume that there is a triangle (A.1) as above for X, and similarly for Y. The
morphism X — Y extends uniquely two a morphism between these two triangles
(use [2, Prop. 1.1.9]), and this morphism fits (since it is unique) into the following
3 x 3-diagram constructed using [2, Prop. 1.1.11].

11Xy o [1]¥y o [1]Z7 o 21Xy
A

©
XM YM ZN [I]XZ/I
A
X Y z [1]x
A
Xy Yy VA [1]1Xy

Since U and V are strict full triangulated subcategories of 7, we have Z’ € V) and
Z" €U, so0 Z € S. This argument shows that S is a strict triangulated subcategory
of 7. If (a) is satisfied this already shows that S = T .

Now assume that (b) is satisfied. We claim that S is a thick subcategory. Let
X € S and assume that X =~ X; @ X, in 7. We can even assume that X = X ® X>.
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LetV — X — U — [1]V beatriangle with V' € Vand U € U. Then the idempotent
e:= [0 0] X — X can be uniquely extended to a morphism

vLox Syt
lv le Lu l[l]v
vLox Syt

of triangles [2, Prop. 1.1.9], and both u and v are idempotent. Assume that V is
idempotent complete. Then we can assume that V = V; & V, with Vi, V5 € V and

that v = [ ] We have [ = [ o J(,) ] since ef = fv. Complete the morphisms

fi: Vi = X; into triangles

V; I’—) X; — U; — [11V;, (A2)
for i = 1,2. The direct sum of these two triangles is a triangle, and there is a
morphism ¢ such that
eV T X U © U — (1) @ 12)
|, |
y— 7 sy v

is morphism of triangles; hence ¢ is an isomorphism. Since ¢/ is a thick subcategory,
we have Uy, U, € U. The above triangles (A.2) fori = 1, 2 (and the similar argument
in case U is idempotent complete) show that S is a thick subcategory of 7. Hence
S=T.

We have proved that S = T if (a) or (b) is satisfied.

By assumption we have I/ C V1. Let X € V*. Since S = T we have a triangle

V-oX->U-—]lV

with V € Vand U € Y. Since X € V' the morphism V' — X is zero and id[;)y
factors through U (in fact U =~ X & [1]V). But 7 (V,U) = 0 and hence [1]V = 0.
Hence X — U is an isomorphism, and X € U by strictness. This shows I/ = V*.
Similarly we obtain V = 1U/.

Right admissibility of V), left admissibility of I/, and the fact that 7 is the
triangulated envelope of &/ U V follow directly from the definition of S (cf. (A.1))
and the fact that S = 7. O]

Corollary A.7 ([7, Lemma 1.7]). If S is a right admissible subcategory of a T, then
= J'(SJ‘), so in particular S is a thick subcategory of T. Similarly, if S is left
admissible, then S = (*8)* is thick.
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Proof. The first statement follows from Lemma A.6 by taking !/ = S+, )V = S and
& = T For the second statement take i/ = S,V = *Sand £ = 7. O

Lemma A.8. IfS is right admissible, the functors St — T /S and S — T /S+ are
equivalences. If S is left admissible, the functors S — T /+S and +*S — T /S are
equivalences.

Proof. By parts (ff2) and (ff2)°P of Proposition B.2, all these functors are full and
faithful, and it is clear that they are essentially surjective. O

Lemma A.9. Let S;, S, be right admissible subcategories of a triangulated
category T and assume that T(S,,S81) = 0. Then the triangulated envelope
D = tria(S81,83) in T of the full subcategory S; U S, is a right admissible
subcategory of T.

Similarly, if S1 and S, are left admissible subcategories of T satisfying
T(S5,81) = 0, then tria(Sy, S,) is left admissible in T .

Proof. Let T € T be given. By right admissibility of S, there is a triangle
g2
Sy = T = 0, — [1]S5,

with S, € S, and Q, € S, and right admissibility of S; yields a triangle

S1—> 02 LAN 01— [1]8:

with S; € S; and 0, € Sll. Note that S; € S; C 52l and Q; € 52L imply that
0 € Szl. Hence Q; € D*. Fit the composition g; g» into a triangle

U—-T252 0, 511U (A.3)

The octahedral axiom applied to the morphisms g, and g; provides a triangle
S, > U — 81— [1]5,.
This shows that U € D. Hence we see from (A.3) that D is right admissible. O

Definition A.10. A sequence (S1,Ss,...S,) of subcategories of T is called semi-
orthogonal if 7(S5;,S;) = 0 for all j > i, and complete (in 7) if 7 is the
triangulated envelope of S; US> U---US,. A semi-orthogonal decomposition of 7
is a complete semi-orthogonal sequence (S1,Sa,...Sy) of strict full triangulated
subcategories, and is denoted by

T=(51,...,Sn).

A semi-orthogonal decomposition into admissible subcategories is a semi-
orthogonal decomposition whose components are admissible subcategories.
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Lemma A.11.

(@) If S is a right admissible subcategory of T, then T = (S, S) is a semi-
orthogonal decomposition of T.. Similarly, if S is left admissible, then (S, 1S)
is a semi-orthogonal decomposition.

(b) If T = (U, V) is a semi-orthogonal decomposition, then 'V is right admissible,
U is left admissible, U = V' and V = 1U.

(c) Let T = (S1,...,8y) be a semi-orthogonal decomposition (into admissible
subcategories), and let 1 < a < n. Let Dy := tria(S; U --- U S,) and
D, = tria(Sy+1U- - -US,) denote the indicated triangulated envelopes. Then
T = (D1,D,) and Dy = (S1,...,8;) and Dy = (Sa+41....,Sn) are semi-
orthogonal decompositions (into admissible subcategories). In particular,

D, = Dy and D, = *D;.

Proof. (a): Use Lemma A.3.

(b): This is a consequence Lemma A.6: take £ = S§1 U Ss.

(©): IfT = (S1,...,8,) is a semi-orthogonal decomposition, all statements are
trivial (the last one follows directly from (b)). So let us assume that all components S;
are admissible in 7. Then Lemma A.9 implies that D; and D, are admissible
subcategories of 7. Moreover, each S i, forl < j <a(esp.a+1=<j <n)is
obviously admissible in Dy (resp. D>). O

Corollary A.12. A semi-orthogonal decomposition T = (U, V) (into admissibles)
induces a semi-orthogonal decomposition (into admissibles) of the Karoubi

envelope TV of T, namely T4 = (U, VY).

Proof. Use Lemmata A.6.(b) and A.11. O

B. Embeddings of Verdier quotients

Verdier localization is described beautifully in [27, 2.1]. We give here some additional
results. In contrast to [27] we do not assume that triangulated subcategories are strict
(= closed under isomorphisms).

Let D be a triangulated category and C C D a full triangulated subcategory
(not necessarily thick). Let F: D — D/C be the Verdier localization functor ([27,
Theorem 2.1.8]). We denote by Mor¢ the subclass of morphisms (in D) that fit into
a triangle with cone in C.

Lemma B.1. Let f,g: X — Y be two morphisms in D. The following conditions
are equivalent:

@ F(f)=F(g)

(b) there is a morphism a: X' — X in Mor¢ such that fa = ga: X' — Y;
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(¢c) there is a morphism B:Y — Y’ in More such that Bf = Bg: X — Y';
(d) the morphism [ — g: X — Y factorsas X — C — Y with C in C.

Proof. Thisis aslightly extended version of [27, Lemma 2.1.26] using the description
of morphisms in D/C via “coroofs”. The proof is easily generalized. O

Proposition B.2. Let D be a triangulated category with full triangulated subcate-
gories C, W, V such that V is contained in both YV and C, i. e. pictorially

YV < C
N N
W < D

Let i be the inclusion W C D. Then i factors to a triangulated functor
i:W/V — D/C, i. e. pictorially

w & D
oo
Wy —L.pjc.

where F and G are the Verdier localization functors.
(1) The following three conditions are equivalent, and if they hold, the functor i
is full and faithful.

(ff1) For all morphisms s: W — D in More with W in VW and D in D there is
an object W' in W and a morphism t: D — W' such that the morphism
ts: W — W’ in W is in Mory,.

(ff2) Any morphism C — W with C € C and W € W factors as
C—>V->WwithV €.

(Equivalently: For any morphism s:C — W withC € Cand W € W
there is an object W' € W and a morphism t: W — W' in Mory, such
thatts = 0.)

(ff3) Forall D € D and W € W the obvious morphism
J :Homp,, (D, W) — Hompc(D, W) (B.1)
is bijective.

These three conditions hold if the following condition (ft4) is satisfied.

(ff4) C is classically generated by a collection &€ of objects in D, i.e. C =
thick(€), and any morphism E — W with E € £ and W € W factors
through an object of V.
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(IT) Dually, the following three conditions are equivalent, and if they hold, the
functor i is full and faithful.

(ff1)°P For all morphisms s: D — W in Morc with D in D and W in W there is
an object W' in W and a morphisms t: W' — D such that the morphism
st: W' — W in W is in Mory,.

(ff2)°P Any morphism W — C with W € W and C € C factors as
W -V —>CwithV e V.
(Equivalently: For any morphism s: W — C with W € Wand C € C
there is an object W € W and a morphism t: W' — W in Mory, such
that st = 0.)

(ff3)°P For all W € W and D € D the obvious morphism
Homp/y,(W, D) — Homyp,c(W, D)
is bijective.

Moreover, these three conditions hold if the following condition (ft4)P is
satisfied.

(ff4)°P C is classically generated by a collection £ of objects in D, i.e. C =
thick(E), and any morphism W — E with W € W and E € & factors
through an object of V.

Proof. We use implicitly some results of [27], e.g. Remark 2.1.23. Let
F':D — D/V be the Verdier localization functor and j: D/V — D/C the functor
such that jF' = F.

We start with the proof of (I).

(ff1) implies (ff3): Let D € D and W € W. We have to prove that (B.1) is
bijective.

Injectivity: Let 2: D — W be a morphism in D/V. Then h = F'(f)F'(g)™!
for some D’ in D and morphisms D Ep i) W (a “roof”) in D with g € Mory,.

Assume that j(h) = 0. Then F(f)F(g)™! = 0 and hence F(f) = 0; it is
sufficient to show that F/(f) = 0. Lemma B.1 shows that there is s: W — D”
in Mor¢ such that sf = 0: D’ — D”. Assumption (ff1) applied to s yields W’
in W and ¢: D” — W' such that ts:W — W’ is in Mory. We obtain that
0=1tsf:D’ L w S w This implies 0 = F'((ts) f) = F'(ts)F'(f). Note that
F'(ts) is invertible since s € Mory,. Hence F’(f) = 0.

Surjectivity: Let a morphism a: D — W in D/C be represented by a “coroof”

pLpiw
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with s € Morc. Assumption (ff1) applied to s yields W’ in W and ¢: D’ — W’ such
that s € Mory,. Our coroof is equivalent to the coroof

pLw Ew
which represents a morphism b: D — W in D/V, namely b = F’(ts) ' F/(tf).
Since s and ¢s are in Mor, the same is true for ¢ by the octahedral axiom. Hence

jb) = Fts) "' F(tf) = (F)F($) ' FOF(f) = F(s)"'F(f) = a.

(ff3) implies (ff2): Let a morphism C — W with C € C and W € W be given.
It becomes zero in D/C by Lemma B.1. By assumption it then becomes already zero
in D/V. Lemma B.1 implies that C — W factors through V.

(ff2) implies (ff1): Let a morphism s: W — D in Mor¢ with W in W and D in D

be given. Fit s into a triangle W 5D—>C— [1]W with C € C. By assumption
C — [1]W factorsas C — V — [1]W with V' € V. We fit the morphism V' — [1]W
into a triangle W — W’ — V — [1]W with W’ € W. The partial morphism

w D C (1w
|
W w’ v (1w

can be completed by a morphism 7 to a morphism of triangles, and the morphism ¢s
is the first morphism in the lower triangle and hence lies in Mory,.

(ff4) implies (ff2): A morphism C — W with C € C and W € W factors
through an object of V if and only if C — W becomes the zero morphism in D/V,
by Lemma B.1. Using this one proves that the class of all objects E’ such that each
morphism from E’ to an arbitrary object of W factors through an object of V is
closed under shifts, extensions and direct summands. This implies the claim.

(ff3) implies that i is full and faithful: Let W/, W € W. Since i factors as
W/V — D/V — D/C it is enough to show that

HOmw/V(W/, W) —> HomD/V(W’, W)

is bijective. If W’ <D i> W is a roof with D € D and s € Mor,, representing

a morphism in Homp/, (W', W), then D % W' fits into a triangle with cone in
V C W. The second and third object of this triangle are in WV, so the first object D

is isomorphic to an object W” of W. Let 1: W” = D be an isomorphism. Then
t ft
our roof is isomorphic to the roof W’ Zwr LS w. This argument shows that the

above map is surjective as well as injective.
We leave the proof of the “dual” statements in (II) to the reader. O
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