Measured quantum transformation groupoids

Michel Enock and Thomas Timmermann

Abstract. In this article, when G is a locally compact quantum group, we associate, to a braidedcommutative G-Yetter–Drinfel'd algebra $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ equipped with a normal faithful semi-finite weight verifying some appropriate condition (in particular if it is invariant with respect to α , or to $\hat{\mathfrak{a}}$), a structure of a measured quantum groupoid. The dual structure is then given by $(N, \hat{\mathfrak{a}}, \mathfrak{a})$. Examples are given, especially the situation of a quotient type co-ideal of a compact quantum group. This construction generalizes the standard construction of a transformation groupoid. Most of the results were announced by the second author in 2011, at a conference in Warsaw.

Mathematics Subject Classification (2010). 46L55; 20L05, 81R15.

Keywords. Locally compact quantum groups, actions, measured quantum groupoids, Drinfel'd double, Yetter–Drinfel'd algebra, braided-commutativity, quotient type co-ideals, Morita equivalence.

1. Introduction

1.1. Locally compact quantum groups. The theory of locally compact quantum groups, developed by J. Kustermans and S. Vaes [\[22,](#page-69-0) [23\]](#page-69-1), provides a comprehensive framework for the study of quantum groups in the setting of C^* -algebras and von Neumann algebras. It includes a far reaching generalization of the classical Pontrjagin duality of locally compact abelian groups, that covers all locally compact groups. Namely, if G is a locally compact group, its dual \widehat{G} will be the von Neumann algebra $\mathcal{L}(G)$ generated by the left regular representation λ_G of G, equipped with a coproduct Γ_G from $\mathcal{L}(G)$ on $\mathcal{L}(G) \otimes \mathcal{L}(G)$ defined, for all $s \in G$, by $\Gamma_G(\lambda_G(s)) =$ $\lambda_G(s) \otimes \lambda_G(s)$, and with a normal semi-finite faithful weight, called the Plancherel weight φ_G , associated via the Tomita–Takesaki construction, to the left Hilbert algebra defined by the algebra $\mathcal{K}(G)$ of continuous functions with compact support (with convolution as product), this weight φ_G being left- and right-invariant with respect to Γ ^G [\[38,](#page-70-0) VII, 3].

This theory builds on many preceding works, by G. Kac, G. Kac and L. Vainerman, the first author and J.-M. Schwartz [\[18](#page-69-2)[,19\]](#page-69-3), S. Baaj and G. Skandalis [\[4\]](#page-68-0), A. Van Daele,

^{*}The second author was supported by the SFB 878 of the Deutsche Forschungsgemeinschaft.

S. Woronowicz [\[47,](#page-71-0) [50,](#page-71-1) [51\]](#page-71-2) and many others. See the monography written by the second author for a survey of that theory [\[39\]](#page-70-1), and the introduction of [\[19\]](#page-69-3) for a sketch of the historical background. It seems to have reached now a stable situation, because it fits the needs of operator algebraists for many reasons:

First, the axioms of this theory are very simple and elegant: they can be given in both C^* -algebras and von Neumann algebras, and these two points of view are equivalent, as A. Weil had shown it was the fact for groups (namely any measurable group equipped with a left-invariant positive measure bears a topology which makes it locally compact, and this measure is then the Haar measure [\[46\]](#page-71-3)). In a von Neumann setting, a locally compact quantum group is just a von Neumann algebra, equipped with a co-associative coproduct, and two normal faithful semi-finite weights, one left-invariant with respect to that coproduct, and one right-invariant. Then, many other data are constructed, in particular a multiplicative unitary (as defined in [\[4\]](#page-68-0)) which is manageable (as defined in [\[51\]](#page-71-2)).

Second, all preceeding attemps [\[19,](#page-69-3) [50\]](#page-71-1) appear as particular cases of locally compact quantum groups; and many interesting examples were constructed [\[43,](#page-71-4) [48,](#page-71-5) [49\]](#page-71-6).

Third, many constructions of harmonic analysis, or concerning group actions on C^* -algebras and von Neumann algebras, were generalized up to locally compact quantum groups [\[41\]](#page-70-2).

Finally, many constructions made by algebraists at the level of Hopf $*$ -algebras, or multipliers Hopf $*$ -algebras can be generalized for locally compact quantum groups. This is the case, for instance, for Drinfel'd double of a quantum group [\[10\]](#page-68-1), and for Yetter–Drinfel'd algebras which were well-known in an algebraic approach in [\[26\]](#page-69-4).

1.2. Measured Quantum Groupoids. In two articles [\[44,](#page-71-7) [45\]](#page-71-8), J.-M. Vallin has introduced two notions (pseudo-multiplicative unitary, Hopf bimodule), in order to generalize, to the groupoid case, the classical notions of multiplicative unitary [\[4\]](#page-68-0) and of a co-associative coproduct on a von Neumann algebra. Then, F. Lesieur [\[24\]](#page-69-5), starting from a Hopf bimodule, when there exist a left-invariant operator-valued weight and a right-invariant operator-valued weight, mimicking in that wider setting what was done in [\[22,](#page-69-0) [23\]](#page-69-1), obtained a pseudo-multiplicative unitary, and called "measured quantum groupoids" these objects. A new set of axioms had been given in an appendix of $[13]$. In $[13]$ and $[14]$, most of the results given in $[41]$ were generalized up to measured quantum groupoids.

This theory, up to now, bears two defects:

First, it is only a theory in a von Neumann algebra setting. The second author had made many attemps in order to provide a C^* -algebra version of it (see [\[39\]](#page-70-1) for a survey); these attemps were fruitful, but not sufficient to complete a theory equivalent to the von Neumann one.

Second, there is a lack of interesting examples. For instance, the transformation groupoid (i.e. the groupoid given by a locally compact group right acting on a locally

compact space), which is the first non-trivial example of a groupoid [\[32,](#page-70-3) 1.2.a], had no quantum analog up to this article.

1.3. Measured quantum transformation groupoid. This article is devoted to the construction of a family of examples of measured quantum groupoids. Most of the results were announced in [\[40\]](#page-70-4). The key point, is, when looking at a transformation groupoid given by a locally compact group G having a right action $\mathfrak a$ on a locally compact space X, to add the fact that the dual \hat{G} is trivially right acting also on $L^{\infty}(X)$, and that the triple $(L^{\infty}(X), \mathfrak{a}, id)$ is a G-Yetter–Drinfel'd algebra, and, more precisely, a braided-commutative G-Yetter–Drinfel'd algebra.

The aim of this article is to generalize the construction of transformation groupoids, using this remark which shows that this generalization is not to be found for any action of a locally compact quantum group, but for a braided-commutative G-Yetter–Drinfel'd algebra.

Then, for any locally compact quantum group G, looking at any braidedcommutative Yetter–Drinfel'd algebra $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$, it is possible to put a structure of Hopf bimodule on the crossed product $G \ltimes_{\alpha} N$, equipped with a left-invariant operator-valued weight, and with a right-invariant operator-valued weight. In order to get a measured quantum groupoid, one has to choose on N (which is the basis of the measured quantum groupoid) a normal faithful semi-finite weight ν that satisfies some condition with respect to the action α ; for example, ν could be invariant with respect to a. It appears then that the dual measured quantum groupoid is the structure associated to the braided-commutative Yetter–Drinfel'd algebra (N, \hat{a}, α) .

In an algebraic framework, similar results were obtained in [\[25\]](#page-69-8) and [\[3\]](#page-68-2). It is also interesting to notice that, as for locally compact quantum groups, the framework of measured quantum groupoids appears to be a good structure in which the algebraic results can be generalized.

The article is organized as follows:

In Section [2](#page-3-0) are recalled all the necessary results needed: namely locally compact quantum groups (2.1) , actions of locally compact quantum groups on a von Neumann algebra (2.2) , Drinfel'd double of a locally compact quantum group (2.3) , Yetter– Drinfel'd algebras [\(2.4\)](#page-8-1), and braided-commutative Yetter–Drinfel'd algebras [\(2.5\)](#page-10-0).

In Section [3,](#page-12-0) we study relatively invariant weights with respect to an action, and then invariant weights for a Yetter–Drinfel'd algebra, and prove that such a weight exists when the von Neumann algebra N is properly infinite.

In Section [4,](#page-18-0) we construct the Hopf–von Neumann structure associated to a braided-commutative G-Yetter–Drinfel'd algebra. The precise definition of such a structure is given in [4.1](#page-18-1) and [4.2.](#page-20-0) We construct also a co-inverse of this Hopf–von Neumann structure.

In Section [5,](#page-29-0) we study the conditions to put on the weight ν to construct a measured quantum groupoid associated to a braided-commutative G-Yetter–Drinfel'd algebra. These conditions hold, in particular, if the weight ν is invariant with respect to α . The precise definition and properties of measured quantum groupoids are given in [5.1,](#page-30-0) [5.2,](#page-31-0) [5.3.](#page-32-0)

In Section 6 , we obtain the dual of this measured quantum groupoid, which is the measured quantum groupoid obtained when permuting the actions α and $\hat{\alpha}$.

Finally, in Section [7,](#page-49-0) we give several examples of measured quantum groupoids which can be constructed this way, and in Section [8,](#page-58-0) we study more carefully the case of a quotient type co-ideal of a compact quantum group: in that situation, one of the measured quantum groupoids constructed in [7.4.4](#page-56-0) is Morita equivalent to the quantum subgroup.

2. Preliminaries

2.1. Locally compact quantum groups. A quadruplet $\mathbb{G} = (M, \Gamma, \varphi, \psi)$ is a *locally compact quantum group* if:

- (i) M is a von Neumann algebra,
- (ii) Γ is an injective unital *-homomorphism from M into the von Neumann tensor product $M \otimes M$, called a *coproduct*, satisfying $(\Gamma \otimes id)\Gamma = (id \otimes \Gamma)\Gamma$ (the coproduct is called *co-associative*),
- (iii) φ is a normal faithful semi-finite weight on M^+ which is *left-invariant*, i.e.,

$$
(\mathrm{id}\otimes\varphi)\Gamma(x) = \varphi(x)1_M \quad \text{for all } x \in \mathfrak{M}_{\varphi}^+;
$$

(iv) ψ is a normal faithful semi-finite weight on M^+ which is *right-invariant*, i.e.,

$$
(\psi \otimes id)\Gamma(x) = \psi(x)1_M \quad \text{for all } x \in \mathfrak{M}_{\psi}^+.
$$

In this definition (and in the following), \otimes means the von Neumann tensor product, $(id \otimes \varphi)$ (resp. $(\psi \otimes id)$) is an operator-valued weight from $M \otimes M$ to $M \otimes \mathbb{C}$ (resp. $C \otimes M$). This is the definition of the von Neumann version of a locally compact quantum group [\[23\]](#page-69-1). See also, of course [\[22\]](#page-69-0).

We shall use the usual data H_{φ} , J_{φ} , Δ_{φ} of Tomita–Takesaki theory associated to the weight φ (see [\[38,](#page-70-0) Chap. 6–9], [\[36,](#page-70-5) Chap. 10], [\[35,](#page-70-6) Chap. 1–2]), which, for simplification, we write as H, J, Δ . We regard M as a von Neumann algebra on H_{φ} and identify the opposite von Neumann algebra M° with the commutant M' .

On the Hilbert tensor product $H \otimes H$, Kustermanns and Vaes constructed a unitary W , called the *fundamental unitary*, which satisfies the *pentagonal equation*

$$
W_{23}W_{12}=W_{12}W_{13}W_{23},
$$

where, we use, as usual, the leg-numbering notation. This unitary contains all the data of $G: M$ is the weak closure of the vector space (which is an algebra)

 $\{(id \otimes \omega)(W) : \omega \in B(H)_*\}$ and Γ is given by [\[22,](#page-69-0) 3.17]

$$
\Gamma(x) = W^*(1 \otimes x)W \quad \text{for all } x \in M,
$$

and

$$
(\mathrm{id}\otimes\omega_{J_{\varphi}\Lambda_{\varphi}(y_1^*y_2),\Lambda_{\varphi}(x)})(W)=(\mathrm{id}\otimes\omega_{J_{\varphi}\Lambda_{\varphi}(y_2),J_{\varphi}(y_1)})\Gamma(x^*)
$$

for all x, y_1 , y_2 in \mathfrak{N}_{φ} . It is then possible to construct an unital anti- $*$ -automorphism R of M which is involutive ($R^2 = id$), defined by

$$
R[(\mathrm{id}\otimes\omega_{\xi,\eta})(W)] = (\mathrm{id}\otimes\omega_{J\eta,J\xi})(W) \quad \text{for all } \xi,\eta \in H.
$$

This map is a *co-inverse* (often called the *unitary antipode*), which means that

$$
\Gamma \circ R = \varsigma \circ (R \otimes R) \circ \Gamma,
$$

where ζ is the flip of $M \otimes M$ [\[22,](#page-69-0) 5.26]. It is straightforward to get that $\varphi \circ R$ is a right-invariant normal semi-finite faithful weight and, thanks to a unicity theorem, is therefore proportional to ψ . We shall always suppose that $\psi = \varphi \circ R$.

Associated to (M, Γ) is a *dual* locally compact quantum group $(\widehat{M}, \widehat{\Gamma})$, where \widehat{M} is the weak closure of the vector space (which is an algebra) $\{(\omega \otimes id)(W) : \omega \in B(H)_*\}$, and $\widehat{\Gamma}$ is given by

$$
\widehat{\Gamma}(y) = \sigma W(y \otimes 1)W^*\sigma \quad \text{for all } y \in \widehat{M}.
$$

Here, σ denotes the flip of $H \otimes H$. Let

$$
\|\omega\|_{\varphi} = \sup\{|\omega(x^*)| : x \in \mathfrak{N}_{\varphi}, \varphi(x^*x) \le 1\}, \quad I_{\varphi} = \{\omega \in M_* : \|\omega\|_{\varphi} < \infty\}.
$$

Then, it is possible to define a normal semi-finite faithful weight $\widehat{\varphi}$ on \widehat{M} such that $\widehat{\varphi}((\omega \otimes id)(W)^*(\omega \otimes id)(W)) = ||\omega||^2_{\varphi}$ [\[22,](#page-69-0) 8.13], and it is possible to prove that $\widehat{\varphi}$ is left-invariant with respect to $\widehat{\Gamma}$ [\[22,](#page-69-0) 8.15]. Moreover, the application $y \mapsto Jy^*J$ is a unital anti- $*$ -automorphism \widehat{R} of \widehat{M} , which is involutive ($\widehat{R}^2 = id$) and is a co-inverse. Therefore, $\widehat{\varphi} \circ \widehat{R}$ is right-invariant with respect to $\widehat{\Gamma}$.

Therefore $\widehat{G} = (\widehat{M}, \widehat{\Gamma}, \widehat{\varphi}, \widehat{\varphi} \circ \widehat{R})$ is a locally compact quantum group, called the *dual* of G. Its multiplicative unitary \widehat{W} is equal to $\sigma W^* \sigma$. The bidual locally compact quantum group \widehat{G} is equal to G. In particular, the construction of the dual weight, when applied to \widehat{G} gives that, for any ω in \widehat{M}_* , $(id \otimes \omega)(W^*)$ belongs to \mathfrak{N}_{φ} if and only if ω belongs to I , and we have then $\|\Lambda_{\varphi}((\mathrm{id} \otimes \omega)(W^*))\| = \|\omega\|$. .

e
is ' $^\varphi$. The Hilbert space $H_{\hat{\phi}}$ is isomorphic to (and will be identified with) H. For $\frac{\varphi}{\hat{I}}$ simplification, we write \hat{J} for $J_{\hat{\varphi}}$ and $\hat{\Delta}$ for $\Delta_{\hat{\varphi}}$; we have, for all $x \in M$, $R(x) = \hat{J} \times \hat{J}$ [23.2.11]. The operator W satisfies $\widehat{J}x^*\widehat{J}$ [\[23,](#page-69-1) 2.1]. The operator W satisfies

$$
(\widehat{\Delta}^{it} \otimes \Delta^{it})W(\widehat{\Delta}^{-it} \otimes \Delta^{-it}) = W
$$

and $(\widehat{J} \otimes J)W(\widehat{J} \otimes J) = W^*$.

Associated to (M, Γ) is *a scaling group*, which is a one-parameter group τ_t of automorphisms of M, such that [\[23,](#page-69-1) 2.1], for all $x \in M$, $t \in \mathbb{R}$, we have $\tau_t(x) = \widehat{\Delta}^{it} x \widehat{\Delta}^{-it}$, satisfying $\Gamma \circ \tau_t = (\tau_t \otimes \tau_t) \Gamma$ [\[22,](#page-69-0) 5.12], $R \circ \tau_t = \tau_t \circ R$ [22, 5.21], and $\Gamma \circ \sigma_t^{\varphi} = (\tau_t \otimes \sigma_t^{\varphi}) \Gamma$ [\[22,](#page-69-0) 5.38] (and, therefore, $\Gamma \circ \sigma_t^{\varphi \circ R} = (\sigma_t^{\varphi \circ R} \otimes \tau_{-t}) \Gamma$ [22, 5.17]).

The application $S = R \circ \tau_{-i/2}$ is called the *antipode* of G.

The modular groups of the weights φ and $\varphi \circ R$ commute, which leads to the definition of the *scaling constant* $\lambda \in \mathbb{R}$ and the *modulus*, which is a positive selfadjoint operator δ affiliated to M, such that $(D\varphi \circ R : D\varphi)_t = \lambda^{it^2/2} \delta^{it}$.

We have $\varphi \circ \tau_t = \lambda^t \varphi$, and the canonical implementation of τ_t is given by a positive non-singular operator P defined by $P^{it}\Lambda_{\varphi}(x) = \lambda^{t/2}\Lambda_{\varphi}(\tau_t(x))$. Moreover, the operator $\widehat{\Delta}$ is equal to the closure of $PJ\delta^{-1}J$, and the operator $\widehat{\delta}$ is equal to the closure of $P^{-1} J \delta J \delta^{-1} \Delta^{-1}$ ([\[23,](#page-69-1) 2.1] and [\[54,](#page-71-9) 2.5]).

We have $\hat{J}J = \lambda^{i/4}J\hat{J}$ [\[23,](#page-69-1) 2.12]. The operator \hat{P} is equal to P, the scaling constant $\hat{\lambda}$ is equal to λ^{-1} . Moreover, we have [\[54,](#page-71-9) 3.4]

$$
W(\widehat{\Delta}^{it} \otimes \widehat{\Delta}^{it})W^* = \delta^{it}\widehat{\Delta}^{it} \otimes \widehat{\Delta}^{it}.
$$

A *representation* of G on a Hilbert space K is a unitary $U \in M \otimes B(K)$, satisfying $(\Gamma \otimes id)(U) = U_{23}U_{13}$. It is well known that such a representation satisfies that, for any ξ , η in K, the operator (id $\otimes \omega_{\xi,\eta}$)(U) belongs to $\mathcal{D}(S)$ and that

$$
S[(\mathrm{id}\otimes\omega_{\xi,\eta})(U)]=(\mathrm{id}\otimes\omega_{\xi,\eta})(U^*)
$$

(a proof for measured quantum groupoids can be found in [\[13,](#page-69-6) 5.10]).

Other locally compact quantum groups are $\mathbb{G}^{\circ} = (M, \zeta \circ \Gamma, \varphi \circ R, \varphi)$ (the *opposite* locally compact quantum group) and $\mathbb{G}^c = (M', (j \otimes j) \circ \Gamma \circ j, \varphi \circ j, \varphi \circ R \circ j)$ (the *commutant* locally compact quantum group) where $j(x) = J_{\varphi} x^* J_{\varphi}$ is the canonical anti- $*$ -isomorphism between M and M' given by Tomita–Takesaki theory. It is easy to get that $\widehat{\mathbb{G}}^{\circ} = (\widehat{\mathbb{G}})^{\circ}$ and $\widehat{\mathbb{G}}^{\circ} = (\widehat{\mathbb{G}})^{\circ}$ [\[23,](#page-69-1) 4.2]. We have $M \cap \widehat{M} =$ $M' \cap \widehat{M} = M \cap \widehat{M}' = M' \cap \widehat{M}' = \mathbb{C}$. The multiplicative unitary W° of \mathbb{G}° is equal to $(\hat{J} \otimes \hat{J})W(\hat{J} \otimes \hat{J})$, and the multiplicative unitary W^c of \mathbb{G}^c is equal to $(J \otimes J)W(J \otimes J).$

Moreover, the norm closure of the space $\{(\mathrm{id} \otimes \omega)(W) : \omega \in B(H)_*\}$ is a C^* -algebra denoted $C_0^r(\mathbb{G})$, which is invariant under R, and, together with the restrictions of Γ , φ and $\varphi \circ R$ will give the *reduced* C^* -algebraic locally compact *quantum group* [\[22,](#page-69-0)[23\]](#page-69-1). In [\[21\]](#page-69-9) was defined also a *universal* version $C_0^{\text{u}}(\mathbb{G})$, which is equipped with a coproduct Γ_u . There exists a canonical surjective $*$ -homomorphism $\pi_{\mathbb{G}}$ from $C_0^{\mathfrak{u}}(\mathbb{G})$ to $C_0^{\mathfrak{r}}(\mathbb{G})$, such that $(\pi_{\mathbb{G}} \otimes \pi_{\mathbb{G}})\Gamma_u = \Gamma \circ \pi_{\mathbb{G}}$. Then, $\varphi \circ \pi_{\mathbb{G}}$ (resp. $\varphi \circ R \circ \pi_{\mathbb{G}}$) is a (non-faithful) weight on $C_0^{\mathfrak{u}}(\mathbb{G})$ which is left-invariant (resp. right-invariant).

If G is a locally compact group equipped with a left Haar measure ds , then, by duality of the Banach algebra structure of $L^1(G, ds)$, it is possible to define a coassociative coproduct Γ_G^a on $L^\infty(G, ds)$ and to give to $(L^\infty(G, ds), \Gamma_G^a, ds, ds^{-1})$ a structure of locally compact quantum group, called G again; any locally compact quantum group whose underlying von Neumann algebra is abelian is of that type. Then, its dual locally compact quantum group \widehat{G} is $(\mathcal{L}(G), \Gamma_G^s, \varphi_G, \varphi_G)$, where $\mathcal{L}(G)$ is the von Neumann algebra generated by the left regular representation λ_G of G on $L^2(G, ds)$, Γ_G^s is defined, for all $s \in G$, by $\Gamma_G^s(\lambda_G(s)) =$ $\lambda_G(s) \otimes \lambda_G(s)$, and φ_G is defined, for any f in the algebra $\mathcal{K}(G)$ of continuous functions with compact support, by $\varphi_G(\int_G f(s)\lambda_G(s)ds) = f(e)$, where e is the neutral element of G. Any locally compact quantum group which is symmetric (i.e. such that $\zeta \circ \Gamma = \Gamma$) is of that type.

Let (A, Γ) be a *compact quantum group*, that is, A is a unital C^{*}-algebra and Γ is a coassociative coproduct from A to $A \otimes_{min} A$ satisfying the cancellation property, i.e., $(A \otimes_{min} 1)\Gamma(A)$ and $(1 \otimes_{min} A)\Gamma(A)$ are dense in $A \otimes_{min} A$ [\[50\]](#page-71-1). Then, there exists a left- and right-invariant state ω on A, and we can always restrict to the case when ω is faithful. Moreover, Γ extends to a normal $*$ -homomorphism from $\pi_{\omega}(A)''$ to the (von Neumann) tensor product $\pi_{\omega}(A)'' \otimes \pi_{\omega}(A)''$, which we shall still denote by Γ , for simplification, and ω can be extended to a normal faithful state on $\pi_{\omega}(A)^{\prime\prime}$, we shall still denote ω for simplification. Then, $(\pi_{\omega}(A)^{\prime\prime}, \Gamma, \omega, \omega)$ is a locally compact quantum group, which we shall call the von Neumann version of (A, Γ) . Its dual is called a discrete quantum group.

2.2. Left actions of a locally compact quantum group. A *left action* of a locally compact quantum group G on a von Neumann algebra N is an injective unital *-homomorphism a from N into the von Neumann tensor product $M \otimes N$ such that

$$
(\mathrm{id}\otimes\mathfrak{a})\mathfrak{a}=(\Gamma\otimes\mathrm{id})\mathfrak{a},
$$

where id means the identity on M or on N as well $[41, 1.1]$ $[41, 1.1]$.

We shall denote by $N^{\mathfrak{a}}$ the sub-algebra of N such that $x \in N^{\mathfrak{a}}$ if and only if $a(x) = 1 \otimes x$ [\[41,](#page-70-2) .2]. If $N^a = \mathbb{C}$, the action a is called *ergodic*. The formula $T_a = (\varphi \circ R \otimes id)$ a defines a normal faithful operator-valued weight from N onto N^a. We shall say that α is *integrable* if and only if this operator-valued weight is semifinite [\[41,](#page-70-2) 1.3, 1.4].

To any left action is associated [\[41,](#page-70-2) 2.1] a *crossed product* $G \ltimes_{\mathfrak{a}} N = (\mathfrak{a}(N) \cup \widehat{M} \otimes \mathbb{C})^n$ on which $\widehat{\mathbb{G}}^{\circ}$ acts canonically by a left action $\tilde{\mathfrak{a}}$, called the *dual action* [\[41,](#page-70-2) 2.2], as follows:

$$
\tilde{\mathfrak{a}}(X) = (\widehat{W}^{\circ*} \otimes 1)(1 \otimes X)(\widehat{W}^{\circ} \otimes 1) \quad \text{for all } X \in \mathbb{G} \ltimes_{\mathfrak{a}} N;
$$

in particular, for any $x \in N$ and $y \in \widehat{M}$,

$$
\tilde{\mathfrak{a}}(\mathfrak{a}(x)) = 1 \otimes \mathfrak{a}(x), \quad \tilde{\mathfrak{a}}(y \otimes 1) = \widehat{\Gamma}^{\circ}(y) \otimes 1.
$$

Moreover, we have $(\mathbb{G} \ltimes_{\mathfrak{a}} N)^{\tilde{\mathfrak{a}}} = \mathfrak{a}(N)$ [\[41,](#page-70-2) 2.7].

1150 M. Enock and T. Timmermann

The operator-valued weight $T_{\tilde{p}} = (\hat{\varphi} \otimes id) \circ \tilde{a}$ is semi-finite [\[41,](#page-70-2) 2.5], which allows, for any normal faithful semi-finite weight ν on N , to define a lifted or *dual* normal faithful semi-finite weight $\tilde{\nu}$ on $G \ltimes_{\alpha} N$ by $\tilde{\nu} = \nu \circ \alpha^{-1} \circ T_{\tilde{\alpha}}$ [\[41,](#page-70-2) 3.1]. The Hilbert space $H_{\tilde{\nu}}$ is canonically isomorphic to (and will be identified with) the Hilbert tensor product $H \otimes H_{\nu}$ [\[41,](#page-70-2) 3.4 and 3.10], and this isomorphism identifies, for $x \in \mathfrak{N}_{\nu}$ and $y \in \mathfrak{N}_{\widehat{\omega}}$, the vector $\Lambda_{\widetilde{\nu}}((y \otimes 1)\mathfrak{a}(x))$ with $\Lambda_{\widehat{\omega}}(y) \otimes \Lambda_{\nu}(x)$. Moreover, for any $X \in \mathfrak{N}_{\tilde{\nu}}$, there exists a family of operators X_i of the form $X_i = \Sigma_j (y_{i,j} \otimes 1) \mathfrak{a}(x_{i,j})$, such that X_i is weakly converging to X and $\Lambda_{\tilde{\nu}}(X_i)$ is converging to $\Lambda_{\tilde{\nu}}(X)$ [\[41,](#page-70-2) 3.4 and 3.10].

Then

$$
U_{\nu}^{\mathfrak{a}}=J_{\widetilde{\nu}}(\widehat{J}\otimes J_{\nu})
$$

is a unitary which belongs to $M \otimes B(H_\nu)$, satisfies $(\Gamma \otimes id)(U_\nu^{\mathfrak{a}}) = (U_\nu^{\mathfrak{a}})_{23}(U_\nu^{\mathfrak{a}})_{13}$ and implements a in the sense that $\mathfrak{a}(x) = U_{\nu}^{\mathfrak{a}} (1 \otimes x) (U_{\nu}^{\mathfrak{a}})^*$ for all $x \in N$ [\[41,](#page-70-2) 3.6, 3.7 and 4.4]. The operator U_{ν}^{α} is called *the canonical implementation* of α on H_{ν} . Moreover, we have, trivially, $(U_{\nu}^{\mathfrak{a}})^* = (\widehat{J} \otimes J_{\nu}) J_{\widetilde{\nu}} = (\widehat{J} \otimes J_{\nu}) U_{\nu}^{\mathfrak{a}} (\widehat{J} \otimes J_{\nu})$, and we get that

$$
J_{\widetilde{\nu}}\Lambda_{\widetilde{\nu}}((y\otimes 1)\mathfrak{a}(x))=U_{\nu}^{\mathfrak{a}}(\widehat{J}\Lambda_{\widehat{\varphi}}(y)\otimes J_{\nu}\Lambda_{\nu}(x)).
$$

If we take another normal faithful semi-finite weight ψ on N, there exists a unitary u from H_{ν} onto H_{ψ} which intertwines the standard representations π_{ν} and π_{ψ} , and we have then $U_{\psi}^{\mathfrak{a}} = (1 \otimes u) U_{\nu}^{\mathfrak{a}} (1 \otimes u^*)$ [\[41,](#page-70-2) 4.1].

The application $(\zeta \otimes id)(id \otimes \mathfrak{a})$ is a left action of G on $B(H) \otimes N$. Moreover, in the proof of [\[41,](#page-70-2) 4.4], we find that $(\sigma \otimes id)U_{T r \otimes \nu}^{(\zeta \otimes id)(id \otimes \alpha)}(\sigma \otimes id) = 1 \otimes U_{\nu}^{\alpha}$, where σ is the flip from $H \otimes H_{\nu}$ to $H_{\nu} \otimes H$, or vice versa.

A *right action* of a locally compact quantum G on a von Neumann algebra N is an injective unital $*$ -homomorphism α from N into the von Neumann tensor product $N \otimes M$ such that

$$
(\mathfrak{a}\otimes\mathrm{id})\mathfrak{a}=(\mathrm{id}\otimes\Gamma)\mathfrak{a}.
$$

Then, ς a is a left action of \mathbb{G}° on N (where ς is the flip from $N \otimes M$ onto $M \otimes N$).

In [\[54,](#page-71-9) 2.4] and [\[2,](#page-68-3) Appendix] is defined, for any normal faithful semi-finite weight ν on N and $t \in \mathbb{R}$, the *Radon–Nykodym derivative*

$$
(Dv \circ \mathfrak{a} : Dv)_t = \Delta_{\tilde{v}}^{it} (\widehat{\Delta}^{-it} \otimes \Delta_v^{-it}).
$$

This unitary, denoted D_t for simplification, belongs to $M \otimes N$ and

$$
(\Gamma \otimes id)(D_t) = (id \otimes \mathfrak{a})(D_t)(1 \otimes D_t),
$$

 $([2, 10.3]$ $([2, 10.3]$ $([2, 10.3]$ or $[53, 3.4]$ $[53, 3.4]$ and $[54, 3.7]$ $[54, 3.7]$). Moreover, it is straightorward to get

$$
D_{t+s}=D_t(\tau_t\otimes\sigma_t^{\nu})(D_s)=D_s(\tau_s\otimes\sigma_s^{\nu})(D_t).
$$

2.3. Drinfel'd double of a locally compact quantum group. Let $\mathbb{G} = (M, \Gamma, \varphi, \varphi \circ R)$ be a locally compact quantum group, $\widehat{G} = (\widehat{M}, \widehat{\Gamma}, \widehat{\varphi}, \widehat{\varphi} \circ \widehat{R})$ its dual, then it is possible to construct $[2, 27, 52]$ $[2, 27, 52]$ $[2, 27, 52]$ $[2, 27, 52]$ $[2, 27, 52]$ another locally compact quantum group

$$
D(\mathbb{G})=(M\otimes \widehat{M},\Gamma_D,\varphi\otimes \widehat{\varphi}\circ \widehat{R},\varphi\otimes \widehat{\varphi}\circ \widehat{R}),
$$

called the *Drinfel'd double* of G, where Γ_D is defined by

$$
\Gamma_D(x \otimes y) = \text{Ad}(1 \otimes \sigma W \otimes 1)(\Gamma(x) \otimes \widehat{\Gamma}(y))
$$

for all $x \in M$, $y \in \widehat{M}$. Here and throughout this paper, given a unitary U on a Hilbert space \mathfrak{H} , we denote by Ad(U) the automorphism of $B(\mathfrak{H})$ defined as usual by $x \mapsto UxU^*$ for all $x \in B(\mathfrak{H})$.

The co-inverse R_D of $D(G)$ is given by

$$
R_D(x \otimes y) = \mathrm{Ad}(W^*)(R(x) \otimes \widehat{R}(y)).
$$

This locally compact quantum group is always unimodular, which means that the left-invariant weight is also right-invariant. In the sense of $[42, 2.9]$ $[42, 2.9]$, \widehat{G} and G are closed quantum subgroups of $\widehat{D(G)}$, which means that the injection of \widehat{M} (resp. M) into the underlying von Neumann algebra of its dual $\widehat{D(G)}$ preserve the coproduct. (See [7.4.1](#page-54-0) for more details about this definition.)

2.4. Yetter–Drinfel'd algebras. Let $G = (M, \Gamma, \varphi, \varphi \circ R)$ be a locally compact quantum group and $\widehat{\mathbb{G}} = (\widehat{M}, \widehat{\Gamma}, \widehat{\varphi}, \widehat{\varphi} \circ \widehat{R})$ its dual. A G-Yetter–Drinfel'd algebra [\[28\]](#page-70-9) is a von Neumann algebra N with a left action $\mathfrak a$ of $\mathbb G$ and a left action $\widehat{\mathfrak a}$ of $\widehat{\mathbb G}$ such that

 $(id \otimes \mathfrak{a})\widehat{\mathfrak{a}}(x) = \text{Ad}(\sigma W \otimes 1)(id \otimes \widehat{\mathfrak{a}})\mathfrak{a}(x)$ for all $x \in N$.

One should remark that if $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ is a G-Yetter–Drinfel'd algebra, then $(N, \widehat{\mathfrak{a}}, \mathfrak{a})$ is a \widehat{G} -Yetter–Drinfel'd algebra.

If B is a von Neumann sub-algebra of N such that $a(B) \subset M \otimes B$ and $\widehat{a}(B) \subset$ $\widehat{M} \otimes B$, then, it is clear that the restriction $\mathfrak{a}_{|B}$ (resp. $\widehat{\mathfrak{a}}_{|B}$) is a left action of G (resp. \widehat{G}) on B, and that $(B, \mathfrak{a}_{|B}, \widehat{\mathfrak{a}}_{|B})$ is a Yetter–Drinfel'd algebra, which we shall call a sub-G-Yetter–Drinfel'd algebra of $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$.

2.4.1 Theorem ([\[28,](#page-70-9) 3.2]). Let $G = (M, \Gamma, \varphi, \varphi \circ R)$ be a locally compact quantum *group,* $\widehat{G} = (\widehat{M}, \widehat{\Gamma}, \widehat{\varphi}, \widehat{\varphi} \circ \widehat{R})$ *its dual,* $D(G)$ *its Drinfel'd double and* N *a von Neumann algebra equipped with a left action* α *of* \mathbb{G} *and a left action* $\widehat{\alpha}$ *of* $\widehat{\mathbb{G}}$ *. Then the following conditions are equivalent:*

- (i) $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ *is a* G-Yetter–Drinfel'd algebra;
- (ii) $(id \otimes \hat{\mathfrak{a}})$ *a is a left action of* $D(\mathbb{G})$ *on* N.

2.4.2 Theorem ([\[28,](#page-70-9) 3.2]). Let $\mathbb{G} = (M, \Gamma, \varphi, \varphi \circ R)$ be a locally compact quantum *group,* $\widehat{G} = (\widehat{M}, \widehat{\Gamma}, \widehat{\varphi}, \widehat{\varphi} \circ \widehat{R})$ *its dual,* $D(G)$ *its Drinfeld's double and* \mathfrak{a}_D *a left action of* $D(G)$ *on a von Neumann algebra N. Then there exist a left action* α *of* G *on* N and a left action \hat{a} of \hat{G} *on* N such that $a_D = (id \otimes \hat{a})a$. These actions are *determined by the conditions*

 $(id \otimes id \otimes \mathfrak{a})\mathfrak{a}_D = Ad(1 \otimes \sigma W \otimes 1)(\Gamma \otimes id \otimes id)\mathfrak{a}_D,$

 $(id \otimes id \otimes \widehat{\mathfrak{a}}) \mathfrak{a}_D = (id \otimes \widehat{\Gamma} \otimes id)\mathfrak{a}_D,$

and $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ *is a* G-Yetter–Drinfel'd algebra.

2.4.3 Proposition. With the notation of [2.4.2,](#page-8-2) we have $N^{\mathfrak{a}}D = N^{\mathfrak{a}} \cap N^{\mathfrak{a}}$.

Proof. As $a_D = (id \otimes \widehat{a})a$, we get that $N^a \cap N^{\widehat{a}} \subset N^{a_D}$. On the other hand, using the formula $(id \otimes id \otimes \widehat{a})a_D = (id \otimes \widehat{\Gamma} \otimes id)a_D$, we get that every $x \in N^{a_D}$ belongs to $N^{\widehat{a}}$.
Moreover, using the formula $(id \otimes id \otimes a)a_D = Ad(1 \otimes \sigma W \otimes 1)(\Gamma \otimes id \otimes id)a_D$. Moreover, using the formula (id \otimes id \otimes a)a $_D = \text{Ad}(1 \otimes \sigma W \otimes 1)(\Gamma \otimes id \otimes id)a_D$, we then get that every $x \in N^{\mathfrak{a}_D}$ also belongs to $N^{\mathfrak{a}}$. \Box

2.4.4 Proposition. Let $G = (M, \Gamma, \varphi, \varphi \circ R)$ be a locally compact quantum group, $\hat{G} = (\hat{M}, \hat{\Gamma}, \hat{\varphi}, \hat{\varphi} \circ \hat{R})$ its dual, $(N, \mathfrak{a}, \hat{\mathfrak{a}})$ a G-Yetter–Drinfel'd algebra and ν a *normal faithful semi-finite weight on* N. Let $t \in \mathbb{R}$, $D_t = (Dv \circ \mathfrak{a} : Dv)_t$ and $\widehat{D}_t = (Dv \circ \widehat{\mathfrak{a}} : Dv)_t$. Then

$$
\mathrm{Ad}(\sigma W \otimes 1)[(\mathrm{id} \otimes \widehat{\mathfrak{a}})(D_t)(1 \otimes \widehat{D}_t)] = (\mathrm{id} \otimes \mathfrak{a})(\widehat{D}_t)(1 \otimes D_t),
$$

and if $\tilde{\nu}$ and $\tilde{\nu}$ denote the weights on $\mathbb{G} \ltimes_{\mathfrak{a}} N$ and $\widehat{\mathbb{G}} \ltimes_{\widehat{\mathfrak{a}}} N$, respectively, dual to ν , then *then*

$$
\mathrm{Ad}(\sigma W \otimes 1)[(\mathrm{id} \otimes \widehat{\mathfrak{a}})(D_t)(\widehat{\Delta}^{it} \otimes \Delta_{\widehat{\mathfrak{p}}}^{it})] = (\mathrm{id} \otimes \mathfrak{a})(\widehat{D}_t)(\Delta^{it} \otimes \Delta_{\widetilde{\mathfrak{p}}}^{it}).
$$

Proof. As $(\tau_t \otimes \hat{\tau}_t)(W) = W$ for all $t \in \mathbb{R}$, the first equation is a straightforward application of [\[2,](#page-68-3) 10.4]. The second one follows easily using the relations

$$
(\widehat{\Delta}^{it} \otimes \Delta_{\widehat{\mathfrak{p}}}^{it})(W^*\sigma \otimes 1) = (1 \otimes \widehat{D}_t)(\widehat{\Delta}^{it} \otimes \Delta^{it} \otimes \Delta_{\mathfrak{p}}^{it})(W^*\sigma \otimes 1)
$$

= $(1 \otimes \widehat{D}_t)(W^*\sigma \otimes 1)(\Delta^{it} \otimes \widehat{\Delta}^{it} \otimes \Delta_{\mathfrak{p}}^{it})$

 \Box

and $D_t(\widehat{\Delta}^{it} \otimes \Delta^{it}_v) = \Delta^{it}_{\widetilde{v}}$.

2.4.5. Basic example and De Commer's construction [\[7\]](#page-68-4). We can consider the coproduct Γ_D of $D(G)$ as a left action of $D(G)$ on $M \otimes \widehat{M}$. Using [2.4.1,](#page-8-3) we get that there exist a left action b of G on $M \otimes \widehat{M}$ and a left action $\widehat{\mathfrak{b}}$ of $\widehat{\mathbb{G}}$ on $M \otimes \widehat{M}$ such that $\Gamma_D = (id \otimes \widehat{b})\mathfrak{b}$. We easily obtain that for all $X \in M \otimes \widehat{M}$,

$$
\mathfrak{b}(X)=(\Gamma\otimes\mathrm{id})(X),\quad \widehat{\mathfrak{b}}(X)=\mathrm{Ad}(\sigma W\otimes 1)[(\mathrm{id}\otimes\widehat{\Gamma})(X)].
$$

Therefore, b and $\widehat{\mathfrak{b}}$ appear as the actions associated by [\[7,](#page-68-4) 6.5.2] to the closed quantum subgroups G and \widehat{G} of $\widehat{D(G)}$.

De Commer's construction allows us to make a link between this basic example and any Yetter–Drinfel'd algebra; namely, if $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ is a Yetter–Drinfel'd algebra, let us define $a_D = (id \otimes \hat{a})\hat{a}$ the left action of $D(G)$ on N, and, given a normal, semi-finite faithful weight ν on N , let $U_{\nu}^{\mathfrak{a}_D}$, $U_{\nu}^{\mathfrak{a}}$, $U_{\nu}^{\mathfrak{a}}$ be the canonical implementation of \mathfrak{a}_D , $\mathfrak{a},\hat{\mathfrak{a}}$. In the sense of De Commer, \mathfrak{a} and $\hat{\mathfrak{a}}$ are "restrictions" (to G and $\hat{\mathfrak{a}}$) of \mathfrak{a}_D and, using [\[7,](#page-68-4) 6.5.3 and 6.5.4], we get that

$$
(\mathfrak{b}\otimes\mathrm{id})(U_{\nu}^{\mathfrak{a}_D})=(U_{\nu}^{\mathfrak{a}})_{14}(U_{\nu}^{\mathfrak{a}_D})_{234},\quad (\widehat{\mathfrak{b}}\otimes\mathrm{id})(U_{\nu}^{\mathfrak{a}_D})=(U_{\nu}^{\widehat{\mathfrak{a}}})_{14}(U_{\nu}^{\mathfrak{a}_D})_{234}.
$$

In particular,

$$
(U_v^{a_D})_{125}(U_v^{a_D})_{345} = (\Gamma_D \otimes \text{id})(U_v^{a_D})
$$

= $(\text{id} \otimes \hat{\mathfrak{b}} \otimes \text{id})(\mathfrak{b} \otimes \text{id})(U_v^{a_D})$
= $(\text{id} \otimes \hat{\mathfrak{b}} \otimes \text{id})[(U_v^{a_D})_{14}(U_v^{a_D})_{234}] = (U_v^{a})_{15}(U_v^{a_D})_{25}(U_v^{a_D})_{345},$

whence $U_{\nu}^{\alpha D} = (U_{\nu}^{\alpha})_{23} (U_{\nu}^{\alpha})_{13}$. As this result depends on an unpublished part of [\[7\]](#page-68-4), we shall give a different proof of this formula in 3.8 , using the techniques of invariant weights, and then give several technical corollaries of this fact which will be used throughout this paper.

2.5. Braided-commutativity of Yetter–Drinfel'd algebras.

2.5.1 Definition. Let G be a locally compact quantum group and a a left action of G on a von Neumann algebra N. For any $x \in N$, let us define

$$
\mathfrak{a}^{c}(x^{o}) = (j \otimes \cdot^{o})\mathfrak{a}(x) = \text{Ad}(J \otimes J_{\nu})[\mathfrak{a}(x)^{*}],
$$

$$
\mathfrak{a}^{o}(x^{o}) = (R \otimes \cdot^{o})\mathfrak{a}(x) = \text{Ad}(\widehat{J} \otimes J_{\nu})[\mathfrak{a}(x)^{*}].
$$

Then \mathfrak{a}^c is a left action of \mathbb{G}^c on N^o , and \mathfrak{a}^o is a left action of \mathbb{G}^o on N^o .

Let ν be a normal semi-finite faithful weight on N and ν ^o the normal semifinite faithful weight on N° defined by $v^{\circ}(x^{\circ}) = v(x)$ for any $x \in N^{+}$. Let $D_t = (Dv \circ \mathfrak{a} : Dv)_t$, $D_t^0 = (Dv^0 \circ \mathfrak{a}^0 : Dv^0)_t$, which belongs to $M \otimes N^0$, and $D_t^c = D(v^o \circ \mathfrak{a}^c : D v^o)_t$, which belongs to $M' \otimes N^o$. Then for all $t \in \mathbb{R}$,

$$
D_{-t}^{\circ} = \text{Ad}(\widehat{J} \otimes J_{\nu})[D_t], \quad D_{-t}^{\circ} = \text{Ad}(J \otimes J_{\nu})[D_t].
$$

2.5.2 Lemma. *Let* G *be a locally compact quantum group,* a *a left action of* G *on* a von Neumann algebra N, v a normal faithful semi-finite weight on N, and $U_{\mathfrak{p}}^{\mathfrak{a}}$ the *standard implementation of* a*. Then:*

(i) $(\mathbb{G} \ltimes_{\mathfrak{a}} N)' = U_{\nu}^{\mathfrak{a}}(\mathbb{G}^{\mathfrak{a}} \ltimes_{\mathfrak{a}^{\mathfrak{0}}} N^{\mathfrak{0}})(U_{\nu}^{\mathfrak{a}})^{*};$

M. Enock and T. Timmermann

- (ii) $(U_{\nu}^{\mathfrak{a}})^*$ is the standard implementation of the left action $\mathfrak{a}^{\mathfrak{o}}$ on $N^{\mathfrak{o}}$ with respect to the opposite weight v° . In particular, $(U_v^{\mathfrak{a}})^*$ is a representation of \mathbb{G}° and $\mathfrak{a}^{\circ}(x^{\circ}) = (U_{\nu}^{\mathfrak{a}})^*(1 \otimes x^{\circ})U_{\nu}^{\mathfrak{a}}$ for all $x \in N$.
- (iii) $\Delta_{\tilde{v}}^{it}U_{\nu}^{\mathfrak{a}}=U_{\nu}^{\mathfrak{a}}D_{-t}^{\circ}(\widehat{\Delta}^{it}\otimes \Delta_{\nu}^{it})$ and $\text{Ad}(\widehat{\Delta}^{it}\otimes \Delta_{\nu}^{it})[(U_{\nu}^{\mathfrak{a}})^{*}]=(D_{-t}^{\circ})^{*}(U_{\nu}^{\mathfrak{a}})^{*}D_{t}$ for all $t \in \mathbb{R}$.

(i) The relation $U_v^{\mathfrak{a}} = J_{\tilde{\nu}}(\hat{J} \otimes J_{\nu})$ and the definition of the crossed Proof. products imply

$$
U_{\nu}^{\mathfrak{a}}(\mathbb{G}^{\mathfrak{0}} \ltimes_{\mathfrak{a}^{\mathfrak{0}}} N^{\mathfrak{0}})(U_{\nu}^{\mathfrak{a}})^{*} = J_{\widetilde{\nu}}(\widehat{J} \otimes J_{\nu})((\widehat{J}\widehat{M}\widehat{J} \otimes 1_{H_{\nu}}) \cup \mathfrak{a}^{\mathfrak{0}}(N^{\mathfrak{0}}))''(\widehat{J} \otimes J_{\nu})J_{\widetilde{\nu}}= J_{\widetilde{\nu}}(\mathbb{G} \ltimes_{\mathfrak{a}} N)J_{\widetilde{\nu}}= (\mathbb{G} \ltimes_{\mathfrak{a}} N)'.
$$

(ii) Denote by μ the weight on $\mathbb{G}^{\circ} \ltimes_{\mathfrak{a}^{\circ}} N^{\circ}$ dual to v° . By §3 in [41], there exists a GNS-map Λ_{μ} : $\mathfrak{N}_{\mu} \to H \otimes H_{\nu}$ determined by

$$
\Lambda_{\mu}((\widehat{J}\mathcal{Y}\widehat{J}\otimes 1_{H_{\nu}})\mathfrak{a}^{0}(x^{0})^{*})=\widehat{J}\widehat{\Lambda}(\mathcal{Y})\otimes J_{\nu}\Lambda_{\nu}(\mathcal{X})
$$
\n(1)

for all $y \in \mathfrak{N}_{\widehat{\phi}}$ and $x \in \mathfrak{N}_{\nu}$, and the standard implementation $U_{\nu^0}^{\mathfrak{a}^0}$ of \mathfrak{a}^0 with respect to v° is given by $U_{v^{\circ}}^{\mathfrak{a}^{\circ}} = J_{\mu}(\widehat{J} \otimes J_{\nu}).$

On the other hand, the GNS-map $\Lambda_{\tilde{v}}$ for the dual weight \tilde{v} yields a GNS-map $\Lambda_{\tilde{v}^{\circ}}$ for the opposite \tilde{v}° on the commutant $J_{\tilde{v}}(M \ltimes_{\alpha} N)J_{\tilde{v}}$, determined by

$$
\Lambda_{\tilde{\nu}^0}(J_{\tilde{\nu}}(\mathbf{y}\otimes 1)\mathfrak{a}(x)J_{\tilde{\nu}})=J_{\tilde{\nu}}\Lambda_{\tilde{\nu}}((\mathbf{y}\otimes 1)\mathfrak{a}(x))=J_{\tilde{\nu}}(\widehat{\Lambda}(\mathbf{y})\otimes \Lambda_{\nu}(x))\qquad(2)
$$

for $y \in \mathfrak{N}_{\widehat{\phi}}$ and $x \in \mathfrak{N}_{\nu}$.

Comparing (1) with (2) and using the relation $U_{\nu}^{\mathfrak{a}} = J_{\tilde{\nu}}(\hat{J} \otimes J_{\nu})$, we can conclude that

$$
\Lambda_{\mu}((U_{\nu}^{\mathfrak{a}})^* a U_{\nu}^{\mathfrak{a}}) = (U_{\nu}^{\mathfrak{a}})^* \Lambda_{\tilde{\nu}^{\mathfrak{a}}}(a)
$$

for all $a \in \mathfrak{N}_{\tilde{\mathfrak{p}}^0}$. Consequently, $J_\mu = (U_\nu^{\mathfrak{a}})^* J_{\tilde{\mathfrak{p}}} U_\nu^{\mathfrak{a}}$ and $U_{\nu^0}^{\mathfrak{a}^0} = J_\mu(\widehat{J} \otimes J_\nu) = (U_\nu^{\mathfrak{a}})^*$. (iii) Using 2.2 , we have:

$$
\Delta_{\tilde{v}}^{it} U_{\nu}^{a} (\widehat{\Delta}^{-it} \otimes \Delta_{\nu}^{-it}) = \Delta_{\tilde{v}}^{it} J_{\tilde{\nu}} (\widehat{J} \otimes J_{\nu}) (\widehat{\Delta}^{-it} \otimes \Delta_{\nu}^{-it})
$$

\n
$$
= J_{\tilde{v}} \Delta_{\tilde{v}}^{it} (\widehat{J} \otimes J_{\nu}) (\widehat{\Delta}^{-it} \otimes \Delta_{\nu}^{-it})
$$

\n
$$
= J_{\tilde{v}} D_{t} (\widehat{\Delta}^{it} \otimes \Delta_{\nu}^{it}) (\widehat{J} \otimes J_{\nu}) (\widehat{\Delta}^{-it} \otimes \Delta_{\nu}^{-it})
$$

\n
$$
= J_{\tilde{v}} (\widehat{J} \otimes J_{\nu}) D_{-t}^{o}
$$

\n
$$
= U_{\nu}^{a} D_{-}^{o},
$$

from which we get the first formula, and then the second one by taking the adjoints.

 \Box

1154

2.5.3 Definition. Let G be a locally compact quantum group and $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a G-Yetter–Drinfel'd algebra. Since $\text{Ad}(\widehat{J}J) = \text{Ad}(J\widehat{J})$, the following two properties are equivalent:

- (i) $\mathfrak{a}^{\mathfrak{c}}(N^{\mathfrak{o}})$ and $\widehat{\mathfrak{a}}^{\mathfrak{c}}(N^{\mathfrak{o}})$ commute;
- (ii) $\mathfrak{a}^{\circ}(N^{\circ})$ and $\widehat{\mathfrak{a}}^{\circ}(N^{\circ})$ commute;

We shall say that $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ is *braided-commutative* if these conditions are fulfilled.

It is clear that any sub-G-Yetter–Drinfel'd algebra of a braided-commutative G-Yetter–Drinfel'd algebra is also braided-commutative.

2.5.4 Theorem ($[40]$). Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a G-Yetter–Drinfel'd algebra, ν a normal faithful semi-finite weight on N, and $U_{\nu}^{\mathfrak{a}}$ the *standard implementation of* α *. Define an injective anti-*-homomorphism* β *by*

$$
\beta(x) = U_{\nu}^{\mathfrak{a}} \widehat{\mathfrak{a}}^{\mathfrak{0}}(x^{\mathfrak{0}}) (U_{\nu}^{\mathfrak{a}})^{*} = \mathrm{Ad}(U_{\nu}^{\mathfrak{a}} (U_{\nu}^{\widehat{\mathfrak{a}}})^{*})[1 \otimes J_{\nu} x^{*} J_{\nu}] \text{ for all } x \in N.
$$

Then:

- (i) $\beta(N)$ *commutes with* $\alpha(N)$ *.*
- (ii) $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ *is braided-commutative if and only if* $\beta(N) \subset \mathbb{G} \ltimes_{\mathfrak{a}} N$.

Proof. (i) The two formulas for $\beta(x)$ coincide by Lemma [2.5.2](#page-10-1) (ii), and clearly, $\beta(N) \subseteq U_{\nu}^{\mathfrak{a}}(\widehat{M} \otimes N^{\mathfrak{0}})(U_{\nu}^{\mathfrak{a}})^{*}$ commutes with $\mathfrak{a}(N) = U_{\nu}^{\mathfrak{a}}(1 \otimes N)(U_{\nu}^{\mathfrak{a}})^{*}$.

(ii) Using Lemma [2.5.2](#page-10-1) (i), we see that $\beta(N) = U_v^{\alpha} \hat{a}^{\alpha}(N^{\alpha}) (U_v^{\alpha})^*$ lies in $\mathbb{G} \ltimes_{\alpha} N$
and only if it commutes with $(\mathbb{C} \ltimes N)' = U_v^{\alpha} \hat{a}^{\alpha}(N^{\alpha}) (U_v^{\alpha})^*$ that is in if and only if it commutes with $(\mathbb{G} \ltimes_{\mathfrak{a}} N)' = U_{\nu}^{\mathfrak{a}}(\mathbb{G} \circ \ltimes_{\mathfrak{a}^{\circ}} N^{\circ})(U_{\nu}^{\mathfrak{a}})^{*}$, that is, if and only if $\widehat{\mathfrak{a}}^0(N^{\circ})$ commutes with $\widehat{J} \widehat{M} \widehat{J} \otimes 1_{H_v}$ and with $\mathfrak{a}^0(N^{\circ})$. But since $\widehat{\mathfrak{a}}^{\circ}(N^{\circ}) \subseteq \widehat{M} \otimes N^{\circ}$, the first condition is always satisfied. \Box

2.5.5 Proposition. Let G *be a locally compact quantum group and* $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ *a* braided-commutative G-Yetter–Drinfel'd algebra. Then $N^a \subseteq Z(N)$ and $N^{\widehat{\mathfrak{a}}} \subset Z(N)$.

Proof. Using [2.5.1,](#page-10-2) we get that the algebra $1 \otimes (N^{\alpha})^{\circ}$ commutes with $\hat{\sigma}^{\circ}(N^{\circ})$, and, therefore, that $1 \otimes N^{\alpha}$ commutes with $\hat{\sigma}(N)$. As it commutes with $P(H) \otimes 1$, it therefore, that $1 \otimes N^{\mathfrak{a}}$ commutes with $\widehat{a}(N)$. As it commutes with $B(H) \otimes 1$, it will commute with $B(H) \otimes N$, by [41, Th, 2.6]. This is the first result. Applying it will commute with $B(H) \otimes N$, by [\[41,](#page-70-2) Th. 2.6]. This is the first result. Applying it to the braided-commutative \widehat{G} -Yetter–Drinfel'd algebra $(N, \widehat{\mathfrak{a}}, \mathfrak{a})$, we get the second result. result.

3. Invariant weights on Yetter–Drinfel'd algebras

In this chapter, we recall the definition (3.1) and basic properties (3.2) , (3.3) of a normal semi-finite faithful weight on a von Neumann algebra N, relatively invariant with respect to a left action α of a locally compact quantum group G on N. Then,

we study the case of an invariant weight on a Yetter–Drinfel'd algebra $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ [\(3.4\)](#page-14-0), (3.5) , and we prove that if N is properly infinite, there exists such a weight (3.10) .

3.1 Definition. Let G be a locally compact quantum group and a a left action of G on a von Neumann algebra N . Let k be a positive invertible operator affiliated to M . A normal faithful semi-finite weight ν on N is said to be k-invariant under a if for all $x \in N^+$,

$$
(\mathrm{id}\otimes\nu)\mathfrak{a}(x)=\nu(x)k.
$$

Applying Γ to this formula, one gets $\Gamma(k) = k \otimes k$, whence k^{it} is a (onedimensional) representation of G for all $t \in \mathbb{R}$. So, k^{it} belongs to the von Neumann subalgebra $I(M)$ of M generated by all unitaries u of M such that $\Gamma(u) = u \otimes u$. As $I(M)$ is globally invariant by τ_t and R, using [\[2,](#page-68-3) 10.5], we get that it is a locally compact quantum group, whose scaling group will be the restriction of τ_t to $I(M)$. Since this locally compact quantum group is cocommutative, we therefore get that the restriction of τ_t to $I(M)$ is trivial, from which we get that $\tau_t(k) = k$ for all $t \in \mathbb{R}$.

This property implies that P and k (resp. $\widehat{\Delta}$ and k) strongly commute. Therefore their product kP (resp. $k\widehat{\Delta}$) is closable, and its closure will be denoted again kP (resp. $k\Delta$).

It is proved in [\[54,](#page-71-9) 4.1] that ν is k-invariant if and only if, for all $t \in \mathbb{R}$, we have $(Dv \circ \mathfrak{a}: Dv)_t = k^{-it} \otimes 1$ (or, equivalently, $\Delta_{\tilde{v}}^{it} = k^{-it} \widehat{\Delta}^{it} \otimes \Delta_{v}^{it}$).

If $k = 1$, we shall say that ν is *invariant* under a.

3.2 Proposition. *Let* G *be a locally compact quantum group,* a *a left action of* G *on a von Neumann algebra* N*, and* ¹ *and* ² *two* k*-invariant normal faithful semi-finite weights on* N. Then $(Dv_1 : Dv_2)_t$ *belongs to* $N^{\mathfrak{a}}$ for all $t \in \mathbb{R}$.

Proof. For $k = 1$, this result had been proved in [\[14,](#page-69-7) 7.8] for right actions of measured quantum groupoids. To get it for left actions of locally compact quantum groups is just a translation. The generalization for any k is left to the reader (see [\[41,](#page-70-2) 3.9]). \Box

3.3 Proposition. *Let* G *be a locally compact quantum group,* a *a left action of* G *on a von Neumann algebra* N*, and a* k*-invariant faithful normal semi-finite weight on* N*. Then:*

- (i) $\mathfrak{a}(\sigma_t^{\nu}(x)) = (\text{Ad} k^{-it} \circ \tau_t \otimes \sigma_t^{\nu}) \mathfrak{a}(x)$ *for all* $x \in N$ *and* $t \in \mathbb{R}$ *;*
- (ii) *for all* $x \in \mathfrak{N}_v$, $\xi \in \mathcal{D}(k^{-1/2})$ *and* $\eta \in H$ *,* $(\omega_{k^{-1/2}\xi, \eta} \otimes id)a(x)$ *belongs* to \mathfrak{N}_{v} , and the canonical implementation $U_{v}^{\mathfrak{a}}$ is given by

 $(\omega_{\xi,\eta} \otimes id)(U_{\nu}^{\mathfrak{a}})\Lambda_{\nu}(x) = \Lambda_{\nu}[(\omega_{k^{-1/2}\xi,\eta} \otimes id)\mathfrak{a}(x)].$

Proof. (i) Since $\Delta_{\tilde{\nu}}^{it} = k^{-it} \hat{\Delta}^{it} \otimes \Delta_{\nu}^{it}$,

$$
\mathfrak{a}(\sigma_t^{\nu}(x)) = \sigma_t^{\tilde{\nu}}(\mathfrak{a}(x)) = (k^{-it}\widehat{\Delta}^{it} \otimes \Delta_{\nu}^{it})\mathfrak{a}(x)(\widehat{\Delta}^{-it}k^{it} \otimes \Delta_{\nu}^{-it})
$$

for all $t \in \mathbb{R}$.

(ii) The first result of (ii) is proved (for $k = \delta^{-1}$) in [\[41,](#page-70-2) 2.4], and the general case can be proved the same way. \Box

3.4 Theorem. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a G -Yetter– *Drinfel'd algebra,* $a_D = (id \otimes \hat{a})a$ *the action of* $D(G)$ *introduced in* [2.4.1,](#page-8-3) *and* ν *a faithful normal semi-finite weight on* N*. Then the following conditions are equivalent:*

- (i) the weight ν is invariant under α and invariant under $\widehat{\alpha}$.
- (ii) *the weight* ν *is invariant under* a_D *.*

Proof. The fact that (i) implies (ii) is trivial. Suppose that (ii) holds. Choose a state ω in \widehat{M}_* and define $\nu' = (\omega \otimes \nu)\widehat{a}$. As $(id \otimes id \otimes \nu)a_D = \nu$, we get that $(id \otimes \nu')\mathfrak{a} = \nu.$

But

$$
(\mathrm{id}\otimes \mathrm{id}\otimes \nu')\mathfrak{a}_D = (\mathrm{id}\otimes \mathrm{id}\otimes (\omega\otimes \nu)\widehat{\mathfrak{a}})(\mathrm{id}\otimes \widehat{\mathfrak{a}})\mathfrak{a}
$$

$$
= (\mathrm{id}\otimes \mathrm{id}\otimes \omega\otimes \nu)(\mathrm{id}\otimes \widehat{\Gamma}\otimes \mathrm{id})(\mathrm{id}\otimes \widehat{\mathfrak{a}})\mathfrak{a},
$$

and, for any state ω' in \widehat{M}_* ,

$$
(\mathrm{id}\otimes\omega'\otimes\nu')\mathfrak{a}_D=(\mathrm{id}\otimes(\omega'\otimes\omega)\circ\widehat{\Gamma}\otimes\nu)\mathfrak{a}_D=\nu.
$$

Therefore, by linearity, we get that $(id \otimes id \otimes \nu')\mathfrak{a}_D = \nu$. On the other hand,

$$
(\mathrm{id}\otimes \mathrm{id}\otimes \nu')\mathfrak{a}_D = \mathrm{Ad}(W^*\sigma)(\mathrm{id}\otimes \mathrm{id}\otimes \nu')(\mathrm{id}\otimes \mathfrak{a})\widehat{\mathfrak{a}}
$$

= $\mathrm{Ad}(W^*\sigma)(\mathrm{id}\otimes (\mathrm{id}\otimes \nu')\mathfrak{a})\widehat{\mathfrak{a}}$
= $\mathrm{Ad}(W^*\sigma)(\mathrm{id}\otimes \nu)\widehat{\mathfrak{a}}$

But, as $(id \otimes id \otimes v')$ $a_D = v$, we get that $v = (id \otimes v)\hat{a}$, and, therefore, v is invariant under $\hat{\mathfrak{a}}$. So, we get that $v' = v$, and v is invariant under \mathfrak{a} .

3.5 Definition. Let G be a locally compact quantum group and $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a $G-Yetter-Drinfeld'd algebra. A normal faithful semi-finite weight on N will be called$ *Yetter–Drinfel'd invariant* if it satisfies one of the equivalent conditions of [3.4.](#page-14-0)

3.6 Theorem. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a G-Yetter– *Drinfel'd algebra and* $\mathfrak{a}_D = (\text{id} \otimes \widehat{\mathfrak{a}}) \mathfrak{a}$ *the action of* $D(\mathbb{G})$ *introduced in* [2.4.1.](#page-8-3) *If* \mathfrak{a}_D *is integrable, then there exists a Yetter–Drinfel'd invariant normal faithful semi-finite weight on* N*.*

Proof. Clear by [\[41,](#page-70-2) 2.5], using the fact that the locally compact quantum group $D(G)$ is unimodular. \Box **3.7 Corollary.** Let $G = (M, \Gamma, \varphi, \psi)$ be a locally compact quantum group and $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a G-Yetter–Drinfel'd algebra. Denote by H the Hilbert space $L^2(M) = L^2(\widehat{M})$. Then $(B(H) \otimes N, (\varsigma \otimes \text{id})(\text{id} \otimes \alpha), (\varsigma \otimes \text{id})(\text{id} \otimes \widehat{\alpha}))$ is a
C Vetter Drinfel'd algebra which has a normal sami finite faithful Vetter Drinfel'd G*-Yetter–Drinfel'd algebra which has a normal semi-finite faithful Yetter–Drinfel'd invariant weight.*

Proof. Let $a_D = (id \otimes \hat{a})a$ be the action of $D(G)$ introduced in [2.4.1.](#page-8-3) Using [\[41,](#page-70-2) 2.6], we know that the action $(\zeta \otimes id)(id \otimes a_D)$ is a left action of $D(G)$ which is cocycleequivalent to the bidual action of a_D . As this bidual action is integrable [\[41,](#page-70-2) 2.5], it has a Yetter–Drinfel'd invariant semi-finite faithful weight by [3.6.](#page-14-2) Using [\[41,](#page-70-2) 2.6.3], one gets that this weight is invariant as well under $(\varsigma \otimes id)(id \otimes \mathfrak{a}_D)$. \Box

3.8 Corollary. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a G -Yetter– *Drinfel'd algebra, v a normal semi-finite faithful weight on N,* $U_{\nu}^{\mathfrak{a}}$ *and* $U_{\nu}^{\mathfrak{a}}$ *the canonical implementations of the actions* α *and* $\widehat{\alpha}$ *, and* β *the anti-*-homomorphism introduced in [2.5.4.](#page-12-1) Then:*

(i) *the unitary implementations of the actions* α , $\hat{\alpha}$ *and* α_D *are linked by the relation*

$$
U_{\nu}^{\mathfrak{a}_D} = (U_{\nu}^{\mathfrak{a}})_{23} (U_{\nu}^{\mathfrak{a}})_{13};
$$

- (ii) $(U_{\nu}^{\mathfrak{a}})_{13} (U_{\nu}^{\widehat{\mathfrak{a}}})_{23} = W_{12} (U_{\nu}^{\widehat{\mathfrak{a}}})_{23} (U_{\nu}^{\mathfrak{a}})_{13} W_{12}^*;$
- (iii) Ad $(1 \otimes U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\mathfrak{a}})^{*})[W \otimes 1] = (U_{\nu}^{\mathfrak{a}})_{13}^{*}W_{12} = (U_{\nu}^{\mathfrak{a}})_{23}^{*}W_{12}^{*}(U_{\nu}^{\mathfrak{a}})_{23};$
- (iv) writing β^{\dagger} for the map $x^{\circ} \mapsto \beta(x)$, we have

$$
\text{Ad}(W \otimes 1)[1 \otimes \beta(x)] = (\text{id} \otimes \beta^{\dagger})(\mathfrak{a}^{\circ}(x^{\circ})) \text{ for all } x \in N.
$$

Proof. (i) Suppose first that there is a faithful semi-finite Yetter–Drinfel'd invariant weight ν' for $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$. Then, for ξ_1 , ξ_2 , η_1 , η_2 in H , $x \in \mathfrak{N}_{\nu}$, we get, using [3.3,](#page-13-2)

$$
\begin{aligned} (\omega_{\xi_1 \otimes \xi_2, \eta_1 \otimes \eta_2} \otimes \mathrm{id}) (U_{\nu'}^{\mathfrak{a}D}) \Lambda_{\nu'}(x) &= \Lambda_{\nu'} [(\omega_{\xi_1 \otimes \xi_2, \eta_1 \otimes \eta_2} \otimes \mathrm{id}) \mathfrak{a}_D(x)] \\ &= \Lambda_{\nu'} [(\omega_{\xi_2, \eta_2} \otimes \mathrm{id}) \widehat{\mathfrak{a}}(\omega_{\xi_1, \eta_1} \otimes \mathrm{id}) \mathfrak{a}(x)] \\ &= (\omega_{\xi_2, \eta_2} \otimes \mathrm{id}) (U_{\nu'}^{\mathfrak{a}}) (\omega_{\xi_1, \eta_1} \otimes \mathrm{id}) (U_{\nu'}^{\mathfrak{a}}) \Lambda_{\nu'}(x) m, \end{aligned}
$$

from which we get (i) for such a weight v' . Applying that result to [3.7,](#page-14-3) we get that there exists a normal semi-finite faithful weight ψ on $B(H) \otimes N$ such that

$$
U_{\psi}^{(\zeta \otimes \mathrm{id})(\mathrm{id} \otimes \mathfrak{a}_D)} = (U_{\psi}^{(\zeta \otimes \mathrm{id})(\mathrm{id} \otimes \widehat{\mathfrak{a}})})_{234} (U_{\psi}^{(\zeta \otimes \mathrm{id})(\mathrm{id} \otimes \mathfrak{a})})_{134}.
$$

Using now $[41, 4.1]$ $[41, 4.1]$, we get that for every normal semi-finite faithful weight on N,

$$
U_{T\mathcal{F}\otimes \nu}^{(\zeta\otimes \mathrm{id})(\mathrm{id}\otimes \mathfrak{a}_D)} = (U_{T\mathcal{F}\otimes \nu}^{(\zeta\otimes \mathrm{id})(\mathrm{id}\otimes \widehat{\mathfrak{a}})})_{234} (U_{T\mathcal{F}\otimes \nu}^{(\zeta\otimes \mathrm{id})(\mathrm{id}\otimes \mathfrak{a})})_{134}
$$

which by $[41, 4.4]$ $[41, 4.4]$ implies (i).

(ii) From (i) we get that $(U_{\nu}^{a})_{23}(U_{\nu}^{a})_{13}$ is a representation of $D(\mathbb{G})$. Therefore,

$$
(U_{\nu}^{\widehat{\mathfrak{a}}})_{45}(U_{\nu}^{\mathfrak{a}})_{35}(U_{\nu}^{\widehat{\mathfrak{a}}})_{25}(U_{\nu}^{\mathfrak{a}})_{15}
$$

= Ad(1 $\otimes \sigma W \otimes 1 \otimes 1)[(\Gamma \otimes \widehat{\Gamma} \otimes id)((U_{\nu}^{\widehat{\mathfrak{a}}})_{23}(U_{\nu}^{\mathfrak{a}})_{13})]$
= Ad(1 $\otimes \sigma W \otimes 1 \otimes 1)[(U_{\nu}^{\widehat{\mathfrak{a}}})_{45}(U_{\nu}^{\widehat{\mathfrak{a}}})_{35}(U_{\nu}^{\mathfrak{a}})_{25}(U_{\nu}^{\mathfrak{a}})_{15}]$
= $(U_{\nu}^{\widehat{\mathfrak{a}}})_{45}$ Ad(1 $\otimes \sigma W \otimes 1 \otimes 1)[(U_{\nu}^{\widehat{\mathfrak{a}}})_{35}(U_{\nu}^{\mathfrak{a}})_{25}](U_{\nu}^{\mathfrak{a}})_{15},$

from which we infer that

$$
(U_{\nu}^{\mathfrak{a}})_{35}(U_{\nu}^{\mathfrak{a}})_{25} = \mathrm{Ad}(1 \otimes \sigma W \otimes 1 \otimes 1)[(U_{\nu}^{\mathfrak{a}})_{35}(U_{\nu}^{\mathfrak{a}})_{25}].
$$

After renumbering the legs, we obtain (ii).

(iii) The relation $W_{12}^*(U_{\nu}^{\mathfrak{a}})^*_{23}W_{12} = (\Gamma \otimes id)(U_{\nu}^{\mathfrak{a}})^* = (U_{\nu}^{\mathfrak{a}})^*_{13}(U_{\nu}^{\mathfrak{a}})^*_{23}$ implies

$$
(U_{\nu}^{\mathfrak{a}})^*_{23}W_{12}(U_{\nu}^{\mathfrak{a}})_{23}=W_{12}(U_{\nu}^{\mathfrak{a}})^*_{13}.
$$

Using (ii), we get

$$
(U_{\nu}^{\mathfrak{a}})_{13} (U_{\nu}^{\mathfrak{a}})_{23} = W_{12} (U_{\nu}^{\mathfrak{a}})_{23} (U_{\nu}^{\mathfrak{a}})_{23}^* W_{12}^* (U_{\nu}^{\mathfrak{a}})_{23}
$$

and, therefore,

$$
W_{12}^*(U_{\nu}^{\mathfrak{a}})_{13} = (U_{\nu}^{\widehat{\mathfrak{a}}})_{23} (U_{\nu}^{\mathfrak{a}})_{23}^* W_{12}^*(U_{\nu}^{\mathfrak{a}})_{23} (U_{\nu}^{\widehat{\mathfrak{a}}})_{23}^*
$$

which implies (iii).

(iv) Relation (iii) and [2.5.2](#page-10-1) imply

$$
Ad(W_{12})[\beta(x)_{23}] = Ad(W_{12}(U_{\nu}^{\mathfrak{a}})_{23}(U_{\nu}^{\mathfrak{a}})_{23})[1 \otimes 1 \otimes x^{\mathfrak{0}}]
$$

\n
$$
= Ad((U_{\nu}^{\mathfrak{a}})_{23}(U_{\nu}^{\mathfrak{a}})_{23}^*(U_{\nu}^{\mathfrak{a}})_{13}^*W_{12})[1 \otimes 1 \otimes x^{\mathfrak{0}}]
$$

\n
$$
= Ad((U_{\nu}^{\mathfrak{a}})_{23}(U_{\nu}^{\mathfrak{a}})_{23}^*)[\mathfrak{a}^{\mathfrak{0}}(x^{\mathfrak{0}})_{13}]
$$

\n
$$
= (id \otimes \beta^{\dagger})(\mathfrak{a}^{\mathfrak{0}}(x^{\mathfrak{0}})).
$$

3.8.1 Remark. We have quickly shown in [2.4.5](#page-9-0) that (i) can also be deduced from a particular case of [\[7,](#page-68-4) 6,5], which remains unpublished.

3.9 Lemma. *Let* N *be a properly infinite von Neumann algebra.*

(i) Let $(e_n)_{n\in\mathbb{N}}$ *be a sequence of pairwise orthogonal projections in* N, equivalent *to* 1 *and whose sum is* 1*, and let* $(v_n)_{n \in \mathbb{N}}$ *be a sequence of isometries in* N *such that* v_n^* $n_n^* v_n = 1$ and $v_n v_n^* = e_n$ for all $n \in \mathbb{N}$, (and, therefore v_i^*) $i^*v_j = 0$

if $i \neq j$ *). Let* H *be a separable Hilbert space and* $u_{i,j}$ *a set of matrix units of* $B(H)$ acting on an orthonormal basis $(\xi_i)_i$. For any $x \in N$, let

$$
\Phi(x) = \sum_{i,j} u_{i,j} \otimes v_i^* x v_j
$$

Then Φ *is an isomorphism of* N *onto* $B(H) \otimes N$ *, and* $\Phi^{-1}(1 \otimes x) = \sum_i v_i x v_i^*$.

(ii) Let a be a left action of a locally compact quantum group $\mathbb{G} = (M, \Gamma, \varphi, \psi)$ with separable predual M_* on N. Then the operator $V = \sum_n (1 \otimes v_n) \mathfrak{a}(v_n^*)$ *exists, is a unitary in* $M \otimes N$ *and a cocycle for* **a**, *that is,* $(\Gamma \otimes id)(V) =$ $(1 \otimes V)(id \otimes \mathfrak{a})(V)$. Moreover, the actions $(\mathfrak{c} \otimes id)(id \otimes \mathfrak{a})$ and $(id \otimes \Phi) \mathfrak{a} \Phi^{-1}$ *are linked by the relation*

$$
(\zeta \otimes id)(\mathrm{id} \otimes \mathfrak{a})(X) = \mathrm{Ad}((\mathrm{id} \otimes \Phi)(V))[(\mathrm{id} \otimes \Phi)\mathfrak{a}\Phi^{-1}(X)].
$$

- (iii) Let ϕ be a normal semi-finite faithful weight on N. Then for each $n \in \mathbb{N}$, the weight ϕ_n on N defined by $\phi_n(x) = \phi(v_n x v_n^*)$ for all $x \in N^+$ is faithful, *normal and semi-finite, and* $\phi \circ \Phi^{-1} = \sum_{n} (\omega_{\xi_n} \otimes \phi_n)$.
- (iv) Let ψ be a normal semi-finite faithful weight on $B(H) \otimes N$. Then, with the *notations of* (iii) $(\psi \circ \Phi)_n(x) = \psi(u_{n,n} \otimes x)$ for all $x \in N^+$. If ψ is invariant *under* $(\zeta \otimes id)$ (id \otimes α), *then each* $(\psi \circ \Phi)_n$ *is a normal semi-finite faithful weight on* N*, invariant under* a*.*

Proof. (i) This result is taken from [\[37,](#page-70-10) Th. 4.6].

(ii) This assertion is proved in $[12, Th. IV.3]$ $[12, Th. IV.3]$ for right actions of Kac algebras, but remains true for left actions of any locally compact quantum group.

(iii) Let $(\xi_i)_{i\in\mathbb{N}}$ be the orthonormal basis of H defined by the matrix units $u_{i,j}$. Then we can define an isometry I from $L^2(N)$ into $H \otimes L^2(N)$ by $I \eta = \sum_n \xi_n \otimes v_n^*$ $\frac{1}{n}\eta$ for all $\eta \in L^2(N)$. It is then straightforward to get that, for all sequences $(\eta_n)_{n \in \mathbb{N}}$ such that $\sum_n \|\eta_n\|^2 < \infty$, we have $I^*(\sum_n \xi_n \otimes \eta_n) = \sum_n v_n \eta_n$. Therefore, I is unitary and $\Phi(x) = I x I^*$ and for all $x \in N$. So, for any $\zeta \in L^2(N)$, $\omega_{\zeta} \circ \Phi^{-1}$ is equal to the normal weight $\sum_n \omega_{\xi_n} \otimes \omega_{\nu_n^* \xi}$. Hence, $\phi \circ \Phi^{-1}$ is the weight $\sum_n \omega_{\xi_n} \otimes \phi_n$.

Let now $x \in N$ such that $\phi_n(x^*x) = 0$. By definition, we get that $xv_n^* = 0$ and therefore $x = 0$. So, the weight ϕ_n is faithful. As ϕ is semi-finite, there exists in \mathfrak{M}^+_{ϕ} an increasing family $x_k \uparrow 1$. For all $n \in \mathbb{N}$, we get $y_k = (\omega_{\xi_n} \otimes id)\Phi(x_k) \uparrow 1$ and $\phi_n(y_k) = (\omega_{\xi_n} \otimes \phi_n) \Phi(x_k) \le \phi(x_k) < \infty$, which gives that ϕ_n is semi-finite.

(iv) First,

$$
(\psi \circ \Phi)_n(x) = (\psi \circ \Phi)(v_n^* x v_n) = \psi \left(\sum_{i,j} u_{i,j} \otimes v_i^* v_n x v_n^* v_j \right) = \psi(u_{n,n} \otimes x).
$$

If ψ is invariant under $(\zeta \otimes id)(id \otimes a)$, then it is clear that all $(\psi \circ \Phi)_n$ are normal semi-finite faithful weights on N , invariant under a . \Box

3.10 Corollary. Let $\mathbb{G} = (M, \Gamma, \varphi, \psi)$ be a locally compact quantum group such that *the predual* M_* *is separable, and* $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ *a* G-Yetter–Drinfel'd algebra, where N is *a properly infinite von Neumann algebra. Then this* G*-Yetter–Drinfel'd algebra has a normal faithful semi-finite invariant weight.*

Proof. Use the left action $a_D = (\text{id} \otimes \hat{a})\text{a}$ of $D(\mathbb{G})$ on N and apply [3.7](#page-14-3) and 3.9 (iv). [3.9](#page-16-0) (iv).

4. The Hopf bimodule associated to a braided-commutative Yetter–Drinfel'd algebra

In this chapter, we recall the definition of the relative tensor product of Hilbert spaces, and of the fiber product of von Neumann algebras [\(4.1\)](#page-18-1). Then, we recall the definition of a Hopf bimodule [\(4.2\)](#page-20-0) and a co-inverse. Starting then from a braidedcommutative Yetter–Drinfel'd algebra $(N, \mathfrak{a}, \hat{\mathfrak{a}})$, and any normal semi-finite faithful weight v on N, we first construct an isomorphism of the Hilbert spaces $H \otimes H \otimes H_{\nu}$ and $(H \otimes H_\nu)$ $\beta \otimes_\mathfrak{a} (H \otimes H_\nu)$ [\(4.3\)](#page-21-0) and then show that the dual action $\tilde{\mathfrak{a}}$ of $\widehat{\mathbb{G}}^\circ$ on the crossed product $\mathbb{G} \ltimes_{\mathfrak{a}} N$, modulo this isomorphism, can be interpreted as a coproduct on $G \ltimes_{\alpha} N$ [\(4.4\)](#page-23-0). Finally, we construct an involutive anti- $*$ -automorphism of $G \ltimes_{\alpha} N$ which turns out to be a co-inverse [\(4.6\)](#page-27-0).

4.1. Relative tensor products of Hilbert spaces and fiber products of von Neumann algebras $\begin{bmatrix} 5, 17, 34, 38 \end{bmatrix}$ $\begin{bmatrix} 5, 17, 34, 38 \end{bmatrix}$ **.** Let N be a von Neumann algebra, ψ a normal semi-finite faithful weight on N; we shall denote by H_{ψ} , \mathfrak{N}_{ψ} , ... the canonical objects of the Tomita–Takesaki theory associated to the weight ψ .

Let α be a non-degenerate faithful representation of N on a Hilbert space H. The set of ψ -bounded elements of the left module $_{\alpha}$ H is

$$
D(\alpha \mathcal{H}, \psi) = \{\xi \in \mathcal{H} : \exists C < \infty, \|\alpha(y)\xi\| \le C \|\Lambda_{\psi}(y)\|, \forall y \in \mathfrak{N}_{\psi}\}.
$$

For any ξ in $D(\alpha \mathcal{H}, \psi)$, there exists a bounded operator $R^{\alpha, \psi}(\xi)$ from H_{ψ} to \mathcal{H} such that

$$
R^{\alpha,\psi}(\xi)\Lambda_{\psi}(y) = \alpha(y)\xi \quad \text{for all } y \in \mathfrak{N}_{\psi},
$$

and this operator intertwines the actions of N. If ξ and η are bounded vectors, we define the operator product

$$
\langle \xi | \eta \rangle_{\alpha, \psi} = R^{\alpha, \psi}(\eta)^* R^{\alpha, \psi}(\xi),
$$

which belongs to $\pi_{\psi}(N)'$. This last algebra will be identified with the opposite von Neumann algebra N° using Tomita–Takesaki theory.

If now β is a non-degenerate faithful anti-representation of N on a Hilbert space \mathcal{K} , the relative tensor product $\mathcal{K}_{\beta} \otimes_{\alpha} \mathcal{H}$ is the completion of the algebraic tensor product ψ

 $K \odot D(_{\alpha} \mathcal{H}, \psi)$ by the scalar product defined by

$$
(\xi_1 \odot \eta_1 | \xi_2 \odot \eta_2) = (\beta(\langle \eta_1 | \eta_2 \rangle_{\alpha,\psi}) \xi_1 | \xi_2)
$$

for all $\xi_1, \xi_2 \in \mathcal{K}$ and $\eta_1, \eta_2 \in D(\alpha \mathcal{H}, \psi)$. If $\xi \in \mathcal{K}$ and $\eta \in D(\alpha \mathcal{H}, \psi)$, we denote by $\xi \underset{\beta}{\beta} \otimes_{\alpha}$ ψ η the image of $\xi \odot \eta$ into $\mathcal{K}_{\beta} \otimes_{\alpha}$ ψ *H*. Writing $\rho_{\eta}^{\beta,\alpha}(\xi) = \xi \,_{\beta} \otimes_{\alpha}$ ψ η , we get a bounded linear operator from H into $K_{\beta \otimes_{\alpha} \mathcal{H}}$, which is equal to $1_{\mathcal{K}} \otimes_{\psi} R^{\alpha,\psi}(\eta)$.

Changing the weight ψ will give an isomorphic Hilbert space, but the isomorphism will not exchange elementary tensors!

We shall denote by σ_{ψ} the relative flip, which is a unitary sending $\mathcal{K}_{\beta} \otimes_{\alpha} \mathcal{H}$ onto ψ

 $\mathcal{H}_{\alpha} \otimes_{\beta} \mathcal{K}$, defined by ψ^{o}

$$
\sigma_{\psi}(\xi \underset{\psi}{\beta \otimes_{\alpha}} \eta) = \eta \underset{\psi^{\circ}}{\alpha \otimes_{\beta}} \xi
$$

for all $\xi \in D(\mathcal{K}_{\beta}, \psi^{\circ})$ and $\eta \in D(\alpha \mathcal{H}, \psi)$.

If $x \in \beta(N)'$ and $y \in \alpha(N)'$, it is possible to define an operator $x \beta \otimes_{\alpha} y$ on ψ $K_{\beta} \otimes_{\alpha} \mathcal{H}$, with natural values on the elementary tensors. As this operator does not ψ

depend upon the weight ψ , it will be denoted by $x \beta \otimes_{\alpha} y$.

If P is a von Neumann algebra on H with $\alpha(N) \subset P$, and Q a von Neumann algebra on K with $\beta(N) \subset Q$, then we define the fiber product $Q_\beta *_{\alpha} P$ as $\{x_\beta \otimes_{\alpha} y : x \in Q', y \in P'\}'$. This von Neumann algebra can be defined N
independently of the Hilbert spaces on which P and Q are represented. If for $i = 1, 2, \alpha_i$ is a faithful non-degenerate homomorphism from N into P_i , and β_i is a faithful non-degenerate anti-homomorphism from N into Q_i , and Φ (resp. Ψ) a homomorphism from P_1 to P_2 (resp. from Q_1 to Q_2) such that $\Phi \circ \alpha_1 = \alpha_2$ (resp. $\Psi \circ \beta_1 = \beta_2$), then, it is possible to define a homomorphism $\Psi_{\beta_1} *_{\alpha_1} \Phi$ from

 Q_1 $_{\beta_1}$ * $_{\alpha_1}$ P_1 into Q_2 $_{\beta_2}$ * $_{\alpha_2}$ P_2 . $*\alpha_1$ *P*₁ into Q_2 $\beta_2 *_{\alpha_2}$
N N P_2 .

We define a relative flip ζ_N from $\mathcal{L}(\mathcal{K})$ $_{\beta *_{\alpha}}$ N $\mathcal{L}(\mathcal{H})$ onto $\mathcal{L}(\mathcal{H})$ $_{\alpha *_{\beta}}$ N_c $\mathcal{L}(\mathcal{K})$ by $\zeta_N(X) = \sigma_\psi X(\sigma_\psi)^*$ for any $X \in \mathcal{L}(\mathcal{K})$ $\beta *_{\alpha}$ N $\mathcal{L}(\mathcal{H})$ and any normal semi-finite faithful weight ψ on N.

Let now U be an isometry from a Hilbert space \mathcal{K}_1 in a Hilbert space \mathcal{K}_2 , which intertwines two anti-representations β_1 and β_2 of N, and let V be an isometry from a Hilbert space \mathcal{H}_1 in a Hilbert space \mathcal{H}_2 , which intertwines two representations α_1 and α_2 of N. Then, it is possible to define, on linear combinations of elementary tensors, an isometry U $_{\beta_1} \otimes_{\alpha_1} V$ which can be extended to the whole Hilbert space K_1 $_{\beta_1}$ \otimes_{α_1} \mathcal{H}_1 with values in K_2 $_{\beta_2}$ \otimes_{α_2} \mathcal{H}_2 . One can show that this isometry does not depend upon the weight ψ . It will be denoted by U $_{\beta_1 \otimes_{\alpha_1} V}$. If U and V are unitaries, then U $_{\beta_1} \otimes_{\alpha_1} V$ is an unitary and $(U_{\beta_1} \otimes_{\alpha_1} V)^* = U^*_{\beta_2} \otimes_{\alpha_2} V^*$.

In [\[7,](#page-68-4) Chap. 11], De Commer had shown that, if N is finite-dimensional, the Hilbert space $\mathcal{K}_{\beta} \otimes_{\alpha} \mathcal{H}$ can be isometrically imbedded into the usual Hilbert tensor $\boldsymbol{\nu}$ product $K \otimes H$.

4.2 Definitions. A quintuple $(N, M, \alpha, \beta, \Gamma)$ will be called a *Hopf bimodule*, following [\[45\]](#page-71-8), [\[17,](#page-69-11) 6.5], if N, M are von Neumann algebras, α is a faithful non-degenerate representation of N into M, β is a faithful non-degenerate antirepresentation of N into M, with commuting ranges, and Γ is an injective *-homomorphism from M into $M \beta *_{\alpha} M$ such that, for all X in N,

N

- (i) $\Gamma(\beta(X)) = 1 \beta \otimes_{\alpha}$ $\beta(X),$
- N (ii) $\Gamma(\alpha(X)) = \alpha(X) \beta \otimes_{\alpha}$ N 1,
- (iii) Γ satisfies the co-associativity relation

$$
(\Gamma_{\beta *_{\alpha} \atop N} \text{id})\Gamma = (\text{id}_{\beta *_{\alpha} \atop N} \Gamma)\Gamma
$$

This last formula makes sense, thanks to the two preceeding ones and [4.1.](#page-18-1) The von Neumann algebra N will be called the *basis* of $(N, M, \alpha, \beta, \Gamma)$.

In $[7, Chap. 11]$ $[7, Chap. 11]$, De Commer had shown that, if N is finite-dimensional, the Hilbert space $L^2(M)$ $_{\beta} \otimes_{\alpha} L^2(M)$ can be isometrically imbedded into the usual Hilbert tensor product $L^2(M) \otimes L^2(M)$ and the projection p on this closed subspace belongs to $M \otimes M$. Moreover, the fiber product $M \underset{\beta}{\beta *_{\alpha}} M$ can be then identified with the reduced von Neumann algebra $p(M \otimes M)p$ and we can consider Γ as a usual coproduct $M \mapsto M \otimes M$, but with the condition $\Gamma(1) = p$.

A *co-inverse* R for a Hopf bimodule $(N, M, \alpha, \beta, \Gamma)$ is an involutive $(R^2 = id)$ anti- \ast -isomorphism of M satisfying $R \circ \alpha = \beta$ (and therefore $R \circ \beta = \alpha$) and $\Gamma \circ R = \zeta_{N^{\circ}} \circ (R \beta *_{\alpha} R) \circ \Gamma$, where $\zeta_{N^{\circ}}$ is the flip from $M \alpha *_{\beta} M$ onto $M \beta *_{\alpha} M$. A Hopf bimodule is called *co-commutative* if N is abelian, $\beta = \alpha$, and $\Gamma = \zeta \circ \Gamma$.

For an example, suppose that G is a measured groupoid, with $\mathcal{G}^{(0)}$ as its set of units. We denote by r and s the range and source applications from $\mathcal G$ to $\mathcal G^{(0)}$, given by $xx^{-1} = r(x)$ and $x^{-1}x = s(x)$, and by $\mathcal{G}^{(2)}$ the set of composable elements, i.e.

$$
\mathcal{G}^{(2)} = \{ (x, y) \in \mathcal{G}^2 : s(x) = r(y) \}.
$$

Let $(\lambda^u)_{u \in \mathcal{G}^{(0)}}$ be a Haar system on $\mathcal G$ and v a measure on $\mathcal{G}^{(0)}$. Let us denote by μ the measure on G given by integrating λ^u by v ,

$$
\mu = \int\limits_{\mathcal{G}^{(0)}} \lambda^u d\nu.
$$

By definition, ν is called *quasi-invariant* if μ is equivalent to its image under the inversion $x \mapsto x^{-1}$ of G (see [\[32\]](#page-70-3), [\[6,](#page-68-6) II.5], [\[30\]](#page-70-12) and [\[1\]](#page-68-7) for more details, precise definitions and examples of groupoids).

In $[52-54]$ $[52-54]$ and $[45]$ was associated to a measured groupoid \mathcal{G} , equipped with a Haar system $(\lambda^u)_{u \in \mathcal{G}^{(0)}}$ and a quasi-invariant measure ν on $\mathcal{G}^{(0)}$, a Hopf bimodule with an abelian underlying von Neumann algebra $(L^{\infty}(\mathcal{G}^{(0)},v), L^{\infty}(\mathcal{G},\mu), r_{\mathcal{G}}, s_{\mathcal{G}}, \Gamma_{\mathcal{G}})$, where $r_{\mathcal{G}}(g) = g \circ r$ and $s_{\mathcal{G}}(g) = g \circ s$ for all g in $L^{\infty}(\mathcal{G}^{(0)})$ and where $\Gamma_{\mathcal{G}}(f)$, for f in $L^{\infty}(\mathcal{G})$, is the function defined on $\mathcal{G}^{(2)}$ by $(s, t) \mapsto f(st)$. Thus, $\Gamma_{\mathcal{G}}$ is an involutive homomorphism from $L^{\infty}(\mathcal{G})$ into $L^{\infty}(\mathcal{G}^{(2)})$, which can be identified with $L^{\infty}(\mathcal{G})_s *_{r} L^{\infty}(\mathcal{G}).$

It is straightforward to get that the inversion of the groupoid gives a co-inverse for this Hopf bimodule structure.

4.3 Proposition ([\[40\]](#page-70-4)). Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a *braided-commutative* G-Yetter–Drinfel'd algebra, β the injective anti-*-homomorphism *from* N into $G \ltimes_{\alpha} N$ *introduced in* [2.5.4,](#page-12-1) *and* ν *a normal semi-finite faithful weight* ν *on* N. Then the relative tensor product $(H \otimes H_\nu)$ $_\beta \otimes_\mathfrak{a} (H \otimes H_\nu)$ can be canonically

identified with $H \otimes H \otimes H_v$ *as follows:*

(i) For any $\eta \in H$, $p \in \mathfrak{N}_v$, the vector $U_v^{\mathfrak{a}}(\eta \otimes J_v \Lambda_v(p))$ belongs to $D({}_{\alpha}(H \otimes H_{\nu}), \nu)$ and

$$
R^{\mathfrak{a},\nu}(U_{\nu}^{\mathfrak{a}}(\eta\otimes J_{\nu}\Lambda_{\nu}(p)))=U_{\nu}^{\mathfrak{a}}l_{\eta}J_{\nu}pJ_{\nu},
$$

where l_n *is the application* $\zeta \to \eta \otimes \zeta$ *from* H_ν *into* $H \otimes H_\nu$ *. There exists a* u nitary \overline{V}_1 *from* $(H \otimes H_\nu)$ $_\beta \otimes_\mathfrak{a} (H \otimes H_\nu)$ *onto* $H \otimes H \otimes H_\nu$ *such that*

 $\boldsymbol{\nu}$

$$
V_1(\Xi \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_{\nu}^{\mathfrak{a}}(\eta \otimes J_{\nu} \Lambda_{\nu}(p))) = \eta \otimes \beta(p^*) \Xi \quad \text{for all } \Xi \in H \otimes H_{\nu},
$$

and $V_1(X, \beta) \otimes_{\mathfrak{a}}$ N $(1_H \otimes 1_{H_v})) = (1_H \otimes X)V_1$ *for all* $X \in \beta(N)'$ *, in particular,* for $X \in \mathfrak{a}(N)$ *. Morover, writing* β^{\dagger} for the map $x^{\circ} \mapsto \beta(x)$ *, we have for all*

 $x \in N$,

$$
V_1[(1_H \otimes 1_{H_v}) \underset{N}{\beta \otimes_{\mathfrak{a}}} (1_H \otimes x^{\circ})] = (\mathrm{id} \otimes \beta^{\dagger})(\mathfrak{a}^{\circ}(x^{\circ}))V_1,
$$

$$
V_1[(1_H \otimes 1_{H_v}) \underset{N}{\beta \otimes_{\mathfrak{a}}} \beta(x)] = (\mathrm{id} \otimes \beta^{\dagger})(\widehat{\mathfrak{a}}^{\circ}(x^{\circ}))V_1.
$$

(ii) *For any* $\xi \in H$, $q \in \mathfrak{N}_v$, the vector $U_v^{\mathfrak{a}}(U_v^{\widehat{\mathfrak{a}}})^*(\xi \otimes \Lambda_v(q))$ belongs to $D(\beta(H \otimes H_\nu), \nu^{\rm o})$ and

$$
R^{\beta,\nu^{\circ}}(U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*(\xi\otimes\Lambda_{\nu}(q)))=U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*l_{\xi}q.
$$

There exists a unitary V_2 *from* $(H \otimes H_\nu)$ $\underset{\nu}{\rho} \otimes_\mathfrak{a} (H \otimes H_\nu)$ *onto* $H \otimes H \otimes H_\nu$ *such that*

$$
V_2[U_\nu^{\mathfrak{a}}(U_\nu^{\widehat{\mathfrak{a}}})^*(\xi\otimes\Lambda_\nu(q))\underset{\nu}{\beta\otimes_\mathfrak{a}}\Xi]=\xi\otimes\mathfrak{a}(q)\Xi\quad\text{for all }\Xi\in H\otimes H_\nu,
$$

 $and V_2((1_H \otimes 1_{H_v})_{\beta} \otimes_{\mathfrak{a}}$ N $(X) = (1_H \otimes X)V_2$ for all $X \in \mathfrak{a}(N)'$, in particular, *for* $X \in \beta(N)$ *.*

(iii)
$$
V_2V_1^* = \sigma_{12}(U_v^{\mathfrak{a}})_{13}(U_v^{\mathfrak{a}})_{23}(U_v^{\mathfrak{a}})_{23}^* = \sigma_{12}W_{12}(U_v^{\mathfrak{a}})_{23}(U_v^{\mathfrak{a}})_{23}^*W_{12}^*.
$$

Proof. (i) For all $n \in \mathfrak{N}_{\nu}$,

$$
U_{\nu}^{\mathfrak{a}}l_{\eta}J_{\nu}pJ_{\nu}\Lambda_{\nu}(n) = U_{\nu}^{\mathfrak{a}}(\eta \otimes J_{\nu}pJ_{\nu}\Lambda_{\nu}(n))
$$

=
$$
U_{\nu}^{\mathfrak{a}}(\eta \otimes nJ_{\nu}\Lambda_{\nu}(p)) = \mathfrak{a}(n)U_{\nu}^{\mathfrak{a}}(\eta \otimes J_{\nu}\Lambda_{\nu}(p)),
$$

which gives the proof of the first part of (i). Let now $\eta' \in H$, $p' \in \mathfrak{N}_{\nu}$, $\Xi' \in H \otimes H_{\nu}$. Then

$$
\langle U_{\nu}^{\mathfrak{a}}(\eta' \otimes J_{\nu} \Lambda_{\nu}(p')) | U_{\nu}^{\mathfrak{a}}(\eta \otimes J_{\nu} \Lambda_{\nu}(p)))_{\mathfrak{a},\nu}^{\circ} = J_{\nu} p^* J_{\nu} l_{\eta}^* l_{\eta'} J_{\nu} p' J_{\nu}
$$

=
$$
(\eta|\eta') J_{\nu} p^* p' J_{\nu}
$$

and hence

$$
(\Xi \underset{\nu}{\beta \otimes_{\alpha}} U^{\mathfrak{a}}(\eta \otimes J_{\nu} \Lambda_{\nu}(p))] \Xi' \underset{\nu}{\beta \otimes_{\alpha}} U^{\mathfrak{a}}(\eta' \otimes J_{\nu} \Lambda_{\nu}(p')))= (\beta(\langle U^{\mathfrak{a}}(\eta' \otimes J_{\nu} \Lambda_{\nu}(p')), U^{\mathfrak{a}}(\eta \otimes J_{\nu} \Lambda_{\nu}(p)))^{\circ}_{\mathfrak{a},\nu}) \Xi|\Xi')
$$

= (\eta|\eta')(\beta(p^*p')\Xi|\Xi')

which proves the existence of an isometry V_1 satisfying the above formula. As the image of V_1 is dense in $H \otimes H \otimes H_{\nu}$, we get that V_1 is unitary.

Next, let $z \in B(H)$, $x \in N$. Then

$$
(z \otimes \beta(x))V_1[\Xi \underset{\nu}{\beta \otimes_{\alpha}} U_{\nu}^{\alpha}(\eta \otimes J_{\nu} \Lambda_{\nu}(p))]
$$

\n
$$
= z\eta \otimes \beta(x)\beta(p^*)\Xi
$$

\n
$$
= z\eta \otimes \beta((x^*p)^*)\Xi
$$

\n
$$
= V_1[\Xi \underset{\nu}{\beta \otimes_{\alpha}} U_{\nu}^{\alpha}(z\eta \otimes J_{\nu} \Lambda_{\nu}(x^*p))]
$$

\n
$$
= V_1[\Xi \underset{\nu}{\beta \otimes_{\alpha}} U_{\nu}^{\alpha}(z \otimes x^o)(\eta \otimes J_{\nu} \Lambda_{\nu}(p))],
$$

that is, $(z \otimes \beta(x))V_1 = V_1(1 \underset{\nu}{\beta \otimes_{\mathfrak{a}}}$ $U_{\nu}^{\mathfrak{a}}(z \otimes x^{\mathfrak{0}})(U_{\nu}^{\mathfrak{a}})^{*})$. In particular,

$$
(\mathrm{id}\otimes\beta^{\dagger})(\mathfrak{a}^o(x^o))V_1 = V_1(1 \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_{\nu}^{\mathfrak{a}}\mathfrak{a}^o(x^o)(U_{\nu}^{\mathfrak{a}})^*) = V_1(1 \underset{\nu}{\beta \otimes_{\mathfrak{a}}} (1_H \otimes x^o)),
$$

\n
$$
(\mathrm{id}\otimes\beta^{\dagger})(\widehat{\mathfrak{a}}^o(x^o))V_1 = V_1(1 \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_{\nu}^{\mathfrak{a}}\widehat{\mathfrak{a}}^o(x^o)(U_{\nu}^{\mathfrak{a}})^*) = V_1(1 \underset{\nu}{\beta \otimes_{\mathfrak{a}}} \beta(x)).
$$

(ii) We proceed as above. First, we have

$$
U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^* l_{\xi} q J_{\nu} \Lambda_{\nu}(n) = U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^* (\xi \otimes J_{\nu} n J_{\nu} \Lambda_{\nu}(q))
$$

= $\beta(n^*) U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^* (\xi \otimes \Lambda_{\nu}(q)),$

which gives the proof of the first part of (ii). Let now $\xi' \in H$, $q' \in \mathfrak{N}_{\nu}$. Then

$$
(U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*(\xi \otimes \Lambda_{\nu}(q))\underset{\nu}{\beta \otimes_{\mathfrak{a}}} \Xi | U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*(\xi' \otimes \Lambda_{\nu}(q'))\underset{\nu}{\beta \otimes_{\mathfrak{a}}} \Xi')
$$

= $(\mathfrak{a}((U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*(\xi \otimes \Lambda_{\nu}(q)), U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*(\xi' \otimes \Lambda_{\nu}(q')))\underset{\nu}{\beta,\nu})\Xi|\Xi')$
= $(\xi|\xi')(\mathfrak{a}(q'^*q)\Xi|\Xi')$

which proves the existence of an isometry V_2 satisfying the above formula. Again, as the image of V_2 is dense in $H \otimes H \otimes H_{\nu}$, we get (ii).

(iii) Applying (i), we get

$$
V_1[U_\nu^{\mathfrak{a}}(U_\nu^{\widehat{\mathfrak{a}}})^*(\xi \otimes \Lambda_\nu(q)) \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_\nu^{\mathfrak{a}}(\eta \otimes J_\nu \Lambda_\nu(p))] \n= \eta \otimes \beta(p^*)U_\nu^{\mathfrak{a}}(U_\nu^{\widehat{\mathfrak{a}}})^*(\xi \otimes \Lambda_\nu(q)) \n= \eta \otimes U_\nu^{\mathfrak{a}}(U_\nu^{\widehat{\mathfrak{a}}})^*(\xi \otimes J_\nu p J_\nu \Lambda_\nu(q)) \n= \eta \otimes U_\nu^{\mathfrak{a}}(U_\nu^{\widehat{\mathfrak{a}}})^*(\xi \otimes q J_\nu \Lambda_\nu(p)),
$$

and, applying (ii), we get

 \sim

$$
V_2[U_\nu^{\mathfrak{a}}(U_\nu^{\mathfrak{a}})^*(\xi \otimes \Lambda_\nu(q)) \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_\nu^{\mathfrak{a}}(\eta \otimes J_\nu \Lambda_\nu(p))] = \xi \otimes \mathfrak{a}(q)U_\nu^{\mathfrak{a}}(\eta \otimes J_\nu \Lambda_\nu(p)) = \xi \otimes U_\nu^{\mathfrak{a}}(\eta \otimes qJ_\nu \Lambda_\nu(p)),
$$

from which we easily get $(1_H \otimes U_\nu^{\widehat{\mathfrak{a}}}(U_\nu^{\mathfrak{a}})^*)V_1 = (\sigma \otimes 1_{H\nu})(1_H \otimes (U_\nu^{\mathfrak{a}})^*)V_2$. Using Corollary [3.8](#page-15-0) (iii), we conclude

$$
V_2 V_1^* = \sigma_{12}(U_{\nu}^{\mathfrak{a}})_{13}(U_{\nu}^{\widehat{\mathfrak{a}}})_{23}(U_{\nu}^{\mathfrak{a}})^*_{23} = \sigma_{12} W_{12}(U_{\nu}^{\widehat{\mathfrak{a}}})_{23}(U_{\nu}^{\mathfrak{a}})^*_{23}W_{12}^*.
$$

4.4 Theorem ([40]). Let G be a locally compact quantum group and $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided-commutative G-Yetter-Drinfel'd algebra. We use the notations of 4.3.

(i) For $X \in \mathbb{G} \ltimes_{\mathfrak{a}} N$, let $\widetilde{\Gamma}(X) = V_1^* \tilde{\mathfrak{a}}(X) V_1$. Then this defines a normal $*$ -homomorphism $\widetilde{\Gamma}$ from $\mathbb{G} \ltimes_{\mathfrak{a}} N$ into $(\mathbb{G} \ltimes_{\mathfrak{a}} N) \underset{N}{\beta *_{\mathfrak{a}}} (\mathbb{G} \ltimes_{\mathfrak{a}} N)$. For a $x \in N$,

$$
\widetilde{\Gamma}(\mathfrak{a}(x)) = \mathfrak{a}(x) \underset{N}{\beta \otimes_{\mathfrak{a}}} (1_H \otimes 1_{H_v}),
$$

$$
\widetilde{\Gamma}(\beta(x)) = (1_H \otimes 1_{H_v}) \underset{N}{\beta \otimes_{\mathfrak{a}}} \beta(x),
$$

and for all $y \in \widehat{M}$,

$$
\widetilde{\Gamma}(y \otimes 1_{H_{\nu}}) = V_1^*(\widehat{\Gamma}^{\circ}(y) \otimes 1)V_1 = V_2^*(\widehat{\Gamma}(y) \otimes 1_{H_{\nu}})V_2.
$$

- (ii) $(N, G \ltimes_{\alpha} N, \alpha, \beta, \widetilde{\Gamma})$ is a Hopf bimodule.
- (iii) We have $\tilde{a}(\beta^{\dagger}(x^o)) = (id \otimes \beta^{\dagger})\hat{a}^o(x^o)$, where β^{\dagger} has been defined in 4.3.

(i) and (iii) Let $x \in N$. Then 4.3 (iii) implies Proof.

$$
\widetilde{\Gamma}(\mathfrak{a}(x)) = V_1^* \widetilde{\mathfrak{a}}(\mathfrak{a}(x)) V_1 = V_1^* (1_H \otimes \mathfrak{a}(x)) V_1 = \mathfrak{a}(x) \beta \underset{N}{\otimes_{\alpha}} (1_H \otimes 1_{H_{\nu}}),
$$

in particular, $\widetilde{\Gamma}(\mathfrak{a}(x))$ lies in $(\mathbb{G} \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}} \atop N} (\mathbb{G} \ltimes_{\mathfrak{a}} N)$.

Next, by definition,

$$
\widetilde{\Gamma}(\beta(x)) = \mathrm{Ad}(V_1^* \widehat{W}_{12}^{\circ*})[1 \otimes \beta(x)] = \mathrm{Ad}(V_1^* \widehat{W}_{12}^{\circ*}(U_{\nu}^{\mathfrak{a}})_{23})[1 \otimes \widehat{\mathfrak{a}}^{\circ}(x^{\circ})].
$$

Since $U_v^{\alpha} \in M \otimes B(H_v)$ commutes with $\widehat{W}^{\circ} \in \widehat{M} \otimes M'$, this is equal to

$$
\begin{aligned} \text{Ad}(V_1^*(U_{\nu}^{\mathfrak{a}})_{23}) \hat{W}_{12}^{\mathfrak{a}\mathfrak{b}})[1 \otimes \hat{\mathfrak{a}}^{\mathfrak{0}}(x^{\mathfrak{0}})] &= \text{Ad}(V_1^*) \left[(\text{id} \otimes \beta^{\dagger}) (\hat{\mathfrak{a}}^{\mathfrak{0}}(x^{\mathfrak{0}})) \right] \\ &= (1_H \otimes 1_{H_{\nu}}) \underset{N}{\beta} \otimes_{\alpha} \beta(x), \end{aligned}
$$

where we used 4.3 (i). From this calculation, one gets (iii) as well.

For $y \in \widehat{M}$, we get by definition of $\tilde{\Gamma}$

$$
\Gamma(y \otimes 1) = \text{Ad}(V_1^*)[\tilde{\mathfrak{a}}(y \otimes 1)]
$$

=
$$
\text{Ad}(V_1^*)[\tilde{\Gamma}^0(y) \otimes 1] = \text{Ad}(V_1^*W_{12})[y \otimes 1 \otimes 1].
$$

M. Enock and T. Timmermann

By 4.3 (iii), $V_1^* W_{12} = V_2^* \sigma_{12} W_{12} (U_\nu^{\hat{a}})_{23} (U_\nu^{\hat{a}})_{23}^*$ and hence

$$
\tilde{\Gamma}(y \otimes 1) = \text{Ad}(V_2^* \sigma_{12} W_{12} (U_v^{\hat{\mathfrak{a}}})_{23} (U_v^{\hat{\mathfrak{a}}})_{23}^*)[y \otimes 1 \otimes 1]
$$

=
$$
\text{Ad}(V_2^*) (\widehat{\Gamma}(y) \otimes 1).
$$

To see that $\tilde{\Gamma}(y \otimes 1)$ lies in $(\mathbb{G} \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}} (\mathbb{G} \ltimes_{\mathfrak{a}} N)$, note that for any Y in $(\mathbb{G} \ltimes_{\mathfrak{a}} N)'$,

$$
\mathrm{Ad}(V_1)[Y \underset{N}{\beta \otimes_{\alpha}} (1_H \otimes 1_{H_{\nu}})] = 1_H \otimes Y = \mathrm{Ad}(V_2)[(1_H \otimes 1_{H_{\nu}}) \underset{N}{\beta \otimes_{\alpha}} Y]
$$

by 4.3, and $1_H \otimes Y$ commutes with

$$
\mathrm{Ad}(V_1)(\widetilde{\Gamma}(y \otimes 1)) = \widehat{\Gamma}^{\circ}(y) \otimes 1 \quad \text{and} \quad \mathrm{Ad}(V_2)(\widetilde{\Gamma}(y \otimes 1)) = \widehat{\Gamma}(y) \otimes 1.
$$

(ii) To get (ii), we must verify that $\widetilde{\Gamma}$ is co-associative. It is trivial to get that

$$
(\widetilde{\Gamma} \underset{N}{\beta *_{\mathfrak{a}}} \mathrm{id}) \widetilde{\Gamma}(\mathfrak{a}(x)) = \mathfrak{a}(x) \underset{N}{\beta \otimes_{\mathfrak{a}}} (1_H \otimes 1_{H_{\nu}}) \underset{N}{\beta \otimes_{\mathfrak{a}}} (1_H \otimes 1_{H_{\nu}})
$$

$$
= (\mathrm{id} \underset{N}{\beta *_{\mathfrak{a}}} \widetilde{\Gamma}) \widetilde{\Gamma}(\mathfrak{a}(x))
$$

for all $x \in N$.

Next, let $y \in \widehat{M}$ and consider the following diagrams,

$$
\widehat{M} \otimes 1_{H_{\nu}} \xrightarrow{\widehat{\Gamma} \otimes id} \widehat{M} \otimes \widehat{M} \otimes 1_{H_{\nu}} \xrightarrow{id \otimes \widetilde{\Gamma}} \widehat{M} \otimes (\mathbb{G} \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}} (\mathbb{G} \ltimes_{\mathfrak{a}} N)
$$
\n
$$
\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
(\mathbb{G} \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}} (\mathbb{G} \ltimes_{\mathfrak{a}} N) \xrightarrow[\mathrm{id}_{\beta *_{\mathfrak{a}}} \widetilde{\Gamma}]} (\mathbb{G} \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}} \otimes (\mathbb{G} \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}} (\mathbb{G} \ltimes_{\mathfrak{a}} N)
$$
\n
$$
\uparrow \qquad \qquad \downarrow
$$
\n
$$
\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow
$$
\n
$$
\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow
$$
\n
$$
\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow
$$
\n
$$
\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow
$$

$$
M \otimes 1_{H_{\nu}} \xrightarrow{\sum_{\substack{S \to S(1 \text{ odd}) \\ \vdots \\ S(N-1) \text{ odd}}} M \otimes 1_{H_{\nu}} \otimes M \xrightarrow{\sum_{\substack{N \text{ odd} \\ \vdots \\ N \text{ odd}}} (G \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}} (G \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}} (G \ltimes_{\mathfrak{a}} N) \otimes M
$$
\n
$$
(G \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}} (G \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}} (G \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}} (G \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}} (G \ltimes_{\mathfrak{a}} N)
$$

where \tilde{V}_1 denotes the composition of the unitary V_1 with the flip $\eta \otimes \xi \otimes \zeta \mapsto \xi \otimes \zeta \otimes \eta$ (for ξ , η in H and ζ in H_{ν}). The triangles commute by (i) and the squares commutes

1168

by definition of V_1 and V_2 . Next, consider the following diagram:

$$
\widehat{M} \otimes \widehat{M} \otimes 1_{H_{\nu}} \underbrace{\overbrace{\bigcup_{\text{id}\otimes\text{ad}_{(\widehat{V}_{1}^{*})}}^{\widehat{\Gamma}\otimes\text{id}}\bigcap_{\text{id}\otimes\text{ad}_{(\widehat{V}_{1}^{*})}}}\bigcap_{\text{id}\otimes\text{id}_{(\widehat{V}_{1}^{*})}}^{\widehat{M}\otimes 1_{H_{\nu}}}\bigotimes_{\widehat{M}}^{\widehat{\Gamma}\otimes\text{id}\otimes\text{id}}\bigcap_{\text{id}_{(\widehat{V}_{2}^{*})}\otimes\text{id}}^{\widehat{\Gamma}\otimes\text{id}\otimes\text{id}}\bigcap_{\text{id}_{(\widehat{V}_{2}^{*})}\otimes\text{id}}^{\widehat{\Gamma}\otimes\text{id}\otimes\text{id}}}\bigcap_{\text{id}_{(\widehat{V}_{2}^{*})}\otimes\text{id}_{(\widehat{V}_{2}^{*})}\bigcap_{\text{id}_{(\widehat{V}_{2}^{*})}\otimes\text{id}_{(\widehat{V}_{1}^{*})}}^{\widehat{\Gamma}\otimes\text{id}}\bigcap_{\text{id}_{(\widehat{V}_{2}^{*})}\otimes\text{id}_{(\widehat{V}_{1}^{*})}}^{\widehat{\Gamma}\otimes\text{id}}\bigcap_{\text{id}_{(\widehat{V}_{2}^{*})}\otimes\text{id}_{(\widehat{V}_{1}^{*})}\bigcap_{\text{id}_{(\widehat{V}_{1}^{*})}\bigcap_{\text{id}_{(\widehat{V}_{1}^{*})}\bigcap_{\text{id}_{(\widehat{V}_{1}^{*})}}^{\widehat{\Gamma}\otimes\text{id}}^{\widehat{\Gamma}\otimes\text{id}}}
$$

The upper middle cell commutes by co-associativity of $\widehat{\Gamma}$, the left and the right triangle commute by (i), and the lower middle cell commutes because the following diagram does,

$$
(H \otimes H_{\nu}) \underset{\nu}{\beta \otimes_{\mathfrak{a}}} (H \otimes H_{\nu}) \underset{\nu}{\beta \otimes_{\mathfrak{a}}} (H \otimes H_{\nu}) \underset{\nu}{\beta \otimes_{\mathfrak{a}}} (H \otimes H_{\nu}) \xrightarrow{\begin{subarray}{l} V_{2\beta \otimes_{\mathfrak{a}} \text{id}} \\ N \end{subarray}} H \otimes ((H \otimes H_{\nu}) \underset{\nu}{\beta \otimes_{\mathfrak{a}}} (H \otimes H_{\nu}))
$$
\n
$$
((H \otimes H_{\nu}) \underset{\nu}{\beta \otimes_{\mathfrak{a}}} (H \otimes H_{\nu})) \otimes H \xrightarrow{\begin{subarray}{l} V_{2\beta \otimes \text{id}} \\ N \end{subarray}} H \otimes (H \otimes H_{\nu}) \otimes H
$$

where both compositions are given by

$$
U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*(\xi \otimes \Lambda_{\nu}(q))\underset{\nu}{\beta \otimes_{\mathfrak{a}}} \Xi \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_{\nu}^{\mathfrak{a}}(\eta \otimes J_{\nu}\Lambda_{\nu}(p)) \mapsto \xi \otimes \mathfrak{a}(q)\beta(p^*)\Xi \otimes \eta.
$$

Combining everything, we can conclude that

$$
(\widetilde{\Gamma} \underset{N}{\beta *_{\mathfrak{a}}} \mathrm{id}) \circ \widetilde{\Gamma}(\mathfrak{y} \otimes 1) = (\mathrm{id} \underset{N}{\beta *_{\mathfrak{a}}} \widetilde{\Gamma}) \circ \widetilde{\Gamma}(\mathfrak{y} \otimes 1).
$$

4.5 Proposition ([\[40\]](#page-70-4)). *Consider on the Hilbert space* $H \otimes H_v$ *the anti-linear operator:*

$$
I = U_{\nu}^{\mathfrak{a}}(J \otimes J_{\nu})U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^{*} = U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^{*}(J \otimes J_{\nu})(U_{\nu}^{\mathfrak{a}})^{*} = U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^{*}J_{\widetilde{\nu}}U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^{*},
$$

where $\widetilde{\nu}$ denotes the dual weight of ν on the crossed product $\widehat{\mathbb{G}} \ltimes_{\widehat{\mathfrak{a}}} N$.
(i) *Lie a bijective issuesting and* I^2 .

- (i) *I* is a bijective isometry and $I^2 = 1$.
- (ii) $I \mathfrak{a}(x)^* I = \beta(x)$ and $I \beta(x)^* I = \mathfrak{a}(x)$ for all $x \in N$.

M. Enock and T. Timmermann

- (iii) $I(y^* \otimes 1)I = \widehat{R}(y) \otimes 1$ for all $y \in \widehat{M}$.
- (iv) If σ_{ν} denotes the flip from $(H \otimes H_{\nu})_{\beta} \underset{\nu}{\otimes}_{\mathfrak{a}} (H \otimes H_{\nu})$ to $(H \otimes H_{\nu})_{\mathfrak{a}} \underset{\nu^{\circ}}{\otimes}_{\beta} (H \otimes H_{\nu})$, then

$$
V_2 = (J \otimes I) V_1 (I_{\mathfrak{a}} \underset{N^{\circ}}{\otimes}_{\beta} I) \sigma_{\nu}.
$$

Proof. (i) The relation $U_v^{\hat{\mathfrak{a}}} = J_{\hat{v}}(J \otimes J_v)$ (2.2) shows that the three expressions given for *I* coincide and that *I* is isometric, bijective, anti-linear, and equal to I^* . Moreover, the formula $I = U_{\nu}^{\mathfrak{a}} (U_{\nu}^{\widehat{\mathfrak{a}}})^* J_{\widetilde{\mathfrak{b}}} U_{\nu}^{\widehat{\mathfrak{a}}} (U_{\nu}^{\mathfrak{a}})^*$ shows that $I^2 = 1_H \otimes 1_{H_{\nu}}$.

(ii) We only need to prove the first equation. But by 2.5.4,

$$
I\mathfrak{a}(x)^* I^* = \text{Ad}(U_{\nu}^{\mathfrak{a}} (U_{\nu}^{\mathfrak{a}})^* (J \otimes J_{\nu})(U_{\nu}^{\mathfrak{a}})^*)[\mathfrak{a}(x)^*]
$$

=
$$
\text{Ad}(U_{\nu}^{\mathfrak{a}} (U_{\nu}^{\widehat{\mathfrak{a}}})^*)[1 \otimes x^{\circ}] = \beta(x).
$$

(iii) Using 3.8(iii) and the fact that U_{ν}^{α} is a representation, we find that

$$
(\widehat{J} \otimes I)W_{12}(\widehat{J} \otimes I) = \text{Ad}((U_{\nu}^{\mathfrak{a}})_{23}(\widehat{J} \otimes J \otimes J_{\nu})(U_{\nu}^{\mathfrak{a}})_{23}(U_{\nu}^{\mathfrak{a}})^{*}_{23})[W_{12}]
$$

=
$$
\text{Ad}((U_{\nu}^{\mathfrak{a}})_{23}(\widehat{J} \otimes J \otimes J_{\nu}))[(U_{\nu}^{\mathfrak{a}})^{*}_{13}W_{12}]
$$

=
$$
\text{Ad}((U_{\nu}^{\mathfrak{a}})_{23})[(U_{\nu}^{\mathfrak{a}})_{13}W_{12}^{*}]
$$

=
$$
W_{12}^{*}.
$$

For any ξ , η in H, we can conclude that

$$
I(J(\omega_{\xi,\eta} \otimes id)(W)^* J \otimes 1)I = I((\omega_{\widehat{J}\eta,\widehat{J}\xi} \otimes id)(W) \otimes 1)I
$$

= $(\omega_{\xi,\eta} \otimes id)(W)^* \otimes 1$,

from which (iii) follows by continuity.

 $(iv) By (ii),$

$$
V_1(I \underset{\nu^o}{\alpha \otimes_{\beta}} I)\sigma_{\nu}[U_{\nu}^{\alpha}(U_{\nu}^{\widehat{\alpha}})^*(\xi \otimes \Lambda_{\nu}(q)) \underset{\nu}{\beta \otimes_{\alpha}} \Xi]
$$

\n
$$
= V_1[I \boxtimes \underset{\nu}{\beta \otimes_{\alpha}} U_{\nu}^{\alpha}(J\xi \otimes J_{\nu}\Lambda_{\nu}(q))]
$$

\n
$$
= J\xi \otimes \beta(q^*)I \Xi
$$

\n
$$
= J\xi \otimes I\alpha(q) \Xi
$$

\n
$$
= (J \otimes I)V_2[U_{\nu}^{\alpha}(U_{\nu}^{\widehat{\alpha}})^*(\xi \otimes \Lambda_{\nu}(q)) \underset{\nu}{\beta \otimes_{\alpha}} \Xi]. \square
$$

4.6 Theorem ([40]). Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braidedcommutative G-Yetter-Drinfel'd algebra and I the anti-linear surjective isometry constructed in 4.5. Then:

1170

Measured quantum transformation groupoids 1171

- (i) *For all* $z \in \mathbb{G} \ltimes_{\mathfrak{a}} N$, *let* $\widetilde{R}(z) = Iz^*I$. *Then* \widetilde{R} *is an involutive anti-***isomorphism of* $G \ltimes_{\alpha} N$ *, and* $\widetilde{R}(\mathfrak{a}(x)) = \beta(x), \widetilde{R}(\beta(x)) = \mathfrak{a}(x)$ *and* $\widetilde{R}(y \otimes 1_{H_v}) = \widehat{R}(y) \otimes 1_{H_v}$ for all $x \in N$ and $y \in \widehat{M}$.
- (ii) \widetilde{R} *is a co-inverse for the Hopf bimodule* $(N, \mathbb{G} \ltimes_{\mathfrak{a}} N, \mathfrak{a}, \beta, \widetilde{\Gamma})$ *constructed in [4.4.](#page-23-0)*

Proof. (i) This is just a straightforward corollary of [4.5](#page-26-0) (ii) and (iii).

(ii) We need to prove that

$$
\widetilde{\Gamma} = \varsigma_{N^{\mathrm{o}}}(\widetilde{R} \underset{N}{\beta \otimes_{\alpha} \widetilde{R}}) \widetilde{\Gamma} \widetilde{R}.
$$

Using (i), we find that for $x \in N$,

$$
\varsigma_{N^{\circ}}(\widetilde{R} \underset{N}{\beta \otimes_{\alpha} \widetilde{R}}) \widetilde{\Gamma} \widetilde{R}(\mathfrak{a}(x)) = \varsigma_{N^{\circ}}(\widetilde{R} \underset{N}{\beta \otimes_{\alpha} \widetilde{R}}) \widetilde{\Gamma}(\beta(x))
$$

$$
= \varsigma_{N^{\circ}}(\widetilde{R} \underset{N}{\beta \otimes_{\alpha} \widetilde{R}}) ((1_H \otimes 1_{H_{\nu}}) \underset{N}{\beta \otimes_{\alpha} \beta(x)})
$$

$$
= \mathfrak{a}(x) \underset{N}{\beta \otimes_{\alpha} (1_H \otimes 1_{H_{\nu}})}
$$

coincides with $\widetilde{\Gamma}(\mathfrak{a}(x))$. For $y \in \widehat{M}$, we conclude from [4.4](#page-23-0) and [4.5](#page-26-0) (iv) that

$$
S_{N^{\circ}}(\widetilde{R} \underset{N}{\beta \otimes_{\alpha} \widetilde{R}}) \widetilde{\Gamma} \widetilde{R}(y \otimes 1_{H_{\nu}}) = S_{N^{\circ}}(\widetilde{R} \underset{N}{\beta \otimes_{\alpha} \widetilde{R}}) \widetilde{\Gamma}(\widehat{R}(y) \otimes 1_{H_{\nu}})
$$

\n
$$
= S_{N^{\circ}}(\widetilde{R} \underset{N}{\beta \otimes_{\alpha} \widetilde{R}}) [V_{2}^{*}(\widehat{\Gamma}(\widehat{R}(y) \otimes 1_{H_{\nu}}) V_{2}]
$$

\n
$$
= V_{1}^{*}((\widehat{R} \otimes \widehat{R}) \widehat{\Gamma}(\widehat{R}(y)) \otimes 1_{H_{\nu}}) V_{1}
$$

\n
$$
= \widetilde{\Gamma}(y \otimes 1_{H_{\nu}})
$$

As $G \ltimes_{\alpha} N$ is the von Neumann algebra generated by $\alpha(N)$ and $\widehat{M} \otimes 1_{H_{\nu}}$, this finishes the proof of (ii). \Box

4.7 Lemma. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided-com*mutative* G-Yetter–Drinfel'd algebra, $\widetilde{\Gamma}$ the injective *-homomorphism from G $\ltimes_{\mathfrak{a}} N$ *into* $(\mathbb{G} \ltimes_{\mathfrak{a}} N)_{\beta *_{\mathfrak{a}}}$ $(\mathbb{G} \ltimes_{\mathfrak{a}} N)$ *defined in [4.4,](#page-23-0)* $\tilde{\mathfrak{a}}$ *the dual action of* $\widehat{\mathbb{G}}$ *on* $\mathbb{G} \ltimes_{\mathfrak{a}} N$ *,* N and V_1 as in [4.3.](#page-21-0) Denote by τ the flip from $(H \otimes H_\nu)_\beta \underset{\nu}{\otimes}_{(1 \otimes \mathfrak{a})} (H \otimes H \otimes H_\nu)$ onto $H \otimes [(H \otimes H_{\nu}) \underset{\nu}{\beta \otimes_{\mathfrak{a}}} (H \otimes H_{\nu})]$ given by

$$
\tau(\Xi_{\beta}\underset{\nu}{\otimes}_{(1\otimes\mathfrak{a})}(\xi\otimes\Xi'))=\xi\otimes\Xi_{\beta}\underset{\nu}{\otimes}_{\alpha}\Xi'
$$

for all $\xi \in H$, $\Xi \in D(\beta(H \otimes H_\nu), \nu^\circ)$, $\Xi' \in D(\alpha(H \otimes H_\nu), \nu)$. Then:

M. Enock and T. Timmermann

(i)
$$
(id_{\beta *_{\alpha}} \tilde{a})\tilde{\Gamma}(X) = \tau^*(id \otimes \tilde{\Gamma})\tilde{a}(X)\tau
$$
 for all $X \in \mathbb{G} \times_{\alpha} N$.
\n(ii) $V_2\tilde{\Gamma}(X)V_2^* = (\tilde{R} \otimes \tilde{R})\tilde{a}(\tilde{R}(X))$.
\n*Proof.* (i) For any $x' \in M'$, we have
\n
$$
V_1[(1_H \otimes 1_{H_v})\beta \otimes_{\alpha} (x' \otimes 1_{H_v})] = (x' \otimes 1_H \otimes 1_{H_v})V_1.
$$
\nAs \widehat{W} belongs to $\widehat{M} \otimes M'$ we infer

 \sim

As W° belongs to $M \otimes M'$, we infer

$$
(1_H \otimes V_1)\tau[(1_H \otimes 1_{H_v})_{\beta} \underset{N}{\otimes} 1_{\otimes \mathfrak{a}}(\widehat{W}^{\circ} \otimes 1_{H_v})] = (\widehat{W}^{\circ} \otimes 1_H \otimes 1_{H_v})(1_H \otimes V_1)\tau.
$$
\n(3)

Therefore, we can conclude that for all $X \in \mathbb{G} \ltimes_{\mathfrak{a}} N$,

$$
(\operatorname{id} \beta *_{\mathfrak{a}} \tilde{\mathfrak{a}}) \tilde{\Gamma}(X)
$$

\n
$$
= \operatorname{Ad}([(\mathbf{1}_{H} \otimes \mathbf{1}_{H_{\nu}})_{\beta} \otimes \mathbf{1}_{\otimes \mathfrak{a}} (\widehat{W}^{o*} \otimes \mathbf{1}_{H_{\nu}})] \tau^{*} (\mathbf{1}_{H} \otimes V_{1}^{*})) [\mathbf{1}_{H} \otimes \tilde{\mathfrak{a}}(X)]
$$

\n
$$
= \operatorname{Ad}(\tau^{*} (\mathbf{1}_{H} \otimes V_{1}^{*}) (\widehat{W}^{o*} \otimes \mathbf{1}_{H} \otimes \mathbf{1}_{H_{\nu}})) [\mathbf{1}_{H} \otimes \tilde{\mathfrak{a}}(X)]
$$

\n
$$
= \operatorname{Ad}(\tau^{*} (\mathbf{1}_{H} \otimes V_{1}^{*})) [(\widehat{\Gamma}^{o} \otimes \mathrm{id}) \tilde{\mathfrak{a}}(X)]
$$

\n
$$
= \operatorname{Ad}(\tau^{*} (\mathbf{1}_{H} \otimes V_{1}^{*})) [(\mathrm{id} \otimes \tilde{\mathfrak{a}}) \tilde{\mathfrak{a}}(X)]
$$

\n
$$
= \tau^{*} (\mathrm{id} \otimes \widetilde{\Gamma}) \tilde{\mathfrak{a}}(X) \tau.
$$

(ii) By 4.5 (iii),

$$
Ad(V_2)[\widetilde{\Gamma}(X)] = Ad((J \otimes I)V_1 \sigma_{\nu^{\circ}}(I \underset{N}{\beta \otimes_{\alpha} I}))[\widetilde{\Gamma}(X)]
$$

=
$$
Ad((J \otimes I)V_1)[\widetilde{\Gamma}\widetilde{R}(X^*)]
$$

=
$$
(\widehat{R} \otimes \widetilde{R})\widetilde{a}(\widetilde{R}(X)).
$$

5. Measured quantum groupoid structure associated to a braided-commutative Yetter-Drinfel'd algebra equipped with an appropriate weight

In this chapter, after recalling the definition of a measured quantum groupoid (5.1) and describing the major data associated to a measured quantum groupoid (5.2) , (5.3) , we try to construct, given a braided-commutative G-Yetter-Drinfel'd algebra $(A, \mathfrak{a}, \widehat{\mathfrak{a}})$ and a normal semi-finite faithful weight on N , a structure of a measured quantum groupoid, denoted $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$, on the crossed product $\mathbb{G} \ltimes_{\mathfrak{a}} N$ or, more precisely, on the Hopf bimodule constructed in 4.6. Without any hypothesis on the normal faithful

1172

semi-finite weight ν on N, we construct a left-invariant operator-valued weight [\(5.4\)](#page-34-0) and a right-invariant one [\(5.4\)](#page-34-0), and we give a necessary and sufficient condition for a weight ν on N to be relatively invariant with respect to these two operator-valued weights [\(5.9\)](#page-38-0). This condition is clearly satisfied [\(5.10\)](#page-39-0) if ν is k-invariant with respect to a (for k affiliated to $Z(M)$, or $k = \delta^{-1}$).

5.1. Definition of measured quantum groupoids [\[13,](#page-69-6) [24\]](#page-69-5). A *measured quantum groupoid* is an octuple $\mathfrak{G} = (N, M, \alpha, \beta, \Gamma, T, T', \nu)$ such that [\[13,](#page-69-6) 3.8]:

(i) $(N, M, \alpha, \beta, \Gamma)$ is a Hopf bimodule,

(ii) T is a left-invariant normal, semi-finite, faithful operator-valued weight from M to $\alpha(N)$ (to be more precise, from M^+ to the extended positive elements of $\alpha(N)$ (cf. [\[38,](#page-70-0) IX.4.12])), which means that, for any $x \in \mathfrak{M}_T^+$, we have

$$
(\mathrm{id}_{\beta_{\nu}^*\alpha} T)\Gamma(x) = T(x) \underset{N}{\beta \otimes_{\alpha} 1}.
$$

(iii) T' is a right-invariant normal, semi-finite, faithful operator-valued weight from M to $\beta(N)$, which means that, for any $x \in \mathfrak{M}_{T}^+$, we have

$$
(T' \underset{\nu}{\beta *_{\alpha}} id) \Gamma(x) = 1 \underset{N}{\beta \otimes_{\alpha}} T'(x).
$$

(iv) ν is normal semi-finite faithful weight on N, which is relatively invariant with respect to T and T' , which means that the modular automorphisms groups of the weights $\Phi = v \circ \alpha^{-1} \circ T$ and $\Psi = v \circ \beta^{-1} \circ T'$ commute. The weight Φ will be called left-invariant, and Ψ right-invariant.

For example, let G be a measured groupoid equipped with a left Haar system $(\lambda^u)_{u \in \mathcal{G}^{(0)}}$ and a quasi-invariant measure ν on $\mathcal{G}^{(0)}$. Let us use the notations introduced in [4.2.](#page-20-0) If $f \in L^{\infty}(\mathcal{G}, \mu)^+$, consider the function on $\mathcal{G}^{(0)}, u \mapsto \int_{\mathcal{G}} f d\lambda^u$, which belongs to $L^{\infty}(\mathcal{G}^{(0)}, v)$. The image of this function by the homomorphism $r_{\mathcal{G}}$ is the function on $\mathcal{G}, \gamma \mapsto \int_{\mathcal{G}} f d\lambda^{r(\gamma)}$, and the application which sends f to this function can be considered as an operator-valued weight from $L^{\infty}(\mathcal{G}, \mu)$ to $r_G(L^\infty(\mathcal{G}^{(0)}, \nu))$ which is normal, semi-finite and faithful. By definition of the Haar system $(\lambda^u)_{u \in \mathcal{G}^{(0)}}$, it is left-invariant in the sense of (ii). We shall denote this operator-valued weight from $L^{\infty}(\mathcal{G}, \mu)$ to $r_{\mathcal{G}}(L^{\infty}(\mathcal{G}^{(0)}, \nu))$ by $T_{\mathcal{G}}$. If we write λ_u for the image of λ^u under the inversion $x \mapsto x^{-1}$ of the groupoid \mathcal{G} , starting from the application which sends f to the function on $\mathcal{G}^{(0)}$ defined by $u \mapsto \int_{\mathcal{G}} f d\lambda u$, we define a normal semifinite faithful operator-valued weight from $L^{\infty}(\mathcal{G}, \mu)$ to $s_G(L^\infty(\mathcal{G}^{(0)}, v))$, which is right-invariant in the sense of (ii), and which we shall denote by $T_c^{(-1)}$, (–1)
 $\overset{\cdot}{\mathcal{G}}$.

We then get that

$$
(L^{\infty}(\mathcal{G}^{(0)},\nu),L^{\infty}(\mathcal{G},\mu),r_{\mathcal{G}},s_{\mathcal{G}},\Gamma_{\mathcal{G}},T_{\mathcal{G}},T_{\mathcal{G}}^{(-1)},\nu)
$$

is a measured quantum groupoid, which we shall denote again \mathcal{G} .

It can be proved [\[15\]](#page-69-12) that any measured quantum groupoid, whose underlying von Neumann algebra is abelian, is of that type.

5.2. Pseudo-multiplicative unitary. Let $\mathfrak{G} = (N, M, \alpha, \beta, \Gamma, T, T', \nu)$ be an octuple satisfying the axioms (i), (ii) (iii) of [5.1.](#page-30-0) We shall write $H = H_{\Phi}$, $J = J_{\Phi}$ and $\gamma(n) = J\alpha(n^*)J$ for all $n \in N$.

Then $[24, 3.7.3 \text{ and } 3.7.4]$ $[24, 3.7.3 \text{ and } 3.7.4]$, \mathfrak{G} can be equipped with a pseudo-multiplicative unitary W which is a unitary from $H_{\beta} \otimes_{\alpha} H$ onto $H_{\alpha} \otimes_{\gamma} H$ α , γ , β in the following way: for all $\overline{X} \in N$, $\otimes_{\gamma} H$ [\[13,](#page-69-6) 3.6] that intertwines

$$
W(\alpha(X) \underset{N}{\beta \otimes_{\alpha} 1}) = (1 \underset{N^{\circ}}{\alpha \otimes_{\gamma} \alpha(X)})W,
$$

\n
$$
W(1 \underset{N}{\beta \otimes_{\alpha} \beta(X)}) = (1 \underset{N^{\circ}}{\alpha \otimes_{\gamma} \beta(X)})W,
$$

\n
$$
W(\gamma(X) \underset{N}{\beta \otimes_{\alpha} 1}) = (\gamma(X) \underset{N^{\circ}}{\alpha \otimes_{\gamma} 1})W,
$$

\n
$$
W(1 \underset{N}{\beta \otimes_{\alpha} \gamma(X)}) = (\beta(X) \underset{N^{\circ}}{\alpha \otimes_{\gamma} 1})W.
$$

Moreover, the operator W satisfies the *pentagonal relation*

$$
(1_{\alpha \underset{N^{\circ}}{\otimes} y} W)(W_{\beta \underset{N}{\otimes} \alpha} 1_H) = (W_{\alpha \underset{N^{\circ}}{\otimes} y} 1) \sigma_{\alpha,\beta}^{23} (W_{\gamma \underset{N}{\otimes} \alpha} 1)(1_{\beta \underset{N}{\otimes} \alpha} \sigma_{\nu^{\circ}}) (1_{\beta \underset{N}{\otimes} \alpha} W),
$$

where $\sigma_{\alpha,\beta}^{23}$ goes from $(H \underset{\nu^0}{\alpha \otimes_{\gamma}} H)$ $\underset{\nu^0}{\beta \otimes_{\alpha}} H$ to $(H \underset{\nu}{\beta \otimes_{\alpha}} H)$ $\underset{\nu^0}{\alpha \otimes_{\gamma}} H$ $\bigotimes_{\nu^{\circ}} H$, and $1 \underset{N}{\beta \otimes_{\alpha}}$ N $\sigma_{v^{\text{c}}}$ goes from H $_{\beta\otimes_{\alpha} (H_{\alpha\otimes_{\gamma\circ} H})}$ $\underset{\nu}{\otimes}_{\gamma} H$ to $H \underset{\nu}{\beta} \underset{\nu}{\otimes}_{\alpha} H \underset{\nu}{\gamma} \underset{\nu}{\otimes}_{\alpha}$ H. The operators in this formula are well defined because of the intertwining relations listed above.

Moreover, W , M and Γ are related by the following results:

- (i) M is the weakly closed linear space generated by all operators of the form (id $*\omega_{\xi,\eta}(W)$, where $\xi \in D(\alpha H, \nu)$ and $\eta \in D(H_{\gamma}, \nu^{\circ})$ see [\[13,](#page-69-6) 3.8(vii)].
- (ii) $\Gamma(x) = W^* (1_{\alpha} \otimes_{\gamma}$ $N⁰$ x) W for all $x \in M$ [\[13,](#page-69-6) 3.6].
- (iii) For any x, y_1 , y_2 in $\mathfrak{N}_T \cap \mathfrak{N}_\Phi$, we have [\[13,](#page-69-6) 3.6]

$$
(\mathrm{id} * \omega_{J_{\Phi} \Lambda_{\Phi}(y_1^* y_2), \Lambda_{\Phi}(x)})(W) = (\mathrm{id} \,_{\beta *_{\alpha} \omega_{J_{\Phi} \Lambda_{\Phi}(y_2), J_{\Phi} \Lambda_{\Phi}(y_1)}}) \Gamma(x^*).
$$

If N is finite-dimensional, using the fact that the relative tensor products can be identified with closed subspaces of the usual Hilbert tensor product (4.1) , we get that W can be considered as a partial isometry, which is multiplicative in the usual sense (i.e. such that $W_{23}W_{12} = W_{12}W_{13}W_{23}$.)

5.3. Other data associated to a measured quantum groupoid [\[13,](#page-69-6) [24\]](#page-69-5). Suppose that $\mathfrak{G} = (N, M, \alpha, \beta, \Gamma, T, T', v)$ is a measured quantum groupoid in the sense of [5.1.](#page-30-0) Let us write $\Phi = v \circ \alpha^{-1} \circ T$, which is a normal semi-finite faithful left-invariant weight on M . Then:

(i) There exists an anti- $*$ -automorphism R on M such that

$$
R^2
$$
 = id, $R(\alpha(n)) = \beta(n)$ for all $n \in N$, $\Gamma \circ R = \zeta_{N} \circ (R \underset{N}{\beta *_{\alpha}} R) \Gamma$

and

$$
R((\mathrm{id} * \omega_{\xi,\eta})(W)) = (\mathrm{id} * \omega_{J\eta,J\xi})(W) \quad \text{for all } \xi \in D(\alpha H, \nu), \eta \in D(H_{\gamma}, \nu^{o}).
$$

This map R will be called the *co-inverse*.

(ii) There exists a one-parameter group τ_t of automorphisms of M such that

$$
R \circ \tau_t = \tau_t \circ R, \quad \tau_t(\alpha(n)) = \alpha(\sigma_t^{\nu}(n)), \quad \tau_t(\beta(n)) = \beta(\sigma_t^{\nu}(n)),
$$

$$
\Gamma \circ \sigma_t^{\Phi} = (\tau_t \underset{N}{\beta *_{\alpha}} \sigma_t^{\Phi}) \Gamma
$$

for all $t \in \mathbb{R}$ and and $n \in N$. This one-parameter group will be called the *scaling group*.

(iii) The weight ν is relatively invariant with respect to T and RTR. Moreover, R and τ_t are still the co-inverse and the scaling group of this new measured quantum groupoid, which we shall denote by

$$
\underline{\mathfrak{G}} = (N, M, \alpha, \beta, \Gamma, T, RTR, \nu),
$$

and for simplification we shall assume now that $T' = RTR$ and $\Psi = \Phi \circ R$.

(iv) There exists a one-parameter group γ_t of automorphisms of N such that

$$
\sigma_t^T(\beta(n)) = \beta(\gamma_t(n))
$$

for all $t \in \mathbb{R}$ and $n \in N$. Moreover, we get that $v \circ \gamma_t = v$.

(v) There exist a positive non-singular operator λ affiliated to $Z(M)$ and a positive non-singular operator δ affiliated with M such that

$$
(D\Phi \circ R : D\Phi)_t = \lambda^{it^2/2} \delta^{it},
$$

and therefore

$$
(D\Phi \circ \sigma_s^{\Phi \circ R} : D\Phi)_t = \lambda^{ist}.
$$

The operator λ will be called the *scaling operator*, and there exists a positive nonsingular operator q affiliated to N such that $\lambda = \alpha(q) = \beta(q)$. We have $R(\lambda) = \lambda$. 1176 M. Enock and T. Timmermann

The operator δ will be called the *modulus*. We have $R(\delta) = \delta^{-1}$ and $\tau_t(\delta) = \delta$ for all $t \in \mathbb{R}$, and we can define a one-parameter group of unitaries $\delta^{it}{}_{\beta} \otimes_{\alpha} \delta^{it}$ which N acts naturally on elementary tensor products and satisfies for all $t \in \mathbb{R}$

$$
\Gamma(\delta^{it}) = \delta^{it} \underset{N}{\beta \otimes_{\alpha}} \delta^{it}.
$$

(vi) We have $(D\Phi \circ \tau_t : D\Phi)_s = \lambda^{-ist}$, which proves that $\tau_t \circ \sigma_s^{\Phi} = \sigma_s^{\Phi} \circ \tau_t$ for all s, t in $\mathbb R$ and allows to define a one-parameter group of unitaries by

$$
P^{it}\Lambda_{\Phi}(x) = \lambda^{t/2}\Lambda_{\Phi}(\tau_t(x)) \quad \text{for all } x \in \mathfrak{N}_{\Phi}.
$$

Moreover, for any y in M , we get that

$$
\tau_t(y) = P^{it} y P^{-it}.
$$

As for the multiplicative unitary associated to a locally compact quantum group, one can prove, using this operator P , a "managing property" for W , and we shall say that the pseudo-multiplicative unitary W is *manageable*, with "managing operator" P.

As $\tau_t \circ \sigma_t^{\Phi} = \sigma_t^{\Phi} \circ \tau_t$, we get that $J_{\Phi} P J_{\Phi} = P$.

(vii) It is possible to construct a *dual* measured quantum groupoid

$$
\widehat{\mathfrak{G}} = (N, \widehat{M}, \alpha, \gamma, \widehat{\Gamma}, \widehat{T}, \widehat{T}', \nu)
$$

where \widehat{M} is equal to the weakly closed linear space generated by all operators of the form $(\omega_{\xi,\eta} * id)(W)$, for $\xi \in D(H_\beta, v^\circ)$ and $\eta \in D(\alpha H, v)$, $\widehat{\Gamma}(y) = \sigma_{\nu^{\circ}} W(y \beta \otimes_{\alpha} 1) W^* \sigma_{\nu}$ for all $y \in \widehat{M}$, and the dual left operator-valued N

weight \widehat{T} is constructed in a similar way as the dual left-invariant weight of a locally compact quantum group. Namely, it is possible to construct a normal semi-finite faithful weight $\widehat{\Phi}$ on \widehat{M} such that, for all $\xi \in D(H_\beta, \nu^\circ)$ and $\eta \in D(\alpha H, \nu)$ such that $\omega_{\xi,\eta}$ belongs to I_{Φ} ,

$$
\widehat{\Phi}((\omega_{\xi,\eta}*id)(W)^*(\omega_{\xi,\eta}*id)(W)) = \|\omega_{\xi,\eta}\|_{\Phi}^2.
$$

We can prove that $\sigma_t^{\Phi} \circ \alpha = \alpha \circ \sigma_t^{\nu}$ for all $t \in \mathbb{R}$, which gives the existence of an operator-valued weight \widehat{T} , which appears then to be left-invariant.

As the formula $y \mapsto Jy^*J$ ($y \in \widehat{M}$) gives a co-inverse for the coproduct $\widehat{\Gamma}$, we get also a right-invariant operator-valued weight. Moreover, the pseudo-multiplicative unitary \widehat{W} associated to $\widehat{\mathfrak{G}}$ is $\widehat{W} = \sigma_v W^* \sigma_v$, its managing operator \widehat{P} is equal to P, its scaling group is given by $\hat{\tau}_t(y) = P^{it} y P^{-it}$, its scaling operator $\hat{\lambda}$ is equal to $\hat{\lambda}^{-1}$ and its one parameter group of unitaries $\hat{\lambda}$ of N is equal to $\hat{\lambda}$ to λ^{-1} , and its one-parameter group of unitaries $\hat{\gamma}_t$ of N is equal to γ_{-t} .

We write $\widehat{\Phi}$ for $\nu \circ \alpha^{-1} \circ \widehat{T}$, identify $H_{\widehat{\Phi}}$ with H, and write $\widehat{J} = J_{\widehat{\Phi}}$. Then $\kappa \circ \widehat{T} \circ \widehat{T}$ for all $x \in M$ and $W^* = \widehat{T} \otimes T \circ \widehat{T} \otimes T$. $R(x) = \hat{J}x^*\hat{J}$ for all $x \in M$ and $W^* = (\hat{J} \underset{N^{\circ}}{\alpha \otimes_{\gamma}} J)W(\hat{J} \underset{N^{\circ}}{\alpha \otimes_{\gamma}}$ J).

Moreover, we have $\widehat{\mathfrak{G}} = \mathfrak{G}$.

For example, let G be a measured groupoid as in [5.1.](#page-30-0) The dual $\widehat{\mathcal{G}}$ of the measured quantum groupoid constructed in [5.1](#page-30-0) (and denoted again by G) is

$$
\widehat{\mathcal{G}} = (L^{\infty}(\mathcal{G}^{(0)}, v), \mathcal{L}(\mathcal{G}), r_{\mathcal{G}}, r_{\mathcal{G}}, \widehat{\Gamma}_{\mathcal{G}}, \widehat{T}_{\mathcal{G}}, \widehat{T}_{\mathcal{G}}),
$$

where $\mathcal{L}(\mathcal{G})$ is the von Neumann algebra generated by the convolution algebra associated to the groupoid G, the coproduct $\widehat{\Gamma}_G$ had been defined in [\[44,](#page-71-7) 3.3.2], and the operator-valued weight $\hat{T}_{\mathcal{G}}$ had been defined in [\[44,](#page-71-7) 3.3.4]. The underlying Hopf bimodule is co-commutative.

5.4 Theorem ([\[40\]](#page-70-4)). Let G be a locally compact quantum group and $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a *braided-commutative*G*-Yetter–Drinfel'd algebra. Then the normal faithful semi-finite operator-valued weight* $T_{\tilde{a}}$ from $\mathbb{G} \ltimes_{\mathfrak{a}} A$ *onto* $\mathfrak{a}(N)$ [\[41,](#page-70-2) 1.3 and 2.5] is left-invariant *with respect to the Hopf bimodule structure constructed in [4.6,](#page-27-0) and* $\tilde{R} \circ T_{\tilde{a}} \circ \tilde{R}$ *<i>is right-invariant.*

Proof. For all positive X in $\mathbb{G} \ltimes_{\alpha} N$, we find, using [4.7](#page-28-0) (i) and [4.6,](#page-27-0)

$$
(\operatorname{id}_{\beta *_{\mathfrak{A}}} T_{\tilde{\mathfrak{a}}})\widetilde{\Gamma}(X) = (\operatorname{id}_{\beta *_{\mathfrak{A}}} {\varphi \circ \widehat{R} \otimes \operatorname{id}})\widetilde{\mathfrak{a}})\widetilde{\Gamma}(X)
$$

$$
= (\widehat{\varphi} \circ \widehat{R} \otimes \operatorname{id})(\operatorname{id} \otimes \widetilde{\Gamma})\widetilde{\mathfrak{a}}(X)
$$

$$
= \widetilde{\Gamma}(T_{\tilde{\mathfrak{a}}}(X))
$$

$$
= T_{\tilde{\mathfrak{a}}}(X) {\beta \otimes_{\mathfrak{a}}} (1_H \otimes 1_{H_{\nu}})
$$

which proves that $T_{\tilde{a}}$ is left-invariant. Using [4.6,](#page-27-0) we get trivially that $\tilde{R} \circ T_{\tilde{a}} \circ \tilde{R}$ is a normal faithful semi-finite operator valued weight from $G \ltimes_{\alpha} N$ onto $\beta(N)$, which is right-invariant with respect to the coproduct $\tilde{\Gamma}$. \Box

In the situation above, we shall denote by $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ the Hopf-bimodule $(N, \mathbb{G}\ltimes_{\alpha}N, \mathfrak{a}, \beta, \widetilde{\Gamma})$ constructed in [4.4](#page-23-0) (ii), equipped with its co-inverse \widetilde{R} constructed in [4.6](#page-27-0) (ii), with the left-invariant operator-valued weight $T_{\tilde{a}}$ and the right-invariant operator-vlaued weight $\tilde{R} \circ T_{\tilde{a}} \circ \tilde{R}$, and with the normal semi-finite faithful weight v on N.

5.5 Proposition. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, a normal semi-finite faithful weight on* N*,* D_t its Radon–Nikodym derivative with respect to $\mathfrak{a}(2.2)$ $\mathfrak{a}(2.2)$ and D_t° the Radon–Nikodym *derivative of the weight* v° *on* N° *with respect to the action* \mathfrak{a}° [\(2.5.1\)](#page-10-2). For all $t \in \mathbb{R}$, denote by $\widetilde{\tau}_t$ the map $\text{Ad}[U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^* \Delta_{\widetilde{\nu}}^{it} U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^*]$ defined on $B(H \otimes H_{\nu})$, where $\widetilde{\nu}$ \hat{v} *is the dual weight of* ν *on the crossed product* $\widehat{G} \ltimes_{\widehat{\mathfrak{a}}} N$ *. Then:*

M. Enock and T. Timmermann

- (i) $\widetilde{\tau}_t \circ \beta(x) = \beta(\sigma_t^{\nu}(x))$ for all $x \in N$ and $t \in \mathbb{R}$.
- (ii) for all $t \in \mathbb{R}$, $\widetilde{\tau}_t$ commutes with Ad I, where I had been defined in 4.5, and, therefore $\widetilde{\tau}_t(\mathfrak{a}(x)) = \mathfrak{a}(\sigma_t^{\nu}(x))$ for all $x \in N$ and $t \in \mathbb{R}$.
- (iii) Denote by β^{\dagger} the application $x^{\circ} \mapsto \beta(x)$ from N° into $\mathbb{G} \ltimes_{\mathfrak{a}} N$. Then

$$
(\mathrm{id}\otimes \widetilde{\tau}_t)(W_{12}) = \widehat{\Delta}_1^{-it}(\mathrm{id}\otimes \beta^{\dagger})(D_{-t}^{\circ})W_{12}(\mathrm{id}\otimes \mathfrak{a})(D_t)\widehat{\Delta}_1^{it}
$$

= $(\tau_{-t}\otimes \beta^{\dagger})(D_{-t}^{\circ})(\mathrm{id}\otimes \widehat{\tau})(W)_{12}(\tau_{-t}\otimes \mathfrak{a})(D_t).$

(iv) $\widetilde{\tau}_t(\mathbb{G} \ltimes_{\mathfrak{a}} N) = \mathbb{G} \ltimes_{\mathfrak{a}} N$ and $\widetilde{\tau}_t \circ \widetilde{R} = \widetilde{R} \circ \widetilde{\tau}_t$.

Proof. (i) For any $x \in N$,

$$
\widetilde{\tau}_{t}(\beta(x)) = \mathrm{Ad}(U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^{*})[\Delta_{\widehat{\mathfrak{p}}}^{it}] \cdot \mathrm{Ad}(U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^{*})[1 \otimes x^{\circ}] \cdot \mathrm{Ad}(U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^{*})[\Delta_{\widehat{\mathfrak{p}}}^{-it}]
$$
\n
$$
= \mathrm{Ad}(U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^{*}\Delta_{\widehat{\mathfrak{p}}}^{it})[1 \otimes x^{\circ}]
$$
\n
$$
= \mathrm{Ad}(U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^{*})[D_{t}(1 \otimes \sigma_{t}^{\nu}(x)^{\circ})D_{t}^{*}]
$$
\n
$$
= \mathrm{Ad}(U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^{*})[1 \otimes \sigma_{t}^{\nu}(x)^{\circ}]
$$
\n
$$
= \beta(\sigma_{t}^{\nu}(x))
$$

(ii) The first assertion follows from the fact that $J_{\widetilde{v}}$ and $\Delta_{\widetilde{v}}^{it}$ commute. To conclude that $\widetilde{\tau}_t(\mathfrak{a}(x)) = \mathfrak{a}(\sigma_t^{\nu}(x))$, use (i) and 4.5 (ii).

(iii) Let $t \in \mathbb{R}$. Then 2.5.2 (iii) and 2.1 imply

$$
Ad((\widehat{\Delta} \otimes \Delta_{\widehat{\nu}})^{it})[(U_{\nu}^{\mathfrak{a}})^*_{13}W_{12}] = Ad((\widehat{D}_t)_{23}(\widehat{\Delta} \otimes \Delta \otimes \Delta_{\nu})^{it})[(U_{\nu}^{\mathfrak{a}})^*_{13}W_{12}]
$$

$$
= (\widehat{D}_t)_{23}(D_{-t}^{\mathfrak{a}})^*_{13}(U_{\nu}^{\mathfrak{a}})^*_{13}(D_t)_{13}W_{12}(\widehat{D}_t)_{23}^*
$$

$$
= (D_{-t}^{\mathfrak{a}})^*_{13}(\widehat{D}_t)_{23}(U_{\nu}^{\mathfrak{a}})^*_{13}(D_t)_{13}W_{12}(\widehat{D}_t)_{23}^*.
$$

But 2.4.4 gives that $(id \otimes \widehat{\mathfrak{a}})(D_t)(\widehat{D}_t)_{23} = W_{12}^*(U_{\nu}^{\mathfrak{a}})_{13}(\widehat{D}_t)_{23}(U_{\nu}^{\mathfrak{a}})^*_{13}(D_t)_{13}W_{12}$, whence

$$
(\widehat{D}_t)_{23}(U_v^{\mathfrak{a}})^*_{13}(D_t)_{13}W_{12}(\widehat{D}_t)^*_{23}=(U_v^{\mathfrak{a}})^*_{13}W_{12}(1\otimes \widehat{\mathfrak{a}})(D_t).
$$

We insert this relation above and find

$$
\text{Ad}((\Delta \otimes \Delta_{\widehat{v}})^{it})[(U_{\nu}^{\mathfrak{a}})^*_{13}W_{12}] = (D_{-t}^{\mathfrak{a}})^*_{13} \cdot (U_{\nu}^{\mathfrak{a}})^*_{13}W_{12} \cdot (\text{id} \otimes \widehat{\mathfrak{a}})(D_t).
$$

1178
We use this relation and Ad $(1 \otimes U_{\nu}^{\hat{\mathfrak{a}}}(U_{\nu}^{\hat{\mathfrak{a}}})^*)[W_{12}] = (U_{\nu}^{\hat{\mathfrak{a}}})^*_{13}W_{12}$ [\(3.8\)](#page-15-0), and find $(id \otimes \widetilde{\tau}_t)(W_{12})$

$$
= \text{Ad}(1_H \otimes U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^* \Delta_{\widehat{\nu}}^{i\underline{t}} U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^*)[W_{12}]
$$

\n
$$
= \text{Ad}(\widehat{\Delta}^{-it} \otimes U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*)[\text{Ad}((\widehat{\Delta} \otimes \Delta_{\widehat{\nu}})^{it})((U_{\nu}^{\mathfrak{a}})^*_{13}W_{12})]
$$

\n
$$
= \text{Ad}(\widehat{\Delta}^{-it} \otimes U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*)[(D_{-t}^{\circ})_{13}^* \cdot (U_{\nu}^{\mathfrak{a}})^*_{13}W_{12} \cdot (\text{id} \otimes \widehat{\mathfrak{a}})(D_t)]
$$

\n
$$
= \widehat{\Delta}_1^{-it}(\text{id} \otimes \beta^{\dagger})(D_{-t}^{\circ})W_{12}(\text{id} \otimes \mathfrak{a})(D_t)\widehat{\Delta}_1^{it}.
$$

(iv) For any $\omega \in M_*$, the element $\widetilde{\tau}_t[(\omega \otimes id)(W) \otimes 1]$ belongs to $\mathbb{G} \ltimes_{\mathfrak{a}} N$ because

$$
\widetilde{\tau}_t[(\omega \otimes \mathrm{id})(W) \otimes 1] = (\omega \circ \tau_{-t})[(\mathrm{id} \otimes \beta^{\dagger})(D_{-t}^{\circ})W_{12}(\mathrm{id} \otimes \mathfrak{a})(D_t)].
$$

By continuity, we get that $\widetilde{\tau}_t(y \otimes 1)$ belongs to $\mathbb{G} \ltimes_{\mathfrak{a}} N$ for any $y \in \widehat{M}$. Together with (ii), we obtain that $\widetilde{\tau}_t(G \ltimes_{\alpha} N) \subseteq G \ltimes_{\alpha} N$, and, as $\widetilde{\tau}$ is a one-parameter group of automorphisms, we have $\widetilde{\tau}_t(\mathbb{G} \ltimes_{\alpha} N) = \mathbb{G} \ltimes_{\alpha} N$. By (ii), $\widetilde{\tau}_t$ commutes with $\widetilde{R}_+ \square$

5.6 Lemma. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, a normal faithful semi-finite weight on* N*,* D_t its Radon–Nikodym derivative with respect to \mathfrak{a} [\(2.2\)](#page-6-0) and $\tilde{\nu}$ the dual weight of ν *on the crossed product* $G \ltimes_{\alpha} N$ *. Then for all* $t \in \mathbb{R}$ *,*

$$
(\mathrm{id}\otimes\sigma_t^{\tilde{\nu}})(W_{12})=\delta_1^{-it}\widehat{\Delta}_1^{-it}W_{12}(\mathrm{id}\otimes\mathfrak{a})(D_t)\widehat{\Delta}_1^{it}=(\mathrm{id}\otimes\widehat{\sigma}_t)(W)_{12}(\tau_{-t}\otimes\mathfrak{a})(D_t).
$$

Proof. By [54, 3.4] and 2.2,

$$
(id \otimes \sigma_t^{\tilde{\nu}})(W_{12}) = [D_t(\widehat{\Delta}^{it} \otimes \Delta_{\nu}^{it})]_{23}W_{12}[(\widehat{\Delta}^{-it} \otimes \Delta_{\nu}^{-it})D_t^*]_{23}
$$

\n
$$
= \delta_1^{-it}\widehat{\Delta}_1^{-it}(D_t)_{23}W_{12}\widehat{\Delta}_1^{it}(D_t^*)_{23}
$$

\n
$$
= \delta_1^{-it}\widehat{\Delta}_1^{-it}W_{12}(\Gamma \otimes id)(D_t)(D_t^*)_{23}\widehat{\Delta}_1^{it}
$$

\n
$$
= \delta_1^{-it}\widehat{\Delta}_1^{-it}W_{12}(id \otimes \mathfrak{a})(D_t)\widehat{\Delta}_1^{it}.
$$

5.7 Proposition. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, a normal faithful semi-finite weight on* N*, and* \tilde{v} *the dual weight of* v *on the crossed product* $G \ltimes_{\mathfrak{a}} N$ *. Then the one-parameter group* $\widetilde{\tau}_t$ *of* $\mathbb{G} \ltimes_{\mathfrak{a}} N$ *constructed in* [5.5](#page-34-0) *satisfies, for all* $t \in \mathbb{R}$ *,*

$$
\widetilde{\Gamma} \circ \sigma_t^{\widetilde{\nu}} = (\widetilde{\tau}_t \underset{N}{\beta *_{\mathfrak{a}}} \sigma_t^{\widetilde{\nu}}) \circ \widetilde{\Gamma}, \quad \widetilde{\Gamma} \circ \sigma_t^{\widetilde{\nu} \circ \widetilde{R}} = (\sigma_t^{\widetilde{\nu} \circ \widetilde{R}} \underset{N}{\beta *_{\mathfrak{a}}} \widetilde{\tau}_{-t}) \circ \widetilde{\Gamma}.
$$

Proof. Let $x \in N$ and $t \in \mathbb{R}$. Then [5.5](#page-34-0) (ii) and [4.4](#page-23-0) imply

$$
\widetilde{\Gamma} \circ \sigma_t^{\widetilde{\nu}}(\mathfrak{a}(x)) = \widetilde{\Gamma}(\mathfrak{a}(\sigma_t^{\nu}(x))) = \mathfrak{a}(\sigma_t^{\nu}(x)) \underset{N}{\beta \otimes \mathfrak{a}}} 1 \n= (\widetilde{\tau}_t \underset{N}{\beta *_{\mathfrak{a}}} \sigma_t^{\widetilde{\nu}})(\mathfrak{a}(x) \underset{N}{\beta \otimes \mathfrak{a}}} 1) = (\widetilde{\tau}_t \underset{N}{\beta *_{\mathfrak{a}}} \sigma_t^{\widetilde{\nu}})\widetilde{\Gamma}(\mathfrak{a}(x)).
$$

Next, let V_2 be the unitary from $(H \otimes H_\nu)$ $\underset{\nu}{\beta \otimes_{\mathfrak{a}}} (H \otimes H_\nu)$ onto $H \otimes H \otimes H_\nu$ introduced in [4.3,](#page-21-0) and denote by $\widetilde{\hat{\nu}}$ the weight on $\widehat{\mathbb{G}} \ltimes_{\mathfrak{a}} N$ dual to ν as before. Then $V_2[U_\nu^{\mathfrak{a}}(U_\nu^{\widehat{\mathfrak{a}}})^*\Delta_{\widehat{\widehat{\nu}}}^{it}$ $\int_{\widehat{\mathfrak{p}}}^{it}U^{\widehat{\mathfrak{a}}}(U_{\mathfrak{p}}^{\mathfrak{a}})^*_{\beta}\underset{N}{\otimes}_{\mathfrak{a}}$ N $\Delta_{\tilde{\nu}}^{it}] V_2^* (\xi \otimes \mathfrak{a} (q) \Xi)$ $= V_2[U_\nu^{\mathfrak{a}} (U_\nu^{\widehat{\mathfrak{a}}})^* \Delta_{\widehat{\mathfrak{p}}}^{it} (\xi \otimes \Lambda_\nu(q)) \beta \otimes_{\mathfrak{a}} \Delta_{\widetilde{\nu}}^{it} \Xi]$

$$
= V_2[U_\nu^{\mathfrak{a}}(U_\nu^{\widehat{\mathfrak{a}}})^* \widehat{D}_t(\Delta^{it}\xi \otimes \Lambda_\nu(\sigma_l^{\nu}(q))) \underset{N}{\beta \otimes_{\mathfrak{a}} \Delta_{\widetilde{\nu}}} \Delta_{\widetilde{\nu}}^{it} \Xi]
$$

\n
$$
= V_2[U_\nu^{\mathfrak{a}}(U_\nu^{\widehat{\mathfrak{a}}})^* \widehat{D}_t(\Delta^{it}\xi \otimes \Lambda_\nu(\sigma_l^{\nu}(q))) \underset{N}{\beta \otimes_{\mathfrak{a}} \Delta_{\widetilde{\nu}}^{it} \Xi}]
$$

\n
$$
= (id \otimes \mathfrak{a})(\widehat{D}_t)(\Delta^{it}\xi \otimes \mathfrak{a}(\sigma_l^{\nu}(q))\Delta_{\widetilde{\nu}}^{it} \Xi)
$$

\n
$$
= (id \otimes \mathfrak{a})(\widehat{D}_t)(\Delta^{it} \otimes \Delta_{\widetilde{\nu}}^{it})(\xi \otimes \mathfrak{a}(q) \Xi).
$$

Let now $y \in \widehat{M}$. Then by [4.4,](#page-23-0)

$$
Ad(V_2)[\tilde{\Gamma}(y \otimes 1)] = \widehat{\Gamma}(y) \otimes 1 = Ad(\sigma_{12}W_{12})[y \otimes 1].
$$

Using these two relations and [2.4.4,](#page-9-0) we find

$$
\begin{split} \text{Ad}(V_2)[(\tilde{\tau} \underset{N}{\beta *_{\alpha}} \sigma_t^{\tilde{\nu}})(\tilde{\Gamma}(\mathbf{y} \otimes 1))] \\ &= \text{Ad}((\text{id} \otimes \mathfrak{a})(\widehat{D}_t)(\Delta^{it} \otimes \Delta_{\tilde{\nu}}^{it})\sigma_{12}W_{12})[\mathbf{y} \otimes 1 \otimes 1] \\ &= \text{Ad}(\sigma_{12}W_{12}(\text{id} \otimes \widehat{\mathfrak{a}})(D_t)(\widehat{\Delta}^{it} \otimes \Delta_{\hat{\nu}}^{it}))[\mathbf{y} \otimes 1 \otimes 1] \\ &= \text{Ad}(\sigma_{12}W_{12}(U_{\nu}^{\widehat{\mathfrak{a}}})_{23}(D_t)_{13})[\widehat{\sigma}_t(\mathbf{y}) \otimes 1 \otimes 1]. \end{split}
$$

By [4.3](#page-21-0) (iii), $\sigma_{12}W_{12}(U_v^{\hat{a}})_{23} = V_2V_1^*W_{12}(U_v^{\hat{a}})_{23}$ and hence

$$
Ad(V_1)[(\tilde{\tau} \underset{N}{\beta *_{\alpha}} \sigma_t^{\tilde{\nu}})(\tilde{\Gamma}(y \otimes 1))]
$$

= $Ad(W_{12}(U_v^{\alpha})_{23}(D_t)_{13})[\hat{\sigma}_t(y) \otimes 1 \otimes 1]$
= $Ad(W_{12}(\text{id} \otimes \mathfrak{a})(D_t)(D_t)_{23})[\hat{\sigma}_t(y) \otimes 1 \otimes 1]$
= $Ad((D_t)_{23}W_{12})[\hat{\sigma}_t(y) \otimes 1 \otimes 1]$
= $Ad((D_t)_{23})[\hat{\Gamma}^{\circ}(\hat{\sigma}_t(y)) \otimes 1].$

On the other hand,

$$
Ad(V_1)[\tilde{\Gamma}(\sigma_t^{\tilde{\nu}}(y \otimes 1))] = \tilde{a}(\sigma_t^{\tilde{\nu}}(y \otimes 1))
$$

\n
$$
= Ad((\widehat{W}_{12}^{\circ})^*)[\sigma_t^{\tilde{\nu}}(y \otimes 1)]
$$

\n
$$
= Ad((\widehat{W}_{12}^{\circ})^*(D_t)_{23})[\widehat{\sigma}_t(y) \otimes 1]
$$

\n
$$
= Ad((D_t)_{23}(\widehat{W}^{\circ})_{12}^*)[\widehat{\sigma}_t(y) \otimes 1]
$$

\n
$$
= Ad((D_t)_{23})[(\widehat{\Gamma}^{\circ}(\widehat{\sigma}_t(y)) \otimes 1)],
$$

showing that $(\tilde{\tau}_{\beta} *_{\alpha})$ N $\sigma_t^{\tilde{\nu}}$)($\tilde{\Gamma}(y \otimes 1)$) = $\tilde{\Gamma}(\sigma_t^{\tilde{\nu}}(y \otimes 1))$.

Since $G \ltimes_{\alpha} N$ is generated by $\alpha(N)$ and $\widehat{M} \otimes 1$, the first of the two formulas ows. Using 5.5 (iv), the second one is easy to prove from the first one. follows. Using [5.5](#page-34-0) (iv), the second one is easy to prove from the first one.

5.8 Corollary. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, a normal faithful semi-finite weight on* N*, and* \tilde{v} *the dual weight of* v *on the crossed product* $G \ltimes_{\alpha} N$ *. Then there exists a one-parameter group* γ_t *of automorphisms of* N *such that* $\sigma_t^{\tilde{\nu}}(\beta(x)) = \beta(\gamma_t(x))$.

Proof. Using [5.7,](#page-36-0) we get that for all $x \in N$ and $t \in \mathbb{R}$,

$$
\widetilde{\Gamma}(\sigma_t^{\widetilde{\nu}}(\beta(x))) = (\widetilde{\tau}_t \beta *_{\mathfrak{a}} \sigma_t^{\widetilde{\nu}})(\widetilde{\Gamma}(\beta(x))) = (\widetilde{\tau}_t \beta *_{\mathfrak{a}} \sigma_t^{\widetilde{\nu}})(1_{\beta \underset{N}{\otimes}_{\mathfrak{a}} \beta}(x)) = 1_{\beta \underset{N}{\otimes}_{\mathfrak{a}} \sigma_t^{\widetilde{\nu}}(\beta(x))}
$$

from which we get the result by [\[24,](#page-69-0) 4.0.9].

 \Box

5.9 Theorem. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, a normal faithful semi-finite weight on* N*,* D_t the Radon–Nikodym derivative of ν with respect to the action a , $\tilde{\nu}$ the dual weight *of* ν *on the crossed product* $G \ltimes_{\mathfrak{a}} N$, $\widetilde{\tau}_t$ *the one parameter group of automorphisms of* N $G \ltimes_{\mathfrak{a}} N$ *constructed in* [5.5,](#page-34-0) and γ_t the one parameter group of automorphisms of N *constructed in* [5.8.](#page-38-0) Let Φ_t *be the automorphism of* M *defined by* $\Phi_t(x) = \tau_t \circ \text{Ad} \delta^{-it}$ (let us remark that Φ_t is an automorphism of \mathbb{G}). Then the following conditions are *equivalent:*

- (i) $(\Phi_t \otimes \gamma_t)(D_s) = D_s$ *for all s, t in* R.
- (ii) $\sigma_t^{\tilde{\nu}}$ *and* $\widetilde{\tau}_s$ *commute for all s, t in* R.
- (iii) $\sigma_t^{\tilde{\nu}}$ and $\sigma_s^{\tilde{\nu} \circ \tilde{R}}$ commute for all *s*, *t* in R.
- (iv) $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, v)$ *is a measured quantum groupoid.*

If these conditions hold, then $\widetilde{\tau}_t$ *is the scaling group of* $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ *, and* γ_t *is the*
case parameter group of automorphisms of N defined in 5.3 (*iii*) *one parameter group of automorphisms of* N *defined in [5.3](#page-32-0) (iv).*

Proof. The restrictions of $\sigma_t^{\tilde{\nu}}$ and $\tilde{\tau}_s$ on $\mathfrak{a}(N)$ always commute because $\sigma_t^{\tilde{\nu}} \circ \tilde{\tau}^{\tilde{\nu}}$ ($\tilde{\tau}(\tilde{\tau})$) = $\tilde{\tau}(\tilde{\tau}(\tilde{\tau})) = \tilde{\tau}(\tilde{\tau}^{\nu} \circ \tilde{\tau}^{\nu}(\tilde{\tau}(\tilde{\tau}))$) for all $\tilde{\tau} \in$ $\widetilde{\tau}_s(\mathfrak{a}(x)) = \mathfrak{a}(\sigma_t^v \circ \sigma_s^v(x))$ and $\widetilde{\tau}_s \circ \sigma_t^{\widetilde{v}}(\mathfrak{a}(x)) = \mathfrak{a}(\sigma_s^v \circ \sigma_t^v(x))$ for all $x \in N$ by [5.5](#page-34-0) (ii).

Using now 5.6 , 5.5 (iii) and [2.2,](#page-6-0) we get that

$$
\begin{split}\n(\mathrm{id}\otimes\widetilde{\tau}_{s}\sigma_{t}^{\widetilde{\nu}})(W_{12})\\
&= \delta_{1}^{-it}\widehat{\Delta}_{1}^{-it}(\mathrm{id}\otimes\widetilde{\tau}_{s})(W_{12})(\mathrm{id}\otimes\widetilde{\tau}_{s}\mathfrak{a})(D_{t})\widehat{\Delta}_{1}^{it}\\
&= \delta_{1}^{-it}\widehat{\Delta}_{1}^{-it}\widehat{\Delta}_{1}^{-is}(\mathrm{id}\otimes\beta^{\dagger})(D_{-s}^{0})W_{12}(\mathrm{id}\otimes\mathfrak{a})(D_{s})\widehat{\Delta}_{1}^{is}(\mathrm{id}\otimes\mathfrak{a}\sigma_{s}^{\nu})(D_{t})\widehat{\Delta}_{1}^{it}\\
&= \delta_{1}^{-it}\widehat{\Delta}_{1}^{-i(s+t)}(\mathrm{id}\otimes\beta^{\dagger})(D_{-s}^{0})W_{12}(\mathrm{id}\otimes\mathfrak{a})(D_{s}(\tau_{s}\otimes\sigma_{s}^{\nu})(D_{t}))\widehat{\Delta}_{1}^{i(s+t)}\\
&= \delta_{1}^{-it}\widehat{\Delta}^{-i(s+t)}(\mathrm{id}\otimes\beta^{\dagger})(D_{-s}^{0})W_{12}(\mathrm{id}\otimes\mathfrak{a})(D_{s+t})\widehat{\Delta}_{1}^{i(s+t)}\n\end{split}
$$

and, on the other hand,

$$
\begin{split}\n(\mathrm{id}\otimes\sigma_{t}^{\tilde{\nu}}\widetilde{\tau}_{s})(W_{12})\\
&=\widehat{\Delta}_{1}^{-is}(\mathrm{id}\otimes\sigma_{t}^{\widetilde{\nu}}\beta^{\dagger})(D_{-s}^{\circ})(\mathrm{id}\otimes\sigma_{t}^{\widetilde{\nu}})(W_{12})(\mathrm{id}\otimes\sigma_{t}^{\widetilde{\nu}}\mathfrak{a})(D_{s})\widehat{\Delta}_{1}^{is}\\
&=\widehat{\Delta}_{1}^{-is}(\mathrm{id}\otimes\beta^{\dagger}\gamma_{t}^{\circ})(D_{-s}^{\circ})\delta_{1}^{-it}\widehat{\Delta}_{1}^{-it}W_{12}(\mathrm{id}\otimes\mathfrak{a})(D_{t})\widehat{\Delta}_{1}^{it}(\mathrm{id}\otimes\sigma_{t}^{\widetilde{\nu}}\mathfrak{a})(D_{s})\widehat{\Delta}_{1}^{is}\\
&=\widehat{\Delta}_{1}^{-i(s+t)}\delta_{1}^{-it}(\Phi_{t}\otimes\beta^{\dagger}\gamma_{t}^{\circ})(D_{-s}^{\circ})W_{12}(\mathrm{id}\otimes\mathfrak{a})(D_{t}(\tau_{t}\otimes\sigma_{t}^{\nu})(D_{s}))\widehat{\Delta}_{1}^{i(s+t)}\\
&=\widehat{\Delta}_{1}^{-i(s+t)}\delta_{1}^{-it}(\Phi_{t}\otimes\beta^{\dagger}\gamma_{t}^{\circ})(D_{-s}^{\circ})W_{12}(\mathrm{id}\otimes\mathfrak{a})(D_{s+t})\widehat{\Delta}_{1}^{i(s+t)}.\n\end{split}
$$

Consequently, $(id \otimes \sigma_t^{\tilde{\nu}} \tilde{\tau}_s)(W_{12}) = (id \otimes \tilde{\tau}_s \sigma_t^{\tilde{\nu}})(W_{12})$ if and only if $(\Phi_t \otimes \gamma_t)(D_s) = D_s$, which gives the equivalence of (i) and (ii).

Let us suppose (ii). Using 5.7 , we get

$$
\widetilde{\Gamma}(\sigma_t^{\widetilde{\nu}} \sigma_s^{\widetilde{\nu} \circ \widetilde{R}}) = (\widetilde{\tau}_t \sigma_s^{\widetilde{\nu} \circ \widetilde{R}} \underset{N}{\beta *_{\mathfrak{a}}} \sigma_t^{\widetilde{\nu}} \widetilde{\tau}_{-s}) \circ \widetilde{\Gamma}
$$
\nand

\n
$$
\widetilde{\Gamma}(\sigma_s^{\widetilde{\nu} \circ \widetilde{R}} \sigma_t^{\widetilde{\nu}}) = (\sigma_s^{\widetilde{\nu} \circ \widetilde{R}} \widetilde{\tau}_t \underset{N}{\beta *_{\mathfrak{a}}} \widetilde{\tau}_{-s} \sigma_t^{\widetilde{\nu}}) \circ \widetilde{\Gamma},
$$

and by the commutation of $\tilde{\tau}$ with $\sigma^{\tilde{\nu}}$ and with $\sigma^{\tilde{\nu} \circ \tilde{R}}$, we get (iii).
By definition of a measured quantum grounoid, we have the

By definition of a measured quantum groupoid, we have the equivalence of (iii) and (iv). The fact that (iv) implies (ii) is given by 5.3 (vi). \Box

5.10 Corollary. Let G be a locally compact quantum group and $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra such that one of the following conditions holds:*

- (i) N *is properly infinite, or*
- (ii) a *is integrable, or*
- (iii) G *is (the von Neumann version of) a compact quantum group.*

Then there exists a normal semi-finite faithful weight ν *on* N *such that* $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ *is a measured quantum groupoid.*

Proof. We consider the individual cases:

(i) By [3.10,](#page-17-0) there exists a normal semi-finite faithful weight ν on N, invariant under a; therefore its Radon–Nikodym derivative $D_t = 1$, and we get the result by [5.9.](#page-38-1)

(ii) In that case, there exists a weight ν on N which is δ^{-1} -invariant with respect to α ; so we can apply again 5.9 to get the result.

 \Box

(iii) We are here in a particular case of (ii), but with $\delta = 1$.

5.11 Proposition. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, a normal faithful semi-finite weight on* N*,* k -invariant with respect to $\mathfrak a$ (with k affiliated to $Z(M)$). Then:

(i) *the scaling group* $\widetilde{\tau}_t$ *of* $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ *is given by*

$$
\widetilde{\tau}_t(X) = (P^{it} \otimes \Delta_{\nu}^{it}) X (P^{-it} \otimes \Delta_{\nu}^{-it})
$$

for all $X \in \mathbb{G} \ltimes_{\alpha} N$ *;*

(ii) the scaling operator $\widetilde{\lambda}$ is equal to λ^{-1} , where λ is the scaling constant of G, *and the managing operator* \widetilde{P} *is equal to* $P \otimes \Delta_{\nu}$ *.*

Proof. (i) The scaling group $\tilde{\tau}_t$ satisfies $\tilde{\tau}_t(\mathfrak{a}(x)) = \mathfrak{a}(\sigma_t^v(x))$ for all $x \in N$ [\(5.5](#page-34-0) (ii)). Using now [3.3](#page-13-0) (i), we get that $\widetilde{\tau}_t(\mathfrak{a}(x)) = (\tau_t \otimes \sigma_t^{\nu})(\mathfrak{a}(x)).$

On the other hand, using 5.5 (iii) and 3.1 , we get that

$$
(\mathrm{id}\otimes \widetilde{\tau}_t)(W_{12})=\widehat{\Delta}_1^{-it}R(k^{-it})_1W_{12}k^{it}\widehat{\Delta}_1^{it}=(\tau_{-t}\otimes \mathrm{id})(W)\otimes 1=(\mathrm{id}\otimes \widehat{\tau}_t)(W)\otimes 1.
$$

So, for all $y \in \widehat{M}$, we have $\widetilde{\tau}_t(y \otimes 1) = \widehat{\tau}_t(y) \otimes 1$, from which we get (i).

(ii) The scaling operator is equal to λ^{-1} because

$$
\tilde{\nu}(\tilde{\tau}_t(\mathfrak{a}(x^*)(y^*y \otimes 1_{H_v})\mathfrak{a}(x))) = \tilde{\nu}[\mathfrak{a}(\sigma_t^{\nu}(x^*))(\hat{\tau}_t(y^*y) \otimes 1_{H_v})\mathfrak{a}(\sigma_t^{\nu}(x)))]
$$
\n
$$
= \nu(\sigma_t^{\nu}(x^*x))\hat{\varphi}(\hat{\tau}_t(y^*y))
$$
\n
$$
= \lambda^{-t}\nu(x^*x)\hat{\varphi}(y^*y)
$$
\n
$$
= \lambda^{-t}\tilde{\nu}(\mathfrak{a}(x^*)(y^*y \otimes 1_{H_v})\mathfrak{a}(x)),
$$

and \widetilde{P} is equal to $P \otimes \Delta$, because

$$
\Lambda_{\tilde{\nu}}(\tilde{\tau}_t((y \otimes 1_{H_{\nu}})\mathfrak{a}(x))) = \Lambda_{\tilde{\nu}}[(\hat{\tau}_t(y) \otimes 1_{H_{\nu}})\mathfrak{a}(\sigma_t^{\nu}(x))]
$$

\n
$$
= \Lambda_{\widehat{\varphi}}(\hat{\tau}_t(y)) \otimes \Lambda_{\nu}(\sigma_t^{\nu}(x))
$$

\n
$$
= \lambda^{t/2}(P^{it} \otimes \Delta_{\nu}^{it})(\Lambda_{\widehat{\varphi}}(y) \otimes \Lambda_{\nu}(x)). \qquad \Box
$$

6. Duality

In this chapter, we prove [\(6.5\)](#page-46-0) that, if $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ is a measured quantum groupoid, its dual is isomorphic to $\mathfrak{G}(N,\hat{\mathfrak{a}}, \mathfrak{a}, \nu)$, which is therefore also a measured quantum groupoid.

6.1 Lemma. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra and a normal faithful semi-finite weight on* N, and let $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ be the associated Hopf-bimodule, equipped with a co*inverse, a left-invariant operator-valued weight and a right-invariant valued weight by [4.4](#page-23-0) (ii), [4.6](#page-27-0) and [5.4.](#page-34-1) Then:*

(i) The anti-representation γ of N is given by $\gamma(x^*) = 1_H \otimes J_\nu x J_\nu$ for all $x \in N$.

1184 M. Enock and T. Timmermann

- (ii) *For any* $\xi \in H$, $p \in \mathfrak{N}_v$, the vector $\xi \otimes \Lambda_v(p)$ belongs to $D((H \otimes H_v)_v, v^0)$, and $R^{\gamma, \nu^{\circ}}(\xi \otimes \Lambda_{\nu}(p)) = l_{\xi}p$, where l_{ξ} is the linear application from H_{ν} to $H \otimes H_{\nu}$ given by $l_{\xi} \zeta = \xi \otimes \zeta$ for all $\zeta \in H_{\nu}$.
- (iii) *There exists a unitary* V_3 *from* $(H \otimes H_\nu)$ $_{\mathfrak{a}} \otimes_{\gamma} (H \otimes H_\nu)$ *onto* $H \otimes H \otimes H_\nu$ *such that*

$$
V_3[\Xi_{\mathfrak{a}} \underset{\nu^{\circ}}{\otimes}_{\gamma} (\xi \otimes \Lambda_{\nu}(p))] = \xi \otimes \mathfrak{a}(p) \Xi \text{ for all } \Xi \in H \otimes H_{\nu}.
$$

Moreover, $(1 \otimes X)V_3 = V_3(X \mathbf{a} \otimes_Y)$ $N⁰$ 1) for all $X \in \mathfrak{a}(N)'.$

(iv) $V_3(I \underset{\beta}{\beta} \otimes_{\mathfrak{a}}$ $\underset{N}{\otimes}_{\mathfrak{a}} J_{\widetilde{\nu}}) = (\widehat{J} \otimes I)V_1.$

Proof. (i) By definition [\(5.2\)](#page-31-0), the left-invariant weight of $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ is the dual weight $\tilde{\nu}$. Therefore, by definition [\(5.2\)](#page-31-0), and using [2.2,](#page-6-0)

$$
\gamma(x^*)=J_{\tilde{\nu}}\mathfrak{a}(x)J_{\tilde{\nu}}=(\widehat{J}\otimes J_{\nu})(U_{\nu}^{\mathfrak{a}})^*\mathfrak{a}(x)U_{\nu}^{\mathfrak{a}}(\widehat{J}\otimes J_{\nu})=1_H\otimes J_{\nu}xJ_{\nu}.
$$

(ii) This follows from the relation

$$
l_{\xi} p J_{\nu} \Lambda_{\nu}(x) = \xi \otimes J_{\nu} x J_{\nu} \Lambda_{\nu}(p) = \gamma(x^*)(\xi \otimes \Lambda_{\nu}(p)).
$$

(iii) For any
$$
\xi' \in H
$$
, $\Xi' \in H \otimes H_{\nu}$, $p' \in \mathfrak{N}_{\nu}$,
\n
$$
(\Xi_{\mathfrak{a}} \otimes_{\gamma} (\xi \otimes \Lambda_{\nu}(p)) | \Xi'_{\mathfrak{a}} \otimes_{\gamma} (\xi' \otimes \Lambda_{\nu}(p'))
$$
\n
$$
= (\mathfrak{a}(\xi \otimes \Lambda_{\nu}(p), \xi' \otimes \Lambda_{\nu}(p))_{\gamma, \nu^{\circ}}) \Xi | \Xi')
$$
\n
$$
= (\mathfrak{a}(p'^{*}l_{\xi'}^{*}l_{\xi}p) \Xi | \Xi')
$$
\n
$$
= (\xi \otimes \mathfrak{a}(p) \Xi | \xi' \otimes \mathfrak{a}(p') \Xi'),
$$

from which we get the existence of V_3 as an isometry. As it is trivially surjective, we get it is a unitary. The last formula of (iii) is trivial.

(iv) Using 4.5 (ii) and 6.1 (i), we get the existence of an anti-linear bijective isometry $I_{\beta} \otimes_{\mathfrak{a}}$ N $J_{\tilde{\nu}}$ from $(H \otimes H_{\nu})$ $\underset{\nu}{\rho} \otimes_{\mathfrak{a}} (H \otimes H_{\nu})$ onto $(H \otimes H_{\nu})$ $\underset{\nu^{\circ}}{\rho} (H \otimes H_{\nu})$ with trivial values on elementary tensors. Moreover, for any $\Xi \in H \otimes H_v$, $\xi \in H$, $p \in \mathfrak{N}_{\nu}$, analytic with respect to ν , we have, using successively [2.2,](#page-6-0) (iii), and [4.3](#page-21-0) (i),

$$
V_3(I \underset{N}{\beta \otimes_{\mathfrak{a}}} J_{\widetilde{\nu}})(\Xi \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_{\nu}^{\mathfrak{a}}((\xi \otimes \Lambda_{\nu}(p)))
$$

$$
= V_3[I \Xi \underset{\nu}{\alpha \otimes_{\gamma}} (\widehat{J}\xi \otimes J_{\nu}\Lambda_{\nu}(p))]
$$

$$
= \widehat{J}\xi \otimes \mathfrak{a}(\sigma_{-i/2}^{\nu}(p^*)))I \Xi
$$

$$
= \widehat{J}\xi \otimes I\beta(\sigma_{i/2}^{\nu}(p))\Xi
$$

$$
= (\widehat{J} \otimes I)V_1[\Xi \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_{\nu}^{\mathfrak{a}}(\xi \otimes \Lambda_{\nu}(p))]. \qquad \Box
$$

6.2 Theorem ([\[40\]](#page-70-0)). Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, a normal faithful semi-finite weight on* N*,* and let $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, v)$ be the associated Hopf-bimodule, equipped with a co-inverse, a *left-invariant operator-valued weight and a right-invariant valued weight by [4.4](#page-23-0) (ii), [4.6](#page-27-0)* and [5.4.](#page-34-1) Let \widetilde{W} be the pseudo-mutiplicative unitary associated by [5.2.](#page-31-0) Then

$$
\widetilde{W} = V_3^*(W^* \otimes 1_{H_v})V_1,
$$

where V_1 *had been defined in* [4.3](#page-21-0) *and* V_3 *in* [6.1.](#page-40-0) *Moreover, for any* ξ *,* η *in* H *,* p *, q* $in \mathfrak{N}_v$,

$$
(\mathrm{id} \ast \omega_{U_{\nu}^{\mathfrak{a}}}(\eta \otimes J_{\nu}\Lambda_{\nu}(p)),\xi \otimes \Lambda_{\nu}(q))(\widetilde{W}) = \mathfrak{a}(q^*)\left[(\omega_{\eta,\xi} \otimes \mathrm{id})(W^*) \otimes 1_{H_{\nu}} \right]\beta(p^*).
$$

Proof. Let x , x_1 , x_2 in \mathfrak{N}_v and y , y_1 , y_2 in \mathfrak{N} $\frac{\varphi}{\mathsf{bv}}$ Then $(y \otimes 1)a(x)$, $(y_1 \otimes 1_{H_v})a(x_1)$, $(y_2 \otimes 1_{H_v})$ $\mathfrak{a}(x_2)$ belong to $\mathfrak{N}_{\tilde{v}} \cap \mathfrak{N}_{T_{\tilde{\alpha}}}$, and by [\(2.2\)](#page-6-0),

$$
\Lambda_{\widetilde{\nu}}[(y \otimes 1_{H_{\nu}})\mathfrak{a}(x)] = \Lambda_{\widehat{\varphi}}(y) \otimes \Lambda_{\nu}(x)
$$

and

$$
J_{\tilde{\nu}} \Lambda_{\tilde{\nu}}[(y \otimes 1_{H_{\nu}}) \mathfrak{a}(x)] = U_{\nu}^{\mathfrak{a}}(\widehat{J} \Lambda_{\widehat{\varphi}}(y) \otimes J_{\nu} \Lambda_{\nu}(x))
$$

$$
J_{\tilde{\nu}} \Lambda_{\tilde{\nu}}[\mathfrak{a}(x_{1}^{*})(y_{1}^{*}y_{2} \otimes 1_{H_{\nu}}) \mathfrak{a}(x_{2})] = (1_{H} \otimes J_{\nu} x_{1}^{*} J_{\nu}) U_{\nu}^{\mathfrak{a}}[\widehat{J} \Lambda_{\widehat{\varphi}}(y_{1}^{*}y_{2}) \otimes J_{\nu} \Lambda_{\nu}(x_{2})].
$$

By definition of \widetilde{W} [\(5.2\)](#page-31-0), we find that for any Ξ_1 , Ξ_2 in $H \otimes H_\nu$, the scalar product

$$
(\widetilde{W}[\Xi_2]_{\beta}\underset{\nu}{\otimes}_{\mathfrak{a}}J_{\widetilde{\nu}}\Lambda_{\widetilde{\nu}}(\mathfrak{a}(x_1^*)(y_1^*y_2\otimes 1_{H_{\nu}})\mathfrak{a}(x_2))][\Xi_1]_{\mathfrak{a}}\underset{\nu^{\circ}}{\otimes}_{\gamma}(\Lambda_{\widehat{\varphi}}(\gamma)\otimes \Lambda_{\nu}(x)))
$$

is equal to

$$
(\widetilde{\Gamma}[(y \otimes 1)\mathfrak{a}(x)]^* \cdot (\Xi_2 \beta \otimes_{\mathfrak{a}} U_{\nu}^{\mathfrak{a}}(\widehat{J} \Lambda_{\widehat{\varphi}}(y_2) \otimes J_{\nu} \Lambda_{\nu}(x_2)) | \Xi_1 \beta \otimes_{\mathfrak{a}} U_{\nu}^{\mathfrak{a}}(\widehat{J} \Lambda_{\widehat{\varphi}}(y_1) \otimes J_{\nu} \Lambda_{\nu}(x_1)))).
$$

Using [4.4,](#page-23-0) we get that this is equal to

$$
((\widehat{\Gamma}^{o}(y^{*})\otimes 1_{H_{\nu}})\cdot V_{1}[\Xi_{2\beta}\otimes_{\mathfrak{a}}U_{\nu}^{\mathfrak{a}}(\widehat{J}\Lambda_{\widehat{\varphi}}(y_{2})\otimes J_{\nu}\Lambda_{\nu}(x_{2}))]|V_{1}[\mathfrak{a}(x)\Xi_{1\beta}\otimes_{\mathfrak{a}}(U_{\nu}^{\mathfrak{a}}(\widehat{J}\Lambda_{\widehat{\varphi}}(y_{1})\otimes J_{\nu}\Lambda_{\nu}(x_{1}))),
$$

which, thanks to 4.3 (i), is equal to

$$
((\widehat{\Gamma}^{\circ}(\mathbf{y}^*)\otimes 1_{H_{\nu}})(\widehat{\mathbf{J}}\Lambda_{\widehat{\varphi}}(\mathbf{y}_2)\otimes \beta(\mathbf{x}_2^*)\Xi_2)|\widehat{\mathbf{J}}\Lambda_{\widehat{\varphi}}(\mathbf{y}_1)\otimes \beta(\mathbf{x}_1^*)\mathfrak{a}(\mathbf{x})\Xi_1)
$$

and to

$$
(\beta(x_1)((\omega \hat{\jmath}_{\Lambda_{\widehat{\varphi}}(y_2),\widehat{\jmath}_{\Lambda_{\widehat{\varphi}}(y_1)})} \otimes id)(\widehat{\Gamma}^{\circ}(y^*)) \otimes 1_{H_v})\beta(x_2^*)\Xi_2|\mathfrak{a}(x)\Xi_1)
$$

=
$$
(\beta(x_1)((id \otimes \omega \hat{\jmath}_{\Lambda_{\widehat{\varphi}}(y_2),\widehat{\jmath}_{\Lambda_{\widehat{\varphi}}(y_1)})}(\widehat{\Gamma}(y^*)) \otimes 1_{H_v})\beta(x_2^*)\Xi_2|\mathfrak{a}(x)\Xi_1),
$$

which, by [2.1,](#page-3-0) is equal to

$$
(\beta(x_1)((\mathrm{id}\otimes\omega_{\widehat{J}\Lambda_{\widehat{\varphi}}(y_1^*y_2),\Lambda_{\widehat{\varphi}}(y)})(\widehat{W})\otimes 1_{H_v})\beta(x_2^*)\Xi_2|\mathfrak{a}(x)\Xi_1)
$$

= $(\beta(x_1)((\omega_{\widehat{J}\Lambda_{\widehat{\varphi}}(y_1^*y_2),\Lambda_{\widehat{\varphi}}(y)}\otimes\mathrm{id})(W^*)\otimes 1_{H_v})\beta(x_2^*)\Xi_2|\mathfrak{a}(x)\Xi_1),$
which is, using 4.3 (i) and 6.1, equal to

$$
((1_H \otimes \beta(x_1))(W^* \otimes 1_{H_{\nu}})\n\cdot V_1(\Xi_2 \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_{\nu}^{\mathfrak{a}}(\widehat{J}\Lambda_{\widehat{\varphi}}(y_1^*y_2) \otimes J_{\nu}\Lambda_{\nu}(x_2)))|V_3(\Xi_1 \underset{\nu^0}{\alpha \otimes_{\gamma}} (\Lambda_{\widehat{\varphi}}(y) \otimes \Lambda_{\nu}(x))))
$$

which, using [3.8](#page-15-0) (iv), is the scalar product of the vector

$$
W_{12}^*(\mathrm{id}\otimes\beta^{\dagger})(\mathfrak{a}^{\circ}(x_1^{\circ}))V_1(\Xi_2\underset{\nu}{\beta}\underset{\nu}{\otimes}_{\mathfrak{a}}U_{\nu}^{\mathfrak{a}}(\widehat{J}\Lambda_{\widehat{\varphi}}(y_1^*y_2)\otimes J_{\nu}\Lambda_{\nu}(x_2)))
$$

with $V_3(\Xi_1 \underset{\nu^0}{\alpha} \otimes_{\gamma} (\Lambda$ φ $(y) \otimes \Lambda_{\nu}(x)$). But, using [4.3](#page-21-0) (i), this vector is equal to

$$
(W^*\otimes 1_{H_v})
$$

$$
\cdot V_1[(1_H \otimes 1_{H_v})\underset{N}{\beta \otimes_{\mathfrak{a}}} (1_H \otimes J_v x_1^* J_v)](\Xi_2 \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_v^{\mathfrak{a}}(\widehat{J}\Lambda_{\widehat{\varphi}}(y_1^* y_2) \otimes J_v \Lambda_v(x_2))).
$$

Finally, we get that the initial scalar product

$$
(\widetilde{W}[\Xi_2] \underset{\nu}{\beta} \underset{\nu}{\otimes}_{\mathfrak{a}} J_{\widetilde{\nu}} \Lambda_{\widetilde{\nu}}(\mathfrak{a}(x_1^*)(y_1^*y_2 \otimes 1)\mathfrak{a}(x_2))] |\Xi_1 \underset{\nu^{\circ}}{\mathfrak{a}} \underset{\nu^{\circ}}{\otimes}_{\gamma} (\Lambda_{\widetilde{\varphi}}(y) \otimes \Lambda_{\nu}(x)))
$$

is equal to

$$
((W^* \otimes 1_{H_{\nu}})\cdot V_1[\Xi_2 \underset{\nu}{\beta} \underset{\nu}{\otimes} I_{\tilde{\nu}} \Lambda_{\tilde{\nu}}(\mathfrak{a}(x_1^*)(y_1^*y_2 \otimes 1)\mathfrak{a}(x_2))] |V_3(\Xi_1 \underset{\nu^{\circ}}{\mathfrak{a}} \underset{\nu^{\circ}}{\otimes} (\Lambda_{\widehat{\varphi}}(y) \otimes \Lambda_{\nu}(x)))).
$$

By density of linear combinations of elements of the form $\Lambda_{\widehat{\phi}}(y) \otimes \Lambda_{\nu}(x)$ in $D((H \otimes H_\nu)_\gamma, \nu^\circ)$, and then of linear combinations of elements of the form Ξ_1 a $\underset{\nu^{\mathrm{o}}}{\otimes}\gamma$ (Λ φ $(y) \otimes \Lambda_{\nu}(x)$ in $(H \otimes H_{\nu})$ $_{\mathfrak{a}} \otimes_{\nu} (H \otimes H_{\nu})$, we get that

$$
\widetilde{W}[\Xi_2 \underset{\nu}{\beta \otimes_{\mathfrak{a}}} J_{\widetilde{\nu}} \Lambda_{\widetilde{\nu}}(\mathfrak{a}(x_1^*)(y_1^* y_2 \otimes 1) \mathfrak{a}(x_2))]
$$
\n
$$
= V_3^*(W^* \otimes 1_{H_{\nu}}) V_1[\Xi_2 \underset{\nu}{\beta \otimes_{\mathfrak{a}}} J_{\widetilde{\nu}} \Lambda_{\widetilde{\nu}}(\mathfrak{a}(x_1^*)(y_1^* y_2 \otimes 1) \mathfrak{a}(x_2))],
$$

and, with the same density arguments, we get that $\widetilde{W} = V_3^*$ $i_3^*(W^* \otimes 1_{H_v})V_1.$ Therefore, using again 4.3 (i) and 6.1 , we get that

$$
\begin{aligned} (\widetilde{W}[\Xi_2 \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_{\nu}^{\mathfrak{a}}(\eta \otimes J_{\nu} \Lambda_{\nu}(p))] [\Xi_1 \underset{\nu^{\circ}}{\alpha \otimes_{\gamma}} (\xi \otimes \Lambda_{\nu}(q))) \\ = ((W^* \otimes 1_{H_{\nu}}) V_1 [\Xi_2 \underset{\nu}{\beta \otimes_{\mathfrak{a}}} U_{\nu}^{\mathfrak{a}}(\eta \otimes J_{\nu} \Lambda_{\nu}(p))] |V_3[\Xi_1 \underset{\nu^{\circ}}{\alpha \otimes_{\gamma}} (\xi \otimes \Lambda_{\nu}(q))]) \end{aligned}
$$

is equal to

$$
((W^* \otimes 1_{H_v})(\eta \otimes \beta(p^*)\Xi_2)|\xi \otimes \mathfrak{a}(p)\Xi_1)
$$

=
$$
(((\omega_{\eta,\xi} \otimes id)(W^*) \otimes 1_{H_v})\beta(p^*)\Xi_2|\mathfrak{a}(p)\Xi_1),
$$

which finishes the proof.

6.3 Theorem. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, and a normal faithful semi-finite weight on* N such that $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ is a measured quantum groupoid in the sense of [5.1.](#page-30-0) Let $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ be its dual measured quantum groupoid in the sense of [5.3,](#page-32-0) and for $all X \in \widehat{\mathbb{G}} \ltimes_{\widehat{\mathfrak{a}}} N$, let

$$
\mathcal{I}(X) = U_{\nu}^{\mathfrak{a}} (U_{\nu}^{\widehat{\mathfrak{a}}})^* X U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^*.
$$

Then I is an isomorphism of Hopf bimodule structures from $\mathfrak{G}(N, \widehat{a}, a, v)$ *onto* $\mathfrak{G}(N, a, \widehat{a}, v)$. $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu).$

Proof. To prove this result, we calculate the pseudo-multplicative W of $\mathfrak{G}(N, \hat{\mathfrak{a}}, \mathfrak{a}, \nu)$, wing 6.2 annihid to $(N, \hat{\mathfrak{a}}, \mathfrak{a}, \nu)$. We first define as in 4.3 (i) and 6.1, a unitary \widehat{V} . using [6.2](#page-41-0) applied to (N, \hat{a}, a, v) . We first define, as in [4.3](#page-21-0) (i) and [6.1,](#page-40-0) a unitary \hat{V}_1 from $(H \otimes H_\nu)$ β ˝ $b_{\widehat{\mathfrak{a}}}$ $(H \otimes H_{\nu})$ onto $H \otimes H \otimes H_{\nu}$, and a unitary \widehat{V}_3 from

$$
(H \otimes H_{\nu})_{\widehat{\mathfrak{a}}_{\nu^{\circ}}}^{\widehat{\mathfrak{b}}_{\mathcal{V}}}(H \overset{\nu}{\otimes} H_{\nu}) \text{ onto } H \otimes H \otimes H_{\nu}, \text{ where, for all } x \in N,
$$

$$
\widehat{\beta}(x) = U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^{*} (1_{H} \otimes J_{\nu} x^{*} J_{\nu}) U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^{*}, \n\widehat{\gamma}(x) = J_{\widehat{\nu}} \widehat{\mathfrak{a}}(x^{*}) J_{\widehat{\nu}} = 1_{H} \otimes J_{\nu} x^{*} J_{\nu} = \gamma(x),
$$

 $\widehat{\widetilde{v}}$ denoting the dual weight on $\widehat{\mathbb{G}} \ltimes_{\widehat{\mathfrak{a}}} N$ as before. More precisely, applying [4.3](#page-21-0) (i) to $(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$, we get that for any ξ , η in H and p , q in \mathfrak{N}_{ν} , $(N, \hat{\mathfrak{a}}, \mathfrak{a}, \nu)$, we get that for any ξ , η in H and p, q in \mathfrak{N}_{ν} ,

$$
\widehat{V}_1(U_v^{\widehat{\mathfrak{a}}}(U_v^{\mathfrak{a}})^* \underset{N}{\widehat{\beta}\otimes_{\widehat{\mathfrak{a}}}} U_v^{\widehat{\mathfrak{a}}}(U_v^{\mathfrak{a}})^*)\sigma_{\nu^{\mathfrak{a}}}[U_v^{\mathfrak{a}}(\eta\otimes J_{\nu}\Lambda_{\nu}(q)) \underset{\nu^{\mathfrak{a}}}{\alpha\otimes_{\gamma}} (\xi\otimes \Lambda_{\nu}(p))]
$$

is equal to

$$
\hat{V}_1[U_\nu^{\widehat{\mathfrak{a}}}(U_\nu^{\mathfrak{a}})^*(\xi \otimes \Lambda_\nu(p))\hat{\beta}\underset{\nu}{\otimes_{\widehat{\mathfrak{a}}}}U_\nu^{\widehat{\mathfrak{a}}}(\eta \otimes J_\nu\Lambda_\nu(q))] \n= \eta \otimes \hat{\beta}(q^*)U_\nu^{\widehat{\mathfrak{a}}}(U_\nu^{\mathfrak{a}})^*(\xi \otimes \Lambda_\nu(p)) \n= \eta \otimes U_\nu^{\widehat{\mathfrak{a}}}(U_\nu^{\mathfrak{a}})^*(\xi \otimes J_\nu q J_\nu\Lambda_\nu(p)) \n= (1_H \otimes U_\nu^{\widehat{\mathfrak{a}}}(U_\nu^{\mathfrak{a}})^*)(\eta \otimes \xi \otimes p J_\nu\Lambda_\nu(q)).
$$

 \Box

On the other hand, using [6.1,](#page-40-0) we get that

$$
V_3[U_\nu^{\mathfrak{a}}(\eta \otimes J_\nu \Lambda_\nu(q)) \underset{\nu^{\circ}}{\mathfrak{a} \otimes_{\mathcal{V}}} (\xi \otimes \Lambda_\nu(p))] = \xi \otimes \mathfrak{a}(p) U_\nu^{\mathfrak{a}}(\eta \otimes J_\nu \Lambda_\nu(q))
$$

$$
= \xi \otimes U_\nu^{\mathfrak{a}}(\eta \otimes p J_\nu \Lambda_\nu(q))
$$

$$
= (1_H \otimes U_\nu^{\mathfrak{a}})(\xi \otimes \eta \otimes p J_\nu \Lambda_\nu(q)),
$$

from which we get that

$$
\widehat{V}_1(U_v^{\widehat{\mathfrak{a}}}(U_v^{\mathfrak{a}})^* \underset{N}{\widehat{\beta}} \widehat{\otimes}_{\widehat{\mathfrak{a}}} U_v^{\widehat{\mathfrak{a}}}(U_v^{\mathfrak{a}})^*) \sigma_{\nu^{\mathfrak{0}}} = (1_H \otimes U_v^{\widehat{\mathfrak{a}}}(U_v^{\mathfrak{a}})^*) (\sigma \otimes 1_{H_{\nu}}) (1_H \otimes (U_v^{\mathfrak{a}})^*) V_3.
$$

Applying this result to $(N, \hat{\alpha}, \alpha, \nu)$ and taking the adjoints, we find that

$$
\widehat{V}_3(U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^* \underset{N^{\circ}}{\otimes}_{\beta} U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^*) \sigma_{\nu} = (1_H \otimes U_{\nu}^{\widehat{\mathfrak{a}}})(\sigma \otimes 1_{H\nu})(1_H \otimes U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^*)V_1.
$$

Applying [6.2](#page-41-0) to $(N, \hat{\mathfrak{a}}, \mathfrak{a}, \nu)$, we get that $\widehat{W} = \widehat{V}_3^*(\sigma \otimes 1_{H_{\nu}})(W \otimes 1_{H_{\nu}})(\sigma \otimes 1_{H_{\nu}})\widehat{V}_1$ and, therefore, that $\sigma_{\nu^{\circ}}[U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^* \underset{N^{\circ}}{\trianglelefteq} \mathbb{R}$ $U_\nu^{\mathfrak{a}} (U_\nu^{\widehat{\mathfrak{a}}})^* \big] \widehat{W} [U_\nu^{\widehat{\mathfrak{a}}}(U_\nu^{\mathfrak{a}})^* \underset{N}{\gamma} \otimes_{\mathfrak{a}}$ $\otimes_{\mathfrak{a}} U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^* \vert \sigma_{\nu^{\mathrm{o}}}$ is equal to:

$$
V_1^*(U_{\nu}^{\mathfrak{a}})_{23}(U_{\nu}^{\widehat{\mathfrak{a}}})_{23}^*(U_{\nu}^{\widehat{\mathfrak{a}}})_{13}^*W_{12}(U_{\nu}^{\widehat{\mathfrak{a}}})_{13}(U_{\nu}^{\mathfrak{a}})_{13}^*(U_{\nu}^{\mathfrak{a}})_{23}^*V_3
$$

But, as $(\widehat{\Gamma} \otimes id)(U_v^{\widehat{\mathfrak{a}}}) = (U_v^{\widehat{\mathfrak{a}}})_{23}(U_v^{\widehat{\mathfrak{a}}})_{13}$, we get that $(U_v^{\widehat{\mathfrak{a}}})_{23}^*(U_v^{\widehat{\mathfrak{a}}})_{13}^* = W_{12}(U_v^{\widehat{\mathfrak{a}}})_{13}^*W_{12}^*$, and therefore that $(U_p^{\widehat{\mathfrak{a}}})_{23}^* (U_p^{\widehat{\mathfrak{a}}})_{13}^* W_{12} (U_p^{\widehat{\mathfrak{a}}})_{13} = W_{12}$. On the other hand, by the same argument, $(U_{\nu}^{\mathfrak{a}})^*_{13} (U_{\nu}^{\mathfrak{a}})^*_{23} = W_{12}^*(U_{\nu}^{\mathfrak{a}})^*_{23} W_{12}$. Finally, we get that

$$
\sigma_{\nu^0}[U_\nu^{\mathfrak{a}}(U_\nu^{\widehat{\mathfrak{a}}})^*_{\widehat{\mathfrak{a}}_{N^{\circ}}^{\otimes_{\mathcal{V}}}U_\nu^{\mathfrak{a}}(U_\nu^{\widehat{\mathfrak{a}}})^*]\widetilde{\hat{W}}[U_\nu^{\widehat{\mathfrak{a}}}(U_\nu^{\mathfrak{a}})^*_{\gamma\otimes_{\mathfrak{a}}}U_\nu^{\widehat{\mathfrak{a}}}(U_\nu^{\mathfrak{a}})^*]\sigma_{\nu^{\circ}}=V_1^*W_{12}V_3=\widetilde{W}^*,
$$

and therefore

$$
[U_\nu^{\mathfrak{a}} (U_\nu^{\widehat{\mathfrak{a}}})^* \underset{N^{\mathfrak{a}}}{\trianglelefteq} \mathbb{V}^{\mathfrak{a}}_v U_\nu^{\mathfrak{a}} (U_\nu^{\widehat{\mathfrak{a}}})^*] \widetilde{\widehat{W}} [U_\nu^{\widehat{\mathfrak{a}}}(U_\nu^{\mathfrak{a}})^* \underset{N}{\times} \mathbb{V}^{\widehat{\mathfrak{a}}}_u U_\nu^{\widehat{\mathfrak{a}}}(U_\nu^{\mathfrak{a}})^*] = \sigma_\nu \widetilde{W}^* \sigma_\nu.
$$

So, up to the isomorphism, the pseudo-multiplicative unitary W of $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$ is equal to the dual pseudo-muliplicative untary W , which finishes the proof.

6.4 Proposition. Let \mathbb{G} be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, and a normal faithful semi-finite weight on* N. Suppose that $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ is a measured quantum groupoid in the sense of [5.1,](#page-30-0) and let $\mathfrak{B}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ be its dual measured quantum groupoid in the sense of [5.3.](#page-32-0)

(i) The co-inverse \widetilde{R} constructed in [4.6](#page-27-0) (ii) is the canonical co-inverse of the *measured quantum groupoid* $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ *.*

(ii) *The isomorphim of Hopf bimodules from* $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$ *onto* $\widehat{\mathfrak{G}}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ *constructed in [6.3](#page-44-0) exchanges the canonical co-inverses of these Hopfbimodules.*

Proof. (i) By [6.1](#page-40-0) (iv), $V_3(I \beta \otimes \mathfrak{a}$ $\bigotimes_{\alpha} J_{\tilde{v}}$ $= (\widehat{J} \otimes I)V_1$. Taking adjoints, we also get $V_1(I \, \mathfrak{a} \otimes_{\gamma}$ $(\otimes_{\gamma} J_{\tilde{\nu}}) = (\hat{J} \otimes I)V_3$. Therefore, we get, using [6.2](#page-41-0) and [4.5](#page-26-0) (iii), N°

$$
(I \underset{N^{\circ}}{\underset{\alpha \otimes_{\gamma}}{\otimes}} J_{\tilde{\nu}}) \widetilde{W} (I \underset{N^{\circ}}{\underset{\alpha \otimes_{\gamma}}{\otimes}} J_{\tilde{\nu}}) = (I \underset{N^{\circ}}{\underset{\alpha \otimes_{\gamma}}{\otimes}} J_{\tilde{\nu}}) V_{3}^{*}(W^{*} \otimes 1_{H_{\nu}}) V_{1} (I \underset{N^{\circ}}{\underset{\alpha \otimes_{\gamma}}{\otimes}} J_{\tilde{\nu}})
$$

= $V_{1}^{*} (\widehat{J} \otimes I)(W^{*} \otimes 1_{H_{\nu}}) (\widehat{J} \otimes I) V_{3}$
= $V_{1}^{*}(W \otimes 1_{H_{\nu}}) V_{3}$
= $\widetilde{W}^{*}.$

For all $\Xi \in D({}_{\mathfrak{a}}(H \otimes H_{\nu}), \nu)$ and $\Xi' \in D((H \otimes H_{\nu})_{\gamma}, \nu^{\circ})$, we therefore have

$$
I(\mathrm{id} * \omega_{\Xi,\Xi'})(\widetilde{W})^* I = (\mathrm{id} * \omega_{J_{\widetilde{v}}\Xi',J_{\widetilde{v}}\Xi})(\widetilde{W}),
$$

which proves that the canonical co-inverse is given by $\widetilde{R}(X) = IX^*I$ for all $X \in \mathbb{R}$ $G \ltimes_{\mathfrak{a}} N$.

(ii) By [5.3,](#page-32-0) the canonical co-inverse of $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ is implemented by $J_{\widetilde{\nu}}$. Using (ii) applied to $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$, we therefore get that the canonical co-inverse of $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$ is implemented by $\widehat{I} = U^{\widehat{\mathfrak{a}}}_\nu(U^{\mathfrak{a}})^* J_{\widehat{\mathfrak{b}}} U^{\mathfrak{a}}_\nu(U^{\widehat{\mathfrak$ $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$ is implemented by $\widehat{I} = U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^* J_{\widetilde{\nu}} U_{\nu}^{\mathfrak{a}}(U^{\widehat{\mathfrak{a}}})^*$.

6.5 Theorem. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, and a normal faithful semi-finite weight on* N. Suppose that $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ is a measured quantum groupoid in the sense of [5.1,](#page-30-0) let $\mathfrak{B}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ be its dual measured quantum groupoid in the sense of [5.3,](#page-32-0) and let $\mathcal I$ *be the isomorphism of Hopf bimodule structures constructed in [6.3.](#page-44-0) Then* I *exchanges the left-invariant and the right-invariant operator-valued weights on* $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$ and $\hat{\mathfrak{G}}(N, \mathfrak{a}, \hat{\mathfrak{a}}, \nu)$. Therefore, $\mathfrak{G}(N, \hat{\mathfrak{a}}, \mathfrak{a}, \nu)$ *is also a measured quantum groupoid.*

Proof. Using 6.4 (ii), it suffices to verify that $\mathcal I$ exchanges the left-invariant operator valued weights, of $\mathfrak{G}(N, \hat{\mathfrak{a}}, \mathfrak{a}, \nu)$ and $\widehat{\mathfrak{G}}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$. The left-invariant weight of $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$ is the dual weight $\widehat{\nu}$ on the crossed product $\widehat{\mathbb{G}} \ltimes_{\widehat{\mathfrak{a}}} N$. Let us denote by $\widehat{\Phi}$
the left-invariant weight of $\widehat{\mathfrak{B}}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ the left-invariant weight of $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$.

We apply [6.2](#page-41-0) to $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$ and get that, for any ξ in $H, z \in \mathfrak{N}_{\widehat{\varphi}}, p, q$ in \mathfrak{N}_{ν} ,

$$
\left(\mathrm{id}*\omega_{U_{\nu}^{\widehat{\mathfrak{g}}}}(\widehat{\jmath}\Lambda_{\widehat{\varphi}}(z)\otimes J_{\nu}\Lambda_{\nu}(p)),\xi\otimes\Lambda_{\nu}(q)\right)(\widetilde{\widehat{W}})\left(\mathrm{id}*\omega_{U_{\nu}^{\widehat{\mathfrak{g}}}}(\widehat{\jmath}\Lambda_{\widehat{\varphi}}(z)\otimes J_{\nu}\Lambda_{\nu}(p)),\xi\otimes\Lambda_{\nu}(q)\right)(\widetilde{\widehat{W}})^{*}
$$

is equal to

$$
\widehat{\mathfrak{a}}(q^*) \bigg[\Big(\mathrm{id} \otimes \omega_{\widehat{J}\Lambda_{\widehat{\varphi}}(z),\xi} \Big) (W) \otimes 1 \bigg] \widehat{\beta}(pp^*) \bigg[\Big(\mathrm{id} \otimes \omega_{\widehat{J}\Lambda_{\widehat{\varphi}}(z),\xi} \Big) (W)^* \otimes 1 \bigg] \widehat{\mathfrak{a}}(q),
$$

where, as in [6.3,](#page-44-0) *W* denotes the pseudo-multiplicative unitary associated to $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$, and $\widehat{\beta}$ is defined, for $x \in N$, by

$$
\widehat{\beta}(x) = U_{\nu}^{\widehat{\mathfrak{a}}}(U_{\nu}^{\mathfrak{a}})^{*}(1_{H} \otimes J_{\nu}x^{*}J_{\nu})U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^{*}.
$$

Let us take now a family $(p_i)_{i \in I}$ in \mathfrak{M}^+_{ν} , increasing to 1. Then, we get that

$$
\widehat{\mathfrak{a}}(q^*) \bigg[\Big(\mathrm{id} \otimes \omega_{\widehat{J}\Lambda_{\widehat{\varphi}}(z),\xi} \Big) (W) \Big(\mathrm{id} \otimes \omega_{\widehat{J}\Lambda_{\widehat{\varphi}}(z),\xi} \Big) (W)^* \otimes 1 \bigg] \widehat{\mathfrak{a}}(q)
$$

is the increasing limit of

$$
\left(\mathrm{id}*\omega_{U_{\nu}^{\widehat{\mathfrak{g}}}}(\widehat{\jmath}\Lambda_{\widehat{\varphi}}(z)\otimes J_{\nu}\Lambda_{\nu}(p_{i}^{1/2})),\xi\otimes\Lambda_{\nu}(q)\right)(\widetilde{\widehat{W}})\left(\mathrm{id}*\omega_{U_{\nu}^{\widehat{\mathfrak{g}}}}(\widehat{\jmath}\Lambda_{\widehat{\varphi}}(z)\otimes J_{\nu}\Lambda_{\nu}(p_{i}^{1/2})),\xi\otimes\Lambda_{\nu}(q)\right)(\widetilde{\widehat{W}})^{*}.
$$

But, using 6.3, we get that
$$
\left(\mathrm{id}*\omega_{U_{\nu}^{\widehat{\mathfrak{g}}}}(\widehat{\jmath}\Lambda_{\widehat{\varphi}}(z)\otimes J_{\nu}\Lambda_{\nu}(p_{i}^{1/2})),\xi\otimes\Lambda_{\nu}(q)\right)(\widetilde{\widehat{W}}) \text{ is equal to}
$$

$$
\mathcal{I}^{-1}\Bigg[\Big(\mathrm{id}*\omega_{U_{\nu}^{\mathfrak{G}}(\widehat{J}\Lambda_{\widehat{\varphi}}(z)\otimes J_{\nu}\Lambda_{\nu}(p_i^{1/2})),U_{\nu}^{\mathfrak{G}}(U_{\nu}^{\widehat{\mathfrak{G}}})*(\xi\otimes\Lambda_{\nu}(q))}\Big)(\sigma_{\nu^{\mathfrak{G}}}W^*\sigma_{\nu^{\mathfrak{G}}})\Bigg] =\mathcal{I}^{-1}\Bigg[\Big(\omega_{U_{\nu}^{\mathfrak{G}}(U_{\nu}^{\widehat{\mathfrak{G}}})*(\xi\otimes\Lambda_{\nu}(q)),U_{\nu}^{\mathfrak{G}}(\widehat{J}\Lambda_{\widehat{\varphi}}(z)\otimes J_{\nu}\Lambda_{\nu}(p_i^{1/2}))}*\mathrm{id}\Big)(\widetilde{W})^*\Bigg].
$$

Therefore, we get that

$$
\widehat{\Phi} \circ \mathcal{I}\left[\widehat{\mathfrak{a}}(q^*)\right] \left(\mathrm{id} \otimes \omega_{\widehat{J}\Lambda_{\widehat{\varphi}}(z),\xi}\right)(W)\left(\mathrm{id} \otimes \omega_{\widehat{J}\Lambda_{\widehat{\varphi}}(z),\xi}\right)(W)^* \otimes 1\right]\widehat{\mathfrak{a}}(q)\right]
$$

is the increasing limit of

$$
\widehat{\Phi}\bigg[\Big(\omega_{U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*(\xi\otimes\Lambda_{\nu}(q)),U_{\nu}^{\mathfrak{a}}(\widehat{J}\Lambda_{\widehat{\varphi}}(z)\otimes J_{\nu}\Lambda_{\nu}(p_i^{1/2}))} * \mathrm{id}\Big)(\widetilde{W})^* \cdot \Big(\omega_{U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*(\xi\otimes\Lambda_{\nu}(q)),U_{\nu}^{\mathfrak{a}}(\widehat{J}\Lambda_{\widehat{\varphi}}(z)\otimes J_{\nu}\Lambda_{\nu}(p_i^{1/2}))} * \mathrm{id}\Big)(\widetilde{W})\bigg],
$$

which, using [5.3,](#page-32-0) is equal, by definition, to the increasing limit of

$$
\|\omega_{U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\mathfrak{a}})^*(\xi\otimes \Lambda_{\nu}(q)),U_{\nu}^{\mathfrak{a}}(\widehat{J}\Lambda_{\widehat{\varphi}}(z)\otimes J_{\nu}\Lambda_{\nu}(p_i^{1/2}))}\|_{\widetilde{\nu}}^2.
$$

For $X \in \mathfrak{N}_{\tilde{\nu}}$, the scalar $\omega_{U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\tilde{\mathfrak{a}}})^*(\xi \otimes \Lambda_{\nu}(q)), U_{\nu}^{\mathfrak{a}}(\widehat{J}\Lambda_{\widetilde{\varphi}}(z) \otimes J_{\nu}\Lambda_{\nu}(p_i^{1/2}))}(X^*)$ is equal to

$$
(X^*U_v^{\mathfrak{a}}(U_v^{\widehat{\mathfrak{a}}})^*(\xi \otimes \Lambda_v(q))|U_v^{\mathfrak{a}}(\widehat{J}\Lambda_{\widehat{\varphi}}(z) \otimes J_v\Lambda_v(p_i^{1/2})))
$$

=
$$
(U_v^{\mathfrak{a}}(U_v^{\widehat{\mathfrak{a}}})^*(\xi \otimes \Lambda_v(q))|XJ_{\widetilde{v}}\Lambda_{\widetilde{v}}[(z \otimes 1)\mathfrak{a}(p_i^{1/2})])
$$

=
$$
(U_v^{\mathfrak{a}}(U_v^{\widehat{\mathfrak{a}}})^*(\xi \otimes \Lambda_v(q))|J_{\widetilde{v}}(z \otimes 1)\mathfrak{a}(p_i^{1/2})J_{\widetilde{v}}\Lambda_{\widetilde{v}}(X))
$$

and, therefore,

$$
\| \omega_{U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*(\xi \otimes \Lambda_{\nu}(q)),U_{\nu}^{\mathfrak{a}}}(\widehat{J}\Lambda_{\widehat{\varphi}}(z)\otimes J_{\nu}\Lambda_{\nu}(p_i^{1/2}))} \|_{\widetilde{\nu}}^2 \n= \| J_{\widetilde{\nu}}\mathfrak{a}(p_i^{1/2})(z^* \otimes 1)J_{\widetilde{\nu}}U_{\nu}^{\mathfrak{a}}(U_{\nu}^{\widehat{\mathfrak{a}}})^*(\xi \otimes \Lambda_{\nu}(q)) \|^2.
$$

The limit when p_i goes to 1 is equal to

$$
\begin{split} \|(\widehat{J}z^*\widehat{J}\otimes 1)(U_v^{\widehat{\mathfrak{q}}})^*(\xi\otimes \Lambda_v(q))\|^2 &= \|(\widehat{J}z^*\widehat{J}\otimes 1)(\xi\otimes \Lambda_v(q))\|^2 \\ &= \|\widehat{J}z^*\widehat{J}\xi\|^2 \|\Lambda_v(q)\|^2 \\ &= \left\|\omega_{\xi,\widehat{J}\Lambda_{\widehat{\phi}}(z)}\right\|_{\widehat{\varphi}}^2 \|\Lambda_v(q)\|^2 \\ &= \left\|\Lambda_{\varphi}\left[\left(\mathrm{id}\otimes\omega_{\xi,\widehat{J}\Lambda_{\widehat{\phi}}(z)}\right)(W^*)\right]\otimes \Lambda_v(q)\right\|^2 \\ &= \left\|\Lambda_{\widehat{\mathfrak{p}}}\left[\left(\mathrm{id}\otimes\omega_{\xi,\widehat{J}\Lambda_{\widehat{\phi}}(z)}\right)(W^*)\otimes 1_{H_v}\right)\widehat{\mathfrak{a}}(q)\right\|^2, \end{split}
$$

from which we get that

$$
\left\|\Lambda_{\widehat{\Phi}\circ\mathcal{I}}\bigg[\bigg(\Big(id\otimes\omega_{\xi,\widehat{J}\Lambda_{\widehat{\varphi}}(z)}\Big)(W^*)\otimes 1_{H_{\nu}}\bigg)\widehat{\mathfrak{a}}(q)\bigg]\right\|^2=\left\|\Lambda_{\widehat{\mathfrak{p}}}\bigg[\bigg(\Big(id\otimes\omega_{\xi,\widehat{J}\Lambda_{\widehat{\varphi}}(z)}\Big)(W^*)\otimes 1_{H_{\nu}}\bigg)\widehat{\mathfrak{a}}(q)\bigg]\right\|^2,
$$

which proves that the left-invariant weight $\widehat{\Phi} \circ \mathcal{I} + \widetilde{\widehat{v}}$ is semi-finite. Using now [\[24,](#page-69-0) 5.2.2], we get that there exists an invertible $p \in N^+$, $p \le 1$, such that

$$
(D\widetilde{\hat{\nu}}: D(\widehat{\Phi} \circ \mathcal{I} + \widetilde{\hat{\nu}}))_t = \beta(p)^{it}
$$

for all $t \in \mathbb{R}$. So, $\beta(p)$ is invariant under the modular group $\sigma^{\hat{v}}$ (i.e. p is invariant under γ) and we get that

$$
2\left\|\Lambda_{\widetilde{v}}\left[\left(\left(\mathrm{id}\otimes\omega_{\xi,\widehat{J}\Lambda_{\widehat{\varphi}}(z)}\right)(W^*)\otimes 1_{H_v}\right)\widehat{\mathfrak{a}}(q)\right]\right\|^2
$$

\n
$$
=\left\|\Lambda_{\widehat{\Phi}\circ\mathcal{I}+\widetilde{v}}\left[\left(\left(\mathrm{id}\otimes\omega_{\xi,\widehat{J}\Lambda_{\widehat{\varphi}}(z)}\right)(W^*)\otimes 1_{H_v}\right)\widehat{\mathfrak{a}}(q)\right]\right\|^2
$$

\n
$$
=\left\|\mathcal{I}_{\widetilde{v}}\beta(p^{-1})\mathcal{I}_{\widetilde{v}}\Lambda_{\widetilde{v}}\left[\left(\left(\mathrm{id}\otimes\omega_{\xi,\widehat{J}\Lambda_{\widehat{\varphi}}(z)}\right)(W^*)\otimes 1_{H_v}\right)\widehat{\mathfrak{a}}(q)\right]\right\|^2,
$$

 \Box from which we get that $p = 1/2$, and $\tilde{v} = 1/2(\hat{\Phi} \circ \mathcal{I} + \tilde{v})$. Thus, $\tilde{v} = \hat{\Phi} \circ \mathcal{I}$.

6.6 Theorem. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, a normal faithful semi-finite weight on* N*.* Let D_t be the Radon–Nikodym derivative of the weight ν with respect to the action $\mathfrak a$ *and* \hat{D}_t *be the Radon–Nikodym derivative of the weight* ν *with respect to the action* \hat{a} *. Then the following conditions are equivalent:*

- (i) $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, v)$ *is a measured quantum groupoid*;
- (ii) $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$ *is a measured quantum groupoid*;
- (iii) $(\tau_t Ad(\delta^{-it}) \otimes \gamma_t)(D_s) = D_s$ *for all* $s, t \in \mathbb{R}$ *;*
- (iv) $(\widehat{\tau}_t Ad(\widehat{\delta}^{-it}) \otimes \gamma_{-t})(\widehat{D}_s) = D_s$ *for all* $s, t \in \mathbb{R}$ *.*

Proof. By [6.5,](#page-46-0) we know that (i) implies (ii), and is therefore equivalent to (ii). Moreover, by [5.9,](#page-38-1) we know that (i) is equivalent to (iii). Applying [5.9](#page-38-1) to $\mathfrak{G}(N, \hat{a}, \alpha, \nu)$, we obtain (iv), because the one-parameter group $\hat{\gamma}_t$ is equal to γ_{-t} . The proof that (iv) implies (ii) is the same as in 5.0, where we again that the one parameter group $\hat{\gamma}$ implies (ii) is the same as in [5.9,](#page-38-1) where we use again that the one-parameter group $\hat{\gamma}_t$ of N constructed from the dual measured quantum groupoid is equal to γ_{-t} [\(5.3\)](#page-32-0). \Box

6.7 Corollary. Let G be a locally compact quantum group, $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ a braided*commutative* G*-Yetter–Drinfel'd algebra, and a normal faithful semi-finite weight on* N. If the weight v is \hat{k} -invariant with respect to \hat{a} , for \hat{k} affiliated to the *center* $Z(\widehat{M})$ or $\widehat{k} = \widehat{\delta}^{-1}$, then $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$ is a measured quantum groupoid and its dual is isomorphic to $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$. *and its dual is isomorphic to* $\mathfrak{G}(N, \widehat{\mathfrak{a}}, \mathfrak{a}, \nu)$ *.*

Proof. We verify easily property (iv) of [6.6,](#page-48-0) and then obtain the result by [6.6](#page-48-0) and [6.5.](#page-46-0) \Box

7. Examples

In this chapter, we give several examples of measured quantum groupoids constructed from a braided-commutative Yetter–Drinfel'd algebra. First, in [7.1,](#page-49-0) we show that usual transformation groupoids are indeed a particular case of this construction, which justifies the terminology. Other examples are constructed from quotient type co-ideals of compact quantum groups, in particular one is constructed from the Podleś sphere S_q^2 [\(7.4.5\)](#page-57-0). Another example [\(7.5.1\)](#page-57-1) is constructed from a normal closed subgroup H of a locally compact group G .

7.1. Transformation Groupoid. Let us consider a locally compact group G right acting on a locally compact space X ; let us denote a this action. It is well known that this leads to a locally compact groupoid $X \curvearrowleft G$, usually called a *transformation groupoid*. This groupoid is the set $X \times G$, with X as set of units, and range and source applications given by $r(x, g) = x$ and $s(x, g) = a_g(x)$, the product being

 $(x, g)(\mathfrak{a}_g(x), h) = (x, gh)$, and the inverse $(x, g)^{-1} = (\mathfrak{a}_g(x), g^{-1})$ [\[32,](#page-70-1) 1.2.a]. This locally compact groupoid has a left Haar system $[32, 2.5a]$ $[32, 2.5a]$, and for any measure ν on X, the lifted measure on $X \times G$ is $\nu \otimes \lambda$, where λ is the left Haar measure on G.

The measure ν is then quasi-invariant in the sense of [\[32\]](#page-70-1) and [4.2](#page-20-0) if and only if $v \otimes \lambda$ is equivalent to its image under the inversion $(x, g) \rightarrow (x, g)^{-1}$. This is equivalent [\[32,](#page-70-1) 3.21] to asking that, for all $g \in G$, the measure $v \circ a_g$ is equivalent to v, which leads to a Radon–Nikodym $\Delta(x, g) = \frac{d\nu \circ a_{g-1}}{d\nu}(x)$. Then, the Radon– Nikodym derivative between $v \otimes \lambda$ and its image under the inversion $(x, g) \rightarrow$ $(x, g)^{-1}$ is $\Delta(x, g) \Delta_G(g)$, where Δ_G is the modulus of G.

Let us consider the trivial action of the dual locally compact quantum group \widehat{G} , defined by $\iota(f) = 1 \otimes f$ for all $f \in L^{\infty}(X)$. It is straightforward to verify that $(L^{\infty}(X), \mathfrak{a}, \iota)$ is a G-Yetter–Drinfel'd algebra which is braided-commutative. The measure v, regarded as a normal semi-finite faithful weight on $L^{\infty}(X)$, is evidently invariant under ι . So, by [6.7,](#page-49-1) we obtain measured quantum groupoid structures on the crossed products $G \ltimes_{\mathfrak{a}} L^{\infty}(X)$ and $\widehat{G} \ltimes_{\iota} L^{\infty}(X)$.

The von Neumann algebra $\widehat{G} \ltimes_{\iota} L^{\infty}(X)$ is $L^{\infty}(G) \otimes L^{\infty}(X)$, or $L^{\infty}(X \underset{\alpha}{\wedge} G)$, a and the structure of measured quantum groupoid is nothing but the structure given by the groupoid structure of $X \underset{\alpha}{\curvearrowleft} G$.

The dual measured quantum groupoid $\widehat{X} \cap G$ is the von Neumann algebra
generated by the left regular representation of $X \cap G$, which is the crossed The dual measured quantum groupoid $\widehat{X \curvearrowleft G}$ is the von Neumann algebra product $G \ltimes_{\mathfrak{a}} L^{\infty}(X)$. Let us note that this measured quantum grouped is cocommutative, in particular, $\beta = \mathfrak{a}$ and $\gamma_t = \sigma_t^{\nu} = id_{L^{\infty}(X,\nu)}$ for all $t \in \mathbb{R}$. As $\tau_t = \text{Ad}(\Delta_G^{it}) = \text{id}_{L^{\infty}(G)}$, we see that $D_t = \Delta(x, g)^{it}$ satisfies the condition of [6.6.](#page-48-0) Moreover, $\tilde{\tilde{D}}_t = 1$ for all $t \in \mathbb{R}$.

Therefore, we get that any transformation groupoid gives a very particular case of our "measured quantum transformation groupoids", which explains the terminology.

7.2. Basic example. Let $\mathbb{G} = (M, \Gamma, \varphi, \varphi \circ R)$ be a locally compact quantum group, $D(G)$ its quantum double, and let us use the notation introduced in [2.4.5.](#page-9-1) There exists an action a_D of $D(G)$ on M such that

$$
\mathfrak{a}_D(x) \otimes 1 = \Gamma_D(x \otimes 1).
$$

The Yetter–Drinfel'd algebra associated to this action is given by the restrictions of the applications b and \hat{b} to M, which are, respectively, the coproduct Γ (when considered as a left action of G on M), and the adjoint action ad of \widehat{G} on M given by

$$
ad(x) = \sigma W(x \otimes 1)W^*\sigma = \widehat{W}^*(1 \otimes x)\widehat{W}, \qquad (4)
$$

and we get this way the Yetter-Drinfel'd algebra (M, Γ, ad) , which is the basic example given in [\[28\]](#page-70-2). Moreover, as

$$
\begin{aligned} \varsigma \Gamma(x) &= ((R \otimes R) \circ \Gamma \circ R)(x) \\ &= (\widehat{J} \otimes \widehat{J}) W^* (\widehat{J} \otimes \widehat{J})(1 \otimes x) (\widehat{J} \otimes \widehat{J}) W (\widehat{J} \otimes \widehat{J}), \end{aligned} \tag{5}
$$

we get that that

$$
\zeta \alpha^{\circ}(x^{\circ}) = (J \widehat{J} \otimes 1)W^*(1 \otimes \widehat{J}x \widehat{J})W(\widehat{J}J \otimes 1)
$$

= $(J \otimes J)W(1 \otimes J \widehat{J}x \widehat{J}J)W^*(J \otimes J)$

(where we prefer to note α the left action Γ to avoid confusion between α^{o} defined in [2.5.1](#page-10-0) and the coproduct Γ° of the locally compact quantum group \mathbb{G}°). But

$$
\varsigma \text{ ad}^{\text{o}}(x^{\text{o}}) = (J \otimes J)W(x \otimes 1)W^*(J \otimes J)
$$

from which we get that this Yetter–Drinfel'd algebra is braided-commutative.

As φ is invariant under Γ , using [5.9,](#page-38-1) we can equip the crossed products $\mathbb{G} \ltimes_{\Gamma} M$ and $\widehat{\mathbb{G}} \ltimes_{ad} M$ with structures of measured quantum groupoids.

Let us describe $\widehat{G} \ltimes_{ad} M$ in more detail. We claim that the map $\Phi := Ad((J\widehat{J}\otimes 1)\widehat{W})$ identifies $\widehat{G} \ltimes_{ad} M$ with $M' \otimes M$. Indeed, the first algebra is generated by elements of the form $(z \otimes 1)$ ad (x) and $x, z \in M$, and

$$
Ad(\widehat{W})[(z \otimes 1) ad(x)] = \Gamma^{o}(z)(1 \otimes x) = Ad(\sigma)(\Gamma(z)(x \otimes 1)).
$$

But elements of the form $\Gamma(z)$ $(x \otimes 1)$ generate $M \otimes M$, and as Ad $(J\widehat{J})(M) = M'$, the assertion follows. We just saw that $\Phi(\text{ad}(x)) = 1 \otimes x$, and we claim that $\Phi(\beta(x)) = x^{\circ} \otimes 1$. Using [\(4\)](#page-50-0) and the fact that \widehat{W}^* is a cocycle for the trivial action of \widehat{G} on M, we get [\[41,](#page-70-3) 4.2]

$$
U_\phi^{\rm ad} = \widehat{W}^*(J \otimes J) \widehat{W}(J \otimes J)
$$

and therefore, using the relations $(J \otimes \widehat{J})\widehat{W}^*(J \otimes \widehat{J}) = \widehat{W}$ and $\Gamma \circ R = (R \otimes R) \circ \Gamma^{\circ}$ $(2.1),$ $(2.1),$

$$
\Phi(\beta(x)) = \text{Ad}((J\widehat{J} \otimes 1)\widehat{W}U_{\phi}^{\text{ad}}(\widehat{J} \otimes J))[\Gamma(x)]
$$

\n
$$
= \text{Ad}((J\widehat{J} \otimes 1)(J \otimes J)\widehat{W}(J \otimes J)(\widehat{J} \otimes J))[\Gamma(x)]
$$

\n
$$
= \text{Ad}((\widehat{J} \otimes J)\widehat{W}(J\widehat{J} \otimes \widehat{J}\widehat{J}))[\Gamma(x)]
$$

\n
$$
= \text{Ad}((\widehat{J}J \otimes J\widehat{J})\widehat{W}^*)[\Gamma^{\circ}(R(x))]
$$

\n
$$
= \text{Ad}((\widehat{J}J \otimes J\widehat{J}))[R(x) \otimes 1]
$$

\n
$$
= x^{\circ} \otimes 1.
$$

Therefore, Φ defines an isomorphism between $\mathfrak{G}(M, ad, \Gamma, \phi)$ and the pair quantum groupoid $M' \otimes M$ of Lesieur [\[24,](#page-69-0) 15], and induces an isomorphism between the respective duals, which are (isomorphic to) $\mathfrak{G}(M, \Gamma, ad, d)$ and the dual pair quantum groupoid $B(H)$ constructed in [\[24,](#page-69-0) 15.3.7], respectively.

7.3. Quantum measured groupoid associated to an action. Let us apply [7.2](#page-50-1) to $\widehat{\mathbf{G}}^o$. We obtain that $(\widehat{M}, \widehat{\Gamma}^o, \text{ad})$ is a $\widehat{\mathbf{G}}^o$ -Yetter–Drinfel'd algebra, where ad means here $ad(x) = W^{c*}(1 \otimes x)W^c$. As noticed by [\[28,](#page-70-2) 3.1], we can extend this example to any crossed-product $G \ltimes_{\alpha} N$, where α is a left action of G on a von Neumann algebra N. Let us recall this construction. For any $X \in \mathbb{G} \ltimes_{\alpha} \mathbb{N}$, the dual action $\widetilde{\mathfrak{a}}$ is given by

$$
\widetilde{\mathfrak{a}}(X) = (\widehat{W}^{o*} \otimes 1)(1 \otimes X)(\widehat{W}^o \otimes 1).
$$

Let us also write

$$
\underline{\mathrm{ad}}(X) = (W^{c*} \otimes 1)(1 \otimes X)(W^c \otimes 1).
$$

We first show that this formula defines an action <u>ad</u> of \mathbf{G}^o on $\mathbf{G} \ltimes_{\mathfrak{a}} \mathbf{N}$. If $X = y \otimes 1$, with $y \in \widehat{M}$, we get that $\underline{\text{ad}}(1 \otimes y) = \text{ad}(y) \otimes 1$, which belongs to $M' \otimes G \ltimes_{\alpha} \mathbb{N}$. If $X = \mathfrak{a}(x)$, with $x \in N$, we get that $\text{ad}(\mathfrak{a}(x)) = (W^{c*} \otimes 1)(1 \otimes \mathfrak{a}(x))(W^{c} \otimes 1)$, which belongs to $M' \otimes \mathbb{G} \ltimes_{\mathfrak{a}} N$; moreover, the properties of W^{c*} give then that ad is an action.

To prove that $(\mathbf{G} \ltimes_{\alpha} N, \widetilde{\mathfrak{a}}, \underline{\text{ad}})$ is a $\widehat{G}^{\mathfrak{a}}$ -Yetter–Drinfel'd algebra, we have to check that, for any $X \in \widehat{G}^{\mathbf{0}},$

$$
\mathrm{Ad}(\sigma_{12}\widehat{W}_{12}^o)(\mathrm{id}\otimes \underline{\mathrm{ad}})\widetilde{\mathfrak{a}}(X)=(\mathrm{id}\otimes \widetilde{\mathfrak{a}})\underline{\mathrm{ad}}(X).
$$

To check that, it suffices to prove that $\sigma_{12}\hat{W}_{12}^oW_{23}^{c*}\hat{W}_{13}^{o*} = \hat{W}_{23}^{o*}W_{13}^c$, which follows from $\widehat{W}^o = \sigma W^{c*} \sigma$ and the pentagonal relation for W^c .

7.3.1 Proposition. *Let* a *an action of a locally compact quantum group* **G** *on a von Neumann algebra N and let* $B = G \ltimes_{\mathfrak{a}} N \cap \mathfrak{a}(N)$. *Then the formulas*

$$
\mathfrak{b}(X) = (\widehat{W}^{o*} \otimes 1)(1 \otimes X)(\widehat{W}^o \otimes 1),
$$

$$
\widehat{\mathfrak{b}}(X) = (W^{c*} \otimes 1)(1 \otimes X)(W^c \otimes 1)
$$

define actions $\mathfrak b$ *and* $\widehat{\mathfrak b}$ *of* $\widehat{\mathbf G}$ ^{*o*} *and* $\mathbf G^c$ *, respectively, on* B *and* $(B, \mathfrak b, \widehat{\mathfrak b})$ *is a braidedcommutative Yetter–Drinfel'd algebra.*

Proof. As $\tilde{a}(a(x)) = 1 \otimes a(x)$, for all $x \in N$, we get that b is an action of \hat{G}° on $B = \mathbf{G} \ltimes_{\mathfrak{a}} N \cap \mathfrak{a}(N)'.$

To prove a similar result for \hat{b} , we need to make a detour via the inclusion $\mathfrak{a}(N) \subset G \ltimes_{\mathfrak{a}} N$ which is depth 2 [\[41,](#page-70-3) 5.10]. Let ν be a normal faithful semi-finite weight on N, and \widetilde{v} its dual weight on $\mathbf{G} \ltimes_{\alpha} N$. Then, we have

$$
J_{\widehat{\nu}}\mathfrak{a}(N)'J_{\widehat{\nu}} = (\widehat{J} \otimes J_{\nu})(U_{\nu}^{\mathfrak{a}})^* \mathfrak{a}(N)'U_{\nu}^{\mathfrak{a}}(\widehat{J} \otimes J_{\nu})
$$

= $(\widehat{J} \otimes J_{\nu})(B(H) \otimes N')(\widehat{J} \otimes J_{\nu}) = B(H) \otimes N$

and therefore $B(H) \otimes N \cap (\mathbf{G} \ltimes_{\alpha} N)' = J_{\widetilde{\nu}} B J_{\widetilde{\nu}}$.
Moreover [41, 2.6 (ii)], we have an isomorphis

Moreover [\[41,](#page-70-3) 2.6 (ii)], we have an isomorphism Φ from $B(H) \otimes N$ with $\mathbf{G}^o \ltimes_{\mathbf{G}^o} A$ $\mathbf{G} \ltimes_{\mathfrak{a}} N$ which sends $\mathbf{G} \ltimes_{\mathfrak{a}} N$ onto $\widetilde{\mathfrak{a}}(\mathbf{G} \ltimes_{\mathfrak{a}} N)$. Via this isomorphism, the bidual

action $\widetilde{\widetilde{a}}$ of G^{oc} on $G^o \ltimes_{\widetilde{\mathfrak{a}}} G \ltimes_{\mathfrak{a}} N$ gives an action γ of G on $B(H_\nu) \otimes N$. As $\widetilde{\widetilde{a}}$ is invariant on $\widetilde{\mathfrak{a}}(\mathbf{G} \ltimes_{\alpha} N)$, γ is invariant on $\mathbf{G} \ltimes_{\alpha} N$, and its restriction to $J_{\gamma}B J_{\gamma}$ defines an action of **G** on $J_{\nu}B J_{\nu}$, and, thanks to this restriction, we can define an action of **G^c** on *B*. Let's have a closer look at this last action: ν is given, for any action of G^c on B. Let's have a closer look at this last action: γ is given, for any $X \in B(H) \otimes N$, by [\[41,](#page-70-3) 2.6 (iii)]

$$
\gamma(X) = W_{12}^o(\zeta \otimes id)(id \otimes \mathfrak{a})(X)W_{12}^{o*} = \text{Ad}[W_{12}^o(U_{\nu}^{\mathfrak{a}})_{13}](X_{23}).
$$

So, the opposite action of its restriction to $J_{\nu}B J_{\nu}$ will be implemented by

$$
(J \otimes J_{\nu}^{\circ})W_{12}^{o}(U_{\nu}^{\mathfrak{a}})_{13}(\widehat{J} \otimes J_{\nu})
$$

\n
$$
= (U_{\nu}^{\mathfrak{a}})_{23}(J \otimes \widehat{J} \otimes J_{\nu})W_{12}^{o}(U_{\nu}^{\mathfrak{a}})_{13}(\widehat{J} \otimes \widehat{J} \otimes J_{\nu})(U_{\nu}^{\mathfrak{a}})_{23}^*
$$

\n
$$
= (U_{\nu}^{\mathfrak{a}})_{23}(J \otimes \widehat{J} \otimes J_{\nu})W_{12}^{o}(\widehat{J} \otimes \widehat{J} \otimes J_{\nu})(U_{\nu}^{\mathfrak{a}})_{13}^*(U_{\nu}^{\mathfrak{a}})_{23}^*
$$

\n
$$
= (J\widehat{J})_{1}(U_{\nu}^{\mathfrak{a}})_{23}W_{12}(U_{\nu}^{\mathfrak{a}})_{13}^*(U_{\nu}^{\mathfrak{a}})_{23}^*
$$

\n
$$
= (J\widehat{J})_{1}W_{12}
$$

So, we get an action of G^c on B given by

$$
z \mapsto \mathrm{Ad}((J\widehat{J})_1 W_{12})(1 \otimes z) = W^{c*}(1 \otimes z)W^c,
$$

which is $\widehat{\mathfrak{b}}$. Thus, $\widehat{\mathfrak{b}}$ is an action of \mathbf{G}^c on B, and, by restriction of $(\mathbf{G} \ltimes_{\mathfrak{a}} N, \widetilde{\mathfrak{a}})$, we have obtained that (B, b, \hat{b}) is a \hat{G}° -Yetter–Drinfel'd algebra. Let's now prove that it is braided-commutative. Let us write $\mathcal{J}(x) = J \hat{J} x \hat{J} J$ for any $x \in M'$. We get that $(\mathcal{J}\otimes id)\widehat{\mathfrak{b}}(B)$ is included in $M\otimes B$, and, therefore, commutes with $1\otimes \mathfrak{a}(N)$. On the other hand, we get that $(\mathcal{J} \otimes id)(\widehat{b}(B)) = (W \otimes 1)(1 \otimes B)(W^* \otimes 1)$ commutes with $(W^* \otimes 1)(\widehat{M} \otimes 1 \otimes 1)(W \otimes 1) = \widehat{\Gamma}^o(\widehat{M}) \otimes 1$. Therefore, we get that $(\mathcal{J} \otimes id)(\widehat{\mathfrak{b}}(B))$ commutes with $\widetilde{\mathfrak{a}}(\mathbf{G} \ltimes_{\alpha} N)$, and, therefore, with $\mathfrak{b}(B)$. This finishes the proof.

Applying now [4.4](#page-23-0) to this braided-commutative Yetter–Drinfel'd algebra, we recover the Hopf-bimodule introduced in [\[13,](#page-69-1) 14.1]

7.3.2 Theorem. *Let* a *an action of a locally compact quantum group* **G** *on a von Neumann algebra N*, let $B = G \ltimes_{\mathfrak{a}} N \cap \mathfrak{a}(N)$, let b (resp. $\widehat{\mathfrak{b}}$) be the action of $\widehat{\mathbf{G}}^o$ (resp. \mathbf{G}^c) on B introduced in [7.3.1,](#page-52-0) and suppose that there exists a normal *semi-finite faithful weight* χ *on* B *, invariant under the modular group* $\sigma^{T_{\alpha}}$ *. Then,* $\mathfrak{G}(B, \mathfrak{b}, \widehat{\mathfrak{b}}, \chi)$ is a measured quantum groupoid, which is equal to the measured *quantum groupoid* $\mathfrak{G}(\mathfrak{a})$ *introduced in [\[13,](#page-69-1) 14.2].*

Proof. With the hypotheses, the measured quantum groupoid $\mathfrak{G}(a)$ is constructed in [\[13,](#page-69-1) 14.2]; so, we get that the Hopf-bimodule constructed in [7.3.1](#page-52-0) is a measured quantum groupoid. So, we may apply [5.9](#page-38-1) to get that $\mathfrak{G}(B, \mathfrak{b}, \widehat{\mathfrak{b}}, \chi)$ is measured quantum groupoid equal to $\mathfrak{G}(\mathfrak{a})$. quantum groupoid equal to $\mathfrak{G}(\mathfrak{a})$.

7.3.3 Theorem. Let $(N, \mathfrak{a}, \widehat{\mathfrak{a}})$ be a **G**-Yetter–Drinfel'd algebra with a norm *faithful semi-finite weight on* N *satisfying the conditions of [5.9,](#page-38-1) which allow us to construct the measured quantum groupoid* $\mathfrak{G}(N, \mathfrak{a}, \widehat{\mathfrak{a}}, \nu)$. Suppose that $\beta(N) = G \ltimes_{\mathfrak{a}} N \cap \mathfrak{a}(N)$. Then, the weight $v^o \circ \beta^{-1}$ on $\beta(N)$ allows us to *define the measured quantum groupoid* $\mathfrak{G}(\mathfrak{a})$ *, which is canonically isomorphic to* $\mathfrak{G}(N^o, \widehat{\mathfrak{a}}^o, \mathfrak{a}^o, \nu^o).$

Proof. We have, for all $x \in N$ and $t \in \mathbf{R}$, $\sigma_t^{T_{\tilde{\alpha}}}(\beta(x)) = \beta(\gamma_t(x))$. As $\nu \circ \gamma_t = \nu$, we get that the weight $v^{\circ} \circ \beta^{-1}$ on $\beta(N)$ allows us to define the measured quantum groupoid $\mathfrak{G}(\mathfrak{a})$. Moreover, the dual action $\widetilde{\mathfrak{a}}$ of $\widehat{\mathfrak{G}}^{\circ}$ on $\mathbb{G} \ltimes_{\mathfrak{a}} N$ satisfies, for all $x \in N$, by [4.4](#page-23-0) (iii),

$$
\widetilde{\mathfrak{a}}(\beta(n)) = (\mathrm{id} \otimes \beta^{\dagger})(\widehat{\mathfrak{a}}^o(x^o)),
$$

which gives that β^{\dagger} is an isomorphism between $\tilde{\mathfrak{a}}_{|\beta(N)} = \mathfrak{b}$ and $\hat{\mathfrak{a}}^o$. So, the result follows. \Box

We are indebted to the referee who suggested us to look at the relation betwen the construction made in [\[13,](#page-69-1) 14.2] and the measured quantum transformation groupoids considered in this article.

7.4. Quotient type co-ideals.

7.4.1 Definitions. Let $\mathbb{G} = (M, \Gamma, \varphi, \varphi \circ R)$ and $\mathbb{G}_1 = (M_1, \Gamma_1, \varphi_1, \varphi_1 \circ R_1)$ be two locally compact quantum groups. Following [\[21\]](#page-69-2), a *morphism* from G on G₁ is a nondegenerate strict *-homomorphism Φ from $C_0^{\mathfrak{u}}(\mathbb{G})$ on the multipliers $M(C_0^{\mathfrak{u}}(\mathbb{G}_1))$ (which means that Φ extends to a unital $*$ -homomorphism on $M(C_0^{\mathrm{u}}(\mathbb{G})))$ such that $\Gamma_{1,u} \circ \Phi = (\Phi \otimes \Phi) \Gamma_u$, where $\Gamma_{1,u}$ denotes the coproduct of $C_0^u(\tilde{\mathbb{G}}_1)$. In [\[21,](#page-69-2) 10.3] and 10.8], it was shown that a morphism is equivalently given by a right action Γ_r of G_1 on M satisfying, in addition to the action condition $(id \otimes \Gamma)\Gamma_r = (\Gamma_r \otimes id)\Gamma_r$, also the relation $(\Gamma \otimes id)\Gamma_r = (id \otimes \Gamma_r)\Gamma$. The morphism Φ and the action Γ_r are related by the formula

$$
\Gamma_r(\pi_{\mathbb{G}}(x)) = (\pi_{\mathbb{G}} \otimes \pi_{\mathbb{G}_1} \circ \Phi) \Gamma_u(x) \quad \text{for all } x \in C_0^{\mathfrak{u}}(\mathbb{G}).
$$

We get as well a left action Γ_l of \mathbb{G}_1 on M such that $(id \otimes \Gamma_l)\Gamma_l = (\Gamma_1 \otimes id)\Gamma_l$ and $(id \otimes \Gamma)\Gamma_l = (\Gamma_l \otimes id)\Gamma.$

Following $[11, Th. 3.6]$ $[11, Th. 3.6]$, we shall say that G_1 is a *closed quantum subgroup* of G *in the sense of Woronowicz*, if, in the situation above, the $*$ -homomorphism Φ is surjective. In [\[11,](#page-69-3) 3.3], G¹ is called a *closed quantum subgroup* of G *in the sense of Vaes* if there exists an injective $*$ -monomorphism γ from \widehat{M}_1 into \widehat{M} such that $\hat{\Gamma} \circ \gamma = (\gamma \otimes \gamma) \circ \hat{\Gamma}_1$. Moreover, any closed quantum subgroup of G in the sense of Vaes is a closed quantum subgroup in the sense of Woronowicz $[11, 3.5]$ $[11, 3.5]$, and if G_1 is (the von Neumann version of) a compact quantum group, then the two notions are equivalent $[11, 6.1]$ $[11, 6.1]$. It is also remarked that if G is (the von Neumann version of)

a compact quantum group, then any closed quantum subgroup of G is also (the von Neumann version of) a compact quantum group.

7.4.2 Proposition. Let $G = (M, \Gamma, \varphi, \varphi \circ R)$ and $G_1 = (M_1, \Gamma_1, \varphi_1, \varphi_1 \circ R_1)$ be *two locally compact quantum groups and* Φ *a surjective morphism from* G *to* G_1 *in the sense of* [7.4.1.](#page-54-0) Let Γ_r be the right action of \mathbb{G}_1 *on* M *defined in* [7.4.1,](#page-54-0) *and let* $N = M^{\Gamma_r} = \{x \in M : \Gamma_r(x) = x \otimes 1\}.$ Then:

- (i) $\Gamma_{|N}$ *is a left action of* G *on* N.
- (ii) ad_{\mathcal{N}} *is a left action of* $\widehat{\mathbb{G}}$ *on* N.
- (iii) $(N, \Gamma_{|N}, \text{ad}_{|N})$ *is a braided-commutative* G-Yetter–Drinfel'd algebra.
- (iv) Let Γ_l be the left action of \mathbb{G}_1 on M defined in [7.4.1.](#page-54-0) Then its invariant algebra M^{Γ_l} is equal to $R(N)$, which is a right co-ideal of $\mathbb G.$

In the situation above, we call N a *quotient type left co-ideal* of G.

Proof. (i) Since $(id \otimes \Gamma_r)\Gamma = (\Gamma \otimes id)\Gamma_r$ by construction, we get that for every x in $N = M^{\Gamma_r}$, the coproduct $\Gamma(x)$ belongs to $M \otimes N$.

(ii) By [\[21,](#page-69-2) 6.6], there exists a unique unitary $U \in M(C_0^u(\mathbb{G}) \otimes C_0^r(\widehat{G}))$ such $\mathbb{G} \otimes C_0^r(\widehat{G})$ that $(\Gamma_u \otimes id)(U) = U_{13}U_{23}$ and $(\pi_G \otimes id)(U) = W$, where Γ_u denotes the comultiplication on $C_0^{\mathfrak{u}}(\mathbb{G})$. Let $\widehat{U} = \varsigma(U^*) \in M(C_0^{\mathfrak{r}}(\widehat{\mathbb{G}}) \otimes C_0^{\mathfrak{u}}(\mathbb{G}))$ and $x \in C_0^{\mathfrak{u}}(\mathbb{G})$. Then $ad(\pi_G(x)) = (id \otimes \pi_G)(\widehat{U}^*(1 \otimes x) \widehat{U})$, and using the relation $(id \otimes \Gamma_u)(\widehat{U}^*) = \widehat{\pi}_* \widehat{\pi}_*$ $\widehat{U}_{12}^*\widehat{U}_{13}^*$, we find

$$
(\mathrm{id}\otimes\Gamma_r)(\mathrm{ad}(\pi_{\mathbb{G}}(x))) = (\mathrm{id}\otimes\pi_{\mathbb{G}}\otimes\pi_{\mathbb{G}_1}\Phi)((\mathrm{id}\otimes\Gamma_u)(\widehat{U}^*(1\otimes x)\widehat{U}))
$$

$$
= (\mathrm{id}\otimes\pi_{\mathbb{G}}\otimes\pi_{\mathbb{G}_1}\Phi)(\widehat{U}_{12}^*\widehat{U}_{13}^*(1\otimes\Gamma_u(x))\widehat{U}_{13}\widehat{U}_{12})
$$

$$
= \widehat{W}_{12}^*\widetilde{U}_{13}^*(1\otimes\Gamma_r(\pi_{\mathbb{G}}(x)))\widetilde{U}_{13}\widehat{W}_{12},
$$

where $\widetilde{U} = (\text{id} \otimes \pi_{\mathbb{G}_1} \Phi)(V)$. By continuity, we get that for any $y \in N$,

$$
(\mathrm{id}\otimes\Gamma_r)(\mathrm{ad}(y))=\widehat{W}_{12}^*\widetilde{U}_{13}^*(1\otimes y\otimes 1)\widetilde{U}_{13}\widehat{W}_{12}=\mathrm{ad}(y)\otimes 1,
$$

showing that $ad(y) \in \widehat{M} \otimes N$.

(iii) This follows immediately from [2.4.](#page-8-0)

(iv) This follows easily from the fact that the unitary antipode reverses the comultiplication. \Box

7.4.3 Theorem. Let $\mathbb{G} = (M, \Gamma, \varphi, \varphi \circ R)$ be a locally compact quantum group and (A_1, Γ_1) a compact quantum group which is a closed quantum subgroup *in the sense of [7.4,](#page-54-1) and denote by* N *the quotient type co-ideal defined by this closed subgroup, as defined in [7.4.2.](#page-55-0) Then, the restriction of the weight* $\varphi \circ R$ to *N* is semi-finite and δ^{-1} -invariant with respect to the action $\Gamma_{|N}$. Therefore, $\mathfrak{G}(N, \Gamma_{|N}, \text{ad}_{|N}, \varphi \circ R_{|N})$ and $\mathfrak{G}(N, \text{ad}_{|N}, \Gamma_{|N}, \varphi \circ R_{|N})$ are measured quantum *groupoids, dual to each other.*

Proof. The formula $E = (\text{id} \otimes \omega_1) \circ \Gamma_r$, where ω_1 is the Haar state of (A_1, Γ_1) , and Γ_r is the right action of (A_1, Γ_1) on M defined in [7.4,](#page-54-1) defines a normal faithful conditional expectation from M onto $N = M^{\Gamma_r}$.

By definition of Γ_r [\(7.4.1\)](#page-54-0), and using the right-invariance of $\varphi \circ R \circ \pi_{\mathbb{G}}$ with respect to the coproduct Γ_u of $C_0^u(\mathbb{G})$, we get that for any $y \in C_0^u(\mathbb{G})$, with the notations of [7.4.1,](#page-54-0)

$$
\varphi \circ R \circ E(\pi_{G}(y)) = (\varphi \circ R \otimes \omega_{1})\Gamma_{r}(\pi(y))
$$

= (\varphi \circ R \circ \pi_{G} \otimes \omega_{1} \circ \pi_{G_{1}} \circ \Phi)\Gamma_{u}(y)
= (\varphi \circ R \circ \pi_{G})(y)(\omega_{1} \circ \pi_{G} \circ \Phi)(1)
= (\varphi \circ R \circ \pi_{G})(y).

Therefore, $\varphi \circ R \circ E(x) = \varphi \circ R(x)$ for all $x \in C_0^r(\mathbb{G})$, and, by continuity, for all $x \in M$, which gives that this conditional expectation E is invariant under $\varphi \circ R$. Moreover, we get that $\varphi \circ R_{|N}$ is semi-finite and $\sigma_t^{\varphi \circ R} \circ E = E \circ \sigma_t^{\varphi \circ R}$.

This weight $\varphi \circ R_{|N}$ is clearly δ^{-1} -invariant with respect to $\Gamma_{|N}$. The result comes then from [5.9](#page-38-1) and [6.5.](#page-46-0) \Box

7.4.4 Corollary. Let (A, Γ) be a compact quantum group, ω its Haar state (which *we can suppose to be faithful) and let* $G = (\pi_{\omega}(A)^{\prime\prime}, \Gamma, \omega, \omega)$ *be the von Neumann version of* (A, Γ) (2.1) *. Let* N *be a sub-von Neumann algebra* N *of* $\pi_{\omega}(A)^{n}$ *. Then the following conditions are equivalent:*

- (i) $\Gamma_{|N}$ *is a left action of* G *on* N *and* $\text{ad}_{|N}$ *is a left action of* $\widehat{\mathbb{G}}$ *on* N.
- (ii) *There exists a quantum compact subgroup of* (A, Γ) *such that* N *is the quotient type co-ideal of* G *constructed from this quantum compact subgroup.*

If (i) and (ii) hold, then the crossed products $G \ltimes_{\Gamma \mid N} N$ *and* $\widehat{G} \ltimes_{\text{ad}\mid N} N$ *carry mutually dual structures of measured quantum groupoids* $\mathfrak{G}(N, \Gamma_{|N}, \text{ad}_{|N}, \omega_{|N})$ *and* $\mathfrak{G}(N, \text{ad}_{|N}, \Gamma_{|N}, \omega_{|N})$, respectively.

Proof. The fact that (ii) implies (i) is given by [7.4.3.](#page-55-1) Suppose (i). Then N is, by [7.4.2,](#page-55-0) a quotient type co-ideal of G, which is defined as the invariants by a right action Γ_r of a closed quantum subgroup of G, which is [\(7.4.1\)](#page-54-0) a compact quantum group (A_1, Γ_1) . Denote its Haar state by ω_1 . Then $\Gamma_r(A) \subset A \otimes A_1$, and the conditional expectation $E = (\text{id} \otimes \omega_1)\Gamma_r$ which sends $\pi_\omega(A)''$ onto N, sends A onto $A \cap N$. From this it is easy to get that $A \cap N$ is weakly dense in N. But $N \cap A$ is a sub-C^{*}-algebra of A which is invariant under Γ and ad; therefore, using [\[29,](#page-70-4) Th. 3.1], we get (ii). If these conditions hold, we can apply [7.4.3.](#page-55-1) \Box **7.4.5. Example of a measured quantum groupoid constructed from a quotient type coideal of a compact quantum group.** Let us take the compact quantum group $\text{SU}_q(2)$ [\[48\]](#page-71-1), which is the C^{*}-algebra generated by elements α and γ satisfying the relations

$$
\alpha^* \alpha + \gamma^* \gamma = 1, \quad \alpha \alpha^* + q^2 \gamma \gamma^* = 1,
$$

$$
\gamma \gamma^* = \gamma^* \gamma, \quad q \gamma \alpha = \alpha \gamma, \quad q \gamma^* \alpha = \alpha \gamma^*.
$$

The circle group T appears as a closed quantum subgroup via the morphism Φ from $C_0^{\text{u}}(\text{SU}_q(2))$ to $C_0^{\text{u}}(\mathbb{T}) = C_0(\mathbb{T})$ given by $\Phi(\alpha) = 0$ and $\Phi(\gamma) = \text{id}$. Then we obtain the Podleś sphere S_q^2 as a quotient type coideal from this map [\[31\]](#page-70-5), and mutually dual structures of measured quantum groupoids $\mathfrak{G}(S_q^2, \Gamma_{|S_q^2}, \text{ad}_{|S_q^2}, \omega_{|S_q^2})$ on SU_q(2) $\ltimes_{\Gamma_{|S_q^2}} S_q^2$ and $\mathfrak{G}(S_q^2, \text{ad}_{|S_q^2}, \Gamma_{|S_q^2}, \omega_{|S_q^2})$) on $\widetilde{\mathrm{SU}}_q(\overline{2}) \ltimes_{\mathrm{ad}_{|S_q^2}} S_q^2$, respectively.

7.4.6. Further examples. Here we quickly give examples of situations in which the hypothesis of [7.4.3](#page-55-1) are fulfilled.

Let us consider the (non-compact) quantum group $E_a(2)$ constructed by Woronowicz in [\[49\]](#page-71-2). In [\[20,](#page-69-4) 2.8.36] is proved that the circle group T is a closed quantum subgroup of $E_q(2)$.

In [\[43\]](#page-71-3) is constructed the cocycle bicrossed product of two locally compact quantum groups (M_1, Γ_1) and (M_2, Γ_2) , and it is proved [\[43,](#page-71-3) 3.5] that (M_1, Γ_1) is a closed subgroup (in the sense of Vaes) of (M, Γ) . So, if (M_1, Γ_1) is a discrete quantum group, then $(\widehat{M}_1, \widehat{\Gamma}_1)$ is the von Neumann version of a compact quantum group which is a closed quantum subgroup of (M, Γ) .

7.5. Another example.

7.5.1 Theorem. *Let* G *be a locally compact group and* H *a closed normal subgroup of* G*. Then:*

- (i) The von Neumann algebra $\mathcal{L}(H)$, which can be considered as a sub-von *Neumann algebra of* $\mathcal{L}(G)$ *, is invariant under the coproduct* Γ_G *of* $\mathcal{L}(G)$ *, considered as a right action of the locally compact quantum group* \widehat{G} *on* $\mathcal{L}(G)$ *, and under the adjoint action* ad *of* G *on* $\mathcal{L}(G)$ *. Therefore,* $(L(H), \Gamma_{G|C(H)}, \text{ad}_{|C(H)})$ is a braided-commutative \widehat{G} -Yetter–Drinfel'd alge*bra, which is a subalgebra of the canonical example* $(L(G), \Gamma_G, ad)$ *described in [7.2.](#page-50-1)*
- (ii) *The Plancherel weight* φ_H *on* $\mathcal{L}(H)$ *satisfies the conditions of* [5.9,](#page-38-1) *and the crossed product* $\widehat{G} \ltimes_{\Gamma_{G \mid \mathcal{L}(H)}} \mathcal{L}(H)$ (which is isomorphic to $(\mathcal{L}(H) \cup L^{\infty}(G))''$) *carries a structure of measured quantum groupoid*

$$
\mathfrak{G}(\mathcal{L}(H), \Gamma_{G|\mathcal{L}(H)}, \text{ad}_{|\mathcal{L}(H)}, \varphi_H)
$$

over the basis $\mathcal{L}(H)$ *.*

Proof. (i) Let λ_G (resp. λ_H) be the left regular representation of G (resp. H). It is well known that the application which sends $\lambda_H(s)$ to $\lambda_G(s)$, where $s \in H$, extends to an injection from $\mathcal{L}(H)$ into $\mathcal{L}(G)$, which will send the coproduct Γ_H of $\mathcal{L}(H)$ on the coproduct Γ_G of $\mathcal{L}(G)$. Let us identify $\mathcal{L}(H)$ with this sub-von Neumann algebra of $\mathcal{L}(G)$. Then for all $x \in \mathcal{L}(H)$,

$$
\Gamma_G(x) = \Gamma_H(x) \in \mathcal{L}(H) \otimes \mathcal{L}(H) \subset \mathcal{L}(G) \otimes \mathcal{L}(H),
$$

so that the coproduct, considered as a right action of \widehat{G} on $\mathcal{L}(G)$, gives also a right action of \widehat{G} on $\mathcal{L}(H)$.

Let W_G be the fundamental unitary of G, which belongs to $L^{\infty}(G) \otimes \mathcal{L}(G)$. The adjoint action of G on $\mathcal{L}(G)$ is given, for $x \in \mathcal{L}(G)$ by ad $(x) = W_G^*(1 \otimes x)W_G$, and is therefore the function on G given by $s \mapsto \lambda_G(s)x\lambda_G(s)^*$. Hence, if $t \in H$, we get that $ad(\lambda_H(s))$ is the function $s \mapsto \lambda_G(sts^{-1})$. As H is normal, sts^{-1} belongs to H, and this function takes its values in $\mathcal{L}(H)$. By density, we get that for any $x \in \mathcal{L}(H)$, ad(x) belongs to $L^{\infty}(G) \otimes \mathcal{L}(H)$, and, therefore, the restriction of the adjoint action of G to $\mathcal{L}(H)$ is an action of G on $\mathcal{L}(H)$.

(ii) The Haar weight φ_H is invariant under $\Gamma_{G|\mathcal{L}(H)}$ because $(id \otimes \varphi_H)(\Gamma_G(x)) =$ $(id \otimes \varphi_H)(\Gamma_H(x)) = \varphi_H(x)1$ for all $x \in \mathcal{L}(H)^+$. We can therefore apply [5.9](#page-38-1) to that braided-commutative Yetter–Drinfel'd algebra, equipped with this relatively invariant weight, and get (ii). Let us remark that $\widehat{G} \ltimes_{\Gamma_{G|\mathcal{L}(H)}} \mathcal{L}(H)$ is equal to $(\Gamma_G(\mathcal{L}(H)) \cup L^{\infty}(G) \otimes 1_{L^2(G)})^{"}$ which we can write:

 $((J \otimes J)W^*_G(J \otimes J)(\mathcal{L}(H) \otimes 1_{L^2(G)})(J \otimes J)W_G(J \otimes J) \cup L^{\infty}(G) \otimes 1_{L^2(G)})''$ which is clearly isomorphic to $(\mathcal{L}(H) \cup L^{\infty}(G))''$. \Box

7.5.2 Remark. Let us take again the hypotheses of [7.5.1,](#page-57-1) in the particular case where G is abelian. Then \widehat{G} (resp. \widehat{H}) is a commutative locally compact group, and we have constructed a right action of \widehat{G} on the set \widehat{H} , which leads to a transformation groupoid $\widehat{H} \curvearrowleft \widehat{G}$. Then, the measured quantum groupoid constructed in [7.5.1\(](#page-57-1)ii) is just the dual of this transformation groupoid.

8. Quotient type co-ideals and Morita equivalence

In this chapter, we show that, in the case of a quotient type co-ideal N of a compact quantum group G, the measured quantum groupoid $\widehat{G} \ltimes_{ad} N N$ is Morita equivalent to the quantum subgroup G_1 [\(8.3\)](#page-67-0).

8.1. Definitions of actions of a measured quantum groupoid and Morita equivalence.

8.1.1 Definition ([\[16,](#page-69-5) 2.4]). Let $\mathfrak{G} = (N, M, \alpha, \beta, \Gamma, T, T', \nu)$ be a measured quantum groupoid, and let A be a von Neumann algebra.

A *right action* of $\mathfrak G$ on A is a couple $(b, \mathfrak a)$, where:

- (i) b is an injective anti- $*$ -homomorphism from N into A;
- (ii) $\underline{\alpha}$ is an injective *-homomorphism from A into $A_b*_\alpha M$;
- (iii) b and α satisfy

$$
\underline{\mathfrak{a}}(b(n)) = 1 \underset{N}{\iota} \otimes_{\alpha} \beta(n) \quad \text{for all } n \in N,
$$

N

which allow us to define $\underline{a} b *_{\alpha}$ id from $A b *_{\alpha} M$ into $A b *_{\alpha} M \beta *_{\alpha} M \beta *_{\alpha} M \gamma$ N M , and

$$
(\underline{\mathfrak{a}}\,_{N}^{k_{\alpha}}\mathrm{id})\underline{\mathfrak{a}}=(\mathrm{id}\,_{N}^{k_{\alpha}}\Gamma)\underline{\mathfrak{a}}.
$$

If there is no ambiguity, we shall say that α is the right action.

So, a measured quantum groupoid $\mathfrak G$ can act only on a von Neumann algebra A which is a right module over the basis N.

Moreover, if M is abelian, then $\underline{\mathfrak{a}}(b(n)) = 1_b \otimes_{\alpha} \beta(n)$ commutes with $\underline{\mathfrak{a}}(x)$ for all $n \in N$ and $x \in A$, so that $b(N)$ is in the center of A. As in that case [\(5.1\)](#page-30-0) the measured quantum groupoid comes from a measured groupoid \mathcal{G} , we have $N = L^{\infty}(\mathcal{G}^{(0)}, v)$, and A can be decomposed as $A = \int_{\mathcal{G}^{(0)}} A^x d\nu(x)$.

The invariant subalgebra $A^{\underline{\alpha}}$ is defined by

$$
A^{\underline{\mathfrak{a}}} = \{ x \in A \cap b(N)': \underline{\mathfrak{a}}(x) = x \underset{N}{\underset{N}{\otimes_{\alpha}}} 1 \}.
$$

As $A^{\underline{\alpha}} \subset b(N)'$, A (and $L^2(A)$) is a A^{α} -N^o-bimodule. If $A^{\underline{\alpha}} = \mathbb{C}$, the action $(b, \underline{\alpha})$ (or, simply a) is called *ergodic*.

Let us write, for any $x \in A^+$, $T_{\underline{\mathfrak{a}}}(x) = (\mathrm{id}_{b \underset{\nu}{*} \alpha} \Phi) \underline{\mathfrak{a}}(x)$. This formula defines a normal faithful operator-valued weight from A onto $A^{\underline{\alpha}}$, and the action $\underline{\alpha}$ will be called *integrable* if T_a is semi-finite [\[15,](#page-69-6) 6.11, 12, 13 and 14].

The *crossed product* of A by $\mathfrak G$ via the action \underline{a} is the von Neumann algebra generated by $\underline{\mathfrak{a}}(A)$ and $1 \underset{N}{\beta \otimes_{\alpha}} \widehat{M}'$ [\[13,](#page-69-1) 9.1] and is denoted by $A \rtimes_{\underline{\mathfrak{a}}} \mathfrak{G}$. There

exists [\[13,](#page-69-1) 9.3] an integrable dual action $(1 \underset{N}{\substack{b \otimes \alpha}} \widehat{\alpha}, \underline{\tilde{a}})$ of $(\widehat{\mathfrak{G}})^c$ on $A \rtimes_{\underline{a}} \mathfrak{G}$.

We have $(A \rtimes_{\underline{\alpha}} \mathfrak{G})^{\underline{\tilde{\alpha}}} = \mathfrak{a}(A)$ [\[13,](#page-69-1) 11.5], and, therefore, the normal faithful semifinite operator-valued weight $T_{\tilde{\alpha}}$ sends $A \rtimes_{\alpha} \mathfrak{G}$ onto $\mathfrak{a}(A)$. Starting with a normal semi-finite weight ψ on A, we can thus construct a *dual weight* $\tilde{\psi}$ on A $\rtimes_{\alpha} \mathfrak{G}$ by the formula $\tilde{\psi} = \psi \circ \underline{\mathfrak{a}}^{-1} \circ T_{\tilde{\mathfrak{a}}}$ [\[15,](#page-69-6) 13.2].

Moreover [\[13,](#page-69-1) 13.3], the linear set generated by all the elements $(1 \cdot b \otimes_{\alpha} a) \underline{a}(x)$, where $x \in \mathfrak{N}_{\psi}$ and $a \in \mathfrak{N}_{\widehat{\Phi}^c} \cap \mathfrak{N}_{\widehat{T}^c}$, is a core for $\Lambda_{\widetilde{\psi}}$, and one can identify the GNS
representation of $A \rtimes_{\mathbb{Z}} \mathfrak{G}$ associated to the weight $\widetilde{\psi}$ with the natural represe representation of $A \rtimes_{\mathfrak{a}} \mathfrak{G}$ associated to the weight $\tilde{\psi}$ with the natural representation on H_{ψ} $_{b} \otimes_{\alpha} H$ by writing

$$
\Lambda_{\tilde{\psi}}[(1 \underset{N}{\iota} \otimes_{\alpha} a) \underline{\mathfrak{a}}(x)] = \Lambda_{\psi}(x) \underset{\nu}{\iota} \otimes_{\alpha} \Lambda_{\widehat{\Phi}^c}(a),
$$

which leads to the identification of $H_{\tilde{\psi}}$ with H_{ψ} $_{b} \otimes_{\alpha} H$.

Let us suppose now that the action $\frac{v}{a}$ is integrable. Let ψ_0 be a normal semi-finite weight on $A^{\underline{\alpha}}$, and let us write $\psi_1 = \psi_0 \circ T_{\underline{\alpha}}$. If we write $V = J_{\tilde{\psi_1}}(J_{\psi_1 a} \otimes \beta)$ N^c $J_{\widehat{\Phi}}$), we get a representation of G which implements a and which we shall call the *standard implementation* of a ([\[16,](#page-69-5) 3.2] and [\[15,](#page-69-6) 8.6]).

Moreover, there exists then a canonical isometry G from H_{ψ_1} s $\otimes_r H_{\psi_1}$ into H_{ψ_1} $\underset{\nu}{b} \underset{\nu}{\otimes_{\alpha}} H$ such that, for any $x \in \mathfrak{N}_{T_\alpha} \cap \mathfrak{N}_{\psi_1}, \zeta \in D((H_{\psi_1})_b, \nu^{\circ})$ and e in \mathfrak{N}_{Φ} ,

$$
(1\underset{N}{\iota} \otimes_{\alpha} J_{\Phi}eJ_{\Phi})G(\Lambda_{\psi_1}(x)\underset{\psi_0}{\iota} \otimes_r \zeta) = \mathfrak{a}(x)(\zeta \underset{\nu}{\iota} \otimes_{\alpha} J_{\Phi}\Lambda_{\Phi}(e)),
$$

where r is the canonical injection of $A^{\underline{\alpha}}$ into A, and $s(x) = J_{\psi_1} x^* J_{\psi_1}$ for all $x \in A^{\underline{\alpha}}$. There exists a surjective *-homomorphism $\pi_{\underline{\alpha}}$ from the crossed product $(A \rtimes_{\underline{\alpha}} \mathfrak{G})$ onto $s(A^{\underline{\alpha}})'$, defined, for all X in $A \rtimes_{\alpha} \mathfrak{G}$ by $\overline{\pi}_{\underline{\alpha}}(X)$ $s \otimes_r 1 = G^* X G$. It

should be noted that this algebra $s(A^{\underline{\alpha}})'$ is the basic construction for the inclusion $A^{\underline{\alpha}} \subseteq A$ [\[16,](#page-69-5) 3.6]. If the operator G is unitary (or, equivalently, the $*$ -homomorphism π_a is an isomorphism), then the action \underline{a} is called a *Galois action* [\[16,](#page-69-5) 3.11] and the unitary $\widetilde{G} = \sigma_{\nu} G$ its *Galois unitary*.

8.1.2 Definition ([\[15,](#page-69-6) 6.1]). A *left action* of \mathfrak{G} on a von Neumann algebra A is a couple (a, b) , where

- (i) *a* is an injective *-homomorphism from N into A;
- (ii) \underline{b} is an injective *-homomorphism from A into M $\beta *_{\alpha} A$;

(iii)
$$
\underline{b}(a(n)) = \alpha(n) \underset{N}{\beta \otimes_a} 1
$$
 for all $n \in N$, and $(id \underset{N}{\beta *_{a} \underline{b} \underline{b}}) \underline{b} = (\Gamma \underset{N}{\beta *_{a} \underline{a} \underline{b}}) \underline{b}.$

Then, it is clear that $(a, \varsigma_N \mathfrak{b})$ is a right action of \mathfrak{G}° on A. Conversely, if (b, \mathfrak{a}) is a left action of $\mathfrak G$ on A, then, $(b, \varsigma_N \mathfrak a)$ is a left action of $\mathfrak G^0$ on A.

The invariant subalgebra $A^{\underline{b}}$ is defined by

$$
A^{\underline{\mathfrak{b}}} = \{ x \in A \cap a(N)': \underline{\mathfrak{b}}(x) = 1 \underset{N}{\beta \otimes_a x} \},
$$

and $T_{\underline{b}} = (\Phi \circ R_{\beta} *_{a} \Psi)$ id) $\underline{\mathfrak{b}}$ is a normal faithful operator-valued weight from A onto $A^{\underline{\mathfrak{b}}}$.

The action \underline{b} will be called *integrable* if $T_{\underline{b}}$ is semi-finite. It is clear that \underline{b} is integrable if and only if $\zeta_N \underline{b}$ is integrable, and *Galois* if and only if $\zeta_N \underline{b}$ is Galois.

1204 M. Enock and T. Timmermann

8.1.3 Definition ([\[16,](#page-69-5) 2.4]). Let (b, a) be a right action of

$$
\mathfrak{G}_1 = (N_1, M_1, \alpha_1, \beta_1, \Gamma_1, T_1, T_1', \nu_1)
$$

on a von Neumann algebra A and (a, b) a left action of

$$
\mathfrak{G}_2 = (N_2, M_2, \alpha_2, \beta_2, \Gamma_2, T_2, T'_2, \nu_2)
$$

on A such that $a(N_2) \subset b(N_1)'$ We shall say that the actions <u>a</u> and <u>b</u> *commute* if

$$
b(N_1) \subseteq A^{\underline{b}}, \quad a(N_2) \subseteq A^{\underline{a}}, \quad (\underline{b} \underset{N_1}{b *_{\alpha_1}} \mathrm{id}) \underline{a} = (\mathrm{id} \underset{N_2}{\beta_2 *_{\alpha}} \underline{a}) \underline{b}.
$$

Let us remark that the first two properties allow us to write the fiber products $\underline{b}_b *_{\alpha_1}$ id $N₁$

and id $_{\beta_2} *_{a}$ N_2 $\underline{\mathfrak{a}}$.

8.1.4 Definition ([\[16,](#page-69-5) 6.5]). For $i = 1, 2$, let $\mathfrak{G}_i = (N_i, M_i, \alpha_i, \beta_i, T_i, T'_i, \nu_i)$ be a measured quantum groupoid. We shall say that \mathfrak{G}_1 is *Morita equivalent* to \mathfrak{G}_2 if there exists a von Neumann algebra A, a Galois right action (b, a) of \mathfrak{G}_1 on A, and a Galois left action (a, b) of \mathfrak{G}_2 on A such that

- (i) $A^{\mathfrak{a}} = a(N_2)$, $A^{\mathfrak{b}} = b(N_1)$, and the actions (b, \mathfrak{a}) and (a, \mathfrak{b}) commute;
- (ii) the modular automorphism groups of the normal semi-finite faithful weights $v_1 \circ b^{-1} \circ T_b$ and $v_2 \circ a^{-1} \circ T_a$ commute.

Then A (or, more precisely, (A, b, a, a, b)) will be called an *imprimitivity bi-comodule* for \mathfrak{G}_1 and \mathfrak{G}_2 .

8.2 Proposition. *Let* N *be a quotient type co-ideal of (the von Neumann version of a) compact quantum group* $G = (M, \Gamma, \omega, \omega)$, and let us consider the measured *quantum groupoid* $\mathfrak{G}(N, \text{ad}_{|N}, \Gamma_{|N}, \omega_{|N})$ constructed in [7.4.4.](#page-56-0)

(i) *There exists a unitary* V_4 *from* $H_{R|N} \otimes_{\text{ad}_{|N}} (H \otimes H_{\omega|N})$ *onto* $H \otimes H$ *such* $\omega_{|N}$

that

$$
V_4\bigg(\xi_{R_{|N}}\otimes_{\text{ad}_{|N}} U_{\omega_{|N}}^{\text{ad}_{|N}}\left(\eta\otimes J_{\omega_{|N}}\Lambda_{\omega_{|N}}(x^*)\right)\bigg)=R(x)\xi\otimes\eta
$$

for all $x \in N$ and ξ , η in H. Moreover, for all $z \in R(N)'$, $x \in N$ and $y \in B(H)$,

$$
V_4\left(z_{R_{|N}}\otimes_{\text{ad}_{|N}} 1\right) = (z \otimes 1_H)V_4,
$$

$$
V_4\left(1_{H\ R_{|N}}\otimes_{\text{ad}_{|N}} U_{\omega_{|N}}^{\text{ad}_{|N}}(y \otimes x^0)(U_{\omega_{|N}}^{\text{ad}_{|N}})^*\right) = (R(x) \otimes y)V_4.
$$

(ii) Let $y \in M$ and $\underline{\mathfrak{a}}(y) = V_4^* \Gamma(y) V_4$. Then $\underline{\mathfrak{a}}(y)$ belongs to

$$
M\; \mathop{\mathit{R}}\nolimits_{|N} \mathop{\ast}_{\mathop{\rm ad}\nolimits_{|N}} (\widehat{\mathbb{G}} \ltimes_{\mathop{\rm ad}\nolimits_{|N}} N).
$$

- (iii) Let $x \in N$. Then $\underline{\mathfrak{a}}(R(x)) = 1$ $R_{|N} \otimes_{\text{ad}_{|N}}$ $\otimes_{\text{ad}_{|N}} \beta(x)$, where β is the canonical
N *anti-representation of the basis* N *into* $\widehat{G} \ltimes_{ad_{|N}} N$.
- (iv) $(R_{|N}, \underline{\mathfrak{a}})$ *is a right action of* $\mathfrak{G}(N, \text{ad}_{|N}, \Gamma_{|N}, \omega_{|N})$ *on* M.
- (v) *The action* a *is ergodic, and integrable. More precisely, the canonical operator-valued weight* T_a *is equal to the Haar state* ω *.*
- (vi) The action \underline{a} is Galois and its Galois unitary is $V_4^*W^*\sigma$.

Proof. (i) By [4.3](#page-21-0) (i) applied to the braided-commutative \widehat{G} -Yetter–Drinfel'd algebra $(N, \text{ad}|_N, \Gamma_{|N})$, we get that $U_{\omega|_N}^{\text{ad}|_N}$ $(\eta \otimes J_{\omega|_N} \Lambda_{\omega_{|N}}(x^*))$ belongs to

$$
D((H \otimes H_{\omega|_N})_{\mathrm{ad}_{|N}}, \omega_{|N})
$$

and that

$$
R^{\text{ad}_{|N},\omega_{|N}}(U_{\omega_{|N}}^{\text{ad}_{|N}}(\eta\otimes J_{\omega_{|N}}\Lambda_{\omega_{|N}}(x^{\ast})))=U_{\omega_{|N}}^{\text{ad}_{|N}}l_{\eta}J_{\omega_{|N}}x^{\ast}J_{\omega_{|N}}.
$$

Therefore, using standard arguments, we get an isometry V_4 given by the formula above. As its image is trivially dense in $H \otimes H$, we get that V_4 is unitary. The commutation relations are straightforward.

(ii) Thanks to the commutation property in (i), $a(y)$ belongs to

$$
M R_{|N} *_{\text{ad}_{|N}} B(H \otimes H_{\omega_{|N}}).
$$

By [2.5](#page-10-1) (i),

$$
\begin{split} (\widehat{\mathbb{G}} \ltimes_{\mathrm{ad}_{|N}} N)' &= U^{\mathrm{ad}_{|N}}_{\omega_{|N}} (\widehat{\mathbb{G}}^{\mathrm{o}} \ltimes_{\mathrm{ad}_{|N}^{\mathrm{o}}} N^{\mathrm{o}}) (U^{\mathrm{ad}_{|N}}_{\omega_{|N}})^* \\ &= U^{\mathrm{ad}_{|N}}_{\omega_{|N}} (M' \otimes 1 \cup \mathrm{ad}_{|N}^{\mathrm{o}} (N^{\mathrm{o}}))'' (U^{\mathrm{ad}_{|N}}_{\omega_{|N}})^*. \end{split}
$$

On one hand, the commutation relations in (i) imply

$$
1_{R_{|N}} \otimes_{\text{ad}_{|N}} U_{\omega_{|N}}^{\text{ad}_{|N}} (M' \otimes 1) (U_{\omega_{|N}}^{\text{ad}_{|N}})^* = V_4^* (1_H \otimes M')V_4,
$$

which evidently commutes with $\underline{\alpha}(M) = V_4^* \Gamma(M) V_4$. On the other hand, if $z \in \widehat{M}$ and $x \in N$, then

$$
V_4\Big(1_{R_{|N}}\otimes_{\text{ad}_{|N}} U_{\omega_{|N}}^{\text{ad}_{|N}}(z\otimes x^{\text{o}})(U_{\omega_{|N}}^{\text{ad}_{|N}})^*\Big)V_4^* = \widehat{J}x^*\widehat{J}\otimes z
$$

= $(\widehat{J}J\otimes 1)\sigma(z\otimes x^{\text{o}})\sigma(J\widehat{J}\otimes 1)$

1206 M. Enock and T. Timmermann

and hence

$$
V_4 \Big(1_{R_{|N}} \otimes_{\text{ad}_{|N}} U_{\omega_{|N}}^{\text{ad}_{|N}} \text{ad}_{|N}^{\circ} (N^{\circ}) (U_{\omega_{|N}}^{\text{ad}_{|N}})^* \Big) V_4^* = (\widehat{J} J \otimes 1) \sigma \text{ad}_{|N}^{\circ} (N^{\circ}) \sigma (J \widehat{J} \otimes 1)
$$

$$
= (\widehat{J} \otimes J) \sigma \text{ad}_{|N} (N) \sigma (\widehat{J} \otimes J)
$$

$$
= (\widehat{J} \otimes J) W (N \otimes 1_H) W^* (\widehat{J} \otimes J)
$$

$$
= W^* (R(N) \otimes 1_H) W
$$

which commutes with $\Gamma(M) = W^*(1_H \otimes M)W$.

Therefore,
$$
\underline{\mathfrak{a}}(y)
$$
 commutes with $1_{R_{|N}} \otimes_{\text{ad}_{|N}} (\widehat{\mathbb{G}} \ltimes_{\text{ad}_{|N}} N)'$.

(iii) Using [2.5.4](#page-12-0) applied to $(\widehat{\mathbb{G}}, \text{ad}|_N, \Gamma_{|N})$, we get that $\widehat{\beta}(x) = U_{\omega|_N}^{\text{ad}|_N} \alpha^{\circ}(x^{\circ}) (U_{\omega|_N}^{\text{ad}|_N})^*$, where we write $\alpha = \Gamma_{|N}$ and $\alpha^{\circ}(x^{\circ}) = (R \otimes \cdot^{\circ})\Gamma(x) \in M \otimes N^{\circ}$ to avoid confusion with Γ ^o. Then the commutation relations in (i) imply that

$$
V_4\Big(1_{H\ R_{|N}}\bigotimes_{\text{ad}_{|N}}\widehat{\beta}(x)\Big)V_4^*=V_4\Big(1_{H\ R_{|N}}\bigotimes_{\text{ad}_{|N}}U_{\omega_{|N}}^{\text{ad}_{|N}}\alpha^{\circ}(x^{\circ})(U_{\omega_{|N}}^{\text{ad}_{|N}})^*\Big)V_4^*
$$

is equal to $\zeta(R \otimes R)(\Gamma(x)) = \Gamma(R(x)) = V_4 \underline{\mathfrak{a}}(R(x)) V_4^*$.

(iv) Let us first fix notation. We denote by

 $\varsigma \circ \widehat{\mathrm{ad}_{|N}} : \widehat{\mathbb{G}} \ltimes_{\mathrm{ad}_{|N}} N \to (\widehat{\mathbb{G}} \ltimes_{\mathrm{ad}_{|N}} N) \otimes M$

the dual action followed by the flip. Standard arguments show that there exists a unitary

$$
V_5: (H \otimes H_{\omega_{|N}})_{\widehat{\beta}} \underset{\omega_{|N}}{\otimes} \operatorname{ad}_{|N}(H \otimes H_{\omega_{|N}}) \to H \otimes H_{\omega_{|N}} \otimes H
$$

such that

$$
V_5\Big(\Xi_{\widehat{\beta}}\underset{\omega_{|N}}{\otimes} \mathrm{ad}_{|N} U_{\omega_{|N}}^{\mathrm{ad}_{|N}}(\eta \otimes \Lambda_{\omega_{|N}}(x^*))\Big) = \widehat{\beta}(x) \Xi \otimes \eta
$$

for all $\Xi \in H \otimes H_{\omega|_N}$, $\eta \in H$, $x \in N$.

We need to prove commutativity of the following diagram,

M / .1/ M ˝ M ad^V ⁴ / ˝id .2/ M^R N ad .G^b ^Ë N / id ^M ˝ ^M id˝ / ad^V 4 .3/ ^M ˝ ^M ˝ ^M id˝ad^V 4 / ad^V 4 ˝id .4/ .M ˝ M /.ıR/ N ad .G^b ^Ë N / ad^V 4 id M^R N ad .G^b ^Ëad N / id&ead /M^R N .ad ˝1/..G^b ^Ëad N / ˝ M /idad^V 5 /M^R N ad .G^b ^Ëad N /b^ˇ N ad .G^b ^Ë N /; ()

where we dropped the subscripts from R and ad.

Commutativity of cells (1) and (2) is evident or easy.

Let us show that cell (3) commutes. By definition,

$$
(\varsigma \circ \widetilde{\mathrm{ad}_{|N}})(X) = \widehat{W}_{13}^{\mathrm{c}}(X \otimes 1)(\widehat{W}_{13}^{\mathrm{c}})^*
$$

for all $X \in \widehat{\mathbb{G}} \ltimes_{\text{ad}_{|N}} N$, where

$$
\widehat{W}^c = (\widehat{J} \otimes \widehat{J}) \widehat{W} (\widehat{J} \otimes \widehat{J}) \in \widehat{M}' \otimes M,
$$

and $\Gamma(x) = \widehat{W}^c(x \otimes 1)\widehat{W}^c$ for all $x \in M$. Therefore,

$$
(\operatorname{ad}_{V_4^*} \otimes \operatorname{id})((\operatorname{id} \otimes \Gamma)(Y)) = \operatorname{ad}_{(V_4^* \otimes 1_H)(1_H \otimes \widehat{W}^c)}(Y \otimes 1),\tag{6}
$$

$$
(\mathrm{id} *_{\varsigma} \circ \widetilde{\mathrm{ad}_{|N}})(\mathrm{ad}_{V_4^*}(Y)) = \mathrm{ad}_{(1_{R_{|N_{\omega|_N}} \otimes 1)}(R_{|N} \otimes 1)}(V_4^* \otimes 1_{H})} (Y \otimes 1) \tag{7}
$$

for all $Y \in M \otimes M$. To prove that the two expressions coincide, it suffices to show that the following diagram $(**)$ commutes:

$$
H_{R_{|N}} \underset{\omega_{|N}}{\otimes} \text{ad}_{|N} (H \otimes H_{\omega_{|N}}) \otimes H \xrightarrow{\begin{subarray}{l} 1_{R_{|N}} \underset{\omega_{|N}}{\otimes} (\text{ad}_{|N} \otimes 1) \hat{W}_{13}^c \\ \text{and} \\ H \otimes H \otimes H \end{subarray}} H_{R_{|N}} \underset{\omega_{|N}}{\otimes} \text{ad}_{|N} (H \otimes H_{\omega_{|N}}) \otimes H
$$
\n
$$
H \otimes H \otimes H \xrightarrow{\begin{subarray}{l} V_4 \otimes 1_H \\ W_2 \otimes H \end{subarray}} H \otimes H \otimes H \qquad \qquad \text{for } N \otimes N \otimes H \otimes H \qquad (*)
$$

But since the first legs of $U_{\omega|_N}^{\text{ad}|_N} \in \widehat{M} \otimes B(H_{\omega|_N})$ and $\widehat{W}^c \in \widehat{(M)'} \otimes M$ commute,

$$
(V_4 \otimes 1_H)(1_{R_{|N}} \underset{\omega_{|N}}{\otimes} (ad_{|N} \otimes 1) \widehat{W}_{13}^c)(\xi_{R_{|N}} \underset{\omega_{|N}}{\otimes} ad_{|N} U_{\omega_{|N}}^{ad_{|N}}(\eta \otimes x^{\circ} \Lambda_{\omega_{|N}}(1)) \otimes \vartheta)
$$

= $(V_4 \otimes 1_H)(\xi_{R_{|N}} \underset{\omega_{|N}}{\otimes} (ad_{|N} \otimes 1) (U_{\omega_{|N}}^{ad_{|N}})_{12} \widehat{W}_{13}^c(\eta \otimes x^{\circ} \Lambda_{\omega_{|N}}(1) \otimes \vartheta))$
= $R(x)\xi \otimes \widehat{W}^c(\eta \otimes \vartheta)$
= $\widehat{W}_{23}^c(V_4 \otimes 1_H)(\xi_{R_{|N}} \underset{\omega_{|N}}{\otimes} ad_{|N} U_{\omega_{|N}}^{ad_{|N}}(\eta \otimes x^{\circ} \Lambda_{\omega_{|N}}(1)) \otimes \vartheta).$

for all $\vartheta \in H$. Therefore, diagram (**) commutes, the expressions [\(6\)](#page-64-1) and [\(7\)](#page-64-2) coincide, and cell (3) commutes.

To see that cell (4) commutes as well, consider the following diagram:

$$
H_{R_{|N}} \underset{\omega_{|N}}{\otimes} \text{ad}_{|N} (H \otimes H_{\omega_{|N}})_{\widehat{\beta}} \underset{\omega_{|N}}{\otimes} \text{ad}_{|N} (H \otimes H_{\omega_{|N}}) \xrightarrow{\qquad 1 \otimes V_5} H_{R_{|N}} \underset{\omega_{|N}}{\otimes} \text{ad}_{|N} (H \otimes H_{\omega_{|N}}) \otimes H
$$
\n
$$
(H \otimes H)_{(\Gamma \circ R_{|N})} \underset{\omega_{|N}}{\otimes} \text{ad}_{|N} (H \otimes H_{\omega_{|N}}) \xrightarrow{\qquad 1 \otimes V_4} H \otimes H \otimes H
$$

We show that this diagram commutes, and then cell (4) commutes as well. We first compute

$$
(V_4 \otimes 1)(1 \otimes V_5)\Big(\xi_{R_{|N}} \underset{\omega_{|N}}{\otimes} \mathrm{ad}_{|N} U^{\mathrm{ad}_{|N}}_{\omega_{|N}}(\eta \otimes x^{\mathrm{o}} \Lambda_{\omega_{|N}}(1))\widehat{\beta}^{\otimes}_{\omega_{|N}} \mathrm{ad}_{|N} U^{\mathrm{ad}_{|N}}_{\omega_{|N}}(\vartheta \otimes y^{\mathrm{o}} \Lambda_{\omega_{|N}}(1))\Big).
$$

We use (iii) and find that this vector is equal to

$$
(V_4 \otimes 1) \Big(\xi R_{|N} \otimes_{\text{ad}_{|N}} \widehat{\beta}(y) U_{\omega_{|N}}^{\text{ad}_{|N}} (\eta \otimes x^{\circ} \Lambda_{\omega_{|N}}(1)) \otimes \vartheta \Big)
$$

and therefore

$$
\begin{split} (\Gamma(R(y)) \otimes 1)(V_5 \otimes 1) & \left(\xi_{R_{|N}} \underset{\omega|_N}{\otimes} \operatorname{ad}_{|N} U_{\omega|_N}^{\operatorname{ad}_{|N}}(\eta \otimes x^{\circ} \Lambda_{\omega|_N}(1)) \otimes \vartheta\right) \\ &= (\Gamma(R(y)) \otimes 1)(R(x)\xi \otimes \eta \otimes \vartheta). \end{split}
$$

On the other hand,

$$
(1 \otimes V_4)(V_4 \otimes 1) \cdot (\xi_{R_{|N}} \otimes_{\omega_{|N}} \omega_{\omega_{|N}} U_{\omega_{|N}}^{\mathrm{ad}_{|N}}(\eta \otimes x^{\circ} \Lambda_{\omega_{|N}(1)}) \widehat{\beta} \otimes_{\omega_{|N}} \omega_{\omega_{|N}} U_{\omega_{|N}}^{\mathrm{ad}_{|N}}(\vartheta \otimes y^{\circ} \Lambda_{\omega_{|N}}(1)))
$$

is equal to

$$
(1 \otimes V_4) \Big((R(x)\xi \otimes \eta)_{(\Gamma \circ R_{|N})} \underset{\omega_{|N}}{\otimes} \operatorname{ad}_{|N} U_{\omega_{|N}}^{\operatorname{ad}_{|N}} (\vartheta \otimes y^{\circ} \Lambda_{\omega}(1)) \Big) = \Gamma(R(y))(R(x)\xi \otimes \eta) \otimes \vartheta
$$

as well, which finishes the proof of (iv).

(v) Let $y \in M \cap R(N)'$ and assume $\underline{\mathfrak{a}}(y) = y_{R|N} \underset{N}{\otimes} \mathfrak{a}_{N}1$. Then by (i),

$$
\Gamma(y)V_4 = V_4\left(y_{R_{|N}}\underset{N}{\otimes} \mathrm{ad}_{|N}1\right) = (y \otimes 1_H)V_4
$$

and hence $\Gamma(y) = y \otimes 1_H$, whence y is a scalar and \underline{a} is ergodic.

The canonical operator-valued weight T_a is equal to $(id_{R_{|N}})$ $\underset{N}{*}$ ad_{|N} $\widehat{\Phi}$) \circ <u>a</u>, where $\widehat{\Phi} = \omega \circ \text{ad}^{-1} \circ T_{\widehat{\text{ad}}|N}$, and $T_{\widehat{\text{ad}}|N}$ is the left-invariant weight from $\widehat{\mathbb{G}} \ltimes_{\text{ad}|N} N$ to $\text{ad}(N)$, i.e. the operator-valued weight arising from the dual action on $\widehat{\mathbb{G}} \ltimes_{\text{ad}|N} N$, th $\Phi = \omega \circ \text{ad}^{-1} \circ T_{\widehat{\text{ad}_{|N}}}$, and $T_{\widehat{\text{ad}_{|N}}}$ is the left-invariant weight from $G \ltimes_{\text{ad}_{|N}} N$ to $\text{ad}(N)$,
i.e. the operator-valued weight arising from the dual action on $\widehat{G} \ltimes_{\text{ad}_{|N}} N$, that is, $(\omega \otimes id) \circ \widetilde{\mathfrak{ad}_{|N}}$. In fact, these operator-valued weights are conditional expectations.

We write $T_{\widetilde{\text{ad}}|N} = (\text{id} \otimes \omega) \circ \varsigma \widetilde{\text{ad}}|N$ and use commutativity of the cells (1) and (3) liagram (*), and find that for any $x \in M^+$, in diagram (*), and find that for any $x \in M^+$,

$$
(\mathrm{id}_{R_{|N}} \underset{\omega_{|N}}{\ast} \mathrm{ad}_{|N} T_{\widetilde{\mathrm{ad}}_{|N}}) \circ \underline{\mathfrak{a}}(x)
$$
\n
$$
= (\mathrm{id}_{R_{|N}} \underset{\omega_{|N}}{\ast} \mathrm{ad}_{|N} T_{\widetilde{\mathrm{ad}}_{|N}}) \circ \mathrm{ad}_{V_{4}^{*}} \circ \Gamma(x)
$$
\n
$$
= ((\mathrm{id}_{R_{|N}} \underset{\omega_{|N}}{\ast} \mathrm{ad}_{|N} \mathrm{id}) \otimes \omega) \circ (\mathrm{id}_{R_{|N}} \underset{\omega_{|N}}{\ast} \mathrm{ad}_{|N} \circ \widetilde{\mathrm{ad}}_{|N}) \circ \mathrm{ad}_{V_{4}^{*}} \circ \Gamma(x)
$$
\n
$$
= ((\mathrm{id}_{R_{|N}} \underset{\omega_{|N}}{\ast} \mathrm{ad}_{|N} \mathrm{id}) \otimes \omega) \circ (\mathrm{ad}_{V_{4}^{*}} \otimes \mathrm{id}) \circ \Gamma^{(2)}(x)
$$
\n
$$
= \mathrm{ad}_{V_{4}^{*}} \circ (\mathrm{id} \otimes \mathrm{id} \otimes \omega) \circ \Gamma^{(2)}(x)
$$
\n
$$
= \mathrm{ad}_{V_{4}^{*}} \circ (1_{M \otimes M} \cdot \omega)(x)
$$
\n
$$
= 1_{(M_{R_{|N}} \underset{\omega_{|N}}{\ast} \mathrm{ad}_{|N}} \mathbb{G} \times_{\mathrm{ad}_{|N}} \omega(x),
$$

where $\Gamma^{(2)} = (\Gamma \otimes id) \circ \Gamma$ and, for any von Neumann algebra P, $1_P \cdot \omega$ denotes the positive application $x \mapsto \omega(x)1_P$. Therefore, we get (v).

As α is integrable and ergodic, by [\[16,](#page-69-5) 3.8] or [8.1.2](#page-60-0), there exists an isometry G from $H \otimes H$ to $H_{R|_N} \otimes_{\omega|_N} \text{ad}_{|N} H_{\omega|_N}$ such that, for all $\zeta \in D(H_{R|N}, (\omega|_N)^{\circ}), x \in M$ and $e \in \widehat{\mathbb{G}} \ltimes_{\text{ad}|N} N$,

$$
\Big(1_{R_{|N}}\underset{N}{\otimes} \operatorname{ad}_{|N} J_{\widehat{\Phi}}eJ_{\widehat{\Phi}}\Big)G(x\Lambda_{\omega}(1)\otimes \zeta)=\underline{\mathfrak{a}}(x)\Big(\zeta_{R_{|N}}\underset{\omega_{|N}}{\otimes} \operatorname{ad}_{|N} J_{\widehat{\Phi}}\Lambda_{\widehat{\Phi}}(e)\Big).
$$

Let $y^* \in M$ and let us take $e = y^* \otimes 1 \in \widehat{\mathbb{G}} \ltimes_{\text{ad}_{|N}} N$. The relation $J_{\widehat{\Phi}} = U_{\text{ad}_{|N}}^{\text{ad}_{|N}} (I \otimes I_{\infty})$ implies $I \circ e I_{\infty} = U_{\text{ad}_{|N}}^{\text{ad}_{|N}} (y^{\circ} \otimes 1) (U_{\text{ad}_{|N}}^{\text{ad}_{|N}})^*$ and $U_{\omega_{|N}}^{\text{ad}|N}$ ($J \otimes J_{\omega_{|N}}$) implies $J_{\widehat{\Phi}}eJ_{\widehat{\Phi}}$ $= U_{\omega|_N}^{\text{ad}|_N} (y^{\text{o}} \otimes 1) (U_{\omega|_N}^{\text{ad}|_N})^*$ and

$$
U_{\omega_{|N}}^{\text{ad}_{|N}}(y^{\circ} \Lambda_{\omega}(1) \otimes \Lambda_{\omega_{|N}}(1)) = U_{\omega_{|N}}^{\text{ad}_{|N}}(Jy^* \Lambda_{\omega}(1) \otimes \Lambda_{\omega_{|N}}(1))
$$

= $U_{\omega_{|N}}^{\text{ad}_{|N}}(J \otimes J_{\omega_{|N}}) \Lambda_{\widehat{\Phi}}(e)$
= $J_{\widehat{\Phi}} \Lambda_{\widehat{\Phi}}(e)$.

We then get that for all $\xi \in H$, $z \in M$, the vector

$$
(1\;{\cal R}_{|N} \underset{N}{\otimes}_{\mathrm{ad}_{|N}}\;J_{\widehat{\Phi}} e J_{\widehat{\Phi}}) V_{4}^{*}(\xi\otimes z\Lambda_{\omega}(1))
$$

is equal to

$$
\begin{split}\n\left(1_{R_{|N}}\underset{N}{\otimes}\mathrm{ad}_{|N}U_{\omega|N}^{\mathrm{ad}|N}(y^{\circ}\otimes 1)(U_{\omega|N}^{\mathrm{ad}|N})^{*}\right) & \left(\xi_{R_{|N}}\underset{\omega|N}{\otimes}\mathrm{ad}_{|N}U_{\omega|N}^{\mathrm{ad}|N}(z\Lambda_{\omega}(1)\otimes\Lambda_{\omega|N}(1))\right) \\
&= \xi_{R_{|N}}\underset{\omega|N}{\otimes}\mathrm{ad}_{|N}U_{\omega|N}^{\mathrm{ad}|N}(y^{\circ}z\Lambda_{\omega}(1)\otimes\Lambda_{\omega|N}(1))) \\
&= V_{4}^{*}\left(\xi\otimes y^{\circ}z\Lambda_{\omega}(1)\right).\n\end{split}
$$

Therefore,

$$
\begin{aligned}\n\left(1_{R_{|N}}\underset{N}{\otimes} \operatorname{ad}_{|N} J_{\widehat{\Phi}} e J_{\widehat{\Phi}}\right) V_{4}^{*} W^{*} \sigma(x \Lambda_{\omega}(1) \otimes \zeta) \\
&= V_{4}^{*}(1 \otimes y^{\circ}) W^{*}(\zeta \otimes x \Lambda_{\omega}(1)) \\
&= V_{4}^{*}(1 \otimes y^{\circ}) \Gamma(x) (\zeta \otimes \Lambda_{\omega}(1)) \\
&= V_{4}^{*} \Gamma(x) (\zeta \otimes y^{\circ} \Lambda_{\omega}(1)) \\
&= \underline{\alpha}(x) V_{4}^{*} (\zeta \otimes y^{\circ} \Lambda_{\omega}(1)) \\
&= \underline{\alpha}(x) \left(\zeta_{R_{|N}} \underset{\omega_{|N}}{\otimes} \operatorname{ad}_{|N} U_{\omega_{|N}}^{\operatorname{ad}_{|N}}(y^{\circ} \Lambda_{\omega}(1) \otimes \Lambda_{\omega_{|N}}(1))\right) \\
&= \underline{\alpha}(x) \left(\zeta_{R_{|N}} \underset{\omega_{|N}}{\otimes} \operatorname{ad}_{|N} J_{\widehat{\Phi}} \Lambda_{\widehat{\Phi}}(e)\right).\n\end{aligned}
$$

 $(V_4^*W^*\sigma = (1_{R_{|N}} \underset{N}{\otimes} \text{ad}_{|N} J_{\widehat{\Phi}}e J_{\widehat{\Phi}})G$ for all Thus, we get that $(1_{R|N} \underset{N}{\otimes} \text{ad}_{|N} J_{\widehat{\Phi}} e J_{\widehat{\Phi}})$ $e = y^* \otimes 1$, and so $G = V_4^* W^* \sigma$. \Box

8.3 Theorem. Let $G = (M, \Gamma, \omega, \omega)$ be a (von Neumann version of a) compact *quantum group,* G¹ *a compact quantum subgroup, and* N *the quotient type co-ideal. Then the von Neumann algebra M, equipped with the right Galois action* $(R_{|N}, \underline{\mathfrak{a}})$ *of* $\widehat{G} \ltimes_{ad_{|N}} N$ *constructed in* [8.2](#page-61-0) *and the left Galois action* Γ_l *of* G_1 *defined in* [7.4,](#page-54-1) *is an imprimitivity bimodule which is a Morita equivalence between the compact quantum group* \mathbb{G}_1 *and the measured quantum groupoid* $\mathfrak{G}(N, \text{ad}|_N, \Gamma_{|N}, \omega_{|N})$ *.*

Proof. Let $x \in M$. Commutativity of the cells (1) and (2) in diagram (*) implies that

$$
\left(\Gamma_{R_{|N}} \ast_{\mathrm{ad}_{|N}} \mathrm{id}\right) \underline{\mathfrak{a}}(x) = (\mathrm{id} \otimes \underline{\mathfrak{a}}) \Gamma(x)
$$

and applying $(\pi \otimes id)$ $_{R|N} *_{ad|N}$ N id to this relation, we get:

$$
\left(\Gamma_l \; R_{|N} *_{\mathrm{ad}_{|N}} \mathrm{id}\right) \underline{\mathfrak{a}}(x) = (\mathrm{id} \otimes \underline{\mathfrak{a}}) \Gamma_l(x),
$$

which is the commutativity of the right Galois action $(R_{|N}, \underline{\mathfrak{a}})$ of $\widehat{\mathbb{G}} \ltimes_{ad_{|N}} N$ and the left Galois action Γ_l of \mathbb{G}_1 .

Moreover, we had got in [8.2](#page-61-0) that the canonical operator-valued weight T_a was the Haar state ω . Let ω_1 be the Haar state of G_1 . Then the canonical operator-valued weight T_{Γ_l} is equal to $(\omega_1 \circ \pi \otimes id)\Gamma$, which is, in fact, a conditional expectation from M into $M^{\Gamma_l} = R(N)$. Composed with the state $\omega_{|N} \circ R = \omega_{|R(N)}$, we get $(\omega_1 \circ \pi \otimes \omega)\Gamma = \omega_1(\pi(1))\omega = \omega$. Therefore, using [8.1.4,](#page-61-1) we get the result.

8.4 Corollary. The measured quantum groupoid $\widetilde{SU}_q(\overline{2}) \ltimes_{ad_{|S_q^2}} S_q^2$ constructed
in 7.4.5 is Morita equivalent to $\mathbb T$ *in [7.4.5](#page-57-0) is Morita equivalent to* T*.*

Proof. Apply [8.3](#page-67-0) to [7.4.5.](#page-57-0)

8.5 Corollary ([\[33\]](#page-70-6)). *Let* G *be a compact group and* G_1 *a compact subgroup of* G. *The the right action of* G *on* G/G_1 *defines a transformation groupoid* $(G/G_1) \n\supset G$ and this groupoid is Morita equivalent to G_1 .

Proof. The canonical surjective $*$ -homomorphism from $L^{\infty}(G)$ onto $L^{\infty}(G_1)$ gives to $L^{\infty}(G/G_1)$ a structure of a quotient type co-ideal. The restriction of the coproduct $\Gamma_{L^{\infty}(G)}$ to $L^{\infty}(G/G_1)$ is just the right action of G on G/G_1 , and the measured quantum groupoid $G \ltimes_{\Gamma} L^{\infty}(G/G_1)$ is the dual of the groupoid $(G/G_1) \curvearrowleft G$. Therefore, by [7.1,](#page-49-0) its dual is just the abelian von Neumann algebra $L^{\infty}((G/G_1) \cap G)$, and, by [8.3,](#page-67-0) we get the result. \Box

References

- [1] C. Anantharaman-Delaroche and J. Renault, *Amenable groupoids*. With a foreword by Georges Skandalis and Appendix B by E. Germain, Monographies de L'Enseignement Mathématique, 36, L'Enseignement Mathématique, Geneva, 2000. [Zbl 0960.43003](https://zbmath.org/?q=an:0960.43003) [MR 1799683](http://www.ams.org/mathscinet-getitem?mr=1799683)
- [2] S. Baaj and S. Vaes, Double crossed products of locally compact quantum groups, *J. Inst. Math. Jussieu*, **4** (2005), 135–173. [Zbl 1071.46040](https://zbmath.org/?q=an:1071.46040) [MR 2115071](http://www.ams.org/mathscinet-getitem?mr=2115071)
- [3] T. Brzeziński and G. Militaru, Bialgebroids, \times_A -bialgebras and duality, *J. algebra*, **251** (2002), 279–294. [Zbl 1003.16033](https://zbmath.org/?q=an:1003.16033) [MR 1900284](http://www.ams.org/mathscinet-getitem?mr=1900284)
- [4] S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés des C*-algèbres,*Ann. Sci. ENS*, 26 (1993), 425-488. [Zbl 0804.46078](https://zbmath.org/?q=an:0804.46078) [MR 1235438](http://www.ams.org/mathscinet-getitem?mr=1235438)
- [5] A. Connes, On the spatial theory of von Neumann algebras, *J. Funct. Analysis*, **35** (1980), 153–164. [Zbl 0443.46042](https://zbmath.org/?q=an:0443.46042) [MR 0561983](http://www.ams.org/mathscinet-getitem?mr=0561983)
- [6] A. Connes, *Noncommutative geometry*, Academic Press, 1994. [Zbl 0818.46076](https://zbmath.org/?q=an:0818.46076) [MR 1303779](http://www.ams.org/mathscinet-getitem?mr=1303779)
- [7] K. De Commer, *Galois coactions for algebraic and locally compact quantum groups*, Ph. D. thesis, Katholieke Universiteit Leuven, 2009.
- [8] K. De Commer, Galois objects and cocycle twisting for locally compact quantum groups, *J. Operator Theory*, **66** (2011), 59–106. [Zbl 1265.46104](https://zbmath.org/?q=an:1265.46104) [MR 2806547](http://www.ams.org/mathscinet-getitem?mr=2806547)
- [9] K. De Commer and M. Yamashita, Tannaka-Krein duality for compact quantum homogeneous spaces I. General theory, *Theory Appl. Categ.*, **28** (2013), no. 31, 1099–1138. [Zbl 1337.46045](https://zbmath.org/?q=an:1337.46045) [MR 3121622](http://www.ams.org/mathscinet-getitem?mr=3121622)
- [10] V. Drinfel'd, Quantum Groups, in *Proc. ICM Berkeley, Vol. 1, 2 (Berkeley, Calif., 1986)*, 798–820, Amer. Math. Soc., Providence, RI, 1987. [Zbl 0667.16003](https://zbmath.org/?q=an:0667.16003) [MR 0934283](http://www.ams.org/mathscinet-getitem?mr=0934283)

 \Box

- [11] M. Daws, P. Kasprzak, A. Skalski and P. Soltan, Closed quantum subgroups of locally compact quantum groups, *Advances in Mathematics*, **231** (2012), 3473–3501. [Zbl 1275.46057](https://zbmath.org/?q=an:1275.46057) [MR 2980506](http://www.ams.org/mathscinet-getitem?mr=2980506)
- [12] M. Enock, Produit croisé d'une algèbre de von Neumann par une algèbre de Kac, *J. Funct. Anal*, **26** (1977), 16–47. [Zbl 0366.46053](https://zbmath.org/?q=an:0366.46053) [MR 0473854](http://www.ams.org/mathscinet-getitem?mr=0473854)
- [13] M. Enock, Measured Quantum Groupoids in action, *Mémoires de la SMF* , **114** (2008), 1–150. [Zbl 1189.58002](https://zbmath.org/?q=an:1189.58002) [MR 2541012](http://www.ams.org/mathscinet-getitem?mr=2541012)
- [14] M. Enock, The Unitary Implementation of a Measured Quantum Groupoid action, *Ann. Math. Blaise Pascal*, **17** (2010), 247–316. [Zbl 1235.46066](https://zbmath.org/?q=an:1235.46066) [MR 2778919](http://www.ams.org/mathscinet-getitem?mr=2778919)
- [15] M. Enock, Measured quantum groupoids with a central basis, *J. Operator Theory*, **66** (2011), 101–156. [Zbl 1265.46106](https://zbmath.org/?q=an:1265.46106) [MR 2806546](http://www.ams.org/mathscinet-getitem?mr=2806546)
- [16] M. Enock, Morita equivalence of measured quantum groupoids. Application to deformation of measured quantum groupoids by 2-cocycles, *Banach Center Publications*, **98** (2012), 107–198. [Zbl 1269.46055](https://zbmath.org/?q=an:1269.46055) [MR 3059660](http://www.ams.org/mathscinet-getitem?mr=3059660)
- [17] M. Enock and J.-M. Vallin, Inclusions of von Neumann algebras and quantum groupoids, *J. Funct. Analysis*, **172** (2000), 249–300. [Zbl 0974.46055](https://zbmath.org/?q=an:0974.46055) [MR 1753177](http://www.ams.org/mathscinet-getitem?mr=1753177)
- [18] M. Enock and J.-M. Schwartz, Une dualité dans les algèbres de von Neumann, *Mémoires de la S.M.F*, **44** (1975), 1–144. [Zbl 0343.46044](https://zbmath.org/?q=an:0343.46044) [MR 0442710](http://www.ams.org/mathscinet-getitem?mr=0442710)
- [19] M. Enock and J.-M. Schwartz, Kac algebras and Duality of Locally Compact Groups, Springer-Verlag, Berlin, 1992. [Zbl 0805.22003](https://zbmath.org/?q=an:0805.22003) [MR 1215933](http://www.ams.org/mathscinet-getitem?mr=1215933)
- [20] A. Jacobs, *The quantum E*(2) *group*, Ph. D. thesis, Katholieke Universiteit Leuven, 2005.
- [21] J. Kustermans, Locally compact quantum groups in the universal setting, *Inter. journal of Mathematics*, **12** (2001), 289–338. [Zbl 1111.46311](https://zbmath.org/?q=an:1111.46311) [MR 1841517](http://www.ams.org/mathscinet-getitem?mr=1841517)
- [22] J. Kustermans and S. Vaes, Locally compact quantum groups, *Ann. Sci. ENS*, **33** (2000), 837–934. [Zbl 1034.46508](https://zbmath.org/?q=an:1034.46508) [MR 1832993](http://www.ams.org/mathscinet-getitem?mr=1832993)
- [23] J. Kustermans and S. Vaes, Locally compact quantum groups in the von Neumann algebraic setting, *Math. Scand.*, **92** (2003), 68–92. [Zbl 1034.46067](https://zbmath.org/?q=an:1034.46067) [MR 1951446](http://www.ams.org/mathscinet-getitem?mr=1951446)
- [24] F. Lesieur, Measured Quantum Groupoids, *Mémoires de la SMF*, **109** (2007), 1–122. [Zbl 1221.46003](https://zbmath.org/?q=an:1221.46003) [MR 2474165](http://www.ams.org/mathscinet-getitem?mr=2474165)
- [25] J.-H. Lu, Hopf algebroids and Quantum groupoids, *Int. J. Maths*, **7** (1996), 47–70. [Zbl 0884.17010](https://zbmath.org/?q=an:0884.17010) [MR 1369905](http://www.ams.org/mathscinet-getitem?mr=1369905)
- [26] S. Majid, *Foundations of quantum group theory*, Cambridge Univ. Press, Cambridge, 1995. [Zbl 0857.17009](https://zbmath.org/?q=an:0857.17009) [MR 1381692](http://www.ams.org/mathscinet-getitem?mr=1381692)

- [27] Y. Nakagami, Double group construction for compact Woronowicz algebras, *Int. J. Mathematics*, **7** (1996), 521–540. [Zbl 0876.46043](https://zbmath.org/?q=an:0876.46043) [MR 1408838](http://www.ams.org/mathscinet-getitem?mr=1408838)
- [28] R. Nest and C. Voigt, Equivariant Poincaré duality for quantum group actions, *J. Funct. Analysis*, **258** (2010), 1466–1503. [Zbl 1191.58003](https://zbmath.org/?q=an:1191.58003) [MR 2566309](http://www.ams.org/mathscinet-getitem?mr=2566309)
- [29] S. Neshveyev and M. Yamashita, Categorical duality for Yetter–Drinfeld algebras, *Doc. Math.*, **19** (2014), 1105–1139. [Zbl 1323.46043](https://zbmath.org/?q=an:1323.46043) [MR 3291643](http://www.ams.org/mathscinet-getitem?mr=3291643)
- [30] A. L. T. Paterson, *Groupoids, inverse semigroups, and their operator algebras*, Progress in Mathematics, 170, Birkhaüser, 1999. [Zbl 0913.22001](https://zbmath.org/?q=an:0913.22001) [MR 1724106](http://www.ams.org/mathscinet-getitem?mr=1724106)
- [31] P. Podleś, Quantum spheres, *Letters in Math. Physics*, **14** (1987), 193–202. [Zbl 0634.46054](https://zbmath.org/?q=an:0634.46054) [MR 0919322](http://www.ams.org/mathscinet-getitem?mr=0919322)
- [32] J. Renault, *A groupoid approach to* C^* -algebras, Lecture Notes in Mathematics, 793, Springer-Verlag, Berlin, 1980. [Zbl 0433.46049](https://zbmath.org/?q=an:0433.46049) [MR 0584266](http://www.ams.org/mathscinet-getitem?mr=0584266)
- [33] M. Rieffel, Strong Morita equivalence of certain transformation group C^* algebras, *Math. Annalen*, **222** (1976), 7–22. [Zbl 0328.22013](https://zbmath.org/?q=an:0328.22013) [MR 0419677](http://www.ams.org/mathscinet-getitem?mr=0419677)
- [34] J.-L. Sauvageot, Sur le produit tensoriel relatif d'espaces de Hilbert, *J. Operator Theory*, **9** (1983), 237–352. [Zbl 0517.46050](https://zbmath.org/?q=an:0517.46050) [MR 0703809](http://www.ams.org/mathscinet-getitem?mr=0703809)
- [35] Ş. Strătilă, *Modular theory in Operator Algebras*, Abacus Press, Tunbridge Wells, England, 1981. [Zbl 0504.46043](https://zbmath.org/?q=an:0504.46043) [MR 0696172](http://www.ams.org/mathscinet-getitem?mr=0696172)
- [36] Ş. Strătilă and L. Zsidó, *Lectures on von Neumann algebras*, Abacus Press, Tunbridge Wells, England, 1979. [Zbl 0391.46048](https://zbmath.org/?q=an:0391.46048) [MR 0526399](http://www.ams.org/mathscinet-getitem?mr=0526399)
- [37] M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, *Acta Math.*, **131** (1973), 249–310. [Zbl 0268.46058](https://zbmath.org/?q=an:0268.46058) [MR 0438149](http://www.ams.org/mathscinet-getitem?mr=0438149)
- [38] M. Takesaki, *Theory of Operator Algebras II*, Springer, Berlin, 2003. [Zbl 1059.46031](https://zbmath.org/?q=an:1059.46031) [MR 1943006](http://www.ams.org/mathscinet-getitem?mr=1943006)
- [39] Th. Timmermann, *An Invitation to Quantum Groups and Duality*, European Math. Soc., Zürich, 2008. [Zbl 1162.46001](https://zbmath.org/?q=an:1162.46001) [MR 2397671](http://www.ams.org/mathscinet-getitem?mr=2397671)
- [40] Th. Timmermann, *Quantum Transformation Groupoids in the Setting of Operator Algebras*, talk at the Conference on the occasion of the 70th birthday of S. L. Woronowicz, Warsaw, 2011.
- [41] S. Vaes, The unitary implementation of a locally compact Quantum Group action, *J. Funct. Analysis*, **180** (2001), 426–480. [Zbl 1011.46058](https://zbmath.org/?q=an:1011.46058) [MR 1814995](http://www.ams.org/mathscinet-getitem?mr=1814995)
- [42] S. Vaes and L. Vainerman, On low-dimensional locally compact quantum groups, in *Locally Compact Quantum Groups and Groupies. Proceeding of the meeting of Theoretical Physicists and Mathematicians (Strasbourg, Feb. 21– 23, 2002)*, L. Vainerman (ed.), 127–187, IRMA Lectures on Mathematics and Mathematical Physics, Wlater de Gruyter, Berlin, New York 2003. [Zbl 1178.17017](https://zbmath.org/?q=an:1178.17017) [MR 1976945](http://www.ams.org/mathscinet-getitem?mr=1976945)

1214 M. Enock and T. Timmermann

- [43] S. Vaes and L. Vainerman, Extensions of locally compact quantum groups and the bicrossed product construction, *Adv. in Math.*, **175** (2003), 1–101. [Zbl 1034.46068](https://zbmath.org/?q=an:1034.46068) [MR 1970242](http://www.ams.org/mathscinet-getitem?mr=1970242)
- [44] J.-M. Vallin, Bimodules de Hopf et Poids opératoriels de Haar, *J. Operator theory*, **35** (1996), 39–65. [Zbl 0849.22002](https://zbmath.org/?q=an:0849.22002) [MR 1389642](http://www.ams.org/mathscinet-getitem?mr=1389642)
- [45] J.-M. Vallin, Unitaire pseudo-multiplicatif associé à un groupoïde, applications à la moyennabilité, *J. Operator theory*, **44** (2000), 347–368. [Zbl 0986.22002](https://zbmath.org/?q=an:0986.22002) [MR 1794823](http://www.ams.org/mathscinet-getitem?mr=1794823)
- [46] A. Weil, L'intégration dans les groupes topologiques et ses applications, Act. Sc. Ind., 1145, Hermann, Paris 1953.
- [47] S. Woronowicz, Compact matrix pseudogroups, *Comm. Math. Phys.*, **111** (1987), 613–665. [Zbl 0627.58034](https://zbmath.org/?q=an:0627.58034) [MR 0901157](http://www.ams.org/mathscinet-getitem?mr=0901157)
- [48] S. Woronowicz, Twisted $SU(2)$ group. An example of a non-commutative differential calculus, *Pub. RIMS*, **23** (1987), 117–181. [Zbl 0676.46050](https://zbmath.org/?q=an:0676.46050) [MR 0890482](http://www.ams.org/mathscinet-getitem?mr=0890482)
- [49] S. Woronowicz, Quantum $E(2)$ group and its Pontryagin dual, *Lett. Math. Phys.*, **23** (1991), 251–263. [Zbl 0752.17017](https://zbmath.org/?q=an:0752.17017) [MR 1152695](http://www.ams.org/mathscinet-getitem?mr=1152695)
- [50] S. Woronowicz, Compact quantum groups, in *Symmétries quantiques (Les Houches, 1995)*, 845–884, North-Holland, Amsterdam, 1998. [Zbl 0997.46045](https://zbmath.org/?q=an:0997.46045) [MR 1616348](http://www.ams.org/mathscinet-getitem?mr=1616348)
- [51] S. Woronowicz, From multiplicative unitaries to Quantum Groups, *Int. J. Math.*, **7** (1996), 127–149. [Zbl 0876.46044](https://zbmath.org/?q=an:0876.46044) [MR 1369908](http://www.ams.org/mathscinet-getitem?mr=1369908)
- [52] T. Yamanouchi, Double group construction of quantum groups in the von Neumann algebra framework, *J. Math. Soc. Japan*, **52** (2000), 807–834. [Zbl 0998.46040](https://zbmath.org/?q=an:0998.46040) [MR 1774630](http://www.ams.org/mathscinet-getitem?mr=1774630)
- [53] T. Yamanouchi, Takesaki duality for weights on locally compact quantum group covariant systems, *J. Operator Theory*, **50** (2003), 53–66. [Zbl 1036.46056](https://zbmath.org/?q=an:1036.46056) [MR 2015018](http://www.ams.org/mathscinet-getitem?mr=2015018)
- [54] T. Yamanouchi, Canonical extension of actions of locally compact quantum groups, *J. Funct. Analysis*, **201** (2003), 522–560. [Zbl 1034.46070](https://zbmath.org/?q=an:1034.46070) [MR 1986698](http://www.ams.org/mathscinet-getitem?mr=1986698)

Received 24 February, 2015

M. Enock, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Unité Mixte Paris 6/Paris 7/CNRS de Recherche 7586, 4 place Jussieu, 75252 Paris Cedex, France E-mail: michel.enock@math.cnrs.fr

T. Timmermann, Westfälische Wilhems-Universität Münster, FB 10 Mathematik WWU Münster, Einsteinstr. 62, 48149 Münster, Germany E-mail: timmermt@uni-muenster.de