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Abstract. This article is the continuation of [17]. We use categories of matrix factorizations
to define a morphism of rings (= a Landau–Ginzburg motivic measure) from the (motivic)
Grothendieck ring of varieties over A1 to the Grothendieck ring of saturated dg categories
(with relations coming from semi-orthogonal decompositions into admissible subcategories).
Our Landau–Ginzburg motivic measure is the analog for matrix factorizations of the motivic
measure in [5] whose definition involved bounded derived categories of coherent sheaves. On
the way we prove smoothness and a Thom–Sebastiani theorem for enhancements of categories
of matrix factorizations.
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1. Introduction

This article is the partner of [17]. The mutual goal of these two articles is the
construction of an interesting Landau–Ginzburg motivic measure: a ring morphism
from the (motivic) Grothendieck ring of varieties over A1 to another ring. The
terminology Landau–Ginzburg comes from physics where a morphismW WX ! A1
is considered as a superpotential on a variety X .

Let k be an algebraically closed field of characteristic zero. Let X be a smooth
variety (over k) and W WX ! A1 D A1

k
a morphism (also viewed as an element

of �.X;OX /). We denote the category of matrix factorizations ofW byMF.X;W /
(see [17]). Taking the product over all the categories MF.X;W � a/, for a 2 k,
defines the singularity categoryMF.W / of W ,

MF.W / WD
Y
a2k

MF.X;W � a/:

Only finitely many factors of this product are non-zero, and MF.W / vanishes if and
only if W is a smooth morphism (see Lemma 4.13). Let MF.W /dg be a suitable
enhancement (in the differential Z2-graded setting, where Z2 D Z=2Z) of MF.W /,
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and let MF.W /dg;\ be the corresponding enhancement of the Karoubi envelope
of MF.W /.

The (motivic) Grothendieck group K0.VarA1/ of varieties over A1 is defined
as the free abelian group on isomorphism classes ŒX�A1 D ŒX;W � of varieties
W WX ! A1 over A1 subject to the relations ŒX�A1 D ŒX � Y �A1 C ŒY �A1 whenever
Y � X is a closed subvariety. Given W WX ! A1 and V WY ! A1 we define
W � V WX � Y ! A1 by .W � V /.x; y/ D W.x/ C V.y/. This operation turns
K0.VarA1/ into a commutative ring.

We denote by K0.satZ2k / the Grothendieck group of saturated dg categories
(see Definition 2.23), i. e. the free abelian group on quasi-equivalence classes of
saturated (= proper, smooth and triangulated) dg (= differentialZ2-graded) categories
with relations coming from semi-orthogonal decompositions into admissible
subcategories on the level of homotopy categories. The tensor product of dg
categories gives rise to a ring structure on K0.satZ2k /. One may think of K0.satZ2k /
as a Grothendieck ring of suitable pretriangulated dg categories. Now we can state
our main result.
Theorem 1.1 (see Theorem 5.2). There is a unique morphism

�WK0.VarA1/! K0.satZ2k / (1.1)

of rings (= a Landau–Ginzburg motivic measure) that maps ŒX;W � to the class of
MF.W /dg;\ whenever X is a smooth variety andW WX ! A1 is a proper morphism.

In particular, � is a morphism of abelian groups and maps ŒX;W � to the class
of MF.W /dg;\ whenever X is a smooth (connected) variety and W WX ! A1 is a
projective morphism. These two properties determine � uniquely.

Let us sketch the main steps of the proof of this theorem.
We first show that MF.W /dg and MF.W /dg;\ are smooth dg categories

(Theorem 4.24), and proper ifW is proper (Proposition 4.26). Hence, for properW ,
MF.W /dg;\ is a saturated dg category and defines an element of K0.satZ2k /. The
proof of smoothness takes advantage of good properties of object oriented Čech
enhancements of matrix factorization categories; for example, the standard duality
and external tensor products admit natural lifts to these enhancements. On the way
we show a Thom–Sebastiani Theorem (Theorem 4.23); it says that given smooth
varieties X and Y with morphisms W WX ! A1 and V WY ! A1, the two dg
categoriesMF.W /dg˝MF.V /dg andMF.W � V /dg are Morita equivalent. IfW is
proper, properness follows essentially from [23, Cor. 1.24].

According to [1, Theorem 5.1]), K0.VarA1/ has a presentation with generators
the isomorphism classes ŒX;W �, where X is a smooth variety and W is a proper
(or projective) morphism, and relations coming from blowing-ups. Using this, the
semi-orthogonal decompositions for projective space bundles and blowing-ups we
established in [17, Theorems 3.2 and 3.5] imply that there is a morphism of abelian
groups �WK0.VarA1/ ! K0.satZ2k / sending ŒX;W � to the class of MF.W /dg;\ for

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.3.2
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.3.5


Matrix factorizations and motivic measures 983

smooth X and proper W , and that this morphism is already uniquely determined by
its values on ŒX;W � for smooth X and projective W .

It remains to show multiplicativity of �. If W WX ! A1 and V WY ! A1 are
proper, the product of the classes of MF.W /dg;\ and MF.V /dg;\ in K0.satZ2k / is
isomorphic to the class of MF.W � V /dg;\, by the Thom–Sebastiani Theorem 4.23.
However, W � V is not proper in general, so it is a priori not clear that � maps
ŒX � Y;W � V � to the class ofMF.W � V /dg;\. To ensure this we furthermore have
to compactify the morphismW �V in a nice way (Proposition 6.1) in order to obtain
multiplicativity. This finishes the sketch of proof of Theorem 1.1.

The Landau–Ginzburg measure (1.1) sends L.A1;0/ WD ŒA1; 0� to 1. It is the
analog of the motivic measure constructed in [5] using bounded derived categories
of coherent sheaves. We refer the reader to the introduction of [17] for more details.
There we discuss also our related work.

For the convenience of readers who are more familiar with smooth and proper
dg algebras than with saturated dg categories let us explain that the Grothendieck
groupK0.satZ2k / can also be described using proper and smooth dg algebras. We call
two proper and smooth dg algebras “dg Morita equivalent” if their derived categories
are connected by a zig-zag of tensor equivalences (cf. Remark 2.39). Define the
Grothendieck groupK0.prsmalgZ2

k
/ of proper and smooth dg algebras as the quotient

of the free abelian group on dg Morita equivalence classes A of proper and smooth
dg algebrasA by the subgroup generated by the elementsR� .ACB/wheneverR is
a proper and smooth dg algebra such that there are dg algebrasA andB together with
a dg A˝ Bop-module N D BNA such that R D

�
A 0
N B

�
(see Def. 2.42). The tensor

product of dg algebras turnsK0.prsmalgZ2
k
/ into a ring. Under our assumption that k

is a field we show that mapping a proper and smooth dg algebra A to its triangulated
envelope Perf.A/ induces an isomorphism

K0.prsmalgZ2
k
/
�
�! K0.satZ2k /

of rings (Proposition 2.26 and Remark 2.45). Using this isomorphism, the Landau–
Ginzburg motivic measure (1.1) may be viewed as a morphism of rings

�WK0.VarA1/! K0.prsmalgZ2
k
/:

In this interpretation, � can be described more concretely as follows. Given a smooth
variety X and a proper morphism W WX ! A1, choose a classical generator in each
categoryMF.X;W � a/ and let Aa be its endomorphism dg algebra (computed in a
suitable enhancement). Then the image of ŒX;W � under � is the class of

Q
a2k Aa.

Section 2 contains the definitions of various Grothendieck rings of dg categories.
We even work over an arbitrary commutative ground ring k there. Besides the
Grothendieck ringsK0.satZ2k / andK0.prsmalgZ2k / explained above we also introduce
the modified Grothendieck ring K 00.sat

Z2
k / of saturated dg categories and the
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Grothendieck ring K0.prsmZ2
k / of proper and smooth dg categories. There are

canonical morphisms

K0.satZ2k / � K 00.sat
Z2
k /

�
 K0.prsmZ2

k /
�
 K0.prsmalgZ2k /

of rings. The first morphism is the obvious surjection: the definition of K 00.sat
Z2
k /

is obtained from that of K0.satZ2k / by dropping the words “into admissible
subcategories”. It is an isomorphism if k is a field (Proposition 2.26). The other two
morphisms are isomorphisms (see Remark 2.45).

Acknowledgements. We thankMaximKontsevich, János Kollár, Gonçalo Tabuada,
Daniel Pomerleano, and Anatoly Preygel for their help and useful discussions.

The second author was supported by a postdoctoral fellowship of the German
Academic Exchange Service (DAAD) and partially supported by the Collaborative
ResearchCenter SFBTransregio 45 and the priority programSPP 1388 of theGerman
Science foundation (DFG). He thanks these institutions.

2. Grothendieck rings of dg categories

Our aim is to define and compare some Grothendieck rings of saturated dg
k-categories (or proper and smooth dg k-algebras) where k is a commutative ring.
Initially we follow [5] but pay more attention to finiteness conditions and work over
an arbitrary commutative ring. We use notions and results from [11, 30, 32]. For
the convenience of the reader we repeat some proofs. In this section dg stands for
“differential Z-graded”.
Remark 2.1. All results of this section (and the results we cite) are also true in
the differential Zn-graded setting (where Zn WD Z=nZ), for any n 2 Z, unless said
otherwise (the standard notions we use have their obvious counterpart in this setting).
The proofs are easily adapted. We could even work over a graded commutative
differential Zn-graded k-algebra K as in [19].

In fact, in the rest of this article, we only need the differential Z2-graded setting
for k a field. To exclude misunderstandings, a dg module in this setting is aZ2-graded
k-module V D V0 ˚ V1 together with a differential d WV ! V of degree 1,
i. e. k-linear maps di WVi ! ViC1 for i 2 Z2 such that diC1di D 0.

We choose to explain the case of an arbitrary commutative ring k since it is only
slightly more difficult than that of a field.

2.1. Dg categories and their module categories. Our notation coincides with that
of [19, sections 2 and 3] (if one puts K D k there).

Let k be a commutative ring. We denote by C.k/ the category whose objects
are dg (k-)modules. Morphisms in C.k/ are degree zero morphisms that commute
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with the respective differentials. Note that the category C.k/ is abelian and closed
symmetric monoidal with the obvious tensor product˝ WD ˝k.

If A is a dg category (= a category enriched in C.k/) we denote the category
with the same objects and closed degree zero morphism (resp. closed degree zero
morphisms up to homotopy) by Z0.A/ (resp. ŒA�.) For example, there is an obvious
dg category Mod.k/ such that Z0.Mod.k// D C.k/. We denote the category of
small dg categories by dgcatk.

LetA be a small dg category. We denote byMod.A/ the dg category of (right)
dgA-modules (= dg functorsAop !Mod.k/). The dg functor Y WA!Mod.A/,
A 7! Y.A/ WD bA WD A.�; A/, is full and faithful and called Yoneda embedding.
We write C.A/ WD Z0.Mod.A// and H.A/ WD ŒMod.A/� (resp. D.A/) for the
homotopy (resp. derived) category of dg A-modules. We equip C.A/ with the
(cofibrantly generated) projective model structure (cf. [19, Thm. 2.2]). Its weak
equivalences are the quasi-isomorphisms, and its fibrations are the epimorphisms.

Let Mod.A/cf �Mod.A/ be the full dg subcategory of all cofibrant objects
in C.A/ (all objects are fibrant). We denote byA �Mod.A/ the smallest strict full
dg subcategory which contains the zero module, allbA, forA 2 A, and is closed under
cones of closed degree zero morphisms (and then also under all shifts). Any object
of A is a semi-free dg A-module and hence cofibrant. The situation is illustrated by
the diagram

A Y
�! A �Mod.A/cf �Mod.A/:

The three categories on the right are (strongly) pretriangulated. The canonical full
and faithful dg functor Apre-tr !Mod.A/ from [4, §1, §4] (an extended version of
the Yoneda embedding) has precisely A as its essential image, so Apre-tr and A are
dg equivalent. So A is a pretriangulated envelope of A. We pass to the respective
homotopy categories and obtain the first row in the commutative diagram

ŒA� �
� ŒY � // ŒA� �� _

�

��

ŒMod.A/cf � �

�

&&

H.A/

��
tria.A/ � thick.A/

[

�

''

D.A/

per.A/:

[

Here tria.A/ is defined to be the smallest strict full triangulated subcategory of
ŒMod.A/cf � that contains all bA, for A 2 A, thick.A/ is in addition required to
be closed under direct summands in ŒMod.A/cf �, and per.A/ is defined to be
the thick envelope of fbA j A 2 Ag in D.A/. The three indicated triangulated
equivalences are well-known (or obvious). They show that A (together with
equivalence ŒA� ! tria.A/) is an enhancement of tria.A/, and that Mod.A/cf



986 V. A. Lunts and O. M. Schnürer

is an enhancement of ŒMod.A/cf � and D.A/. We define Perf.A/ to be the full
subcategory of Mod.A/cf whose objects coincide with those of thick.A/. Then
Perf.A/ is (strongly) pretriangulated and an enhancement of thick.A/ and per.A/.

The categories ŒMod.A/cf � and D.A/ have arbitrary (in particular countable)
coproducts. Hence they are Karoubian (= idempotent complete), and so are
thick.A/ and per.A/. In particular thick.A/ can be viewed as the Karoubi envelope
(= idempotent completion) of tria.A/. Note also that D.A/ is compactly generated
and that the subcategory D.A/c of compact objects in D.A/ is precisely per.A/,
i. e.D.A/c D per.A/ (cf. the discussion around equation (2.4) in [19]).

2.2. Triangulated dg categories. Recall that a dg functor F WA ! B is a quasi-
equivalence if
(qe1) for all objects a1; a2 2 A, the morphism F WA.a1; a2/ ! B.Fa1; Fa2/ is a

quasi-isomorphism, and
(qe2) the induced functor ŒF �W ŒA� ! ŒB� on homotopy categories is essentially

surjective.
If (qe1) holds, then (qe2) is equivalent to the condition that ŒF �W ŒA� ! ŒB� is an
equivalence.
Definition 2.2 ([32, Def. 2.4.5]). A dg category A is triangulated if the Yoneda
embedding induces a quasi-equivalence A! Perf.A/. (It is enough to require that
ŒA�! ŒPerf.A/� is essentially surjective.)
Lemma 2.3. A dg category A is triangulated if and only if it is pretriangulated
and ŒA� is Karoubian.

Proof. Note that A! Perf.A/ factors as A ,! A � Perf.A/.
Assume thatA is triangulated. Then it is clear thatA! A is a quasi-equivalence

which precisely means that A is pretriangulated. Since ŒA� ! ŒPerf.A/� is an
equivalence and ŒPerf.A/� D thick.A/ is Karoubian, the same is true for ŒA�.

Conversely, if A is pretriangulated and ŒA� is Karoubian, then

ŒA� ��! ŒA� ��! tria.A/;
so tria.A/ is Karoubian and coincides with its Karoubi envelope thick.A/ D
ŒPerf.A/�. This implies that ŒA� ! ŒPerf.A/� is an equivalence, so A is
triangulated.

Corollary 2.4 ([32, Lemma. 2.6]). Let A be a dg category. Then Perf.A/ is a
triangulated dg category, i. e. the morphism Perf.A/ ! Perf.Perf.A// induced by
the Yoneda functor is a quasi-equivalence.

Proof. Wehave observed above that Perf.A/ is pretriangulated, and that ŒPerf.A/� D
thick.A/ is Karoubian.

So passing from a dg categoryA to Perf.A/means taking a triangulated envelope.
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2.3. Some general results.

Lemma 2.5. Let F WA! B be a dg functor and assume that the following condition
on A holds: For all X 2 A and r 2 Z there is an object Z 2 A and morphisms
f 2 A.X;Z/�r and g 2 A.Z;X/r such that df D 0, dg D 0, and fg is homotopic
to idZ and gf is homotopic to idX . In other words, the essential image of ŒA� in
ŒMod.A/� is closed under all shifts. (This condition is for example satisfied if A is
pretriangulated or closed under all shifts.)

Then F is a quasi-equivalence if and only if ŒF �W ŒA�! ŒB� is an equivalence.

Proof. We prove the non-trivial implication. Assume that ŒF � is an equivalence.
Then obviously (qe2) is satisfied. Let A;X 2 A. Let r 2 Z and let Z, f , g be as
above. Consider the commutative diagram

Œr�A.A;X/ f ı‹ //

Œr�F

��

A.A;Z/

F

��
Œr�B.FA; FX/F.f /ı‹// B.FA; FZ/

in C.k/. If we applyH 0 to this diagram, the horizontal arrows and the vertical arrow
on the right become isomorphisms. Hence the same is true for the vertical arrow on
the left, i. e. H r.F /WH r.A.A;X// ! H r.A.FA; FX// is an isomorphism. This
proves (qe1).

Any dg functor f WA ! B gives rise to the dg functor f � D prodBA D
.� ˝A B/WMod.A/ !Mod.B/ called extension of scalars functor, and we have
a commutative diagram

A
f

��

Y //Mod.A/

f �

��
B Y //Mod.B/

(2.1)

since f �.bA/ D1f .A/ for all A 2 A.

Lemma 2.6. Let f WA! B be a morphism in dgcatk. Then:

(a) The extension of scalars functor f � induces dg functors

f �WMod.A/cf !Mod.B/cf ;
f �WPerf.A/! Perf.B/; and f �WA! B:

(b) If f is full and faithful, then all these functors f � are full and faithful.
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(c) If f is a quasi-equivalence, then

f �WMod.A/cf !Mod.B/cf ;
f �WPerf.A/! Perf.B/; and f �WA! B

are quasi-equivalences.

Proof. We prove (a). Note first that f � (viewed as a functor C.A/! C.B/ where
both categories are viewed as model categories with the projective model structure)
maps cofibrations to cofibrations since its right adjoint f� D resBA maps trivial
fibrations (= epimorphic quasi-isomorphisms) to trivial fibrations. In particular f �
induces a dg functor f �WMod.A/cf !Mod.B/cf . For the remaining statements
of (a) use f �.bA/ D1f .A/ for allA 2 A and the fact that a dg functor preserves shifts
and cones of closed degree zero morphisms (see [5, 4.3]).

In order to prove (b) assume that f is full and faithful. The right adjoint of

f � D prodBAWMod.A/!Mod.B/ (2.2)

is restriction f� D resBA. Hence f � is full and faithful if and only if the unit
X ! resBA.prodBA.X// of this adjunction is an isomorphism for all X 2Mod.A/.
But

.resBA.prod
B
A.X///.A/ D .prod

B
A.X//.f .A//

D cok
� M
A000;A002A

X.A000/˝A.A00; A000/˝ B.f .A/; f .A00//

!

M
A02A

X.A0/˝ B.f .A/; f .A0//
�

f
 �
�

cok
� M
A000;A002A

X.A000/˝A.A00; A000/˝A.A;A00/

!

M
A02A

X.A0/˝A.A;A0/
�

�
�! X.A/;

where the first arrow is an isomorphism since f is full and faithful, and the second
arrow is the obvious evaluation morphism. Under this identification the unit becomes
the identity which shows that the functor f � in (2.2) is full and faithful. Then f � is
obviously also full and faithful on all full subcategories ofMod.A/.

Let us prove (c). Assume that f is a quasi-equivalence. View A �Mod.A/
and B � Mod.B/ as full dg subcategories via the Yoneda embedding. It is
easy to prove that f �WA ! B is a quasi-equivalence (this statement corresponds
to [6, Prop. 2.5] under the dg equivalences Apre-tr ��! A and Bpre-tr ��! B). In
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particular, Œf ��W ŒA�! ŒB� and hence Œf ��W tria.A/ ! tria.B/ are equivalences. It
extends to an equivalence between the corresponding Karoubi envelopes given by
Œf ��W thick.A/! thick.B/. This also implies that

Lf � D .�˝L
A B/WD.A/! D.B/

is an equivalence [10, 4.2, Lemma]. Now Lemma 2.5 shows that

f �WPerf.A/! Perf.B/ and f �WMod.A/cf !Mod.B/cf

are quasi-equivalences.

Lemma 2.7 ([5, Lemma 4.16]). Let A be a full dg subcategory of a dg category B.
Assume that ŒA� � ŒB� is dense in the sense that any object of ŒB� is a direct summand
of an object of ŒA�. Then ŒA� is dense in ŒB�where we viewA as a full dg subcategory
of B via Lemma 2.6.(b).

Proof. We view A � A and B � B as full dg subcategories via the Yoneda
embedding. Any object of ŒB� is a direct summand of an object of ŒA� and hence
also of an object of ŒA�. If an object of ŒB� is a direct summand of an object of ŒA�,
then all its shifts have the same property.

Assume that f WX ! Y is a closed degree zero morphism in B, and that X ˚
X 0 Š M and Y ˚ Y 0 Š N in ŒB� with M 2 ŒA� and N 2 ŒA�. Consider
f ˚ 0WX ˚ X 0 ! Y ˚ Y 0 and let gWM ! N be a closed degree zero morphism
in A corresponding to f ˚ 0 in ŒB�. Then

Cone.g/ Š Cone.f ˚ 0/ Š Cone.f /˚ Y 0 ˚ Œ1�X 0

in ŒB�. Hence Cone.f / is a direct summand of the object Cone.g/ 2 ŒA�.
Now use that any object of ŒB� is built up from the objects of B using shifts and

cones of closed degree zero morphisms.

2.4. Perfection of tensor products.
Proposition 2.8 (cf. [5, Prop. 4.17]). Let A and B be dg categories. Then the dg
functor f WA˝ B ! Perf.A/˝ B obtained from A! Perf.A/ is full and faithful
and induces (by extension of scalars along f ) a quasi-equivalence

f �WPerf.A˝ B/! Perf.Perf.A/˝ B/

of dg categories.

Proof. The sequence A ,! A � Perf.A/ of full and faithful dg functors yields a
sequence

A˝ B ,! A˝ B � Perf.A/˝ B
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of full and faithful dg functors whose composition is f . By Lemma 2.6.(b) we obtain
full and faithful dg functors

A˝ B ,! A˝ B � Perf.A/˝ B:

The functor on the left is an equivalence of dg categories (and in particular a quasi-
equivalence) since both categories are built up from the objects of A ˝ B using
shifts and cones of closed degree zero morphisms. The first row of the commutative
diagram

ŒA˝ B�
�
��

� // ŒA˝ B�
�
��

� ŒPerf.A/˝ B�
�
��

tria.A˝ B/� _

��

� // tria.A˝ B/� _

��

� tria.Perf.A/˝ B/� _

��
thick.A˝ B/ � // thick.A˝ B/ D thick.Perf.A/˝ B/

ŒPerf.A˝ B/� � // ŒPerf.A˝ B/� D ŒPerf.Perf.A/˝ B/�

is obtained by passing to the respective homotopy categories. Its left arrow is an
equivalence, and we claim that its inclusion is dense: Since ŒA� ��! tria.A/, the
inclusion ŒA� � ŒPerf.A/� D thick.A/ is dense; then ŒA˝ B� � ŒPerf.A/˝ B� is
dense, too, and Lemma 2.7 shows our claim. The second row is in the obvious way
equivalent to the first one, and passing to the third row means taking the respective
Karoubi envelopes; in particular, the dense inclusion becomes an equality. The
fourth row is equal to the third row, and Lemma 2.5 proves that both arrows in
Perf.A˝ B/ ! Perf.A˝ B/ ! Perf.Perf.A/˝ B/ are quasi-equivalences. The
composition of these arrows is f �.

We equip dgcatk with the (cofibrantly generated) model structure1 from [29]
(cf. [19, section 2.7]). Its weak equivalences are the quasi-equivalences, and the
cofibrant dg categories are precisely the retracts of semi-free dg categories. We
denote the homotopy category of dgcatk with respect to these weak equivalences
by Heqk. We fix a cofibrant replacement functorQ. IfA and B are dg categories we
define A˝L B WD Q.A/˝Q.B/ and

Aˇ B WD Perf.A˝L B/: (2.3)

One may consider Aˇ B as a triangulated envelope of A˝L B (cf. Corollary 2.4).

1 In case that k is a field (which is all we need in this article), the rest of this section can be simplified:
we don’t need this model structure and can assume thatQ.A/ D A for any dg category A (since all we
need is thatQ.A/ is h-flat; but any dg module over a field k is k-h-flat).
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Lemma 2.9. Quasi-equivalences A ! A0 and B ! B0 give rise to a quasi-
equivalence Aˇ B! A0 ˇ B0.

Proof. Observe that A ˝L B D Q.A/ ˝ Q.B/ ! Q.A0/ ˝ Q.B/ D A0 ˝L B
is a quasi-equivalence since the cofibrant dg category Q.B/ is k-h-flat (by [19,
Lemmata 2.14 and 2.15]). Hence we obtain a quasi-equivalence Aˇ B ! A0 ˇ B
by Lemma 2.6.(c).

Proposition 2.10. Let A and B be dg categories. Then the natural morphism

Aˇ B D Perf.A˝L B/! Perf..Perf.A//˝L .Perf.B/// D Perf.A/ˇ Perf.B/

in dgcatk is a quasi-equivalence (and becomes an isomorphism in Heqk).

Proof. Let Y WA! Perf.A/ be the full and faithful Yoneda dg functor. The cofibrant
replacement functor Q comes with a natural transformation Q ! id and yields the
commutative square

Q.A/ Q.Y / //

��

Q.Perf.A//

��
A Y // Perf.A/

whose vertical arrows are trivial fibrations. We tensor this diagram with Q.B/ and
obtain the commutative square

Q.A/˝Q.B/ Q.Y /˝id //

��

Q.Perf.A//˝Q.B/

��
A˝Q.B/ Y˝id // Perf.A/˝Q.B/

whose vertical arrows are still quasi-equivalences since Q.B/ is k-h-flat (they are
even trivial fibrations by the characterization of the trivial fibrations, see [19, after
Thm. 2.11]).

These morphisms of dg categories induce by extension of scalars a commutative
diagram

Perf.Q.A/˝Q.B// .Q.Y /˝id/� //

��

Perf.Q.Perf.A//˝Q.B//

��
Perf.A˝Q.B// .Y˝id/� // Perf.Perf.A/˝Q.B//

(2.4)

whose vertical arrows are quasi-equivalences (Lemma 2.6.(c)). The lower horizontal
arrow is a quasi-equivalence by Proposition 2.8. This implies that the upper horizontal
arrow

Perf.A˝L B/
.Y˝Lid/�
������! Perf.Perf.A/˝L B/
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is a quasi-equivalence. The same reasoning shows that the morphism .id˝LY /�

from the right-hand side to Perf..Perf.A//˝L Perf.B// is a quasi-equivalence.

2.5. Proper, smooth, and saturated dg categories.
Definition 2.11 (cf. [32, Def. 2.4], [30, Def. 2.3]). Let A be a dg category.

(a) A is locally (k-)perfect (or locally (k-)proper) if A.A;A0/ is a perfect dg
k-module (i. e. in per.k/) for all A;A0 2 A.

(b) A has a compact generator if the triangulated categoryD.A/ has a compact
generator. An equivalent condition is that per.A/ has a classical generator
(use [2, Thm. 2.1.2]).

(c) A is (k-)proper if it is locally perfect and has a compact generator.
(d) A is (k-)smooth if A considered as a dg Q.A/ ˝ Q.A/op-module, is in

per.Q.A/˝Q.A/op/.
(e) A is (k-)saturated if it is (k-)proper, (k-)smooth and triangulated (seeDef. 2.2).
If A is a dg algebra, then bA is a compact generator of D.A/, hence A has a

compact generator. Hence A is proper if and only if it is locally perfect, i. e. if A is
a perfect dg k-module. The same statement is true for A a dg category with finitely
many isoclasses of objects in ŒA�:

L
A2ŒA�=Š

bA is a compact generator ofD.A/.
Lemma 2.12. The notions introduced in Definitions 2.11 and 2.2 are all invariant
under quasi-equivalences.

Proof. Let F WA! B be a quasi-equivalence.
Locally perfect: If all B.B;B 0/ are perfect dg k-modules, the same is true for all

A.A;A0/. If all A.A;A0/ are in per.k/, then all B.F.A/; F.A0// are in per.k/. In
order to show that all B.B;B 0/ are perfect use that ŒF � is an equivalence.

Has a compact generator: It is well-known (cf. proof of Lemma 2.6.(c)) that F
induces an equivalence LF �WD.A/! D.B/ of triangulated categories.

Proper: Clear from above.
Smooth: See [19, Lemma 3.12].
Triangulated: By Lemma 2.6 we have a commutative diagram

A
f

��

Y // Perf.A/

f �

��
B Y // Perf.B/

whose vertical arrows are quasi-equivalences. Hence the upper horizontal arrow is a
quasi-equivalence if and only if the lower horizontal arrow is a quasi-equivalence.

Saturated: Clear from above.
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Lemma 2.13 ([32, Lemma 2.6]). Let A be a dg category. ThenA is locally perfect
(resp. has a compact generator resp. is proper resp. is smooth) if and only if Perf.A/
has the corresponding property.

Proof. Locally perfect: The Yoneda functor Y WA ! Perf.A/ is full and faithful.
HenceA is certainly locally perfect if Perf.A/ is locally perfect. Conversely assume
thatA is locally perfect. It is easy to see thatA.A;A0/ is a perfect dg module for all
A;A0 2 A. If U is in Perf.A/, then there is an object U 0 2 Perf.A/ and an object
X 2 A such that U ˚ U 0 Š X in ŒPerf.A/�. Let Y 2 A. Then Perf.A/.U; Y /
is a direct summand of Perf.A/.U ˚ U 0; Y / which is in D.k/ (even in ŒMod.k/�)
isomorphic to Perf.A/.X; Y / D A.X; Y /. Hence Perf.A/.U; Y / is a perfect dg
k-module. Similarly we show that Perf.A/.U; V / is a perfect dg k-module for V in
Perf.A/. This implies that Perf.A/ is locally perfect.

Let us prove the remaining claims. The Yoneda functor Y WA ! Perf.A/ gives
rise to the commutative diagram

A

Y

��

Y // Perf.A/

Y �

��
Perf.A/ Y // Perf.Perf.A//;

by Lemma 2.6.(a). Since Perf.A/ is triangulated (Corollary 2.4), the lower horizontal
arrow is a quasi-equivalence. Note that ŒPerf.A/� ��! per.A/ is classicaly generated
by the objects in the image of the Yoneda functor ŒY �W ŒA� ! ŒPerf.A/�. These
statements imply that Y � induces an equivalence on homotopy categories and hence
is a quasi-equivalence by Lemma 2.5. In particular

LY � D .�˝L
A Perf.A//W per.A/! per.Perf.A//

is an equivalence, and hence also

LY � D .�˝L
A Perf.A//WD.A/! D.Perf.A//

(use [10, 4.2, Lemma]).
This immediately implies the claims concerning compact generators and

properness, and also the claim concering smoothness (by [19, Thm. 3.17]).

2.6. Smoothness and properness of tensor products. We start with some
observations. Let R and S be dg categories, and assume that R is k-h-flat
(i. e. all morphism spaces R.R;R0/ are k-h-flat). Then the obvious dg bifunctor
Mod.R/�Mod.S/!Mod.R˝S/, .X; Y / 7! X ˝Y , induces the left derived
functor

D.R/ �D.S/! D.R˝ S/; (2.5)
.X; Y / 7! X ˝L Y WD c.X/˝ Y;
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where c.X/! X is a cofibrant resolution; note for this that a cofibrant dgR-module
is a retract of a semi-free dg R-module [19, Lemma 2.7] and hence k-h-flat by our
assumption onR. If Y is k-h-flat, then the obvious morphism X ˝L Y ! X ˝ Y is
an isomorphism. It is easy to see that the bifunctor (2.5) induces a bifunctor

per.R/ � per.S/! per.R˝ S/:

In particular (forR D S D k), if X and Y are perfect dg modules, then

X ˝L Y 2 per.k/I

if they are perfect and Y is k-h-flat, then X ˝ Y is in per.k/.

Lemma 2.14. Let A and B be smooth dg categories. Then A˝L B is smooth.

Proof. LetQ.A/! A andQ.B/! B be cofibrant resolutions. Then

Q.A/ 2 per.Q.A/˝Q.A/op/ and Q.B/ 2 per.Q.B/˝Q.B/op/

by assumption.
Note that both diagonal dg bimodules Q.A/ and Q.B/ are k-h-flat, and that

both dg categories R D Q.A/ ˝ Q.A/op and S D Q.B/ ˝ Q.B/op are k-h-flat,
by [19, Lemma 2.14]. Then, using the obvious isomorphism

R˝ S �
�! .Q.A/˝Q.B//˝ .Q.A/˝Q.B//op;

the above discussion shows that

Q.A/˝Q.B/ 2 per..Q.A/˝Q.B//˝ .Q.A/˝Q.B//op/;

and this dg bimodule is the diagonal bimodule. SinceQ.A/˝Q.B/ is k-h-flat this
implies thatA˝L B D Q.A/˝Q.B/ is smooth (since smoothness can be checked
using a k-h-flat resolution, by [19, Lemma 3.6]).

Lemma 2.15. Let A and B be locally perfect dg categories. Then A ˝L B is a
locally perfect dg category. In particular, if A and B are proper dg algebras, then
A˝L B is a proper dg algebra.

Proof. If Q.A/ ! A and Q.B/ ! B are cofibrant resolutions, both Q.A/
and Q.B/ are locally perfect (Lemma 2.12). Since both Q.A/ and Q.B/ are
k-h-flat [19, Lemma 2.14], the above discussion shows thatA˝LB D Q.A/˝Q.B/
is locally perfect. The last claim is immediate since a dg algebra is proper if and only
if it is locally perfect.
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2.7. Back to saturated dg categories. Recall from Definition 2.11 that a dg cate-
gory T is saturated if it is triangulated, smooth and proper.

Proposition 2.16 (cf. [31, Prop. 13], and [32, Lemma 2.6]). A dg category T has
a compact generator if and only if there is a dg algebra A such that Perf.T / and
Perf.A/ are isomorphic in Heqk. If such an A is given, then Perf.T / is smooth
(resp. proper) if and only if A is smooth (resp. proper).

In particular, a dg category T is saturated if and only if there is a smooth and
proper dg algebra A such that T and Perf.A/ are isomorphic in Heqk.

Proof. If A is a dg algebra, thenbA is a classical generator of ŒPerf.A/�
�
�! per.A/. If

Perf.T / and Perf.A/ are isomorphic in Heqk then ŒPerf.T /� Š ŒPerf.A/�, so T has
a compact generator.

Conversely, assume that T has a compact generator. Let E 2 Perf.T / be such
that E is a classical generator of ŒPerf.T /� ��! per.T /. Let A WD .Perf.T //.E;E/.
We consider the dg algebra A also as a dg category with one object ?. The obvious
inclusion i WA! Perf.T /, ? 7! E, gives by Lemma 2.6.(b) rise to the commutative
diagram

A

i

��

Y // Perf.A/

i�

��
Perf.T / Y // Perf.Perf.T //

whose vertical arrows are full and faithful. The lower horizontal arrow is a quasi-
isomorphism (Corollary 2.4); in particular, it induces a triangulated equivalence

ŒPerf.T /�
ŒY �
��!
�

ŒPerf.Perf.T //�:

This implies that ŒPerf.Perf.T //� is the thick envelope of bE D Y.E/. Note that
ŒPerf.A/� D thick.A/ is the thick envelope of b? and that i�.b?/ D i�.Y.?// D

Y.i.?// D bE. Since ŒPerf.A/� is Karoubian this implies that Œi��W ŒPerf.A/� !
ŒPerf.Perf.T //� is a triangulated equivalence. Then Lemma 2.5 shows that the
vertical arrow i� in the above commutative square is a quasi-equivalence. This
shows that Perf.A/ and Perf.T / are connected by a zig-zag of quasi-equivalences.

Lemmata 2.12 and 2.13 then yield the second claim, and for the last claim use
additionally Corollary 2.4.

Proposition 2.17. LetS , T be saturated dg categories. ThenSˇT (defined in (2.3))
is a saturated dg category.

Note that Lemmata 2.13, 2.14, 2.15 and Corollary 2.4 show that SˇT is locally
perfect, smooth, and triangulated.
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Proof. By Proposition 2.16 there are smooth and proper dg algebras A and B such
that S Š Perf.A/ and T Š Perf.B/ in Heqk. Then we have isomorphisms

S ˇ T Š .Perf.A//ˇ .Perf.B// � Perf.A˝L B/ D Aˇ B

in Heqk by Lemma 2.9 and Proposition 2.10. Lemmata 2.14 and 2.15 show that
A˝L B is smooth and proper, so Proposition 2.16 again proves the claim.

For later use we include the following result which is similar to Proposition 2.16.

Proposition 2.18. Let E be a pretriangulated dg category and letE 2 E be an object
that becomes a classical generator of ŒE �. Consider the dg algebra A WD E.E;E/.
Then there is a quasi-equivalence Perf.A/ ! Perf.E/ of dg categories, and the
dg functor E.E;�/W E !Mod.A/ induces a full and faithful triangulated functor
E.E;�/W ŒE �! per.A/ that extends to an equivalence between the Karoubi envelope
of ŒE � and per.A/.

Moreover, A is smooth (resp. proper) if and only if E has this property if and
only if Perf.E/ has this property. In particular, A is smooth and proper if and only
if Perf.E/ is saturated.

Proof. We consider A as a dg category. Mapping its unique object to E defines a dg
functor i WA! E . Lemma 2.6.(b) shows that the induced extension of scalars functor
i�WPerf.A/ ! Perf.E/ is full and faithful. It maps A to bE. The induced functor
i�W thick.A/ ! thick.E/ on homotopy categories is full and faithful, and moreover
essentially surjective since bE is a classical generator of thick.E/ and thick.A/ is
idempotent complete. Now Lemma 2.5 shows that i�WPerf.A/ ! Perf.E/ is a
quasi-equivalence.

A quasi-inverse of i�W thick.A/ ! thick.E/ is given by restriction along i . This
restriction composed with ŒE �! thick.E/ is given by E.E;�/. Moreover, thick.E/
is the Karoubi envelope of ŒE �, ŒE �! ŒE � is an equivalence since E is pretriangulated,
and thick.A/

�
�! per.A/.

The remaining claims follow from the Lemmata 2.13 and 2.12 and Corollary 2.4.

2.8. Semi-orthogonal decompositions. We refer the reader to [17, appendix A] for
the definition and elementary properties of semi-orthogonal decompositions.

The first part of the following result says that a semi-orthogonal decomposition
of the homotopy category ŒT � of a pretriangulated dg category T induces a semi-
orthogonal decomposition of ŒPerf.T /�. This may be viewed as a dg lift of [17,
Cor. A.12]. Its formulation is a bit technical since the components of a semi-
orthogonal decomposition are required to be strict subcategories. A related result is
given in Lemma 2.34 below.

http://arxiv.org/pdf/1212.2670v1.pdf#appendix.A
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.A.12
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Proposition 2.19. Assume that T is a pretriangulated dg category with full dg sub-
categories U and V such that ŒT � D hŒU �; ŒV �i is a semi-orthogonal decomposition
(resp. a semi-orthogonal decomposition into admissible subcategories).

Then there is an induced semi-orthogonal decomposition

ŒPerf.T /� D hŒPerf.U/0�; ŒPerf.V/0�i

(into admissible subcategories). Here Perf.U/0 is the full dg subcategory of Perf.T /
such that ŒPerf.U/0� is the strict closure of ŒPerf.U/� in ŒPerf.T /�. In particular, there
is an obvious quasi-equivalence Perf.U/ ! Perf.U/0. The dg category Perf.V/0 is
defined similarly.

More generally, letR be a k-h-flat dg category. Then there is a semi-orthogonal
decomposition

ŒPerf.R˝ T /� D hŒPerf.R˝ U/0�; ŒPerf.R˝ V/0�i

(into admissible subcategories) where the involved dg subcategories are defined in
the obvious way.

Proof. The first claim is the special case R D k of the second claim which we
prove now. Assume that ŒT � D hŒU �; ŒV �i is a semi-orthogonal decomposition. The
inclusions U � T and V � T give rise to full and faithful dg functors R ˝ U !
R˝ T ,R˝ V ! R˝ T . Lemma 2.6.(b) shows that the induced dg functorseU WD Perf.R˝ U/! eT WD Perf.R˝ T /;eV WD Perf.R˝ V/! eT D Perf.R˝ T /

are full and faithful. We view eU and eV as full dg subcategories of eT . From
ŒT �.ŒV �; ŒU �/ D 0 we see that T .v; u/ is acyclic for all v 2 V and u 2 U .

Let r; r 0 2 R, u 2 U and v 2 V . SinceR.r; r 0/ is k-h-flat, R.r; r 0/˝ T .v; u/ is
acyclic. This implies that

ŒeT ��1.r; v/; 1.r 0; u/� D ŒR˝ T �..r; v/; .r 0; u// D H 0.R.r; r 0/˝ T .v; u// D 0:

Since ŒeU � D thick.R˝ U/ is classically generated by the objects 1.r; u/, for r 2 R
and u 2 U , and similarly for ŒeV �, we see that ŒeT �.ŒeV �; ŒeU �/ D 0.

Let r 2 R and t 2 T . There are v 2 V and u 2 U such that there is a triangle
v ! t ! u! Œ1�v in ŒT �. Consider the dg functor ir WT ! R˝ T , t 0 7! .r; t 0/. It
induces a commutative diagram

T

ir

��

� � Y // Perf.T /

i�r
��

R˝ T �
� Y // eT D Perf.R˝ T /
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(see Lemma 2.6.(a)). If we pass to homotopy categories, the upper horizontal and
the right vertical functor are triangulated functors; they map the above triangle to the
triangle

1.r; v/! b.r; t/!1.r; u/! Œ1�1.r; v/
in ŒeT �. Note that ŒeT � is classically generated by the objects b.r; t/, for r 2 R and t 2 T ,
and that both ŒeV � and ŒeU � are Karoubian (by Lemma 2.3 and Corollary 2.4). DefineeV 0
to be the full dg subcategory of eT such that ŒeV 0� is the closure under isomorphisms
of ŒeV � in ŒeT �I define eU 0 similarly. (Note that eV ! eV 0 is a quasi-equivalence by
Lemma 2.5.)

From [17, Lemma A.6.(b)] we see that ŒeT � D hŒeU 0�; ŒeV 0�i is a semi-orthogonal
decomposition. In particular, ŒeV 0� is right admissible and ŒeU 0� is left admissible
in ŒeT �.

Assume now in addition that ŒU � is right admissible in ŒT �. Then [17,
Lemma A.11.(a)] says that ŒT � D hŒU �?; ŒU �i is a semi-orthogonal decomposition.
Let U� be the full dg subcategory of T that has the same objects as ŒU �?,
so ŒU�� D ŒU �?. Then the above argument shows that ŒeU 0� is right admissible.
Similarly, left admissibility of ŒV � implies that ŒeV 0� is left admissible.

Proposition 2.20. Let T be a pretriangulated dg category with full dg subcate-
gories U and V such that ŒT � D hŒU �; ŒV �i is a semi-orthogonal decomposition.
Then U and V are pretriangulated as well. Moreover, if T is triangulated (resp. is
locally perfect resp. has a compact generator resp. is smooth resp. is proper resp. is
saturated) then U and V have the same property.

Proof. It is clear that U and V are pretriangulated.
Triangulated: If ŒT � is Karoubian, so are ŒU � and ŒV � since ŒU � D ŒV �? and

ŒV � D ?ŒU �, and we can apply Lemma 2.3.

Locally perfect: this is obviously passed to any full dg subcategory.
Has a compact generator. The first claim of Proposition 2.19 (together with

Lemmata 2.12 and 2.13) shows that we can assume that T is triangulated. Then by
assumption ŒT � ��! ŒPerf.T /� ��! per.T / has a classical generator. The obvious
functors ŒU � ! ŒT �=ŒV � and ŒV � ! ŒT �=ŒU � are equivalences of triangulated
categories. This implies that ŒU � ��! per.U/ and ŒV � ��! per.V / have classical
generators, i. e. U and V have compact generators.

Smooth: Let E � T be the full dg subcategory of T whose objects are the
union of the objects of U and V . Let V 0 be the full dg subcategory of V obtained
by ignoring all objects that are also in U . Let E 0 � E be the (in general non-full)
dg subcategory with the same objects and morphism spaces as E except that we set
E 0.V 0; U / D 0 for all V 0 2 V 0 and U 2 U . Then E 0 ! E is a quasi-equivalence
since all T .V 0; U / are acyclic. Symbolically, this inclusion may be written as

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.A.6
http://arxiv.org/pdf/1212.2670v1.pdf#Item.66
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.A.11
http://arxiv.org/pdf/1212.2670v1.pdf#Item.67
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E 0 D
h

U 0

V0TU V0
i
� E D

h
U UTV0

V0TU V0

i
. Lemma 2.6 implies that Perf.E 0/! Perf.E/

is a quasi-equivalence and that Perf.E/ ! Perf.T / is full and faithful; but in fact
this last arrow is also a quasi-equivalence: on homotopy categories it induces an
equivalence since each object of ŒPerf.T /� is an extension of an object of ŒPerf.U/�
by an object of ŒPerf.V/�/ (by Proposition 2.19), so we can use Lemma 2.5. Hence
smoothness of T implies smoothness of E 0 (using Lemmata 2.12 and 2.13 again),
and then [19, Thm. 3.24] implies smoothness of both U and V .

Proper, saturated: Clear from above.

Corollary 2.21. Let D be a triangulated category with a semi-orthogonal
decomposition D D hA;Bi. Then the following properties of an enhancement
of D are passed on to the induced enhancements of A and B: being triangulated,
being locally perfect, having a compact generator, smoothness, properness, being
saturated.

2.9. Grothendieck ring of saturated dg categories. Let satk be the full subcategory
of dgcatk consisting of saturated dg categories. By satk we denote the set of
isomorphism classes in Heqk of these categories (cf. Lemma 2.12). Given a saturated
dg category T , we write T for its class in satk.
Proposition 2.22. The map .S;T / 7! SˇT induces a multiplication � on satk that
turns satk into a commutative monoid with unit Perf.k/.

Proof. Lemma 2.9 and Proposition 2.17 show that � is well defined. Let S1,
S2, and S3 be saturated dg categories. We know that Si ! Perf.Si / is a
quasi-equivalence. Hence to obtain associativity of � it is enough to prove
that .Perf.S1/ ˇ Perf.S2// ˇ Perf.S3/ and .Perf.S1/ ˇ Perf.S2// ˇ Perf.S3/ are
isomorphic in Heqk. Proposition 2.10 and Lemma 2.6.(c) reduce this to showing that
.S1˝L S2/˝L S3 and S1˝L .S2˝L S3/ are isomorphic in Heqk. But this is easy to
see since cofibrant dg categories are k-h-flat. Similarly, commutativity follows from
S1 ˝L S2 Š S2 ˝L S1, and S1 ˝L k Š S1 proves that Perf.k/ is the unit.

Denote by Zsatk the (commutative associative unital) monoid ring of satk, i. e. the
free abelian group on satk with Z-bilinear multiplication induced by �.
Definition 2.23 (cf. [5, Def. 5.1, 8.1]). The Grothendieck group K0.satk/ of
saturated dg categories is defined to be the quotient of Zsatk by the subgroup
generated by the elements (the “semi-ortogonal relations”) T � .U C V/ whenever
there is a saturated dg category T with full dg subcategories U and V such that
ŒT � D hŒU �; ŒV �i is a semi-orthogonal decomposition into admissible subcategories.
(We do not require that U and V are saturated; this is automatic by Proposition 2.20.)

If 0 is the trivial dg algebra (considered as a dg category) and if ; is the empty
dg category, then 0 D Perf.;/, and we have 0 D Perf.;// D 0 in K0.satk/.
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Proposition 2.24. Themultiplication � onZsatk induces a multiplication onK0.satk/
such that Zsatk ! K0.satk/ is a ring morphism. Equipped with this multiplication,
we call K0.satk/ the Grothendieck ring of saturated dg categories.

Proof. Let I � Zsatk be the subgroup generated by the “semi-orthogonal relations”.
We need to show that I is an ideal in Zsatk. Assume that T is a saturated dg
category with (saturated) dg subcategories U and V such that ŒT � D hŒU �; ŒV �i is a
semi-orthogonal decomposition into admissible subcategories.

Let S be any saturated dg category. We need to prove that

S � T � .S � U C S � V/ D Perf.S ˝L T / � .Perf.S ˝L U/C Perf.S ˝L V//

is an element of I . Observe that S˝LA D Q.S/˝Q.A/! Q.S/˝A is a quasi-
equivalence (for A an arbitrary dg category) since Q.S/ is k-h-flat. Lemma 2.6.(c)
shows that the above element is equal to

Perf.Q.S/˝ T / � Perf.Q.S/˝ U/C Perf.Q.S/˝ V/:

But this element lies in I by Proposition 2.19.

Remark 2.25. Gonçalo Tabuada shows in [28, section 7] that for k a field (and
in the differential Z-graded situation) there is a surjective morphism K0.satk/ !
K0.Hmocl0 / of commutative rings. We refer the reader to [28] for the definition
of K0.Hmocl0 /. This ring is non-zero, so the same is true for K0.satk/.

The results of the following Subsections 2.10, 2.11 and 2.12 are dispensable for
Sections 3, 4, 5 and 6.

2.10. Modified Grothendieck ring of saturated dg categories. By omitting the
words “into admissible subcategories” in Definition 2.23 we define the modified
Grothendieck group K 00.satk/ of saturated dg categories. The proof of
Proposition 2.24 shows that K 00.satk/ becomes a ring with multiplication induced
by �. There is an obvious surjective morphism

K0.satk/! K 00.satk/ (2.6)

of rings.
Proposition 2.26. If k is a field, then the map (2.6) is an isomorphism.

The proof of this result requires some additional care in the differentialZn-graded
setting.

Proof of Prop. 2.26 in the differential Z-graded setting. Let T be a saturated dg
category T with full dg subcategories U and V such that ŒT � D hŒU �; ŒU �i is a semi-
orthogonal decomposition. We have seen that this already implies that both U and V
are saturated dg categories. Then [27, Thm. 3.1] (and Proposition 2.16) show that
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ŒU � and ŒV � are “saturated” in the sense that they are Ext-finite and all covariant and
contravariant cohomological functors ŒT �! Vect.k/ of finite type are representable.
Here Vect.k/ denotes the category of vector spaces over k. Then [3, Prop. 2.6] tells
us that ŒU � and ŒV � are both admissible in ŒT �.

The following proposition is a variant of [2, Thm. 1.3]. We denote the category
of finite dimensional vector spaces over k by Vectfd.k/.
Proposition 2.27. Let k be a field and D a triangulated (in the usual Verdier sense)
k-linear category. Assume that

(a) dimk D.A;B/ <1 for all objects A, B of DI
(b) D has a strong generatorE such that there is some n > 0 such thatE Š Œn�E;

and
(c) D is Karoubian.

Then every k-linear cohomological functor Dop ! Vectfd.k/ is representable.
If D is n-periodic (for some n 2 Z) in the sense that each object A 2 D is

isomorphic to Œn�A, then condition (b) is satisfied if and only if D has a strong
generator.

Proof. Let Z D f0; 1; : : : ; n � 1g. Then for each m 2 Z there is an z 2 Z such that
Œm�E Š Œz�E. Now observe that the proof of [2, Thm. 1.3] contains all the ideas
needed to prove this proposition. Only Subsection 2.4 “Construction of resolutions”
there needs to be modified: one essentially replaces all direct sums indexed by Z by
direct sums indexed by Z.

We deduce a variant of [27, Thm. 3.1].
Proposition 2.28. Let k be a field and n 2 Z. Let T be a saturated dZng (=
differential Zn-graded) category. Then all covariant and contravariant k-linear
cohomological functors ŒT �! Vectfd.k/ are representable.

Proof. We follow the proof of [27, Thm. 3.1] but use Proposition 2.27 instead
of [2, Thm. 1.3]. By Proposition 2.16 we can assume that T D Perf.A/ for a smooth
and proper dZng algebra A. The argument from the proof of [27, Thm. 3.1] shows
that ŒT � has a strong generator. Hence we can apply Proposition 2.27 and obtain that
every k-linear cohomological functor ŒT �op ! Vectfd.k/ is representable.

We claim that T op is also saturated. It is certainly pretriangulated, locally proper,
and smooth (see for example [19, Remark 3.11]). Observe that

ŒT op� D ŒT �op Š per.A/op Š per.Aop/

where the last equivalence comes from the proof of [27, Thm. 3.1]. This shows
that ŒT op� is Karoubian, so T op is triangulated, and that T op has a compact generator.
Hence the above argument applied to the saturated dZng category T op shows that
any k-linear cohomological functor ŒT � D ŒT op�op ! Vectfd.k/ is representable.
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Proof of Prop. 2.26 in the differential Zn-graded setting (for some n 2 Z). Let T be
a saturated dZng category T with full dZng subcategories U and V such that
ŒT � D hŒU �; ŒU �i is a semi-orthogonal decomposition. We already know that both U
and V are saturated dZng categories, so we can apply Proposition 2.28 to U and V .
The proof of [3, Prop. 2.6] then tells us that ŒU � and ŒV � are both admissible in ŒT �.

2.11. Grothendieck ring of proper and smooth dg categories. The aim of this
section is to give an alternative description of themodifiedGrothendieck ringK 00.satk/
of saturated dg categories using smooth and proper dg categories (which are not
necessarily triangulated).

Recall from [29] and [28] (and corrections) that there are three model category
structures on dgcat.k/. They are all cofibrantly generated by the same set of generating
cofibrations. In particular they have the same cofibrations, cofibrant objects and trivial
fibrations, and hence we can use the same cofibrant replacement functor.

Above we have used the model category structure whose weak equivalences
are the quasi-equivalences and have denoted the corresponding homotopy category
by Heqk. Now we will work with the model structure whose weak equivalences are
the Morita equivalences (= dg foncteurs de Morita). The corresponding homotopy
category will be denoted Hmok.

Recall that a dg functor f WA ! B is a Morita equivalence if the restriction of
scalars functor D.B/ ! D.A/ is an equivalence of triangulated categories. It is
easy to see that f is a Morita equivalence if and only if f �WPerf.A/! Perf.B/ is a
quasi-equivalence (use Lemmata 2.5 and 2.6, and [16, Lemma 2.12]). For example,
ifA is any dg category, the Yoneda morphismA! Perf.A/ is a Morita equivalence
by Proposition 2.8.

Example 2.29. Let T be a dg category with a compact generator. Let E 2 Perf.T /
be a classical generator of ŒPerf.T /�, and let A WD .Perf.T //.E;E/ be its
endomorphism dg algebra. Then the proof of Proposition 2.16 shows that the obvious
dg functor A ! Perf.T / is a Morita equivalence. Moreover, Lemma 2.30 below
shows that T is proper (resp. smooth) if and only if A is proper (resp. smooth).

Lemma 2.30. The following properties of dg categories are invariant under Morita
equivalences: being locally perfect, having a compact generator, properness,
smoothness.

Proof. This follows from the above and Lemmata 2.12 and 2.13.

Lemma 2.31. Morita equivalences A ! A0 and B ! B0 give rise to a Morita
equivalence A˝L B! A0 ˝L B0.

Proof. ClearlyQ.A/! Q.A0/ is a Morita equivalence, so

Perf.Q.A//! Perf.Q.A0// and Perf.Q.A//˝Q.B/! Perf.Q.A0//˝Q.B/
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(by [19, Lemma 2.15]), and

Perf.Perf.Q.A//˝Q.B//! Perf.Perf.Q.A0//˝Q.B//

(by Lemma 2.6.(c)) are quasi-equivalences. Then Proposition 2.8 shows that

Perf.Q.A/˝Q.B//! Perf.Q.A0/˝Q.B//

is a quasi-equivalence, so

Q.A/˝Q.B/! Q.A0/˝Q.B/

is a Morita equivalence.

Lemma 2.32. Let A and B be proper dg categories. Then A˝L B is a proper dg
category.

Proof. Example 2.29 shows that there are Morita equivalences A ! Perf.A/ and
B ! Perf.B/ for proper dg algebras A and B . Lemma 2.15 implies that A˝L B is
a proper dg algebra/category. Lemma 2.31 shows that

A˝L B ! Perf.A/˝L Perf.B/ A˝L B

consists of Morita equivalences, and hence Lemma 2.30 shows that A ˝L B is
proper.

Let prsmk be the full subcategory of dgcatk consisting of proper and smooth dg
categories. By prsmk we denote the set of isomorphism classes in Hmok of these
categories (cf. Lemma 2.30). Given a proper and smooth dg category T , we write T
for its class in prsmk.

Proposition 2.33. The map .S;T / 7! S ˝L T induces a multiplication � on prsmk
that turns prsmk into a commutative monoid with unit k.

Proof. Lemmata 2.31, 2.32 and 2.14 show that � is well defined. We leave the easy
proofs of associativity, commutativity, and of k being the unit to the reader.

Denote by Zprsmk the (commutative associative unital) monoid ring of prsmk,
i. e. the free abelian group on prsmk with Z-bilinear multiplication induced by �.

Let T be a dg category. Following [19, section 3.2] we write T D
�
U 0
� V

�
if U

and V are full dg subcategories of T such that T .V ;U/ D 0 and such that the set of
objects of T is the disjoint union of the sets of objects of U and of V . (Conversely,
any two dg categories U and V together with a dg U ˝ Vop-module N D VNU give
rise to such a “directed” or “lower triangular” dg category

�
U 0
N V

�
.)
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Lemma 2.34. Assume that U and V are full dg subcategories of a dg category T
such that T D

�
U 0
� V

�
. Then there is an induced semi-orthogonal decomposition

ŒPerf.T /� D hŒPerf.U/0�; ŒPerf.V/0�i

where Perf.U/0 is the full dg subcategory of Perf.T / such that ŒPerf.U/0� is the strict
closure of ŒPerf.U/� in ŒPerf.T /�, and Perf.V/0 is defined similarly. In particular,
there are obvious quasi-equivalences Perf.U/! Perf.U/0 and Perf.V/! Perf.V/0.

Proof. The proof is similar to (but easier than) the proof of Proposition 2.19 and also
based on [17, Lemma A.6.(b)]

Definition 2.35. The Grothendieck group K0.prsmk/ of proper and smooth dg
categories is defined to be the quotient of Zprsmk by the subgroup generated by the
elements (the “directed relations”) T � .U C V/ whenever there is a smooth and
proper dg category T with full dg subcategories U and V such that T D

�
U 0
� V

�
.

(We do not require that U and V are smooth and proper since this is automatic:
use Lemma 2.34, Proposition 2.20, and Lemma 2.30 (applied to U ! Perf.U/ and
V ! Perf.V/).)

If 0 is the trivial dg algebra (considered as a dg category) and if ; is the empty dg
category, then ; ! 0 is a Morita equivalence and we have ; D 0 D 0 inK0.prsmk/.

Proposition 2.36. The multiplication � on Zprsmk induces a multiplication on
K0.prsmk/ such that Zprsmk ! K0.prsmk/ is a ring morphism. Equipped with
this multiplication, we call K0.prsmk/ the Grothendieck ring of proper and smooth
dg categories.

Proof. Let I � Zprsmk be the subgroup generated by the “directed relations”. We
need to show that I is an ideal in Zprsmk. Assume that T is a smooth and proper
dg category with full dg subcategories U and V such that T D

�
U 0
� V

�
. Let S be any

saturated dg category. Then

S � T � .S � U C S � V/ D S ˝L T � .S ˝L U C S ˝L V/
D Q.S/˝ T � .Q.S/˝ U CQ.S/˝ V/

is an element of I sinceQ.S/˝ T D
h
Q.S/˝U 0
� Q.S/˝V

i
.

Proposition 2.37. The map T 7! Perf.T / (for proper and smooth T ) induces an
isomorphism

K0.prsmk/
�
�! K 00.satk/

of rings with inverse morphism induced by S 7! S (for saturated S).

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.A.6
http://arxiv.org/pdf/1212.2670v1.pdf#Item.66
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Proof. Morita equivalences T ! T 0 between proper and smooth dg categories
induce quasi-equivalences Perf.T / ! Perf.T 0/ between saturated dg categories,
and T ! Perf.T / is a Morita equivalence. Quasi-equivalences are certainly Morita
equivalences, and S ! Perf.S/ is a quasi-equivalence for saturated S . Hence
we get isomorphisms prsmk ! satk of monoids (multiplicativity is obvious for the
inverse S 7! S) and Zprsmk ! Zsatk of unital rings. Lemma 2.34 shows that the
“directed relations” in Zprsmk go to zero in K 00.satk/.

We claim that the “semi-orthogonal relations” in Zsatk go to zero in K0.prsmk/

under S 7! S . Namely, let S be a saturated dg category with full dg subcategories U
and V such that ŒS� D hŒU �; ŒV �i is a semi-orthogonal decomposition. Let V 0 be the
the full dg subcategory of V consisting of all objects that are not in U . From the
proof of Proposition 2.20 we see that the obvious dg functor

h
U 0

V0TU V0
i
! S is a

Morita equivalence. Obviously V 0 ! V is a Morita equivalence (V 0 may be empty).
We obtain S D

h
U 0

V0TU V0
i
D U C V 0 D U C V in K0.prsmk/. This shows the claim

and proves the proposition.

2.12. Grothendieck ring of proper and smooth dg algebras. The aim of this
section is to give an alternative description of the ring K0.prsmk/ using smooth and
proper dg algebras (instead of categories).
Lemma 2.38. LetA,B be dg categories, and letX D BXA be a dgA˝Bop-module.
Assume that .�˝L

BX/WD.B/! D.A/ is an equivalence of triangulated categories.
Then A and B are isomorphic in Hmok.
Remark 2.39. Lemma 2.38 shows that two dg categories A and B are “dg Morita
equivalent” in the sense of [19, Def. 3.13] if and only if they are isomorphic in Hmok.

Proof. Let A0 WD Q.A/ ! A and B0 WD Q.B/ ! B be cofibrant resolutions.
Consider X by restriction of scalars as a dgA0˝B0op-module, and let X 0 ! X be a
cofibrant resolution in C.A0 ˝ B0op/. Corollary 3.15 and the beginning of the proof
of Proposition 3.16 in [19] show that the dg functor

TX 0 WD .�˝B0 X
0/WMod.B0/!Mod.A0/

directly descends to an equivalence TX 0 WD.B0/! D.A0/ of triangulated categories.
On compact objects we obtain an equivalence TX 0 W per.B0/! per.A0/.

For B 0 2 B0 note that TX 0.bB 0/ D X 0.�; B 0/ is a cofibrant dg A0-module by [19,
Prop. 2.10.(b) and Lemma 2.14]. Hence the dg functor TX 0 maps cofibrant dg
B0-modules to cofibrant dg A0-modules (use [19, Lemma 2.7]).

This shows that the dg functor TX 0 WPerf.B0/ ! Perf.A0/ induced by TX 0 is a
quasi-equivalence. Hence

B B0 ! Perf.B0/
TX0
��! Perf.A0/ A0 ! A

consists of Morita equivalences, so A and B are isomorphic in Hmok.
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Lemma 2.40. Let f WS ! T be a Morita equivalence between dg categories having
a compact generator. Let A and B be endomorphism dg algebras of objects
E 2 Perf.S/ and F 2 Perf.T /, respectively, that become classical generators
of ŒPerf.S/� and ŒPerf.T /�, respectively. If S and T are proper and smooth, the
same is true for A and B . Then there is a dg B ˝ Aop-module X D AXB such that
.�˝L

A X/WD.A/! D.B/ is an equivalence of triangulated categories.

Proof. Example 2.29 shows that the obvious dg functors A ! Perf.S/ and B !
Perf.T / are Morita equivalences and that properness and smoothness is passed on

fromS andT toA andB . TheMorita equivalencesA! Perf.S/
f �

��! Perf.T / B

(where f � is even a quasi-equivalence) define equivalences

ŒMod.A/cf �
�
�! ŒMod.Perf.S//cf �

Œ.f �/��
�����!
�

ŒMod.Perf.T //cf �

�
�! D.Perf.T //

resPerf.T /
B
�����!
�

D.B/

mapping A to .Perf.S//.�; E/ to .Perf.T //.�; f �.E// to .Perf.T //.F; f �.E//.
Hence we can take X to be the dg B ˝ Aop-module .Perf.T //.F; f �.E//.

Let prsmalgk be the full subcategory of dgcatk consisting of proper and smooth
dg algebras (= dg categories with one object). We consider the equivalence relation
on the objects of prsmalgk generated by A � B if there is a dg B ˝ Aop-module
X D AXB such that .� ˝L

A X/WD.A/ ! D.B/ is an equivalence of triangulated
categories. Let prsmalgk be the set of equivalence classes. Given a proper and
smooth dg algebra A we denote its class by A.

Lemma 2.41. The inclusion prsmalgk ! prsmk induces an isomorphism

prsmalgk
�
�! prsmk

of sets and then an isomorphism

Zprsmalgk
�
�! Zprsmk

of abelian groups.

Proof. The first isomorphism trivially yields the second one which we prove now.
Lemma 2.38 shows that the map prsmalgk ! prsmk is well-defined. If T is any
proper and smooth dg category, take any E 2 Perf.T / that is a classical generator
of ŒPerf.T /�, and let A D Perf.T /.E;E/. Then A ! Perf.T / is a Morita
equivalence andA is proper and smooth (see Example 2.29). This shows surjectivity.
Injectivity follows from Lemma 2.40.
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Let A and B be dg algebras, and let N D BNA be a dg A˝ Bop-module. Then
we can form the dg algebra

�
A 0
N B

�
. We use round brackets in order to distinguish�

A 0
N B

�
from the dg category

�
A 0
N B

�
with two objects.

Definition 2.42. The Grothendieck group K0.prsmalgk/ of proper and smooth
dg algebras is defined to be the quotient of the abelian group Zprsmalgk by the
subgroup generated by the elements (the “lower-triangular matrix algebra relations”)
R � .A C B/ whenever R is a proper and smooth dg algebra such that there are
dg algebras A and B together with a dg A ˝ Bop-module N D BNA such that
R D

�
A 0
N B

�
. (We do not require that A and B are smooth and proper since this

is automatic: properness of A and B is obvious, and smoothness follows from [19,
Thm. 3.24 and Rem. 3.25].)

Proposition 2.43. The isomorphism Zprsmalgk
�
�! Zprsmk of abelian groups

induces an isomorphism

K0.prsmalgk/
�
�! K0.prsmk/

of abelian groups.

Proof. It is easy to see that the dg algebra
�
A 0
N B

�
and the dg category

�
A 0
N B

�
are

Morita equivalent, cf. [19, Rem. 3.25]. Hence the “lower-triangular matrix algebra
relations” go to zero in K0.prsmk/ and we obtain a morphism

K0.prsmalgk/! K0.prsmk/

of groups.
Let T be a smooth and proper dg category with full dg subcategories U and V

such that T D
�
U 0
� V

�
. Then we have a semi-orthogonal decomposition

ŒPerf.T /� D hŒPerf.U/�; ŒPerf.V/�i

by Lemma 2.34. Choose u 2 Perf.U/ and v 2 Perf.V/ that become classical
generators of ŒPerf.U/� and ŒPerf.V/� respectively. Then u˚v is a classical generator
of ŒPerf.T /�. Let A, B , R be the endomorphism dg algebras of u, v, u ˚ v,
respectively. Then the “directed relation” T � .U C V/ in Zprsmk is mapped to
R � .A C B/ in Zprsmalgk under the inverse of the isomorphism of Lemma 2.41.

Note that R D
�

A .Perf.T //.v;u/
.Perf.T //.u;v/ B

�
. But since .Perf.T //.v; u/ is acyclic

the obvious morphism R0 WD
�

A 0
.Perf.T //.u;v/ B

�
! R is a quasi-isomorphism of dg

algebras. Hence R � .AC B/ D R0 � .AC B/ goes to zero in K0.prsmalgk/, and
this implies the proposition.

Note that up to now prsmalgk is only a set and Zprsmalgk and K0.prsmalgk/

are only abelian groups. However the isomorphisms from Lemma 2.41 and
Proposition 2.43 enable us to equip these structures with multiplication maps �
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which are obviously induced by .A;B/ 7! A˝L B . So prsmalgk is a monoid with
unit k, and Zprsmalgk and K0.prsmalgk/ are commutative rings with unit k.
Definition 2.44. We call K0.prsmalgk/ with the multiplication � induced by
.A;B/ 7! A˝L B , the Grothendieck ring of proper and smooth dg algebras.
Remark 2.45. If we combine Propositions 2.43 and 2.37 we obtain ring isomor-
phisms

K0.prsmalgk/
�
�! K0.prsmk/

�
�! K 00.satk/

induced by A 7! A (for A a proper and smooth dg algebra) and T 7! Perf.T / (for T
a proper and smooth dg category). The inverse map K 00.satk/

�
�! K0.prsmalgk/ is

induced by mapping a saturated dg category S to the endomorphism dg algebra of
an arbitrary classical generator of ŒS�.

3. Grothendieck ring of varieties over A1

A variety is a reduced separated scheme of finite type over a field k (not necessarily
irreducible). In this section we assume that k has characteristic zero. If X and Y are
schemes over k we abbreviateX �Y WD X �Speck Y . Denote by A1 D A1

k
the affine

line over k. An A1-variety is a variety X together with a morphism X ! A1.
Definition 3.1 ([1]). The (motivic) Grothendieck group K0.VarA1/ of varieties
overA1 is the free abelian group on isomorphism classes ŒX�A1 of varietiesX ! A1
over A1 subject to the relations ŒX�A1 D ŒX � Y �A1 C ŒY �A1 whenever Y � X is a
closed subvariety.

Sometimes we write ŒX;W � instead of ŒX�A1 if we want to emphasize the
morphism W WX ! A1. The following theorem describes two alternative
presentations of the Grothendieck group K0.VarA1/ of varieties over A1.
Theorem 3.2 ([1, Thm. 5.1]). The obvious morphisms from the following two abelian
groups to K0.VarA1/ are isomorphisms.
(sm) Ksm

0 .VarA1/, the free abelian group on isomorphism classes ŒX�A1 of
A1-varieties which are smooth over k, subject to the relations

ŒX�A1 D ŒX � Y �A1 C ŒY �A1 ;

where X is smooth over k, and Y � X is a k-smooth closed subvariety.

(bl) Kbl
0 .VarA1/, the free abelian group on isomorphism classes ŒX�A1 of

A1-varieties which are smooth over k and proper over A1 subject to relations

Œ;�A1 D 0 and ŒBlY .X/�A1 � ŒE�A1 D ŒX�A1 � ŒY �A1 ;

where X is smooth over k and proper over A1, Y � X is a k-smooth closed
subvariety, BlY .X/ is the blowing-up of X along Y , and E is the exceptional
divisor of this blowing-up.
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In case (sm) we can restrict to varieties which are in addition quasi-projective
over A1 (and hence quasi-projective over k), and in case (bl) to varieties which are
projective over A1 (and hence quasi-projective over k). In both cases we can restrict
to connected varieties.

The presentation (bl) of K0.VarA1/ is very important for us whereas the
presentation (sm) is not used in the rest of this article.

Using that A1 is an abelian algebraic group we now turn K0.VarA1/ into a
commutative ring with unit. Given varieties W WX ! A1 and V WY ! A1 define
W � V to be the composition

W � V WX � Y
W�V
����! A1 � A1

C
�! A1:

FromDefinition 3.1 it is clear that ŒX;W � � ŒY; V � WD ŒX�Y;W �V � turns the abelian
group K0.VarA1/ into a commutative ring with unit ŒSpec k; 0�, the class of the zero
function Spec k

0
�! A1.

The same recipe turns Ksm
0 .VarA1/ into a ring such that Ksm

0 .VarA1/ !
K0.VarA1/ is an isomorphism of rings. Note however that this recipe does not
work for Kbl

0 .VarA1/: if W WX ! A1 and V WY ! A1 are projective, W � V is not
projective in general.

Remark 3.3. We denote the class of the zero morphism A1
0
�! A1 by

L.A1;0/ WD ŒA1; 0�:

Let us justify this. Similar as above one defines the Grothendieck ring K0.Vark/
of varieties over k, with multiplication given by ŒX� � ŒY � WD ŒX � Y �. The map
K0.Vark/! K0.Var1A/ given by ŒX� 7! ŒX; 0� is then a morphism of unital rings. It
maps the class Lk of A1 ! Spec k to L.A1;0/.
Definition 3.4. A Landau–Ginzburg (LG) motivic measure is a morphism of
unital rings from K0.VarA1/ to another ring.

4. Thom–Sebastiani Theorem and smoothness

We now start to consider categories of matrix factorizations. Our notation and many
results are explained in [17]. Our aim in this section is to prove the Thom–Sebastiani
Theorem 4.23 and the smoothness result of Theorem 4.24.

We fix a field k which can be arbitrary in section 4.1 and is assumed to be
algebraically closed and of characteristic zero starting from section 4.2. By a scheme
we mean a scheme over k, and by a variety a reduced separated scheme of finite type
over k (as in Section 3).

In this and the following section dg means “differential Z2-graded”. When we
refer to results from Section 2 we always mean the differential Z2-graded version
(see Remark 2.1) for k D k.



1010 V. A. Lunts and O. M. Schnürer

4.1. Object oriented Čech enhancements for matrix factorizations. This section
runs parallel to [18, section C]; we will therefore often refer to results there and
assume that the reader is familiar with the notation and arguments there.

We say that a scheme X satisfies condition (srNfKd) if
(srNfKd) X is a separated regular Noetherian scheme of finite Krull dimension.
This is the condition we have worked with in [17]. From the discussion there it is
clear that this condition implies condition (GSP+) in [18].
Remark 4.1. If schemes X and Y satisfy condition (srNfKd) it is in general not
true that so does X � Y . Hence as soon as we work on products we need to require
condition (srNfKd) there. To avoid this annoyance one may work with smooth
varieties, i. e. separated smooth schemes of finite type (over the field k). Every
smooth variety satisfies condition (srNfKd), and products of smooth varieties are
again smooth varieties.

Let X be a scheme satisfying condition (srNfKd) and let U D .Us/s2S be a finite
affine open covering ofX . Given a vector bundle P onX we can consider its (finite)
ordered Čech resolution

C�ord.P / WD
� Y
s02S

Ufs0g
P !

Y
s0;s12S;
s0<s1

Ufs0;s1g
P ! � � �

�
with the usual differentials where we abbreviate UI WD

T
i2I Ui for a subset I � S

and use the notation VP WD j�j
�.P / if j WV ,! X is the inclusion of an open

subscheme; note that C�ord.P / depends on U and also on the choice of a total order <
on S . However, we can and will neglect the choice of < since different choices lead
to isomorphic resolutions.

Let W WX ! A1 be a morphism. Consider the functor that maps a vector
bundle P on X to C�ord.P /. If we apply it to an object E 2 MF.X;W / we obtain a
(bounded) complex in Z0.Qcoh.X;W // that we denote by C�ord.E/. We denote its
totalization by Cord.E/ WD Tot.C�ord.E// 2 Qcoh.X;W /.

Let MF LCob.X;W / (omitting U from the notation) be the smallest full dg
subcategory of Qcoh.X;W / that contains all objects Cord.E/ for E 2 MF.X;W /, is
closed under shifts, under cones of closed degree zero morphisms and unter taking
homotopy equivalent objects (i. e. objects that are isomorphic in ŒQcoh.X;W /�). It
is strongly pretriangulated.
Proposition 4.2. The dg category MF LCob.X;W / is naturally an enhancement of
MF.X;W /. More precisely, the natural functor

"W ŒMF LCob.X;W /�! DQcoh.X;W /

is full and faithful and its essential image coincides with the closure under
isomorphisms of MF.X;W / � DQcoh.X;W / (see [17, Thm. 2.9]). We call
MF LCob.X;W / the object oriented Čech enhancement ofMF.X;W /.

http://arxiv.org/pdf/1406.7559.pdf#appendix.C
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Proof. It is clear that the essential image of " is as claimed: given E 2 MF.X;W /,
the obvious morphism E ! Cord.E/ becomes an isomorphism in DQcoh.X;W /.

Let E;F 2 MF.X;W /. In order to prove that " is full and faithful it is enough to
show that

HomŒQcoh.X;W /�.Cord.E/; Œm�Cord.F //! HomDQcoh.X;W /.Cord.E/; Œm�Cord.F //

is an isomorphism, for any m 2 Z2. Note that Cord.F / is constructed as an iterated
cone from shifts of objects V F WD j�j �.F /, where I � S and

j WV WD UI WD
\
i2I

Ui ! X

is the corresponding open embedding. Hence, as in the proof of [18, Lemma C.2],
we need to show the following two claims.

(a) HomŒQcoh.X;W /�.E; Œn�V F / ! HomDQcoh.X;W /.E; Œn�V F / is an isomor-
phism, for any n 2 Z2.

(b) HomQcoh.X;W /.Tot.C�ord.E//; V F / ! HomQcoh.X;W /.E; V F / is a quasi-
isomorphism.

Proof of (a): Note that Rj� D j� and Lj � D j �, by [17, Lemma 2.38], since j
is open and affine. Hence by the adjunctions .j �; j�/ it is enough to show that

HomŒMF.V;W /�.j
�.E/; Œn�j �.F //! HomMF.V;W /.j

�.E/; Œn�j �.F //

is an isomorphism (we use that MF.V;W / ! DQcoh.V;W / is full and faithful,
by [17, Thm. 2.9]). But ŒMF.V;W /�

�
�! MF.V;W / since V is affine, by [17,

Lemma 2.17].
Proof of (b): The domain of the given morphism is the totalization of the bounded

complex

� � � ! HomQcoh.X;W /.C1ord.E/; V F /! HomQcoh.X;W /.C0ord.E/; V F /! 0

in Z0.Sh.Spec k; 0//. We can also view this complex as a Z2 � Z-graded double
complex. Hence the given morphism is the totalization of a morphism of double
complexes. Then [17, Lemma 2.46.(a)] shows that it is enough to show that

HomC.Qcoh.X//.C�ord.Es/; V Ft /! HomC.Qcoh.X//.Es; V Ft /

is a quasi-isomorphism for all s; t 2 Z2. But this is true by the argument that
shows that the morphism in [18, Formula (C.2)] is a quasi-isomorphism (C� there is
denoted C�ord here; implicitly we replace V by one of its connected components).

Remark 4.3 (cf. [18, Rem. C.3]). The objects of MF LCob.X;W / are precisely the
objects of Qcoh.X;W / that are homotopy equivalent to an object of the form Cord.E/,
for E 2 MF.X;W /.

http://arxiv.org/pdf/1406.7559.pdf#theorem.C.2
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.38
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.9
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.17
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.46
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Let Y be another scheme and assume that Y andX�Y satisfy condition (srNfKd)
(cf. Remark 4.1). We fix a morphism V WY ! A1 and a finite affine open covering V
of Y . We consider the product covering U �V onX �Y . In order to prove the analog
of [18, Prop. C.11] we let MF LCob�

.X �Y;W �V / be the smallest full dg subcategory
ofQcoh.X�Y;W �V / that contains all objects Cord.E/�Cord.F / forE 2 MF.X;W /
and F 2 MF.Y; V /, all objects Cord.G/ for G 2 MF.X � Y;W � V /, is closed under
shifts, cones of closed degree zero morphisms and under taking homotopy equivalent
objects. It is strongly pretriangulated.
Proposition 4.4. The dg category MF LCob�

.X � Y;W � V / is naturally an
enhancement of MF.X � Y;W � V /. In fact, it is equal to the enhancement
MF LCob.X � Y;W � V /.

Proof. Use the techniques of proof from Proposition 4.2 and [18, Prop. C.11,
Cor. C.12].

Consider now X �X with the morphismW � .�W /WX �X ! A1 and with the
product covering U � U , and assume that X � X satisfies condition (srNfKd). Let
�WX ! X � X be the diagonal inclusion. Note that ��.W � .�W // D 0 so that
the dg functor ��WQcoh.X; 0/! Qcoh.X �X;W � .�W // is well-defined.
Lemma 4.5. Let E 2 MF.X;W /, F 2 MF.X;�W /, G 2 MF.X; 0/, and let
m 2 Z2. Then the canonical map

HomŒQcoh.X�X;W �.�W //�.Cord.E/� Cord.F /; Œm���.Cord.G///
! HomDQcoh.X�X;W �.�W //.Cord.E/� Cord.F /; Œm���.Cord.G///

is an isomorphism.

Proof. Again use the above techniques and the proof of [18, Lemma C.13] (note that
R�� D �� by [17, Remark 2.39]).

We come back to the product situationX�Y with morphismW �V and covering
U � V .
Lemma 4.6. The dg functor

�WMF LCob.X;W /˝MF LCob.Y; V /! MF LCob.X � Y;W � V / (4.1)

induced from .� � �/WQcoh.X;W / � Qcoh.Y; V / ! Qcoh.X � Y;W � V / is
quasi-fully faithful, i. e. induces quasi-isomorphisms between morphisms spaces.

Proof. This is an easy generalization of [18, Lemma C.14] since we can consider the
graded components separately.

The dg bifunctor (4.1) lifts the dg bifunctor

�WMF.X;W /˝MF.Y; V /!MF.X � Y;W � V /

of triangulated categories (cf. [18, Rem. C.15]).

http://arxiv.org/pdf/1406.7559.pdf#theorem.C.11
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4.1.1. Equivalence of enhancements.
Lemma 4.7. The enhancements InjQcohMF.X;W / (defined in [17, section 2.6.1])
and MF LCob.X;W / ofMF.X;W / are equivalent.

Proof. For the first statement use the method of proof of [5, Lemma 6.2] or [17,
Prop. 2.50].

4.1.2. Version for arbitrary curved sheaves. In the following section 4.1.3 we
need a small generalization of the previous constructions and results.

Recall from [17, Thm. 2.25] that the functor DQcoh.X;W / ! DShco.X;W / is
full and faithful and that InjSh.X;W / is naturally an enhancement of DShco.X;W /.
Let MF0.X;W / be the essential image of MF.X;W / under the full and faithful
functor MF.X;W / ! DShco.X;W / (see [17, Thm. 2.9]); so MF.X;W / !
MF0.X;W / is an equivalence.

Denote by MF0
LCob.X;W / the smallest full dg subcategory of Sh.X;W / that

contains all objects of MF LCob.X;W / and is closed under taking homotopy equivalent
objects. Then the inclusion MF LCob.X;W /! MF0

LCob.X;W / is a quasi-equivalence.
If we defineMF0

LCob�
.X�Y;W �V / similarly it is clear that all propositions, lemmata

and remarks of section 4.1 remain true if we replace MF LCob by MF0
LCob, MF LCob�

by
MF0
LCob�

, MF by MF0, and DQcoh.�; ‹/ by DShco.�; ‹/. The full dg subcategory
InjShMF0.X;W / of InjSh.X;W / consisting of objects ofMF0.X;W / is naturally an
enhancement ofMF0.X;W /, and the obvious variation of Lemma 4.7 is true; in fact,
all the enhancements ofMF0.X;W / we have defined are equivalent.

4.1.3. Lifting the duality. Recall the duality

D D DX D .�/
_
D Hom .�;D/WMF.X;W /op !MF.X;�W /

from [17, section 2.5.5] whereD D DX D . 0 // OXoo / 2 MF.X; 0/. Our aim is to
lift its extension

DWMF0.X;W /op !MF0.X;�W / (4.2)
to a dg functor MF0

LCob.X;W / ! MF0
LCob.X;�W / between the respective enhance-

ments. Consider the dg functoreD WD Hom .�; Cord.D//WSh.X;W /op ! Sh.X;�W /:

Lemma 4.8. Let E 2 MF.X;W / and consider the canonical morphism

˛WE ! Cord.E/

in Z0.Sh.X;W //. Then the induced morphismeD.˛/W eD.Cord.E// D Hom .Cord.E/; Cord.D//! eD.E/ D Hom .E; Cord.D//
D Cord.E_/;

http://arxiv.org/pdf/1212.2670v1.pdf#subsubsection.2.6.1
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is a homotopy equivalence, i. e. an isomorphism in ŒSh.X;�W /�. See [18, Rem. C.6]
for the last identification.

Proof. Write ˛� WD Œ1�D.˛/. We have to show that

Cone.˛�/ D Hom .Cone.˛/; Cord.D//

is contractible. Using the method of proof of [18, LemmaC.7] (we can assume thatX
is irreducible) we see that Cone.˛�/ has a filtration with subquotients Cone.˛�/KI
labeled by pairs .I;K/where I � S is a non-empty subset andK � S nI a (possibly
empty) subset, such that Cone.˛�/KI consists (if we forget some differentials) of
all summands Hom .UJE; UID/ for K � J � .I [ K/. Moreover, for fixed
.I;K/, all these summands are isomorphic to HK

I WD Hom .EUI[K ; UID/, and
Cone.˛�/KI is isomorphic to the totalization of the augmented chain complex of a
(non-empty) simplex † with coefficients inHK

I . By the latter we mean the complex
in Z0.Sh.X;�W // that arises from tensoring the augmented chain complex of †
with the objectHK

I 2 Sh.X;�W /. Since the augmented chain complex is homotopy
equivalent to zero, the same is true for this complex, and then for its totalization.

Corollary 4.9. The dg functor eD induces a dg functoreD D Hom .�; Cord.D//WMF0
LCob.X;W /

op
! MF0

LCob.X;�W /

which lifts the dualityD in (4.2).

Proof. Adapt the proof of [18, Cor. C.8].

The canonical morphism

�F WF ! eD2.F / D Hom .Hom .F; Cord.D//; Cord.D//; (4.3)
f 7! .� 7! �.f //

(for F 2 Sh.X;W /) defines a morphism � W id! eD2 of dg functors

Sh.X;W /! Sh.X;W /

and, by Corollary 4.9, also of dg functors

MF0
LCob.X;W /! MF0

LCob.X;W /:

Lemma 4.10. For each F 2 MF0
LCob.X;W /, the morphism �F in (4.3) is a homotopy

equivalence.

Proof. Adapt the proof of [18, Lemma C.9]. Instead of quasi-isomorphisms we
need to speak about morphisms in Z0.Sh.X;˙W // that become isomorphisms
in DSh.X;˙W /.

http://arxiv.org/pdf/1406.7559.pdf#theorem.C.6
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Corollary 4.11. The dg functoreD D Hom .�; Cord.D//WMF0
LCob.X;W /

op
! MF0

LCob.X;�W /

is a quasi-equivalence. The induced functor ŒeD� on homotopy categories is an
equivalence and a duality in the sense that the natural morphism � W id! ŒeD�2 is an
isomorphism.

Proof. Lemma 4.10 shows that � W id ! ŒeD�2 is an isomorphism. In particular, ŒeD�
is an equivalence, and eD is a quasi-equivalence.

4.2. The singularity category of a function. We assume now and for the rest of
Section 4 that our field k is algebraically closed and of characteristic zero. LetX be a
smooth variety, i. e. a separated smooth scheme of finite type (over k), cf. Remark 4.1.
Let W WX ! A1 be a morphism. We identify k D A1.k/ with the set of closed
points of A1.
Definition 4.12. We define the singularity category of W as the product

MF.W / WD
Y
a2k

MF.X;W � a/:

Note that only finitely many factors of this product are non-zero. To show this
we can assume that X is connected (see [17, Rem. 2.6]). If W is constant, then
W D b for some b 2 k and MF.W / D MF.X; 0/ by [17, Lemma 2.28]. Otherwise
W is flat and Orlov’s theorem says that cokWMF.X;W � a/ ! DSg.Xa/ is an
equivalence [17, Thm. 2.8] where Xa is the scheme theoretic fiber over a 2 k. By
generic smoothness on the target [9, Cor. III.10.7] Xa is smooth for all but finitely
many values a 2 k. If Xa is smooth, thenDSg.Xa/ D 0.
Lemma 4.13. We haveMF.W / D 0 if and only if W is a smooth morphism.

Proof. If W WX ! A1 is smooth, then it is in particular flat, so Orlov’s equivalence
cokWMF.X;W � a/

�
�! DSg.Xa/ and the fact that all Xa are regular show that

MF.W / D 0.
Conversely, assume that MF.W / D 0. We can in addition assume that X is

connected and non-empty. Then W is either constant or flat. If W is constant,
we obtain MF.X; 0/ D MF.W / D 0. This is a contradiction since MF.X; 0/
obviously has non-zero objects (use [17, Prop. 2.30]). So assume thatW is flat. Then
DSg.Xa/ D 0 for all a 2 k, so all fibers Xa are (regular and) smooth. This together
with flatness of W already implies that W is smooth (by [15, Def. 4.3.35]).

Remark 4.14. As made precise by Lemma 4.13, one may think of MF.W / as
measuring the singularity of W . The above discussion implies that MF.W / is
nonzero for a constant functionW (ifX 6D ;), hence a constant function is considered
to be singular. This would not be the case if we had defined MF.W / as the product
of the categoriesDSg.Xa/.

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.6
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Let Sing.W / � X be the closed subscheme defined by the vanishing of the
section dW 2 �.X;�1

X=k
/ of the cotangent bundle. Its closed points are the critical

points of W . Let Crit.W / D W.Sing.W /.k// � A1.k/ D k be the (finite) set of
critical values of W . The above discussion shows that

MF.W / D
Y

a2Crit.W /

MF.X;W � a/:

and we emphasize again that this product is finite.
Recall that we defined in [17, section 2.6] and in section 4.1 the enhancements

InjQcohMF.X;W � a/;

MF LCmor.X;W � a//; MF.X;W � a/=AcyclMF.X;W � a/;
MF LCob.X;W � a/ and MF0

LCob.X;W � a/

ofMF.X;W � a/ and showed that they are equivalent (three of these enhancements
depend on the choice of a (finite) affine open covering of X ). Fix one of these
enhancements and denote it byMF.X;W � a/dg. Then

MF.W /dg WD
Y

a2Crit.W /

MF.X;W � a/dg

is an enhancement ofMF.W /. Since the pretriangulated dg categoryMF.W /might
not be triangulated (cf. Lemma 2.3) we will mainly work with its “triangulated dg
envelope” 2

MF.W /dg;\ WD Perf.MF.W /dg/ D
Y

a2Crit.W /

Perf.MF.X;W � a/dg/: (4.4)

Then MF.W /dg;\ is an enhancement of the Karoubi envelope of MF.W /. Note that
the quasi-equivalence class of MF.W /dg;\ does not depend on the above choices of
enhancements, by Lemma 2.6.(c).
Remark 4.15. Let us give a more concrete description of MF.W /dg;\ that we will
mainly use later on: For each a 2 Crit.W / choose an objectE.a/ 2MF.X;W �a/dg
that becomes a classical generator in ŒMF.X;W � a/dg� ŠMF.X;W � a/ (use [17,
Prop. 2.53]). LetA.a/ be the endomorphism dg algebra ofE.a/ inMF.X;W �a/dg,
i. e.

A.a/ D EndMF.X;W�a/dg.E.a//:

Then A D
Q
a2Crit.W /A.a/ is the endomorphism dg algebra of E D .E.a// in

MF.W /dg. Proposition 2.18 yields a quasi-equivalence

Perf.A/ D
Y

a2Crit.W /

Perf.A.a//!MF.W /dg;\

2 IfA and B are non-empty dg categories, scalar extension along the two projectionsA�B! A and
A� B! B defines an equivalence Perf.A� B/! Perf.A/� Perf.B/ of dg categories. This explains
the second equality.

http://arxiv.org/pdf/1212.2670v1.pdf#subsection.2.6
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and also provides a triangulated equivalence

MF.W / D
Y

a2Crit.W /

MF.X;W � a/
�
�!

Y
a2Crit.W /

per.A.a// D per.A/ (4.5)

where T denotes the Karoubi envelope of a triangulated category T . Moreover, it
says that smoothness and properness of MF.W /dg (resp. MF.W /dg;\) can be tested
on A, and thatMF.W /dg;\ is saturated if and only if A is smooth and proper.

4.3. Products and generators. Let X and Y (and hence X � Y ) be smooth var-
ieties and let W WX ! A1 and V WY ! A1 be morphisms. Our aim is to prove
Proposition 4.22 below. We start with some preparations.

An object E 2 Coh.X0/ can be considered as an object

�.E/ WD
�
0 // Eoo

�
2 Coh.X;W /:

For flat W recall the equivalence cokWMF.X;W /! DSg.X0/ from [17, Thm. 2.8].
Lemma 4.16 ([14, Lemma 2.18]). Assume that W WX ! A1 is flat, and let
E 2 Coh.X0/. Suppose that P ! �.E/ is a morphism in Z0.Coh.X;W // with
P 2 MF.X;W / and cone in AcyclŒCoh.X;W /� (such a morphism exists by [17,
Thm. 2.10.(b)]). Then there is an isomorphism cok.P / WD cok.p1/ Š E inDSg.X0/.

Proof. We elaborate on the proof of [14, Lemma 2.18]. From the proof of [23,
Prop. 1.23] we see that there is an exact sequence (for any l � 0)

0! E 0 ! L�lC1 ! � � � ! L0 ! E ! 0 (4.6)

in Coh.X0/ where all Lr are locally free coherent sheaves and E 0 is a Cohen–
Macaulay sheaf (as defined in [22, Lemma-Def. 1]).

The proof of [22, Thm. 3.5] shows that there is an object

Q WD
�
Q1

q1 // Q0
q0
oo

�
2 MF.X;W /

such that cok.q1/ D E 0 as coherent sheaves. Let

K WD
�
Q1

1 // Q1
W
oo

�
and note that

0! K
.1;q1/
����! Q! �.E 0/! 0

is a short exact sequence in Z0.Coh.X;W //. It gives rise to a triangle in
DCoh.X;W /. SinceK D 0 in ŒMF.X;W /� we obtain an isomorphismQ

�
�! �.E 0/

in DCoh.X;W /�.

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.8
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If L 2 Coh.X0/ is locally free we claim that �.L/ vanishes in DCoh.X;W /.
Indeed, L is Cohen–Macaulay, so the above argument shows that there is an
object M 2 MF.X;W / such that cok.m1/ D L in Coh.X0/ and M

�
�! �.L/ in

DCoh.X;W /. Since L vanishes in DSg.X0/ we see thatM vanishes in MF.X;W /
and a fortiori in DCoh.X;W /.

If we apply � to (4.6) and use this claim for the �.Lr/ we see that Œl ��.E 0/ Š
�.E/ in DCoh.X;W /.

By assumption we have P Š �.E/ in DCoh.X;W /. Combined with the above
isomorphisms this shows that P Š Œl �Q in DCoh.X;W /. Since both P andQ are in
MF.X;W / and MF.X;W / ! DCoh.X;W / is an equivalence, we have P Š Œl �Q

in MF.X;W /. This shows that cok.p1/ Š Œl � cok.q1/ D Œl �E 0 Š E in DSg.X0/

where we use (4.6) for the last isomorphism.

Corollary 4.17. Assume that W WX ! A1 and V WY ! A1 are flat. Let
E 2 Coh.X0/ andF 2 Coh.Y0/. LetP ! �.E/ be a morphism inZ0.Coh.X;W //
with P 2 MF.X;W / and cone in AcyclŒCoh.X;W /�, and let Q ! �.F / be a
morphism in Z0.Coh.Y; V // with Q 2 MF.Y; V / and cone in AcyclŒCoh.Y; V /�.
Then

cok.P �Q/ Š E � F

inDSg..X �Y /0/. Here we use the closed embeddingX0 �Y0 � .X �Y /0 in order
to consider E � F 2 Coh.X0 � Y0/ as an object of Coh..X � Y /0/.

Proof. The morphism P � Q ! �.E/ � �.F / D �.E � F / has cone in
AcyclŒCoh.X�Y;W �V /: it factors asP �Q! �.E/�Q! �.E/��.F /, both
morphisms have cone in AcyclŒCoh.X � Y;W � V /, and we can use the octahedral
axiom. Since W � V is flat we can apply Lemma 4.16.

We need that certain categories have classical generators.
Theorem 4.18. For Z, Z1, Z2 separated schemes of finite type, we have:

(a) The categoryDb.Coh.Z// has a classical generator.
(b) If T1 and T2 are classical generators of Db.Coh.Z1// and Db.Coh.Z2//,

respectively, then T1 � T2 is a classical generator ofDb.Coh.Z1 �Z2//.

Proof. See [26, Thm. 7.38] or [16, Thm. 6.3] for the first statement. The proof
of [16, Thm. 6.3] shows that there are classical generators S1 and S2 ofDb.Coh.Z1//
and Db.Coh.Z2//, respectively, such that S1 � S2 is a classical generator of
Db.Coh.Z1 �Z2//. From S1 2 thick.T1/ we obtain S1 � S2 2 thick.T1 � S2/,
so T1 � S2 is a classical generator of Db.Coh.Z1 � Z2//. Similarly, we see that
T1 � T2 is a classical generator ofDb.Coh.Z1 �Z2//.

If Z is a locally Noetherian scheme (over our k) its regular locus is open [7,
Rem. 6.25(4)]. We equip its closed complement Zsing � Z of singular points with
the unique structure of a reduced closed subscheme of Z.
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Proposition 4.19. Let Z be a scheme satisfying condition (ELF) in [21], and let
i WZsing ,! Z be the inclusion of the singular locus. Let T 2 Db.Coh.Zsing// be
a classical generator. Then the image of i�.T / in DSg.Z/ is a classical generator
ofDSg.Z/.

Proof. We use the notation of [21]. The object i�.T / is a classical generator of
Db
Zsing.Coh.Z// (by [16, Lemma 6.9]) and the obvious functor

Db
Zsing.Coh.Z//=PerfZsing.Z/! DSg.Z/

is full and faithful, and dense in the sense that any object of DSg.Z/ is a
direct summand of an object of Db

Zsing.Coh.Z//=PerfZsing.Z/ [21, Lemma 2.6 and
Prop. 2.7]. These statements obviously imply that i�.T / becomes a classical generator
ofDSg.Z/.

We come back to our setting with W WX ! A1 and V WY ! A1. Recall that
Sing.W / � X is the closed subscheme defined by the vanishing of dW . If Z is a
scheme we denote by jZj the corresponding reduced closed subscheme.
Remark 4.20. Assume that X is connected, and let a 2 k. If W D a then
Sing.W / \ Xa D X and .Xa/sing D ;. Otherwise the singular points of Xa are
precisely the elements of the scheme-theoretic intersection Sing.W / \ Xa, i. e. we
have the equality

jSing.W / \Xaj D .Xa/sing (4.7)
of varieties. This is trivial if W is constant 6D a, and otherwise it follows from the
Jacobian criterion applied to W � a (see e. g. the proof of [20, Thm. III.§4.4]).

We obviously have

Sing.W � V / D Sing.W / � Sing.V /: (4.8)

This implies that

Crit.W � V / D Crit.W /C Crit.V / WD faC b j a 2 Crit.W /; b 2 Crit.V /g:

Lemma 4.21. Let c 2 k. Then

jSing.W � V / \ .X � Y /cj D
a

a2Crit.W /; b2Crit.V /;
aCbDc

jSing.W / \Xaj � jSing.V / \ Ybj

as subvarieties of X � Y . If c 62 Crit.W � V / then jSing.W � V /\ .X � Y /cj D ;.

Proof. The set Crit.W / � k of critical values of W is finite, by generic smoothness
on the target. Hence jSing.W /j D

`
a2Crit.W / jSing.W / \ Xaj, and similarly for V

and W � V . Hence we can rewrite both sides of (4.8) and obtaina
c2Crit.W �V /

jSing.W � V / \ .X � Y /cj D
a

a2Crit.W /;
b2Crit.V /

jSing.W / \Xaj � jSing.V / \ Ybj

These statements imply the lemma.
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The functor �WMF.X;W � a/�MF.Y; V � b/!MF.X � Y;W � V � a� b/
gives rise to the functor �WMF.W / �MF.V /!MF.W � V / defined by

E � F WD

� M
aCbDc

E.a/� F.b/

�
c2k

(4.9)

for E D .E.a//a2k and F D .F.b//b2k . Note that only finitely many of the objects
E.a/� F.b/ are non-zero.

Obviously, an object E D .E.a//a2k 2 MF.W / is a classical generator if and
only if E.a/ 2 MF.X;W � a/ is a classical generator for the finitely many critical
values a of W .
Proposition 4.22. Let E 2MF.W / and F 2MF.V / be classical generators. Then
E � F is a classical generator of MF.W � V /.

Proof. Observe first that it is enough to prove the result for suitably chosen classical
generators E and F , see the end of the proof of Theorem 4.18.

It is certainly enough to prove the proposition under the additional assumption
that both X and Y are connected (cf. [17, Rem. 2.6]). Then W is either constant or
flat, and similarly for V .

Case 1. Both W and V are flat.
Step 1: Fix a critical value a 2 Crit.W / of W . Let Sa 2 Db.Coh..Xa/sing//

be a classical generator (which exists by Theorem 4.18.(a)). By replacing Sa by the
direct sum of its cohomologies we can and will assume that Sa 2 Coh..Xa/sing/.
Let saW .Xa/sing ,! Xa be the closed embedding. By [17, Thm. 2.10.(b)] there is
an object E.a/ 2 MF.X;W � a/ together with a morphism E.a/! �.sa�.Sa// in
Z0.Coh.X;W � a// whose cone is in AcyclŒCoh.X;W � a/�. By Lemma 4.16 we
have cok.E.a// Š sa�.Sa/ in DSg.Xa/. Proposition 4.19 then shows that E.a/
is a classical generator of MF.X;W � a/. Letting a vary we see that E WD
.E.a//a2Crit.W / is a classical generator of MF.W /.

Step 2: Similarly we find for each b 2 Crit.V / an object Tb 2 Coh..Yb/sing/
that is a classical generator of Db.Coh..Yb/sing// and then F.b/ 2 MF.Y; V � b/
together with a morphism F.b/ ! �.tb�.Tb// in Z0.Coh.Y; V � b// whose cone
is in AcyclŒCoh.Y; V � b/� such that cok.F.b// Š tb�.Tb/ in DSg.Yb/ where
tbW .Yb/

sing ,! Yb . Then F WD .F.b//b2Crit.V / is the classical generator of MF.V /
we will consider.

Step 3: Fix c 2 Crit.W � V / a critical value of W � V . Theorem 4.18.(b),
Lemma 4.21 and equation (4.7) in Remark 4.20, and Proposition 4.19 imply that the
image of M

a2Crit.W /; b2Crit.V /;
aCbDc

sa�.Sa/� tb�.Tb/

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.6
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.10
http://arxiv.org/pdf/1212.2670v1.pdf#Item.16
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in DSg..X � Y /c/ is a classical generator of DSg..X � Y /c/. But Corollary 4.17
shows that this object is isomorphic to cok..E � F /.c// inDSg..X � Y /c/.

HenceE�F is a classical generator ofMF.W �V /. This proves the proposition
if both W and V are flat.

Case 2. Precisely one of W , V is flat.
Without loss of generality assume that W is flat and that b0 WD V 2 k. Then

MF.V / D MF.Y; 0/ by [17, Lemma 2.28], and [17, Rem. 2.54] shows that there
is a vector bundle Q on Y that is a classical generator of Db.Coh.Y // such that
�.Q/ D . 0 // Qoo / is a classical generator of MF.Y; 0/. Now define F 2 MF.V /
by F.b0/ WD �.Q/ and F.b/ D 0 for all b 6D b0. Define the classical generator
E D .E.a// of MF.W / as in Step 1. We have Sing.W � V / D Sing.W / � Y D`
a2Crit.W /.Xa/

sing � Y and ..X � Y /c/sing D .Xc�b0/sing � Y . Adjusting the above
method it is easy to see that E � F is a classical generator ofMF.W � V /.

Case 3. Both W and V are constant.
Then

MF.W / DMF.X; 0/; MF.V / DMF.Y; 0/
and

MF.W � V / DMF.X � Y; 0/:

Let Q be a vector bundle on Y as in the previous case, and let P be a vector
bundle onX that generatesDb.Coh.X// classically and such that�.P / is a classical
generator of MF.X; 0/. Theorem 4.18.(b) (or [2, Lemma 3.4.1, 3.1, 2.1] since X
and Y are smooth) shows that P �Q is a classical generator of Db.Coh.X � Y //.
Then �.P �Q/ D �.P /��.Q/ is a classical generator ofMF.X � Y; 0/, by [17,
Rem. 2.54]. This shows what we need.

4.4. Thom–Sebastiani Theorem. Note that the definition of ˇ in (2.3) simplifies
since we work over the field k. We can and will assume that A˝L B D A˝ B and
Aˇ B D Perf.A˝ B/.
Theorem 4.23 (Thom–Sebastiani Theorem). Let X and Y be smooth varieties with
morphisms W WX ! A1 and V WY ! A1. Then the two dg categories

MF.W /dg;\ ˇMF.V /dg;\ and MF.W � V /dg;\

are quasi-equivalent. An equivalent statement is that the two dg categories

MF.W /dg ˝MF.V /dg and MF.W � V /dg

are Morita equivalent, i. e. isomorphic in Hmok.

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.28
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.54
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.54
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The assertion of this theorem is not new. A proof is contained in the preprint [25]
using higher techniques of derived algebraic geometry. A different proof is claimed
in [14].

Proof. The equivalence of the two statements follows from Proposition 2.8 and
Lemma 2.31.

Fix finite affine open coverings of X and Y and consider the product covering of
X � Y . We can assume that we have used the object oriented Čech enhancements
(see Proposition 4.2) when definingMF.W /dg, i. e.

MF.W /dg D MF.W / LCob WD
Y

a2Crit.W /

MF LCob.X;W � a/;

MF.W /dg;\ D MF.W /\
LCob
WD

Y
a2Crit.W /

Perf.MF LCob.X;W � a//:

Similarly we consider and define the dg categories MF LCob.Y; V � b/, MF.V /dg D
MF.V / LCob and MF.V /dg;\ D MF.V /\

LCob
. On X � Y we consider the object

oriented Čech enhancement MF LCob.X � Y;W � V / of MF.X � Y;W � V /
(see Proposition 4.4) and then define MF.W � V /dg D MF.W � V / LCob and
MF.W � V /dg;\ D MF.W � V /\

LCob
accordingly. To ease the notation we abbreviate

Hom LCob D HomMFLCob.X;W�a/, and similarly for the other dg categories just
mentioned.

Let E D .E.a//a2k 2 MF.W / be a classical generator. Its canonical lift to the
enhancement MF.W / LCob is the object Cord.E/ WD .Cord.E.a///a2k . As explained in
Remark 4.15 we obtain the dg algebra A D

Q
A.a/ D End LCob.Cord.E// and a quasi-

equivalence Perf.A/ ! MF.W /\
LCob

. Similarly, starting from a classical generator
F 2 MF.V /, we obtain a dg algbra B D

Q
B.b/ D End LCob.Cord.F // and a quasi-

equivalence Perf.B/ ! MF.V /\
LCob

. Proposition 2.10 and Lemma 2.9 then provide
quasi-equivalences

Aˇ B D Perf.A˝ B/! Perf.A/ˇ Perf.B/! MF.W /\
LCob
ˇMF.V /\

LCob
:

On the other hand E � F is a classical generator of MF.W � V / by
Proposition 4.22. As its lift to the enhancement MF.W � V / LCob we use the object
Cord.E/� Cord.F / defined in the obvious manner, cf. (4.9). Let

M D
Y

M.c/ D End LCob.Cord.E/� Cord.F //:

Remark 4.15 again provides a quasi-equivalence

Perf.M/! MF.W � V /\
LCob
:

By Lemma 2.6.(c) it is hence sufficient to show that there is a quasi-isomorphism

A˝ B !M (4.10)
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of dg algebras. For c 2 Crit.W � V / the dg algebraM.c/ is a matrix algebra in the
sense that

M.c/ D End LCob..Cord.E/� Cord.F //.c//

D

M
aCbDc;
a0Cb0Dc

Hom LCob.Cord.E.a//� Cord.F.b//; Cord.E.a0//� Cord.F.b0///;

where the (finite) direct sum is taken over all a; a0 2 Crit.W / and b; b0 2 Crit.V /
satisfying the given condition. Note that A˝ B D

Q
c2Crit.W �V /.A˝ B/.c/ where

.A˝ B/.c/ is defined by

.A˝B/.c/ WD
Y

aCbDc

A.a/˝B.b/ D
Y

aCbDc

End LCob.Cord.E.a///˝End LCob.Cord.F.b///:

We define the morphism (4.10) of dg algebras using Lemma 4.6. This lemma then
says that .A˝B/.c/ goes quasi-isomorphically (even isomorphically, by inspection
of the proof) onto the diagonal subalgebra ofM.c/. Hence we need to show that the
off diagonal part of eachM.c/ is acyclic.

Let a; a0 2 Crit.W / and b; b0 2 Crit.V / and assume that a C b D c D a0 C b0

but a 6D a0 (and hence b 6D b0). We need to prove that both cohomologies of
Hom LCob.Cord.E.a//�Cord.F.b//; Cord.E.a0//�Cord.F.b0/// are zero. Equivalently
we need to show that

HomMF.X�Y;W �V�c/.E.a/� F.b/; Œp�E.a0/� F.b0//

is zero for p 2 Z2. We can use the morphism oriented Čech enhancement
MF LCmor.X �Y;W �V � c/ (see [17, Prop. 2.50]) for this and need to show that both
cohomologies of

HomMFLCmor.X�Y;W �V�c/
.E.a/� F.b/; E.a0/� F.b0//

D C.U � V ; Hom .E.a/� F.b/; E.a0/� F.b0//

vanish. It is certainly sufficient to show that the object

Hom .E.a/� F.b/; E.a0/� F.b0//

of MF.X � Y; 0/ is zero in ŒMF.X � Y; 0/� (use for example [17, Lemma 2.48]).
We have Hom .E.a/;E.a0// 2 MF.X; a � a0/ and Hom .F.b/; F.b0// 2

MF.Y; b � b0/, cf. [17, section 2.5.3]. The �-product of these two objects is then
in MF.X � Y; 0/ and the obvious closed degree zero morphism

�W Hom .E.a/;E.a0//�Hom .F.b/; F.b0//! Hom .E.a/�F.b/; E.a0/�F.b0//
(4.11)

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.50
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.48
http://arxiv.org/pdf/1212.2670v1.pdf#subsubsection.2.5.3
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is an isomorphism: this can be checked componentwise and locally on SpecR � X
and SpecS � Y and boils down to the fact that the obvious map

HomR.M;M 0/˝ HomS .N;N 0/! HomR˝S .M ˝N;M 0 ˝N 0/

is an isomorpism forM;M 0 2 Mod.R/ andN;N 0 2 Mod.S/withM andN finitely
generated projective.

Since we assume that a 6D a0, [17, Lemma 2.28] shows that

Hom .E.a/;E.a0// D 0

in ŒMF.X; a � a0�. We then see from (4.11) that

Hom .E.a/� F.b/; E.a0/� F.b0// D 0

in ŒMF.X � Y; 0/�.

4.5. Smoothness. Theorem 4.24 below is the analog of [18, Cor. 4.4] for matrix
factorizations, and we use the same strategy of proof.
Theorem 4.24. Let X be a smooth variety with a morphism W WX ! A1. Then the
dg categories MF.W /dg andMF.W /dg;\ are smooth over k.

Proof. Recall that smoothness is invariant under quasi-equivalence. We proceed as
in the beginning of the proof of the Thom–Sebastiani Theorem 4.23, but we use the
enhancements MF0

LCob.X;W � a/ (see section 4.1.2). The reason is that the duality
D D .�/_WMF LCob.X;W � a/op ! MF LCob.X;�W C a/ can then be lifted to the dg
functor eDWMF0

LCob.X;W � a/
op ! MF0

LCob.X;�W C a/, see Corollary 4.9. So we
assume thatMF.W /dg D MF.W /0

LCob
WD
Q
a2kMF0

LCob.X;W �a/ andMF.W /dg;\ D
MF.W /0\

LCob
WD

Q
Perf.MF0

LCob.X;W � a//. It is clear how to extend the duality D
and its lift eD toDWMF.W /op !MF.�W / and eDW .MF.W /0

LCob
/op ! MF.�W /0

LCob
,

respectively.
Let E D .E.a//a2k be a classical generator of MF.W / and consider the

dg algebra A D
Q
A.a/ D End LCob.Cord.E//. Here we abbreviate End LCob D

EndMF.W /0
LCob

and use similar notation in the following. By Remark 4.15 it is enough
to prove that A is smooth, i. e. that A 2 per.A˝ Aop/.

SinceE_ is a classical generator ofMF.�W /, Proposition 4.22 says thatE�E_
is a classical generator of MF.W � .�W //. We will use the lift

P WD Cord.E/� eD.Cord.E//
of this generator to the enhancement MF.W � .�W //0

LCob
, cf. Lemma 4.8. Here

MF.W � .�W //0
LCob

is defined in the obvious way using the product covering of
X �X . Note thateDWAop

D End LCob.Cord.E//op ! End LCob.eD.Cord.E///

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.28
http://arxiv.org/pdf/1406.7559.pdf#theorem.4.4
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is a quasi-isomorphism of dg algebras by Corollary 4.11. Recall that we showed in
the proof of the Thom–Sebastiani Theorem 4.23 that the natural morphism (4.10) is
a quasi-isomorphism. Transferred to our setting this means that the morphism

�WEnd LCob.Cord.E//˝ End LCob.Cord.E_//! End LCob.Cord.E/� Cord.E_//

is a quasi-isomorphism of dg algebras. We also have the isomorphismeD.Cord.E// ��! Cord.E_/

in
Q
a2kŒSh.X;�W C a/� from Lemma 4.8. These three facts (and the fact that ˝

preserves quasi-isomorphisms) show that both arrows in

A˝ Aop id˝eD
����! End LCob.Cord.E//˝ End LCob.eD.Cord.E/// �

�! End LCob.P /

are quasi-isomorphism of dg algebras. Restriction of dg modules along their
composition defines an equivalence of the corresponding perfect derived categories;
combined with Proposition 2.18 we obtain a full and faithful functor

F WD Hom LCob.P;�/W ŒMF.W � .�W //0
LCob�! per.A˝ Aop/

of triangulated categories. Note that A ˝ Aop D
Q
a;a02k A.a/ ˝ A.a0/op and

per.A˝Aop/ D
Q
a;a02k per.A.a/˝A.a0/op/. Under this identification, the .a; a0/-

component of F is given by

Fa;a0 D Hom LCob.Pa;a0 ;�/W ŒMF0
LCob.X�X;W �.�W /�aCa

0/�! per.A.a/˝A.a0/op/

where Pa;a0 WD Cord.E.a//� eD.Cord.E.a0///. We also see that smoothness of A is
equivalent to smoothness of all A.a/, for a 2 k.

Let�WX ! X �X be the diagonal embedding. Note that��.W � .�W // D 0.
Consider the object D D DX D . 0 // OXoo / 2 MF.X; 0/ and the canonical
morphism D ! Cord.D/ in Qcoh.X; 0/ that becomes an isomorphism in
DQcoh.X; 0/. Since � is affine and proper,

��.D/! ��.Cord.D//

in Qcoh.X�X;W �.�W // becomes an isomorphism in DQcoh.X�X;W �.�W //,
and ��.D/ is in MF0.X �X;W � .�W // (cf. [17, Rem. 2.39 and Lemma 2.37]).

Find I 2 InjQcoh.X �X;W � .�W // and T 2 MF.X �X;W � .�W // together
with morphisms ��.Cord.D// ! I and T ! I in Z0.Qcoh.X � X;W � .�W ///
that become isomorphisms in DQcoh.X �X;W � .�W //. These morphisms induce
quasi-morphisms

Fa;a.Cord.T //! HomSh.X�X;W �.�W //.Pa;a; I /

 HomSh.X�X;W �.�W //.Pa;a; ��.Cord.D///

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.39
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.37
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of dg A.a/ ˝ A.a/op-modules (for a 2 k): this is proved using the version of
Proposition 4.4 explained in section 4.1.2, Lemma 4.8 and Lemma 4.5; and [17,
Thm. 2.25 and Remark 2.14]). These three dg modules are in per.A.a/˝ A.a/op/
since F.Cord.T // 2 per.A˝ Aop/ and hence Fa;a.Cord.T // 2 per.A.a/˝ A.a/op/.

Observe that the obvious adjunctions provide isomorphisms of dgA.a/˝A.a/op-
modules

HomSh.X�X;W �.�W //.Pa;a; ��.Cord.D///
�
�! HomSh.X;0/.�

�.Cord.E.a//� eD.Cord.E.a////; Cord.D//
D HomSh.X;0/.Cord.E.a//˝ eD.Cord.E.a///; Cord.D//
�
�! HomSh.X;0/.Cord.E.a//; Hom .eD.Cord.E.a///; Cord.D///
D HomSh.X;0/.Cord.E.a//; eD2.Cord.E.a////:

Now use Lemma 4.10. The canonical morphism

� D �Cord.E.a//W Cord.E.a//! eD2.Cord.E.a///

is a homotopy equivalence, so

��WHomSh.X;0/.Cord.E.a//; Cord.E.a///
! HomSh.X;0/.Cord.E.a//; eD2.Cord.E.a////

is a homotopy equivalence; moreover, it is a morphism of dgA.a/˝A.a/op-modules.
The object on the left is the diagonal dg A.a/˝A.a/op-module A.a/ which is hence
in per.A.a/˝A.a/op/. This proves smoothness ofA.a/, for any a 2 k. As observed
above this just means that A is smooth.

Corollary 4.25. Let X be a smooth variety with a morphismW WX ! A1. Then the
dg category MF.X;W /dg is smooth over k.

Proof. We can assume that MF.X;W /dg D MF0
LCob.X;W /. In the proof of

Theorem 4.24 we have seen thatA.0/ D End LCob.Cord.E.0/// is smooth. This implies
the claim.

4.6. Properness.
Proposition 4.26. Let X be a smooth variety with a morphism W WX ! A1, and
assume that W jSing.W /WSing.W /! A1 is proper (for example W could be proper),
or equivalently, that Sing.W / is complete. Then the dg categories MF.X;W /dg,
Perf.MF.X;W /dg/, MF.W /dg, and MF.W /dg;\ are proper over k.

Proof. Weknow that jSing.W /jD
`
a2Crit.W / jSing.W /\Xaj. Hence jSing.W /j!A1

factors as jSing.W /j ! Crit.W / � A1. This implies that Sing.W /! A1 is proper
if and only if Sing.W /! Spec k is proper.

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.25
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.14
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Let E be a classical generator of MF.X;W / and A the dg algebra of its
endomorphisms in MF.X;W /dg. It is certainly enough to show A is proper
(cf. Remark 4.15), i. e. that A 2 per.k/. Since k is a field this just means
Hl.A/ D HomMF.X;W /.E; Œl�E/ is finite dimensional for l 2 Z2. We can assume
that X is connected, so that W is either flat or constant.

Assume that W is flat. Then we have the equivalence

cokWMF.X;W /
�
�! DSg.X0/

and dimk HomDSg.X0/.M;N / <1 for allM;N 2 DSg.X0/ by [23, Cor. 1.24]: note
that X0 is Gorenstein and that .X0/sing D jSing.W / \ X0j (see equation (4.7) in
Remark 4.20) is complete. This implies that A is proper over k.

Now assume thatW is constant. In caseW 6D 0 we haveMF.X;W / D 0 by [17,
Lemma 2.28] and the claim is trivial. So assume W D 0. We can assume that E D
. 0 // Poo /withP a vector bundle onX (see [17, Rem. 2.54]) and thatMF.X; 0/dg D
MF LCmor.X; 0/. Then A D C.U ; Hom .E;E// D C.U ; . 0 // Hom .P;P /oo //,
and henceHl.A/ D

L
Hn.X; Hom .P;P // where the direct sum is over all n 2 Z

with n D l inZ2. We have dimkHl.A/ <1 by [9, Thm. III.2.7] and [8, Thm. 3.2.1]
since X is Noetherian of finite dimension and X D Sing.W / is complete.

4.7. Conclusion. Recall the Grothendieck ring of saturated dg categories from
Proposition 2.24 and Definition 2.23. Since we work here in the differential Z2-
graded setting and over the field k (cf. Remark 2.1) we denote it by K0.satZ2k /.
Similarly we denote the monoid from Proposition 2.22 by satZ2

k
.

Theorem 4.27. Let X be a smooth variety with a morphism W WX ! A1
such that Sing.W / is complete (for example W could be proper). Then
Perf.MF.X;W /dg/ and MF.W /dg;\ are saturated dg categories and hence define
elements Perf.MF.X;W /dg/ and MF.W /dg;\ of K0.satZ2k /. If Y is another smooth
variety with a morphism V WY ! A1 such that Sing.V / is complete, then

MF.W /dg;\ �MF.V /dg;\ DMF.W � V /dg;\ (4.12)

in the monoid satZ2
k

and hence in the ring K0.satZ2k /.

Proof. The dg categories Perf.MF.X;W /dg/ and MF.W /dg;\ are smooth, proper
and triangulated, i. e. saturated, by Theorem 4.24, Corollary 4.25, Proposition 4.26,
Corollary 2.4, and Lemma 2.13. Equality (4.12) is then a direct consequence of the
Thom–Sebastiani Theorem 4.23.

Remark 4.28. Consider the set M of isomorphism classes ŒX�A1 of A1-varieties
W WX ! A1 with X smooth over k and Sing.W / complete. If W WX ! A1 and
V WX ! A1 areA1-varieties satisfying these conditions, so doesW �V WX�Y ! A1

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.28
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.54
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(by equation (4.8)). Hence ŒX�A1 � ŒY �A1 WD ŒX � Y �1A turnsM into a commutative
monoid with unit the class of Spec k

0
�! A1. One may view M as a “Grothendieck

monoid” of certain varieties overA1. Then Theorem 4.27 says that mapping the class
of W WX ! A1 as above to MF.W /dg;\ defines a (unital) morphismM ! satZ2

k
of

monoids.

5. Landau–Ginzburg motivic measure

Let k be an algebraically closed field of characteristic zero. We continue to work in
the differential Z2-graded setting. Our aim in this section is to prove Theorem 5.2.

Recall the Grothendieck ring K0.VarA1/ of varieties over A1 from Section 3 and
the Grothendieck ring K0.satZ2k / of saturated dg categories from Proposition 2.24.
We first state an additive precursor of Theorem 5.2 which only uses the additive
structures on K0.VarA1/ and K0.sat

Z2
k
/.

Proposition 5.1. There is a unique morphisms

K0.VarA1/! K0.satZ2k /

of abelian groups that maps ŒX�A1 D ŒX;W � to Perf.MF.X;W /dg/ whenever X is
a smooth variety and W WX ! A1 is a proper morphism. This morphism of abelian
groups is uniquely determined by its values on ŒX;W � for smooth (connected)X and
projective W .

Proof. Recall the isomorphism Kbl
0 .VarA1/

�
�! K0.VarA1/ of abelian groups from

Theorem 3.2 (and that onemay restrict to connected varieties or projectivemorphisms
in (bl)). This shows uniqueness.

If X andW are as above, then Perf.MF.X;W /dg/ is saturated by Theorem 4.27.
Hence to show existence we only need to see that the relation Œ;�A1 D 0 and the
blowing-up relations go to zero under ŒX;W � 7! Perf.MF.X;W /dg/. It is trivial
that Œ;�A1 goes to Perf.;/ D 0. It is enough to consider the blowing-up relationswhen
blowing-up a connected smooth subvariety, and in this case we can use [17, Cor. 3.3
and 3.16] and Proposition 2.19.

Let us formulate the main result of this article.

Theorem 5.2. Let k be an algebraically closed field of characteristic zero. There is
a unique morphism

�WK0.VarA1/! K0.satZ2k /

of rings (= a Landau–Ginzburg motivic measure) that maps ŒX;W � to MF.W /dg;\

whenever X is a smooth variety and W WX ! A1 is a proper morphism.

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.3.3
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.3.16
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In particular, � is a morphism of abelian groups and maps ŒX;W � toMF.W /dg;\

whenever X is a smooth (connected) variety and W WX ! A1 is a projective
morphism. These two properties determine � uniquely.

Proof. IfA and B are saturated dg categories, thenA�B is saturated andA � B D
A C B in K0.satZ2k / since there are semi-orthogonal decompositions ŒA � B� D
hŒA�; ŒB�i D hŒB�; ŒA�i. If we use the isomorphism Kbl

0 .VarA1/
�
�! K0.VarA1/ of

abelian groups and proceed as in the proof of Proposition 5.1 (using the defining
equation (4.4)) we see that there is a unique morphism �WK0.VarA1/ ! K0.satZ2k /
of abelian groups mapping ŒX;W � to MF.W /dg;\ whenever X is smooth and W
is proper, and that it is uniquely determined by its values on ŒX;W � for X smooth
(connected) andW projective. It is clear that� sends the unit ŒSpec k; 0� ofK0.VarA1/
to the unit Perf.k/ of K0.satZ2k /.

We need to prove that � is compatible with multiplication. Recall that the
multiplication is easy to define onK0.VarA1/ but not onKbl

0 .VarA1/. LetX and Y be
smooth connected varieties with projectivemorphismsW WX ! A1 andV WY ! A1.
By definition of � and Theorem 4.27 we have

�.ŒX;W �/ � �.ŒY; V � DMF.W /dg;\ �MF.V /dg;\ DMF.W � V /dg;\

in K0.satZ2k /. If W or V is constant, then W � V is projective and hence
MF.W � V /dg;\ D �.ŒX � Y;W � V /, so � is multiplicative.

Hence we can assume that both W and V are flat. Since W � V might not be
projective, it is not clear that �maps ŒX � Y;W �V � toMF.W � V /dg;\. In order to
prove this it is enough to find smooth varietiesZi together with projective morphisms
Wi WZi ! A1 and integers ni such that

ŒX � Y;W � V � D
X
i

ni ŒZi ; Wi � in K0.VarA1/;

and MF.W � V /dg;\ D
X

ni MF.Wi /dg;\ in K0.satZ2k /:

This can be done using Proposition 6.1 below which shows that the morphismW �V
can be “compactified” in a nice way. Using the notation introduced there, it is easy
to see that

ŒX �Y;W �V � D ŒZ; h��
X
i

ŒDi ; hi �C
X
i<j

ŒDij ; hij �� � � �C .�1/
sŒD12:::s; h12:::s�

inK0.VarA1/. On the right-hand side, Z and allDi1:::ip are smooth quasi-projective
varieties, and h and all hi1:::ip are projective morphisms, by Proposition 6.1.(iv).
Hence we obtain

�.ŒX � Y;W � V �/ DMF.h/dg;\ �
X
i

MF.hi /dg;\ C � � � C .�1/sMF.h12:::s/dg;\:
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Lemma 4.13 and Proposition 6.1.(iv) again show that MF.hi1:::ip /dg;\ D 0 for all
tuples .i1; : : : ; ip/ with p � 1. Hence it is enough to show that

MF.h/dg;\ DMF.W � V /dg;\:

Let j WX � Y ! Z be the open inclusion, and let a 2 k. The functor

j �WMF.Z; h � a/!MF.X � Y;W � V � a/

lifts to a dg functor

j �WMF.Z; h � a/dg !MF.X � Y;W � V � a/dg

if wework for example with the enhancements using injective quasi-coherent sheaves.
From the defining equation (4.4) it is clearly enough to show that this functor is a
quasi-equivalence, or equivalently, that

j �WMF.Z; h � a/!MF.X � Y;W � V � a/

is an equivalence. Note that W � V and hence h are flat, so we can use Orlov’s
equivalence [17, Thm. 2.8] and have to prove that

j �WDSg.Za/! DSg..X � Y /a/

is an equivalence. But equation (4.7) in Remark 4.20 and Proposition 6.1.(ii) imply
that

.Za/
sing
D jSing.h/ \Zaj D jSing.W � V / \Zaj D ..X � Y /a/sing � .X � Y /a;

so we can use [24, Prop. 1.3].

Remark 5.3. LetX and Y be smooth varieties with proper morphismsW WX ! A1
and V WY ! A1. Then we see from Theorems 5.2 and 4.27 that

�.ŒX � Y;W � V �/ D �.ŒX;W �/ � �.ŒY; V �/

DMF.W /dg;\ �MF.V /dg;\ DMF.W � V /dg;\:

This shows that the Landau–Ginzburg motivic measure� sendsW �V WX�Y ! A1
toMF.W � V /dg;\ even thoughW �V might not be proper. This statement is slightly
more general than what we showed in the proof of Theorem 5.2.
Remark 5.4. From [17, Corollary 3.3] we see that

�.ŒPnk; 0�/ D .nC 1/Perf.k/ D nC 1:

Recall the element L.A1;0/ WD ŒA1; 0� 2 K0.Var1A/ from Remark 3.3. Then we obtain

�.L.A1;0// D �.ŒP1k; 0�/ � �.ŒSpec k; 0�/ D 2 � 1 D 1:

http://arxiv.org/pdf/1212.2670v1.pdf#theorem.2.8
http://arxiv.org/pdf/1212.2670v1.pdf#theorem.3.3
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This implies that � factors to a morphism

�WK0.VarA1/=.L.A1;0/ � 1/! K0.satZ2k /

of rings, cf. [5, sect. 8.2].
If W WX ! A1 is a proper and smooth morphism, then certainly MF.W / D 0

by Lemma 4.13 and hence �.ŒX;W �/ D 0. This yields many other elements of the
kernel of �. For example ŒA1; idA1 � lies in the kernel of �.

6. Compactification

Let k be an algebraically closed field of characteristic zero.
Proposition 6.1. Let X and Y be smooth varieties and let W WX ! A1 and
V WY ! A1 be projective morphisms (henceX and Y are quasi-projective varieties).
Consider the convolution

W � V WX � Y
W�V
����! A1 � A1

C
�! A1:

Then there exists a smooth quasi-projective variety Z with an open embedding
X � Y ,! Z and a projective morphism hWZ ! A1 such that the following
conditions are satisfied.

(i) The diagram
X � Y

� � //

W �V

��

Z

h
��

A1 D A1

commutes.
(ii) All critical points of h are contained in X � Y , i. e. Sing.W � V / D Sing.h/.
(iii) We have Z n X � Y D

Ss
iD1Di where the Di are pairwise distinct smooth

prime divisors. More precisely, Z n X � Y is the support of a snc (= simple
normal crossing) divisor.

(iv) For every p-tuple .i1; : : : ; ip/ of indices (with p � 1) the morphism

hi1:::ip WDi1:::ip WD Di1 \ � � � \Dip ! A1

induced by h is projective and smooth. In particular, all Di1:::ip are smooth
quasi-projective varieties.

Remark 6.2. To prove Proposition 6.1 one may assume that both X and Y are
connected. If the map W is not flat then its image is one point W.X/ D a 2 A1,
X is projective, and the map W � V WX � Y ! A1 is already projective. So we can
takeZ D X �Y and h D W �V . This shows that Proposition 6.1 is interesting only
in case both W and V are flat. The proof given below works in general.
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We need some preparations for the proof of this proposition. Let U be a scheme
and I � OU an ideal sheaf. We say that the pair .U; I / satisfies condition (K) if
(K) U is a reduced scheme of finite type (over k), I is not zero on any irreducible

component of U , and the closed subscheme V.I / defined by I contains the
singular locus U sing of U .

Remark 6.3. We recall some results on resolution of singularities and mono-
mialization (principalization) from [13]. Assume that .U; I / as above satisfies
condition (K). Let eU ! U be the resolution of singularities from [13, Thm. 3.36]
(it seems preferable to start with a reduced scheme there). Then eU together with
the inverse image ideal sheaf eI of I under eU ! U also satisfies condition (K): eU
is again reduced [15, Lemma 8.1.2] of finite type, eI is not zero on any irreducible
component of eU since eU ! U is birational (as confirmed to us by János Kollár),
and eU sing D ;. So we can apply monomialization (principalization) [13, Thm. 3.35]
to this inverse image ideal sheaf (and the empty snc divisor) and obtain a morphism
c.U / D cI .U / ! eU . Let  D U D U;I be the composition c.U / ! eU ! U .
Then c.U / is a smooth scheme of finite type over k, the inverse image ideal sheaf
�1.I / �Oc.U / � Oc.U / is the ideal sheaf of a snc divisor, and  is an isomorphism
over U n V.I /. Moreover,  is a composition of blowing-up morphisms and in
particular a proper morphism. If U is quasi-projective (resp. projective), so is c.U /,
and  is a projective morphism. As described in [13, 3.34.1], the association

.U; I / 7!
�
cI .U /


�! U

�
(6.1)

commutes with smooth (and in particular étale) morphisms. This means that any
smooth or étale morphism f WU 0 ! U , gives rise to a pullback diagram

cf �1.I /�OU 0 .U
0/ //

U 0

��

cI .U /

U

��
U 0

f // U:

(6.2)

The following proposition provides useful compactifications and describes them
“étale locally”. We view A1 � P1, z 7! Œ1; z�, as an open subvariety, and let
1 D Œ0; 1� 2 P1. We write A11 for A1 viewed as an open neighborhood of 1
via z 7! Œz; 1�.
Proposition 6.4. LetX be a smooth (quasi-projective) variety and letW WX ! A1 be
a projective morphism. Let I1 be the ideal sheaf of the closed subvariety f1g � P1.
Then there is a smooth projective variety X with an open embedding X ,! X and a
projective morphism W WX ! P1 such that the diagram

X
� � //

W

��

X

W
��

A1 �
� // P1

(6.3)
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is a pullback diagram and such that the inverse image ideal sheaf

W
�1
.I1/ �OX � OX

is a locally monomial ideal, i. e. the ideal sheaf of a snc divisor.
In particular, for any (closed) point p in the fiber X1 WD W

�1
.1/ at infinity,

there are an étale morphism uWU ! X with p in its image, uniformizing parameters
x D .x1; : : : ; xm/ on U and a tuple � D .�1; : : : ; �s/ of positive integers, for
some 1 � s � m, such that the diagram

X

W

��

U
uoo x // Am

�

��
P1 � A11

commutes, where x is the morphism given by the uniformizing parameters and � is
the morphism mapping .t1; : : : ; tm/ to t� WD t

�1
1 : : : t

�s
s .

Proof. By assumption on W we have a commutative diagram, for some N 2 N,

X
� � //

W

��

PNA1
� � //

��

PNP1

��
A1 D A1 �

� // P1

where the first arrow in the first row is a closed embedding. Let K be the closure
of X in PNP1 D PN � P1. Then K is a projective variety with an open embedding
X � K and a projective morphism �WK ! P1 such that the diagram

X
� � //

W

��

K

�

��
A1 �
� // P1

is a pullback diagram. This compactifiesW WX ! A1 at infinity. The singular points
ofK are all contained in the fiber of � over1. So clearly .K; ��1.I1/ �OK/ satisfies
condition (K), and we obtain a morphism  W c��1.I1/�OK .K/ ! K as explained in
Remark 6.3. Define X WD c��1.I1/�K .K/ and W WD � ı  . Then X is smooth
projective and W is projective, and from the construction we obtain the pullback
diagram (6.3).

It remains to provide the local description of W around p 2 X1. We can
assume that p is a closed point. Let X 0 WD W

�1
.A11/ and view the restriction

W WX
0
! A11 as a regular function on X 0. It generates the inverse image ideal
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sheafW �1.I1/ �OX , so its divisor is the snc divisor of this ideal sheaf. Hence there
is an open neighborhood U 0 of p in X with uniformizing parameters .y

1
; : : : ; y

m
/

centered at p and a tuple� D .�1; : : : ; �s/ of positive integers, for some 1 � s � m,
such thatW D vy�1

1
: : : y�s

s
for some unit v inOX .U 0/. Let uWU ! U 0 be the étale

morphism extracting a �1-th root of v. Then

x1 WD y1
v1=�1 ; x2 WD y2

; : : : ; xm WD ym

defines uniformizing parameters on U which satisfy x�11 : : : x
�s
s D W ı u.

We introduce another condition needed in the proof of Proposition 6.1. Let .U; I /
satisfy condition (K) and let  W c.U /! U be as in Remark 6.3. Write the snc divisor
corresponding to �1.I / �Oc.U / as

Ps
iD1 niEi with pairwise distinct prime divisors

E1; : : : ; Es and all ni > 0. Let f WU ! A1 be a regular function. We say that the
triple .U; I; f / satisfies condition (NoCrit-Sm) if

(NoCrit-Sm) No critical point of the morphism f ı  W cI .U /! A1 is contained in
E1 [ � � � [Es , and for every tuple .i1; : : : ; ip/ of indices (with p � 1)
the morphism Ei1 \ � � � \Eip ! A1 induced by f ı  is smooth.

Proof of Proposition 6.1. Consider the morphism

� WP1 � A1 ! P1 � P1;
.Œz00; z

0
1�; v

0/ 7! .Œz00; z
0
1�; Œz

0
0; z
0
0v
0
� z01�/:

The image of � isA1�A1[f.1;1/g. The fiber of � over .1;1/ isE WD f1g�A1,
and � induces an isomorphismA1�A1

�
�! A1�A1. Note moreover that the diagram

P1 � P1 A1 � A1

C

��

� A1 � A1�

�
oo

pr2
��

P1 � A1�

pr2
��

A1 D A1 D A1

(6.4)

commutes. It says that addition A1 � A1
C
�! A1 corresponds under � to the second

projection; this projection can easily be extended to the projective morphism on
the right. This little construction already does the job in case X D Y D A1 and
W D V D idA1 .

Now let X , Y be smooth (quasi-projective) varieties and let W WX ! A1 and
V WY ! A1 be projective morphisms. We can and will assume that X and Y are
irreducible.
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We choose X ,! X
W
�! P1 and Y ,! Y

V
�! P1 having the properties described

in Proposition 6.4. Consider the pullback diagram

T
b� //

�

��

X � Y

W�V
��

P1 � A1 � // P1 � P1:

(6.5)

Note that the upper horizontal arrowb� in this diagram induces an isomorphism

b� WT 0 WD ��1.A1 � A1/
�
�! X � Y:

From (6.4) it is obvious that under this isomorphism themorphismpr2 ı� jT 0 WT 0 ! A1
corresponds to W � V WX � Y ! A1.

We need to analyze T “étale locally” around an arbitrary point of ��1.E/. Let
IE � OP1�A1 be the ideal sheaf of E. Our analysis will in particular show that the
pair .T; ��1.IE / �OT / satisfies condition (K), so that the morphism

 WZ WD c��1.IE/�OT .T /! T;

is available. We will then see that Z together with the composition

hWZ

�! T

�
�! P1 � A1

pr2
��! A1

does the job.
Define

B WD Spec kŒz0; v; .z0v � 1/�1�
and embed this as an open subvariety of P1 � A1 via .z00; v0/ 7! .Œz00; 1�; v

0/. So B
is contained in A11 � A1. We have B D ��1.A11 � A11/. Note that B contains
E D f1g � A1 D fz00 D 0g and that � induces the morphism

� WB ! A11 � A11; (6.6)
.z00; v

0/ 7! .Œz00; 1�; Œz
0
0 .z

0
0v
0
� 1/�1; 1�/:

Let t 2 ��1.E/ be the closed point around which we will analyze T “étale
locally”. Define .x1; y1/ WD O�.t/ 2 X1�Y1. We use the local description ofW
around x1 2 X1 given by Proposition 6.4. There is an étale morphism uWU ! X

whose image containsx1 such thatW ıu can be factorized asU
x
�! Am

�
�! A11 � P1

for uniformizing parameters x and a suitable �. Similarly we describe V locally
around y1 2 Y1 by an étale morphism u0WU 0 ! Y such that V ı u0 is given by
U 0

y

�! An
�
�! A11 � P1 for suitable y and �. Then .W � V / ı .u � u0/ is equal to

the composition

U � U 0
x�y

���! Am � An
���
���! A11 � A11 � P1 � P1:



1036 V. A. Lunts and O. M. Schnürer

Consider the pullback diagram

S

� 0

��

// Am � An

���

��
B

� // A11 � A11:

Note that the pullback of T along the étale morphism u � u0 coincides with the
pullback of S along the étale morphism x�y. Let us denote this pullback bybS . The
étale morphism bS ! T contains t in its image.

From (6.6) we see that S can be described explicitly as

S D Spec kŒv; x; y; .x�v � 1/�1�=.x� � .x�v � 1/y�/

where x D x1; : : : ; xm and y D y1; : : : ; yn and x� D x
�1
1 : : : x

�s
s and similarly

for y� . Note that � 0�.z0/ D x� and pr2 ı� 0 D v. Let S 0 ! S be the (surjective)
étale morphism extracting the �1-th root of the invertible element .x�v � 1/. Define
new coordinates y01 WD y1.x�v � 1/1=�1 ; y02 WD y2; : : : ; y0n WD yn. Then S 0 is given
by

S 0 D Spec kŒv; x; y0; .x�v � 1/�1=�1 �=.x� � y0�/:

There is an obvious étale morphism from S 0 to the open subscheme

S 00 WD Spec kŒv; x; y0; .x�v � 1/�1�=.x� � y0�/

of
S 000 D Spec kŒv� � L

where L WD Spec kŒx; y0�=.x� � y0�/.
Up to now we have constructed a zig-zag of étale morphisms

T  bS ! S  S 0 ! S 00 ! S 000:

Let bT be the pullback of bS ! S and S 0 ! S . Hence we have étale morphisms

T
˛
 � bT ˇ

�! S 000 (6.7)

and t is in the image of˛ (sinceS 0 ! S is surjective). The ideal sheaves ��1.IE /�OT
on T and .x�/ on S 000 have the same inverse image ideal sheaf on bT (which also
comes from the ideal sheaf .x�/ on S ). Correspondingly, we have ˛�1.T 0/ D
ˇ�1.S 000 n V.x�// (recall that O� WT 0 ��! X � Y ). Note also that ˛�.pr2 ı�/ D ˇ�.v/
as functions bT ! A1.

Lemma 6.5 tells us that L is a reduced scheme of finite type, that the ideal .x�/
does not vanish on any irreducible component of L and that V.xm/ � Lsing (the
singular locus of each component is contained in V.x�/, and different components
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do not intersect outsideV.x�/). This justmeans that .L; .x�// satisfies condition (K).
Hence the same is true for .S 000; .x�//.

From [12, Prop. I.4.9] we see thatbT and ˛.bT / are reduced schemes. This implies
that bT and T (let t vary) are quasi-projective varieties.

We claim that T is irreducible. Obviously, L n V.x�/ is open and dense in L.

By Lemma 6.6 below, applied to bT ˇ
�! S 000 ! L, we see that ˇ�1.S 000 n V.x�// is

open and dense in bT . Recall that ˛�1.T 0/ D ˇ�1.S 000 n V.x�//. We obtain that
˛.˛�1.T 0// is open and dense in ˛.bT /. In particular, t is in the closure of T 0 in T .
Since t 2 ��1.E/ D T nT 0 was arbitrary and T 0

�
�! X �Y is irreducible this proves

that T is irreducible.
Now it is clear that ��1.IE / �OT does not vanish T , and certainly we have

T sing
� ��1.E/ D V.��1.IE / �OT /:

This proves that .T; ��1.IE / �OT / satisfies condition (K).
Hence we can apply Remark 6.3 to .T; ��1.IE / � OT / and obtain a morphism

 W c��1.IE/�OT .T /! T . Define Z WD c��1.IE/�OT .T / and

hWZ

�! T

�
�! P1 � A1

pr2
��! A1:

Then hWZ ! A1 is a projective morphism and Z is a smooth quasi-projective
variety. By construction  induces an isomorphism �1.T 0/

�
�! T 0. Using the

isomorphism b� WT 0 ��! X � Y we hence find an open embedding X � Y ,! Z.
We claim that this datum satisfies conditions (i)–(iv). Indeed, (i) and (iii) hold by
construction. All Di1:::ip WD Di1 \ � � � \Dip are smooth quasi-projective varieties
since the Di are the irreducible components of the support of a snc divisor, and all
morphisms hi1:::ip WDi1:::ip WD Di1 \ � � � \Dip ! A1 induced by h are projective
since hWZ ! A1 is projective.

Hence we need to show condition (ii) and the smoothness part of condition (iv),
or, equivalently, that condition (NoCrit-Sm) holds for the triple

.T; ��1.IE / �OT ; pr2 ı�/:

From Remark 6.3 we see that this can be checked locally on T , and even on an
étale covering of T (we use that the map (6.1) commutes with étale morphisms).
The zig-zag (6.7) of étale maps and the fact that we already know that .S 000; .x�//
satisfies condition (K) shows that it is enough to show condition (NoCrit-Sm)
for .S 000; .x�/; v/.

Consider L with the ideal sheaf .x�/ and the structure morphism

canWL! Spec k:

Let LW c.L/ D c.x�/.L/! L be the morphism from Remark 6.3. Let
Pr
jD1mjFj

(with pairwise distinct Fj ’s and all mj > 0) be the snc divisor corresponding
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to .�L.x
�//. Then for every tuple .j1; : : : ; jq/ of indices (with q � 1) the intersection

Fj1 \ � � � \ Fjq is regular, i. e. can ıLWFj1 \ � � � \ Fjq ! Spec k is smooth.
Note that .S 000; .x�/; v/ is obtained from .L; .x�/; can/ via base change along the

smooth morphism Spec kŒv�! Spec k. So the two squares in the diagram

c.xm/.S
000/

S000

��

// c.x�/.L/

L

��
S 000 //

v

��

L

can
��

A1 D Spec kŒv� // Spec k:

are pullback diagrams (we use that the map (6.1) commutes with smooth morphisms,
cf. diagram (6.2)). Let F 0j D Spec kŒv� � Fj . Then

Pr
jD1mjF

0
j is the snc divisor

corresponding to .�S 000.x
�//, and it is obvious that condition (NoCrit-Sm) holds for

.S 000; .x�/; v/: the morphism v ı S 000 is smooth (since can ıL is smooth) and hence
has no critical point at all, and all morphisms v ı LWF 0j1 \ � � � \ F

0
jq
! Spec kŒv�

are smooth since they are obtained from can ıLWFj1 \ � � � \ Fjq ! Spec k by base
change.

Lemma 6.5. Let

p WD x� � y� WD x
�1
1 x

�2
2 � � � x

�s
s � y

�1
1 � � �y

�t
t

be a polynomial in kŒx; y� WD kŒx1; : : : ; xs; y1; : : : ; yt � with s; t > 0 and all �i > 0
and all �j > 0. Let d D gcd.�1; �2; : : : ; �s; �1; : : : ; �t /. Then

p D
Y
�2

d
p
1

.x�=d � �y�=d / (6.8)

is the factorization of p into irreducibles in kŒx; y� (where d
p
1 denotes the set of

all d -th roots of unity in k); obviously, all factors are distinct and appear with
multiplicity one. Here we use the shorthand notation x�=d D x

�1=d
1 � � � x

�s=d
s , and

similarly for y�=d . In particular, p is irreducible in kŒx; y� if d D 1. (If s; t � n
then the above factorization into irreducibles obviously is also a factorization into
irreducibles in kŒx1; : : : ; xn; y1; : : : ; yn�.)

The proof of this lemma was motivated by a proof of its special case s D t D 1

on Stackexchange by Qiaochu Yuan. We thank Jan Büthe for a discussion of the
general case.

Proof. From T d � 1 D
Q
�2

d
p
1
.T � �/ we obtain by substituting T D U

V
that

U d � V d D
Y
�2

d
p
1

.U � �V /:
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From p D .x�=d /d � .y�=d /d we hence obtain formula (6.8), and it is enough to
show that each factor .x�=d � �y�=d / is irreducible in kŒx; y�.

For this it is enough to show that p is irreducible if d D 1 (since then also
any polynomial x� � �y� will be irreducible for � 2 k�: put y01 WD

�1
p
� y1I

alternatively, adapt the following proof so that it works directly for x� � �y�).
Let f be an irreducible factor of p in kŒx; y�. The group Z�1 acts on kŒx; y� by

algebra automorphisms such that the generator 1 of Z�1 maps x1 to ��1x1 where ��1
is a fixed primitive �1-th root of unity. By combining the analog commuting actions
on the other variables we obtain an action of

Z WD Z� � Z� WD Z�1 � � � � � Z�s � Z�1 � � � � � Z�t
on kŒx; y�.

Note that p 2 kŒx; y�Z D kŒx
�1
1 ; : : : ; y

�t
t �. Any element of the Z-orbit Z:f

of f also is an irreducible factor of p. Some of these irreducible factors might be
associated. Let F be the product of all these irreducible factors up to k�-multiples.
(More precisely we mean the following: the group Z acts on P.kŒx; y�/, and the
multiplication of kŒx; y� induces a multiplication on P.kŒx; y�/ which is compatible
with the Z-action. Let F 2 kŒx; y� be an element such that ŒF � D

Q
g2Z:Œf � g

in P.kŒx; y�/.) Then F jp.
It is clear that z:F 2 k�F for all z 2 Z. We claim that in fact F 2 kŒx; y�Z .
Let �WZ ! k� be the morphism of groups such that z:F D �.z/F for all z 2 Z.

If we apply the element z1 WD .1; 0; 0; : : : ; 0/ 2 Z to the monomial x˛yˇ we obtain
�
˛1
�1x

˛yˇ . If this monomial x˛yˇ appears with non-zero coefficient in F we must
have �.z1/ D �

˛1
�1 . Hence if another monomial x˛0yˇ 0 also appears with non-zero

coefficient in F , then �˛1�1 D �
˛0
1
�1 , or equivalently, ˛1 � ˛01 2 Z�1. This implies

that we can write F D x

1G with G 2 kŒx�11 ; x2; : : : ; xn; y1; : : : ; yn�, for some

 2 N (for example the smallest exponent of x1 that appears in a monomial that
appears in F with non-zero coefficient). Since F jp this implies that x1 jp which is
obviously only possible if  D 0. We can iterate this argument and eventually see
that F 2 kŒx�11 ; x

�2
2 ; : : : ; x

�s
s ; y

�1
1 ; : : : ; y

�t
t � D kŒx; y�

Z , proving our claim.
Hence we have F jp in kŒx; y�Z . Write a1 WD x

�1
1 ; : : : ; as WD x

�s
s , and

b1 WD y
�1
1 ; : : : ; bt WD y

�t
t . Then p D a� b WD a1 : : : as � b1 : : : bt and this element

is irreducible in kŒx; y�Z D kŒa; b� (it is linear in a1 and the coefficient a2 : : : as
of a1 and the constant coefficient b1 : : : bt have greatest common divisor 1). Since F
is not a unit this implies that F D p up to a multiple in k�.

Denote by degxi .g/ the degree of an element g 2 kŒx; y� in xi . Let l be the
cardinality of the orbit of Œf � in P.kŒx; y�/, i. e. F is the product of l irreducible
elements obtained from f . Then

�i D degxi .p/ D degxi .F / D l degxi .f /:

This and the same argument for the degrees in the yj ’s show that l is a common
divisor of all the �i and �j .
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If d D 1 we obtain l D 1, i. e. F D f up to a multiple in k�. Hence F and p
are irreducible in kŒx; y�.

Lemma 6.6. Let f WX ! Y be an open morphism of Noetherian schemes. If V � Y
is open and dense, then f �1.V / is open and dense in X .

Proof. Let C be an irreducible component of X . Let C ı be obtained from C by
removing all points that lie in an irreducible component distinct from C . Then C ı
is open in X and non-empty, so f .C ı/ is open and non-empty and hence contains a
point of V . Then f �1.V /\C ı is open in C and non-empty, and hence dense in C .
This implies that C � f �1.V /.
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