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Matrix factorizations and semi-orthogonal decompositions
for blowing-ups
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Abstract. We study categories of matrix factorizations. These categories are defined for any
regular function on a suitable regular scheme. Our paper has two parts. In the first part we
develop the foundations; for example we discuss derived direct and inverse image functors
and dg enhancements. In the second part we prove that the category of matrix factorizations
on the blowing-up of a suitable regular scheme X along a regular closed subscheme Y has a
semi-orthogonal decomposition into admissible subcategories in terms of matrix factorizations
on Y and X . This is the analog of a well-known theorem for bounded derived categories
of coherent sheaves, and is an essential step in our forthcoming article [23] which defines a
Landau–Ginzburg motivic measure using categories of matrix factorizations. Finally we explain
some applications.
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1. Introduction

Let X be a separated regular Noetherian scheme of finite Krull dimension over a
field k, for example a regular quasi-projective scheme over k. Let W 2 �.X;OX /
be a regular function on X . A matrix factorization E of W is a diagram

E D
�
E1

e1 // E0
e0

oo
�

of locally free sheaves of finite type (= vector bundles) onX such that e0e1 D W idE1

and e1e0 D W idE0
. These diagrams are the objects of a differential Z2-graded

category. Its homotopy category is a triangulated category, and the category
MF.X;W / of matrix factorizations of W is defined as a certain Verdier quotient
of this triangulated category, see [29].
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Let� W eX ! X be the blowing-up ofX along a regular equi-codimensional closed
subscheme Y . Consider the pullback diagram

E
j //

p

��

eX
�

��
Y

i // X:

The usual construction of the blowing-up endows eX with a line bundle OeX .1/.
We denote its restriction to E by OE .1/. We denote the pullback functions of W
to Y , eX and E by the same symbol. Then � and p induce (left derived) inverse
image functors ��WMF.X;W / ! MF.eX;W / and p�WMF.Y;W / ! MF.E;W /.
Similarly, j gives rise to a (right derived) direct image functor j�WMF.E;W / !
MF.eX;W / (strictly speaking this functor does not land in MF.eX;W / but in an
equivalent bigger category). Now we can state our main theorem. It is the analog of
a well-known result for bounded derived categories of coherent sheaves.
Theorem 1.1 (see Theorem 3.5). Assume that the codimension r of Y in X is � 2,
and let l 2 Z. Then the functors

��WMF.X;W /!MF.eX;W /
and j�.OE .l/˝ p�.�//WMF.Y;W /!MF.eX;W /
are full and faithful. Their essential images ��MF.X;W / and MF.Y;W /l
in MF.eX;W / are admissible subcategories, and we have a semi-orthogonal
decomposition

MF.eX;W / D ˝MF.Y;W /�rC1; : : : ;MF.Y;W /�1; ��MF.X;W /
˛
:

This result is proved in the second part (Section 3) of this article. As a predecessor
we prove Theorem 3.2which provides semi-orthogonal decompositions for projective
space bundles. We also discuss some applications.

In the first part (Section 2) we discuss general results on categories of matrix
factorizations. Certainly categories of global matrix factorizations have been around
for a while [18,29] but there is no systematic treatment of the general theory, with the
exception of [32, 33] which contains many of our results (usually in a more general
context). Here is an outline of themain results. First we define triangulated categories
DCoh.X;W / and DQcoh.X;W / in essentially the same way asMF.X;W / by using
coherent (resp. quasi-coherent) sheaves instead of vector bundles. There are natural
functors

MF.X;W /! DCoh.X;W /! DQcoh.X;W /:

We show that the first functor is an equivalence and the second one is full and faithful
(see Theorem 2.9).

Assume that Y is another separated regular Noetherian scheme of finite Krull
dimension over k. Let � WY ! X be a morphism of schemes over k. The
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usual direct and inverse image functors �� and �� between categories of quasi-
coherent sheaves give rise to functors R��WDQcoh.Y;W / ! DQcoh.X;W / and
L��WDQcoh.X;W / ! DQcoh.Y;W /. This is deduced from the general theory of
derived functors. Moreover, there is an adjunction .L��;R��/ (see Theorem 2.35).
Similarly, we define functors RHom .�;�/ and .�˝L �/.

We then describe several (differential Z2-graded) enhancements of MF.X;W /
(and DQcoh.X;W /) and show that they are equivalent (see Section 2.6). They are
constructed using injective quasi-coherent sheaves, Drinfeld dg quotient categories,
and Čech resolutions, respectively. Finally we show that the subcategory of compact
objects in DQcoh.X;W / is the Karoubi envelope ofMF.X;W /, and thatMF.X;W /
has a classical generator (see Section 2.7).

In two appendices we collect some results on admissible subcategories and semi-
orthogonal decompositions (Appendix A) and on embeddings of Verdier quotients
(Appendix B).

This article is part of our project to construct motivic measures using categories of
matrix factorizations. We sketch our main results. They will appear in forthcoming
articles.

We now assume that k is algebraically closed and of characteristic zero. Denote
by K0.VarA1/ the motivic Grothendieck group of varieties over A1 WD A1

k
. Given

W WX ! A1 and V WY ! A1 we defineW � V WX � Y ! A1 by .W � V /.x; y/ D
W.x/ C V.y/. This operation turns K0.VarA1/ into a commutative ring. By a
Landau–Ginzburg motivic measure we mean a morphism of rings from K0.VarA1/

to some other ring.
Given a smooth varietyX andW WX ! A1 we define the category of singularities

of W as
MF.W / WD

Y
a2k

MF.X;W � a/:

Only finitely many factors of this product are non-zero, and MF.W / vanishes if and
only if W is a smooth morphism. Let MF.W /dg;\ be a suitable enhancement of the
Karoubi envelope ofMF.W /. IfW is a proper morphism,MF.W /dg;\ is a saturated
dg (= differential Z2-graded) category.

We denote byK0.satZ2

k
/ the free abelian group generated by the quasi-equivalence

classes of saturated dg (= differential Z2-graded) categories with relations coming
from semi-orthogonal decompositions into admissible subcategories on the level of
homotopy categories. The tensor product of dg categories induces a ring structure
on K0.satZ2

k
/. One may think of K0.satZ2

k
/ as a Grothendieck ring of suitable

pretriangulated dg categories. Here is the main result of the forthcoming article [23].
Theorem 1.2. There is a unique morphism

�WK0.VarA1/! K0.satZ2

k
/ (1.1)

of rings (= a Landau–Ginzburg motivic measure) that maps ŒX;W � to the class of
MF.W /dg;\ whenever X is a smooth variety andW WX ! A1 is a proper morphism.
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In particular, � is a morphism of abelian groups and maps ŒX;W � to the class
of MF.W /dg;\ whenever X is a smooth (connected) variety and W WX ! A1 is a
projective morphism. These two properties determine � uniquely.

SinceK0.VarA1/ has a presentation whose relations come from suitable blowing-
ups (see [3, Thm. 5.1]), Theorem 1.1 and its predecessor Theorem 3.2 essentially
imply that there is a unique morphism �WK0.VarA1/! K0.satZ2

k
/ of abelian groups

sending ŒX;W � to the class ofMF.W /dg;\ ifX is a smooth variety andW is a proper
morphism. Here we implicitly use the fact mentioned above that MF.W /dg;\ is a
saturated dg category for properW . This fact and multiplicativity of � is established
in [23]. We also give a careful definition of K0.satZ2

k
/ there.

Theorem 1.2 above was motivated by and is a relative version of a result by
A. Bondal, M. Larsen and the first author (see [8, 8.2]): they construct a morphism
of rings

K0.Vark/! K0.satZk/

(= a motivic measure) that maps the class of a smooth projective variety X over k to
the class of the standard enhancement ofDb.Coh.X// by bounded below complexes
of injective sheaves with bounded coherent cohomologies; here K0.Vark/ is the
Grothendieck group of varieties over k, andK0.satZk/ is defined similarly asK0.satZ2

k
/

starting from saturated differential Z-graded categories.
In the article [35] the second author shows that the above two motivic measures

are connected by a commutative diagram

K0.Vark/ //

��

K0.satZk/

��
K0.VarA1/

� // K0.satZ2

k
/

of ring morphisms where the vertical morphism on the left maps ŒX� to ŒX; 0� and the
vertical morphism on the right is induced by folding a differential Z-graded category
into a differential Z2-graded category (and taking its triangulated envelope). The
upper (resp. lower) horizontal arrow maps Lk WD ŒA1� (resp. L.A1;0/ WD ŒA1; 0�) to 1.

In the article [22] we prove that the motivic vanishing cycles map

�WK0.VarA1/!M O�

k

to the equivariant Grothendieck ringM O�

k
is also a Landau–Ginzburgmotivicmeasure

(here O� is the projective limit of the group schemes �n of n-th roots of unity). We
show that it is related to the above measure (1.1) via Euler characteristics with
compact support on one hand and Euler characteristics of periodic cyclic homology
on the other hand.
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2. Categories of curved dg sheaves

As described in the introduction we discuss foundational results on categories of
matrix factorizations. Our main references for this section were [29, 32, 33]. Some
of the ideas are also contained in [18].

Let k be a fixed field. All schemes considered are schemes over k. We say that a
scheme X satisfies condition (srNfKd) if

(srNfKd) X is a separated regular Noetherian scheme of finite Krull dimension.

For example, any regular quasi-projective scheme satisfies condition (srNfKd). Note
that any coherentOX -module on an (srNfKd)-schemeX is a quotient of a locally free
OX -module of finite type (by theorems of Kleiman [14, Ex. III.6.8] and Auslander
and Buchsbaum [24, Thm. 20.3]); in particular, such a scheme satisfies condition
(ELF) in [29].

Fix a scheme X satisfying condition (srNfKd). Let W 2 �.X;OX / be a global
regular functionwhichwe consider as amorphismW WX ! A1 WD A1

k
D Spec kŒT �.

We do not assume that the morphism W is flat, for example W may be the zero
function.

In this section graded means Z2-graded (where Z2 D Z=2Z) if not explicitly
stated otherwise, and differential graded is often abbreviated by dg. We use lower
indices when referring to the graded components of a Z2-graded object.

The usual notions and results for differential Z-graded categories (quasi-
equivalence, pretriangulated dg category, (Drinfeld) dg quotient, etc.) have obvious
counterparts in the world of differential Z2-graded categories.

2.1. Definition of various categories. By a sheaf on X we mean an OX -module.
We denote by Sh.X/ the category of all sheaves onX , and by Qcoh.X/ and Coh.X/
the full subcategories of quasi-coherent and coherent sheaves, respectively. By
InjSh.X/ (resp. InjQcoh.X/) we denote the full subcategory of injective objects
in Sh.X/ (resp. Qcoh.X/). We write Locfree.X/ (resp. FlatQcoh.X/) for the full
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subcategory of Qcoh.X/ consisting of locally free sheaves (of possibly infinite rank)
(resp. of quasi-coherent sheaves that are flat over OX ).

We recall some results from [13, II.§7] and deduce some well-known conse-
quences.
Theorem 2.1 ([13, II.§7]). (Here X can be any locally Noetherian scheme.)

(a) Every object of Qcoh.X/ can be embedded in an object of
InjSh.X/ \ Qcoh.X/.

(b) The injective objects in Qcoh.X/ are precisely the injective objects of Sh.X/
that are quasi-coherent, InjQcoh.X/ D InjSh.X/ \ Qcoh.X/.

(c) If I 2 Qcoh.X/ is an injective object and U � X is open,
then I jU 2 Qcoh.U / is again injective.

(d) Any direct sum of objects of InjSh.X/ (resp. InjQcoh.X/) is in InjSh.X/
(resp. InjQcoh.X/).

Proof. (a): This is [13, Thm. II.7.18].
(b): The inclusion � is obvious. For the inclusion � let F 2 Qcoh.X/. Then

F � J for J 2 InjSh.X/ \ Qcoh.X/ by (a). If F is injective in Qcoh.X/, this
inclusion splits, and hence F is an injective object of Sh.X/.

(c): By (b), I is an injective OX -module. Let j WU ! X be the inclusion. We
have the adjunction .jŠ; j Š D j �/ (of functors between Sh.X/ and Sh.U /). Since jŠ
is exact this shows that j �.I / is an injectiveOU -module. It is quasi-coherent, so we
can use (b) again.

(d): The statement for InjSh.X/ is precisely [13, Cor. 7.9], and the statement for
InjQcoh.X/ then follows from (b) since the inclusion Qcoh.X/ � Sh.X/ preserves
direct sums (for NoetherianX one can also use [13, Prop. 7.2] and the example before
that proposition).

Definition 2.2. The dg (differential Z2-graded) category Sh.X;W / is defined as
follows. Its objects are W -curved dg sheaves on X , i. e. diagrams

E D . E1
e1 // E0
e0

oo /

in Sh.X/ satisfying eiC1ei D W idEi
, for i 2 Z2. The morphism space between two

W -curved dg sheaves E, E 0 is the graded module

HomSh.X;W /.E;E
0/ WD

M
l2Z2

�M
i2Z2

HomOX
.Ei ; E

0
iCl/

�
with differential d.g/ D e0 ıg� .�1/jgjg ı e where g is homogeneous of degree jgj.

Denote byQcoh.X;W /, Coh.X;W /,MF.X;W /, InjQcoh.X;W /, Locfree.X;W /,
and FlatQcoh.X;W / the full dg subcategories of Sh.X;W / consisting of objects
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whose components are quasi-coherent sheaves, coherent sheaves, locally free sheaves
of finite type (= vector bundles), injective quasi-coherent sheaves, locally free sheaves,
and flat quasi-coherent sheaves, respectively. Objects ofMF.X;W / are calledmatrix
factorizations of W .

The shift Œ1�E of a W -curved dg sheaf E as above is defined as

Œ1�E D . E0
�e0 // E1
�e1

oo /:

Given a dg category C, the category Z0.C/ and the homotopy category ŒC� of C
are defined as usual: they have the same objects as C, but

HomZ0.C/.E;E
0/ D Z0.HomC.E;E

0//

and HomŒC�.E;E 0/ D H0.HomC.E;E
0//:

Remark 2.3. The categoriesZ0.Sh.X;W //,Z0.Qcoh.X;W // andZ0.Coh.X;W //
are abelian categories. A sequence in Z0.MF.X;W //, Z0.InjQcoh.X;W //,
Z0.Locfree.X;W // or Z0.FlatQcoh.X;W // will be called exact if it is exact in
the ambient abelian category Z0.Qcoh.X;W //.

Let F D .� � � ! F i
d i

F
��! F iC1 ! � � � / be a complex in Z0.Sh.X;W //. We

define its totalization Tot.F / DW T D . T1
t1 // T0
t0
oo / 2 Sh.X;W / by

Tl WD
M

i2Z; j2Z2;
iCj�l mod 2

F ij

for l 2 Z2 and tl jF i
j
D .d iF /j C .�1/

if ij , for l; j 2 Z2 and i 2 Z satisfying
i C j � l mod 2.

If gWE ! E 0 is a morphism in Z0.Sh.X;W // we define its cone Cone.g/
to be the totalization of the complex .� � � ! 0 ! E

g
�! E 0 ! 0 ! � � � / with

E 0 in degree zero. This shows that Sh.X;W / is a pretriangulated dg category, and
similarly for Qcoh.X;W /, Coh.X;W /, MF.X;W /, InjQcoh.X;W /, Locfree.X;W /
and FlatQcoh.X;W /. In particular, the homotopy categories

ŒSh.X;W /�; ŒQcoh.X;W /�; ŒCoh.X;W /�; ŒMF.X;W /�;
ŒInjQcoh.X;W /�; ŒLocfree.X;W /� and ŒFlatQcoh.X;W /�

are triangulated1 categories.
1 Our (standard) triangles and the (standard) triangles in [29] differ in the sign of the last morphism.

However the associated homotopy categories are equivalent as triangulated categories. For this one may
use [16, 10.1.10.i] or the equivalence that multiplies the differentials e0, e1 of all objects E by �1 and
is the identity on morphisms.
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Remark 2.4. Notice that one cannot define the cohomology of an object E 2
Sh.X;W / (unless W D 0), but we can define the cohomology of a complex F as
above. In particular, it makes sense to ask whether F is exact.
Definition 2.5. Denote by AcyclŒSh.X;W /� the full triangulated subcategory of
ŒSh.X;W /� classically generated by the totalizations of all short exact sequences

0! F 1 ! F 2 ! F 3 ! 0

with F i 2 Sh.X;W /. (Instead of short exact sequences one can take all bounded
exact complexes, see Lemma 2.7.(b) below.) By definition, AcyclŒSh.X;W /� is a
thick subcategory of ŒSh.X;W /�, i. e. a strict full triangulated subcategory closed
under direct summands.

Following [32, 33] we define the absolute derived category DSh.X;W / of
W -curved dg sheaves as the Verdier quotient

DSh.X;W / WD ŒSh.X;W /�=AcyclŒSh.X;W /�:

Similarly, we consider the full subcategories

AcyclŒQcoh.X;W /� � ŒQcoh.X;W /�; AcyclŒCoh.X;W /� � ŒCoh.X;W /�;
AcyclŒMF.X;W /� � ŒMF.X;W /�; AcyclŒLocfree.X;W /� � ŒLocfree.X;W /�;

AcyclŒFlatQcoh.X;W /� � ŒFlatQcoh.X;W /�;

and the corresponding Verdier quotients

DQcoh.X;W / D ŒQcoh.X;W /�=AcyclŒQcoh.X;W /�;
DCoh.X;W / D ŒCoh.X;W /�=AcyclŒCoh.X;W /�;
MF.X;W / D ŒMF.X;W /�=AcyclŒMF.X;W /�;

DLocfree.X;W / D ŒLocfree.X;W /�=AcyclŒLocfree.X;W /�;
DFlatQcoh.X;W / D ŒFlatQcoh.X;W /�=AcyclŒFlatQcoh.X;W /�:

The triangulated categoryMF.X;W / is called the category ofmatrix factorizations
of W .

There is another characterization of AcyclŒMF.X;W /� given in Corollary 2.59
below. We will be mainly interested in the categoryMF.X;W /.
Remark 2.6. Let X1; : : : ; Xm be the connected components of X . Then

DSh.X;W / D
mY
iD1

DSh.Xi ; W /;

and similarly for all other categories defined above. So to study these categories one
may assume thatX is connected (if needed), and then the mapW is either flat or else
constant (here constant means that W.X/ consists of a single point in A1 which is
then necessarily closed; if we think of W as an element of �.X;OX / it means that
W 2 k � �.X;OX /).
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Here is a useful lemma.
Lemma2.7. LetM beSh.X;W /,Qcoh.X;W /,Coh.X;W /,MF.X;W /,Locfree.X;W /,
or FlatQcoh.X;W /.

(a) Any short exact sequence 0! F �1
p
�! F 0

q
�! F 1 ! 0 in Z0.M/ gives rise

to a triangle
F �1

p
�! F 0

q
�! F 1 ! Œ1�F �1

in DM (where DMF.X;W / WDMF.X;W /).
(b) Let

F D .� � � ! 0! F 1
f 1

��! F 2
f 2

��! F 3
f 3

��! F 4 ! � � � ! F n ! 0! � � � /

be a bounded exact complex in Z0.M/. Then Tot.F / 2 AcyclŒM�.

(c) If F D .� � � ! 0! P a ! � � � ! P b
v
�! I bC1 ! � � � ! I c ! 0! � � � / is

a bounded complex in Z0.M/ that is composed of two bounded complexes P
and I as indicated, there is a standard triangle

Œ1�Tot.P /
v
�! Tot.I /! Tot.F /! Tot.P /

in ŒM�. If F is exact, Œ1�Tot.P /
v
�! Tot.I / is an isomorphism in DM.

(d) Let F be a bounded complex in Z0.M/. If each F i is isomorphic to 0
in ŒM�, then Tot.F / D 0 in ŒM�. Similarly, if each F i is in AcyclŒM�, then
Tot.F / 2 AcyclŒM�.

Proof. (a): We have standard triangles

F �1
p
�! F 0

h
1
0

i
��! Cone.p/

Œ 0 1 �
���! Œ1�F �1;

where Cone.p/ D F 0 ˚ Œ1�F �1 as a graded sheaf, and

Cone.p/
Œ q 0 �
���! F 1

h
1
0

i
��! Cone.Œ q 0 �/

Œ 0 1 �
���! Œ1�Cone.p/

in ŒM�. Note that

Cone.Œ q 0 �/ D F 1 ˚ Œ1�Cone.p/ D F 1 ˚ Œ1�F 0 ˚ F �1

has differential

"
f 1 q 0

0 �f 0 �p

0 0 f �1

#
and hence is the totalization of the exact complex

0! F �1
�p
��! F 0

q
�! F 1 ! 0

with F 0 in odd degree. This implies that Cone.p/
Œ q 0 �
���! F 1 becomes an

isomorphism in DM.
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(b): Factor F 2 ! F 3 in Z0.Sh.X;W // into an epimorphism followed by a
monomorphism, F 2

p
�! Q

i
�! F 3, and note that Q 2 M (for example, if M D

MF.X;W /, the kernel of F n�1 � F n is in MF.X;W /, and we can iterate this
argument). Consider the vertical morphism of horizontal complexes

RW

u

��

0 //

��

0 //

��

0 //

��

Q
�i //

1

��

F 3
�f 3

//

��

F 4 //

��

� � � // 0

S W 0 // F 1
f 1

// F 2
p // Q // 0 // 0 // � � � // 0

We leave it to the reader to check that the mapping cone Cone.u/ of this morphism
is isomorphic to F in the homotopy category of complexes in Z0.M/. Hence
Tot.Cone.u// Š Tot.F / in ŒM�. On the other hand we have a short exact
sequence 0 ! Tot.S/ ! Tot.Cone.u// ! Œ1�Tot.R/ ! 0 in Z0.M/ and hence
a triangle Tot.S/ ! Tot.Cone.u// ! Œ1�Tot.R/ ! Œ1�Tot.S/ in DM by (a). By
induction Tot.S/ and Tot.R/ are in AcyclŒM�, and hence Tot.F / Š Tot.Cone.u// 2
AcyclŒM�.

(c): Obvious. If F is exact, use (b).
(d): We argue by induction on the number of i with F i 6D 0 inM. If this number

is � 1 the claim is obvious. Otherwise let i 2 Z be non-maximal with F i 6D 0. Let
w�iF be the complex obtained from F by replacing all terms in degrees > i by 0,
and define w>iF similarly. As in (c), there is a standard triangle

Œ1�Tot.w�iF /! Tot.w>iF /! Tot.F /! Tot.w�iF /

in ŒM�. By induction the first two terms are isomorphic to zero in ŒM� (resp. are
in AcyclŒM�), hence so is Tot.F /.

2.2. Matrix factorizations and the category of singularities. In case themorphism
W WX ! A1 is flat we recall an important theorem proved in [29]. Recall that the
category of singularitiesDSg.Y / of a Noetherian scheme Y is defined as the Verdier
quotient

DSg.Y / WD D
b.Coh.Y //=Perf.Y /;

where Db.Coh.Y // is the bounded derived category of coherent sheaves on Y and
Perf.Y / is the category of perfect complexes.

LetX0 be the scheme-theoretical zero fiber of the morphismW WX ! A1. Given

E D . E1
e1 // E0
e0

oo / 2 MF.X;W / the cokernel of the map e1 is annihilated by W ,

hence it comes from an object in Coh.X0/. We denote this object by cok e1.
Theorem 2.8 ([29]). Assume that the morphismW WX ! A1 is flat. Then the above
construction induces a functor

cokWMF.X;W /! DSg.X0/

which is an equivalence of triangulated categories.
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The above theorem is useful because it gives us two completely different
descriptions of the same triangulated category.

2.3. Some embeddings and equivalences. Our next aim is to prove the equivalences
and embeddings stated in the following theorem.
Theorem 2.9.

(a) The functor ŒInjQcoh.X;W /�! DQcoh.X;W / is an equivalence.
(b) The functor DCoh.X;W /! DQcoh.X;W / is full and faithful.
(c) The functorMF.X;W /! DCoh.X;W / is an equivalence.
(d) The functor DLocfree.X;W /! DQcoh.X;W / is an equivalence.
(e) The functor DFlatQcoh.X;W /! DQcoh.X;W / is an equivalence.

Proof. Consider the commutative diagrams of inclusions of full triangulated cate-
gories

AcyclŒMF.X;W /� �

\ .�1/

AcyclŒCoh.X;W /� �

\ .�2/

AcyclŒQcoh.X;W /� �

\ .�3/

f0g

\

ŒMF.X;W /� � ŒCoh.X;W /� � ŒQcoh.X;W /� � ŒInjQcoh.X;W /�

and

AcyclŒLocfree.X;W /� �

\ .�4/

AcyclŒQcoh.X;W /� �

\ .�5/

AcyclŒFlatQcoh.X;W /�

\

ŒLocfree.X;W /� � ŒQcoh.X;W /� � ŒFlatQcoh.X;W /�:

We will show that the three equivalent conditions (ff1)op, (ff2)op, (ff3)op of
Proposition B.2 hold for the squares .�1/ and .�2/ (and then also for the rectangle
formed out of these two squares), and for the squares .�4/ and .�5/, and that the
three equivalent conditions (ff1), (ff2), (ff3) hold for the square .�3/. This will imply
that all five functors in Theorem 2.9 are full and faithful.

The following lemma is essentially contained in [33, Thm. 3.6]. It shows that
the functors considered in parts (a), (c), (d) and (e) of Theorem 2.9 are essentially
surjective.

Lemma 2.10.
(a) For any F 2 Qcoh.X;W / there exists an exact sequence

0! F ! I 0 ! � � � ! I n ! 0

inZ0.Qcoh.X;W // with all I j 2 InjQcoh.X;W /. In particular, the obvious
morphismF ! Tot.I / has its cone inAcyclŒQcoh.X;W /� and hence becomes
an isomorphism in DQcoh.X;W /.
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(b) Let E 2 Coh.X;W /. Then there exists an exact sequence

0! P n ! � � � ! P 0 ! E ! 0

in Z0.Coh.X;W // with all P i 2 MF.X;W /. In particular, the obvious
morphism Tot.P /! E has its cone inAcyclŒCoh.X;W /� and hence becomes
an isomorphism in DCoh.X;W /.

(c) Let E 2 Qcoh.X;W /. Then there exists an exact sequence

0! P n ! � � � ! P 0 ! E ! 0

in Z0.Qcoh.X;W // with all P i 2 Locfree.X;W / � FlatQcoh.X;W /.
In particular, the obvious morphism Tot.P / ! E has its cone in
AcyclŒQcoh.X;W /� and hence becomes an isomorphism in DQcoh.X;W /.

Proof. (a) Choose injective morphisms g0WF0 ! J0 and g1WF1 ! J1, such that J0
and J1 are injective quasi-coherent sheaves (use Theorem 2.1). Consider the object
I 0 2 InjQcoh.X;W /, where I 00 D I 01 D J0 ˚ J1 and i 00 D W ˚ id, i 01 D id˚W .
We denote I 0 by G�.J / for future reference. Note that G�.J / only depends on the
graded sheaf J .

Let h D .h0; h1/WF ! I 0 be the injective morphism in Z0.Qcoh.X;W / given
by h0 D .g0; g1f0/

t, h1 D .g0f1; g1/
t. Now define I 0 WD I 0, replace F by cok h

and repeat the procedure. Since X is regular of finite Krull dimension we eventually
arrive at the desired finite resolution (the global dimension of all local rings OX;x
is bounded by the Krull dimension of X , and injectivity of a quasi-coherent sheaf
can be tested on the stalks by [13, Prop. 7.17] and Theorem 2.1). The isomorphism
F
�
�! Tot.I / in DQcoh.X;W / follows from Lemma 2.7.(c).
(b) We apply the dual process. Namely, our assumptions on X allow us to

choose vector bundles N0 and N1 with surjective morphisms g0WN0 � E0 and
g1WN1� E1. Consider the object P 0 2 MF.X;W / where P 00 D P 01 D N0 ˚ N1
and p00 D id˚W , p01 D W ˚ id. We denote P 0 by GC.N / for future reference. It
only depends on the graded sheaf N .

Let hWP 0 ! E be the surjective morphism in Z0.Coh.X;W // given by h0 D
.g0; e1g1/, h1 D .e0g0; g1/. Now replace E by ker h and repeat the procedure.
Since X is regular of finite Krull dimension we eventually arrive at the desired finite
resolution. The last statement follows from Lemma 2.7.(c).

(c): Since any quasi-coherent sheaf is the union of its coherent subsheaves [14,
Exercise II.5.15(e)] there are locally free sheaves N0 and N1 with epimorphisms
gi WNi � Ei . We then proceed as in the proof of (b), using [1, Corollary 4.5].

Remark 2.11. If K is any quasi-coherent sheaf on X , then

. K
id // K
W
oo / 2 Qcoh.X;W /
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is obviously zero in ŒQcoh.X;W /� and in DQcoh.X;W /. So if

0! F ! I 0 ! � � � ! I n ! 0

is the exact sequence constructed in the proof of Lemma 2.10.(a), all objects
I 0; : : : ; I n�1 are zero in DQcoh.X;W /. This implies that F and Œn�I n are
isomorphic in DQcoh.X;W / (use Lemma 2.7.(a)). Similar conclusions hold for
the exact sequences constructed in the proof of parts (b) and (c) of Lemma 2.10.

Remark 2.12. Let pWE ! F be a morphism in Z0.Qcoh.X;W //, and let

0! E ! A0 ! A1 ! � � �

be an exact sequence in Z0.Qcoh.X;W //. Then there is a resolution F ! I as in
Lemma 2.10.(a) and a morphism A! I of resolutions that lifts p.

Namely, in the notation of the proof of Lemma 2.10.(a), find morphisms
ql WA

0
l
! Jl that restrict to glpl on El , for l D 0; 1. Then

.q0; q1a0/
t
WA00 ! I 00 D J0 ˚ J1 and .q0a1; q1/

t
WA01 ! I 01 D J0 ˚ J1

define a morphismA0 ! I 0 that lifts pWE ! F . Pass to the cokernels and proceed.

Lemma 2.13. We have

HomŒQcoh.X;W /�.AcyclŒQcoh.X;W /�; ŒInjQcoh.X;W /�/ D 0:

In particular, condition (ff2) of Proposition B.2 holds for the square .�3/.

Proof. Let J 2 InjQcoh.X;W /. Let 0 ! E1 ! E2 ! E3 ! 0 be a short
exact sequence in Z0.Qcoh.X;W // with totalization Tot.E/. The dg module
HomQcoh.X;W /.Tot.E/; J / is the totalization of the short exact sequence

0! HomQcoh.X;W /.E
3; J /! HomQcoh.X;W /.E

2; J /! HomQcoh.X;W /.E
1; J /! 0

of dg modules. Hence it is obviously (or by Lemma 2.46 below) acyclic, so
HomŒQcoh.X;W /�.Tot.E/; J / D 0. This implies the lemma.

Remark 2.14. For any F 2 ŒQcoh.X;W /� and I 2 ŒInjQcoh.X;W /� the canonical
map

HomŒQcoh.X;W /�.F; I /
�
�! HomDQcoh.X;W /.F; I /

is an isomorphism, since condition (ff3) holds for the square .�3/.

Lemma 2.15. Condition (ff2)op of Proposition B.2 holds for the square .�2/.
Namely, let L 2 ŒCoh.X;W /� and A 2 AcyclŒQcoh.X;W /�. Then any morphism
L! A in ŒQcoh.X;W /� factors through some object A0 2 AcyclŒCoh.X;W /�.
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Proof. Step 1. Let E D . E1
e1 // E0
e0

oo / 2 Qcoh.X;W / and let K � E be a graded

coherent subsheaf, i. e. Ki � Ei is a coherent subsheaf for i D 0; 1. Then there
exists F 2 Coh.X;W / such that F � E in Z0.Qcoh.X;W // andK � F as graded
sheaves. Indeed, take F1 D K1 C e0K0, F0 D K0 C e1K1.

Step 2. Given an exact sequence

E D .0! E1
d1

�! E2 ! � � � ! En�1
dn�1

���! En ! 0/

in Z0.Qcoh.X;W // and graded coherent subsheavesKi � Ei , there exists an exact
sequence

0! F 1 ! � � � ! F n ! 0

in Z0.Coh.X;W // which is a subsequence of E such that Ki � F i for all
i D 1; : : : ; n.

Indeed, first we may assume that d i .Ki / � KiC1 (by replacing KiC1 with
KiC1 C d i .Ki /). Using Step 1, we find a subobject F n � En, such that
F n 2 Coh.X;W / and Kn � F n. Between Kn�1 and .dn�1/�1.F n/ there is a
graded coherent sheaf surjecting onto F n (use [14, Ex. II.5.15]). Step 1 again then
shows that there is an object F n�1 2 Coh.X;W / such that Kn�1 � F n�1 � En�1
and dn�1.F n�1/ D F n.

Now proceed by inductionwithF n�1\ker dn�1 � ker dn�1 instead ofF n � En
and note that dn�2.Kn�2/ � Kn�1 \ ker dn�1.

Step 3. Assume that A D Tot.E/ is the totalization of an exact sequence E
as above and let gWL ! A be a morphism in ŒQcoh.X;W /�. Represent g by a
morphism OgWL! A in Z0.Qcoh.X;W /� and let K � A be the image of Og. Let Ki

l

be the image of KiCl under the obvious projection Tot.E/iCl ! Ei
l
of sheaves.

This defines the graded sheaves Ki . Step 2 applied in this setting yields an exact
sequence F in Z0.Coh.X;W // such that Og factors through A0 D Tot.F / � A.
Hence g factors through A0 2 AcyclŒCoh.X;W /�.

Now use that condition (ff4)op in Proposition B.2 implies condition (ff2)op (it
would have been sufficient to consider totalizations of short exact sequences only).
This finishes the proof.

Lemma 2.16. The three equivalent conditions (ff1)op, (ff2)op, (ff3)op hold for the
square .�1/.

We will give two proofs of this key fact. The first proof from [18] is short but
uses Theorem 2.8 and hence only works in case the morphism W WX ! A1 is flat.
The second proof is essentially the one given in [32, Prop. 1.5] (in a slightly different
language) and works in general.
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Lemma 2.17. Assume that X is affine.
(a) Then

HomŒQcoh.X;W /�.ŒMF.X;W /�;AcyclŒQcoh.X;W /�/ D 0:
In particular,

ŒMF.X;W /� \ AcyclŒQcoh.X;W /� D 0;
ŒMF.X;W /� \ AcyclŒCoh.X;W /� D 0 and AcyclŒMF.X;W /� D 0:

(b) ŒMF.X;W /�
�
�!MF.X;W / canonically.

Proof. Clearly (a) implies (b). To prove (a) we argue as in the proof of Lemma 2.13.
Namely let P 2 MF.X;W / and let E be the totalization of a short exact sequence

0! E1 ! E2 ! E3 ! 0

in Z0.Qcoh.X;W //. Then the dg module HomQcoh.X;W /.P;E/ is the totalization
of the short exact (since X is affine we can view both Pi as projective �.X;OX /-
modules) sequence

0! HomQcoh.X;W /.P;E
1/! HomQcoh.X;W /.P;E

2/! HomQcoh.X;W /.P;E
3/! 0

of dg modules and hence is acyclic. This implies all the assertions in (a).

Proof of Lemma 2.16 in case W WX ! A1 is flat. We show that condition (ff1)op
holds for the square .�1/: Let sWE ! P in ŒCoh.X;W /�withP 2 ŒMF.X;W /� and
cone in AcyclŒCoh.X;W /�. Then there exists t WP 0 ! E with P 0 2 ŒMF.X;W /�
such that the cone of st is in AcyclŒMF.X;W /�.

By Lemma 2.10.(b) we can find t and P 0 as required such that the cone of t
is in AcyclŒCoh.X;W /�. Hence the cone of st is in AcyclŒCoh.X;W /�, and
obviously in ŒMF.X;W /�. We need to show that ŒMF.X;W /�\AcyclŒCoh.X;W /� D
AcyclŒMF.X;W /�. Namely, let F 2 ŒMF.X;W /� \ AcyclŒCoh.X;W /�. It suffices
to show that its image cokF in DSg.X0/ under the equivalence of Theorem 2.8 is
zero. But this is true locally by Lemma 2.17, and hence globally.

Proof of Lemma 2.16 for arbitrary W WX ! A1. It suffices to prove the following
claim (use condition (ff4)op of Proposition B.2): Let E 2 ŒMF.X;W /� and let L be
the totalization of a short exact sequence

0! U
i
�! V

p
�! Q! 0

in Z0.Coh.X;W // (with U of odd degree). Then any morphism E ! L in
ŒCoh.X;W /� factors through an object of AcyclŒMF.X;W /�.

Step 1. Let G 2 Coh.X;W /. Let  WG ! L be a degree zero morphism in
Coh.X;W /. Then  D .a; b; c/ where aWG ! U , bWG ! V and cWG ! Q are
morphisms in Coh.X;W / of degrees 1, 0, 1, respectively. Notice that the differential
of  is given by the formula d D d.a; b; c/ D .�da; iaC db; pb � dc/.
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Lemma 2.18. In this setting assume that the degree zero morphism  D

.a; b; c/WG ! L is closed and that c can be lifted to a degree one morphism
t WG ! V in Coh.X;W /, i. e. pt D c. Then  is homotopic to zero.

Proof. Let Hom D HomCoh.X;W /. We have an exact sequence of dg modules

0! Hom.G;U /
i�
�! Hom.G; V /

p�
�! Hom.G;Q/:

Note that dc D d.pt/ D pdt . Then p.b � dt/ D pb � dc D 0, so there
exists a degree zero morphism s 2 Hom.G;U / such that b � dt D is. Then
ids D d.is/ D db D �ia, hence �ds D a and d.s; t; 0/ D .a; b; c/ D  .

Step 2. Now assume that N is a graded coherent sheaf. Recall the object
GC.N / 2 Coh.X;W / freely generated by N (see the proof of Lemma 2.10 above)
and note that there is a canonical inclusion N � GC.N / of graded sheaves. For any
S 2 Coh.X;W / a degree zero morphism r WGC.N /! S is uniquely determined by
the restrictions r jN and .dr/jN ; conversely, given two graded morphismsN ! S of
degrees 0 and 1 respectively, they arise from such a morphism r . A similar statement
holds for degree one morphisms GC.N /! S .

Let �WN ! L be a degree zero morphism of graded sheaves. Similarly as
above we represent it as a triple � D .a0; b0; c0/ where a0WN ! U , b0WN ! V and
c0WN ! Q are morphisms of graded sheaves of degrees 1, 0, 1, respectively.

Lemma 2.19. In this setting assume that the degree one morphism c0WN ! Q of
graded sheaves can be lifted to a degree one morphism sWN ! V , i. e. ps D c0.
Let e�WGC.N / ! L be the closed degree zero morphism uniquely determined bye�jN D �WN ! L (and de� D 0), and let e� D .a; b; c/ be its components. Then
the degree one morphism cWGC.N / ! Q can be lifted to a degree one morphism
t WGC.N /! V , i. e. pt D c.

Proof. Extend the degree onemorphism sWN ! V to a unique degree onemorphism
t WGC.N / ! V such that .dt/jN D b0. Note thate�jN D � implies bjN D b0 and
cjN D c0, and that de� D 0 implies pb D dc. So pt jN D ps D c0 D cjN and
.d.pt//jN D p.dt/jN D pb

0 D pbjN D .dc/jN . Hence pt D c.

Step 3. To complete the proof assume that we are given a morphism E ! L

in ŒCoh.X;W /�, which we represent by a closed degree zero morphism morphism
" D .a00; b00; c00/WE ! Lwhere a00; b00; c00 are as explained above. LetN be a graded
vector bundlemapping surjectively onto the "fiber product"V �QE of themorphisms
pWV ! Q and c00WE ! Q (for l 2 Z2 we have .V �Q E/l D VlC1 �QlC1

El ).
This yields a surjective degree zero morphism qWN ! E of graded sheaves such
that c00qWN ! Q can be lifted to V .
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Let � WD "qWN ! LI its third component is c0 WD c00q. Let e� D
.a; b; c/WGC.N /! L be the closed degree zero extension of �. By Lemma 2.19 the
morphism c can be lifted to a degree one morphism t WGC.N /! V , i. e. pt D c.

Similarly qWN ! E extends uniquely to a (surjective) closed degree zero
morphism eqWGC.N / ! E, and we have "eq D e�. Let �WR ! GC.N / be the
kernel of eq. Then R 2 MF.X;W / (since the kernel of a surjective morphism
of vector bundles is a vector bundle). Let C WD Cone.�/. As a graded sheaf
C D GC.N / ˚ Œ1�R, so C 2 MF.X;W /. The natural closed degree zero
morphism .eq; 0/WC ! E has cone Cone..eq; 0// in AcyclŒMF.X;W /�, cf. the proof
of Lemma 2.7.(a).

The composition C
.eq;0/
���! E

"
�! L is a closed degree zero morphism and given

by ."eq; 0/ D .e�; 0/I its third component is .c; 0/WC D GC.N /˚ Œ1�R! Q and can

be factored as C
.t;0/
���! V

p
�! Q. Hence Lemma 2.18 shows that this composition

C
.eq;0/
���! E

"
�! L is homotopic to zero. So it is zero in the triangulated category

ŒCoh.X;W /�, and the morphism "WE ! L factors there through Cone..eq; 0// 2
AcyclŒMF.X;W /�. This proves our claim.

Lemma 2.20. The three equivalent conditions (ff1)op, (ff2)op, (ff3)op hold for the
squares .�4/ and .�5/.

Proof. The proof of Lemma 2.16 for arbitrary W WX ! A1 can easily be modified
to show this result. Observe that the kernel of a surjective morphism of locally
free sheaves (resp. flat quasi-coherent sheaves) is again locally free (resp. flat quasi-
coherent).

The proof of Theorem 2.9 is complete.

We deduce some corollaries from the proof of Theorem 2.9.
Corollary 2.21. We have

ŒInjQcoh.X;W /� \ AcyclŒQcoh.X;W /� D 0;
ŒMF.X;W /� \ AcyclŒCoh.X;W /� D AcyclŒMF.X;W /�;

ŒCoh.X;W /� \ AcyclŒQcoh.X;W /� D AcyclŒCoh.X;W /�;
ŒLocfree.X;W /� \ AcyclŒQcoh.X;W /� D AcyclŒLocfree.X;W /�;
ŒFlatQcoh.X;W /� \ AcyclŒQcoh.X;W /� D AcyclŒFlatQcoh.X;W /�:

Proof. The first equality follows immediately from Lemma 2.13. Let E 2

ŒMF.X;W /�\AcyclŒCoh.X;W /�. We have seen in Lemma 2.16 that condition (ff2)op
holds for the square .�1/. Applied to idE , this condition shows that E is a direct
summand of an object of AcyclŒMF.X;W /� and hence in AcyclŒMF.X;W /�. This
proves the second equality. The remaining equalities are proved similarly using
Lemmata 2.15 and 2.20.
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Corollary 2.22 (cf. proof of [33, Thm. 3.6]). Let strict.ŒInjQcoh.X;W /�/ be the
strict closure of ŒInjQcoh.X;W /� in ŒQcoh.X;W /�. Then

ŒQcoh.X;W /� D
˝
strict.ŒInjQcoh.X;W /�/;AcyclŒQcoh.X;W /�

˛
is a semi-orthogonal decomposition (seeDef. A.10). In particular,AcyclŒQcoh.X;W /�
is the left orthogonal of ŒInjQcoh.X;W / in ŒQcoh.X;W /�.

Proof. Lemma 2.10.(a) yields for each F 2 ŒQcoh.X;W /� a triangle A ! F !

J ! Œ1�A with A 2 AcyclŒQcoh.X;W /� and J 2 ŒInjQcoh.X;W /�. Together
with Lemma 2.13 this proves the first claim. The second claim follows from
Lemma A.11.(b).

Corollary 2.23. The categories ŒQcoh.X;W /�, ŒInjQcoh.X;W /�,AcyclŒQcoh.X;W /�,
andDQcoh.X;W / are cocomplete (closed under arbitrary direct sums) and therefore
Karoubian, and the functor ŒQcoh.X;W /�! DQcoh.X;W / preserves direct sums.

Proof. It is clear that ŒQcoh.X;W /� is cocomplete. Note that ŒInjQcoh.X;W /�
is cocomplete by Theorem 2.1.(d), and that AcyclŒQcoh.X;W /� is cocomplete as
the left orthogonal of ŒInjQcoh.X;W /� in ŒQcoh.X;W /�, see Lemma 2.22. Now
use [4, Lemma 1.5 and Prop. 3.2]. Cocompleteness of DQcoh.X;W / follows also
from Theorem 2.9.(a).

The following definition should be compared with Definition 2.5. Note that
ŒSh.X;W / and ŒQcoh.X;W /� are cocomplete.
Definition 2.24. Denote by AcyclcoŒSh.X;W /� the full triangulated subcategory
of Sh.X;W / that contains AcyclŒSh.X;W /� and is closed under arbitrary direct
sums. Following [32, 33] again we define the coderived category DShco.X;W / of
W -curved dg sheaves as the Verdier quotient

DShco.X;W / WD ŒSh.X;W /�=AcyclcoŒSh.X;W /�:

If we define DQcohco.X;W / similarly, Corollary 2.23 shows that

DQcoh.X;W / D DQcohco.X;W /:

Theorem 2.25.
(a) The functor ŒInjSh.X;W /�! DShco.X;W / is an equivalence.
(b) The functor DQcoh.X;W /! DShco.X;W / is full and faithful.

Proof. (a) implies (b): Note thatwe have a full and faithful functor InjQcoh.X;W /!
InjSh.X;W / by Theorem 2.1.(b). Hence ŒInjQcoh.X;W /�! ŒInjSh.X;W /� is full
and faithful, and we can use Theorem 2.9.(a).

(a): Adapting the proof of Lemma 2.10.(a) shows: For any F 2 Sh.X;W / there
exists an exact sequence 0 ! F ! I 0 ! I 1 ! � � � in Z0.Sh.X;W // with all
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I j 2 InjSh.X;W /. It follows from Lemma 2.26 below that the obvious morphism
F ! Tot.I / has cone in AcyclcoŒSh.X;W /� and hence becomes an isomorphism
in DShco.X;W /. Theorem 2.1.(d) shows that Tot.I / 2 InjSh.X;W /. This implies
that ŒInjSh.X;W /�! DShco.X;W / is essentially surjective.

Adapting the proof of Lemma 2.13 shows that the left orthogonal of ŒInjSh.X;W /�
in ŒSh.X;W /� contains AcyclŒSh.X;W /� and hence AcyclcoŒSh.X;W /� since any left
orthogonal is stable under direct sums. Now use condition (ff2) of Proposition B.2.

Lemma 2.26. If F is a bounded below exact complex in Z0.Sh.X;W //, then
Tot.F / 2 AcyclcoŒSh.X;W /�.

Proof. We can assume that F D .� � � ! 0 ! F 0 ! F 1 ! � � � /. Let F�n be
the subcomplex that coincides with F in degrees < n, is zero in degrees > n, and
whose degree n component is the kernel of F n ! F nC1. We have monomorphisms
F�0 ! F�1 ! F�2 ! � � � of bounded exact complexes, and F D colimF�n. Note
that there is a short exact sequence

0!
M
n2N

F�n !
M
n2N

F�n ! F ! 0

of complexes in Z0.Sh.X;W //. Totalizing yields a short exact sequence

0!
M
n2N

Tot.F�n/!
M
n2N

Tot.F�n/! Tot.F /! 0

inZ0.Sh.X;W //. Part (a) of Lemma 2.7 shows that this short exact sequence yields
a triangle in DSh.X;W / and a fortiori in DShco.X;W /, and part (b) of the same
lemma shows that

L
n2N Tot.F�n/ 2 AcyclcoŒSh.X;W /�. Hence Tot.F / becomes

zero in DShco.X;W /. The claim follows.

Remark 2.27. We don’t know whether Sh.X/ has finite injective dimension. If
this is the case the method used to prove Theorem 2.9.(a) easily implies that
ŒInjSh.X;W /� ! DSh.X;W / is an equivalence; moreover Theorem 2.25.(a) then
shows thatDSh.X;W / D DShco.X;W / andAcyclŒSh.X;W /� D AcyclcoŒSh.X;W /�.

2.4. Case of constant W . We study the case that W is a constant function; recall
that this means that W.X/ consists of a single point of A1 D Spec kŒT � which is
then necessarily closed. First we note that the case of a constant nonzero W is not
interesting.

Lemma 2.28. Assume that the function W is constant but W ¤ 0. Then
ŒSh.X;W /� D 0. In particular, all the subcategories ŒQcoh.X;W /�; : : : ; ŒMF.X;W /�
and all the quotient categoriesDSh.X;W /;DQcoh.X;W /; : : : ;MF.X;W / are zero.
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Proof. The assumption implies that the morphism kŒT � ! �.X;OX /, T 7! W ,
factors as kŒT �! kŒT �=p! �.X;OX / where p � kŒT � is a maximal ideal 6D .T /.
In particular T is invertible in the field kŒT �=p, so W is invertible in �.X;OX /.

Hence for any E 2 Sh.X;W / the degree one morphism

h WD .W �1e0; 0/ 2 EndSh.X;W /.E/1 D HomSh.X/.E0; E1/˚ HomSh.X/.E1; E0/

satisfies dh D idE , i. e. E is isomorphic to zero in ŒSh.X;W /�.

Hence let us study the case W D 0. Given an object E 2 Qcoh.X; 0/ we may
consider its cohomology H.E/ which is just a graded quasi-coherent sheaf with
componentsH0.E/ andH1.E/. Let

ExŒQcoh.X; 0/� WD fE 2 ŒQcoh.X; 0/� j Hp.E/ D 0 for all p 2 Z2g;

and define ExŒCoh.X; 0/�; : : : ;ExŒFlatQcoh.X; 0/� accordingly. These categories are
thick subcategories of ŒQcoh.X; 0/�; : : : ; ŒFlatQcoh.X; 0�, respectively, and we can
form the corresponding Verdier quotients. The next proposition shows that this yields
alternative definitions of the categories DQcoh.X; 0/; : : : ;DFlatQcoh.X; 0/.

Note that any morphism f WE ! F in Z0.Qcoh.X; 0// induces a morphism
H.f /WH.E/ ! H.F / on cohomology objects; it is called a quasi-isomorphism if
H.f / is an isomorphism. It is easy to see that H0W ŒQcoh.X; 0/� ! Qcoh.X/ is a
cohomological functor.

Remark 2.29. These definitions clearly also make sense for ŒSh.X; 0/�. If we knew
that Sh.X/ has finite injective dimension, the obvious modification of the proof of
the following proposition would show that ExŒSh.X; 0/� D AcyclŒSh.X; 0/�.

Proposition 2.30. Let M be Qcoh.X; 0/, Coh.X; 0/, MF.X; 0/, InjQcoh.X; 0/,
Locfree.X; 0/, or FlatQcoh.X; 0/. Then

ExŒM� D AcyclŒM�

and in particular DM D ŒM�=ExŒM� (where DMF.X; 0/ WD MF.X; 0/). A
morphism f in Z0.M/ becomes an isomorphism in DM if and only if H.f / is a
quasi-isomorphism.

Proof. We first prove that ExŒQcoh.X; 0/� D AcyclŒQcoh.X; 0/�. A diagram chase
(or Lemma 2.46 below) shows that the totalization of any short exact sequence (or any
bounded exact complex) has vanishing cohomology. By applying the cohomological
functor H0, any triangle in ŒQcoh.X; 0/� gives rise to a (6-periodic) long exact
cohomology sequence, and obviously any direct summand of an object with vanishing
cohomology has vanishing cohomology. This implies that ExŒQcoh.X; 0/� �
AcyclŒQcoh.X; 0/�.
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Conversely let E 2 ExŒQcoh.X; 0/�. Let U WD ker e0 and V WD ker e1. Let

.U ! I / D .U ! I 0
d0

I
�! I 1

d1
I
�! � � �

dn�1

���! I n ! 0/;

.V ! J / D .V ! J 0
d0

J
��! J 1

d1
J
��! � � �

dn�1

���! J n ! 0/;

be finite injective resolutions in Qcoh.X/. Note that we have a short exact sequence
U ,! E0 � V . The injective resolutions of U and V combine to an injective
resolution of E0 W there is a morphism r W Œ�1�J ! I of complexes in Qcoh.X/ such
that its cone Cone.r/ (which equals I ˚ J if we forget the differential) fits into the
following commutative diagram

I

�
1
0

�
// Cone.r/

�
0 1

�
// J

U

OO

� � // E0

OO

// // V

OO

whose columns are injective resolutions. Similarly there is amorphism sW Œ�1�I ! J

and a commutative diagram

J

�
1
0

�
// Cone.s/

�
0 1

�
// I

V

OO

� � // E1

OO

// // U:

OO

Let A D . A1
a1 // A0
a0

oo / be the complex in Z0.Qcoh.X; 0// with A0 D Cone.r/,

A1 D Cone.s/ and a0 D
�
0 1
0 0

�
and a1 D

�
0 1
0 0

�
. Note that we obtain the bounded

exact complex

B WD .E ! A/ D .� � � ! 0! E ! A0 ! A1 ! � � � ! An ! 0! � � � /

in Z0.Qcoh.X; 0//. From Lemma 2.7.(c) we obtain a triangle

E ! Tot.A/! Tot.B/! Œ1�E

in ŒQcoh.X; 0/�. Note that Ap is the direct sum of the two objects J p
0 // J p
1
oo and

Ip
1 // Ip
0
oo . Hence Lemma 2.7.(d) implies that Tot.A/ D 0 in ŒQcoh.X; 0/�. Hence

Tot.B/
�
�! Œ1�E in ŒQcoh.X; 0/�, soE 2 AcyclŒQcoh.X; 0/� by Lemma 2.7.(b). This

proves ExŒQcoh.X; 0/� D AcyclŒQcoh.X; 0/�.
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Now let M be as in the proposition. Then ExŒM� � AcyclŒM� is proved as
above, and Corollary 2.21 yields

ExŒM� � ŒM� \ ExŒQcoh.X; 0/� D ŒM� \ AcyclŒQcoh.X; 0/� D AcyclŒM�:

The last statement is clear: f becomes an isomorphism if and only if its cone
is in ExŒM�I now use the six-periodic long exact sequence obtained from the
cohomological functorH0.

Remark 2.31. In fact we have proved that each object of ExŒQcoh.X; 0/� D
AcyclŒQcoh.X; 0/� is isomorphic to the totalization of a bounded exact complex
in Z0.Qcoh.X; 0/.

2.5. Derived functors. We recall first some general results about derived functors
and then apply them to direct and inverse image functors, and to Hom and tensor
functors.

2.5.1. Reminder on derived functors. We recall results and terminology from
the elegant exposition of derived functors in [25] and refer the reader to this note
for more details. Let D be a triangulated category D with a strict full triangulated
subcategory C, and letF WD! T be a triangulated functor to some other triangulated
category T . The question is whether F has a right derived functor RF WD=C ! T
with respect to C. More precisely, a right derived functor of F with respect to C
is a pair .RF; �/ of a triangulated functor RF WD=C ! T and a suitable natural
transformation � satisfying some universal property.
Definition 2.32. An object A 2 D is right F -acyclic (with respect to C) if the
following condition holds: given any morphism sWA! D with cone in C, there is a
morphism t WD ! D0 with cone in C such that F.ts/ is an isomorphism.

Note that F.A/ D 0 if A is right F -acyclic and in C (apply the defining property
to A! 0).
Theorem 2.33 ([25, Thm. 116]). In the above setting we additionally assume that
C � D is a thick subcategory. Suppose that for everyD 2 D there exists a morphism
�DWD ! AD with cone in C and AD right F -acyclic with respect to C. Then F
admits a right derived functor .RF; �/with respect to C with the following properties:

(a) For anyD 2 D we have RF.D/ D F.AD/ and �D D F.�D/.
(b) An object D 2 D is right F -acyclic with respect to C if and only if �D is an

isomorphism in T .

We will apply this theorem several times. When we then write RF later on we
implicitly have used some fixed morphisms �DWD ! AD as in the theorem, or we
say explicitly which morphism �D we use for a particular object D. Usually we
assume that �D D idD wheneverD is right F -acyclic.
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Remark 2.34. We explain how the functor RF from Theorem 2.33 is defined on
morphisms. Let A � D be the full subcategory of all right F -acyclic objects, and
assume that the assumptions of Theorem 2.33 hold. Then in fact A is a triangulated
subcategory, and F vanishes on A \ C. We obtain an induced triangulated functor
F WA=A\C ! T . Moreover, the natural functorA=A\C ! D=C is an equivalence,
with a quasi-inverse induced by D 7! AD . Then RF is just the composition of this
quasi-inverse with F . This determines RF on morphisms.

Similar results hold for left derived functors.

2.5.2. Direct and inverse image. Let Y be another scheme satisfying condi-
tion (srNfKd), and let � WY ! X be a morphism. We denote the pullback
function ��.W / on Y again by W .

The usual direct image functor ��WQcoh.Y /! Qcoh.X/ induces the dg functor
��WQcoh.Y;W / ! Qcoh.X;W / and on homotopy categories the triangulated
functor ��W ŒQcoh.Y;W /� ! ŒQcoh.X;W /�. Similarly, the usual inverse image
functor ��WQcoh.X/ ! Qcoh.Y / induces a dg functor ��WQcoh.X;W / !
Qcoh.Y;W / and a triangulated functor ��W ŒQcoh.X;W /� ! ŒQcoh.Y;W /�. The
adjunction .��; ��/ in the usual setting induces an adjunction of dg functors,

HomQcoh.Y;W /.�
�.E/; F /

�
�! HomQcoh.X;W /.E; ��.F //;

and then an adjunction on triangulated functors. We also denote the compositions

ŒQcoh.Y;W /�
��
�! ŒQcoh.X;W /�! DQcoh.X;W /

and ŒQcoh.X;W /�
��

��! ŒQcoh.Y;W /�! DQcoh.Y;W /

by �� and ��, respectively.
Theorem 2.35.

(a) The functor ��W ŒQcoh.Y;W /� ! DQcoh.X;W / has a right derived functor
R��WDQcoh.Y;W /! DQcoh.X;W / with respect to AcyclŒQcoh.Y;W /�.

(b) The functor ��W ŒQcoh.X;W /� ! DQcoh.Y;W / has a left derived functor
L��WDQcoh.X;W / ! DQcoh.Y;W / with respect to AcyclŒQcoh.X;W /�.
This left derived functor maps DCoh.X;W / to DCoh.Y;W / and MF.X;W /
toMF.Y;W /. We can assume that L�� D ��WMF.X;W /!MF.Y;W /.

(c) There is an adjunction .L��;R��/ of triangulated functors.

Proof. (a): Lemma 2.10.(a) provides for each E 2 ŒQcoh.Y;W /� a morphism
�E WE ! IE with IE 2 ŒInjQcoh.Y;W /� and cone in AcyclŒQcoh.Y;W /�. Hence
to apply Theorem 2.33 we need to show that any object I 2 ŒInjQcoh.Y;W /� is
right ��-acyclic with respect to AcyclŒQcoh.Y;W /�. Let sW I ! F be a morphism
in ŒQcoh.Y;W /� with cone in AcyclŒQcoh.Y;W /�. Apply HomŒQcoh.Y;W /�.�; I / and
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use Lemma 2.13. This shows that there is a (unique) morphism gWF ! I in
ŒQcoh.Y;W /� with gs D idI . The octahedral axiom implies that g has cone in
AcyclŒQcoh.Y;W /�, and gs D idI certainly implies that ��.gs/ is an isomorphism
in ŒQcoh.X;W /� and DQcoh.X;W /.

(b): Lemma2.10.(c) yields for eachE 2 ŒQcoh.X;W /� amorphism "E WPE ! E

with PE 2 ŒLocfree.X;W /� � ŒFlatQcoh.X;W /� and cone in AcyclŒQcoh.X;W /�.
We want to use the left version of Theorem 2.33. We need to show that any
object P 2 ŒFlatQcoh.X;W /� is left ��-acyclic with respect to AcyclŒQcoh.X;W /�.
Let sWF ! P be a morphism in ŒQcoh.Y;W /� with cone in AcyclŒQcoh.Y;W /�.
Consider the morphism t WD "F WPF ! F . We need to show that ��.st/
is an isomorphism in DQcoh.Y;W /. The cone of st is in AcyclŒQcoh.X;W /�,
and we can assume that it is in ŒFlatQcoh.X;W /�. Hence it is enough to show
that ��.Q/ D 0 in DQcoh.Y;W / for any Q 2 AcyclŒFlatQcoh.X;W /� D
ŒFlatQcoh.X;W /� \ AcyclŒQcoh.X;W /� (see Corollary 2.21). Certainly we can
reduce to the case that Q D Tot.G/, where G is a short exact sequence in
Z0.FlatQcoh.X;W //. But then��.G/ is a short exact sequence inZ0.Qcoh.Y;W //,
and hence ��.Q/ D Tot.��.G// is zero in DQcoh.Y;W /.

Lemma 2.10.(b) shows that we can takePE 2 ŒMF.X;W /� forE 2 ŒCoh.X;W /�.
For E 2 ŒMF.X;W /� we take PE D E.

(c): Apply [25, Thm. 122], whose assumptions are satisfied by the proof of [25,
Thm. 116].

Remark 2.36. Both L�� and R�� preserve direct sums, cf. Corollary 2.23. This is
clear for L�� from the adjunction .L��;R��/. For R�� this follows from the above
proof: use Corollary 2.23 and the fact that �� preserves direct sums since Noetherian
schemes are quasi-compact.
Lemma 2.37. Assume that the map � is proper. Then the functor R�� maps
MF.Y;W / to (the essential image of) MF.X;W /, and .��;R��/ is an adjoint pair
of functors between the categoriesMF.X;W / and MF.Y;W /.

Proof. LetE 2MF.Y;W /. Choose a finite resolutionE ! I as in Lemma 2.10.(a).
Then R��.E/ is isomorphic to ��.Tot.I // D Tot.��.I // and the cohomologies of
the complex ��.I / all lie in Coh.X;W /, by [12, Thm. 3.2.1]. Hence R��.E/ is
isomorphic to an object of DCoh.X;W / by Lemma 2.40.(a) below, and also to an
object of MF.X;W / by Theorem 2.9.(c). This proves the first claim. The second
claim is a direct consequence of Theorem 2.35.

The proof of Theorem 2.35 shows that all objects of ŒInjQcoh.Y;W /� are right
��-acyclic and that all objects of ŒFlatQcoh.X;W /� are left ��-acyclic. Here is an
improvement.
Lemma 2.38. Let E 2 ŒQcoh.Y;W /� and assume that its components E0, E1 are
right ��-acyclic quasi-coherent sheaves in the sense that Ri��.Ep/ D 0 for all
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p 2 Z2 and i 2 Z n f0g. Then E is right ��-acyclic, so in particular ��.E/
�
�!

R��.E/ canonically.
Similarly, if the components of F 2 ŒQcoh.X;W /� are left ��-acyclic quasi-

coherent sheaves, then F is left ��-acyclic, and L��.F /
�
�! ��.F / canonically.

Proof. Lemma 2.10.(a) provides a finite resolution E ! I in Z0.Qcoh.Y;W //
with components I l 2 InjQcoh.Y;W /. Since all involved quasi-coherent sheaves
are ��-acyclic, ��.E/ ! ��.I / is still a resolution in Z0.Qcoh.X;W //.
Hence the obvious morphism ��.E/ ! Tot.��.I // becomes an isomorphism
in DQcoh.X;W /. On the other hand, if we use E ! Tot.I / for computing
R��.E/, we have R��.E/ D ��.Tot.I // D Tot.��.I // in DQcoh.X;W /. Now
Theorem 2.33.(b) shows our first claim. The second claim is proved similarly using
Lemma 2.10.(c).

Remark 2.39. If � is an affine morphism, all objects of ŒQcoh.Y;W /� are
right ��-acyclic by Lemma 2.38, so ��W ŒQcoh.Y;W /� ! DQcoh.X;W / maps
AcyclŒQcoh.Y;W /� to zero. The induced functor��WDQcoh.Y;W /! DQcoh.X;W /
is canonically isomorphic to R��.

If � is proper and affine (for example a closed embedding), then all objects of
ŒCoh.Y;W /� are right acyclic for ��W ŒCoh.Y;W /� ! DCoh.X;W / with respect
to AcyclŒCoh.Y;W /�, and hence �� D R��WDCoh.Y;W / ! DCoh.X;W /
canonically.

Similarly, if � is flat (for example an open embedding), we have �� D L��
canonically.

Lemma 2.40. Let F D .0 ! Fm
dm

��! FmC1 ! � � � ! F n�1
dn�1

���! F n ! 0/ be
a complex in Z0.Qcoh.X;W //.

(a) Consider the cohomologies H i .F / and the totalization Tot.F / as objects
of DQcoh.X;W /. Assume that each H i .F / is isomorphic to an object of
MF.X;W / (resp. DCoh.X;W /). Then the same is true for Tot.F /.

(b) Assume that

HomDQcoh.X;W /.H
p.F /; Œv�H q.F // D 0

for all p > q and v 2 Z2 (enough: with v � q C 1 � p mod 2). Then
Tot.F / Š

Ln
iDmŒi �H

i .F / in DQcoh.X;W /.

Proof. If m D n all statements are trivial, so assume m < n. Consider the (vertical)
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short exact sequence of complexes

��n�1.F /W� _

��

� � � // F n�2 // ker dn�1 //

��

0 //

��

0 //

��

� � �

F W

����

� � � // F n�2
dn�2

//

��

F n�1
dn�1

//

��

F n // 0 //

��

� � �

�>n�1.F /W � � � // 0 // im dn�1 // F n // 0 // � � �

It induces an exact sequence of their totalizations which becomes a triangle in
DQcoh.X;W /, byLemma2.7.(a). The short exact sequence im dn�1,!F n� Hn.F /

gives rise to an isomorphism Tot.�>n�1.F //
�
�! Œn�Hn.F / in DQcoh.X;W / by

Lemma 2.7.(c). Hence we obtain the triangle

Tot.��n�1.F //! Tot.F /! Œn�Hn.F /! Œ1�Tot.��n�1.F // (2.1)

in DQcoh.X;W /.
(a): By induction and our assumptions the first and third object of the triangle (2.1)

are isomorphic to objects ofMF.X;W / (resp. DCoh.X;W /). The same is then true
for Tot.F /.

(b): By induction the triangle (2.1) is isomorphic to the triangle

n�1M
iDm

Œi �H i .F /! Tot.F /! Œn�Hn.F /! Œ1�

n�1M
iDm

Œi �H i .F /:

By assumption the third morphism in this triangle vanishes, and hence Tot.F / is the
direct sum of the first and the third object.

2.5.3. Sheaf Hom and tensor product. Let W and V be arbitrary morphisms
X ! A1. For P 2 Qcoh.X;W / and Q 2 Qcoh.X; V / consider the following
diagram2

HomOX
.P1;Q0/˚ HomOX

.P0;Q1/

�
�p�

0
q1�

q0� �p
�
1

�
// HomOX

.P0;Q0/˚ HomOX
.P1;Q1/:�

�p�
1
q1�

q0� �p
�
0

�oo

(2.2)
in the category Sh.X/. It is easy to check that both compositions are multiplication
by V �W W note for example that p�0p�1 D �.p1p0/� by the usual sign convention,
since p0 and p1 both have degree one. Hence this diagram defines an object
Hom .P;Q/ of Sh.X; V �W /.

2 If A and B are complexes with differentials dA D a and dB D b, the differential d in the Hom-
complex Hom.A;B/ is given by d.f / D b ı f � .�1/jf jf ı a for homogeneous f of degree jf j.
This explains the signs.
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Remark 2.41. In case W D V note that Hom .P;Q/ is in Sh.X; 0/, i. e. it is a dg
sheaf, and that

HomQcoh.X;W /.P;Q/ D �.X; Hom .P;Q// (2.3)

as a dg abelian group.
In fact .P;Q/ 7! Hom .P;Q/ is a dg bifunctor

Hom .�;�/WQcoh.X;W /op � Qcoh.X; V /! Sh.X; V �W /:

It induces a bifunctor

Hom .�;�/W ŒQcoh.X;W /�op � ŒQcoh.X; V /�! ŒSh.X; V �W /�

of triangulated categories. For fixed P 2 ŒQcoh.X;W /� the obvious composition
Hom .P;�/W ŒQcoh.X; V /� ! DSh.X; V � W / has a right derived functor with
respect to AcyclŒQcoh.X; V /� Wwe construct it by choosingmorphismsQ! IQ with
IQ 2 ŒInjQcoh.X; V /� and cone in AcyclŒQcoh.X; V /, for everyQ 2 ŒQcoh.X; V /�,
and then proceed as in the construction of R�� in the proof of Theorem 2.35.

For fixed I 2 ŒInjQcoh.X; V /�, the functor Hom .�; I /W ŒQcoh.X;W /�op !
DSh.X; V � W / maps AcyclŒQcoh.X;W /� to zero since Hom .�; I / maps short
exact sequences inZ0.Qcoh.X;W // to short exact sequences inZ0.Sh.X; V �W //
(use Theorem 2.1.(b)). We define

RHom .�;�/WDQcoh.X;W /op � DQcoh.X; V /! DSh.X; V �W /;
.P;Q/ 7! Hom .P; IQ/;

and leave it to the reader to check that this defines a bifunctor of triangulated
categories. Note that for .P;Q/ 2 ŒQcoh.X;W /�op� ŒQcoh.X; V /� there is a natural
morphism

Hom .P;Q/! RHom .P;Q/ D Hom .P; IQ/

in DSh.X; V � W / induced by Q ! IQ. It is an isomorphism if P is in
ŒMF.X;W /� (or in ŒLocfree.X;W /�), or of course if Q is in ŒInjQcoh.X; V /�. This
also shows that if P is in Coh.X;W / and we choose FP ! P in ŒCoh.X;W /� with
FP 2 ŒMF.X;W /� and cone in AcyclŒQcoh.X;W /�, then the morphisms

Hom .FP ;Q/! Hom .FP ; IQ/ Hom .P; IQ/

become isomorphisms in DSh.X; V � W /. This gives another way of computing
RHom .P;Q/ for P 2 Coh.X;W /.

Note also that RHom .P;Q/ is in DQcoh.X; V � W / if P 2 DCoh.X;W /,
and in (the essential image of) DCoh.X; V � W / if P 2 DCoh.X;W / and
Q 2 DCoh.X; V /.
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We can also directly obtain a bifunctor

Hom .�;�/WMF.X;W /op �MF.X; V /!MF.X; V �W / (2.4)

of triangulated categories. It is isomorphic to the restriction of RHom .�;�/ to
MF.X;W /op �MF.X; V /. Slightly more general this works also for

Hom .�;�/WMF.X;W /op � DCoh.X; V /! DCoh.X; V �W /:

For P 2 Qcoh.X;W / andQ 2 Qcoh.X; V / note that

.P1 ˝OX
Q0/˚ .P0 ˝OX

Q1/

h id˝q0 p0˝id
p1˝id id˝q1

i
// .P1 ˝OX

Q1/˚ .P0 ˝OX
Q0/h id˝q1 p0˝id

p1˝id id˝q0

ioo

defines an object P ˝Q of Qcoh.X; V CW /. We obtain a dg bifunctor

.�˝�/WQcoh.X;W / � Qcoh.X; V /! Qcoh.X; V CW /

and a bifunctor of triangulated categories on homotopy categories. For fixed
P2 ŒQcoh.X;W /� the obvious composition .P˝�/W ŒQcoh.X; V /�!DSh.X; VCW /
has a left derived functor with respect to AcyclŒQcoh.X; V /�: for each Q 2

ŒQcoh.X; V /� we fix a morphism FQ ! Q with FQ 2 ŒLocfree.X; V /� �
ŒFlatQcoh.X; V /� and cone in AcyclŒQcoh.X; V /� and proceed then as in the
construction of L�� in the proof of Theorem 2.35. It is then easy to see that

.�˝L
�/WDQcoh.X;W / � DQcoh.X; V /! DQcoh.X; V CW /;

.P;Q/ 7! P ˝ FQ;

defines a bifunctor of triangulated categories. Again we have for .P;Q/ 2
ŒQcoh.X;W /� � ŒQcoh.X; V /� a natural morphism

P ˝L Q D P ˝ FQ ! P ˝Q

in DSh.X; V C W / induced by FQ ! Q which is an isomorphism if P or Q has
flat components.

Note that there is an obvious isomorphism

HomQcoh.X;WCV /.P ˝Q;R/
�
�! HomQcoh.X;W /.P; Hom .Q;R// (2.5)

of dg modules which is natural in P 2 Qcoh.X;W /, Q 2 Coh.X; V /, and
R 2 Qcoh.X;W C V /.
Lemma 2.42. We have

HomDQcoh.X;WCV /.P ˝
L Q;R/ Š HomDQcoh.X;W /.P;RHom .Q;R//

naturally in P 2 DQcoh.X;W /,Q 2 DCoh.X; V /, and R 2 DQcoh.X;W C V /.
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Proof. First note that we can assume that Q 2 MF.X; V / and that moreover R 2
InjQcoh.X;WCV /. ThenP˝LQ

�
�! P˝Q and Hom .Q;R/ ��! RHom .Q;R/.

Note also that Hom .Q;R/ 2 InjQcoh.X;W / by [13, Prop. 7.17]. Now takeH0 of
the above isomorphism (2.5) of dg modules and use Remark 2.14.

2.5.4. External tensor product. Let Y be a scheme such that Y and X � Y satisfy
condition (srNfKd), and let V WY ! A1 be a morphism. Let pWX � Y ! X and
qWX � Y ! Y be the projections. We define W � V WD p�.W / C q�.V /, so
.W � V /.x; y/ D W.x/C V.y/. We define the dg bifunctor� by

.���/ WD .p�.�/˝q�.�//WQcoh.X;W /�Qcoh.Y; V /! Qcoh.X �Y;W �V /:

This functor immediately induces the bifunctor

.�� �/WDQcoh.X;W / � DQcoh.Y; V /! DQcoh.X � Y;W � V /

of triangulated categories. This functor coincides with the composition

.�˝L
�/ ı .Lp� � Lq�/

(since p and q are flat we have Lp�
�
�! p� and Lq�

�
�! q�, and moreover

.�˝L
�/
�
�! .�˝�/

on objects of the form .p�.P /; q�.Q//, cf. the proof of Lemma 2.38). Note also that
P �Q is in MF.X � Y;W � V / (resp. DCoh.X � Y; V �W /) if P 2 MF.X;W /
andQ 2MF.Y; V / (resp. P 2 DCoh.X;W / andQ 2 DCoh.Y; V /.

2.5.5. Duality. We introduce a dualityDX on the category of matrix factorizations.
Let DX WD . 0 // OXoo / 2 MF.X; 0/I note that OX sits in even degree. Then

DX WD .�/
_
WD Hom .�;DX /WMF.X;W /! MF.X;�W /op

is a equivalence of dg categories and induces an equivalence

DX WD .�/
_
WD Hom .�;DX /WMF.X;W /!MF.X;�W /op (2.6)

of triangulated categories. This is just the functor (2.4) with DX as its fixed second
argument. We refer to DX as the duality since D2

X D id naturally. Explicitly, DX

maps P D
�
P1

p1 // P0
p0

oo
�
to

DX .P / D P
_
D

�
P_1 D Hom .P1;OX /

p_
1
D�p�

0 // P_0 D Hom .P0;OX /:
p_

0
D�p�

1

oo
�
:

(2.7)
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Occasionally we view the duality as the functor

DX D RHom .�;DX /WDCoh.X;W /!MF.X;�W /op:

The next lemma says that the inverse image functor and duality commute.

Lemma 2.43. Let � WY ! X be a morphism of schemes satisfying condition (srN-
fKd), and let W WX ! A1 be a morphism. Then there is an isomorphism

�� ıDX
�
�! DY ı �

�

of functorsMF.X;W /
�
�!MF.Y;�W /op.

Proof. For F 2 Qcoh.X/ consider the morphism

HomOX
.F ;OX /! HomOX

.F ; ��OY / D ��HomOY
.��F ;OY /:

The arrow is induced by OX ! ��OY , and the equality is the usual adjunction. It
corresponds under the adjunction to a morphism

��HomOX
.F ;OX /! HomOY

.��F ;OY /:

This morphism is an isomorphism if F is a vector bundle. From this we obviously
obtain the isomorphism we want.

2.6. Enhancements. In this section we define several enhancements ofMF.X;W /
and show that they are equivalent (see e. g. [21] for the definitions). Similarly we
define two equivalent enhancements of DQcoh.X;W /.

2.6.1. Enhancements using injective quasi-coherent sheaves. Recall that the obvi-
ous functor ŒInjQcoh.X;W /�! DQcoh.X;W / is an equivalence (Theorem 2.9.(a)),
in other words InjQcoh.X;W / is an enhancement of the triangulated category
DQcoh.X;W /. This enhancement induces an enhancement for the full subcategory
MF.X;W /

�
�! DCoh.X;W / � DQcoh.X;W / (cf. Theorem 2.9). Namely, let

InjQcohMF.X;W / � InjQcoh.X;W / be the full dg subcategory consisting of objects
which are isomorphic in DQcoh.X;W / to an object of MF.X;W /. Then

ŒInjQcohMF.X;W /� 'MF.X;W /;

so InjQcohMF.X;W / is an enhancement ofMF.X;W /.

2.6.2. Enhancements by dg quotients. There is a different enhancement of
MF.X;W /. Namely, let AcyclMF.X;W / � MF.X;W / be the full dg subcategory
consisting of objects that belong to AcyclŒMF.X;W /�. Consider the Drinfeld dg
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quotient category MF.X;W /=AcyclMF.X;W / (which is pretriangulated, cf. [21,
Lemma 1.5]). Then by [9, Thm. 1.6.2, Thm. 3.4] there is an equivalence

MF.X;W / D ŒMF.X;W /�=AcyclŒMF.X;W /�
�
�! ŒMF.X;W /=AcyclMF.X;W /�;

(2.8)
hence MF.X;W /=AcyclMF.X;W / is an enhancement ofMF.X;W /. Similarly, by
defining AcyclCoh.X;W / � Coh.X;W / to consist of those objects that belong to
AcyclŒCoh.X;W /�, we see that Coh.X;W /=AcyclCoh.X;W / is an enhancement of
DCoh.X;W /

�
 MF.X;W /.

The same approachworks for the categoryDQcoh.X;W /: Let AcyclQcoh.X;W /
� Qcoh.X;W / be the full dg subcategory consisting of objects that belong to
AcyclŒQcoh.X;W /�. Then

DQcoh.X;W / D ŒQcoh.X;W /�=AcyclŒQcoh.X;W /�
�
�! ŒQcoh.X;W /=AcyclQcoh.X;W /�;

that is, the dg quotient Qcoh.X;W /=AcyclQcoh.X;W / is an enhancement of
DQcoh.X;W /.

The two enhancements of DQcoh.X;W / using injectives resp. dg quotients are
equivalent, and similarly for the three enhancements ofMF.X;W /. Namely we have
the following lemma.
Lemma 2.44.

(a) The dg categories

InjQcoh.X;W / and Qcoh.X;W /=AcyclQcoh.X;W /

are quasi-equivalent.
(b) The dg categories

MF.X;W /=AcyclMF.X;W /; Coh.X;W /=AcyclCoh.X;W /
and InjQcohMF.X;W /

are quasi-equivalent.

Proof. (a): The Drinfeld dg quotient comes with the canonical quotient dg functor

Qcoh.X;W /! Qcoh.X;W /=AcyclQcoh.X;W /:

Restriction to the dg subcategory InjQcoh.X;W / yields the desired quasi-equivalence

˛W InjQcoh.X;W /! Qcoh.X;W /=AcyclQcoh.X;W /:

(b): Consider the dg functor

˛W InjQcohMF.X;W /! Qcoh.X;W /=AcyclQcoh.X;W /
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obtained by restriction and the canonical dg functor

ˇWMF.X;W /=AcyclMF.X;W /! Qcoh.X;W /=AcyclQcoh.X;W /:

The induced homotopy functors Œ˛� and Œˇ� are full and faithful and have the same
essential image in ŒQcoh.X;W /=AcyclQcoh.X;W /�. Let

A � Qcoh.X;W /=AcyclQcoh.X;W /

be the full dg subcategory consisting of objects that belong to this essential image.
Then the dg functors

InjQcohMF.X;W /
˛
�! A

ˇ
 � MF.X;W /=AcyclMF.X;W /

are the desired quasi-equivalences. Similarly we prove that

Coh.X;W /=AcyclCoh.X;W / and InjQcohMF.X;W /

are quasi-equivalent.

2.6.3. Morphism oriented Čech enhancement. After some preparations we will
define an enhancement for MF.X;W / whose morphism spaces are defined using
Čech complexes.

Let U D .Ui /i2I be an open covering of X and let F be a dg sheaf on X , i. e. an
object of Sh.X; 0/. We define a Z2 �Z-graded abelian group C �.U ;F�/ as follows:
Its component of degree .p; q/ 2 Z2 � Z is

C q.U ;Fp/ D
Y

.i0;:::;iq/2IqC1

Fp.Ui0 \ � � � \ Uiq /:

We turn C �.U ;F�/ into a double complex as follows: its first differential (in the
p-direction) is induced by that of F and its second differential is the usual Čech
differential. The Čech complex C.U ;F/ is the total complex of C �.U ;F�/: Itsm-th
component for m 2 Z2 is given by

C.U ;F/m D
M

p2Z2; q2Z;
pCqDm

C q.U ;Fp/

There is an obvious map

�.X;F/! C.U ;F/ (2.9)

of dg abelian groups.
A different perspective on C.U ;F/ is as follows. Taking the Čech complex

defines a functor from Sh.X/ to the category of complexes of vector spaces over k,
and hence maps F 2 Sh.X; 0/ to a complex C �.U ;F/ in Z0.Sh.Spec k; 0//. Its
totalization is C.U ;F/.
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Lemma 2.45. The morphism (2.9) is a quasi-isomorphism if F is componentwise
flabby (i. e. F0 and F1 are flabby).

Proof. This follows from [10, Thm. 5.2.3] and part (a) of the following Lemma 2.46.

Lemma 2.46. Let f WA ! B be a morphism of Z2 � Z-graded double complexes
A D .Ap;q/p2Z2; q2Z, B D .Bp;q/p2Z2; q2Z of abelian groups. We assume that
Ap;q D 0 and Bp;q D 0 for all q < M , for some fixedM 2 Z. Assume that one of
the following two conditions is true:

(a) f induces isomorphismsH.Ap;�/! H.Bp;�/ for all p 2 Z2.

(b) f induces isomorphisms H.A�;q/ ! H.B�;q/ for all q 2 Z, and A and B
are bounded in the q-direction, i. e. there is N 2 Z such that Ap;q D 0 and
Bp;q D 0 for all q > N and p 2 Z2.

Then f induces a quasi-isomorphism Tot.f /WTot.A/ ! Tot.B/ of the total
complexes associated to A and B .

Proof. In this proof we view A and B in the obvious way as Z � Z-graded double
complexes that are 2-periodic in the p-direction.

Assume that (a) holds. Let FnA be the double subcomplex of A defined by

.FnA/
p;q
D

8̂<̂
:
Ap;q if q < n,
ker.Ap;n ! Ap;nC1/ if q D n,
0 if q > n,

and similarly for B . Then f induces maps Fnf WFnA ! FnB for all n 2 N, and
these maps induce quasi-isomorphisms on total complexes by [16, Thm. 1.9.3]. This
obviously implies the claim.

If (b) is satisfied we can immediately apply [16, Thm. 1.9.3].

Let us apply the above now to sheaf Hom object Hom .E; I / defined in
section 2.5.3.

Lemma 2.47. Let E 2 Qcoh.X;W / and I 2 InjQcoh.X;W /. Then

HomQcoh.X;W /.E; I / D �.X; Hom .E; I //! C.U ; Hom .E; I //

(cf. (2.3) and (2.9)) is a quasi-isomorphism. In particular,

HomDQcoh.X;W /.E; Œp�I / Š Hp.C.U ; Hom .E; I ///

canonically, for p 2 Z2.
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Proof. Since any injective object of Qcoh.X/ is also an injective object of Sh.X/, by
Theorem 2.1.(b), Hom .E; I / is componentwise flabby. Thus Lemma 2.45 shows
that the first map is a quasi-isomorphism, and then Remark 2.14 proves the second
claim.

Lemma 2.48. Let F ! G be a quasi-isomorphism in Z0.Qcoh.X; 0//. If U D
.Ui /i2I is an affine open covering of X , then C.U ;F/ ! C.U ;G/ is a quasi-
isomorphism.

Proof. Since X is quasi-compact there is a finite subset I 0 � I such that U 0 WD
.Ui /i2I 0 is a covering of X . If A is any quasi-coherent sheaf on X , the Čech
cohomologiesH.U ;A/ andH.U 0;A/ are canonically isomorphic toH.X;A/, since
our coverings are by affine open subsets. This together with part (a) of Lemma 2.46
shows that C.U 0;F/! C.U ;F/ is an isomorphism.

The usual Čech complex of a sheaf contains the alternating subcomplex and its
inclusion is a homotopy equivalence. Similarly, the Čech complex C.U 0;F/ has a
homotopy equivalent subcomplex Calt.U 0;F/.

These arguments show that it is sufficient to show that Calt.U 0;F/! Calt.U 0;G/
is a quasi-isomorphism. This follows from part (b) of Lemma 2.46: any finite
intersection U 0 of elements of U 0 is affine, and hence F.U 0/ ! G.U 0/ is a quasi-
isomorphism by assumption.

Corollary 2.49. Let E ! F be a morphism in Z0.Qcoh.X;W // that becomes an
isomorphism in DQcoh.X;W /, let P 2 MF.X;W /, and let U be an affine open
covering of X . Then

C.U ; Hom .P;E//! C.U ; Hom .P; F //

is a quasi-isomorphism.

Proof. The morphism Hom .P;E/ ! Hom .P; F / in Z0.Qcoh.X; 0// becomes
an isomorphism in DQcoh.X; 0/, cf. section 2.5.3. Hence it is a quasi-isomorphism
by Proposition 2.30. Now use Lemma 2.48.

We fix an affine open covering U D .Ui /i2I of X for defining the morphism
oriented Čech enhancement. We define a dg category MF LCmor.X;W / as follows
(it depends on the affine open covering U D .Ui /i2I but we suppress this in the
notation). The objects of MF LCmor.X;W / coincide with the objects of MF.X;W /,
and the morphisms are given by

HomMFLCmor.X;W /
.P;Q/ WD C.U ; Hom .P;Q//:

The composition in this category is defined using the cup-product for Čech complexes
as defined in [36], Chapter 18, Section 19 “Čech cohomology of complexes” (adapted
to our differential Z2-graded situation in the obvious way).
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We can repeat this construction starting with any dg subcategory C �
Qcoh.X;W / to obtain the corresponding dg category C LCmor. We always have an
obvious dg functor C ! C LCmor obtained from (2.3) and (2.9) and the induced functor
ŒC�! ŒC LCmor� on homotopy categories.

Proposition 2.50. The dg categories InjQcohMF.X;W / and MF LCmor.X;W / are
quasi-equivalent, i. e. connected by a zig-zag of quasi-equivalences (explicitly
constructed in the proof).

Moreover, MF LCmor.X;W / is a pretriangulated dg category, and the func-
tor ŒMF.X;W /� ! ŒMF LCmor.X;W /� factors through the Verdier localization
ŒMF.X;W /�!MF.X;W / to an equivalence

MF.X;W /
�
�! ŒMF LCmor.X;W /�

of triangulated categories. This shows that MF LCmor.X;W / is a dg enhancement
of MF.X;W / naturally. We call it the morphism oriented Čech enhancement of
MF.X;W /.

In particular this shows that the enhancements InjQcohMF.X;W / andMF LCmor.X;W /

of MF.X;W / are equivalent.

Proof. We construct the zig-zag of quasi-equivalences first. To ease the notation we
abbreviate C WD InjQcohMF.X;W /. We use the auxiliary dg category C LCmor with
the dg functor  W C ! C LCmor as explained above. Lemma 2.47 shows that  induces
quasi-isomorphisms on morphism spaces. It is bijective on objects and hence a
quasi-equivalence.

It remains to prove that the dg categories MF LCmor.X;W / and C LCmor are quasi-
equivalent. For this we define a new dg category B and two dg functors

MF LCmor.X;W /
p
 � B

q
�! C LCmor

which are quasi-equivalences.
By definition the objects of B are triples .P; I; ı/, where P 2 MF.X;W /,

I 2 C and ıWP ! I is a morphism in Z0.Qcoh.X;W // which becomes an
isomorphism in DQcoh.X;W /. Given objects .P; I; ı/ and .Q; J; "/, the dg module
HomB..P; I; ı/; .Q; J; "// can be conveniently written in matrix form�

.I; J / Œ�1�.P; J /

0 .P;Q/

�
where .�;�/ D HomQcoh.X;W /LCmor

.�;�/. The differential is defined by

d W

�
r m

0 l

�
7!

�
dr "l � rı C dŒ�1�.P;J /m

0 dl

�
D

�
dr "l � rı � d.P;J /m

0 dl

�
;
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and composition by�
� �

0 �

�
ı

�
r m

0 l

�
D

�
�r �:mC �:l

0 �l

�
D

�
�r .�1/j�j�mC �l

0 �l

�
where m is considered as an element of Œ�1�.P; J / in the middle term and as an
element of .P; J / in the right term, and similarly for �.

The obvious projections MF LCmor.X;W /
p
 � B

q
�! C LCmor are dg functors. These

functors are surjective on objects (use Theorem 2.9 and Remark 2.14). Hence in
order to show that they are quasi-equivalences we need to see that they induces
quasi-isomorphisms on morphism spaces.

Let us prove this for p first. The map ıWP ! I yields a closed degree zero
morphism ı�W .I; J / ! .P; J / in the dg category of dg modules. The shift
of its cone Cone.ı�/ is the kernel of the map pWHomB..P; I; ı/; .Q; J; "// !

HomMFLCmor
.P;Q/. Hence it is sufficient to show that Cone.ı�/ is acyclic.

Equivalently we show that ı� is a quasi-isomorphism. But this is true by Lemma 2.47
and Remark 2.14 and our assumption that ı is an isomorphism in DQcoh.X;W /.

Similarly, when considering q, we have to show that "�W .P;Q/ ! .P; J / is a
quasi-isomorphism. But this follows from Corollary 2.49. This shows that p and q
are quasi-equivalences, and finishes the proof of the first statement.

Our zig-zag of quasi-equivalences yields the equivalences

ŒC�
Œ�
��! ŒC LCmor�

Œq�
 � ŒB�

Œp�
��! ŒMF LCmor.X;W /�

on the level of homotopy categories. This shows that MF LCmor.X;W / is
pretriangulated. Moreover, if we fix for any P 2 MF.X;W / an object .P; IP ; ıP /
of B, this implies that P 7! IP is an equivalence ŒMF LCmor.X;W /�! ŒC�.

On the other hand MF.X;W / ! ŒC�, P 7! IP , is also an equivalence. These
two equivalences and the obvious functors fit into the commutative diagram

ŒMF.X;W /� //

��

ŒMF LCmor.X;W /�

�

��
MF.X;W / � // ŒC�

(commutativity is obvious for objects; for morphisms go through the above equiva-
lences) which shows that the upper horizontal functor vanishes on AcyclŒMF.X;W /�.
We obtain an induced functor MF.X;W / ! ŒMF LCmor.X;W /� of triangulated
categories which is then obviously an equivalence.

Corollary 2.51. The category MF LCmor.X;W / does not depend (up to quasi-
equivalence) on the choice of the affine open covering U D .Ui /i2I of X .



Matrix factorizations and semi-orthogonal decompositions 943

2.6.4. Object oriented Čech enhancement. In [23] we will introduce another
equivalent enhancement MF LCob.X;W / of MF.X;W / whose objects are defined
using Čech resolutions.

2.6.5. Enhancement for affine X . If X is affine Lemma 2.17.(b) says that
MF.X;W / is an enhancement of MF.X;W /. In fact this enhancement is a special
case of the object oriented Čech enhancement (for the trivial affine open covering fXg
of X ). It is equivalent to the enhancement InjQcohMF.X;W / (use the method of
proof of Proposition 2.50).

2.7. Compact generators. Recall that the category DQcoh.X;W / is cocomplete
(Corollary 2.23).
Proposition 2.52.

(a) The objects ofMF.X;W / are compact in DQcoh.X;W /.
(b) The triangulated category DQcoh.X;W / is generated by the objects of

MF.X;W /.
(c) The subcategory DQcoh.X;W /c of compact objects in DQcoh.X;W / is

a Karoubi envelope of MF.X;W /. We denote this Karoubi envelope by
MF.X;W /.

Proof. Results of Neeman [26] imply [6, Thm. 2.1.2 (and Prop 2.1.1)]. In particular
assertions (a) and (b) imply (c).

(a): Follows from Theorem 2.9.(a), Remark 2.14, and Corollary 2.23. Use [14,
Exercise II.1.11].

(b): We essentially copy the proof of [33, 3.11 Thm. 2].
Assume that J 2 InjQcoh.X;W / is such that every morphism E ! J in

Z0.Qcoh.X;W // with E 2 Coh.X;W / is homotopic to zero. By Theorem 2.9 and
Remark 2.14 it suffices to prove that J D 0 in ŒInjQcoh.X;W /�.

Apply Zorn’s lemma to the ordered set of pairs .M; h/, whereM is a subobject
of J and hWM ! J is a contracting homotopy of the embedding �WM ,! J ,
i. e. d.h/ D �. It suffices to check that given .M; h/ with M ¨ J there exists
M ¨ M 0 � J and a contracting homotopy h0WM 0 ! J for the embedding
M 0 ,! J such that h0jM D h. Let M 0 � J be a subobject such that M ¨ M 0

and M 0=M 2 Coh.X;W / (use [14, Ex. II.5.15.(e)] and the first step in the proof
of Lemma 2.15). Since J has injective quasi-coherent components, the degree one
morphism hWM ! J can be extended to a degree one morphism h00WM 0 ! J .
Let �WM ! J and �0WM 0 ! J denote the embeddings. The map �0 � d.h00/
is a closed degree zero morphism and vanishes on M , so it induces a morphism
gWM 0=M ! J in Z0.Qcoh.X;W //. By our assumption, there exists a contracting
homotopy cWM 0=M ! J for g. Denote the compositionM 0� M 0=M

c
�! J also

by c. Then h0 D h00 C cWM 0 ! J is a contracting homotopy for �0 extending h.
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Proposition 2.53. Assume in addition that X is of finite type over k. Then the
triangulated category MF.X;W / has a classical generator. Hence so does the
categoryMF.X;W /.

Proof. By Remark 2.6 we may assume thatX is connected. Then we distinguish two
cases: the mapW WX ! A1 is flat or elseW D 0. The remaining case of a constant
nonzero W is trivial since then MF.X;W / D 0 by Lemma 2.28.

Assume that W WX ! A1 is flat. Then by Theorem 2.8 MF.X;W / ' DSg.X0/.
It is well-known that the triangulated categoryDb.Coh.X0// has a classical generator
(the proof of this fact in [20, 6.3.(a)] also works if k is not perfect). Hence also the
quotient categoryDSg.X0/ D D

b.Coh.X0//=Perf.X0/ has a classical generator.
Assume now that W D 0. In this case we will use the equivalence

MF.X; 0/
�
�! DCoh.X; 0/ from Theorem 2.9 and the description DCoh.X; 0/ D

ŒCoh.X; 0/�=ExŒCoh.X; 0/� from Proposition 2.30. Consider the usual bounded
derived category Db.Coh.X// of coherent sheaves on X . We have the obvious
triangulated folding functor Db.Coh.X// ! DCoh.X; 0/ which takes a Z-graded
complex of coherent sheaves to the correspondingZ2-graded one. Since the category
Db.Coh.X// has a classical generator it suffices to show that DCoh.X; 0/ is the
triangulated envelope of the collection of objects which are in the image of the
folding functor.

For every E 2 Coh.X; 0/ we have a short exact sequence

. im e0
0 // im e1
0
oo / ,! E� . E1= im e0

0 // E0= im e1
0
oo /

in Z0.Coh.X; 0// and hence a triangle in DCoh.X; 0/, by Lemma 2.7.(a). But it is
obvious that any object in DCoh.X; 0/ with zero differential is in the image of the
folding functor.

The folding functor appearing in the above proof will be studied in detail in [35].

Remark 2.54. The above proof shows that the folding of a classical generator G of
Db.Coh.X// is a classical generator of DCoh.X; 0/. By replacing G by the direct
sum of its cohomologies one can assume that G 2 Coh.X/. Then G has a finite
resolution by vector bundles, and by replacing G by the direct sum of the involved
vector bundles we can assume that G itself is a vector bundle. Then the folding of G
has the form . 0 // Goo / 2MF.X; 0/ and is a classical generator of MF.X; 0/.

2.8. Some useful results.

Lemma 2.55. Let E;F 2 Qcoh.X;W / and assume that

HomD.Qcoh.X//.Ep; Œi �Fp0/ D 0
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for all p, p0 2 Z2 and i 2 Z. Then

HomDQcoh.X;W /.E; Œq�F / D 0

for all q 2 Z2.

Proof. Let F ! I be as in Lemma 2.10.(a). Then the isomorphism F
�
�! Tot.I / in

DQcoh.X;W / and Remark 2.14 imply that we obtain isomorphisms

HomDQcoh.X;W /.E; Œq�F /
�
�! HomDQcoh.X;W /.E; Œq�Tot.I //

�
 Hq.HomQcoh.X;W /.E;Tot.I ///:

Hence we need to show that dg module HomQcoh.X;W /.E;Tot.I // is acyclic. This
dg module is the totalization of the (finite) complex

0! HomQcoh.X;W /.E; I
0/! HomQcoh.X;W /.E; I

1/

! HomQcoh.X;W /.E; I
2/! � � � :

This complex is exact by assumption sinceF0 ! I0 andF1 ! I1 are (finite) injective
resolutions in the abelian category Qcoh.X/. Hence HomQcoh.X;W /.E;Tot.I // is
acyclic by Lemma 2.46.(a).

Lemma 2.56 ([32, Rem. 1.3]). Let U be an open covering of X and let E be an
object of DQcoh.X;W /. Assume that EjU D 0 in DQcoh.X;W / for all U 2 U .
Then E D 0 in DQcoh.X;W /.
Remark 2.57. The corresponding result for E 2 MF.X;W / can also be shown
using Remark 2.6, Lemma 2.28, Proposition 2.30, and Theorem 2.8 (being a perfect
complex is defined locally).

Proof. We repeat the proof of [32, Rem. 1.3]. We can assume that U is finite and
consists of affine open subsets. For V � X open let jV WV ! X be the inclusion.
The Čech resolution

0! E !
M
U02U

jU0�j
�
U0
E !

M
U0;U12U

jU0\U1�j
�
U0\U1

E ! � � �

is a bounded exact complex in Z0.Qcoh.X;W //. For any finite intersection V of
(a positive number of) elements of U we have j �V .E/ 2 AcyclŒQcoh.V;W /� by
assumption. Since X is separated, jV is affine and hence

jV �j
�
V .E/ 2 AcyclŒQcoh.X;W /�

by Remark 2.39. Lemma 2.7.(b)–(d) then shows that

E 2 AcyclŒQcoh.X;W /�:
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Corollary 2.58. Let f WE ! E 0 be a morphism in DQcoh.X;W /. Assume that
f jU WEjU ! E 0jU is an isomorphism for all elements U of an open covering of X .
Then f is an isomorphism.

Proof. A morphism in a triangulated category is an isomorphism if and only if its
cone is zero. In our case, this can be checked locally by Lemma 2.56.

Corollary 2.59. An object E in ŒMF.X;W /� belongs to AcyclŒMF.X;W /� if and
only if E is locally contractible, i. e. any point of X has an open neighborhood U
such that E D 0 in ŒMF.U;W /�.

Proof. If E is locally contractible then E D 0 inMF.X;W / by Lemma 2.56, hence
E 2 AcyclŒMF.X;W /�.

Conversely, let E 2 AcyclŒMF.X;W /�. Let U � X be any affine open
subscheme. Then EjU D 0 in MF.U;W /. But ŒMF.U;W /�

�
�! MF.U;W / by

Lemma 2.17, so EjU is contractible.

Proposition 2.60 (Locality of orthogonality). Let U be an open covering of X and
let A, B 2 Qcoh.X;W /. Assume that HomDQcoh.U 0;W /.AjU 0 ; Œp�BjU 0/ D 0 for all
finite intersections U 0 of elements of U and all p 2 Z2. Then

HomDQcoh.X;W /.A; Œp�B/ D 0

for all p 2 Z2.

Proof. Lemma 2.10.(a) allows us to assume that B 2 InjQcoh.X;W /. Then
Lemma 2.47 shows that it is enough to prove that C.U ; Hom .A;B// is acyclic.
Since X is quasi-compact we can assume that U is finite. We order the elements
of U , say U D fU1; : : : ; Ung.

As in the proof of Lemma 2.48 it is enough to show that Calt.U ; Hom .A;B// is
acyclic. Instead of the alternating Čech complex we can work with the isomorphic
ordered Čech complex Cord.U ; Hom .A;B// (defined in the obvious way).

In order to apply Lemma 2.46.(b) it is enough to show the following: for all q 2 N
and 1 � i0 < i1 < � � � < iq � n the dg module Hom .A;B/.U 0/ is acyclic, where
U 0 WD Ui0 \ � � � \ Uiq . But

Hom .A;B/.U 0/ D �.U 0I Hom .AjU 0 ; BjU 0// D HomQcoh.U 0;W /.AjU 0 ; BjU 0/

by (2.3), and the latter is acyclic by Theorem 2.1.(c), Remark 2.14, and our
assumptions.

Proposition 2.61. LetX andW WX ! A1 be as before. LetZ be a closed subscheme
ofX defined by a sheaf of idealsI � OX , and letU D X�Z be its open complement.
LetM 2 MF.X;W / be such thatM jU D 0 in MF.U;W /. Then, for every n� 0,
the canonical morphism pWM ! M=InM has a left inverse l in DCoh.X;W /,
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i. e. the composition l ı pWM ! M is the identity of M . In particular, M is
isomorphic to a direct summand ofM=InM in DCoh.X;W /.

Proof. Let M ! I be a morphism in Z0.Qcoh.X;W // with I 2 InjQcoh.X;W /
that becomes an isomorphism in DQcoh.X;W / (Lemma 2.10.(a)).

We recall some results from [13, II.§7, cf. proof of Thm. 7.18] (see also
Theorem 2.1). Any injective quasi-coherent sheaf onX is isomorphic to a direct sum
of indecomposable injective quasi-coherent sheaves. Every indecomposable injective
quasi-coherent sheaf is isomorphic to some J.x/ WD ix�.I.x//, where x 2 X is a
point, ix WSpecOX;x ! X is the natural inclusion and I.x/ is the injective hull of
the OX;x-module k.x/.

If a nonzero morphism J.x/ ! J.y/ exists, then y 2 fxg: use that J.x/
considered as a sheaf of abelian groups is the skyscraper sheaf at x with stalk I.x/I
this follows from [13, Prop. 7.5].

In particular, the components of I are direct sums of indecomposable quasi-
coherent sheaves. Denote by IZ � I the graded subsheaf consisting of all
summandsJ.z/, for z 2 Z. Then IZ is in fact a subobject, i. e. IZ 2 InjQcoh.X;W /.
Let "WU ! X denote the inclusion. The object "�I is in ŒInjQcoh.U;W /�
by Theorem 2.1.(c), and becomes zero in DQcoh.U;W / by assumption. By
Theorem 2.9.(a) "�I D 0 in ŒInjQcoh.U;W /�, i. e. "�I is contractible. Hence
the object "�"�I 2 ŒInjQcoh.X;W /� is also contractible. It is easy to check (use
that "� preserves coproducts) that the sequence

0! IZ ! I ! "�"
�I ! 0

in Z0.InjQcoh.X;W // is short exact. Hence IZ ! I is an isomorphism in
ŒInjQcoh.X;W /�. Let I ! IZ in Z0.InjQcoh.X;W // represent an inverse. Thus
the composition ˛WM ! I ! IZ becomes an isomorphism in DQcoh.X;W /.
Since the components ofM are coherent sheaves and every local section of IZ has
support in Z, by [13, Prop. 7.5], it follows that for some n0 � 0 the morphism ˛

factors as

M !M=In0M
ˇ
�! IZ

in Z0.Qcoh.X;W //. But then, in DQcoh.X;W /, the composition

˛�1 ı ˇWM=In0M !M

is the splitting of the projection M ! M=In0 . Similarly one obtains a splitting of
the projection M ! M=InM for any n > n0. For the last statement fit pWM !
M=InM into a triangle in DCoh.X;W / and note that its third morphism is zero.
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3. Semi-orthogonal decompositions for matrix factorizations arising from
projective space bundles and blowing-ups

There are well-known semi-orthogonal decomposition theorems for bounded derived
categories of coherent sheaves on projective space bundles and blowing-ups. We
recall them and then state and prove the corresponding results for categories of
matrix factorizations. For the definitions of an admissible subcategory and of a
semi-orthogonal decomposition we refer to Appendix A.

3.1. Projective space bundles. Let Y be a scheme satisfying condition (srNfKd),
and let N be a locally free coherent sheaf on Y of rank r . Let E WD P.N / be the
associated projective space bundle. It comes with a projection morphism pWE ! Y

and an invertible sheaf O.1/ D OE .1/. Recall the following semi-orthogonal
decomposition theorem from3 [5, 30], [15, Cor. 8.36].
Theorem 3.1. Assume that r � 1. Let l 2 Z.
.Coh1/E The functor O.l/ ˝ p�.�/WDb.Coh.Y // ! Db.Coh.E// is full and

faithful.
We denote the essential image of this functor by O.l/˝ p�Db.Coh.Y //.
.Coh2/E The subcategory O.l/˝ p�Db.Coh.Y // � Db.Coh.E// is admissible.
.Coh3/E The categoryDb.Coh.E// has the semi-orthogonal decomposition

Db.Coh.E// D
˝
O.�r C 1/˝ p�Db.Coh.Y //; : : : ;

: : : ;O.�1/˝ p�Db.Coh.Y //; p�Db.Coh.Y //
˛
:

Now letW WY ! A1 be a morphism. We denote the compositionE
p
�! Y

W
�! A1

also by W . We have Lp� D p�WMF.Y;W /!MF.E;W / (see Theorem 2.35.(b)),
and tensoring with the line bundle O.l/ induces autoequivalences of the category
MF.E;W /. The analog of Theorem 3.1 for matrix factorizations is the following
theorem.
Theorem 3.2. Assume that r � 1. Let l 2 Z.
.MF1/E The functor O.l/˝ p�.�/WMF.Y;W /!MF.E;W / is full and faithful.
We denote the essential image of this functor by O.l/˝ p�MF.Y;W /.
.MF2/E The subcategory O.l/˝ p�MF.Y;W / �MF.E;W / is admissible.
.MF3/E The categoryMF.E;W / has the semi-orthogonal decomposition4

MF.E;W / D
˝
O.�r C 1/˝ p�MF.Y;W /; : : : ;

: : : ;O.�1/˝ p�MF.Y;W /; p�MF.Y;W /
˛
:

3 The assumption there is that Y is a smooth projective variety over a field.
4 This is also true for r D 0 since thenE D ;.
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Proof of .MF1/E . Note that OY
�
�! Rp�OE . If V is a vector bundle on Y , this

implies that the adjunctionmorphism V ! Rp�p�V is an isomorphism. This means
that if p�V ! J is a (finite) resolution by injective quasi-coherent sheaves, then
the obvious morphism V ! p�.J / is a resolution of V . Now let F 2 MF.Y;W /
and let p�F ! I be an exact sequence as in Lemma 2.10.(a). Then the obvious
morphism F ! p�.I / is an exact sequence inZ0.Qcoh.Y;W //, and Lemma 2.7.(c)
implies that the adjunction morphism F ! Rp�p�F is an isomorphism. Hence
p�WMF.Y;W /! MF.E;W / is full and faithful, and this clearly implies .MF1/E .

Proof of .MF2/E . It is certainly enough to show that p�MF.Y;W / � MF.E;W /
is admissible. By Remark A.5 and its dual version we need to prove that the full
and faithful functor p�WMF.Y;W / ! MF.E;W / has a right and a left adjoint.
Lemma 2.37 provides a right adjoint Rp�WMF.E;W /! MF.Y;W /. On the other
hand, we see from Lemma 2.43 thatDY ı Rp� ıDE is left adjoint to p�.

It remains to prove .MF3/E . More precisely we need to prove that the
specified sequences of admissible subcategories are semi-orthogonal and complete
(see Definition A.10).

Proof of semi-orthogonality in .MF3/E . Lemma 2.55 shows that this is a direct
consequence of Theorem 3.1..Coh3/E (and this statement is not difficult to prove
using the local-to-global Ext spectral sequence).

We now prepare for the proof of completeness in .MF3/E .

Recall that the projection pWE ! Y is a Pr�1-bundle. Let �E=Y be the sheaf
of relative differentials of E over Y (= the relative cotangent bundle on E) and let
�t
E=Y
D ^t�E=Y (and �0

E=Y
D OE ). Consider the pullback diagram

E �Y E
q2 //

q1

��

E

p1

��
E

p2 // Y

where p1 D p2 D p. We define F � G WD q�1F ˝ q
�
2G for F , G 2 Coh.E/.

Denote by �E � E �Y E the diagonal subscheme.
In this situation we have an exact sequence

0! OE .�r C 1/��r�1E=Y .r � 1/! � � � ! OE .�t /��tE=Y .t/! � � �
� � � ! OE .�1/��E=Y .1/! OE�YE ! O�E

! 0 (3.1)

in Coh.E �Y E/ (cf. [15, Remark 8.35]). We denote this locally free resolution
of O�E

as F ! O�E
, i. e. F�t D OE .�t /��tE=Y .t/ for t � 0.
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Proof of completeness in .MF3/E . We essentially adapt the proof of [15, Cor. 8.29].
Let t � 0. For any T 2 Coh.E/ we have

Rq1�
�
F�t ˝ q�2 .T /

�
D Rq1�

�
q�1
�
OE .�t /

�
˝ q�2

�
�tE=Y .t/˝ T

��
D OE .�t /˝ Rq1�q�2

�
�tE=Y .t/˝ T

�
D OE .�t /˝ p�2Rp1�

�
�tE=Y .t/˝ T

� (3.2)

in Db.Qcoh.E// (or Db.Coh.E//, cf. proof of Lemma 2.37). Indeed the second
equality is the projection formula and the third one is flat base change.

In the following we use the exact functor Coh.E�Y E/! Z0.Coh.E�Y E; 0//,
S 7! . 0 // Soo /, in order to view coherent sheaves as matrix factorizations. For ex-
ample, (3.1) can be viewed as a resolution of . 0 // O�E

oo / inZ0.Coh.E �Y E; 0//.
We claim that for T 2 DCoh.E;W / equation (3.2) is also true in DQcoh.E;W /

(or DCoh.E;W /). Just observe that projection formula and flat base change also
hold for matrix factorizations. This is easy to prove for the projection formula. For
flat base change note that there is a natural morphism and use the following: if I
is in ŒInjQcoh.E;W /�, then the usual flat base change shows that q�2 .I / is right
q1�-acyclic, by Lemma 2.38.

We break the exact sequence (3.1) up into short exact sequences

F�rC1 ,! F�rC2� K�rC3; : : : ;K�t ,! F�t � K�tC1; : : : ;
: : : ;K0 ,! F0� O�E

:

These short exact sequences give rise to triangles in DCoh.E �Y E; 0/.
Let T 2 DCoh.E;W /. Form the derived tensor product of q�2 .T / with these

triangles and apply Rq1�. Using induction and (3.2) we see that

Rq1�
�
O�E

˝
Lq�2 .T /

�
2 tria

�
OE .�rC1/˝p�2 DCoh.Y;W /; : : : ; p�2 DCoh.Y;W /

�
:

The object on the left is the image of T under the Fourier-Mukai transform with
kernel O�E

(in the setting of matrix factorizations). Hence it is isomorphic to T W
for ıWE ! E �Y E the (affine) diagonal inclusion we have

O�E
˝

L q�2 .T / D ı�.OE /˝L q�2 .T / D ı�.OE ˝L ı�.q�2 .T /// D ı�.T /

by the projection formula, and hence Rq1�
�
O�E

˝L q�2 .T /
�
D Rq1�.ı�.T // D T .

Now completeness in .MF3/E is immediate from Theorem 2.9.(c).

This finishes the proof of Theorem 3.2

The following result lifts the semi-orthogonal decomposition from Theorem 3.2
to the dg level. We will need it in [23]. We use the enhancement by dg quotients
explained in Section 2.6.2.
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Corollary 3.3. There are full dg subcategories Yl of MF.E;W /=AcyclMF.E;W /
(for l 2 Z) which are quasi-equivalent to MF.Y;W /=AcyclMF.Y;W / such
that the semi-orthogonal decomposition into admissible subcategories from The-
orem 3.2..MF3/E is given by

ŒMF.E;W /=AcyclMF.E;W /� D
˝
ŒY�rC1�; : : : ; ŒY�1�; ŒY0�

˛
if we identify MF.E;W / with the left-hand side along (2.8).

Proof. The functorO.l/˝p�.�/WMF.Y;W /! MF.E;W /maps AcyclMF.Y;W /
to AcyclMF.E;W / and hence induces a dg functor

O.l/˝ p�.�/WMF.Y;W /=AcyclMF.Y;W /! MF.E;W /=AcyclMF.E;W /:

On homotopy categories this is the full and faithful functor

O.l/˝ p�.�/WMF.Y;W /!MF.E;W /

from .MF1/E ; here and in the following we identify along (2.8). Define Yl to be
the full dg subcategory of MF.E;W /=AcyclMF.E;W / consisting of objects that
belong to O.l/˝ p�MF.Y;W /. All claims follow now from Theorem 3.2.

3.2. Blowing-ups. Nowwe describe the setting of a blowing-up. LetX be a scheme
satisfying condition (srNfKd) and let i WY ,! X be the embedding of a regular equi-
codimensional closed subscheme. Let � W eX ! X be the blowing-up of X along Y ,
cf. [19, 8.1] and [11, 13], and denote by j WE ,! eX the inclusion of the exceptional
divisor. We have the following pullback diagram

E
j //

p

��

eX
�

��
Y

i // X:

By the usual construction of the blowing-up, eX is endowed with the line bundle
O.1/ D OeX .1/. This line bundle is the ideal sheaf corresponding to the closed
subscheme E � eX , i. e. we have a short exact sequence

OeX .1/ ,! OeX � OE : (3.3)

We often denote the restriction OE .1/ of O.1/ D OeX .1/ to E by O.1/ as well.
Let J � OX be the ideal sheaf of Y � X . Note that i is a regular immersion of

a fixed codimension by [19, 6.3.1]; we denote this codimension by r . In particular
J =J 2 is locally free of rank r on Y . Moreover, the projection pWE ! Y is a
Pr�1-bundle (as in subsection 3.1), more precisely it is isomorphic toP.J =J 2/! Y

(use [19, Thm. 8.1.19], cf. [14, Thm. II.8.24]).
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Recall the following semi-orthogonal decomposition theorem from5 [5,30]6, [15,
Prop. 11.18].
Theorem 3.4. Assume that r � 2.
.Coh0/ QX The functor L��WDb.Coh.X//! Db.Coh.eX// is full and faithful.
Let l 2 Z and consider the functor

tl.�/ WD j�.O.l/˝ p�.�//WDb.Coh.Y //! Db.Coh.eX//:
.Coh1/ QX The functor tl is full and faithful.

Denote by Db.Coh.Y //l the essential image of tl , and by L��Db.Coh.X// the
essential image of L��WDb.Coh.X//! Db.Coh.eX//.
.Coh2/ QX The subcategoriesDb.Coh.Y //l and L��Db.Coh.X// are admissible in

Db.Coh.eX//.
.Coh3/ QX The categoryDb.Coh.eX// has the semi-orthogonal decomposition

Db.Coh.eX// D ˝Db.Coh.Y //�rC1; : : : ;Db.Coh.Y //�1;

L��Db.Coh.X//
˛
:

Now assume that we are given a morphism W WX ! A1. It induces morphisms
from Y , eX and E to A1 which we again denote by W . Note that X , Y , eX , and E
satisfy condition (srNfKd). Consider the commutative diagram

MF.E;W / MF.eX;W /j�oo

MF.Y;W /

p�

OO

MF.X;W /:i�oo

��

OO

Here L�� D ��, and similarly for the other functors in this diagram. We also
have the functor j� D Rj�WMF.E;W / ! DCoh.eX;W /, see Remark 2.39. Note
that tensoring with the line bundlesO.l/ induces autoequivalences of the categories
MF.E;W / and MF.eX;W /.

Our goal now is to prove the following analog of Theorem 3.4.
Theorem 3.5. Let r � 2.
.MF0/ QX The functor ��WMF.X;W /!MF.eX;W / is full and faithful.
For any integer l consider the functor

sl.�/ WD j�.O.l/˝ p�.�//WMF.Y;W /! DCoh.eX;W /
and recall that the latter category is equivalent toMF.eX;W /.

5 The assumption there is that Y is a smooth projective variety over a field.
6 The proof of Theorem 3.4 in [5,30] is incomplete. We thank A. Kuznetsov for explaining to us how

to fill in the gap. We use his suggestion to prove our Theorem 3.5 below.
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.MF1/ QX The functor sl is full and faithful.

Denote by ��MF.X;W / the essential image of ��WMF.X;W /!MF.eX;W /, and
byMF.Y;W /l the intersection of the essential image of sl withMF.eX;W /.
.MF2/ QX The subcategory ��MF.X;W / � MF.eX;W / is admissible, and so are

the subcategoriesMF.Y;W /l �MF.eX;W /, for any l 2 Z.
.MF3/ QX The categoryMF.eX;W / has the semi-orthogonal decomposition7

MF.eX;W / D ˝MF.Y;W /�rC1; : : : ;MF.Y;W /�1; ��MF.X;W /
˛
:

Proof of .MF0/ QX . We can proceed as in the proof of .MF1/E since

OX
�
�! R��L��OX D R��OeX

(this follows for example from [34, Thm. 8, Rem. 9]).

Proof of .MF1/ QX . FixM , N 2MF.Y;W / and l 2 Z. Put

M WD O.l/˝ p�M; N WD O.l/˝ p�N:

We already know .MF1/E . Hence it suffices to show that the morphism

j�WHomMF.E;W /.M;N /! HomDCoh.eX;W /.j�M; j�N/ (3.4)

is an isomorphism.
Using the short exact sequence (3.3) and the method used in the proof of

Lemma 2.10.(b) we find an exact sequence 0 ! Q�1 ! Q0 ! j�M ! 0 in
Z0.Coh.eX;W // withQ0,Q�1 2MF.eX;W /. Let

Q D .� � � ! 0! Q�1 ! Q0
! 0! � � � /;

and let r WTot.Q/ ! j�M be the obvious morphism. Then by the definition
of Lj � we can assume that Lj �j�M D j �.Tot.Q// D Tot.j �.Q//. Consider
the composition

� WLj �j�.M/ D j �.Tot.Q//
j�.r/
���! j �j�M !M

where the last morphism is the obvious one. It is enough to show that the morphism

��WHomMF.E;W /.M;N /! HomMF.E;W /.j
�.Tot.Q//;N / (3.5)

is an isomorphism: if we compose the morphism (3.5) with the isomorphism given
by the adjunction in Theorem 2.35, we obtain the morphism (3.4).

7 This is also trivially true for r D 0 and r D 1.



954 V. A. Lunts and O. M. Schnürer

Fit � into a triangle

C ! Tot.j �.Q//
�
�!M ! Œ1�C

in MF.E;W /. Applying the cohomological functor HomMF.E;W /.‹; N / to this
triangle shows that we need to prove that

HomMF.E;W /.Œv�C;N / D 0 for all v 2 Z2.

By Proposition 2.60 it is sufficient to prove this under the additional assumption
that X (and hence Y ) are affine. Moreover we can and will assume that M and N
are freeOY -modules of finite rank; thenM andN are finite direct sums of copies of
the line bundle OE .l/.

It is easy to see thatM D H 0.j �.Q// and thatM 0 WD H�1.j �.Q// coincides
withM.1/ as a graded vector bundle on E (use the short exact sequence (3.3)). We
claim that C Š Œ1�M 0 in this case, i. e. the morphism � WTot.j �.Q//! M fits into
a triangle Œ1�M 0 ! Tot.j �.Q//

�
�!M ! Œ2�M 0.

Let A WD j �.Q/. Let ���1.A/ be the kernel of the obvious surjective morphism
A ! H 0.A/ D M of complexes in Z0.MF.E;W //, where M is concentrated in
degree 0. We obtain a short exact sequence

���1.A/! A! H 0.A/ DM

of complexes in Z0.MF.E;W //. Taking totalizations we obtain a short ex-
act sequence in Z0.MF.E;W / which becomes a triangle in MF.E;W / (by
Lemma 2.7.(a)). On the other hand note that there is an obvious quasi-isomorphism
M 0 D H�1.A/! ���1.A/ of complexes in Z0.MF.E;W //, where M 0 is put in
degree -1. It gives rise to a morphism Œ1�M 0 ! Tot.���1.A// in Z0.MF.E;W //
and to an isomorphism in MF.E;W /. Altogether we obtain the triangle

Œ1�M 0 ! Tot.j �.Q//
�
�!M ! Œ2�M 0

we claimed to exist, in particular C Š Œ1�M 0 inMF.E;W /.
Hence we are reduced to proving that

HomMF.E;W /.Œv�M
0; N / D 0 for all v 2 Z2.

Since M 0 and M.1/ coincide (at least) as graded vector bundles this follows from
Lemma 2.55 and our assumptions onM and N since

HomD.Qcoh.E//.Œv�OE .l C 1/;OE .l// D H�v.E;OE .�1// D 0

for all v 2 Z. Here we use that pWE ! Y is a Pr�1-bundle and that r � 1 � 1. This
finishes the proof of .MF1/ QX .
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Proposition 3.7 below is essential for the proof of (the second part of) .MF2/ QX . It
says how j� commutes with the duality (2.6). Its proof will use the following trivial
result.
Lemma 3.6. Let A be a ring. Let pWP � M be a surjection of A-modules and
let qWQ ! M be any morphism of A-modules with Q projective. Consider the
morphism .p; q/WP ˚Q ! M . Then there is a morphism l WQ ! P such that the
diagram

P ˚Q
.p;0/ //

�

h
1 �l
0 1

i
��

M

P ˚Q
.p;q/ //M

commutes.

Proof. Since p is surjective andQ is projective there is l WQ! P such that pl D q.

Proposition 3.7. There is an isomorphism � W j� ıDE
�
�! Œ1�.1/DeX ı j� of functors

MF.E;W /! DCoh.eX;�W /op.
Proof. We first define the morphism � globally and show afterwards locally that it is
an isomorphism.

The short exact sequence (3.3) gives rise to a short exact sequence in
Z0.Coh.eX; 0// and then to a triangle�



�
	0 // .1/OeXoo ,!

�



�
	0 // OeXoo �

�



�
	0 // j�OEoo
ı
�!

�



�
	.1/OeX // 0oo

in DCoh.eX; 0/. For later use we describe ı explicitly. Consider the obvious
morphisms �



�
	0 // j�OEoo
�
 �

�



�
	.1/OeX � // OeX0

oo
ı0

�!

�



�
	.1/OeX // 0oo

in Z0.Coh.eX; 0// where the inclusion .1/OeX ,! OeX is denoted by �. The
morphism � becomes invertible in DCoh.eX; 0/, and there we have ı D ı0 ı ��1.

Now define � to be the composition

� Wj� ıDE

D j�RHomOE

�
�;
�
0 // OEoo

��
! RHomOeX�j�.�/; j�� 0 // OEoo

��
ı�
�! RHomOeX�j�.�/; � .1/OeX // 0oo

��
D Œ1�.1/DeX ı j� (3.6)

where the first morphism is the obvious one and the second one is induced by ı. The
last equality is obvious.
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Our aim is now to show that � is in fact an isomorphism. It is enough to test this
locally on an affine open subset SpecA � eX (use Corollary 2.58). We can moreover

assume that (3.3) is given by A
f
,! A

c
� A=f , for some f 2 A.

LetM D . M1

m1 //M0
m0

oo / 2MF.SpecA=f;W /. By further shrinking SpecA we

can and will assume that the components ofM are free A=f modules of finite rank,
M0 D .A=f /

˚s0 andM1 D .A=f /
˚s1 for suitable s0; s1 2 N.

Let Pi WD A˚si . We denote the morphisms c˚si WPi �Mi and f ˚si WPi ,! Pi
simply by c and f respectively.

The method of Lemma 2.10.(b) (with a little help from Lemma 3.6) pro-
vides the following (vertical) short exact sequence Q�1

q
,! Q0

r
� j�M in

Z0.Coh.SpecA;W //, a two-step resolution of j�.M/ by objects ofMF.SpecA;W /.

j�M W M1

m1 //M0
m0

oo

Q0W

r

OO

P0 ˚ P1

"
f u1 ˇ
�˛ 1

#
//

Œ0 c�

OO

P0 ˚ P1"
1 �ˇ
˛ f u0

#oo

Œc 0�

OO

Q�1W

q

OO

P0 ˚ P1

"
u1 ˇ
�˛ f

#
//

"
1 0
0 f

#
OO

P0 ˚ P1"
f �ˇ
˛ u0

#oo

"
f 0
0 1

#
OO

Here ˛; ˇ; u0; u1 are suitable morphisms satisfying

c˛ D m0c; W D f u1 C ˇ˛; ˛u1 D u0˛;

cˇ D m1c; W D f u0 C ˛ˇ; ˇu0 D u1ˇ:

Note thatQ0 is isomorphic to zero in ŒCoh.SpecA;W /�, as observed in Remark 2.11.

Let T WD Tot.Q�1
q
�! Q0/ be the cone of q. Then r defines a morphism

r 0WT ! j�M

in Z0.Coh.SpecA;W // that becomes an isomorphism in DCoh.SpecA;W /.
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Explicitly r 0 is given by the upper part of the following diagram.

j�M W M1

m1 //M0
m0

oo

T W

r 0

OO

u

��

P0 ˚ P1 ˚ P0 ˚ P1

26664
f u1 ˇ f 0
�˛ 1 0 1
0 0 �f ˇ
0 0 �˛ �u0

37775
//

Œ0 c 0 0�

OO

u1D

"
0 0 1 0
0 0 0 1

#

��

P0 ˚ P1 ˚ P0 ˚ P1:26664
1 �ˇ 1 0
˛ f u0 0 f
0 0 �u1 �ˇ
0 0 ˛ �f

37775
oo

Œc 0 0 0�

OO

u0D

"
0 0 1 0
0 0 0 1

#

��
Œ1�Q�1W

t

JJ

P0 ˚ P1

"
�f ˇ
�˛ �u0

#
//

t1D

26664
0 0
0 �1
1 0
0 1

37775

JJ

P0 ˚ P1:"
�u1 �ˇ
˛ �f

#oo

t0D

26664
�1 0
0 0
1 0
0 1

37775

JJ

The morphism u in the lower part of this diagram is the obvious projection morphism
in the triangle Q�1

q
�! Q0 ! T

u
�! Œ1�Q�1 in ŒCoh.SpecA;W /�. We have

observed above that Q0 D 0 in ŒCoh.SpecA;W /�, so u is an isomorphism. The
dotted morphism t in the diagram inZ0.Coh.SpecA;W // represents the inverse of u
in ŒCoh.SpecA;W /�.

Hence the morphism r 00 WD r 0 ı t W Œ1�Q�1 ! j�M in Z0.Coh.SpecA;W //
becomes an isomorphism in DCoh.SpecA;W /. It is given by

j�M W M1

m1 //M0
m0

oo

Œ1�Q�1W

r 00

OO

P0 ˚ P1

"
�f ˇ
�˛ �u0

#
//

r 00
1
DŒ0 �c�

OO

P0 ˚ P1:"
�u1 �ˇ
˛ �f

#oo

r 00
0
DŒ�c 0�

OO

We need to prove that the composition

HomA=f
�
M;

�
0 // A=foo

��
! E WD HomA

�
j�M;

�
0 // A=foo

�� r 00�

��! F WD HomA
�
Œ1�Q�1;

�
0 // A=foo

��
.��/
�1

����! G WD HomA
�
Œ1�Q�1;

�
A

f // A
0
oo

�� ı0�
�! H WD HomA

�
Œ1�Q�1;

�
A // 0oo

��
in DCoh.SpecA;�W / is an isomorphism. The first arrow clearly is an isomorphism.
The first (resp. last) two arrows correspond to the first (resp. second) arrow in the
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definition (3.6) of �M . The following diagram in Z0.Coh.SpecA;�W // depicts

E r 00�

��! F
��
 � G

ı0�
�! H explicitly, cf. (2.7) and (2.2) (we write P i for Pi=fPi I note

that HomA.A=f;A=f / D A=f and HomA.A;A=f / D A=f and HomA.A;A/ D A
canonically, so that we can for example identify HomA.Mi ; A=f / D Mi and
Hom.P0; A=f / D P 0I note that some matrix entries are zero since f WA=f ! A=f

is zero; we indicate the transpose of a matrix by an upper index t).

E

r 00�

��

M1

mt
0 //

r 00�
1
D

"
0
�1

#

��

M0
�mt

1

oo

r 00�
0
D

"
�1
0

#

��
F P 0 ˚ P 1

"
�ut

1 ˛t

�ˇ
t
�f D 0

#
// P 0 ˚ P 1"

f D 0 ˛t

�ˇ
t

ut
0

#oo

G

��

OO

ı0�

��

P0 ˚ P1 ˚ P0 ˚ P1

��1Dcan ı pr12

OO

ı0
�1
Dpr34

��

26664
�ut

1 ˛t f
�ˇ t �f f

�f �˛t

ˇ t �ut
0

37775
// P0 ˚ P1 ˚ P0 ˚ P1

��0Dcan ı pr12

OO

ı0
�0
Dpr34

��

26664
f ˛t f
�ˇ t ut

0 f
ut

1 �˛t

ˇ t f

37775
oo

H

s

GG

P0 ˚ P1

s1WD

26664
0 0
0 1
1 0
0 1

37775

JJ

"
�f �˛t

ˇ t �ut
0

#
// P0 ˚ P1:

s0WD

26664
�1 0
0 0
1 0
0 1

37775

JJ

"
ut

1 �˛t

ˇ t f

#oo

Additionally we have added the dotted morphism s which shows that the surjection ı0�
splits in Z0.Coh.SpecA;�W //. Note that �� maps s.H/ onto r 00�.E/, so we can
consider the commutative diagram

E r 00�

�
// r 00�.E/

\

s.H/

\

��oo ı0�

�
// H

E r 00� // F G��oo ı0� // H

in Z0.Coh.SpecA;�W //. Our aim is to show that the lower row defines an
isomorphism ı0� ı .��/�1 ı r 00� in DCoh.SpecA;�W /. For this it is clearly sufficient
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to show that
H s
�!
�
s.H/

��
�! r 00�.E/

becomes an isomorphism in DCoh.SpecA;�W /. This morphism occurs as the
epimorphism in the short exact sequence

r 00�.E/W P 1
˛t // P 0
�ˇ

t
oo

HW

��ıs

OO

P0 ˚ P1

can ıŒ0 1�

OO

"
�f �˛t

ˇ t �ut
0

#
// P0 ˚ P1

can ıŒ�1 0�

OO

"
ut

1 �˛t

ˇ t f

#oo

P0 ˚ P1

"
1 ˛t

�ˇ t f ut
0

#
//

"
�1 0
0 �f

#
OO

P0 ˚ P1"
�f ut

1 ˛t

�ˇ t �1

#oo

"
f 0
0 1

#
OO

in Z0.Coh.SpecA;�W //. The lower object in this short exact sequence becomes
zero in ŒCoh.SpecA;�W /� (use the homotopy with components h1 D

�
0 0
0 �1

�
and

h0 D
�
1 0
0 0

�
). This implies that �� ı sWH ! r 00�.E/ becomes an isomorphism in

DCoh.SpecA;�W / and finishes the proof of Proposition 3.7.

Remark 3.8. Lemma 2.43 shows that the subcategory ��MF.X;W / �MF.eX;W /
is invariant under the dualityDeX WMF.eX;W /!MF.eX;�W /op. This duality takes
the subcategory MF.Y;W /l to the subcategory MF.Y;�W /�l�1, as follows from
Proposition 3.7 and Lemma 2.43 again.

Proof of .MF2/ QX . The method used to prove .MF2/E also shows that

��MF.X;W / �MF.eX;W /
is admissible.

Let us prove thatMF.Y;W /l �MF.eX;W / is admissible.
From the proof of .MF2/E it is clear that the functor

O.l/˝ p�.�/WMF.Y;W /!MF.E;W /

has a right and a left adjoint functor. Let us view j� as a functor MF.E;W / !
MF.eX;W /; it has a left adjoint j � by Lemma 2.37. Proposition 3.7 shows that
F 7! DE .j

�Œ1�.1/DeX .F // is right adjoint to j�. As above Remark A.5 and its dual
show thatMF.Y;W /l �MF.eX;W / is admissible.
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Proof of semi-orthogonality in .MF3/ QX . Lemma 2.55 shows that this is a direct
consequence of Theorem 3.4..Coh3/ QX (and this statement is not difficult to prove
using the local-to-global Ext spectral sequence).

It remains to prove completeness in .MF3/ QX .
Proposition 3.9. The condition .MF3/ QX is equivalent to the following condition
.MF4/ QX There is a semi-orthogonal decomposition

MF.eX;�W / D ˝��MF.X;�W /;MF.Y;�W /0; : : : ;MF.Y;�W /r�2
˛
:

Proof. This follows from Remark 3.8.

This proof of course shows that semi-orthogonality holds in .MF4/ QX since it
holds in .MF3/ QX . Hence we have to prove completeness in .MF4/ QX (obviously we
can replace W by �W there). Our first aim is to prove the weaker statement of
Proposition 3.11 below.
Lemma 3.10. Let B 2MF.eX;W /.

(a) The condition B 2 ?.��MF.X;W // is equivalent to R��.DeX .B// D 0. In
particular, it is local on X in the following sense: if U is any open covering of
X , then B 2 ?.��MF.X;W // if and only if Bj��1.U / 2

?.��MF.U;W //
for all U 2 U .

(b) Let l 2 Z. The condition B 2 ?.MF.Y;W /l/ is local on X .

Proof. (a): In somewhat risky notation we have

HomMF.eX;W /.B; ��MF.X;W // D HomMF.eX;�W /.��MF.X;�W /;DeX .B//
D HomMF.X;�W /.MF.X;�W /;R��DeX .B//:

(3.7)

The first equality uses the duality DeX and Remark 3.8, the second equality uses
the adjunction of Lemma 2.37. Hence B 2 ?.��MF.X;W // is equivalent to
R��.DeX .B// D 0, and this condition is clearly local on X (use Lemma 2.56).

(b): We have

HomMF.eX;W /.B;MF.Y;W /l/

D HomMF.E;W /.j
�B;OE .l/˝ p�MF.Y;W //

D HomMF.E;W /.OE .�l/˝ j �B;p�MF.Y;W //
D HomMF.Y;�W /.MF.Y;�W /;Rp�.DE .OE .�l/˝ j �B///

The first equality follows from the adjunction of Lemma 2.37, the second equality is
just the twist, and the last equality is obtained similarly as (3.7) (for p instead of �).
Clearly the condition Rp�.DE .OE .�l/˝ j �B// D 0 is local on X .
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Proposition 3.11. The left orthogonal of the full triangulated subcategory

C WD tria.��MF.X;W /;MF.Y;W /0; : : : ;MF.Y;W /r�1/

inMF.eX;W / is zero, ?C D 0.
Proof. Let B 2 ?C. From Lemma 3.10.(a) we obtain R��.DeX .B// D 0. Let
U � eX be the open complement of E � eX . Then R��.DU .BjU // D 0, and the
restriction BjU is zero inMF.U;W /.

Recall that the line bundle I WD OeX .1/ � OeX is the ideal sheaf defining E.
Note that the obvious morphism B.n/ D OeX .n/˝B ! InB is an isomorphism for
all n � 0, in particular InB 2MF.eX;W /.

Consider for n � 0 the short exact sequence

0! InB ! B ! B=InB ! 0

in Z0.Coh.eX;W //. Since BjU D 0, Proposition 2.61 shows that B is a direct
summand of B=InB for n� 0. Fix n� 0. It suffices to prove that B=InB D 0 in
DCoh.eX;W /.

Since B 2 ?C the adjunction of Lemma 2.37, implies that

j �B 2
? tria.p�MF.Y;W /; : : : ;O.r � 1/˝ p�MF.Y;W //:

Hence .MF3/E implies that j �B D 0 inMF.E;W /. But then B=B.1/ Š B=IB D
j�j
�B D 0 in MF.eX;W /. Hence B.1/ ! B becomes an isomorphism in

MF.eX;W /I the same is then true forB.n/! B , and hence 0 D B=B.n/ Š B=InB
in DCoh.eX;W /.

We give a local description of the inclusion Y � X around a closed point y 2 Y .
Let SpecR be an affine open neighborhood of y in X , and let I � R be the
ideal defining Y \ SpecR. By possibly shrinking SpecR we can find r elements
x1; : : : ; xr 2 R that can be extended to a system of uniformizing parameters on
SpecR such that I D .x1; : : : ; xr/ (this follows for example from [19, Cor. 4.2.15]
applied to R localized at the maximal ideal corresponding to y).

In the following subsection 3.2.1we prove some results, in particular completeness
in .MF4/ QX , for the local situation SpecR=I � SpecR just described. In
subsection 3.2.2 we then deduce completeness in .MF4/ QX in the global setting.

3.2.1. Local considerations. LetR be a regular Noetherian k-algebra (with SpecR
of finite Krull dimension) and let I � R be an ideal that is generated by elements
x1; : : : ; xr 2 R which are part of a system of uniformizing parameters on SpecR.
Abbreviate R WD R=I . We assume in this whole subsection 3.2.1 that the inclusion
i WY ! X is given by SpecR � SpecR. Then eX D Proj.R˚ I ˚ I 2˚ � � � /, where
R˚ I ˚ I 2 ˚ � � � is the Rees algebra of I � R. We define

ya WD xa 2 I � R˚ I ˚ I
2
˚ � � � ;



962 V. A. Lunts and O. M. Schnürer

i. e. ya is xa considered as an element of degree 1 in the Rees algebra. Since
x1; : : : ; xr is a regular sequence in R, the R-module I=I 2 is free with basis the
images ya of the ya, and the natural map

RŒy1; : : : ; yr � D SymR=I .I=I 2/! R=I ˚ I=I 2 ˚ I 2=I 3 ˚ � � �

is an isomorphism. Hence E D Proj.R=I ˚ I=I 2 ˚ I 2=I 3 ˚ � � � / D Pr�1
R
:

Let

KE D
�
0! OE .�r/

@�r
E
��! OE .�r C 1/˚.

r
r�1/

@
�rC1
E
����! � � �

� � �
@�2

E
��! OE .�1/˚.

r
1/

@�1
E
��! OE ! 0

�
;

be the acyclic Koszul complex KE on E defined as the following tensor product of
complexes,

KE WD

rO
aD1

�
OE .�1/

ya
�! OE

�
:

Remark3.12. The kernel of @�sE is canonically isomorphic to the vector bundle�s
E=Y

(for example OE .�r/ D �r�1
E=Y

). Indeed, it is a nice exercise to show that the
complex KE can also be obtained as follows: the dual of the Euler sequence gives
rise to several short exact sequences (see [28, I.1.1.(3)]); combining these in the
obvious manner yields a long exact sequence which coincides with KE .
Corollary 3.13. For any s � 0 we have

�sE=Y .s/˝ p
�MF.Y;W / � tria

�
p�MF.Y;W /; : : : ;OE .s/˝ p�MF.Y;W /

�
:

inMF.E;W /.

Proof. Remark 3.12 provides an acyclic subcomplex of KE which vanishes in
degrees < �s � 1, whose component in degree �s � 1 is isomorphic to �s

E=Y
,

and which coincides with KE in degrees � �s. Given an object M 2 MF.Y;W /,
tensor p�.M/ with this complex and twist by OE .s/. Now use Lemma 2.7.(c) and
the method used to prove part (d) of the same lemma.

Proposition 3.14. The cohomology sheaves of L��.i�OY / 2 Db.Coh.eX// are
given as follows.

(a) H�s.L��.i�OY / D j��sE=Y .s/ for �s 2 Œ�r C 1; 0�I

(b) H t .L��.i�OY / D 0 for t … Œ�r C 1; 0�.
In fact, for �s 2 Œ�r C 1; 0�, there is an isomorphism

H�s.L��.i�.�///
�
�! j�.�

s
E=Y .s/˝ p

�.�// (3.8)
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of functors free.Y / ! Coh.eX/, where free.Y / � Coh.Y / is the full subcategory
consisting of free OY -modules of finite rank, and the functor on the left is the
composition

free.Y / � Coh.Y / � Db.Coh.Y //
i�
�! Db.Coh.X/

L��
���! Db.Coh.eX// H�s

���! Coh.eX/:
Proof. Consider the Koszul complex KR WD .RI x1; : : : ; xr/ which is a resolution
of R,

.KR ! R/ D
�
0! R! R˚r ! � � � ! R˚.

r
2/ ! R˚r ! R! R! 0

�
Then L��.i�OY / D ��.KR/. This already implies that the cohomology sheaves
of L��.i�OY / are zero outside Œ�r; 0�. Note that KR is the tensor product of the
complexes .RI xa/ D .R

xa
�! R/, hence

��.KR/ D

rO
aD1

�
OeX xa
�! OeX�:

We will calculate the cohomology of the complex ��.KR/ by comparing it to the
acyclic Koszul complex

KeX D �0! OeX .�r/! OeX .�r C 1/˚. r
r�1/ ! � � � ! OeX .�1/˚.r

1/ ! OeX ! 0
�

which is defined to be the following tensor product,

KeX WD rO
aD1

�
OeX .�1/ ya

�! OeX�:
Note that the Koszul complex KE above is the restriction KeX jE of KeX to the

divisor E.
Consider the global section of the line bundleOeX .�1/ defined by jfyb 6D0g D

xb

yb

(on the chart fyb 6D 0g) for 1 � b � r . It corresponds to a morphism
 WOeX ! OeX .�1/ (which is just the .�1/-twist of the first morphism in (3.3)).
The vertical arrows in the commutative square

OeX


��

xa // OeX
id
��

OeX .�1/ ya // OeX
define an injective morphism of two-term complexes indexed by 1 � a � r . Their
tensor product is an injective morphism ��.KR/! K. In degree .�s/ it is given by
the

�
r
s

�
-fold coproduct of the map

˝sWOeX ! OeX .�s/:
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We denote its cokernel by K and obtain a short exact sequence

0! ��.KR/! KeX ! K ! 0

of complexes of sheaves on eX . Its middle term is acyclic, so H t .��.KR// D

H t�1.K/. In particular, it becomes clear thatH�r.L��.i�OY // vanishes; hence (b)
is proved.

For n � 0 denote by En the n-th infinitesimal neighborhood of E in eX , i. e. the
closed subscheme of eX defined by the .nC1/-st power of the ideal sheaf I D OeX .1/
of E. The cokernel of the map ˝sWOeX ! OeX .�s/ isOEs�1.�s/. HenceK

0
D 0

and K�s D OEs�1.�s/˚.
r
s/ D K�seX jEs�1 for s � 1. Note that the complex K has

the finite descending filtration K � IK � I2K � � � � � IrK D 0. We include a
picture of

KW � � � // OE2.�3/˚.
r
3/ // OE1.�2/˚.

r
2/ // OE .�1/˚r // 0;

and of the (non-trivial) associated graded complexes

gr0.K/W � � � // OE .�3/˚.
r
3/

@�3
E // OE .�2/˚.

r
2/

@�2
E // OE .�1/˚r // 0;

gr1.K/W � � � // OE .�2/˚.
r
3/
@�3

E
.1/
// OE .�1/˚.

r
2/ // 0 // 0;

gr2.K/W � � � // OE .�1/˚.
r
3/ // 0 // 0 // 0;

in degrees between �3 and 0. Remark 3.12 shows that the cohomology of grs.K/ is
concentrated in degree�s�1 and canonically isomorphic to ker.@�sE .s// D �

s
E=Y

.s/,
or more precisely to j��sE=Y .s/.

It is straightforward to see that spectral sequence associated to our filtered
complex K (whose E0-page is gr�.K/ depicted above, up to a coordinate change)
satisfies E1 D E2 D � � � D E1, and that the induced filtration on each H t .K/ has
at most one non-trivial subquotient. We hence obtain canonically

H�s.L��i�OY / D H�s.��.KR// D H�s�1.K/ D H�s�1.grs.K//
D ker.@�sE .s// D j��

s
E=Y .s/

(3.9)

for �s 2 Œ�r C 1; 0�. This proves (a).
It remains to construct the isomorphism (3.8). GivenM D Rm a free R-module

of finite rank, we take the m-fold coproduct of the above construction and obtain
an isomorphism H�s.L��.i�.M///

�
�! j�.�

s
E=Y

.s/˝ p�.M// in Coh.eX/ as the
m-fold coproduct of (3.9). This defines (3.8) on objects. We claim that this is
compatible with morphisms M ! N in free.Y /. It is certainly sufficient to treat
the case M D N D R. Then any morphism M ! N is given by some f 2 R.
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Choose f 2 R with image f in R. Componentwise multiplication with f lifts
f WM D R ! N D R to the Koszul resolution KR, and we can use this lift to
compute the image of f under H�s.L��.i�.�/// (and this image does not depend
on the choice of f since all objects in (3.8) are supported on E). The image of f
under j�.�sE=Y .s/ ˝ p

�.�// is obvious. Now note that all constructions involved
in the definition of the isomorphism (3.8) are compatible with multiplication by f .
This proves our claim.

Corollary 3.15.
(a) Let M 2 MF.Y;W / and assume that its components M0 and M1 are

free R-modules of finite rank. Let 0 ! Qn ! � � � ! Q0 ! i�.M/

be an exact sequence in Z0.Coh.X;W // with all Qi 2 MF.X;W /,
cf. Lemma 2.10.(b). Then the cohomologies of ��.Q/, considered as a
complex in Z0.Coh.eX;W //, are given as follows.

(i) H�s.��.Q// Š j�.�sE=Y .s/˝ p
�.M// in Coh.eX;W /,

for �s 2 Œ�r C 1; 0�;
(ii) H t .��.Q// D 0 for t … Œ�r C 1; 0�.

(b) We have

MF.Y;W /�1 � tria.��MF.X;W /;MF.Y;W /0; : : : ;MF.Y;W /r�2/:

Proof. (a): The image of the morphisms m0WM0 ! M1 and m1WM1 ! M0

under the functor H�s.L��.i�.�///W free.Y / ! Coh.eX/ can be computed using
the morphisms q0WQ0 ! Q1 and q1WQ1 ! Q0 of complexes in Coh.X/. Now use
the isomorphism of functors (3.8) (and (b)) in Proposition 3.14.

(b) Let S be the specified triangulated envelope.
LetM 2 MF.Y;W / have free components, and letQ! i�.M/ be as in (a). We

claim that j�.OE .�1/˝ p�.M// 2 S .
Note that j�.OE .�1/˝p�.M// D j�.�

r�1
E=Y

.r�1/˝p�.M// by Remark 3.12.
Hence, by (a), j�.OE .�1/ ˝ p�.M// is the .�r C 1/-st cohomology of the
complex ��.Q/ whose totalization L��.i�M/ trivially belongs to ��MF.X;W /.
The other cohomologies of this complex are in the full triangulated subcategory
generated by MF.Y;W /0; : : : ;MF.Y;W /r�2, by part (a) again and Corollary 3.13.
The claim follows (by the technique used in the proof of Lemma 2.40.(a)).

Now let N 2 MF.Y;W / be arbitrary. Certainly we find R-modules P and Q
suchN0˚P andN1˚Q are freeR-modules of finite rank. Note that the components
of

M WD N ˚ Œ1�N ˚ . P
1 // P
W
oo /˚ . Q

1 // Q
W
oo /

are freeR-modules of finite rank. We already know that j�.OE .�1/˝p�.M// 2 S .
Hence j�.OE .�1/ ˝ p�.N // is a direct summand of an object of S . But S is an
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admissible subcategory of MF.eX;W /, by Lemma A.9 since .MF2/ QX and semi-
orthogonality in .MF4/ QX are already known. In particular, it is a thick subcategory
by Corollary A.7. Hence j�.OE .�1/˝ p�.N // 2 S .

Proof of completeness in .MF4/ QX (in the local situation). If we twist the semi-orth-
ogonal decomposition in .MF3/E by O.r � 2/ we see that

O.r�1/˝p�MF.Y;W / � tria.O.�1/˝p�MF.Y;W /; : : : ;O.r�2/˝p�MF.Y;W //:

Apply j� to this inclusion. This yields the first inclusion in

MF.Y;W /r�1 � tria.MF.Y;W /�1;MF.Y;W /0; : : : ;MF.Y;W /r�2/
� D WD tria.��MF.X;W /;MF.Y;W /0; : : : ;MF.Y;W /r�2/;

and the second inclusion follows from Corollary 3.15.(b). This and Proposition 3.11
imply that ?D D 0. Note that D is admissible by .MF2/ QX and Lemma A.9 since
we already know semi-orthogonality in .MF4/ QX . But then Remark A.2 shows that
D DMF.eX;W /.

Now the proof of Theorem 3.5 is complete in the local situation described at the
beginning of this subsection 3.2.1.

3.2.2. Back to the global setting. We now return to the global blowing-up setting
described in subsection 3.2.

Proof of completeness in .MF4/ QX (in the global setting). If U � X is an open
subscheme, we define SU to be the subcategory ofMF.��1.U /;W / defined by

SU WD tria.��MF.U;W /;MF.Y \ U;W /0; : : : ;MF.Y \ U;W /r�2/:

Each SU is admissible by Lemma A.9 since .MF2/ QX and semi-orthogonality
in .MF4/ QX are already known. LetS WD SX . We need to show thatS DMF.eX;W /.
By Remark A.2 it suffices to prove that the left orthogonal ?S is zero.

Let B 2 ?S . Lemma 3.10 shows that Bj��1.U / 2
?.SU / for all open U � X .

Each point of Y has an open neighborhood U in X such that the inclusion
Y \ U � X \ U is isomorphic to SpecR=I � SpecR with I � R as described
at the beginning of subsection 3.2.1. Since we already proved .MF4/ QX for this
local setting we know that SU D MF.��1.U /;W /. Hence Bj��1.U / D 0 in
MF.��1.U /;W /.

Trivially we have SXnY DMF.eX nE;W / and henceBjeXnE D 0 inMF.eX nE/.
Now Lemma 2.56 shows that B D 0 inMF.eX;W /.

This finishes the proof of Theorem 3.5.
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We will also need the following lift of this result to the dg level.
Corollary 3.16. In the situation of Theorem 3.5, there is a full dg subcategory X of
Coh.eX;W /=AcyclCoh.eX;W / which is quasi-equivalent to

Coh.X;W /=AcyclCoh.X;W /;

and there are full dg subcategories Y 0
l
of Coh.eX;W /=AcyclCoh.eX;W / (for l 2 Z)

which are quasi-equivalent to

Coh.Y;W /=AcyclCoh.Y;W /;

such that the semi-orthogonal decomposition into admissible subcategories from
Theorem 3.5..MF3/ QX is given by

ŒCoh.eX;W /=AcyclCoh.eX;W /� D hŒY 0�rC1�; : : : ; ŒY 0�1�; ŒX �i
if we identify MF.eX;W / ��! DCoh.eX;W / with the left-hand side as explained in
section 2.6.2.

Proof. This is proved as Corollary 3.3. We could have used the dg categories
Coh.�; ‹/ and AcyclCoh.�; ‹/ instead of MF.�; ‹/ and AcyclMF.�; ‹/ there. Here
we need to do this since we have to deal with the functor j�.O.l/˝ p�.�//.

3.3. Applications. Certainly we can apply Theorem 3.2 to Pn
k
! Spec k and

W D 0. We obtain a semi-orthogonal decomposition of MF.Pn
k
; 0/ into admissible

subcategories. Let us denote the object . 0 // OPn
k
.i/oo / 2 MF.Pn

k
; 0/ by OPn

k
.i/

(by abuse of notation). Then it is not difficult to see that the objects

OPn
k
.�n/; : : : ;OPn

k

define a strong full exceptional collection (in the Z2-graded sense) inMF.Pn
k
; 0/. We

will explain this in [35] using the folding functor.
We mention some corollaries of Theorem 3.5.

Corollary 3.17. Let X be a scheme satisfying condition (srNfKd) and let eX be
the blowing-up of X along a regular equi-codimenisonal closed subscheme Y of
codimension r � 2. Let W WX ! A1 be a morphism.

(a) Assume that W is flat and that the scheme-theoretic zero fiber X0 of
W WX ! A1 is regular. Then the categoryMF.eX;W / has a semi-orthogonal
decomposition into r � 1 admissible subcategories that are all equivalent to
MF.Y;W /. In particular, if the codimension r D 2, then j�p�WMF.Y;W /!
DCoh.eX;W / induces an equivalence MF.Y;W /

�
�!MF.eX;W /.

(b) Assume that W jY WY ! is flat and that its scheme theoretic zero fiber Y0 is
regular. Then ��WMF.X;W /

�
�!MF.eX;W / is an equivalence.
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(c) If bothW andW jY are flat and have regular scheme-theoretic zero fibers X0
and Y0, respectively, then MF.eX;W / D 0.

Proof. Theorem 2.8 shows that MF.X;W / D 0 (resp. MF.Y;W / D 0). All claims
then follow from Theorem 3.5.

Example 3.18. Let

X D A2k D Spec kŒx; y�; W D x

and Y D Spec kŒx; y�=.x; y/ D f.0; 0/g:

Then Corollary 3.17.(a) shows that

MF.Spec k; 0/
�
�!MF.eX;W /:

Write eX D Proj kŒx; y�Œu; v�=.xv � yu/ and let U � eX be the affine open subset
defined by v 6D 0. ThenU D Spec kŒy; z� D A2

k
where z D u=v, andW D x D yz.

Theorem 2.8 and [31, Prop. 1.14] imply that MF.eX;W / ! MF.U;W / is an
equivalence. Altogether we obtain an equivalence

MF.Spec k; 0/ ŠMF.A2k; yz/:

This is, of course, well known.

Definition 3.19. Let Z be a scheme satisfying condition (srNfKd) and let
W WZ ! A1 be a regular function. We call W resolved if the ideal sheaf generated
by W is locally monomial, i. e. Z0 D fW D 0g is a simple normal crossing divisor.
We then also call the corresponding category MF.Z;W / resolved.

In the rest of this section we assume in addition that char k D 0. Let X be a
separated connected smooth scheme of finite type and let W WX ! A1 be a non-
zero regular function. By [17, Thm. 3.35] there exists an “embedded resolution of
singularities” � W eX ! X of the divisor X0 D fW D 0g such that W W eX ! A1 is
resolved. It is obtained by a sequence of blowing-ups with smooth centers Y1; : : : ; Ys
which are contained in the zero sets of the pullbacks of W (as confirmed to us by
János Kollár). We can assume that the Yi are connected.

Corollary 3.20. In the above setting the triangulated category MF.eX;W / has a
semi-orthogonal decomposition into admissible subcategories that are equivalent
to MF.Yi ; 0/ (for 1 � i � s) or MF.X;W /. More precisely, the multiplicity
of MF.Yi ; 0/ is equal to the codimension of Yi minus 1, and MF.X;W / appears
with multiplicity one. In particular, the category MF.X;W / is a semi-orthogonal
summand in a resolved categoryMF.eX;W /.
Proof. This follows from the above and Theorem 3.5.
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Corollary 3.20 may allow us sometimes (depending on the problem we are
interested in) to reduce the study of the category MF.X;W / to the case that the
divisor X0 is a simple normal crossing divisor. In view of this result we would like
to ask the following question.

Question 3.21. Can one give a “reasonable” description of a resolved category
MF.Z;W /? Or, at least, of its idempotent completion? The simplest non-trivial
example would be that of the categoryMF.A2; W D xy2/.

A. Admissible subcategories and semi-orthogonal decompositions

We remind the reader of some definitions and facts from [7,8]. Let T be a triangulated
category.

Let S � T be a subcategory. Recall that the right orthogonal S? to S in T is
the full subcategory of T consisting of all objects C 2 T such that T .S; C / D 0

for all S 2 S . It is a triangulated subcategory of T . Similarly one defines the left
orthogonal ?S .
Definition A.1. A right admissible (resp. left admissible) subcategory of T is a
strict full triangulated subcategory S of T such that for any A 2 T there is a triangle
AS ! A ! AS? ! Œ1�AS (resp. A?S ! A ! AS ! Œ1�A?S) with AS 2 S and
AS? 2 S? (resp. A?S 2

?S). An admissible subcategory is a subcategory which
is both right and left admissible.

Remark A.2. Let S be a right (resp. left) admissible subcategory of T : If S? D 0

(resp. ?S D 0), then obviously S D T .

Lemma A.3 ([7, Prop. 1.5]). Let S be a strict full triangulated subcategory of a
triangulated category T . Then the following are equivalent.

(a) S is right (resp. left) admissible.

(b) The inclusion functor S ,! T has a right (resp. left) adjoint.

(c) T is the triangulated envelope of S and S? (resp. of ?S and S).
Remark A.4. If S is right (resp. left) admissible and we fix for any A 2 T a triangle
AS ! A ! AS? ! Œ1�AS (resp. A?S ! A ! AS ! Œ1�A?S) as above, then
A 7! AS extends uniquely to a right (resp. left) adjoint functor to the inclusion
S ,! T .

Remark A.5. Let F WB! T be a full and faithful functor of triangulated categories,
and assume that F admits a right adjoint functor. Then the essential image of F is a
right admissible subcategory of T . This is obvious from Lemma A.3.

Lemma A.6 (cf. [8, Lemma 2.20]). Let T be a triangulated category, and let U , V
be strict full triangulated subcategories of T satisfying T .V ;U/ D 0. Assume that
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there is a full subcategory E � T such that for each E 2 E there is a triangle

EV ! E ! EU ! Œ1�EV

with EV 2 V and EU 2 U . Assume that one of the following two statements is true.

(a) We have tria.E/ D T , where tria.E/ is the triangulated envelope of E in T .

(b) The categoriesU andV are thick subcategories of T , one ofU ,V is idempotent
complete, and thick.E/ D T , where thick.E/ is the thick envelope of E in T ,
i. e. the objects of E classically generate T .

Then V is right admissible in T , U is left admissible in T , we have U D V? and
V D ?U , and T is the triangulated envelope of U [ V . In the terminology of
Definition A.10 below this says that T D hU ;Vi is a semi-orthogonal decomposition
of T .

Proof. Let S be the full subcategory of T consisting of those objects X 2 T such
that there is a triangle

XV ! X ! XU ! Œ1�XV (A.1)

with XV 2 V and XU 2 U . We claim that S D T .
Obviously S is a strict subcategory containing E , V and U , and it is closed

under all shifts. Assume that X ! Y ! Z ! Œ1�X is a triangle with X; Y 2 S .
Assume that there is a triangle (A.1) as above for X , and similarly for Y . The
morphism X ! Y extends uniquely two a morphism between these two triangles
(use [2, Prop. 1.1.9]), and this morphism fits (since it is unique) into the following
3 � 3-diagram constructed using [2, Prop. 1.1.11].

Œ1�XV // Œ1�YV // Œ1�Z0 //

�

Œ2�XV

XU

OO

// YU

OO

// Z00

OO

// Œ1�XU

OO

X

OO

// Y

OO

// Z

OO

// Œ1�X

OO

XV

OO

// YV

OO

// Z0

OO

// Œ1�XV

OO

Since U and V are strict full triangulated subcategories of T , we have Z0 2 V and
Z00 2 U , so Z 2 S . This argument shows that S is a strict triangulated subcategory
of T . If (a) is satisfied this already shows that S D T .

Now assume that (b) is satisfied. We claim that S is a thick subcategory. Let
X 2 S and assume thatX Š X1˚X2 in T . We can even assume thatX D X1˚X2.
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LetV ! X ! U ! Œ1�V be a trianglewithV 2 V andU 2 U . Then the idempotent
e WD

�
1 0
0 0

�
WX ! X can be uniquely extended to a morphism

V
f //

v

��

X
g //

e

��

U
h //

u

��

Œ1�V

Œ1�v

��
V

f // X
g // U

h // Œ1�V

of triangles [2, Prop. 1.1.9], and both u and v are idempotent. Assume that V is
idempotent complete. Then we can assume that V D V1 ˚ V2 with V1, V2 2 V and
that v D

�
1 0
0 0

�
. We have f D

h
f1 0
0 f2

i
since ef D f v. Complete the morphisms

fi WVi ! Xi into triangles

Vi
fi
�! Xi ! Ui ! Œ1�Vi ; (A.2)

for i D 1; 2. The direct sum of these two triangles is a triangle, and there is a
morphism ' such that

V1 ˚ V2
f1˚f2// X1 ˚X2 // U1 ˚ U2 //

'

��

Œ1�.V1 ˚ V2/

V
f // X

g // U
h // Œ1�V

is morphism of triangles; hence ' is an isomorphism. Since U is a thick subcategory,
we haveU1,U2 2 U . The above triangles (A.2) for i D 1, 2 (and the similar argument
in case U is idempotent complete) show that S is a thick subcategory of T . Hence
S D T .

We have proved that S D T if (a) or (b) is satisfied.
By assumption we have U � V?. Let X 2 V?. Since S D T we have a triangle

V ! X ! U ! Œ1�V

with V 2 V and U 2 U . Since X 2 V? the morphism V ! X is zero and idŒ1�V
factors through U (in fact U Š X ˚ Œ1�V ). But T .V ;U/ D 0 and hence Œ1�V D 0.
Hence X ! U is an isomorphism, and X 2 U by strictness. This shows U D V?.
Similarly we obtain V D ?U .

Right admissibility of V , left admissibility of U , and the fact that T is the
triangulated envelope of U [ V follow directly from the definition of S (cf. (A.1))
and the fact that S D T .

Corollary A.7 ([7, Lemma 1.7]). If S is a right admissible subcategory of a T , then
S D ?.S?/, so in particular S is a thick subcategory of T . Similarly, if S is left
admissible, then S D .?S/? is thick.
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Proof. The first statement follows from Lemma A.6 by taking U D S?, V D S and
E D T . For the second statement take U D S , V D ?S and E D T .

Lemma A.8. If S is right admissible, the functors S? ! T =S and S ! T =S? are
equivalences. If S is left admissible, the functors S ! T =?S and ?S ! T =S are
equivalences.

Proof. By parts (ff2) and (ff2)op of Proposition B.2, all these functors are full and
faithful, and it is clear that they are essentially surjective.

Lemma A.9. Let S1, S2 be right admissible subcategories of a triangulated
category T and assume that T .S2;S1/ D 0. Then the triangulated envelope
D WD tria.S1;S2/ in T of the full subcategory S1 [ S2 is a right admissible
subcategory of T .

Similarly, if S1 and S2 are left admissible subcategories of T satisfying
T .S2;S1/ D 0, then tria.S1;S2/ is left admissible in T .

Proof. Let T 2 T be given. By right admissibility of S2 there is a triangle

S2 ! T
g2
�! Q2 ! Œ1�S2

with S2 2 S2 andQ2 2 S?2 , and right admissibility of S1 yields a triangle

S1 ! Q2
g1
�! Q1 ! Œ1�S1

with S1 2 S1 and Q1 2 S?1 . Note that S1 2 S1 � S?2 and Q2 2 S?2 imply that
Q1 2 S?2 . HenceQ1 2 D?. Fit the composition g1g2 into a triangle

U ! T
g1g2
���! Q1 ! Œ1�U (A.3)

The octahedral axiom applied to the morphisms g2 and g1 provides a triangle

S2 ! U ! S1 ! Œ1�S2:

This shows that U 2 D. Hence we see from (A.3) that D is right admissible.

Definition A.10. A sequence .S1;S2; : : :Sn/ of subcategories of T is called semi-
orthogonal if T .Sj ;Si / D 0 for all j > i , and complete (in T ) if T is the
triangulated envelope ofS1[S2[� � �[Sn. A semi-orthogonal decomposition of T
is a complete semi-orthogonal sequence .S1;S2; : : :Sn/ of strict full triangulated
subcategories, and is denoted by

T D
˝
S1; : : : ;Sn

˛
:

A semi-orthogonal decomposition into admissible subcategories is a semi-
orthogonal decomposition whose components are admissible subcategories.
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Lemma A.11.
(a) If S is a right admissible subcategory of T , then T D hS?;Si is a semi-

orthogonal decomposition of T . Similarly, ifS is left admissible, then hS;?Si
is a semi-orthogonal decomposition.

(b) If T D hU ;Vi is a semi-orthogonal decomposition, thenV is right admissible,
U is left admissible, U D V? and V D ?U .

(c) Let T D hS1; : : : ;Sni be a semi-orthogonal decomposition (into admissible
subcategories), and let 1 � a < n. Let D1 WD tria.S1 [ � � � [ Sa/ and
D2 WD tria.SaC1[� � �[Sn/ denote the indicated triangulated envelopes. Then
T D hD1;D2i and D1 D hS1; : : : ;Sai and D2 D hSaC1; : : : ;Sni are semi-
orthogonal decompositions (into admissible subcategories). In particular,
D1 D D?2 and D2 D ?D1.

Proof. (a): Use Lemma A.3.
(b): This is a consequence Lemma A.6: take E D S1 [ S2.
(c): If T D hS1; : : : ;Sni is a semi-orthogonal decomposition, all statements are

trivial (the last one follows directly from (b)). So let us assume that all componentsSi
are admissible in T . Then Lemma A.9 implies that D1 and D2 are admissible
subcategories of T . Moreover, each Sj , for 1 � j � a (resp. a C 1 � j � n), is
obviously admissible in D1 (resp. D2).

Corollary A.12. A semi-orthogonal decomposition T D hU ;Vi (into admissibles)
induces a semi-orthogonal decomposition (into admissibles) of the Karoubi
envelope T \ of T , namely T \ D hU \;V\i.

Proof. Use Lemmata A.6.(b) and A.11.

B. Embeddings of Verdier quotients

Verdier localization is described beautifully in [27, 2.1]. We give here some additional
results. In contrast to [27] we do not assume that triangulated subcategories are strict
(= closed under isomorphisms).

Let D be a triangulated category and C � D a full triangulated subcategory
(not necessarily thick). Let F WD ! D=C be the Verdier localization functor ([27,
Theorem 2.1.8]). We denote by MorC the subclass of morphisms (in D) that fit into
a triangle with cone in C.
Lemma B.1. Let f; gWX ! Y be two morphisms in D. The following conditions
are equivalent:

(a) F.f / D F.g/;
(b) there is a morphism ˛WX 0 ! X inMorC such that f ˛ D g˛WX 0 ! Y ;
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(c) there is a morphism ˇWY ! Y 0 inMorC such that f̌ D ˇgWX ! Y 0;
(d) the morphism f � gWX ! Y factors as X ! C ! Y with C in C.

Proof. This is a slightly extended version of [27, Lemma 2.1.26] using the description
of morphisms in D=C via “coroofs”. The proof is easily generalized.

Proposition B.2. Let D be a triangulated category with full triangulated subcate-
gories C,W , V such that V is contained in bothW and C, i. e. pictorially

V �

\

C
\

W � D:

Let i be the inclusion W � D. Then i factors to a triangulated functor
i WW=V ! D=C, i. e. pictorially

W �
i

G
��

D

F
��

W=V i // D=C:

where F and G are the Verdier localization functors.

(I) The following three conditions are equivalent, and if they hold, the functor i
is full and faithful.

(ff1) For all morphisms sWW ! D inMorC withW inW andD inD there is
an objectW 0 inW and a morphism t WD ! W 0 such that the morphism
tsWW ! W 0 inW is inMorV .

(ff2) Any morphism C ! W with C 2 C and W 2 W factors as
C ! V ! W with V 2 V .
(Equivalently: For any morphism sWC ! W with C 2 C and W 2 W
there is an object W 0 2 W and a morphism t WW ! W 0 in MorV such
that ts D 0.)

(ff3) For allD 2 D and W 2W the obvious morphism

j W HomD=V.D;W /! HomD=C.D;W / (B.1)

is bijective.

These three conditions hold if the following condition (ff4) is satisfied.

(ff4) C is classically generated by a collection E of objects in D, i. e. C D
thick.E/, and any morphism E ! W with E 2 E and W 2 W factors
through an object of V .
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(II) Dually, the following three conditions are equivalent, and if they hold, the
functor i is full and faithful.

(ff1)op For all morphisms sWD ! W inMorC withD inD andW inW there is
an objectW 0 inW and a morphisms t WW 0 ! D such that the morphism
st WW 0 ! W inW is inMorV .

(ff2)op Any morphism W ! C with W 2 W and C 2 C factors as
W ! V ! C with V 2 V .
(Equivalently: For any morphism sWW ! C with W 2 W and C 2 C
there is an object W 0 2 W and a morphism t WW 0 ! W in MorV such
that st D 0.)

(ff3)op For all W 2W andD 2 D the obvious morphism

HomD=V.W;D/! HomD=C.W;D/

is bijective.

Moreover, these three conditions hold if the following condition (ff4)op is
satisfied.

(ff4)op C is classically generated by a collection E of objects in D, i. e. C D
thick.E/, and any morphism W ! E with W 2 W and E 2 E factors
through an object of V .

Proof. We use implicitly some results of [27], e. g. Remark 2.1.23. Let
F 0WD! D=V be the Verdier localization functor and j WD=V ! D=C the functor
such that jF 0 D F .

We start with the proof of (I).
(ff1) implies (ff3): Let D 2 D and W 2 W . We have to prove that (B.1) is

bijective.
Injectivity: Let hWD ! W be a morphism in D=V . Then h D F 0.f /F 0.g/�1

for someD0 in D and morphismsD
g
 � D0

f
�! W (a “roof”) in D with g 2 MorV .

Assume that j.h/ D 0. Then F.f /F.g/�1 D 0 and hence F.f / D 0; it is
sufficient to show that F 0.f / D 0. Lemma B.1 shows that there is sWW ! D00

in MorC such that sf D 0WD0 ! D00. Assumption (ff1) applied to s yields W 0
in W and t WD00 ! W 0 such that tsWW ! W 0 is in MorV . We obtain that
0 D tsf WD0

f
�! W

ts
�! W 0. This implies 0 D F 0..ts/f / D F 0.ts/F 0.f /. Note that

F 0.ts/ is invertible since ts 2 MorV . Hence F 0.f / D 0.
Surjectivity: Let a morphism aWD ! W in D=C be represented by a “coroof”

D
f
�! D0

s
 � W
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with s 2 MorC . Assumption (ff1) applied to s yieldsW 0 inW and t WD0 ! W 0 such
that ts 2 MorV . Our coroof is equivalent to the coroof

D
tf
�! W 0

ts
 � W

which represents a morphism bWD ! W in D=V , namely b D F 0.ts/�1F 0.tf /.
Since s and ts are in MorC the same is true for t by the octahedral axiom. Hence

j.b/ D F.ts/�1F.tf / D .F.t/F.s//�1F.t/F.f / D F.s/�1F.f / D a:

(ff3) implies (ff2): Let a morphism C ! W with C 2 C and W 2 W be given.
It becomes zero inD=C by Lemma B.1. By assumption it then becomes already zero
in D=V . Lemma B.1 implies that C ! W factors through V .

(ff2) implies (ff1): Let a morphism sWW ! D in MorC withW inW andD inD
be given. Fit s into a triangle W

s
�! D ! C ! Œ1�W with C 2 C. By assumption

C ! Œ1�W factors asC ! V ! Œ1�W withV 2 V . We fit themorphismV ! Œ1�W

into a triangle W ! W 0 ! V ! Œ1�W with W 0 2W . The partial morphism

W
s // D //

t

��

C //

��

Œ1�W

W // W 0 // V // Œ1�W

can be completed by a morphism t to a morphism of triangles, and the morphism ts

is the first morphism in the lower triangle and hence lies in MorV .
(ff4) implies (ff2): A morphism C ! W with C 2 C and W 2 W factors

through an object of V if and only if C ! W becomes the zero morphism in D=V ,
by Lemma B.1. Using this one proves that the class of all objects E 0 such that each
morphism from E 0 to an arbitrary object of W factors through an object of V is
closed under shifts, extensions and direct summands. This implies the claim.

(ff3) implies that i is full and faithful: Let W 0, W 2 W . Since i factors as
W=V ! D=V ! D=C it is enough to show that

HomW=V.W
0; W /! HomD=V.W

0; W /

is bijective. If W 0
s
 � D

f
�! W is a roof with D 2 D and s 2 MorV representing

a morphism in HomD=V.W
0; W /, then D

s
�! W 0 fits into a triangle with cone in

V �W . The second and third object of this triangle are in W , so the first object D
is isomorphic to an object W 00 of W . Let t WW 00

�
�! D be an isomorphism. Then

our roof is isomorphic to the roof W 0
st
 � W 00

f t
�! W . This argument shows that the

above map is surjective as well as injective.
We leave the proof of the “dual” statements in (II) to the reader.
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