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A duality principle for noncommutative cubes and spheres

Teodor Banica�

Abstract. We discuss a general duality principle, between noncommutative analogues of the
standard cube ZN

2
, and nonocommutative analogues of the standard sphere SN�1R . This duality

is by construction of algebraic geometric nature, and conjecturally connects the corresponding
quantum isometry groups, taken in an affine sense.
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1. Introduction

Woronowicz axiomatized in [55,56] the compact quantum groups, and explained how
the Schur–Weyl problem can be solved for the deformations of SUN . This paved
the way for a number of further developements. Wang discovered in [52, 53] the
free quantum groups OCN ; U

C

N ; S
C

N , whose Tannakian duals were computed in [1,2].
Later on, a link was made with the work of Bichon [19] and Collins [25], and a
systematic study, mainly focusing on the symmetry groups G � SCN of finite graphs,
was developed. See [5].

Goswami’s axiomatization in [39, 40] of the quantum isometry groups made it
possible to reconcile the continuous computations in [1], for OCN ; U

C

N , with the
various computations for SCN and its subgroups, as those in [2,5]. The point indeed is
that OCN ; U

C

N appear as quantum isometry groups of the free spheres SN�1R;C , SN�1C;C ,
while SCN and related quantum groups appear from discrete manifolds. See [3, 4, 8,
16, 18].

At the level of potential applications, the link with Connes’ work [26,27] brought
as well a substantial upgrade. Indeed, while the classical, connected manifolds
cannot have genuine quantum isometries [35], for noncommutative manifolds like
the Standard Model one [21,22] the quantum isometry group is bigger than the usual
isometry group, containing therefore “hidden” symmetries, worth to be investigated.
See [14, 15].
�This work was partly supported by the NCN grant 2012/06/M/ST1/00169.
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Shortly after the unification coming from [39], the representation theory program
for quantum isometry groups got once again “dispersed”, this time due to a key
connection with Voiculescu’s free probability theory [51]. Köstler and Speicher
discovered in [42] that a free de Finetti theorem holds, with SN replaced by SCN .
Curran found a bit later a more advanced proof, and generalizations, using the
Weingarten formula [30, 31]. These results, along with [50], suggested a whole
new approach to probabilistic invariance questions, by axiomatizing and classifying
the compact quantum groups having an “elementary” Tannakian dual, and then
by studying the actions of such quantum groups on random variables. The
axiomatization and some preliminary classification work were done in [6,11,12,54],
and the corresponding invariance questions were investigated in [7]. The whole idea
ended up in producing a very active field of research. See [20, 32, 36–38,46–49].

Regarding now the original geometric motivations, which are somehow obscured
by the combinatorial axiomatization in [11], there have been several advances here:
(1) The quantum isometries of various noncommutative spheres were investigated

in [3, 4, 8, 16, 17]. In all cases the quantum groups found are covered by the
formalism in [11], or appear as deformations of such quantum groups.

(2) The quantum isometries of various group duals were investigated in [9,10,41,
43, 47]. Once again, for the basic examples, the quantum groups found are
covered by the formalism in [11], and its 2-parametric extensions.

The aim of the present paper is that of linking (1,2) by a general duality principle.
The idea is very simple. Consider the standard cube YN D f�1; 1gN � RN . We
have then an isomorphism C �.ZN2 / ' C.YN /, given by gi ! xi , which gives
an identification bZN2 ' YN . By rescaling by 1=

p
N we obtain an embedding

bZN2 � SN�1R , as follows:

SN�1R D
˚
x 2 RN j

P
i x
2
i D 1

	
S S
bZN2 '

˚
x 2 RN j xi D ˙ 1p

N
;8i

	
The point now is that this embedding appears as the � D ZN2 particular case of

a general inclusion of type b� � S� , where � D hg1; : : : ; gN i is a reflection group,
satisfying certain uniformity assumptions. Based on this remark, we will develop
some theory:
(1) First, we will extend the undeformed noncommutative sphere formalism in

[3, 4, 8], as to cover objects of type S� , as well as their twists NS� .
(2) We will study the spaces of type b� , with � D hg1; : : : ; gN i being a reflection

group as above, that we call here “noncommutative cubes”.
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(3) We will establish a correspondence b� $ S� , and we will discuss the
comparison of the corresponding quantum isometry groups, taken in an affine
sense.

There is in fact a lot of work to be done here. We have as well a number of
conjectural statements on the subject, for themost regarding the geometric realization,
as quantum isometry groups, of the easy quantum groupsHN � G � OCN , and their
twists.

We refer to the body of the paper for the precise statements of the results. The
proofs are based on our previous work on noncommutative spheres in [3, 4, 8, 16],
and on the classification work of Raum and Weber in [46–49]. Let us also mention
that, at the axiomatic level, we use a formalism inspired from [23,40, 45].

There are many questions raised by the present work. Here are some of them:

(1) The spheres and other manifolds that we consider here are “undeformed”. In
the deformed case there are many interesting examples, see e.g. [28,29,33,44].
This raises the non-trivial question of “deforming” the present work.

(2) Our manifolds are algebraic, and the study of their singularities/smoothness,
andRiemannian aspects, remains an open problem. There are several questions
here, in relation with [24, 26, 27, 34], already discussed in [3, 4].

(3) We are dealing here with very simple manifolds, generalizing the unit cube and
sphere. One interesting question regards the general geometric formulation of
the notions of liberation and half-liberation, coming from [11,13, 14, 20].

Further questions concern the unitary extension of the present work. Nor do we
know on how to best interpret the probabilistic invariance questions studied in [7]
and in subsequent papers, as to make them fit into the present geometric setting.

The paper is organized as follows: in Sections 2–3 we discuss the easy quantum
groups HN � G � OCN , in 4–5 we study the noncommutative cubes and spheres,
and in 6–7 we present the duality principle, along with a number of consequences
and extensions.

Acknowledgements. I would like to thank Steve Curran, Adam Skalski and Roland
Speicher for various useful discussions, Alexandru Chirvasitu for a key remark
regarding the quantum isometry groups, Sven Raum and Moritz Weber for keeping
me informed on the advances in their classification work, and an anonymous referee
for valuable suggestions.

2. Easy quantum groups

We first recall the axiomatization of the easy quantum groups, from [11]. We denote
byP.k; l/ the set of partitions between an upper row of k points, and a lower row of l
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points. We will regard the elements of P.k; l/ in a pictorial way, with the upper and
lower points, called “legs”, connected by the blocks of the partition, called “strings”.

The elements of P.k; l/ naturally act on tensors, as follows:

Definition 2.1. Associated to a partition � 2 P.k; l/ is the linear map

T�.ei1 ˝ � � � ˝ eik / D
X

j Wker
�
i
j

�
��

ej1 ˝ � � � ˝ ejl

where e1; : : : ; eN is the standard basis of CN .

Here the kernel of a multi-index
�
i
j

�
D
�
i1:::ik
j1:::jl

�
is by definition the partition

� 2 P.k; l/ obtained by joining the sets of equal indices. Thus, the condition
ker

�
i
j

�
� � simply tells us that the strings of � must join equal indices. Here are a

few examples:

Tj j.ei ˝ ej / D ei ˝ ej ; Tn=.ei ˝ ej / D ej ˝ ei

T\.1/ D
X
i

ei ˝ ei ; T[.ei ˝ ej / D ıij

Now let OCN be the free analogue of ON , constructed by Wang in [52]. This
is by definition the abstract spectrum of the universal algebra C.OCN / generated by
the entries of a N � N matrix u D .uij / which is orthogonal (u D Nu, ut D u�1),
with comultiplication �.uij / D

P
k uik ˝ ukj , counit ".uij / D ıij and antipode

S.uij / D uj i . We have:

Definition 2.2. A compact quantum group G � OCN is called easy when

Hom.u˝k; u˝l/ D span.T� j� 2 D.k; l//

for any k; l 2 N, for certain subsetsD.k; l/ � P.k; l/.

In other words, we call G easy when its Schur–Weyl category, formed by the
linear spaces Hom.u˝k; u˝l/, appears in the simplest possible way: from partitions.

The above subsets D.k; l/ � P.k; l/ are not unique. In order to make
them unique, we can “saturate”, i.e. replace them by the biggest possible subsetseD.k; l/ � P.k; l/ making the span formula hold. With this replacement made,
D D

S
kl D.k; l/ has a number of remarkable properties, and we say that we have a

category of partitions. See [11].
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We will be interested in the intermediate easy quantum groupsHN � G � OCN ,
whereHN is the hyperoctahedral group. The main examples here are as follows:
Proposition 2.3. We have easy quantum groupsHN � G � OCN as follows,

ON // O�N
// OCN

HN //

OO

H�N
//

OO

HCN

OO
P2

��

P �2
oo

��

NC2oo

��
Peven P �even

oo NCevenoo

with the diagram at right describing the corresponding categories of partitions.
We refer to [6] for details. Let us just mention that HCN is the quantum group

constructed in [5], that O�N � OCN , H
�
N � HCN are obtained by assuming that the

standard coordinates uij satisfy the half-commutation relations abc D cba, and that
P �even � Peven, P �2 � P2 consist of partitions having the property that when labelling
counterclockwise the legs ı � ı � : : :, each block has an equal number of black and
white legs.

There are many other examples of easy quantum groups HN � G � OCN , and
we will need in what follows quite a substantial amount of information about such
quantum groups, including their classification, coming from [49]. Let us begin with:

Definition 2.4. We let P Œ1�even be the category generated by the partition

� D

ı ı ı

ı ı ı

and we denote byH Œ1�
N the corresponding easy quantum groupHN � G � HCN .

The elements� 2 P Œ1�even can be characterized by the fact that all their subpartitions
� � � satisfy � 2 P �even. As an example, the verification of � 2 P Œ1�even goes as follows:

� ı �

ı � ı

� ı

ı �

�

ı

Regarding now the quantum groupH Œ1�
N , it is known that this containsH�N , and

also that H Œ1�
N � OCN appears by assuming that the standard coordinates uij satisfy

the relations abc D 0, for any a ¤ c on the same row or column of u. See [6].
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The point withH Œ1�
N comes from the following result:

Proposition 2.5. The easy quantum groupsHN � G � OCN are as follows,

ON // O�N
// OCN

HN //

OO

H
Œ1�
N

// HCN

OO

with the dotted arrows indicating that we have intermediate quantum groups there.

This is a key result in the classification of easy quantum groups:

(1) The first dichotomy, ON � G � OCN vs. HN � G � HCN , comes from
the early classification results, from [6, 11, 12, 54]. In addition, these results solve as
well the first problem, ON � G � OCN , with G D O

�
N being the unique non-trivial

solution.
(2) The second dictotomy, HN � G � H

Œ1�
N vs. H Œ1�

N � G � HCN , comes
from [46–49], and more specifically from the final classification paper [49], where
the quantum groups SN � G � HCN with G 6� H Œ1�

N were classified, and shown to
containH Œ1�

N .

Regarding now the caseH Œ1�
N � G � HCN , the precise result here, from [49], is:

Proposition 2.6. LetH˘kN � H
C

N be the easy quantum group coming from:

�k D ker
�
1 : : : k k : : : 1

1 : : : k k : : : 1

�
Then HCN D H

˘1
N � H

˘2
N � H

˘3
N � � � � � H

Œ1�
N , and we obtain in this way all the

intermediate easy quantum groupsH Œ1�
N � G � HCN , satisfying G ¤ H Œ1�

N .

It remains to discuss the easy quantum groups HN � G � H
Œ1�
N , with the

endpoints G D HN ;H Œ1�
N included. We follow here [46–48]. First, we have:

Definition 2.7. A reflection group � D hg1; : : : ; gN i is called uniform if each
permutation � 2 SN produces a group automorphism, gi ! g�.i/.

Given a uniform reflection group Z�N2 ! � ! ZN2 , we can associate to it a
family of subsetsD.k; l/ � P.k; l/, which form a category of partitions, as follows:

D.k; l/ D
˚
� 2 P.k; l/ j ker

�
i
j

�
� � H) gi1 : : : gik D gj1 : : : gjl

	
:

Observe that we have P
Œ1�
even � D � Peven, with the inclusions coming

respectively from � 2 D, and from � ! ZN2 . Conversely, given a category of
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partitions P Œ1�even � D � Peven, we can associate to it a uniform reflection group
Z�N2 ! � ! ZN2 , as follows:

� D
˝
g1; : : : gN j gi1 : : : gik D gj1 : : : gjl ;8i; j; k; l; ker

�
i
j

�
2 D.k; l/

˛
:

As explained in [47], the correspondences � ! D andD ! � are bijective, and
inverse to each other, atN D1. We have in fact the following result, from [46–48]:

Proposition 2.8. We have correspondences between:

(1) Uniform reflection groups Z�12 ! � ! Z12 .

(2) Categories of partitions P Œ1�even � D � Peven.

(3) Easy quantum groups G D .GN /, withH
Œ1�
N � GN � HN .

As an illustration, if we denote by ZıN2 the quotient of Z�N2 by the relations of
type abc D cba between the generators, we have the following correspondences:

ZN2 ZıN2oo Z�N2oo

HN // H�N
// H Œ1�

N

More generally, for any s 2 f2; 4; : : : ;1g, the quantum groups H .s/
N � H

Œs�
N

constructed in [6] come from the quotients ofZıN2  Z�N2 by the relations .ab/s D 1.
See [48].

We can now formulate a final classification result, as follows:

Theorem 2.9. The easy quantum groupsHN � G � OCN are as follows,

ON // O�N
// OCN

HN //

OO

H�
N

// H Œ1�
N

// H˘kN
// HCN

OO

with the familyH�
N coveringHN ;H

Œ1�
N , and with the seriesH˘kN coveringHCN .

This follows indeed from Proposition 2.5, Proposition 2.6 and Proposition 2.8
above. For further details, we refer to the paper of Raum and Weber [49].
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3. Twisting, intersections

We recall from [3] that the signature map " W Peven ! f�1; 1g, extending the usual
signature of permutations, " W S1 ! f�1; 1g, is obtained by setting ".�/ D .�1/c ,
where c 2 N is the number of switches between neighbors required for making �
noncrossing, and which can be shown to be well-defined modulo 2. See [3].

We can make act permutations on tensors in a twisted way, as follows:

Definition 3.1. Associated to any partition � 2 Peven.k; l/ is the linear map

NT�.ei1 ˝ � � � ˝ eik / D
X
���

".�/
X

j Wker
�
i
j

�
D�

ej1 ˝ � � � ˝ ejl

where " W Peven ! f�1; 1g is the signature map.

Observe the similarity with Definition 2.1. In fact, the maps T� can be obtained
as above, by stating that “the untwisted signature is by definition 1, for all partitions”.

Here are a few basic examples of such maps, taken from [3]:

Proposition 3.2. The linear maps associated to the basic crossings are:

NTn=.ei ˝ ej / D

(
�ej ˝ ei for i ¤ j ;
ej ˝ ei otherwise;

NT jn=.ei ˝ ej ˝ ek/ D

(
�ek ˝ ej ˝ ei for i; j; k distinct;
ek ˝ ej ˝ ei otherwise:

Also, for any noncrossing partition � 2 NCeven we have NT� D T� .

Proof. The basic crossings n=D ker
�
ab
ba

�
, jn=D ker

�
abc
cba

�
are both odd, because they

have respectively 1; 3 crossings, and their various subpartitions are as follows:

ker
�
a a

a a

�
; ker

�
a a b

b a a

�
; ker

�
a b a

a b a

�
; ker

�
b a a

a a b

�
; ker

�
a a a

a a a

�
Since all these subpartitions are even, we obtain the formulae in the statement.

As for the second assertion, this comes from � � � 2 NCeven H) ".�/ D 1.
See [3].

The idea now is that we can twist the easy quantum groups HN � G � OCN , by
using the linear maps in Definition 3.1. We should perhaps mention here that the
twisting operation is usually dealt with by using cocycles, see e.g. [5]. However, for
our present purposes, we will rather need a “Schur–Weyl twisting”, which is more
powerful.



A duality principle for noncommutative cubes and spheres 1051

In order to define the twists, best to proceed as follows:
Definition 3.3. Associated toHN � G � OCN is its twistHN � NG � OCN , given by

Hom.u˝k; u˝l/ D span. NT� j � 2 D.k; l//

for any k; l 2 N, whereD � P is the category of partitions for G.
Here we have usedWoronowicz’s Tannakian duality in [56]. Indeed, as explained

in [3], the correspondence � ! NT� is categorical, so the linear spaces in the
statement form a tensor category, which produces via [56] a compact quantum group
NG � OCN . The fact that we have HN � NG comes from the equality HN D NHN ,
established in [4], and explained in Proposition 3.6 below, since by functoriality,
HN D NHN � NG.

Here are some basic examples of such twists, coming from [3,5]:
Proposition 3.4. NON ; NO�N � O

C

N are obtained respectively by imposing the relations

ab D

(
�ba for a ¤ b on the same row or column of u;
ba otherwise

abc D

(
�cba for r � 2, s D 3 or r D 3, s � 2;
cba for r � 2, s � 2 or r D s D 3;

where r; s 2 f1; 2; 3g are the number of rows/columns of u spanned by a; b; c 2 fuij g.

Proof. Assuming that G � OCN appears via the relations T� 2 Hom.u˝k; u˝l/,
for a certain partition � 2 P.k; l/, its twist NG � OCN appears via the
relations NT� 2 Hom.u˝k; u˝l/. Thus NON ; NO�N appear respectively via the relations
NTn= 2 End.u˝2/, NT jn= 2 End.u˝3/, and the result follows from the formulae in
Proposition 3.2 above. See [3].

Wewill show in what follows that NON ; NO�N are in fact the only possible twists. Let
us first examine the case of HN ;H�N ;H

Œ1�
N ;HCN , with some direct methods, based

on signature computations that we will need as well later on, in Section 5 below. We
have:
Lemma 3.5. We have the following formulae

P Œ1�even D
˚
� 2 Peven j ".�/ D 1;8� � �

	
;

P �even D
˚
� 2 Peven j ".�/ D 1;8� � �; j� j D 2

	
;

where j:j denotes the number of blocks.

Proof. We first prove the second equality. Given � 2 Peven, we have � � �; j� j D 2
precisely when � D �ˇ is the partition obtained from � by merging all the legs
of a certain subpartition ˇ � � , and by merging as well all the other blocks. Now
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observe that �ˇ does not depend on � , but only on ˇ, and that the number of switches
required for making �ˇ noncrossing is c D N� � Nı modulo 2, where N�=Nı is
the number of black/white legs of ˇ, when labelling the legs of � counterclockwise
ı � ı � : : : Thus ".�ˇ / D 1 holds precisely when ˇ 2 � has the same number of
black and white legs, and this gives the result.

We prove now the first equality. We recall from Section 2 that we have:

P Œ1�even .k; l/ D

�
ker

�
i1 : : : ik
j1 : : : jl

� ˇ̌̌
gi1 : : : gik D gj1 : : : gjl inside Z

�N
2

�
:

In other words, the partitions in P Œ1�even are those describing the relations between
free variables, subject to the conditions g2i D 1. We conclude thatP Œ1�even appears from
NCeven by “inflating blocks”, in the sense that each � 2 P Œ1�even can be transformed
into a partition � 0 2 NCeven by deleting pairs of consecutive legs, belonging to the
same block.

Now since this inflation operation leaves invariant modulo 2 the number c 2 N of
switches in the definition of the signature, it leaves invariant the signature " D .�1/c
itself, and we obtain in this way the inclusion “�” in the statement.

Conversely, given � 2 Peven satisfying ".�/ D 1, 8� � � , our claim is that:

� � � � �; j�j D 2 H) ".�/ D 1 :

Indeed, let us denote by ˛; ˇ the two blocks of �, and by  the remaining blocks
of� , merged altogether. We know that the partitions �1 D .˛^; ˇ/, �2 D .ˇ^; ˛/,
�3 D .˛; ˇ; / are all even. On the other hand, putting these partitions in noncrossing
form requires respectively s C t , s0 C t , s C s0 C t switches, where t is the number
of switches needed for putting � D .˛; ˇ/ in noncrossing form. Thus t is even, and
we are done.

With the above claim in hand, we conclude, by using the second equality in the
statement, that we have � 2 P �even. Thus we have � 2 P Œ1�even , which ends the proof
of “�”.

With the above lemma in hand, we can now prove:
Proposition 3.6. The basic quantum groupsHN � G � HCN , namely

HN � H
�
N � H

Œ1�
N � HCN

are equal to their own twists.

Proof. We know from Section 2 that the corresponding categories of partitions are:

Peven � P
�
even � P

Œ1�
even � NCeven :
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With this observation in hand, the proof goes as follows:

(1) HCN . We know from Proposition 3.2 for � 2 NCeven we have NT� D T� , and
since we are in the situationD � NCeven, the definitions of G; NG coincide.

(2) H Œ1�
N . Here we can use the same argument as in (1), based this time on the

description of P Œ1�even found in Lemma 3.5 above.

(3) H�N . We haveH�N D H
Œ1�
N \O�N , so NH

�
N � H

Œ1�
N is the subgroup obtained

via the defining relations for NO�N . But all the abc D �cba relations defining NH�N
are automatic, of type 0 D 0, and it follows that NH�N � H

Œ1�
N is the subgroup

obtained via the relations abc D cba, for any a; b; c 2 fuij g. Thus we have
NH�N D H

Œ1�
N \O�N D H

�
N , as claimed.

(4) HN . We haveHN D H�N \ON , and by functoriality, NHN D NH�N \ NON D
H�N \

NON . But this latter intersection was shown in [4] to be equal to HN , as
claimed.

In order to investigate now the general case, we need to establish the precise
relation between the maps T� , NT� . By using the formulae in Proposition 3.2, we
obtain:

NTn= D �Tn= C 2Tker .aaaa/

NT jn= D � NT jn= C 2Tker .aabbaa/
C 2Tker .abaaba/

C 2Tker .baaaab/
� 4Tker .aaaaaa/

:

In general, the answer comes from the Möbius inversion formula. We recall that
the Möbius function of any lattice, and in particular of Peven, is given by:

�.�; �/ D

8̂<̂
:
1 if � D �;
�
P
���<� �.�; �/ if � < �;

0 if � 6� �:

With this notation, we have the following result:

Lemma 3.7. For any partition � 2 Peven we have the formula

NT� D
X
���

˛�T�

where ˛� D
P
����� ".�/�.�; �/, with � being the Möbius function of Peven.
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Proof. The linear combinations T D
P
��� ˛�T� acts on tensors as follows:

T .ei1 ˝ � � � ˝ eik / D
X
���

˛�T� .ei1 ˝ � � � ˝ eik /

D

X
���

˛�
X
���

X
j Wker

�
i
j

�
D�

ej1 ˝ � � � ˝ ejl

D

X
���

� X
�����

˛�

� X
j Wker

�
i
j

�
D�

ej1 ˝ � � � ˝ ejl :

Thus, in order to have NT� D
P
��� ˛�T� , we must have, for any � � � :

".�/ D
X

�����

˛� :

But this problem can be solved by using the Möbius inversion formula, and we
obtain the numbers ˛� D

P
����� ".�/�.�; �/ in the statement.

Now back to the general twisting problem, the answer here is:

Proposition 3.8. The twists of the easy quantum groupsHN � G � OCN are:

(1) For G D ON ; O�N we obtain NG D NON ; NO�N .

(2) For G ¤ ON ; O�N we have G D NG.

Proof. We use the classification result in Theorem 2.9 above. We have to examine
the 3 cases left, namely G D OCN ;H

˘k
N ;H�

N , and the proof goes as follows:

(1) Let G D OCN . We know from Proposition 3.2 for � 2 NCeven we have
NT� D T� , and since we are in the situation D � NCeven, the definitions of G; NG
coincide.

(2) Let G D H˘kN . We know from Proposition 2.6 that the generating partition
is:

�k D ker
�
1 : : : k k : : : 1

1 : : : k k : : : 1

�
:

By symmetry, putting this partition in noncrossing form requires the same number
of upper switches and lower switches, and so requires an even number of total
switches. Thus �k is even, and the same argument shows in fact that all its
subpartitions are even as well. It follows that we have T�k D NT�k , and this gives the
result.
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(3) LetG D H�
N . We denote by P Œ1�even � D � Peven the corresponding category

of partitions. According to the description of P Œ1�even worked out in [6], and mentioned
after Definition 2.6 above, this category contains the following type of partition:

ı ı : : : ı ı

ı ı : : : ı ı

The point now is that, by “capping” with such partitions, we can merge any pair
of blocks of � 2 D, by staying insideD. Thus,D has the following property:

� � � 2 D H) � 2 D :

We deduce from this and from Lemma 3.7 that NT� is an intertwiner for G, and so
G � NG. By symmetry we must have NG � G as well, and this finishes the proof.

As explained in [3, 4], the theory of “easy noncommutative spheres”, first
developed in [8], can be extended by twisting, and then by taking intersections
between twisted and untwisted objects. We can proceed similarly with the quantum
groups themselves:

Theorem 3.9. The easy quantum groupsHN � G � OCN and their twists are

ON // O�N

((
HN //

77

''

H�
N

// H˘kN
// OCN

NON // NO�N

77

and the set formed by these quantum groups is stable by intersections.

Proof. According to Proposition 3.8 the easy quantum groups HN � G � OCN and
their twists are the quantum groups in Theorem 2.9 and the twists NON ; NO�N from
Proposition 3.4. But these are exactly the quantum groups in the above diagram.
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Regarding now the intersection assertion, we can use here some computations
from [4]. We recall from there that we have the following intersection diagram:

ON // O�N

''
HN //

77

''

H�N
//

77

''

HCN
// OCN

NON // NO�N

77

More precisely, this diagram has the property that any intersectionG\H appears
on the diagram, as the biggest quantum group contained in both G;H . See [4].

With this diagram in hand, the assertion follows. Indeed, the intersections between
the quantum groups O�N are their twists are all on this diagram, and hence on the
diagram in the statement as well. Regarding now the intersections of an easy quantum
groupHN � G � HCN with the twists NON ; NO�N , we can use again the above diagram.
Indeed, fromHCN \

NO�N D H
�
N we deduce that both K D G \ NON ; K 0 D G \ NO�N

appear as intermediate easy quantum groupsHN � K� � H�N , andwe are done.

4. Noncommutative cubes

In this section and in the next one we introduce our main objects of study, the
noncommutative cubes and spheres. These are some special algebraic submanifolds
of the free sphere SN�1R;C , constructed in [8]. We will first introduce SN�1R;C and a
number of related spheres, from [3,4,8], and thenwewill discuss the noncommutative
cubes. The noncommutative spheres will be further discussed in the next section.

Our starting point is the following definition, going back to [8]:

Definition 4.1. The free real sphere SN�1R;C is defined by the following formula:

C.SN�1R;C / D C �
�
x1; : : : ; xN j xi D x

�
i ; x

2
1 C � � � C x

2
N D 1

�
Its half-liberated version SN�1R;� � S

N�1
R;C is obtained by assuming xixjxk D xkxjxi .

Observe thatwe have inclusionsSN�1R � SN�1R;� � S
N�1
R;C . It is known from [8,16]

that the corresponding quantum isometry groups are ON � O�N � O
C

N . A twisted
version of this result was established in [3]. Further results include the construction
of the eigenspaces of the Laplacian. We will be back later on to some of these topics,
with full details.
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Let us restrict now attention to the algebraic submanifoldsX � SN�1R;C . These are
defined in analogy with the usual algebraic manifolds X � SN�1R , as follows:
Definition 4.2. A closed subset X � SN�1R;C is called algebraic when

C.X/ D C.SN�1R;C /=hP1; P2; : : :i

where Pi are noncommutative polynomials in the variables x1; : : : ; xN .
As a first example, observe that the subspheres SN�1R ; SN�1R;� � S

N�1
R;C are both

algebraic, because they appear respectively from the following polynomials:

Pij D xixj � xjxi ;

Pijk D xixjxk � xkxjxi :

Observe also that, the usual sphere SN�1R being algebraic in the above sense, any
algebraic submanifold X � SN�1R is as well algebraic in the above sense.

Another class of examples are the noncommutative cubes. Let us begin with:
Proposition 4.3. Any quotient Z�N2 ! � ! ZN2 can be presented with relations

M˛.g1; : : : ; gN / D N˛.g1; : : : ; gN /

with the noncommutative monomials M˛; N˛ having the same degree in each
variable.

Proof. Let M˛ D N˛ be one of the relations presenting � , as a quotient of Z�N2 .
This relation is by definition of the following type, for certain multi-indices i; j :

gi1 : : : gik D gj1 : : : gjl :

Since we have a quotient map � ! ZN2 we deduce that we have ker
�
i
j

�
2 Peven,

and by replacing where needed the variables gi by variables of type gsi with s odd,
we can obtain a relation M 0˛ D N 0˛ which is equivalent to M˛ D N˛ , as in the
statement.

We call a presentation as above “normalized”. With this convention, we have:
Proposition 4.4. Given a reflection group Z�N2 ! � ! ZN2 , its dual is an algebraic
manifold b� � SN�1R;C , with coordinates xi D gip

N
. Moreover, we have embeddings

SN�1R
// SN�1R;C

bZN2

OO

// b� // bZ�N2

OO



1058 T. Banica

with b� � bZ�N2 appearing via the normalized group relations for � , and with bZN2 �
SN�1R appearing as the standard cube/sphere inclusion,n

x 2 RN j xi D ˙
1
p
N
;8i

o
� SN�1R :

Proof. Since � is a reflection group, we have gi D g�i , g
2
1 D 1 inside the group

algebra C �.�/ D C.b�/, and we deduce that xi D gip
N

defines indeed an embeddingb� � SN�1R;C .
Regarding now the diagram in the statement, we can construct it by using these

maps xi D gip
N
, for the groups � D ZN2 ;Z�N2 , at left and at right, and by dualizing

the quotient maps Z�N2 ! � ! ZN2 in order to construct the inclusions on the
bottom.

The assertion about b� � bZ�N2 , which proves in particular that b� is an algebraic
manifold, is clear as well. Indeed, the quotient map C �.Z�N2 / ! C �.�/ comes by
imposing the relations M˛ D N˛ to the group elements gi , and by assuming that
these relations are normalized, this is the same as imposing them to the coordinates
xi D

gip
N
.

Finally, regarding the last assertion, for � D ZN2 the space b� is classical, so by
abelianizing, the embeddingb� � SN�1R;C must come from an embeddingb� � SN�1R .
Morever, since this latter embedding is given byxi D gip

N
, the points in its imagemust

satisfy x2i D
1
N

for any i , so the image is contained in fx 2 RN j xi D ˙ 1p
N
;8ig.

Now since this latter set has the same cardinality as b� , namely 2N , we obtain the
result.

We will be interested in computing the quantum isometry groups of the
noncommutative cubes b� , and of some related noncommutative spheres as well.
We use here:

Definition 4.5. An affine action of an orthogonal quantum group G � OCN on a
closed subset X � SN�1R;C corresponds by definition to a coaction map

ˆ W C.X/! C.G/˝ C.X/

given by ˆ.xi / D
P
j uij ˝ xj , where xi ; uij are the standard coordinates of X;G.

In the classical case, it is well known that any isometry of a closed subset
X � SN�1R is affine. If we assume in addition that X is non-degenerate, in the sense
that its coordinates x1; : : : ; xN 2 C.X/ are linearly independent, then different affine
isometries U 2 ON of X will have different restrictions UjX W X ! X , and so the
usual isometry group G.X/ is isomorphic to the biggest subgroup G � ON acting
affinely on X . Moreover, as explained by Goswami in [40], the quantum isometry
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group GC.X/, taken in a metric space sense, exists, and is isomorphic to the biggest
subgroup G � OCN acting affinely on X .

In the general case, X � SN�1R;C , no such results are available, and this due to
several technical difficulties, still waiting to be overcomed. See [23, 40, 45, 47]. For
the purposes of the present paper, best is to proceed as follows:
Proposition 4.6. LetX � SN�1R;C be algebraic, and non-degenerate, in the sense that
the coordinates x1; : : : ; xN 2 C.X/ are linearly independent. Then the quantum
group

GC.X/ D max
˚
G � OCN j G Õ X

	
exists. We call it quantum (affine) isometry group of X .

Proof. The relations definingGC.X/ being thosemaking xi ! Xi D
P
j uij˝xj a

morphism of algebras, we first have to clarify how the relationsPi .X1; : : : ; XN / D 0
are interpreted inside C.OCN /. So, pick one of these polynomials, P D Pi , and write
it:

P.x1; : : : ; xN / D
X
r

˛r � xir
1
: : : xir

s.r/
:

When replacing each xi 2 C.X/ by the element

Xi D
X
j

uij ˝ xj 2 C.O
C

N /˝ C.X/;

we obtain the following formula:

P.X1; : : : ; XN / D
X
r

˛r
X

j r
1
:::j r
s.r/

uir
1
j r
1
: : : uir

s.r/
j r
s.r/
˝ xj r

1
: : : xj r

s.r/
:

If we set k D maxr s.r/, then we have P.X1; : : : ; XN / 2 C.OCN /˝ Ek , where
Ek � C.X/ is the linear space given by the following formula:

Ek D span
�
xi1 : : : xis j s � k

�
:

Now since this space Ek is finite dimensional, the relations P.X1; : : : ; XN / D 0
correspond indeed to certain polynomial relations between the generators uij of the
algebra C.OCN /, and this finishes the proof of the existence/uniqueness of GC.X/.

It remains to verify that the closed subspace GC.X/ � OCN that we have
constructed is indeed a quantum group. For this purpose, consider the following
elements:

u�ij D
X
k

uik ˝ ukj ; u"ij D ıij ; uSij D uj i :

Here, with A D C.GC.X//, the elements u�ij belong by definition to A˝A, the
elements u"ij belong to C, and the elements uSij belong to the opposite algebra Aopp.
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Now if we consider the associated elements Xi D
P
j u


ij ˝ xj , with

 2 f�; "; Sg, then from P.X1; : : : ; XN / D 0 we deduce that we have:

P.X

1 ; : : : ; X


N / D . ˝ id/P.X1; : : : ; XN / D 0 :

Thus, by using the universal property of GC.X/, we can construct morphisms of
algebras mapping uij ! u


ij for any  2 f�; "; Sg, and this finishes the proof.

Let us first examine the basic examples of quantum groups GC.b�/. The results
here, some of them being already known from [5,10], are as follows:
Theorem 4.7. The quantum isometry groups of basic noncommutative cubes are

bZN2 // bZıN2 // bZ�N2

NON H�N
// HCN

with all arrows being inclusions, and with no map at bottom left.

Proof. The results in the classical and free cases are known from [5, 10], and the
half-liberated result is new. We will present here complete proofs for all the results.

In all cases we must find the conditions on a closed subgroup G � OCN such that
gi !

P
j uij ˝ gj defines a coaction. Since the coassociativity of such a map is

automatic, we are left with checking that the map itself exists, and this is the same
as checking that the variables Gi D

P
j uij ˝ gj satisfy the same relations as the

generators gi 2 G.

(1) For � D ZN2 the relations to be checked are G2i D 1;GiGj D GjGi . We
have:

G2i D
X
kl

uikuil ˝ gkgl D 1C
X
k<l

.uikuil C uiluik/˝ gkgl ;�
Gi ; Gj

�
D

X
k<l

.uikujl � ujkuil C uilujk � ujluik/˝ gkgl :

From the first relation we obtain ab D 0 for a ¤ b on the same row of u, and
by using the antipode, the same happens for the columns. From the second relation
we obtain Œuik; ujl � D Œujk; uil � for k ¤ l . Now by applying the antipode we
obtain Œulj ; uki � D Œuli ; ukj �, and by relabelling, this gives Œuik; ujl � D Œuil ; ujk�

for j ¤ i . Thus for i ¤ j; k ¤ l we must have Œuik; ujl � D Œujk; uil � D 0, and we
are therefore led to G � NON , as claimed.
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(2) For � D ZıN2 the relations to be checked areG2i D 1;GiGjGk D GkGjGi .
With the notation Œa; b; c� D abc � cba, we have:

G2i D
X
kl

uikuil ˝ gkgl D 1C
X
k¤l

uikuil ˝ gkgl ;�
Gi ; Gj ; Gk

�
D

X
abc

Œuia; ujb; ukc�˝ gagbgc :

From the first relation we obtain G � HCN . In order to process now the second
relation, we can split the sum over a; b; c in the following way:�
Gi ; Gj ; Gk

�
D

X
a; b; c distinct

Œuia; ujb; ukc�˝ gagbgc C
X
a¤b

Œuia; ujb; uka�˝ gagbga

C

X
a¤c

Œuia; uja; ukc�˝ gc C
X
a¤c

Œuia; ujc ; ukc�˝ ga

C

X
a

Œuia; uja; uka�˝ ga :

Our claim is that the last three sums vanish. Indeed, Œuia; uja; uka� D ıijkuia �
ıijkuia D 0, so the last sum vanishes. Regarding now the third sum, we have:X
a¤c

Œuia; uja; ukc� D
X
a¤c

uiaujaukc � ukcujauia D
X
a¤c

ıiju
2
iaukc � ıijukcu

2
ia

D ıij
X
a¤c

Œu2ia; ukc� D ıij

�X
a¤c

u2ia; ukc

�
D ıij Œ1 � u

2
ic ; ukc� D 0 :

The proof for the fourth sum is similar. Thus, we are left with the first two sums.
By using gagbgc D gcgbga for the first sum, the formula becomes:�

Gi ; Gj ; Gk
�
D

X
a<c;b¤a;c

�
Œuia; ujb; ukc�C Œuic ; ujb; uka�

�
˝ gagbgc

C

X
a¤b

Œuia; ujb; uka�˝ gagbga :

In order to have a coaction, the above coefficients must vanish. Now observe that,
when setting a D c in the coefficients of the first sum, we obtain twice the coefficients
of the second sum. Thus, our vanishing conditions can be formulated as follows:

Œuia; ujb; ukc�C Œuic ; ujb; uka� D 0; 8b ¤ a; c :
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Now observe that at i D j or j D k this condition reads 0C 0 D 0. Thus, we
can formulate our vanishing conditions in a more symmetric way, as follows:

Œuia; ujb; ukc�C Œuic ; ujb; uka� D 0; 8j ¤ i; k;8b ¤ a; c :

We use now a trick from [16]. We apply the antipode to this formula, and then
we relabel the indices i $ c; j $ b; k $ a. We succesively obtain in this way:

Œuck; ubj ; uai �C Œuak; ubj ; uci � D 0; 8j ¤ i; k;8b ¤ a; c ;

Œuia; ujb; ukc�C Œuka; ujb; uic� D 0; 8b ¤ a; c;8j ¤ i; k :

Since we have Œa; b; c� D �Œc; b; a�, by comparing the last formula with the
original one, we conclude that our vanishing relations reduce to a single formula, as
follows:

Œuia; ujb; ukc� D 0; 8j ¤ i; k;8b ¤ a; c :

Our first claim is that this formula implies G � H Œ1�
N . In order to prove this, we

will just need the c D a particular case of this formula, which reads:

uiaujbuka D ukaujbuia; 8j ¤ i; k;8a ¤ b :

We know from [6] that H Œ1�
N � OCN is defined via the relations xyz D 0, for

any x ¤ z on the same row or column of u. Thus, in order to prove that we have
G � H

Œ1�
N , it is enough to check that the assumptions j ¤ i; k and a ¤ b can be

dropped. But this is what happens indeed, because at j D i , j D k, a D b, we
respectively have:

Œuia; uib; uka� D uiauibuka � ukauibuia D ıab.u
2
iauka � ukau

2
ia/ D 0 ;

Œuia; ukb; uka� D uiaukbuka � ukaukbuia D ıab.uiau
2
ka � u

2
kauia/ D 0 ;�

uia; uja; uka
�
D uiaujauka � ukaujauia D ıijk.u

3
ia � u

3
ia/ D 0 :

Our second claim now is that, due to G � H Œ1�
N , we can drop the assumptions

j ¤ i; k and b ¤ a; c in the original relations Œuia; ujb; ukc� D 0. Indeed, at j D i
we have:

Œuia; uib; ukc� D uiauibukc � ukcuibuia D ıab.u
2
iaukc � ukcu

2
ia/ D 0 :

The proof at j D k and at b D a, b D c being similar, this finishes the proof
of our claim. We conclude that the half-commutation relations Œuia; ujb; ukc� D 0

hold without any assumption on the indices, and so we obtain G � H�N , as claimed.
(3) For � D Z�N2 the only relations to be checked are G2i D 1. But these

relations can be processed as in the proof of (2) above, and we obtain G � HCN , as
claimed.
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The above computations, along with those in [47], lead to a number of interesting
questions. We will be back to these questions in Section 6 below, by jointly
investigating them for the noncommutative cubes, and for the related noncommutative
spheres.

5. Noncommutative spheres

In this section we upgrade the noncommutative sphere formalism from [3,4,8]. The
idea will be to replace the permutations � 2 S1 � P2 used there by more general
partitions � 2 Peven. Our starting point is the following definition, from [3, 4]:

Definition 5.1. Associated to any permutation � 2 Sk are the sets of relations:

R� D
˚
xi1 : : : xik D xi�.1/ : : : xi�.k/ j 8i1; : : : ; ik

	
;

NR� D
˚
xi1 : : : xik D ".�/xi�.1/ : : : xi�.k/ j 8i1; : : : ; ik

	
:

We call these the untwisted/twisted relations associated to � .

Here the relations are between abstract variables x1; : : : ; xN , and we use the
signature map " W Peven ! f�1; 1g from [3], that we already met in Section 3 above.

As a basic example, for the standard crossing n=D .21/ 2 S2, we have:

Rn= D fxixj D xjxi j 8i; j g ;
NRn= D fxixj D �xjxi j 8i ¤ j g :

Also, for the half-liberating permutation jn=D .321/ 2 S3, we have:

R jn= D fxixjxk D xkxjxi j 8i; j; kg ;

NR jn= D
"
xixjxk D

(
�xkxjxi 8i; j; k distinct;
xkxjxi otherwise:

#
:

These formulae follow indeed by using the signature computations from the proof
of Proposition 3.2 above. For further details, and more examples, see [3, 4].

The point now is that by using the relations in Definition 5.1 above we can
construct several types of families of noncommutative spheres, as follows:

Definition 5.2. We have the following spheres X � SN�1R;C :

(1) Linear spheres: SN�1R;G with G � S1, defined via fR� j � 2 Gg.

(2) Twisted linear spheres: NSN�1R;H withH � S1, defined via f NR� j � 2 H g.

(3) Mixed linear spheres: SN�1R;G;H D S
N�1
R;G \

NSN�1R;H , with G;H � S1.
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Observe that the linear spheres cover the key examples SN�1R � SN�1R;� � S
N�1
R;C

from [8]. The twisted linear spheres cover the twists NSN�1R � NSN�1R;� � SN�1R;C
constructed in [3], and the mixed linear sphere formalism covers these 5 examples,
plus 4 more examples, which appear by intersecting SN�1R ; SN�1R;� with NSN�1R ; NSN�1R;� ,
as follows:

SN�1R
// SN�1R;�

// SN�1R;C

S
N�1;1
R

//

OO

S
N�1;1
R;�

//

OO

NSN�1R;�

OO

S
N�1;0
R

//

OO

NS
N�1;1
R

//

OO

NSN�1R

OO

Here all 9 spheres, including the 4 examples at bottom left, which appear
as intersections, are particular cases of the following construction from [4], with
d 2 f1; : : : ; N g:

C.S
N�1;d�1
R;� / D C.SN�1R;� /

ı˝
xi0 : : : xid D 0;8i0; : : : ; id distinct

˛
:

The mixed linear spheres can be studied by using the following concept, from [4]:

Proposition 5.3. Let S D SN�1R;G;H be a mixed linear sphere, and consider the subsetseG; eH � S1 consisting of permutations �; � such thatR� ; NR� hold over S .

(1) S D SN�1
R;eG;eH , and .eG; eH/ is maximal with this property.

(2) eG; eH are both subgroups of S1, stable under concatenation.

We call the writing S D SN�1R;G;H with G;H maximal “standard parametrization”
of S .

Proof. Here the first assertion is clear from definitions, and the second assertion
follows by suitably manipulating the corresponding relations. See [4].
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Among the main results in [4] was the fact that the standard parametrization of
the 9 main spheres involves only 3 permutation groups, namely f1g � S�1 � S1:
Proposition 5.4. The standard parametrization of the 9 main spheres is

S1 S�1 f1g G=H

SN�1R
// SN�1R;�

// SN�1R;C f1g

S
N�1;1
R

//

OO

S
N�1;1
R;�

//

OO

NSN�1R;�

OO

S�1

S
N�1;0
R

//

OO

NS
N�1;1
R

//

OO

NSN�1R

OO

S1

where S�1 D S1 \ P
�
even.

Proof. We refer to [4] for the proof of this result, and for more information about S�1,
with the remark that we will improve this result in Theorem 5.11 below.

As explained in [4], the above result, and a number of further considerations
regarding the subgroups G � S1, suggest that, conjecturally, the 3 main examples
of linear spheres are the only ones, the 3 main examples of twisted linear spheres are
the only ones, and the 9 main examples of mixed linear spheres are the only ones.
See [4].

Our purpose now will be that of extending the linear sphere formalism, by using
more general partitions � 2 Peven instead of permutations � 2 S1. We use:
Definition 5.5. We denote by Pvert � Peven the set of partitions having the property
that each block has the same number of upper and lower legs.

Observe that we have S1 � Pvert, and in fact S1 D Pvert \ P2. Observe also
that, when switching between consecutive neighbors, as required for the computation
of the signature, the partitions � 2 Pvert can be put in a very simple form, as follows:

ı ı ı ı ı ı

ı ı ı ı ı ı

!

ı ı ı ı ı ı

ı ı ı ı ı ı

We have in fact already met Pvert, in the proof of Proposition 4.3 above. Indeed,
what we proved there is that any group Z�N2 ! � ! ZN2 can be presented with
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relations of type gi1 : : : gik D gj1 : : : gjl , with ker
�
i
j

�
2 Pvert. We will be back later

on to this fact.
We can generalize the construction in Definition 5.1, as follows:

Definition 5.6. Associated to any � 2 Pvert are the sets of relations

R� D
˚
xi1 : : : xik D xj1 : : : xjk j 8i; j; ker

�
i
j

�
� �

	
;

NR� D
˚
xi1 : : : xik D "

�
ker

�
i
j

��
xj1 : : : xjk j 8i; j; ker

�
i
j

�
� �

	
;

which can be imposed to noncommutative variables x1; : : : ; xN .
Observe that for � 2 S1 � Pvert we obtain indeed the relations in Definition 5.1

above. At the level of new examples, consider the following partitions:

� D ker
�
a a b

b a a

�
; � D ker

�
a b a

a b a

�
; � D ker

�
a a b

a b a

�
:

Here � is the pair-positioner partition, that we already met in Definition 2.4 above,
and � is a partition obtained by rotating it. These partitions are both even, and we
have:

R� D
NR� D fx

2
i xj D xjx

2
i j 8i; j g ;

R� D
NR� D fxixjxi D xixjxi j 8i; j g :

Observe that, while h�i D h�i by rotation, the above relations are of very different
nature, with those for � being trivial. This is in sharp contrast with the quantum group
calculus developed in [11]. Finally, for the above partition �, we have:

R� D fx
2
i xj D xixjxi j 8i; j g ;

NR� D fx
2
i xj D �xixjxi j 8i ¤ j g :

Now back to the general case, with Definition 5.6 in hand, we can generalize in a
straightforward way the constructions in Definition 5.2, as follows:
Definition 5.7. We have the following spheres X � SN�1R;C :

(1) Monomial spheres: SN�1R;E with E � Pvert, defined via fR� j � 2 Eg.

(2) Twisted monomial spheres: NSN�1R;F with F � Pvert, defined via f NR� j � 2 F g.

(3) Mixed monomial spheres: SN�1R;E;F D S
N�1
R;E \

NSN�1R;F , with E;F � Pvert.
At the classification level, we recall from [4] that, conjecturally, the 3 main

examples of linear spheres are the only ones, the 3 main examples of twisted linear
spheres are the only ones, and the 9 main examples of mixed linear spheres are the
only ones. In the monomial setting the situation is much more complicated, and
we have no conjectural answer yet. We have for instance a big class of examples,
constructed as follows:
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Definition 5.8. Given a category of partitions NCeven � C � Peven, we construct
the set EC D C \ Pvert, and then we associate:

(1) To any C : the monomial sphere SN�1C D SN�1R;EC .

(2) To anyD: the twisted monomial sphere NSN�1D D NSN�1R;ED .

(3) To any C;D: the mixed monomial sphere SN�1C;D D S
N�1
R;EC ;ED .

Observe the similarity with the concept of standard parametrization, from
Proposition 5.3 above. Our purpose in what follows will be to clarify this similarity.

Before doing so, however, let us discuss the main new example of monomial
sphere appearing via Definition 5.8. This new sphere comes from P

Œ1�
vert , as follows:

Proposition 5.9. The monomial sphere SN�1R;1 associated to P Œ1�vert appears as:

C.SN�1R;1 / D C.SN�1R;C /=hx2i xj D xjx
2
i ;8i; j i :

Moreover, this sphere contains the half-liberated sphere SN�1R;� .

Proof. Observe first that the pair-positioner partition � 2 P Œ1�vert produces the relations
Œa2; b� D 0. In order to prove that SN�1R;1 is indeed presented by these relations, we
will need a convenient description of P Œ1�vert . We recall from Section 2 that we have:

P Œ1�even .k; l/ D

�
ker

�
i1 : : : ik
j1 : : : jl

� ˇ̌̌
gi1 : : : gik D gj1 : : : gjl inside Z

�N
2

�
:

In other words, the partitions in P Œ1�even implement the relations g2i D 1, between
free variables g1; : : : ; gN . It follows that the partitions in P Œ1�vert implement the
relations x2i D central, between free variables x1; : : : ; xN , and this gives the result.

Now back to the parametrization question, observe that Pvert � Peven is closed
under the standard categorical operations ı;˝;� from [11], which are respectively
the vertical and horizontal concatenation, and the upside-down turning. We can
formulate:

Proposition 5.10. Let S D SN�1R;E;F be a mixed monomial sphere, and consider the
subsets eE;eF � Pvert consisting of partitions �; � such thatR� ; NR� hold over S .

(1) S D SN�1
R;eE;eF , and .eE;eF / is maximal with this property.

(2) eE;eF � Pvert are both closed under the categorical operations ı;˝;�.

We call the writing S D SN�1R;E;F with E;F maximal “standard parametrization”
of S .
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Proof. Here the first assertion is clear, and the second assertion follows as in the
proof of Proposition 5.3, explained in detail in [4], by composing, concatenating,
or returning the corresponding relations. Indeed, these operations correspond to the
categorical operations ı;˝;�, and so both eE;eF follow to be closed under these latter
operations.

We agree from now on to call the concepts used in Proposition 5.3 and
Proposition 5.4 above “old standard parametrization”. Let us extend now
Proposition 5.4, by using our newnotion of standard parametrization, and by replacing
as well the free sphere SN�1R;C with the smaller sphere SN�1R;1 . We have here the
following result:
Theorem 5.11. We have the following standard parametrization results

Pvert P �vert P
Œ1�
vert E=F

SN�1R
// SN�1R;�

// SN�1R;1 P
Œ1�
vert

S
N�1;1
R

//

OO

S
N�1;1
R;�

//

OO

NSN�1R;�

OO

P �vert

S
N�1;0
R

//

OO

NS
N�1;1
R

//

OO

NSN�1R

OO

Pvert

where P �vert D Pvert \ P
�
even and P

Œ1�
vert D Pvert \ P

Œ1�
even .

Proof. The idea will be that of exploiting as much as possible Proposition 5.4, and
then enhancing some of the arguments in the proof of Proposition 5.4, worked out
in [4].

(I) First, we must prove that we have S D SN�1R;E;F , for all the spheres in the
statement. We will do this in two steps, first by converting the parametrization
in Proposition 5.4 into a partition-theoretical statement, and then replacing
SN�1R;C ! SN�1R;1 .

In order to perform the first step, the idea is that of replacing in Proposition 5.4
the groups S�1 D S1; S�1; f1g by the sets P �vert D Pvert; P

�
vert; NCvert. Our first claim

is that these groups and sets are related by the following formulae:

S�1 D P
�
vert \ S1 ;

P �vert D
˚
� 2 Pvert j � � � for some � 2 S�1

	
:
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This is indeed clear in the classical case, clear as well in the free case, and in
the half-liberated case this follows from the observation that, when labelling the legs
counterclockwise ı�ı� : : :, merging blocks will preserve the equality of black/white
legs.

Nowwith these connecting formulae in hand, we deduce thatwe have the following
equality, for any of the 3 � 3 D 9 choices of the symbols �;˘:

SN�1R;S�1;S˘1
D SN�1R;P�vert;P˘vert

:

Indeed, the inclusion “�” comes from the first connecting formula, and the
inclusion “�” comes from the second connecting formula. But, from this equality
we conclude that the parametrization result in Proposition 5.4 can be reformulated as
follows, with of course the parametrizing sets E;F not claimed to be maximal:

Pvert P �vert NCvert E=F

SN�1R
// SN�1R;�

// SN�1R;C NCvert

S
N�1;1
R

//

OO

S
N�1;1
R;�

//

OO

NSN�1R;�

OO

P �vert

S
N�1;0
R

//

OO

NS
N�1;1
R

//

OO

NSN�1R

OO

Pvert

Let us insert now into this diagram the sphere left, SN�1R;1 . We know by definition
that we have SN�1R;1 D S

N�1

P
Œ1�
vert

, and our first claim is that we have in fact:

SN�1R;1 D S
N�1

P
Œ1�
vert ;P

Œ1�
vert

:

In order to prove this formula, it is enough to show that the relations NR� in
Definition 5.6 are satisfied over SN�1R;1 , for any � 2 P Œ1�vert . But, according to the
description P Œ1�even found in Lemma 3.5 above, we obtain, by intersecting with Pvert:

P
Œ1�
vert D

˚
� 2 Pvert j ".�/ D 1;8� � �

	
:

Now since the difference between the relations R� ; NR� in Definition 5.6 comes
precisely from the possible odd subpartitions � � � , we conclude that for � 2 P Œ1�vert
we haveR� D

NR� , and so these relations are indeed satisfied over SN�1R;1 .
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Thus our claim is proved, and SN�1R;1 can be therefore inserted into the above
diagram, at the place of SN�1R;C , with parametrizing sets E=F D P

Œ1�
vert =P

Œ1�
vert . Now

since the standard parametrization operation in Proposition 5.10 is functorial, we can
change as well NCvert ! P

Œ1�
vert for the parametrizing sets of the 2 C 2 “smaller”

spheres, sitting below or at left of SN�1R;1 , and we obtain in this way the diagram in
the statement.

(II) We must prove now that the parametrization S D SN�1R;E;F in the statement is
standard, for all the 9 spheres. We already know from Proposition 5.4 above that the
intersectionsG D E\S1;H D F \S1 are the correct ones, and in order to extend
this result, best is to fine-tune the proof of Proposition 5.4, done in detail in [4]. We
must compute the following sets, and show that we get the sets in the statement:

E D
˚
� 2 Pvert j the relationsR� hold over S

	
;

F D
˚
� 2 Pvert j the relations NR� hold over S

	
:

As a first observation, by using the various inclusions between spheres, we just
have to compute E for the spheres on the bottom, and F for the spheres on the left:

S D S
N�1;0
R ; NS

N�1;1
R ; NSN�1R H) E D Pvert; P

�
vert; P

Œ1�
vert ;

S D S
N�1;0
R ; S

N�1;1
R ; SN�1R H) F D Pvert; P

�
vert; P

Œ1�
vert :

The results for SN�1;0R being clear, we are left with computing the remaining 4
sets, for the spheres SN�1R ; NSN�1R ; S

N�1;1
R ; NS

N�1;1
R . The proof here goes as follows:

(1) SN�1R . According to the definition of F , we have:

F.k/ D
n
� 2 Pvert.k/

ˇ̌
xi1 : : : xik D "

�
ker

�
i
j

��
xj1 : : : xjk ;8 ker

�
i
j

�
� �

o
D

n
� 2 Pvert.k/

ˇ̌
"
�
ker

�
i
j

��
D 1;8 ker

�
i
j

�
� �

o
Now since by Lemma 3.5 for any � 2 Pvert.k/�P

Œ1�
vert .k/ we can find a partition

� � � satisfying ".�/ D �1, we deduce that we have F D P Œ1�vert , as desired.
(2) NSN�1R . The proof of E D P

Œ1�
vert here is similar to the proof of F D P

Œ1�
vert

in (1) above, by using the same combinatorial ingredient at the end.
(3) SN�1;1R . By definition of F , a partition � 2 Pvert.k/ belongs to F.k/

when the following condition is satisfied, for any choice of the indices satisfying
ker

�
i
j

�
� � :

xi1 : : : xik D "
�
ker

�
i
j

��
xj1 : : : xjk :

When jker i j D 1 this formula reads xkr D xkr , which is true. When jker i j � 3
this formula is automatically satisfied aswell, because by using the relations ab D ba,
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and abc D 0 for a; b; c distinct, which both hold over SN�1;1R , this formula reduces
to 0 D 0. Thus, we are left with studying the case jker i j D 2. Here the quantities on
the left xi1 : : : xik will not vanish, so the sign on the right must be 1, and we therefore
have:

F.k/ D
˚
� 2 Pvert.k/ j ".�/ D 1;8� � �; j� j D 2

	
:

By using now Lemma 3.5 we conclude that we have F D P �vert, as desired.

(4) NSN�1;1R . The proof of E D P �vert here is similar to the proof of F D P �vert
in (3) above, by using the same combinatorial ingredient at the end.

As an application of Theorem 5.11, let us go back to Definition 5.8, and try to find
out what the main examples of such spheres are, in the untwisted case. In view of
the bijection between easy quantum groups and categories of partitions, we can take
as data here the basic quantum groups in Proposition 2.3 and Definition 2.4, namely:

ON // O�N
// OCN

HN //

OO

H�N
//

OO

H
Œ1�
N

// HCN

OO

We can compute the associated spheres by using Theorem 5.11, and we get:

Proposition 5.12. The spheres associated to the basic quantum groups are:

SN�1R
// SN�1R;�

// SN�1R;C

SN�1R
// SN�1R;�

// SN�1R;1
// SN�1R;C

In particular, for any HN � G � OCN easy we have SN�1G D SN�1G0 , with
G0 D G \HCN .

Proof. Observe first that the second assertion is clear from the first one, and from
the classification result in Theorem 2.9, with the remark that in this second assertion
we have used the notation SN�1C from Definition 5.8 (1) with the category NCeven �

C � Peven replaced by the corresponding easy quantum groupHN � G � OCN .
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Regarding now the first assertion, the computation here goes as follows:

HN // H�N
// H Œ1�

N
// HCN

Peven P �even
oo P

Œ1�
evenoo NCevenoo

Pvert P �vert
oo P

Œ1�
vertoo NCvertoo

SN�1R
// SN�1R;�

// SN�1R;1
// SN�1R;C

ON // O�N
// OCN

P2 P �2
oo NC2oo

S1 S�1
oo f1goo

SN�1R
// SN�1R;�

// SN�1R;C

More precisely, the rows in these diagrams describe the corresponding categories
of partitions C , the intersections EG D C \Pvert, and finally the associated spheres.

The passage from the first row to the second row is clear from definitions, and so
is the passage from the second row to the third row. As for the passage from the third
row to the fourth row, this comes from Theorem 5.11, and finishes the proof.

Summarizing, we have extended the formalism in [3, 4, 8], and in the untwisted
case our main examples are the spheres associated to the easy quantum groups
HN � G � HCN , classified in Theorem 2.9. We will gradually study these
spheres in Section 6 below, by beginning with those associated to the quantum
groupsHN � H�

N � H
C

N .

6. The duality principle

Wediscuss now the duality principle, between the noncommutative cubes and spheres
associated to the uniform reflection groups Z�N2 ! � ! ZN2 . The construction of
the correspondence is as follows, by using the usual notations gi ; xi for the generators
of � , respectively for the standard coordinates on the free sphere SN�1R;C :

Proposition 6.1. We have a dualityb� $ SN�1� between noncommutative cubes and
spheres associated to the uniform reflection groups Z�N2 ! � ! ZN2 , given by

C.SN�1� / D C.SN�1R;C /
ıDgi1 : : : gik D gj1 : : : gjk ;8i; j

H) xi1 : : : xik D xj1 : : : xjk ;8i; j

E
and by b� D SN�1� \

bZ�N2 . We have as well a twisted correspondence b� $ NSN�1� ,
obtained similarly, by using instead the relations xi1 : : : xik D ".ker

�
i
j

�
/xj1 : : : xjk .
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Proof. We recall from Sections 4–5 that we have an inclusion b� � SN�1� , coming
from a quotient map as follows, whereM˛ D N˛ are uniform relations presenting �:

C.SN�1� /

��

C.SN�1R;C /
.
hM˛.xi / D N˛.xi /i

��

C.b�/ C.SN�1R;C /
.˝
x2i D

1
N
;M˛.xi / D N˛.xi /

˛
But this shows that the maps in the statement are inverse to each other, and hence

proves the duality result. The proof of the twisted statement is similar.

We discuss now the computation and comparison of the associated quantum
isometry groups. We restrict attention to the untwisted case, the results in the twisted
case being similar. For the spheres coming from the main 3 reflection groups, we
have:

Proposition 6.2. The untwisted monomial spheres coming from the basic reflection
groups, ZN2  ZıN2  Z�N2 , and the associated quantum isometry groups, are

SN�1R
// SN�1R;�

// SN�1R;1

ON // O�N H
Œ1�
N

with all arrows being inclusions, and with no map at bottom right.

Proof. According to Proposition 5.12, the spheres are those in the statement.
Moreover, according to the results in [8], the two quantum groups at bottom left are
the correct ones. Thus, we are left with proving that we have GC.SN�1R;1 / D H

Œ1�
N .

Let us set as usualXi D
P
a uia˝xa, withC.G/ D huiai. By doing some index

manipulations as in the proof of Theorem 4.7, we obtain the following formula:

XiXiXj D
X
b¤a;c

uiauibujc ˝ xaxbxc

C

X
a¤c

.uicuicuja C uiauicujc/˝ xaxcxc

C

X
a

uiauiauja ˝ xaxaxa :
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Thus, the equalities XiXiXj D XjXiXi correspond to the following relations:

uiauibujc D ujauibuic ; 8b ¤ a; c ;

u2icuja C uiauicujc D ujcuicuia C ujau
2
ic ; 8a ¤ c ;

u2iauja D uiau
2
ja :

As a first remark, these relations are satisfied indeed for H Œ1�
N . Our claim now,

which will finish the proof, is that the middle relation by itself implies G � H Œ1�
N .

Consider indeed this middle relation, which is best written as follows:

Œuia; uic ; ujc� D Œuja; u
2
ic�; 8i ¤ j;8a ¤ c :

Observe that we have added the condition i ¤ j , because at i D j the formula
is trivial. Now by applying the antipode, and then by relabelling i $ c; j $ a, we
obtain: �

ucj ; uci ; uai
�
D Œu2ci ; uaj �; 8i ¤ j;8a ¤ c ;�

uia; uic ; ujc
�
D Œu2ic ; uja�; 8c ¤ a;8j ¤ i :

Since we have Œa; b� D �Œb; a�, we conclude that the following must hold:

Œuia; uic ; ujc� D Œuja; u
2
ic� D 0; 8i ¤ j;8a ¤ c :

We will need only the second formula, namely Œuja; u2ic� D 0 for i ¤ j , a ¤ c.
Our claim is that the assumptions i ¤ j , a ¤ c can be dropped. Indeed, by summing
over i ¤ j we obtain Œuja; 1�u2jc� D 0, and so Œuja; u

2
jc� D 0, and so the assumption

i ¤ j can be dropped. Similarly, the assumption a ¤ c can be dropped as well.
We conclude that Œuja; u2ic� D 0 holds without any restrictions on the indices, and

since these relations are those defininingH Œ1�
N � OCN , this finishes the proof.

Observe the similarity of the above statement with Theorem 4.7, and notably the
lack of functoriality. Let us first put these results together:
Theorem 6.3. The basic noncommutative cubes, and the associated spheres are

SN�1R
// SN�1R;�

// SN�1R;1

bZN2 //

OO

bZıN2 //

OO

bZ�N2

OO
ON // O�N H

Œ1�
N

��
NON H�N

//

OO

HCN

with the diagram at right describing the corresponding quantum isometry groups.

Proof. This follows indeed by putting together Theorem 4.7 and Proposition 6.2.
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The problem is that the diagram on the right suffers from a severe lack of
functoriality. Putting this diagram into a reasonable duality framework looks like
a challenging problem, that we will discuss now. One idea for overcoming the
difficulties, coming from [47], and also from [4], is that of using the following
version of Proposition 4.6:
Proposition 6.4. LetX � SN�1R;C be algebraic, and non-degenerate, in the sense that
the coordinates x1; : : : ; xN 2 C.X/ are linearly independent. Then the quantum
group

HC.X/ D max
˚
G � H

Œ1�
N j G Õ X

	
exists. We call it quantum reflection group of X .

Proof. Both the existence and the uniqueness statement are clear, because we can
simply use here Proposition 4.6, and setHC.X/ D GC.X/ \H Œ1�

N .

The point with the above notion basically comes from the fact that, when replacing
GC.X/! HC.X/, the statement of Theorem 6.3 drastically simplifies:
Proposition 6.5. The basic noncommutative cubes, and the associated spheres are

SN�1R
// SN�1R;�

// SN�1R;1

bZN2 //

OO

bZıN2 //

OO

bZ�N2

OO
HN // H�N

// H Œ1�
N

HN // H�N
// H Œ1�

N

with the diagram at right describing the corresponding quantum reflection groups.

Proof. This follows from Theorem 6.3 above, by intersecting withH Œ1�
N , with some

help at computing intersections coming from Theorem 3.9 and its proof.

This result, and the computations in [47], suggest thatwe should have the following
formula, valid for any uniform refection group Z�N2 ! � ! ZN2 :

HC.SN�1� / D HC.b�/ D H�
N :

In addition, we believe that the “basic” groups used in Theorem 6.3 are in fact
“exceptional”. More precisely, for � ¤ Z�N2 ;ZıN2 ;ZN2 , our conjecture is that we
have:

GC.SN�1� / D GC.b�/ D H�
N :

Regarding the quantum groupH˘kN , our conjecture is that this appears as quantum
isometry group of the sphere SN�1R;.k/ � S

N�1
R;C obtained via the following relations:

Œa1 : : : ak�2b
2ak�2 : : : a1; c

2� D 0 :
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If all these conjectures are true, the quantum groups in Theorem 3.9 above would
appear as quantum isometry (or reflection) groups of the following spheres:

SN�1R
// SN�1R;�

''
S
N�1;1
R

//

77

''

S� // SN�1R;.k/
// SN�1R;C

NSN�1R
// NSN�1R;�

77

We do not know on how to solve these questions. The main issues come from: (1)
our lack of global standard parametrization results, for the spheres in Definition 5.8
above, (2) our poor understanding of the full quantum isometry groups, in the
reflection group case, and (3) our poor understanding of the spheres SN�1R;.k/ introduced
above.

7. Unitary extensions

We discuss here some unitary extensions of the above results. As explained in [3,4],
the unitary case is considerably more complex than the real one, but some basic
results can be obtained by “mirroring” the real ones. We will adopt the same strategy
here. More precisely, we will briefly describe the results which can be obtained in
this way, and leave the computations, details, and an overall complete study, for later
on.

The starting point is the following definition, coming from [3]:

Definition 7.1. The free complex sphere, and its free complex cube, are given by

C.SN�1C;C /

��

C �
�
z1; : : : ; zN j

P
i ziz

�
i D

P
i z
�
i zi D 1

�
��

C �.FN / C �
�
g1; : : : ; gN j gig

�
i D g

�
i gi D 1;8i

�
with the vertical quotient map being given by zi D gip

N
.

With these notions in hand, the idea is that the various results in Sections 4–6 above
extend to the complex case, the general principle being, as in [3,4], that of replacing
the real coordinates xi 2 C.SN�1R;C / by the variables xi D zi ; z�i 2 C.S

N�1
C;C /.

As an example, the half-liberation SN�1C;�� that we must use is the “minimal” one,
obtained by imposing the relations abc D cba, for any a; b; c 2 fzi ; z�i g. See [3].
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Let us discuss the analogue of Theorem6.3. The spheresSN�1C � SN�1C;�� � S
N�1
C;C

appear from the groups ZN  ZıN  FN , via a categorical construction which is
similar to the one in the real case, with ZıN being obtained from FN by stating that
the generators g1; : : : ; gN and their inverses satisfy the relations abc D cba. We
have then:

Theorem 7.2. The basic noncommutative cubes, and the associated spheres are

SN�1C
// SN�1C;��

// SN�1C;1

TN //

OO

bZıN //

OO

bFN

OO
UN // U ��N K

Œ1�
N

��
NUN K��N

//

OO

KCN

with the diagram at right describing the corresponding quantum isometry groups.

Proof. This statement, which is similar to Theorem 6.3, can be deduced in a similar
way. First of all, the underlying unitary easy quantum groups are as follows:

ZN ZıNoo FNoo

KN // K��N
// KŒ1�N

Here KN D T o SN is the complex analogue of HN D Z2 o SN , and K��N ; K
Œ1�
N

are the corresponding analogues ofH�N ;H
Œ1�
N , introduced and studied in [4].

With this result in hand, the associated spheres are those in the statement.
Regarding now the quantum isometry groups, the 2 results at top left are from [3], the
result on top right can be deduced by suitably modifying the proof of Proposition 6.2,
and the 3 results on the bottom can be obtained by adpating the computations
in [9, 10].

The various comments made after Theorem 6.3 above apply as well to
the complex case. We have for instance an analogue of Proposition 6.5
above, obtained by restricting the attention to the “reflection” quantum groups
KC.X/ D GC.X/ \K

Œ1�
N .

Observe that the above results put the computations in [9, 10] under a new light.
Indeed, for bFN itself, the quantum isometry group computed here, which is KCN , is
much simpler than the quantum groupHCN;0 computed in [9]. This is due to the fact
that our notion of quantum isometry group here is taken in an affine complex sense.
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