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Measured quantum transformation groupoids
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Abstract. In this article, when G is a locally compact quantum group, we associate, to a braided-
commutative G-Yetter—Drinfel’d algebra (N, a, @) equipped with a normal faithful semi-finite
weight verifying some appropriate condition (in particular if it is invariant with respect to a, or
to @), a structure of a measured quantum groupoid. The dual structure is then given by (N, @, a).
Examples are given, especially the situation of a quotient type co-ideal of a compact quantum
group. This construction generalizes the standard construction of a transformation groupoid.
Most of the results were announced by the second author in 2011, at a conference in Warsaw.
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1. Introduction

1.1. Locally compact quantum groups. The theory of locally compact quantum
groups, developed by J. Kustermans and S. Vaes [22,23], provides a comprehensive
framework for the study of quantum groups in the setting of C *-algebras and von
Neumann algebras. Itincludes a far reaching generalization of the classical Pontrjagin
duality of locally compact abelian groups, that covers all locally compact groups.
Namely, if G is a locally compact group, its dual G will be the von Neumann
algebra £(G) generated by the left regular representation Ag of G, equipped with a
coproduct I'g from £(G) on L(G) ® L(G) defined, for all s € G, by ' (Ag(s)) =
Ac(s) ® Ag(s), and with a normal semi-finite faithful weight, called the Plancherel
weight ¢g, associated via the Tomita—Takesaki construction, to the left Hilbert
algebra defined by the algebra XC(G) of continuous functions with compact support
(with convolution as product), this weight ¢g being left- and right-invariant with
respect to I'g [38, VII, 3].

This theory builds on many preceding works, by G. Kac, G. Kac and L. Vainerman,
the firstauthor and J.-M. Schwartz [18,19], S. Baaj and G. Skandalis [4], A. Van Daele,
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S. Woronowicz [47,50,51] and many others. See the monography written by the
second author for a survey of that theory [39], and the introduction of [19] for a
sketch of the historical background. It seems to have reached now a stable situation,
because it fits the needs of operator algebraists for many reasons:

First, the axioms of this theory are very simple and elegant: they can be given
in both C *-algebras and von Neumann algebras, and these two points of view are
equivalent, as A. Weil had shown it was the fact for groups (namely any measurable
group equipped with a left-invariant positive measure bears a topology which makes it
locally compact, and this measure is then the Haar measure [46]). In a von Neumann
setting, a locally compact quantum group is just a von Neumann algebra, equipped
with a co-associative coproduct, and two normal faithful semi-finite weights, one
left-invariant with respect to that coproduct, and one right-invariant. Then, many
other data are constructed, in particular a multiplicative unitary (as defined in [4])
which is manageable (as defined in [51]).

Second, all preceeding attemps [19, 50] appear as particular cases of locally
compact quantum groups; and many interesting examples were constructed [43,48,
49].

Third, many constructions of harmonic analysis, or concerning group actions on
C*-algebras and von Neumann algebras, were generalized up to locally compact
quantum groups [41].

Finally, many constructions made by algebraists at the level of Hopf *-algebras, or
multipliers Hopf x-algebras can be generalized for locally compact quantum groups.
This is the case, for instance, for Drinfel’d double of a quantum group [10], and for
Yetter—Drinfel’d algebras which were well-known in an algebraic approach in [26].

1.2. Measured Quantum Groupoids. In two articles [44,45], J.-M. Vallin has
introduced two notions (pseudo-multiplicative unitary, Hopf bimodule), in order to
generalize, to the groupoid case, the classical notions of multiplicative unitary [4]
and of a co-associative coproduct on a von Neumann algebra. Then, F. Lesieur [24],
starting from a Hopf bimodule, when there exist a left-invariant operator-valued
weight and a right-invariant operator-valued weight, mimicking in that wider setting
what was done in [22, 23], obtained a pseudo-multiplicative unitary, and called
“measured quantum groupoids” these objects. A new set of axioms had been given
in an appendix of [13]. In [13] and [14], most of the results given in [41] were
generalized up to measured quantum groupoids.

This theory, up to now, bears two defects:

First, it is only a theory in a von Neumann algebra setting. The second author
had made many attemps in order to provide a C *-algebra version of it (see [39] for a
survey); these attemps were fruitful, but not sufficient to complete a theory equivalent
to the von Neumann one.

Second, there is a lack of interesting examples. For instance, the transformation
groupoid (i.e. the groupoid given by a locally compact group right acting on a locally
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compact space), which is the first non-trivial example of a groupoid [32, 1.2.a], had
no quantum analog up to this article.

1.3. Measured quantum transformation groupoid. This article is devoted to the
construction of a family of examples of measured quantum groupoids. Most of the
results were announced in [40]. The key point, is, when looking at a transformation
groupoid given by a locally compact group G having a right action a on a locally
compact space X, to add the fact that the dual G is trivially right acting also
on L*°(X), and that the triple (L°°(X), a,id) is a G-Yetter—Drinfel’d algebra, and,
more precisely, a braided-commutative G-Yetter—Drinfel’d algebra.

The aim of this article is to generalize the construction of transformation
groupoids, using this remark which shows that this generalization is not to be found
for any action of a locally compact quantum group, but for a braided-commutative
G-Yetter—Drinfel’d algebra.

Then, for any locally compact quantum group G, looking at any braided-
commutative Yetter-Drinfel’d algebra (N, a,q), it is possible to put a structure
of Hopf bimodule on the crossed product G x, N, equipped with a left-invariant
operator-valued weight, and with a right-invariant operator-valued weight. In order
to get a measured quantum groupoid, one has to choose on N (which is the basis of
the measured quantum groupoid) a normal faithful semi-finite weight v that satisfies
some condition with respect to the action a; for example, v could be invariant with
respect to a. It appears then that the dual measured quantum groupoid is the structure
associated to the braided-commutative Yetter—Drinfel’d algebra (N, a, a).

In an algebraic framework, similar results were obtained in [25] and [3]. It is also
interesting to notice that, as for locally compact quantum groups, the framework of
measured quantum groupoids appears to be a good structure in which the algebraic
results can be generalized.

The article is organized as follows:

In Section 2 are recalled all the necessary results needed: namely locally compact
quantum groups (2.1), actions of locally compact quantum groups on a von Neumann
algebra (2.2), Drinfel’d double of a locally compact quantum group (2.3), Yetter—
Drinfel’d algebras (2.4), and braided-commutative Yetter—Drinfel’d algebras (2.5).

In Section 3, we study relatively invariant weights with respect to an action, and
then invariant weights for a Yetter—Drinfel’d algebra, and prove that such a weight
exists when the von Neumann algebra N is properly infinite.

In Section 4, we construct the Hopf—-von Neumann structure associated to a
braided-commutative G-Yetter—Drinfel’d algebra. The precise definition of such a
structure is given in 4.1 and 4.2. We construct also a co-inverse of this Hopf—von
Neumann structure.

In Section 5, we study the conditions to put on the weight v to construct a measured
quantum groupoid associated to a braided-commutative G-Yetter—Drinfel’d algebra.
These conditions hold, in particular, if the weight v is invariant with respect to a. The
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precise definition and properties of measured quantum groupoids are given in 5.1,
5.2,5.3.

In Section 6, we obtain the dual of this measured quantum groupoid, which is the
measured quantum groupoid obtained when permuting the actions a and @.

Finally, in Section 7, we give several examples of measured quantum groupoids
which can be constructed this way, and in Section 8, we study more carefully the
case of a quotient type co-ideal of a compact quantum group: in that situation, one
of the measured quantum groupoids constructed in 7.4.4 is Morita equivalent to the
quantum subgroup.

2. Preliminaries

2.1. Locally compact quantum groups. A quadruplet G = (M, T, ¢,v) is a
locally compact quantum group if:

(i) M is a von Neumann algebra,
(i) T' is an injective unital *-homomorphism from M into the von Neumann

tensor product M ® M, called a coproduct, satisfying (I' ®id)["' = (id® ')’
(the coproduct is called co-associative),

(iii) ¢ is a normal faithful semi-finite weight on M ™ which is left-invariant, i.e.,

(id ® @)I'(x) = ¢(x)1p forall x € M

(iv) v is a normal faithful semi-finite weight on M ™ which is right-invariant, i.e.,

(¥ @ id)T'(x) = ¥(x)1p forall x € sm,,t

In this definition (and in the following), ® means the von Neumann tensor product,
(id® @) (resp. (¥ ®id)) is an operator-valued weight from M @ M to M & C (resp.
C ® M). This is the definition of the von Neumann version of a locally compact
quantum group [23]. See also, of course [22].

We shall use the usual data H,, J,, A, of Tomita—Takesaki theory associated
to the weight ¢ (see [38, Chap. 6-9], [36, Chap. 10], [35, Chap. 1-2]), which, for
simplification, we write as H, J, A. We regard M as a von Neumann algebra on H,,
and identify the opposite von Neumann algebra M ° with the commutant M.

On the Hilbert tensor product H ® H, Kustermanns and Vaes constructed a
unitary W, called the fundamental unitary, which satisfies the pentagonal equation

Was Wiz = WiaWisWas,

where, we use, as usual, the leg-numbering notation. This unitary contains all
the data of G: M is the weak closure of the vector space (which is an algebra)
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{((dR w)(W) : w € B(H)«} and T is given by [22, 3.17]
I'x)=W*(1®x)W forallx € M,

and

(id ® @7, A, (1 92),80 ) (W) = (id ® 01,7y (72).0,(3:1) T (57)
forall x, y1, y2 in,. Itis then possible to construct an unital anti-*-automorphism R
of M which is involutive (R? = id), defined by

R[(d ® wg n)(W)] = ([d® wyy,ge)(W) forallé,ne H.
This map is a co-inverse (often called the unitary antipode), which means that
FT'oR=¢co(R®R)oT,

where ¢ is the flip of M ® M [22, 5.26]. It is straightforward to get that ¢ o R is a
right-invariant normal semi-finite faithful weight and, thanks to a unicity theorem, is
therefore proportional to 1. We shall always suppose that v = ¢ o R.

Associated to (M,T") is a dual locally compact quantum group (/]\Z, f),
where M is the weak closure of the vector space (which is an algebra)
{(w ®id)(W) : w € B(H)«}, and Tis given by

T(y)=oW(y® )W*s forall y € M.

Here, o denotes the flip of H ® H. Let
|wllp = sup{|o(x™)|: x € Ny, p(x*x) <1}, I, ={w € My : ||w|, < 00}

Then, it is possible to define a normal semi-finite faithful weight ¢ on M such that
(0 ® I(W)*(w ® id)(W)) = ||a)||2 [22, 8.13], and it is possible to prove that ¢
is left-invariant with respect to T [22 8. 15] Moreover, the apphcatlon y = Jy*J
is a unital anti-x- automorphlsm R of M which is 1nvolut1ve (R2 = id) and is a
co-inverse. Therefore go o R is rlght -invariant with respect to L.

Therefore G = (M T, 9, ¢ o R) is a locally compact quantum group, called
the dual of G. Its multlphcatlve unitary W is equal to cW*o. The bidual locally

compact quantum group ( G is equal to G. In particular, the construction of the dual

weight, when applied to G gives that, for any @ in M., (id ® w) (W) belongs to N,

if and only if @ belongs to Ia, and we have then ||A,((id ® w)(W™))|| = ||a)||$
The Hilbert space Ha is isomorphic to (and will be identified with) H. For

simplification, we write 7 for J? and A for Aa; we have, forall x € M, R(x) =
Tx*T [23, 2.1]. The operator W satisfies

(Kit ® Ait)W(Z_it ® A—it) =W
and (TR NHWIT R@J)=W
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Associated to (M, T") is a scaling group, which is a one-parameter group t;
of automorphisms of M, such that [23, 2.1], for all x €¢ M, t € R, we have
7,(x) = Al'x A~ satisfying Tot; = (1, ®@7:)T [22,5. 12] Rot, = 1oR[22,5.21],
andToo! = (1, ®a,‘p)F [22, 5.38] (and, therefore, "o 0, (a“’oR ®1_ )T [22,
5.17)).

The application S = R o 1_;, is called the antipode of G.

The modular groups of the weights ¢ and ¢ o R commute, which leads to the
definition of the scaling constant A € R and the modulus, which is a positive self-
adjoint operator § affiliated to M, such that (D¢ o R : Dg), = Ai**/2§it,

We have ¢ o 7, = A, and the canonical implementation of 7, is given by a
positive non- smgular operator P defined by P A, (x) = A! / 2A(p(r,(x)) Moreover,

the operator A is equal to the closure of PJ§~1J, and the operator 3 is equal to the
closure of P~'J8J87 A" ([23,2.1] and [54,2.5]).
We have JJ = A/4JJ [23,2.12]. The operator P is equal to P, the scaling

constant A is equal to A~1. Moreover, we have [54, 3.4]
W(K” ® ’A‘it)W* _ 5itzit ® Z”.
A representation of G on a Hilbert space K isaunitary U € M ® B(K), satisfying

(' ®id)(U) = U,3Uy3. It is well known that such a representation satisfies that, for
any £, n in K, the operator (id ® wg ,)(U) belongs to D(S) and that

S[(id ® wg,) (V)] = (id ® wg y)(U™)

(a proof for measured quantum groupoids can be found in [13, 5.10]).

Other locally compact quantum groups are G° = (M, ¢ol, po R, ¢) (the opposite
locally compact quantum group) and G* = (M',(j ® j)oT o j,po j,po Ro j)
(the commutant locally compact quantum group) where j(x) = Jyx*J, is the
canonical anti-*-isomorphism between M and M’ given by Tomita—Takesaki theory.
It is easy to get that G° = (@)C and G° = (@)0 [23,4.2]. We have M N M =
M'NM=MnM =M NM = C. The multiplicative unitary W° of G° is
equal to (7 ® ?) W(7 ® 7), and the multiplicative unitary W€ of G° is equal to
IHWUI RJ).

Moreover, the norm closure of the space {(id ® w)(W) : w € B(H)«} is a
C*-algebra denoted Cj(G), which is invariant under R, and, together with the
restrictions of I', ¢ and ¢ o R will give the reduced C *-algebraic locally compact
quantum group [22,23]. In [21] was defined also a universal version Cy (G), which is
equipped with a coproduct I';,. There exists a canonical surjective x-homomorphism
e from Cy(G) to Cy(G), such that (ng ® ng)l'y = I' o ng. Then, ¢ o 7¢
(resp. ¢ o R o mg) is a (non-faithful) weight on Cg(G) which is left-invariant (resp.
right-invariant).

If G is a locally compact group equipped with a left Haar measure ds, then, by
duality of the Banach algebra structure of L!(G, ds), it is possible to define a co-
associative coproduct I'g on L*°(G, ds) and to give to (L*°(G,ds),I'g. ds, ds™1)
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a structure of locally compact quantum group, called G again; any locally compact
quantum group whose underlying von Neumann algebra is abelian is of that
type. Then, its dual locally compact quantum group G is (L(G).TE. 06, 96)),
where £(G) is the von Neumann algebra generated by the left regular represen-
tation Ag of G on L2(G,ds), ['g is defined, for all s € G, by I'g(Ag(s)) =
Ac(s) ® Ag(s), and ¢g is defined, for any f in the algebra K(G) of continuous
functions with compact support, by 96 ([5 f(s)Ac(s)ds) = f(e), where e is the
neutral element of G. Any locally compact quantum group which is symmetric (i.e.
such that ¢ o I' = I') is of that type.

Let (A, T") be a compact quantum group, that is, A is a unital C *-algebra and T’
is a coassociative coproduct from A to A ®umin A satisfying the cancellation property,
i.e., (A®min DT (A) and (1@ min A)T(A) are dense in A ®min A [50]. Then, there exists
a left- and right-invariant state w on A, and we can always restrict to the case when w
is faithful. Moreover, " extends to a normal *-homomorphism from 7, (A4)” to the
(von Neumann) tensor product 7, (A4)” ® 7, (A)”, which we shall still denote by T,
for simplification, and w can be extended to a normal faithful state on 7, (A4)"”, we
shall still denote w for simplification. Then, (7, (A)”, T, @, ®) is a locally compact
quantum group, which we shall call the von Neumann version of (4, I'). Its dual is
called a discrete quantum group.

2.2. Left actions of a locally compact quantum group. A left action of a locally
compact quantum group G on a von Neumann algebra N is an injective unital
*-homomorphism a from N into the von Neumann tensor product M ® N such that

(id® a)a = (I' ® id)a,

where id means the identity on M or on N as well [41, 1.1].

We shall denote by N© the sub-algebra of N such that x € N¢ if and only if
a(x) = 1 ® x [41, .2]. If N® = C, the action a is called ergodic. The formula
Ty = (po R®id)a defines a normal faithful operator-valued weight from N onto N °.
We shall say that a is integrable if and only if this operator-valued weight is semi-
finite [41, 1.3, 1.4].

To any leftaction is associated [41, 2.1] a crossed product Gx o N = (a(N)UM ® C)”
on which G° acts canonically by a left action a, called the dual action [41, 2.2], as
follows:

aX) =W N1 X)(W°®1) forall X € Gxg N;
in particular, forany x € N and y € M,
i) =1®a). dy®)=T"1eL

Moreover, we have (G x, N)® = a(N) [41, 2.7].
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The operator-valued weight T; = (¢ ®id)od is semi-finite [41, 2.5], which allows,
for any normal faithful semi-finite weight v on N, to define a lifted or dual normal
faithful semi-finite weight ¥ on G x4 N by ¥ = v oa~! o T; [41, 3.1]. The Hilbert
space Hj is canonically isomorphic to (and will be identified with) the Hilbert tensor
product H ® H, [41, 3.4 and 3.10], and this isomorphism identifies, for x € I,
and y € 91;;, the vector A5((y ® 1)a(x)) with Aa(y) ® Ay (x). Moreover, for any
X € I, there exists a family of operators X; of the form X; = X;(y;,; ® Da(x;,;),
such that X; is weakly converging to X and A (X;) is converging to A;(X) [41,3.4
and 3.10].

Then

U = J5(J ® Jy)

is a unitary which belongs to M ® B(H,), satisfies (I' ® id)(U,}) = (U;})23(U)13
and implements a in the sense that a(x) = U (1 ® x)(U)* forall x € N [41, 3.6,
3.7 and 4.4]. The operator U} is called the canonical implementation of a on H,.
Moreover, we have, trivially, (U")* = (7 R Jy)Jy = (7 ® J,,)Uv“(/f ® Jy), and we
get that

J5A5((y ® Da(x)) = U (JAS(y) ® JyAy(x)).

If we take another normal faithful semi-finite weight ¥ on N, there exists a unitary u
from H, onto Hy which intertwines the standard representations 7, and my,, and we
have then Uy = (1®u)UM(1 ®u*) [41,4.1].

The application (¢ ® id)(id ® a) is a left action of G on B(H) ® N. Moreover, in
the proof of [41, 4.4], we find that (o ® id) U}igf)ﬁd@’a) (o0 ®id) = 1® U}, where o
is the flip from H ® H, to H,, ® H, or vice versa.

A right action of a locally compact quantum G on a von Neumann algebra N is
an injective unital *-homomorphism a from N into the von Neumann tensor product
N ® M such that

(e ®id)a = (id ® IN)a.

Then, ¢ais a left action of G° on N (where ¢ is the flip from N @ M onto M @ N).
In [54, 2.4] and [2, Appendix] is defined, for any normal faithful semi-finite
weight v on N and ¢ € R, the Radon—Nykodym derivative

(Dvoa: Dv), = AF(AT" @ A;™).
This unitary, denoted D; for simplification, belongs to M ® N and
(' ®id)(D;) = (id® a)(D;)(1 ® Dy),
([2, 10.3] or [53, 3.4] and [54, 3.7]). Moreover, it is straightorward to get

Divs =Di(t: ® Utv)(Ds) =Ds(rs ® Usv)(Dt)-
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2.3. Drinfel’d double of alocally compact quantum group. LetG=(M.I',¢.¢oR)
be alocally compact quantum group, G (M T @, Qo0 R) its dual, then it is possible
to construct [2,27,52] another locally compact quantum group

D@ =M®M.Tp.¢g®@PoR.¢®FoR),
called the Drinfel’d double of G, where I'p is defined by
Tp(x®y)=Ad(l ® oW @ 1)(I'(x) ® T'(y))

forall x e M, y € M. Here and throughout this paper, given a unitary U on a
Hilbert space ), we denote by Ad(U) the automorphism of B($)) defined as usual
by x > UxU™ for all x € B($)).

The co-inverse Rp of D(G) is given by
Rp(x ® y) = AdW*)(R(x) ® R(y).

This locally compact quantum group is always unimodular, which means that the
left-invariant weight is also right-invariant. In the sense of [42, 2.9], G and G are
closed quantum subgroups of IT(E), which means that the injection of M (resp. M)
into the underlying von Neumann algebra of its dual D/(E) preserve the coproduct.
(See 7.4.1 for more details about this definition.)

2.4. Yetter-Drinfel’d algebras. Let G = (M, T, ¢, ¢ o R) be a locally compact
quantum group and G = (M, T', @, @ o R) its dual. A G-Yetter—Drinfel’d algebra [28]
is a von Neumann algebra N with a left action a of G and a left action @ of G such
that

(id ® a)a(x) = Ad(cW ® 1)(id ® @)a(x) forall x € N.

One should remark that if (N, a, @) is a G-Yetter—Drinfel’d algebra, then (N, @, a)
is a G-Yetter—Drinfel’d algebra.

If B is a von Neumann sub-algebra of N such that a(B) C M ® B and a(B) C
M ® B , then, it is clear that the restriction a;p (resp. @|p) is a left action of G
(resp. @) on B, and that (B, q, B,E| B) is a Yetter—Drinfel’d algebra, which we shall
call a sub-G-Yetter-Drinfel’d algebra of (N, a,q).

24.1 Theorem ([28 3. 2]) Let G = M,T,¢,¢poR) bealocally compact quantum
group, G = (M 0,¢ o R) its dual, D(G) its Drinfel'd double and N a von
Neumann algebra equzpped with a left action a of G and a left action @ of G. Then
the following conditions are equivalent:

(i) (N, a,q) is a G-Yetter—Drinfel’d algebra;
(ii) (id ® @)a is a left action of D(G) on N.
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2.4.2 Theorem ([28,3.2]). Let G = (M. T, ¢, ¢ o R) be a locally compact quantum
group, G = (M T L0, Qo R) its dual, D(G) its Drinfeld’s double and ap a left
action of D(G) on a von Neumann algebra N. Then there exist a left action a of G
on N and a left action @ of G on N such that ap = (id ® @)a. These actions are
determined by the conditions

d®id®a)ap =Adl®@cW @ 1)(I' ®id ® id)ap,
([d®id®d)ap = ([d® T ®id)ap,

and (N, a,q) is a G-Yetter—Drinfel’d algebra.

2.4.3 Proposition. With the notation of 2.4.2, we have N*P = N® N N;‘\.

Proof. Asap = (id®a)a, we get that N NN @ C N2 Onthe other hand, using the

formula (id®id®a)ap = (1d®F ®id)ap, we get thatevery x € N *2 belongs to NCl
Moreover, using the formula (id ® id ® a)ap = Ad(1 @ oW ® 1)(I' ® id ® id)ap,
we then get that every x € N2 also belongs to N °. 0

2.4.4 Proposition. Let G = (M. T, ¢, ¢ o R) be a locally compact quantum group,
G = (M.T.9.¢ o R) its dual, (N,a,q) a G-Yetter-Drinfel'd algebra and v a
normal faithful semi-finite weight on N. Lett € R, D; = (Dvoa : Dv); and
D; = (Dvod: Dv),. Then

Ad(eW ® 1)[(id ® B)(D:)(1 ® D;)] = (id ® a)(D;)(1 ® D),

and if v and D denote the weights on G X, N and G X~ N, respectively, dual to v,
then

Ad(eW ® D[(d @ A)(D) (A" ® A)] = (id ® a)(D,)(A” ® AY).

Proof. As (t; @ T;)(W) = W for all 1 € R, the first equation is a straightforward
application of [2, 10.4]. The second one follows easily using the relations

(A" ® MY ool =(16 DA @ AT @ AHY(W*o @ 1)

= (1® D)(W*s @ 1)(A" @ A @ AlY)
and D; (A" @ Alf) = A, O
2.4.5. Basic example and De Commer’s construction [7] We can consider the
coproduct I'p of D(G) as a left action of D(G) onM®M. _Using 2.4.1, we get that

there exist a left actlon bof Gon M ® M and a left action b of Gon M & M such
that I'p = (id ® b)b. We easily obtain that forall X € M ® M,

b(X) = (I ®id)(X), b(X)=Ad(eW ® 1)[(id ® T)(X)].
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Therefore, b and/b\appear as the actions associated by [7, 6.5.2] to the closed quantum
subgroups G and G of IT(E)

De Commer’s construction allows us to make a link between this basic example
and any Yetter—Drinfel’d algebra; namely, if (N, a, @) is a Yetter—Drinfel’d algebra,

let us define ap = (id ® @)a the left action of D(G) on N, and, given a normal,

semi-finite faithful weight v on N, let Us>P, U, U} be the canonical implementation

of ap, a,d. In the sense of De Commer, a and @ are “restrictions” (to G and @) of ap
and, using [7, 6.5.3 and 6.5.4], we get that

(b ®id)(USP) = (UM 1a(UIP)234, (b ®id)(USP) = (U 1a(USP)234.
In particular,

(U)P)125(UyP)34s5 = (I'p ® id)(U,'P)
= (id ® b ®id)(b ® id)(U2P)
= (i[d®b @ id[(UM)14(USP)234] = (Uv“)ls(UE)zs(Uv“D)us,

whence U, P = (U)23(U)13. As this result depends on an unpublished part of [7],
we shall give a different proof of this formula in 3.8, using the techniques of invariant
weights, and then give several technical corollaries of this fact which will be used
throughout this paper.

2.5. Braided-commutativity of Yetter—Drinfel’d algebras.

2.5.1 Definition. Let G be a locally compact quantum group and a a left action of G
on a von Neumann algebra N. For any x € N, let us define

a‘(x°) = (j ® Ma(x) = Ad(J ® Jy)[a(x)"],
a°(x°) = (R ® %)a(x) = Ad(T ® J,)[a(x)*].

Then a® is a left action of G° on N°, and a° is a left action of G° on N°.

Let v be a normal semi-finite faithful weight on N and v° the normal semi-
finite faithful weight on N° defined by v°(x°) = v(x) for any x € N7T. Let
Dy = (Dvoa: Dv), D} = (Dv°oa®: Dv°),, which belongs to M ® N°, and
Df = D(v° o a®: Dv°);, which belongs to M’ ® N°. Then for all t € R,

D°, = Ad(J ® J,)[D;]. DS, = Ad(J ® J,)[D;].

2.5.2 Lemma. Let G be a locally compact quantum group, a a left action of G on
a von Neumann algebra N, v a normal faithful semi-finite weight on N, and U} the
standard implementation of a. Then:

(@) (Gxa N)' = UNG® xae NO)UN™
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(ii) (UM* is the standard implementation of the left action a® on N° with respect
to the opposite weight v°. In particular, (U}')* is a representation of G° and
a®(x®) = (UH*(1 ® x°)US forall x € N.

(iii) AXUS = USD?, (AT @ AlY) and Ad(A" @ AI)[(US*] = (D2,)*(U* D,
forallt € R.

Proof. (i) The relation U} = J; (/J\ ® Jy) and the definition of the crossed
products imply

UM G xgo NOYUH* = J5(J @ J)(TMT @ 11,) Ua®(N°)'(T & J,) 5
= Jg(@r X q N)Jf,
= (G x4 N).

(ii) Denote by u the weight on G° x40 N° dual to v°. By §3 in [41], there exists
a GNS-map A ,: N, — H ® H, determined by

AT yT @ 18,)0°(x)*) = TA(Y) ® Ju Ay () (M
forall y € ‘ﬁa and x € NM,, and the standard implementation U% of a® with respect
to v° is given by U = J,(J ® J,).

On the other hand, the GNS-map Ay for the dual weight v yields a GNS-map Ao
for the opposite 7° on the commutant J; (M x, N)J3, determined by
Ago(J5(y ® Da(x)J5) = JsAs((y ® Da(®)) = J5(A() ® Ay(x))  (2)
fory e ‘ﬁaandx eMN,.

Comparing (1) with (2) and using the relation U} = J; (.7 ®J,), we can conclude
that
A (U aUy) = (U Ago(a)

foralla € Nyo. Consequently, J, = (US)*J;US and US = JM(/J\(X)J,,) = (UH*.
(iii) Using 2.2, we have:
A%tha(Z—it ® A;it) — A%ZJE(T]\@ Jv)(z—il ® A;it)
= SAL(T @ J,)AT @ AL
= J;D: (A" @ AT @ J,)(A™" @ A7)
= J;(J ® J,)D?,
=U;'D?,

from which we get the first formula, and then the second one by taking the adjoints.
O
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2.5.3 Definition. Let G be a locally compact quantum group and (N, a,a) a
G-Yetter—Drinfel’d algebra. Since Ad(J J) = Ad(J J), the following two properties
are equivalent:

(i) a®(N°) and a°(N°) commute;

(ii) a°(N°) and a°(N°) commute;
We shall say that (N, a, @) is braided-commutative if these conditions are fulfilled.

It is clear that any sub-G-Yetter—Drinfel’d algebra of a braided-commutative
G-Yetter—Drinfel’d algebra is also braided-commutative.

2.5.4 Theorem ([40]). Let G be a locally compact quantum group, (N,a,q) a
G-Yetter-Drinfel’d algebra, v a normal faithful semi-finite weight on N, and U}? the
standard implementation of a. Define an injective anti-x-homomorphism B by

B(x) = UFa°(x°)(UH* = Ad(Uvu(UE)*)[l ® Jyx*Jy] forall x € N.

Then:
(1) B(N) commutes with a(N).
(ii) (N, a,q) is braided-commutative if and only if B(N) C G x4 N.

Proof. (i) The two formulas for 8(x) coincide by Lemma 2.5.2 (ii), and clearly,
B(N) C US(M & N°)(U* commutes with a(N) = US(1 ® N)(UZ)*.

(i) Using Lemma 2.5.2 (i), we see that B(N) = USa°(N°)(U)* liesin Gxq N
if and only if it commutes with (G x4 N)' = UZ(G° x4 N°)(US)*, that is, if
and only if a°(N°) commutes with TMT ® 1 g, and with a®(N°). But since
a(N°) C M ® N°, the first condition is always satisfied. O

2.5.5 Proposition. Let G be a locally compact quantum group and (N, a,q)
a braided-commutative G-Yetter—Drinfel’d algebra. Then N® C Z(N) and

N®C Z(N).

Proof. Using 2.5.1, we get that the algebra 1 ® (N *)° commutes with a°(N°), and,
therefore, that 1 ® N® commutes with a(N). As it commutes with B(H) ® 1, it
will commute with B(H) ® N, by [41, Th. 2.6]. This is the first result. Applying it
to the braided-commutative G-Yetter—Drinfel’d algebra (N, 1, a), we get the second
result. O

3. Invariant weights on Yetter-Drinfel’d algebras

In this chapter, we recall the definition (3.1) and basic properties (3.2), (3.3) of a
normal semi-finite faithful weight on a von Neumann algebra N, relatively invariant
with respect to a left action a of a locally compact quantum group G on N. Then,
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we study the case of an invariant weight on a Yetter-Drinfel’d algebra (N, a,a) (3.4),
(3.5), and we prove that if N is properly infinite, there exists such a weight (3.10).

3.1 Definition. Let G be a locally compact quantum group and a a left action of G
on a von Neumann algebra N. Let k be a positive invertible operator affiliated to M .
A normal faithful semi-finite weight v on N is said to be k-invariant under a if for
allx e NT,

(id ® v)a(x) = v(x)k.

Applying T to this formula, one gets I'(k) = k ® k, whence k'’ is a (one-
dimensional) representation of G for all # € R. So, kit belongs to the von Neumann
subalgebra /(M) of M generated by all unitaries ¥ of M such that I'(4) = u Q u.
As I(M) is globally invariant by 7, and R, using [2, 10.5], we get that it is a locally
compact quantum group, whose scaling group will be the restriction of 7, to I(M).
Since this locally compact quantum group is cocommutative, we therefore get that
the restriction of 7, to /(M) is trivial, from which we get that 7, (k) = k forall ¢ € R.

This property implies that P and k (resp. A and k) strongly commute. Therefore
their product kP (resp. kA) is closable, and its closure will be denoted again kP
(resp. kZ).

It is proved in [54, 4.1] that v is k-invariant if and only if, for all t € R, we have
(Dvoa:Dv), =k ® 1 (or, equivalently, A%’ = k7A@ A,

If k = 1, we shall say that v is invariant under a.

3.2 Proposition. Let G be a locally compact quantum group, a a left action of G on
a von Neumann algebra N, and vy and v, two k-invariant normal faithful semi-finite
weights on N. Then (Dvy : Dvy); belongsto N® forallt € R.

Proof. Fork = 1, thisresult had been proved in [14, 7.8] for right actions of measured
quantum groupoids. To get it for left actions of locally compact quantum groups is
just a translation. The generalization for any k& is left to the reader (see [41, 3.9]). [

3.3 Proposition. Let G be a locally compact quantum group, a a left action of G
on a von Neumann algebra N, and v a k-invariant faithful normal semi-finite weight
on N. Then:

(i) a(o(x)) = (Adk™" o1, ® 0))a(x) forall x € N andt € R;

(i) for all x € My, § € D(k/?) and n € H, (w172, ® id)a(x) belongs
to N, and the canonical implementation U} is given by

(0, ® 1) (U A (x) = Av[(0g-1/2¢ , ® id)a(x)].
Proof. (i) Since AlY = k™Al @ Al
a(0) (x)) = o/ (a(x)) = (k"A" ® Al ya(x)(ATk" @ A})

forallt € R.
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(ii) The first result of (ii) is proved (for k = §71) in [41, 2.4], and the general
case can be proved the same way. O

3.4 Theorem. Let G be a locally compact quantum group, (N, a,q) a G-Yetter—
Drinfel’d algebra, ap = (id ® @)a the action of D(G) introduced in 2.4.1, and v a
Jaithful normal semi-finite weight on N. Then the following conditions are equivalent:

(i) the weight v is invariant under a and invariant under .

(ii) the weight v is invariant under ap.

Proof. The fact that (i) implies (ii) is trivial. Suppose that (ii) holds. Choose a
state @ in M, and define v/ = (w @ v)a. As (id ® id ® v)ap = v, we get that
(d®v)a=v.

But

([d®id®v)ap = ([d®id® (v ® v)a)(id ® A)a
= ([dRid®w®v)(id® T ®id)(id ® d)a,

and, for any state @’ in ﬁ/[\*
([d® o ®v)ap = ({d® (0 ®w)oT ® v)ap = v.
Therefore, by linearity, we get that (id ® id ® v")ap = v. On the other hand,

(i(d®id®v)ap = Ad(W*0)(id ® id ® V') (id ® a)a
= Ad(W?0)(id ® (id ® v')a)a
= Ad(W*o)(id ® v)a

But, as (id®id®v')ap = v, we get that v = (id ® v)a, and, therefore, v is invariant
under @. So, we get that v/ = v, and v is invariant under a. O

3.5 Definition. Let G be a locally compact quantum group and (N,a,d) a
G-Yetter—Drinfel’d algebra. A normal faithful semi-finite weight on N will be called
Yetter—Drinfel’d invariant if it satisfies one of the equivalent conditions of 3.4.

3.6 Theorem. Let G be a locally compact quantum group, (N, a,a) a G-Yetter—
Drinfel’d algebra and ap = (id ® a)a the action of D(G) introduced in 2.4.1. If ap
is integrable, then there exists a Yetter—Drinfel d invariant normal faithful semi-finite
weight on N.

Proof. Clearby [41,2.5], using the fact that the locally compact quantum group D(G)
is unimodular. 0
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3.7 Corollary. Let G = (M, T, ¢,¥) be a locally compact quantum group
and (N,a,a) a G-Yetter-Drinfel’d algebra. Denote by H the Hilbert space
L*(M) = L2 (M). Then (B(H) ® N, (¢ ® id)(id ® a), (¢ ® id)(id ® @)) is a
G-Yetter-Drinfel’d algebra which has a normal semi-finite faithful Yetter—Drinfel'd
invariant weight.

Proof. Letap = (id®a)abe the action of D(G) introduced in 2.4.1. Using [41, 2.6],
we know that the action (¢ ® id)(id ® ap) is a left action of D(G) which is cocycle-
equivalent to the bidual action of ap. As this bidual action is integrable [41, 2.5], it
has a Yetter—Drinfel’d invariant semi-finite faithful weight by 3.6. Using [41, 2.6.3],
one gets that this weight is invariant as well under (¢ ® id)(id ® ap). O

3.8 Corollary. Let G be a locally compact quantum group, (N,a,a) a G-Yetter—

Drinfel’d algebra, v a normal semi-finite faithful weight on N, U} and U} the

canonical implementations of the actions a and a, and B the anti-*-homomorphism
introduced in 2.5.4. Then:

(i) the unitary implementations of the actions a, @ and ap are linked by the
relation =R
U = (U))23(U)13:

(i) (UH13(U)23 = Wi2(U)23(U) 13 Wiy,

(iii)) Ad(1 @ U (UNHIW ® 1] = (U713 Wiz = (U)W (U )23,

(iv) writing BT for the map x° — B(x), we have

Ad(W @ 1)[1 ® B(x)] = (id ® BT)(a°(x°)) forall x € N.

Proof. (i) Suppose first that there is a faithful semi-finite Yetter—Drinfel’d

invariant weight v’ for (N,a,a). Then, for &, &, 11, n2 in H, x € N,, we
get, using 3.3,

(C()El ®E2,m1@n2 ® ld)(Uua/D)Av/(x) = AV’[(wfl ®&2,m1®12 by ld)ClD(X)]
= Av[(wg, n, ® id)a(wg, », @ id)a(x)]
= (wg,,p, ®1d)(U) (wg, n, @ 1d)(Uy) Ay (x)m,

from which we get (i) for such a weight v’. Applying that result to 3.7, we get that
there exists a normal semi-finite faithful weight ¥ on B(H) ® N such that

Ufpg@id)(id@al)) _ (Ul(p§®id)(id®?))234(U‘;§®id)(id®a))134‘

Using now [41, 4.1], we get that for every normal semi-finite faithful weight on N,

®id)(id® ®id)(id®a) ®id)(i[d®
(0 S S R I

which by [41, 4.4] implies (i).
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(ii) From (i) we get that (U )23 (U;“\)l 3 is a representation of D(G). Therefore,

(U5 (U35 (UD25(U1s
— A1 ®oW ®1® DT ® T @ id)(UN)23(UM13)]
= Ad(1® oW & 1 ® D[(UM)as(US)35(UD)25(U)15]
= (UD)as Ad(1 @ oW ® 1 @ DI(U)35 (UM (U s,
from which we infer that
(U35 (U)as = Ad(1 ® oW ® 1 ® D)[(US)35(US)25].
After renumbering the legs, we obtain (ii).
(iii) The relation W% (U3, Wiz = (I’ ® id)(U)* = (U})15(Uy)55 implies
UN23W12(U)23 = Wi (U)1s.

Using (ii), we get

(UN13(U)23 = Wi2(U)23(U) 33 W5 (U )23

and, therefore,

WI*Z(U;‘)B = (Uvu)23(Uva);3W1>;(Uva)23(Uvu);3
which implies (iii).

(iv) Relation (iii) and 2.5.2 imply

Ad(W12)[B(x)23] = Ad(Wi2(U)23(U)23)[1 @ 1 ® x°]
= Ad((U)23(U})5:(UNT: W) [1 @ 1 ® x°)
= Ad((U,)23(U})33)[a° (x°)13]
= (id ® BT (a°(x")). [
3.8.1 Remark. We have quickly shown in 2.4.5 that (i) can also be deduced from a
particular case of [7, 6,5], which remains unpublished.
3.9 Lemma. Let N be a properly infinite von Neumann algebra.

(i) Let (ey)nen be a sequence of pairwise orthogonal projections in N, equivalent
to 1 and whose sum is 1, and let (v,)nen be a sequence of isometries in N
such that v,;v, = 1 and vyv,, = e, for alln € N, (and, therefore viv; = 0



1160 M. Enock and T. Timmermann

ifi # j). Let H be a separable Hilbert space and u; ; a set of matrix units
of B(H) acting on an orthonormal basis (§;);. For any x € N, let

O(x) =Y ui; ® vixv,
ij

Then ® is an isomorphism of N onto B(H)®N, and @71 (1®x) = Y, v;xv}.

(ii) Let a be a left action of a locally compact quantum group G = (M, T, ¢, V)
with separable predual My on N. Then the operator V=", (1 ® v,)a(v,)
exists, is a unitary in M @ N and a cocycle for a, that is, (I' ® id)(V) =
(1®V)(id®a)(V). Moreover, the actions (¢ ®id)(id ® a) and (id® ®)ad~!
are linked by the relation

(¢ ®id)(id ® a)(X) = Ad((id ® ®)(V))[(id ® ®)ad 1 (X)].

(iii) Let ¢ be a normal semi-finite faithful weight on N. Then for each n € N, the
weight ¢ on N defined by ¢pn(x) = ¢(vyxvy) for all x € NV is faithful,
normal and semi-finite, and ¢ o ®~' =", (wg, ® Pn).

(iv) Let Y be a normal semi-finite faithful weight on B(H) ® N. Then, with the
notations of (iii) (Y 0 @), (x) = ¥ (up.n @) forall x € NT. Ifyr is invariant
under (¢ ® id)(id ® a), then each (Y o @), is a normal semi-finite faithful
weight on N, invariant under q.

Proof. (i) This result is taken from [37, Th. 4.6].

(ii) This assertion is proved in [12, Th. IV.3] for right actions of Kac algebras,
but remains true for left actions of any locally compact quantum group.

(iii) Let (&;)ien be the orthonormal basis of H defined by the matrix units u; ;.
Then we can define an isometry / from L?(N)into HQL?*(N)by In =Y, £,Quin
foralln € L?(N). Itis then straightforward to get that, for all sequences (1, ) e such
that )", |na]*> < oo, we have I*(3",, £x ® nn) = Y, Untin. Therefore, I is unitary
and ®(x) = IxI* and for all x € N. So, forany { € L2(N), ws o @1 is equal to
the normal weight ), wg, ® w,x¢. Hence, ¢ o @~ is the weight Y, wg, ® ¢n.

Let now x € N such that ¢, (x*x) = 0. By definition, we get that xv; = 0 and
therefore x = 0. So, the weight ¢, is faithful. As ¢ is semi-finite, there exists in sm;;
an increasing family x; 1 1. Forall n € N, we get yx = (wg, ® id)®(xx) 1 1 and
dn (Vi) = (wg, ® ¢n)P(xx) < ¢ (xx) < oo, which gives that ¢, is semi-finite.

(iv) First,

(Y 0 @)y (x) = (Y 0 D) (v, xv,) = w(Zui,j ® v;‘v,,xv,’;vj) =Y (Upn ® X).
i,J
If ¢ is invariant under (¢ ® id)(id ® a), then it is clear that all (1 o ®),, are normal
semi-finite faithful weights on N, invariant under a. 0
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3.10 Corollary. Let G = (M, T, ¢, V) be a locally compact quantum group such that
the predual M is separable, and (N, a, @) a G-Yetter-Drinfel’d algebra, where N is
a properly infinite von Neumann algebra. Then this G-Yetter—Drinfel’d algebra has a
normal faithful semi-finite invariant weight.

Proof. Use the left action ap = (id ® @)a of D(G) on N and apply 3.7 and
3.9 (iv). O

4. The Hopf bimodule associated to a braided-commutative Yetter—Drinfel’d
algebra

In this chapter, we recall the definition of the relative tensor product of Hilbert
spaces, and of the fiber product of von Neumann algebras (4.1). Then, we recall the
definition of a Hopf bimodule (4.2) and a co-inverse. Starting then from a braided-
commutative Yetter-Drinfel’d algebra (N, a, @), and any normal semi-finite faithful
weight v on N, we first construct an isomorphism of the Hilbert spaces H @ H ® H,,
and (H ® H,) g®q (H ® H,) (4.3) and then show that the dual action a of G°

v
on the crossed product G x, N, modulo this isomorphism, can be interpreted as a
coproduct on G x4 N (4.4). Finally, we construct an involutive anti-*-automorphism
of G x, N which turns out to be a co-inverse (4.6).

4.1. Relative tensor products of Hilbert spaces and fiber products of von
Neumann algebras [5,17,34,38]. Let N be a von Neumann algebra, ¥ a normal
semi-finite faithful weight on N; we shall denote by Hy, 9y, ... the canonical
objects of the Tomita—Takesaki theory associated to the weight /.

Let o be a non-degenerate faithful representation of N on a Hilbert space . The
set of ¥-bounded elements of the left module o is

D(oH,¢) ={§ € H :3C < o0, a(E] = CllAy I, Yy € Ny .

For any & in D(oH, ¥), there exists a bounded operator R%V () from Hy, to H such
that

R¥V(E)Ay(y) = a(y)§ forally € Ny,

and this operator intertwines the actions of N. If £ and 7 are bounded vectors, we
define the operator product

EMay = R*V () *R*V (§),

which belongs to 7y (N)'. This last algebra will be identified with the opposite von
Neumann algebra N° using Tomita—Takesaki theory.
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If now B is anon-degenerate faithful anti-representation of N on a Hilbert space /C,
the relative tensor product K g ®, H is the completion of the algebraic tensor product

v
K © D(4H, V) by the scalar product defined by

(1 O mlé2 ©n2) = (BUnn2)e,yw)E1162)

forall§1,6 € Kand ny,m2 € D(eH.¥). If § € K and n € D(¢H, ¥), we denote
by & g®¢ 1 the image of § © ninto K g®y H. Writing p’,‘?’a(é) =£p®qn, Wwe geta
14 ¥ v

bounded linear operator from H into K g ®q H, which is equal to 1, ®y R*V (n).

%
Changing the weight v will give an isomorphic Hilbert space, but the
isomorphism will not exchange elementary tensors!

We shall denote by o, the relative flip, which is a unitary sending K g ® H onto
1 o®p K. defined by v
! Gw(%'ﬂ@a n)—rlaﬁﬁ%'
forall £ € D(Kg,y¥°)and n € D(QH, V).
If x € B(N) and y € a(N)', it is possible to define an operator x g®, y on
v

K g®q H, with natural values on the elementary tensors. As this operator does not
¥
depend upon the weight v, it will be denoted by x g®¢ y.
N

If P is a von Neumann algebra on H with (N) C P, and Q a von
Neumann algebra on K with B(N) C @, then we define the fiber product
Qﬂ*a P as{x 5®a y:x € Q',y € P’}. This von Neumann algebra can be defined

1ndependently of the Hilbert spaces on which P and Q are represented. If for

i = 1,2, o; is a faithful non-degenerate homomorphism from N into P;, and B;

is a faithful non-degenerate anti-homomorphism from N into Q;, and ® (resp. W)

a homomorphism from P; to P, (resp. from Q1 to Q5) such that ® o 7 = 3

(resp. W o B1 = B>), then, it is possible to define a homomorphism W g, ¥4, ® from
N

01 ,31*0‘1 Py into Q, ﬂ2*a2 P.
We define a relative ﬂ1p ¢y from L(K) lg*a L(H) onto L(H) o*g L(K) by
NO
snN(X) = oy X(oy)* for any X € L(K) ,3*0, E(’H) and any normal semi-finite
faithful weight ¢ on N.
Let now U be an isometry from a Hilbert space K; in a Hilbert space X», which
intertwines two anti-representations 81 and B, of N, and let V' be an isometry from

a Hilbert space H; in a Hilbert space H,, which intertwines two representations o
and ap of N. Then, it is possible to define, on linear combinations of elementary
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tensors, an isometry U g, ®, V which can be extended to the whole Hilbert space
K1 g, ®«, H1 with Valueswin K2 ,®a, H2. One can show that this isometry does
not degend upon the weight . It wwill be denoted by U g, ®q, V. If U and V are
unitaries, then U g, ®¢, V is an unitary and (U g, ®q, V)* N: U* g, Ra, V*.

N N N

In [7, Chap. 11], De Commer had shown that, if N is finite-dimensional, the
Hilbert space K g ®, H can be isometrically imbedded into the usual Hilbert tensor
%

product £ ® H.

4.2 Definitions. A quintuple (N, M,«, ,T") will be called a Hopf bimodule,
following [45], [17, 6.5], if N, M are von Neumann algebras, « is a faithful
non-degenerate representation of N into M, B is a faithful non-degenerate anti-
representation of N into M, with commuting ranges, and I' is an injective

*x-homomorphism from M into M g*q M such that, for all X in N,
N

@ T'(BX)) = 1R« B(X),
N
(i) I'(e(X)) = a(X) p®a 1,
N
(iii) T satisfies the co-associativity relation

(I" p*g i)' = (id g*o I')T
N N

This last formula makes sense, thanks to the two preceeding ones and 4.1. The von
Neumann algebra N will be called the basis of (N, M,«a, B,T).

In [7, Chap. 11], De Commer had shown that, if N is finite-dimensional, the
Hilbert space L2(M) p®q L*(M) can be isometrically imbedded into the usual

%
Hilbert tensor product L2 (M) ® L?(M) and the projection p on this closed subspace
belongs to M ® M. Moreover, the fiber product M g*, M can be then identified
N

with the reduced von Neumann algebra p(M ® M)p and we can consider I" as a
usual coproduct M +— M ® M, but with the condition I'(1) = p.

A co-inverse R for a Hopf bimodule (N, M, «, 8,T) is an involutive (R? = id)
anti-*-isomorphism of M satisfying R o « = B (and therefore R o 8 = «) and
'oR = gnoo(Rg*xq R) oI, where o is the flip from M o*g M onto M g*q M.

N ° N
A Hopf bimodule is called co-commutative if N is abelian, ﬂN: a,and" =c¢oTl.

For an example, suppose that G is a measured groupoid, with GO as its set of
units. We denote by r and s the range and source applications from G to G ©) given
by xx~! = r(x) and x~'x = s(x), and by G the set of composable elements, i.e.

G@ = {(x,y) €G*:s(x) =r(y)
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Let (A"), cg be a Haar system on G and v a measure on G ©) Let us denote by
the measure on G given by integrating A* by v,

= / A¥dv.

G

By definition, v is called quasi-invariant if p is equivalent to its image under the
inversion x > x~! of G (see [32], [6, I1.5], [30] and [1] for more details, precise
definitions and examples of groupoids).

In [52-54] and [45] was associated to a measured groupoid G, equipped with a
Haar system (A*),cg0 and a quasi-invariant measure v on GO a Hopf bimodule
with an abelian underlying von Neumann algebra (L*° (G ©) V), L*(G, n),rg,sg,g),
where rg(g) = g or and sg(g) = g o s for all g in L®(G©) and where T'g(f),
for f in L°°(G), is the function defined on G@ by (s,7) — f(st). Thus, I'g is an
involutive homomorphism from L°°(G) into L*°(G (2)), which can be identified with
L>®(G)s*x,L°(G).

It is straightforward to get that the inversion of the groupoid gives a co-inverse
for this Hopf bimodule structure.

4.3 Proposition ([40]). Let G be a locally compact quantum group, (N, a,d) a
braided-commutative G-Yetter-Drinfel’d algebra, B the injective anti-*-homomorphism
from N into G x4 N introduced in 2.5.4, and v a normal semi-finite faithful weight v
on N. Then the relative tensor product (H ® H,) g®q (H ® H,) can be canonically

v

identified with H ® H ® H,, as follows:

(i) For any n € H, p € M,, the vector U}(n ® J,A,(p)) belongs to
D(.(H ® Hy),v) and

Ra’v(Uva(n ® JVAV(p))) = Uuuln']vp-lm

where 1y is the application { — n ® ¢ from H, into H ® H,. There exists a
unitary Vy from (H ® H,) g®q (H ® Hy) onto H @ H ® H, such that
v

ViI(E p®a U (1 ® JuAy(p) =n® B(p™)E  forall E € H ® H,y,
%

and Vi(X p®. (1g ®1p,)) = (1g @ X)Vi forall X € B(N)', in particular,
N

for X € a(N). Morover, writing BY for the map x° — B(x), we have for all
x €N,

Vilg ® 1g,) g®a (1g ® x°)] = (id ® BT (a°(x°)) V5.
N

Vil(lg ® 1p,) p®a B(0)] = (d ® B @) V1.
N



Measured quantum transformation groupoids 1165

(ii) For any € € H, q € N,, the vector Uv“(U;a\)*(E ® A,(q)) belongs to
D(g(H ® H,),v°) and
RV (USWU)* (€ ® Av(@) = US (U leq.
There exists a unitary V5 from (H ® H,) g®q, (H ® H,) onto H ® H ® H,
%

such that

VaAUNUN (¢ ® Av(q) pRa El =E®a(@)E forallE € H ® Hy,
v

and Vo(1g ® 1) pQa X) = (lg @ X)Va forall X € a(N)', in particular,
Jor X € B(N). N
(i) VaVy = 012(U13(UN)23 (U3, = 01aWia(UD)as (U5 Wi,
Proof. (i) Foralln € I,
UglyJvpJuAp(n) = Ul (n ® JypJyAy(n))
= Ul(n®nJyAv(p)) = am)U; (n ® JyAv(p)),

which gives the proof of the first part of (i). Letnown’ € H, p' € N,,E' € HQ H,,.
Then

(U ® JyAu(PDIUS(n ® JvAv(P)))(c)l,u = vP*Jvl;;ln/JvP/Jv
= ) Jvp*p'Jy
and hence

(B B®a U“(U ® JvAv(p))|E, BRa U“(U' ® JvAv(pl)))
v v

= BUU (M @ JLA(P). U (n® JyAv(p)))a,)EIE)
= () (B(p*p)EIE)

which proves the existence of an isometry V) satisfying the above formula. As the
image of V; isdense in H ® H ® H,, we get that V; is unitary.

Next, letz € B(H), x € N. Then
(z®BO)VI[E p®a Uj(n ® JuAy(p))]
v

=zn® B(x)B(p*)E
=z ® B((x*p)*)E
=Vi[E p®q US(zn ® JyAy(x*p))]

= V[E p®a U;'(z ® x°)(n ® Jy Ay (p))].
v
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thatis, (z ® B(x)V1 = Vi(1 g®4 Ul (z ® x°)(U)*). In particular,
%

(d ® BN (@ (DW= Vi(1 p®, U’ (x))(U)*) = Vi(1 p®q (1 & X)),

(id® BNH@ NV = Vil p&q U () UH*) = Vi(l p®a (X))

(ii) We proceed as above. First, we have

U (U lgq Ty Av(n) = U (U (E ® JundyAv(q))

= B U (U))" (¢ ® Au(g)),
which gives the proof of the first part of (ii). Letnow &’ € H, ¢’ € M. Then
(U U E ® Av(q) p®a EIUJUNE ® Au(q) p&a E)
v v
= (a({U(UN*(E ® Av(@), U (U *(E" ® Av(g)))pe) EIET)
= (§1€")(a(¢"q)E|E")

which proves the existence of an isometry V, satisfying the above formula. Again,
as the image of V, isdense in H ® H ® H,,, we get (ii).

(iii) Applying (i), we get
VI[US(US)* (& ® Av(@)) p®a US(N ® JuAy(p))]
=18 B(p*)UL(US)* & ® Av(q))

=1 ® USUD*(E @ JupJuAs(9))
=1 UJUN)* (& ®qJuAv(p)),

and, applying (ii), we get
VU U™ (E ® Av(9) p®a U (1 ® JuAv(p))]
%

=§Qa(@)U;(n® JyAv(p))
=¢® Uua(ﬂ ®qJuAy(p)),

from which we easily get (15 ® UE(Uf)*)Vl =0 1m)(1g ®U)*)V,. Using
Corollary 3.8 (iii), we conclude

V2V1* = 012(Uva)13(Uva)23(Uva);3 = 012W12(Uua)23(Uva);3W12‘ -
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4.4 Theorem ([40]). Let G be a locally compact quantum group and (N, a,q) a
braided-commutative G-Yetter-Drinfel’d algebra. We use the notations of 4.3.

(i) For X € G xq N, let F(X) = V*a(X)Vi. Then this defines a normal
x-homomorphism I' from G xq N into (G xq N) g*q (G xq N). For all
N

X €N,
T(a(x) = a(x) s® (g ® 11,).
N

T(BX) = (g ®1g,) p®q B(x),
N

and forall y € M,
Ty ® 1) =10 e DN = T0) ® 1)V
(i) (N,G x4 N, aq, ,B,F) is a Hopf bimodule.
(iii) We have a(BT(x°)) = (id ® B7)a°(x?), where BT has been defined in 4.3.
Proof. (i) and (iii) Let x € N. Then 4.3 (iii) implies

T(a(x)) = Va@))Vi = V' (lg @ a())Vi = a(x) s« (1 ® 1a,),
N

in particular, F(a(x)) liesin (G xq N) g*q (G xoq N).
N
Next, by definition,
T(B() = AdVF W) @ B()] = AV WS5(U)23)[1 @ @ (x°)]
Since U € M ® B(H,) commutes with We e M ® M, this is equal to

Ad(VF(US)23) WL @ 3°(x°)] = Ad(V)[(id ® BT (@ (x°))]
= (g ®1n,) p®a B(x),
N

where we used 4.3 (i). From this calculation, one gets (iii) as well.
For y € M, we get by definition of T

T(y®1) = Ad(V)[a(y @ 1)]
= Ad(V)IT° () ® 1] = Ad(V; W)y ® 1 ® 1.
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By 4.3 (iii), V;* Wiz = V01 Wi2(US)23(US)%, and hence

Ty ®1) = Ad(VS 01 Wi (US) a3 (U8 ® 1 ® 1]
= Ad(V)T () ® D).

To see that T'(y ® 1) lies in (GxqN)p*q(GxgN),note that forany ¥ in (Gxq N)’,
N
Ad(VDIY p®o (1 ® 1g,)] = 1g @Y = Ad(V2)[(1n ® 1h,) p®q Y]
N N
by 4.3,and 1y ® ¥ commutes with

AdV)T(H D)) =T°(»)®1 and AdV)T (1) =T()® 1.

(ii) To get (ii), we must verify that T is co-associative. It is trivial to get that
([ pra )T (1)) = a(x) g0 (1 ® 111,) p®a (117 ® 111,)
N N N
= (id g*q I)I"(a(x))
N

forallx € N.

Next, let y € M and consider the following diagrams,

Mely — S MOM 1y, — 2"~ M ® (G g N) p#a (G xg N)
N
2 \ad(v;) ®id ady x) B;uid
(GKaN)B*a(G'XaN)_?v(G'XuN)ﬂ*a(G'XaN)ﬂ*a(GKaN)
N idﬁ*ul" N N
N

Mo, 2% F iy, @M — % (G xoN) gra (Cra N)® M
N
3 \id@ad(‘;l*) g xatd(zie)

(Gxg N) gxq (Gxqg N) o= (GxXqg N) gxq (G xq N) g#q (Gxgq N)
N Fﬂ:’ald N N

where V; denotes the composition of the unitary V; with the flip nQERL > £RT®n
(for &, nin H and ¢ in H))). The triangles commute by (i) and the squares commutes
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by definition of V; and V5. Next, consider the following diagram:

M®ly, -
MeM®ely, R R M®ly, ®M
d®c>3 (I'®id) W
et MeM®ly, @ M =
d®TI’ A]Ck@quy H, % I'®id
M ® (€ xq N) p#q (G xg N) (GxgN) p#a (Gxg N) @ M
N N

ad *qid idg*qad
(VZ*)BNG ﬂNﬂ ()

\ /

(Gxqg N)g*aq (Gxg N) gxq (Gxg N)
N N

The upper middle cell commutes by co-associativity of f the left and the right
triangle commute by (i), and the lower middle cell commutes because the following
diagram does,

V2p®aqid
(H® Hy) p®q (HQ H,) &4 (H® H,) N H®((H®H,)p®.(H ® H,))
v v v
14p®a 1 iid@ﬁ]
(H® H,) p®. (H® H,))® H Ty H®H®H,)®H
v

where both compositions are given by
U (U)* (€ ® Av(@)) p®a E p®a U (1 ® JuAv(p)) = € ® a(g)B(p™)E ® 1.
v v

Combining everything, we can conclude that

(T gxaid) o T(y ® 1) = (i g#a T) 0 T(y ® 1). O
N N

4.5 Proposition ([40]). Consider on the Hilbert space H ® H, the anti-linear
operator:

I = Uva(‘] ® Jv)Uva(Uvu)* = Uva(Uva)*(J ® JV)(Uva)* = Uuu(Uva)*‘f;Uva(Uva)*7

where D denotes the dual weight of v on the crossed product G X~ N.
(i) 1 is a bijective isometry and 1% = 1.
(ii) Ta(x)*I = B(x) and IB(x)*] = a(x) forall x € N.
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(i) I(y*® 1) = R(y) ® 1 forall y € M.
(iv) Ifo, denotes the flip from (H Q@ H,) g Q.(H®H,) to (HR®H,) .®g(HQH,),
v Ve

then
Vo= @1V «®g I)oy.
NO

Proof. (i) The relation U‘:‘; = ffj(J ® Jy) (2.2) shows that the three expressions
given for I coincide and that / is isometric, bijective, anti-linear, and equal to /™.

Moreover, the formula I = U (Ug")* U (U)™ shows that I’=1g®1p,.
(ii) We only need to prove the first equation. But by 2.5.4,
La(x)* I* = AdUSUD*( ® 1)U )a(x)’]
= AdUS U1 @ x°] = B().

(iii) Using 3.8(iii) and the fact that U} is a representation, we find that

(T @ DWia(J ® 1) = Ad(U)23(T @ J ® J,)(US)23(Us)35) Wil
= Ad(U)23(T ® T ® T)IUNT; Wil
= Ad((U})23)[(U)13W75]
= Wp.
For any £, nnin H, we can conclude that
I(J (g @ )W)*T @ DI = (05, 5, ® )W) @ DI
= (0, ®IDW) B 1,
from which (iii) follows by continuity.
(iv) By (ii),
Vil «®p Dou[UJ(U)* (€ ® Av(q)) p®a E]
ve v
= Vl[lE ,3®a Uva(']g: ® JvAv(q))]
v
=JE®B(GT)IE
=JE®Ia(g)E
= (J @ DU/ U)"E® Av(g) p®a E]. O
v
4.6 Theorem ([40]). Let G be a locally compact quantum group, (N, a,®) a braided-

commutative G-Yetter—Drinfel’d algebra and I the anti-linear surjective isometry
constructed in 4.5. Then:
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(i) For all z € G x4 N, let E(Z) = I1z*I. Then Eis an involutive anti-
*-isomorphism of G X, N, and R(a(x)) = ,B(x),/\R(,B(x)) = a(x) and
R(y®1m,) =R(y)® lg, forallx € Nandy € M.

(i) R is a co-inverse for the Hopf bimodule (N,G x4 N, a, ,B,F) constructed
in4.4.

Proof. (i) This is just a straightforward corollary of 4.5 (ii) and (iii).
(ii) We need to prove that

’f; = S‘Nu(’]\é ﬂ®a ’]\é)’f’l\é
N
Using (i), we find that for x € N,
sno(R g®q R)TR(a(x)) = sno(R p®q R)T (B(x))
N N
= cno(R Q¢ R)(1g @ 11,) pRq B(x))
N N

=a(x) p®a (1g ® 1g,)
N

coincides with f(a(x)). For y € M, we conclude from 4.4 and 4.5 (iv) that
svo(R p®a RITR(y ® 111,) = sno(R p®a RIT(R(Y) ® 117,)
N N
= sno(R p&®a R)[V3 (C(R() ® 11,) V2]
N

=V (R® RT(R(Y) ® 1u,)Vi
=T(y®lu,)

As G X, N is the von Neumann algebra generated by a(N) and M1 H,, this
finishes the proof of (ii). ]

4.7 Lemma. Let G be a locally compact quantum group, (N, a,q) a braided-com-

mutative G-Yetter—Drinfel’d algebra, T the injective *-homomarphisni from Gxq N

into (G xq N) g*q (G xq N) defined in 4.4, a the dual action of G on G x4 N,
N

and Vi as in 4.3. Denote by t the flip from (H @ H,)pg ® (19a)(H ® H ® H,) onto
%
H®[(H® H,) g®q (H ® H,)] given by
v

“(Ep®uenE ®E)) =§® E @ E
v

forall§ € H, & € D(g(H ® H,),1°), &' € D(4(H ® H,),v). Then:
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(i) (id p*q DT(X) = t*(id @ T)a(X)7 forall X € G xy N.
N
(i) VaT(X)V5 = (R ® R)a(R(X)).
Proof. (i) Forany x’ € M’, we have

Vil ®1m,) p®a (X' @ 1g) = (X' ® 1y ® 15,)V1.
N

As W° belongs to M ® M’, we infer

(g @V)l(ly ® lm,e%l@a(fw ®R1p))=W°® 1y ®1p)(lg ® Vi)t
3)

Therefore, we can conclude that forall X € G x, N,
(id p*q &)T(X)
N
= Ad([(1z ® 1H,;)/3%1®a(W"* ® lg,)T"(1g @ Vi)[lg ® a(X)]

= Ad(T* (g @ VYW* @ 1y @ 1g,))[1g ® a(X)]
= Ad(z*(1g ® V)T ® id)a(X)]

= Ad(t*(1g ® V{")[(id ® &)a(X)]

= r*(id ® T)a(X)z.

(ii) By 4.5 (iii),
Ad(R)[T(X)] = Ad((J ® I)Vi0ve(I g®4 1))[T(X)]
N

= Ad((J ® NV)[TR(X™)]
= (R® R)a(R(X)). 0

5. Measured quantum groupoid structure associated to a braided-commutative
Yetter-Drinfel’d algebra equipped with an appropriate weight

In this chapter, after recalling the definition of a measured quantum groupoid (5.1)
and describing the major data associated to a measured quantum groupoid (5.2), (5.3),
we try to construct, given a braided-commutative G-Yetter—Drinfel’d algebra (4, a, @)
and a normal semi-finite faithful weight on N, a structure of a measured quantum
groupoid, denoted (N, a, @, v), on the crossed product Gx 4 N or, more precisely, on
the Hopf bimodule constructed in 4.6. Without any hypothesis on the normal faithful
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semi-finite weight v on N, we construct a left-invariant operator-valued weight (5.4)
and a right-invariant one (5.4), and we give a necessary and sufficient condition for
a weight v on N to be relatively invariant with respect to these two operator-valued
weights (5.9). This condition is clearly satisfied (5.10) if v is k-invariant with respect
to a (for k affiliated to Z(M), or k = §71).

5.1. Definition of measured quantum groupoids [13,24]. A measured quantum
groupoid is an octuple & = (N, M, «, B, T, T, T’, v) such that [13, 3.8]:

(i) (N,M,«a, B,T) is a Hopf bimodule,

(ii) T is a left-invariant normal, semi-finite, faithful operator-valued weight

from M to a(N) (to be more precise, from M ™ to the extended positive elements of
a(N) (cf. [38, IX.4.12])), which means that, for any x € T, we have

(id g*o T)I'(x) = T(x) pQq 1.
v N

(iii) 7" is a right-invariant normal, semi-finite, faithful operator-valued weight
from M to B(NN), which means that, for any x € im;,, we have

(T’ p*o I)'(x) = 15R4y T'(x).
v N

(iv) v is normal semi-finite faithful weight on N, which is relatively invariant
with respect to T and 7’, which means that the modular automorphisms groups of
the weights ® = voa™' o T and ¥ = v o 7! o T’ commute. The weight ® will
be called left-invariant, and W right-invariant.

For example, let G be a measured groupoid equipped with a left Haar system
(A")yeg and a quasi-invariant measure v on G© . Let us use the notations
introduced in4.2. If f € L°(G, u)™, consider the function on G©@, u > fg fdx,
which belongs to L>(G©, v). The image of this function by the homomorphism rg
is the function on G, y +— fg fdA™™) | and the application which sends f to
this function can be considered as an operator-valued weight from L°°(G, i) to
rg(L®(G®, v)) which is normal, semi-finite and faithful. By definition of the
Haar system ()L“)ueg(o), it is left-invariant in the sense of (ii). We shall denote this
operator-valued weight from L%(G, i) to rg(L®(G®,v)) by Ty. If we write A,
for the image of A* under the inversion x +> x~! of the groupoid G, starting from
the application which sends f to the function on G© defined by u + /. g JdAu,
we define a normal semifinite faithful operator-valued weight from L°°(G, 1) to
sg(L®(G©  v)), which is right-invariant in the sense of (ii), and which we shall
denote by Tg(_l).

We then get that

(LG v), L®(G. ). 7. 56.Tg. Tg. Ty V., v)

is a measured quantum groupoid, which we shall denote again G.
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It can be proved [15] that any measured quantum groupoid, whose underlying
von Neumann algebra is abelian, is of that type.

5.2. Pseudo-multiplicative unitary. Let & = (N,M,«,8,I,T,T’,v) be an
octuple satisfying the axioms (i), (ii) (iii) of 5.1. We shall write H = Hg, J = Jo
and y(n) = Ja(n*)J foralln € N.

Then [24, 3.7.3 and 3.7.4], & can be equipped with a pseudo-multiplicative
unitary W which is a unitary from H g ®, H onto H o ®, H [13, 3.6] that intertwines

po

%

a, ¥, B in the following way: forall X € N,
W(a(X) g®a 1) = (1 4@y a (X)W,

N No
W1 p®a B(X)) = (1a®y BX)W,

N No
W(V(X) ,3®a 1) = (V(X) oc®y 1)W1

N No

W(l p®a y(X)) = (B(X) «®y DW.
N N°

Moreover, the operator W satisfies the pentagonal relation

(1 a®y W)(W ﬂ®a lH) = (W oe®y l)Uéig(W y®a 1)(1 ﬂ@a Uv")(l l3®0l W),
Neo N No N N N

where 02 ﬂ goes from (H a®y H) 5®a H to (H ﬂ®a H) a®y H,and 1 ﬂ®a Opo
goes from H ,3®a (H a®y H) to H ﬂ®a H y®a H The operators in this formula

are well deﬁned because of the 1ntertw1n1ng relatlons listed above.
Moreover, W, M and I" are related by the following results:

(i) M is the weakly closed linear space generated by all operators of the form
(id * wg n) (W), where § € D(,H,v) and n € D(H,,,v°) see [13, 3.8(vii)].

(i) T'(x) =W*(14®, x)W forall x € M [13,3.6].
NO
(iii) For any x, y1, y2 in 917 N e, we have [13, 3.6]

(id * W14 Ag(yF y2), A0 (x) (W) = (id p*a @)y Ap () Jore) T (X7).

If N is finite-dimensional, using the fact that the relative tensor products can be
identified with closed subspaces of the usual Hilbert tensor product (4.1), we get
that W can be considered as a partial isometry, which is multiplicative in the usual
sense (i.e. such that Wo3 Wi, = Wi, Wi3Was.)
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5.3. Other data associated to a measured quantum groupoid [13,24]. Suppose
that & = (N,M,«a, 8,1, T, T’,v) is a measured quantum groupoid in the sense
of 5.1. Let us write ® = v oa~! o T, which is a normal semi-finite faithful
left-invariant weight on M. Then:

(i) There exists an anti-x-automorphism R on M such that
R*=id, R(a(n)) = p(n)foralln € N, T oR =cno(R g*e R)T
N
and

R((id * wg »)(W)) = (id * wyp ye)(W) forall§ € D(oH,v),n € D(H,,v°).
This map R will be called the co-inverse.
(ii) There exists a one-parameter group t; of automorphisms of M such that

Rotm=70oR, w(am)=al ), wu(B®)=pA0;0),

r oa;I> = (Tt p*a af’)F
N

forall t € R and and n € N. This one-parameter group will be called the scaling
group.

(iii) The weight v is relatively invariant with respect to 7 and RTR. Moreover,
R and t; are still the co-inverse and the scaling group of this new measured quantum
groupoid, which we shall denote by

& =(N,M,o,B8,T,T, RTR, V),

and for simplification we shall assume now that 7/ = RTR and ¥ = ® o R.

(iv) There exists a one-parameter group y; of automorphisms of N such that

of (B@)) = By (n)
forallt € Rand n € N. Moreover, we get that v o y; = v.

(v) There exist a positive non-singular operator A affiliated to Z (M) and a positive
non-singular operator § affiliated with M such that

(Do R: DD), = AI*/2i1,

and therefore
(DD ocR: D), = A1,

The operator A will be called the scaling operator, and there exists a positive non-
singular operator ¢ affiliated to N such that A = a(q) = B(q). We have R(1) = A.
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The operator § will be called the modulus. We have R(§) = §~! and 7;(§) = §
forall# € R, and we can define a one-parameter group of unitaries §'’ BRq §'* which

acts naturally on elementary tensor products and satisfies for all 1 € R

F(Sit) — 8it ﬁ®a 8”.
N

(vi) We have (D® o 7; : D®), = A~ which proves that ;; 0 02 = 062 o 7
for all 5, ¢ in R and allows to define a one-parameter group of unitaries by

P Agp(x) = A?Ap(t,(x)) forall x € Ng.
Moreover, for any y in M, we get that
u(y) = PyP7".

As for the multiplicative unitary associated to a locally compact quantum group, one
can prove, using this operator P, a “managing property” for W, and we shall say that
the pseudo-multiplicative unitary W is manageable, with “managing operator” P.

As 14 oaf’ = ;I’ o 1y, we get that Jo PJp = P.

(vii) Itis possible to construct a dual measured quantum groupoid
=(N.M,a,y,T.T, 7/:', V)

where M s equal to the weakly closed linear space generated by all oper-
ators of the form (wg, * id)(W), for § € D(Hg,v°) and n € D(qH,v),

F(y) = gy, W(y ,3®a 1)W*g, for all y € M and the dual left operator-valued

weight T is constructed in a similar way as the dual left-invariant weight of a locally
compact quantum group. Namely, it is possible to construct a normal semi-finite
faithful weight ® on M such that, for all § € D(Hg,v°) and n € D(¢H,v) such
that wg , belongs to /o,

D((wg,y * id)(W)* (e, *id)(W)) = [|wg.l|%-

We can prove that 6,2 o @ = a0 0} for all # € R, which gives the existence of an
operator-valued weight 7', which appears then to be left-invariant.

Asthe formulay — Jy*J (y € ﬁ/l\) gives a co-inverse for the coproduct F we get
also a right-invariant operator-valued weight. Moreover, the pseudo-multiplicative
unitary W associated to & is W = oy, W*ao,, its managing operator Pis equal to P,
its scaling group is given by 7,(y) = P yP~ its scaling operator X is equal
to A™1, and its one-parameter group of unitaries 7, of N is equal to y_;.
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We write ® for v o @~} o ?, identify Hg with H, and write J = J&;. Then
R(x) = Jx*J forall x € M and W* = (7a®y J)W(7a®y J).
N° No

Moreover, we have & = &.

For example, let G be a measured groupoid as in 5.1. The dual a of the measured
quantum groupoid constructed in 5.1 (and denoted again by G) is

G = (L®(GP,v), L(G),rg, 16, Tg, Tg, Tg),

where L£(G) is the von Neumann algebra generated by the convolution algebra
associated to the groupoid G, the coproduct fg had been defined in [44, 3.3.2],
and the operator-valued weight ?g had been defined in [44, 3.3.4]. The underlying
Hopf bimodule is co-commutative.

5.4 Theorem ([40]). Let G be a locally compact quantum group and (N,a, @) a
braided-commutative G-Yetter-Drinfel’d algebra. Then the normal faithful semi-finite
operator-valued weight Ty from G x o A onto a(N) [41, 1.3 and 2.5] is left-invariant
with respect to the Hopf bimodule structure constructed in 4.6, and R o Tz o R is
right-invariant.

Proof. For all positive X in G x, N, we find, using 4.7 (i) and 4.6,
(id gq To)T(X) = (id p#q (@ 0 R ® id)@)T (X)
N N

= (@ o R ®id)(id ® T)a(X)

= T(Tx(X))

= T5(X) p®q 1z ® 11,)
N

which proves that Tj is left-invariant. Using 4.6, we get trivially that Ro T;o0 Risa
normal faithful semi-finite operator valued weight from G x4 N onto S(N), which
is right-invariant with respect to the coproduct T". O

In the situation above, we shall denote by &(N,a, a,v) the Hopf-bimodule
(N,GxyN,a, B, I') constructed in 4.4 (ii), equipped with its co-inverse R constructed
in 4.6 (ii), with the left-invariant operator-valued weight 75 and the right-invariant
operator-vlaued weight Ro T;o R, and with the normal semi-finite faithful weight v
on N.

5.5 Proposition. Let G be a locally compact quantum group, (N, a,d) a braided-
commutative G-Yetter—Drinfel'd algebra, v a normal semi-finite faithful weight on N,
Dy its Radon—Nikodym derivative with respect to a (2.2) and D; the Radon—Nikodym
derivative of the weight v° on NO with respect to the action a® (2.5.1). Forallt € IR

denote by T; the map Ad[U“(U“) A~U“(U“) | defined on B(H ® H,), where D
is the dual weight of v on the crossed product G x~N. Then:
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(i) Tr 0 B(x) = B(o} (x)) forallx € N and t € R.

(ii) forallt € R, T; commutes with Ad I, where I had been defined in 4.5, and,
therefore T;(a(x)) = a(o (x)) forall x € N and t € R.

(iii) Denote by BT the application x° — B(x) from N° into G xo N. Then

(id ®F)(Wi2) = AT (id ® BT)(D°,) Wia(id ® a)(Dy)AY
= (1 ® BN(D?,)(id ® T)(W)12(7— ® a)(Dy).

(iv) T (G xq N) = G x4 N and't; oR=RoT,.

Proof. (i) Forany x € N,
T(B()) = AdU UM - AdUS (U1 ® x°] - Ad(UR (U *)[AF]
= AU (U A)[1 @ x°]
= Ad(U(UH)[D:(1 ® 07 (x)°) D/]
= AU UHM @ 0/ (x)°]
= B(o; (x))
(ii) The first assertion follows from the fact that /3 and AL commute. To
v
conclude that 7; (a(x)) = a(o}’ (x)), use (i) and 4.5 (ii).
(iii) Let? € R. Then 2.5.2 (iii) and 2.1 imply
Ad((A ® 23U 13 Wia] = Ad((D1)23(A @ A ® A H[(U)}3Who]
= (D1)23(D2) 15U 13(D)13Wia(Di)3;s
= (D2)13(D1)23(UN 3(Dr)13Wi2(Dy)33.

But 2.4.4 gives that (id @A) (D)(Dy)as = le(Uva)13(5t)23(Uva 13(D1)13Wia,
whence

(D1)23(UNT3(D)13Wi2(Dy)33 = (U T3 Wi (1 @ B)(Dy).
We insert this relation above and find

Ad((A ® AU Wi2] = (D°)}3 - (UH7T3 Wiz - (id @ B)(Dy).
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We use this relation and Ad(1 ® U;“\(Uv“)*)[le] = (U713 Wiz (3.8), and find
(id ® 7:) (W12)
= Ad(ly ® US(US* MU U)W
= AR ® USUHMIAAR ® A9 (UN W)
= AR @ UAUD D)5y - (U Wz - (d @ D)(Dy)]
= A7 (id ® B1)(D°,)Wia(id ® a)(D,)AY.
(iv) For any w € M, the element T;[(w ® id)(W) ® 1] belongs to G x, N
because
Til(0 @id)(W) ® 1] = (0 o 7_,)[(id ® BN (D°,)Wi2(id ® a)(D;)].

By continuity, we get that 7;(y ® 1) belongs to G x, N for any y € M. Together
with (ii), we obtain that 7; (G x, N) € Gxq N, and, as 7 is a one-parameter group of
automorphisms, we have 7, (G x4 N) = G x4 N. By (ii), T; commutes with R. [

5.6 Lemma. Let G be a locally compact quantum group, (N,a,@) a braided-
commutative G-Yetter—Drinfel’d algebra, v a normal faithful semi-finite weight on N,
Dy its Radon—Nikodym derivative with respect to a (2.2) and v the dual weight of v
on the crossed product G X, N. Then forallt € R,

(id® 0))(Wi2) = 87" AT Win(id ® a)(D)AY = (id ® 5,)(W)12(1-¢ ® a)(Dy).
Proof. By [54,3.4] and 2.2,
(id ® o) (Wi2) = [Di(A" @ A3 Wia[(A™ ® A7) D} s
= 51_”Zfit(Dt)lezZilt(Dt*)n
= 87 AT Wia(T ® id)(Dy) (D] )23 Al
= §TTAT Wia(id ® a)(D;)AY. O

5.7 Proposition. Let G be a locally compact quantum group, (N, a,d) a braided-
commutative G-Yetter—Drinfel’d algebra, v a normal faithful semi-finite weight on N,
and V the dual weight of v on the crossed product G x4 N. Then the one-parameter
group T; of G Xy N constructed in 5.5 satisfies, for allt € R,

oo/ =(t; p*a0,)ol, T 00)°R = (o)°R g¥*aT—s)oTl.
N N

Proof. Letx € N and ¢ € R. Then 5.5 (ii) and 4.4 imply
T ool (a(x)) = T(a(0, (x))) = (0, (x)) p®aq 1
N

= (1 p*a 0.)(a(x) p®a 1) = @1 p*a 07)T (a(x)).
N N N
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Next, let V5 be the unitary from (H ® H,) p®. (H ® H,) onto H ® H ® H,
v
introduced in 4.3, and denote by ¥ the weight on G X4 N dual to v as before. Then
Va[US (U MU (U)* p®a ATV (6 ® a(q) B)
N
= V2[U(U)* A (E ® Au(9)) p®a AY E]
N
= VU (U De(A"E ® Av(0}' (@))) p®a AY E]
N
= (id ® a)(D,)(A"E ® a(0} () AL E)
= (id® a)(D)(A" ® A)(E ® a(g) E).
Letnow y € M. Then by 4.4,
Ad)F(y® D] =T() ® 1 = Ado12 W)y ® 1].

Using these two relations and 2.4.4, we find

Ad(V)[(7 pa o)y ®1))]

= Ad((id ® a)(Dy)(A" @ AL)o1 W)y ® 1 ® 1]
= Ad(012W12(id @ D)(D) (A © M)y @ 1 @ 1]

= Ad(012W12(U;)23(D1)13)[0:(y) ® 1 @ 1].
By 4.3 (iii), 012 le(U;“\)m = Vo V" Wi2(U})23 and hence
Ad(VD[(F g*o o)) (T (y ® 1)]
N

= Ad(W12(U)23(Dy)13)[0:(y) ® 1 ® 1]
= Ad(Wi2(id ® a)(D;)(D;)23)[0:(y) @ 1 ® 1]
= Ad((D)23W12)[0:(y) ® 1 ® 1]

= Ad((D)23)[T° G+ () ® 11.
On the other hand,
Ad(V)IT (0] (y ® )] = d(o} (y ® 1))

= Ad(W9)")o} (v ® D]
= Ad(W$,)*(D1)23)[6:(») ® 1]
= Ad((D1)23 (W)} [6:(y) ® 1]
= Ad((D1)23)[(T° G (y)) ® D],

showing that (7 g*q 07 )(D(y ® 1)) = (67 (y ® 1)).

N
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Since G x, N is generated by a(N) and M® 1, the first of the two formulas
follows. Using 5.5 (iv), the second one is easy to prove from the first one. O

5.8 Corollary. Let G be a locally compact quantum group, (N,a,q) a braided-
commutative G-Yetter—Drinfel'd algebra, v a normal faithful semi-finite weight on N,
and v the dual weight of v on the crossed product G <, N. Then there exists a
one-parameter group y; of automorphisms of N such that af (B(x)) = B(y: (x)).

Proof. Using 5.7, we get that forall x € N and ¢ € R,
T(0] (B(x))) = @1pxa0) )T (B(x)) = Frp%a0;)(15RaB(x)) = 15®40/ (B(x))
N N N N

from which we get the result by [24, 4.0.9]. 0

5.9 Theorem. Let G be a locally compact quantum group, (N, a,q) a braided-
commutative G-Yetter—Drinfel’d algebra, v a normal faithful semi-finite weight on N,
D; the Radon—Nikodym derivative of v with respect to the action a, V the dual weight
of v on the crossed product G x4 N, T; the one parameter group of automorphisms of
G x4 N constructed in 5.5, and y; the one parameter group of automorphisms of N
constructed in 5.8. Let ®; be the automorphism of M defined by ®,(x) = t;0Ad§ !
(let us remark that ®; is an automorphism of G). Then the following conditions are
equivalent:
1) (P ® y¢)(Ds) = Dg foralls, t in R.
(ii) of and Ts commute for all s, t in R.
(iii) o and oP°R

4% commute for all s, t in R.

(iv) B(N, a,a,v) is a measured quantum groupoid.
If these conditions hold, then T; is the scaling group of (N, a,a,v), and y; is the

one parameter group of automorphisms of N defined in 5.3 (iv).

Proof. The restrictions of 0,‘7 and Tj on a(N) always commute because at‘j o
Ts(a(x)) = a(o) o0} (x)) and Ts 0 0} (a(x)) = a(oy o0/ (x)) for all x € N
by 5.5 (ii).
Using now 5.6, 5.5 (iii) and 2.2, we get that
(id ® T50,) (Wh2)
= 57 AT (id ® To) (Wi2) (id ® Tea) (D) Al
= 7 AT AT (id ® BT)(D2,) Wia(id ® a)(Ds) Al (id ® a0y ) (D) AY
= §7ATCT(d @ BT)(D,)Win(id ® a)(Ds (x5 ® 0)) (D) AL
= ST AT (1d @ BT)(D2,) Wia(id ® a)(Dssr) ACH)
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and, on the other hand,

(id ® 0/Ts) (Wh2)
= ATH(d® U?ﬂT)(Dis)(id ® 0”)(Wi2)(id ® g;"va)(ps)gils
= ATP(d @ BTy)) (D)8 AT Wia(id ® ) (D) AY (id ® 0 a)(Ds) AYY
= AT 501D, @ By (DO,)Wia(id ® a)(Dy(t; ® 0)(Dy)) AL
= ATCH51 (@, @ By (DO,)Wia(id ® a)(Dyry) AT,

Consequently, (id®0l‘~"%'s)(W12) = (id®'f's0t‘7)(W12) ifand only if (®; ® y¢)(Ds) = Dy,
which gives the equivalence of (i) and (ii).
Let us suppose (ii). Using 5.7, we get

F(UfUS%R) = (?tas‘~’°R B*a af?_s) oT
N

and T(07°Ro)) = (07°R%; pxaT-s0”) o T,
N

and by the commutation of 7 with o” and with 6”°&, we get (iii).

By definition of a measured quantum groupoid, we have the equivalence of (iii)
and (iv). The fact that (iv) implies (ii) is given by 5.3 (vi). ]

5.10 Corollary. Let G be a locally compact quantum group and (N, a,d) a braided-
commutative G-Yetter—-Drinfel’d algebra such that one of the following conditions
holds:

(i) N is properly infinite, or
(ii) a is integrable, or
(iii) G is (the von Neumann version of) a compact quantum group.
Then there exists a normal semi-finite faithful weight v on N such that &(N, a,a, v)

is a measured quantum groupoid.

Proof. We consider the individual cases:

(i) By 3.10, there exists a normal semi-finite faithful weight v on N, invariant
under a; therefore its Radon—Nikodym derivative D; = 1, and we get the result
by 5.9.

(i) In that case, there exists a weight v on N which is § ~!-invariant with respect
to a; so we can apply again 5.9 to get the result.

(iii) We are here in a particular case of (ii), but with § = 1. ]
5.11 Proposition. Let G be a locally compact quantum group, (N, a,d) a braided-

commutative G-Yetter—Drinfel'd algebra, v a normal faithful semi-finite weight on N,
k-invariant with respect to a (with k affiliated to Z(M)). Then:
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(i) the scaling group T; of (N, a,a,v) is given by
T(X) = (P @ AHX(PT' ® A)Y)
forall X € Gxgq N;
(ii) the scaling operator’)\c is equal to AL, where A is the scaling constant of G,
and the managing operator P is equalto P ® A,,.
Proof. (i) The scaling group 7; satisfies 7;(a(x)) = a(o/(x)) for all x € N
(5.5 (ii)). Using now 3.3 (i), we get that 7; (a(x)) = (1; ® 0;)(a(x)).
On the other hand, using 5.5 (iii) and 3.1, we get that

(d®T:)(Wi2) = AT R(k™) Wiak ' A = (1, @id)(W)®1 = ([d®T,)(W)®1.

So, forall y € M, we have T; (y ® 1) =7;(y) ® 1, from which we get (i).

(ii) The scaling operator is equal to A~! because

(@ (a(x*)(y*y ® 1, )a(x))) = dla(o; (x*) (@ (y*y) ® 1g,)a(o; (x))]
= (0, (x* X))@ (y*y))
= A" )" y)
= A7 0 (a(x")(y*y ® 1g,)a(x)),

and P is equal to P ® A, because

As@((y ® 1g,)a(x)) = As[(T () ® 1m,)a(o] (x))]
= Aa(?t (y)) ® Av(atv (x))
= AP ® A (AG(y) ® Ay(x)). O

6. Duality

In this chapter, we prove (6.5) that, if &(N, a,d, v) is a measured quantum groupoid,
its dual is isomorphic to (N, a, a, v), which is therefore also a measured quantum
groupoid.

6.1 Lemma. Let G be a locally compact quantum group, (N,a,@) a braided-
commutative G-Yetter—Drinfel’'d algebra and v a normal faithful semi-finite weight
on N, and let (N, a,q,v) be the associated Hopf-bimodule, equipped with a co-
inverse, a left-invariant operator-valued weight and a right-invariant valued weight
by 4.4 (ii), 4.6 and 5.4. Then:

(i) The anti-representation y of N is given by y(x*) = 1g ® J,xJ, for all
x €N.
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(ii) Forany§ € H, p € N,, the vector § ® A, (p) belongsto D((H @ H,)y,v°),
and R (£ ® Ay (p)) = lg p, where l¢ is the linear application from H, to
H ® H, givenby le{ =& ® forall§ € H,,.
(iii) There exists a unitary V3 from (H @ H,) «®, (H ® H,) onto H ® H ® H,
Vo

such that
V3B a®y @ Av(p)] =§®a(p)E forallE € H® H,.
vO
Moreover, (1 @ X)V3 = V3(X «®y 1) forall X € a(N)'.
NO
(V) V3 p®a J5) = (J @ V1.
N
Proof. (i) By definition (5.2), the left-invariant weight of &(N, a,q, v) is the
dual weight . Therefore, by definition (5.2), and using 2.2,
y(x*) = Jsa(x)Js = (T @ L) UH*a(x)UST @ 1) = 1y @ JyxJy.
(ii) This follows from the relation
ZSPJVAV(X) =£E®@ JuxLAy(p) = V(X*)(i: ® Av(p)).
(iii) Forany ¢’ e H, 2’ € H ® H,, p' € N,,
(B a®y (6 ® Au(p))E a®y(E' ® Auv(p)
ve ve
= (a((§ ® Av(p). &' ® Av(P))ye) EIE)
= (a(p™I{lep)EIE")
= (¢ ®a(p)EE' ® a(p)E),

from which we get the existence of V3 as an isometry. As it is trivially surjective, we
get it is a unitary. The last formula of (iii) is trivial.

(iv) Using 4.5 (ii) and 6.1 (i), we get the existence of an anti-linear bijective
isometry I g®q Jy from (H ® Hy) p®. (H ® H,) onto (H ® H,) «®, (H ® H,)
N v o

%
with trivial values on elementary tensors. Moreover, forany E € H ® H,, £ € H,
p € N, analytic with respect to v, we have, using successively 2.2, (iii), and 4.3 (i),

V3(I p®q J5)(E pQ®a UL ((E ® Av(p)))
N v
= W[IE o®, (JEQ JyAy(p))]

=TE®a(0”,(p) &
= JE® IB(0}),(p)E
= (T @ VI[E p®q US(E ® Ay(p))]. 0
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6.2 Theorem ([40]). Let G be a locally compact quantum group, (N, a,q) a braided-
commutative G-Yetter—Drinfel’d algebra, v a normal faithful semi-finite weight on N,
and let (N, a,a, v) be the associated Hopf-bimodule, equipped with a co-inverse, a
left-invariant operator-valued weight and a right-invariant valued weight by 4.4 (ii),
4.6 and 5.4. Let W be the pseudo-mutiplicative unitary associated by 5.2. Then

W =VyW*®1y,)V,

where Vi had been defined in 4.3 and V3 in 6.1. Moreover, for any &, nin H, p, q
inN,,

(id = va“(’l@-IvAv(P))sE@AU(Q))(W) = a(g")(wy s ® W) @ 11,]18(p).

Proof. Letx,x1,x,inM, and y, y1, v, in ‘ﬁa. Then (y ® a(x), (y1 ®1#,)a(x1),
(y2 ® 1g,)a(x2) belong to Ny NNy, and by (2.2),

Asl(y ® 11,)0(0)] = As(y) ® Ay (x)
and
TsAs[(y ® 1 )a()] = US(T AZ(y) ® JuAy (x))
TsAslaGH) (T y2 ® 1w, )a()] = (g ® Juxf UL T As(y}r2) @ Jy Ay (x2)].
By definition of w (5.2), we find that for any &, E, in H ® H,, the scalar product
(W[E2 ﬁ%@a S5 As(a(xD) (V72 ® 1a,)a(x2))]|E1 a%y (A5 (y) ® Av(x)))

is equal to

(Tl(y ® Da()]*
(B2 5®a UL (T A5(72) ® LAy (12)|E1 p®a U (T Ag(y1) ® JuAu(x1))).

Using 4.4, we get that this is equal to

(T ® 1m,)
Vi[E24®aUs (T Ag(y2)®15 Ay () Via(x) E 15 @a(Us' (T Ag(y)®y Ay (x1))),

which, thanks to 4.3 (i), is equal to
(T°0") ® 11,) (T Ax(y2) ® B(x3)E)|T As(yn) ® B(x)a(x)E1)

and to
BED (@550 Favion @ DTG & 1a,)B(3) E2la(x)E1)

= (BODd® 05, (5, o VT() ® 1,)B(x3)Ezla(x) E),
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which, by 2.1, is equal to
D@D 0751 5 )T © 10,)B()Z2l0)B)

= (B (@5

A?(J’TJ’Z):A;(Y) & ld)(W ) & le)ﬂ(xz)D2|Cl(X)D1),

which is, using 4.3 (i) and 6.1, equal to

((1r ® B))(W* © 11,)
Vi(E2 5@ UL T AGT72) 8 LA ()IV3(E1 o8y (A5() 8 Av(x))).

which, using 3.8 (iv), is the scalar product of the vector
Wi (id ® B1)(@° () V1 (B2 p®a U (T A5(yTy2) ® JuAy(x2)))
%
with V3(E; «®y (Aa(y) ® Ay (x))). But, using 4.3 (i), this vector is equal to
vO

W*®1u,)

V(1 ® 1,) §®a (1 ® Joxi J))(E2 g4 UST As(y172) ® Ty Ay (x2))).
N v

Finally, we get that the initial scalar product

~

(W[E2 p®a JsA5(@(1)(y1y2 ® Da(x2))][E1 a®y (AZ(Y) ® Ay (1))
is equal to

(W*®1n,)
V182 g®a J5A5(a(x]) (1 y2 ® Da(x2))][V3(Ey a®y (A(¥) ® Ay(x)))).

By density of linear combinations of elements of the form Aa(y) ® A,(x) in
D((H ® Hy)y,v°), and then of linear combinations of elements of the form
819y (Aa(y) ®Ay(x))in (H ® Hy) «®y (H ® H,), we get that

Vo o

WIE> p®a J5As(@(x])(y}y2 ® Da(x2))]
v
=VyW* Q 1, )Vi[E2 gQ®a S As(a(x])(yiy2 ® Da(x2))],
v

and, with the same density arguments, we get that W = Viw* ® 1g,)V1.
Therefore, using again 4.3 (i) and 6.1, we get that

(W[E2 4®a Us (1® JuAu(p)]|E1 «®y € ® Av(9))

= ((W* @ 1g,)V1[E2 p®a Uy (n ® Ju Ay (p)]IV3[E4 «®y € ® Av(@)))
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is equal to

(W* @ 1,)(n ® B(p*)E2)I§ ® a(p)E1)
= ((@n¢ ®(W™) ® 1,)B(p")B2la(p)E1).

which finishes the proof. O

6.3 Theorem. Let G be a locally compact quantum group, (N, a,@) a braided-
commutative G-Yetter—Drinfel’d algebra, and v a normal faithful semi-finite weight
on N such that (N, a,q,v) is a measured quantum groupoid in the sense of 5.1.

Let (N, a,qa, v) be its dual measured quantum groupoid in the sense of 5.3, and for
all X € G |><€N, let

I(X) = U (U) XU} UN"
Then T is an isomorphism of Hopf bimodule structures from &(N,a,a,v) onto
&(N,a,a,v).

Proof. To prove this result, we calculate the pseudo-multplicative W of &(N,q,a,v),
using 6.2 applied to (N, d, a,v). We first define, as in 4.3 (i) and 6.1, a unitary V;
from (H ® H,) 73\®/a\ (H® H,) onto H® H® H,, and a unitary V3 from

)
(H® H,,)g@zy\(H ® Hy,)onto H® H ® H,, where, forall x € N,

po

o~

'B(x) = Uva(Uva)*(lH ® va*Jv)Uva(Uua)*,
/)/\(X) = J‘:)ﬁ(x*)f‘:;z g ® va*_]v = )/(x)7

5den0ting the dual weight on G x~ N as before. More precisely, applying 4.3 (i) to
(N,a,a,v), we get that for any &, nin H and p, g in Ny,

(UAUS* 385 U (U )0w U} (n © JuAv(9)) o®y (§ @ Av(p))]
N ve
is equal to

UL UD€ ® Au(p))&5U5 (1 ® JuAu(@)

v

=1 ® Bl@HUSUS* ¢ ® Av(p))
=1 Uva(Upu)*(E ® quJvAv(p))
= (1 ® U U1 ® § ® pJyhu()).
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On the other hand, using 6.1, we get that
V3[US (1 ® JuAv(q) «®y 6 @ Av(p))] = ¢ @ a(p)U, (n ® JyAy(q))
v()

= ‘i: ® Uva(ﬂ ® pJvAv(CI))
=g ® Uva)(é ®n® plAi(q)),

from which we get that

171(U§(U§)*§®3 US(UHow = (1g @ USWUS*) o @ 15,) (15 & (UH*)Vs.
N

Applying this result to (N, d, a, v) and taking the adjoints, we find that

V3(US(US* «®p US UM Yoy = (1g @ U (0 ® 1) (g @ USUS) ")V
NO

Applying 6.2 to (N, @, a, v), we get that W = I//\g.*gg g, WRlg)o®ly,)V

and, therefore, that 0,0 [U;}(U})* ~®, US(US* WU UH* y%a UMUS)* oy is
No
equal to:

V(U235 (US55 (UN 13 Wi2(UD13(U) 15U )55 V3
But,as C®Id)(UF) = (U)23(U) 3. we getthat (U)35(U) T = Wia(UDT; Wy,

and therefore that (U,%)55(U;) 13 Wi2(Uy)13 = Wia. On the other hand, by the same
argument, (U) 15 (U35 = W5 (US55 Wi Finally, we get that

ow[US(US)* ~®y USU TWULUS* y®a USU ove = Vi WiV = W,
N° N

and therefore

[USUS* 2@, USUH IWULUH* y®a UHUH*] = 0, W0y,
No N

So, up to the isomorphism, the pseudo-multiplicative unitary W of &(N,a,a,v) is

equal to the dual pseudo-muliplicative untary f/IV/, which finishes the proof. O

6.4 Proposition. Let G be a locally compact quantum group, (N, a,d) a braided-
commutative G-Yetter—Drinfel'd algebra, and v a normal faithful semi-finite weight
on N. Suppose that (N, a,q, v) is a measured quantum groupoid in the sense of 5.1,
and let (N, a,a, v) be its dual measured quantum groupoid in the sense of 5.3.

(i) The co-inverse R constructed in 4.6 (ii) is the canonical co-inverse of the
measured quantum groupoid G(N, a,a, v).
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(ii) The isomorphim of Hopf bimodules from &(N,d,a,v) onto (N, a,q,v)
constructed in 6.3 exchanges the canonical co-inverses of these Hopf-
bimodules.

Proof. (i) By 6.1(iv), V3(I g®a J5) = (7 ® I)V;. Taking adjoints, we also get
N

N «®y Jp) = (7 ® 1) V3. Therefore, we get, using 6.2 and 4.5 (iii),
NO
(I a®y )W (I a®y J5) = (I «®y )V (W @ 11, )Vi(I o®y J5)
No No No N°

=V DW*e1p,)J @)V
=Vi(W ®1u,)Vs
=W
Forall 2 € D(4(H ® Hy),v) and E' € D((H ® H,)y,v°), we therefore have
1(d * wg 2 )(W)*1 = (id * w5 7.2) (W),
which proves that the canonical co-inverse is given by R (X) =1X*I forall X €
G, N.

(i) By 5.3, the canonical co-inverse of @(N, a,d,v) is implemented by J;.
Using (ii) applied to (N, a, a, v), we therefore get that the canonical co-inverse of

®(N, G, a,v) is implemented by 7 = U*(U&)* J; Uv“(Ug)*. O

6.5 Theorem. Let G be a locally compact quantum group, (N, a,q) a braided-
commutative G-Yetter—Drinfel’d algebra, and v a normal faithful semi-finite weight
on N. Suppose that (N, a,q, v) is a measured quantum groupoid in the sense of 5.1,
let @(N , 0,0, v) be its dual measured quantum groupoid in the sense of 5.3, and let T
be the isomorphism of Hopf bimodule structures constructedin 6.3. Then L exchanges
the left-invariant and the right-invariant operator-valued weights on &(N,a, a, v)
and @(N ,a,a,v). Therefore, (N, @, a,v) is also a measured quantum groupoid.

Proof. Using 6.4 (ii), it suffices to verify that 7 exchanges the left-invariant operator
valued weights, of &(N,d,a,v) and Qﬁ(N a,a,v). The left-invariant weight of
& (N, a, a,v) is the dual weight v on the crossed product G x~N. Let us denote by )

the left-invariant weight of ®(N ,a,a,v).
We apply 6.2 to &(N, @, a, v) and get that, for any & in H, z € ‘ﬁ;’;, p,qinN,,

(id*a) ~ )(W)(id*w ~ )(W)
UUG(JA?(Z)®JUAU(P))71§-®Av (@) UIF(JA:;(Z)®JVAV (P)).£®AV ()

is equal to

0" (148 07, )0V @ 1 o™ (48 07, )0 &1 [5G0
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where, as in 6.3, W denotes the pseudo-multiplicative unitary associated to
&(N,a, a,v), and B is defined, for x € N, by
B(x) = USUS* (g ® Jux*J)UNUS) .

Let us take now a family (p;);ey in 9, increasing to 1. Then, we get that

a(q*)[(id ® w5 Az(z)g)(W)(id ® w5 Aa(z)’s)(W)* ® 1}6@)
is the increasing limit of

(id*a) ~ . )(W)(id*w ~ 12 )(W)*.
U\?(JA;;(Z)Q?J\;A\;(IJ,- ).EQA () UL?(JAT;(Z)®JUAU(p[ ).EQA, ()

But, using 6.3, we get that (id*w ~_ ) W) is equal to
g g U&(JAaa)@JUAU(p,?/z)),saaA],(q) (W)iseq

771 (1d*a) N ~ )aoﬁ/*ao
[ U (TA~@®y A (0] *).US U @A (@) @ v)

* id)(W)*].

= I_l |:(C() -~ ~ 1/2
S(Ulﬁ')*($®Au(q)),U‘?(JA;;(Z)®J\)A\;(17,~ )

Therefore, we get that

o Z[ﬁ(q*)[(id ® 07y () MA@ 05, )W) @ 1]&@)}

is the increasing limit of

6|:<a) ~ ~ s *id)(ﬁ/)*
Uu“(Uua)*(§®Av(q)):Uua(JA:;(Z)®JuAu(Pl- )

X id)(IfT/)},

(o - ) »
US(US)*(E®A, (q)),Ulf‘(JA/(;(Z)®JvAv(p,~ )

which, using 5.3, is equal, by definition, to the increasing limit of
2

v

lose s ;
U U * E@A @),UF (JAN)® Ty A (p; "))

For X € 93, the scalar w (X*) is equal to

US U E®A, @)U <7A;(z)®JvAv (%)
(X*USUD*(E @ M(@)|URT As(2) @ JuAu(p;"))

= (Uva(UE)*(E ® Av(g)| XT3 A5[(z ® l)a(pl.l/z)])
= (UXUS* (¢ ® Av(@)J5(z ® Da(p, ) JsAs(X))
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and, therefore,

~

2
H([) ~ 1/2 ‘
US(UM)*E®AL (), U (J A~NZ2)®Jv Ay (Pl' )

0
= [Jsa(p;*) " ® DU U (E @ MA@
The limit when p; goes to 1 is equal to

1T2*7 @ DU E @ A@)]? = [(T=*T @ D(E ® Ay(g)|2
1T72*TEN2I1Av(9)]?

2
Ay @)
[

= %78~
©

2
=2 (@805, )]0 A0

2

’

= 18] (@@ 030 0,) 07 814, Ji@)
%)
from which we get that

2

(e nre o

= H A?;|:((id ® wg,'fAA(z))(W*) ® 1y, )3(4)]

which proves that the left-invariant weight Dol + 7 is semi-finite. Using now [24,
5.2.2], we get that there exists an invertible p € N T, p < 1, such that

2

’

(DY : D(®oZ + 1)) = B(p)"

for all t € R. So, B(p) is invariant under the modular group o’ (i.e. p is invariant
under y) and we get that

2 H A’;[((id@cugjz\g(z)) W) Q lp, )ﬁ(q)]
el (seoloene o]

2

2

2

El

from which we get that p = 1/2, and D = 1/2(&3 oI+5). Thus, D = ®oZ. O
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6.6 Theorem. Let G be a locally compact quantum group, (N, a,@) a braided-
commutative G-Yetter—Drinfel’d algebra, v a normal faithful semi-finite weight on N.
Let D; be the Radon—Nikodym derivative of the weight v with respect to the action a
and 13, be the Radon—Nikodym derivative of the weight v with respect to the action a.
Then the following conditions are equivalent:

(i) B(N,a,q,v) is a measured quantum groupoid;
(ii) B(N,q,a,v) is a measured quantum groupoid;
(iii) (t;Ad(87%) ® y;)(Ds) = Dy forall s,t € R;
(iv) (F,Ad(71") ® y_,)(Ds) = D; forall s,t € R.

Proof. By 6.5, we know that (i) implies (i), and is therefore equivalent to (ii).
Moreover, by 5.9, we know that (i) is equivalent to (iii). Applying 5.9to &(N,a, a, v),
we obtain (iv), because the one-parameter group ¥; is equal to y—,. The proof that (iv)
implies (ii) is the same as in 5.9, where we use again that the one-parameter group ¥,
of N constructed from the dual measured quantum groupoid is equal to y—; (5.3). [

6.7 Corollary. Let G be a locally compact quantum group, (N, a,q) a braided-
commutative G-Yetter— Drmfel 'd algebra, and v a normal falthful semi-finite weight
on N. If the welght v is k-invariant with respect to @, for k affiliated to the
center Z(M) ork =8 1 then &(N,a,q,v) is a measured quantum groupoid
and its dual is isomorphic to (N, a, a, v).

Proof. We verify easily property (iv) of 6.6, and then obtain the result by 6.6 and 6.5.
O

7. Examples

In this chapter, we give several examples of measured quantum groupoids constructed
from a braided-commutative Yetter—Drinfel’d algebra. First, in 7.1, we show that
usual transformation groupoids are indeed a particular case of this construction,
which justifies the terminology. Other examples are constructed from quotient type
co-ideals of compact quantum groups, in particular one is constructed from the
Podles sphere S; (7.4.5). Another example (7.5.1) is constructed from a normal
closed subgroup H of a locally compact group G.

7.1. Transformation Groupoid. Let us consider a locally compact group G right

acting on a locally compact space X; let us denote a this action. It is well known

that this leads to a locally compact groupoid X ¢~ G, usually called a transformation
a

groupoid. This groupoid is the set X x G, with X as set of units, and range and
source applications given by r(x, g) = x and s(x, g) = ag(x), the product being
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(x,g)(ag(x),h) = (x,gh), and the inverse (x,g)™' = (ag(x),g~ 1) [32, 1.2.a].
This locally compact groupoid has a left Haar system [32, 2.5a], and for any measure v
on X, the lifted measure on X x G is v ® A, where A is the left Haar measure on G.

The measure v is then quasi-invariant in the sense of [32] and 4.2 if and only
if v ® A is equivalent to its image under the inversion (x, g) — (x,g)~!. This is

equivalent [32, 3.21] to asking that, for all g € G, the measure v o a, is equivalent
dvoa

to v, which leads to a Radon-Nikodym A(x, g) = —2& ! (x). Then, the Radon—
Nikodym derivative between v ® A and its image under the inversion (x, g) —
(x,g) 'is A(x, g)Ag(g), where Ag is the modulus of G.

Let us consider the trivial action of the dual locally compact quantum group 6
defined by ((f) = 1 ® f forall f € L°°(X). It is straightforward to verify that
(L*°(X), a,v) is a G-Yetter—Drinfel’d algebra which is braided-commutative. The
measure v, regarded as a normal semi-finite faithful weight on L°°(X), is evidently
invariant under ¢. So, by 6.7, we obtain measured quantum groupoid structures on
the crossed products G x, L°°(X) and G x, L= (X).

The von Neumann algebra G x, L®(X)is L*®(G) ® L*®(X),or L*®(X v G),

a

and the structure of measured quantum groupoid is nothing but the structure given
by the groupoid structure of X ¢\ G.
a

The dual measured quantum groupoid X/-@\G is the von Neumann algebra
a
generated by the left regular representation of X ¢~ G, which is the crossed
a

product G x, L°°(X). Let us note that this measured quantum grouped is co-
commutative, in particular, 8 = a and y; = 0, = idpeo(x,,) forallz € R. As
7; = Ad(AY) = idp(g), we see that D; = A(x, g)** satisfies the condition of 6.6.
Moreover, D ;= lforallt € R.

Therefore, we get that any transformation groupoid gives a very particular case of
our “measured quantum transformation groupoids”, which explains the terminology.

7.2. Basicexample. Let G = (M, T, ¢, ¢ o R) be alocally compact quantum group,
D(G) its quantum double, and let us use the notation introduced in 2.4.5. There exists
an action ap of D(G) on M such that

ap(xX) @1 =Tpx®I1).
The Yetter—Drinfel’d algebra associated to this action is given by the restrictions
of the applications b and b to M, which are, respectively, the coproduct I' (when

considered as a left action of G on M), and the adjoint action ad of GonM given by

ad(x) = o W(x @ DW*s = W*(1 ®@ x)W, (4)
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and we get this way the Yetter—Drinfel’d algebra (M, I', ad), which is the basic
example given in [28]. Moreover, as
sT(x) =((R®R)oI' o R)(x)

=TNWWJTeNU®x)T @ NWI Q7). (5)

we get that that
ca®(x®) = (JT @ OWW*1 @ IxHW(ITJ ® 1)
= RNWARQJIxTHW*(J ®J)

(where we prefer to note « the left action I' to avoid confusion between «° defined
in 2.5.1 and the coproduct I"° of the locally compact quantum group G°). But

cad®(x®) = (J HWx @ HW*(J @ J)

from which we get that this Yetter—Drinfel’d algebra is braided-commutative.

As ¢ is invariant under I', using 5.9, we can equip the crossed products G xr M
and G x ad M with structures of measured quantum groupoids.

Let us describe Gx,q M inmore detail. We claim that the map & := Ad((J J® 1) W)
identifies G X.q M with M’ ® M. Indeed, the first algebra is generated by elements
of the form (z ® 1)ad(x) and x,z € M, and

AdM)[(z ® D ad(x)] = T(2)(1 ® x) = Ad(0)(T'(z)(x ® 1)).

But elements of the form I'(z)(x ® 1) generate M ® M, and as Ad(J?) M) =M
the assertion follows. We just saw that ®(ad(x)) = 1 ® x, and we claim that
®d(B(x)) = x° ® 1. Using (4) and the fact that W*isa cocycle for the trivial action
of G on M, we get [41, 4.2]

U =W*(J QW ®J)
and therefore, using the relations (J ®7)W*(J ®?) = WandToR = (R® R)oI™®
(2.1),
P(B(x)) = Ad((JT ® YWU' (T ® J))IT(x)]

=Ad(JT @ D(J @ NHW(I @ J)J @ J)T(x)]

=Ad(T @ HWUIT & TT))[T(x)]

= Ad((JJ ® JT)W*)[T°(R(x))]

= Ad(TJ ® J)[R(x) ® 1]

=x°Q® 1.

Therefore, ® defines an isomorphism between &(M, ad, I, ¢) and the pair quantum
groupoid M’ ® M of Lesieur [24, 15], and induces an isomorphism between the
respective duals, which are (isomorphic to) & (M, I', ad, ¢) and the dual pair quantum
groupoid B(H) constructed in [24, 15.3.7], respectively.
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7.3. Quantum measured groupoid associated to an action. Let us apply 7.2
to G°. We obtain that (ﬁ/l\, re ,ad) isa GO -Yetter-Drinfel’d algebra, where ad means
here ad(x) = W*(1 ® x)W*€. As noticed by [28, 3.1], we can extend this example
to any crossed-product G x, N, where a is a left action of G on a von Neumann
algebra N. Let us recall this construction. For any X € G x, N, the dual action d is
given by R R

aX) =T HI® X)W R 1).

Let us also write
adX) =W DU X)(WR1).

We first show that this formula defines an actionad of G on G x,N. If X = y ® 1,
with y € M, we get that ad(1 ® y) = ad(y) ® 1, which belongs to M’ ® G x, N.
If X = a(x), with x € N, we get that ad(a(x)) = (W* Q (1 ® a(x))(W° ® 1),
which belongs to M’ ® G x, N; moreover, the properties of W¢* give then that ad
is an action.

To prove that (Gx,N,d, ad) is a G°-Yetter-Drinfel’d algebra, we have to check
that, for any X € a",

Ad(012W9,)(id ® adja(X) = (id ® Dad(X).

~

To check that, it suffices to prove that o1, W9, WEFW 9% = W33 WE,, which follows
from W° = g W* o and the pentagonal relation for W€,

7.3.1 Proposition. Let a an action of a locally compact quantum group G on a von
Neumann algebra N and let B = G x4 NN a(N)'. Then the formulas
b(X)=(W* (1 ®X)(W° R 1),
X)) =W (1 ® X)(WER 1)

define actions b and b of G° and G, respectively, on B and (B, b,/b\) is a braided-
commutative Yetter—Drinfel’d algebra.

Proof. Asd(a(x)) = 1 ® a(x), for all x € N, we get that b is an action of G° on
B = Gx N Nna(N).

To prove a similar result for /ﬁ, we need to make a detour via the inclusion
a(N) C G x4 N which is depth 2 [41, 5.10]. Let v be a normal faithful semi-finite
weight on N, and V' its dual weight on Gix, N. Then, we have

Fa(N) = (T ® 1,)UH*a(N)YUSNT ® J,)
=T ® J)BH)®N)T ®J,)) =B(H)®N

and therefore B(H) @ N N (G x, N) = F;BF;.
Moreover [41, 2.6 (ii)], we have an isomorphism ® from B(H) ® N with G x3
G x4 N which sends G x, N onto a(G x, N). Via this isomorphism, the bidual
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action a@ of G°¢ on G° x7 G xo N gives an action y of G on B(H,) ® N. As@
is invariant on a(G x4 N), y is invariant on G x4 N, and its restriction to J;BJF;
defines an action of G on J;BJF;;, and, thanks to this restriction, we can define an
action of G® on B. Let’s have a closer look at this last action: y is given, for any
X € B(H) ® N, by [41, 2.6 (iii)]

y(X) = Wi(s ®id)(id ® a)(X)Wy = Ad[W),(U)13](X23).
So, the opposite action of its restriction to J;BJF; will be implemented by

(J @ HWLUH T ® F)
= UM ® T @ J)WS(UN1T ® T ® 1)U,
= (UM ® T @ J)WSIT ® T ® J,)(US) UM%,
= (JD1(UD23Wia (U 15U,
= (J7)1W12

So, we get an action of G¢ on B given by
2> Ad(J D W) (1 ® z) = W (1 @ 2)WE,

which is b. Thus, b is an action of G€ on B, and, by restriction of (G x, N,d, ad), we
have obtained that (B, b,/ﬁ) is a G°-Yetter-Drinfel’d algebra. Let’s now prove that it
is braided-commutative. Let us write 7 (x) = J Jx7JJ for any x € M'. We get that
(J ®id)b(B) is included in M ® B, and, therefore, commutes with I ® a(NV). On the
other hand, we get that (7 ®id)(b(B)) = (W ® 1)(1 ® B)(W* ® 1) commutes with
W*RN(MR1®1)(W®1) = [°(M)® 1. Therefore, we get that (7 ®id)(b(B))
commutes with a(G x4 N), and, therefore, with b(B). This finishes the proof. [

Applying now 4.4 to this braided-commutative Yetter—Drinfel’d algebra, we
recover the Hopf-bimodule introduced in [13, 14.1]

7.3.2 Theorem. Let a an action of a locally compact quantum_group G on a von
Neumann algebra N, let B = G xq N N a(N)/, let b (resp. b) be the action of
G (resp. G¢) on B introduced in 7.3.1, and suppose that there exists a normal
semi-ﬁni/t\e faithful weight x on B, invariant under the modular group GT?. Then,
B(B,b,b, y) is a measured quantum groupoid, which is equal to the measured
quantum groupoid & (a) introduced in [13, 14.2].

Proof. With the hypotheses, the measured quantum groupoid &(a) is constructed
in [13, 14.2]; so, we get that the Hopf-bimodule constructed in 7.3.1 is a measured
quantum groupoid. So, we may apply 5.9 to get that &(B, b, b, x) is measured
quantum groupoid equal to &(a). 0



Measured quantum transformation groupoids 1197

7.3.3 Theorem. Let (N,a,a) be a G-Yetter-Drinfel’d algebra with a norm
faithful semi-finite weight v on N satisfying the conditions of 5.9, which allow
us to construct the measured quantum groupoid &(N,a,a,v). Suppose that
B(N) =G xq NNa(N). Then, the weight v° o B~! on B(N) allows us to
define the measured quantum groupoid &(a), which is canonically isomorphic to
B(N°,a°%, a% ).

Proof. We have, forall x € N and ¢t € R, GZTE‘ (B(x)) = B(y:(x)). Asvoy, = v,
we get that the weight v° o 87! on B(N) allows us to define the measured quantum
groupoid &(a). Moreover, the dual action’d of G° on G x4 N satisfies, forall x € N,
by 4.4 (iii),

FBM)) = (id ® BN (@ (x?)).

which gives that BT is an isomorphism between ‘dgv) = band @°. So, the result
follows. O

We are indebted to the referee who suggested us to look at the relation betwen the
construction made in [13, 14.2] and the measured quantum transformation groupoids
considered in this article.

7.4. Quotient type co-ideals.

7.4.1 Definitions. Let G = (M, I, ¢, 9o R) and G; = (M1, '1, ¢1, 91 0 R1) be two
locally compact quantum groups. Following [21], a morphism from G on G is a non-
degenerate strict *-homomorphism ® from Cj(G) on the multipliers M(Cy(G1))
(which means that ® extends to a unital *-homomorphism on M(Cy(G))) such that
INyo® = (P® P)I'y, where I'y ,, denotes the coproduct of Cy(Gy). In [21, 10.3
and 10.8], it was shown that a morphism is equivalently given by a right action I,
of G; on M satistying, in addition to the action condition (id® I') [, = (I’ ®id)[;,
also the relation (I' ® id)I, = (id ® I',)[". The morphism ® and the action I', are
related by the formula

[r(ng(x)) = (ng @ mg, o P)Tu(x) forall x € Cy(G).

We get as well a left action I'; of G; on M such that (id ® I';)I'; = (I'y ® id)I'; and
ide I = T ®id)T.

Following [11, Th. 3.6], we shall say that G; is a closed quantum subgroup of
G in the sense of Woronowicz, if, in the situation above, the *-homomorphism ® is
surjective. In [11, 3.3], Gy is called a closed quantum subgroup of G in the sense
of Vaes if there exists an injective *-monomorphism y from M; into M such that
To y=(y®y)o 1"1 Moreover, any closed quantum subgroup of G in the sense of
Vaes is a closed quantum subgroup in the sense of Woronowicz [11, 3.5], and if G
is (the von Neumann version of) a compact quantum group, then the two notions are
equivalent [11, 6.1]. It is also remarked that if G is (the von Neumann version of)
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a compact quantum group, then any closed quantum subgroup of G is also (the von
Neumann version of) a compact quantum group.

7.4.2 Proposition. Let G = (M,T',¢,p o R) and G; = (M1,T'1, 91,91 o R1) be
two locally compact quantum groups and ® a surjective morphism from G to G; in
the sense of 7.4.1. Let I'; be the right action of G on M defined in 7.4.1, and let
N=M"={xeM:T,(x) =x®1}. Then:

(i) I\ is a left action of G on N.

(ii) ad|y is a left action of@ on N.

(iii) (N,I'\n.ad|y) is a braided-commutative G-Yetter-Drinfel’d algebra.

(iv) Let T'; be the left action of G on M defined in 7.4.1. Then its invariant
algebra M is equal to R(N), which is a right co-ideal of G.

In the situation above, we call N a quotient type left co-ideal of G.

Proof. (i) Since (id®T',)I' = (I'®id)I", by construction, we get that for every x
in N = M the coproduct I'(x) belongs to M ® N.

(ii) By [21, 6.6], there exists a unique unitary U € M(Cy(G) ® C r(@)) such
that (I'y ® id)(U) = Ui3Uz3 and (g ® id)(U) = W, where Iy denotes the
comultiplication on Cy (G). Let U= g(U*) e M(C, (G)®C (G))andx € Cy(G).
Then ad(rg(x)) = (Id® mg)(U (1® x)U), and using the relation (id ® I‘u)(U*) =
Ui,U75, we find

(id ® Ty)(ad(7¢ (x))) = (id ® 7¢ ® 7, )((id ® T)(U*(1 ® x)0))
= (id ® 7 ® 7, P)UT,UT3(1 ® Ty (x)U13U 12)
= WU & Ty (re(0)) U 13W 12,

where U = (id ® g, ®)(V). By continuity, we get that forany y € N,
(id® T,)(ad(y) = WHUT(1®y @ DU Wi = ad(y) ® 1.

showing that ad(y) € M®N.
(iii) This follows immediately from 2.4.

(iv) This follows easily from the fact that the unitary antipode reverses the
comultiplication. O

7.4.3 Theorem. Let G = (M, T, ¢, ¢ o R) be a locally compact quantum group
and (A1,T'1) a compact quantum group which is a closed quantum subgroup
in the sense of 7.4, and denote by N the quotient type co-ideal defined by this
closed subgroup, as defined in 7.4.2. Then, the restriction of the weight ¢ o R
to N is semi-finite and §~'-invariant with respect to the action I\n. Therefore,
O(N,T'\v,adiy, ¢ o Rny) and &(N,ad\y,'\n, ¢ o R\n) are measured quantum
groupoids, dual to each other.
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Proof. The formula £ = (id ® w;) o I'y, where w; is the Haar state of (A1, I'1),
and I, is the right action of (41, '1) on M defined in 7.4, defines a normal faithful
conditional expectation from M onto N = M ",

By definition of I', (7.4.1), and using the right-invariance of ¢ o R o mg with
respect to the coproduct I', of Cj(G), we get that for any y € Cj(G), with the
notations of 7.4.1,

o RoE(ng(y)) = (po R®w)r((y))
= (poRomg ® wy o mg, o P)[y(y)
= (p o Rong)(y)(w o o ®)(1)
= (po Romg)(y).

Therefore, ¢ o R o E(x) = ¢ o R(x) for all x € Cy(G), and, by continuity, for all
Xx € M, which gives that this conditional expectation E is invariant under ¢ o R.
Moreover, we get that ¢ o Ry is semi-finite and 67°% o E = E 0 o¢°%.

This weight ¢ o R is clearly §~!-invariant with respect to I'| y. The result comes
then from 5.9 and 6.5. O]

7.4.4 Corollary. Let (A,T") be a compact quantum group,  its Haar state (which
we can suppose to be faithful) and let G = (74,(A)", T, w, ®) be the von Neumann
version of (A,T) (2.1). Let N be a sub-von Neumann algebra N of w,(A)”. Then
the following conditions are equivalent:

(i) I\ is a left action of G on N and ady is a left action of@ on N.

(ii) There exists a quantum compact subgroup of (A, I') such that N is the quotient
type co-ideal of G constructed from this quantum compact subgroup.

If (i) and (ii) hold, then the crossed products G XTIy N and G Xad, v N carry
mutually dual structures of measured quantum groupoids &(N, 'y, ad|y, wy) and
O (N, ady, I'\v, wyn), respectively.

Proof. The fact that (ii) implies (i) is given by 7.4.3. Suppose (i). Then N is, by
7.4.2, a quotient type co-ideal of G, which is defined as the invariants by a right
action I'; of a closed quantum subgroup of G, which is (7.4.1) a compact quantum
group (Ay,T1). Denote its Haar state by w;. Then I',(4) C A ® A;, and the
conditional expectation £ = (id ® w1)T"» which sends 7, (A4)” onto N, sends A4 onto
A N N. From this it is easy to get that A N N is weakly densein N. But N N A is a
sub-C *-algebra of A which is invariant under I" and ad; therefore, using [29, Th. 3.1],
we get (ii). If these conditions hold, we can apply 7.4.3. O
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7.4.5. Example of a measured quantum groupoid constructed from a quotient
type coideal of a compact quantum group. Let us take the compact quantum group
SU,(2) [48], which is the C *-algebra generated by elements « and y satisfying the
relations

afa + )/*y =1, aca* —}—qzyy* =1,
yy* =y qrva=ay, qyfa=ay”.

The circle group T appears as a closed quantum subgroup via the morphism ©
from Cy(SUy(2)) to Cy(T) = Co(T) given by ®(a) = 0 and ®(y) = id. Then
we obtain the Podles sphere S 5 as a quotient type coideal from this map [31], and
mutually dual structures of measured quantum groupoids QS(SqZ, L 525 ad, 52> @) Sg)

on SU,(2) XT\ g2 SZ and &(S7. ad 52, T 52, w)52) on SUg(2) Xad, sz SZ, respectively.

7.4.6. Further examples. Here we quickly give examples of situations in which the
hypothesis of 7.4.3 are fulfilled.

Let us consider the (non-compact) quantum group E,(2) constructed by
Woronowicz in [49]. In [20, 2.8.36] is proved that the circle group T is a closed
quantum subgroup of £,4(2).

In [43] is constructed the cocycle bicrossed product of two locally compact
quantum groups (M7, I'1) and (M», I'y), and it is proved [43, 3.5] that (A//I\l,ﬁ) is
a closed subgroup (in the sense of Vaes) of (M, T"). So, if (M;,I'1) is a discrete
quantum group, then (1\/4\1 , f‘\l) is the von Neumann version of a compact quantum
group which is a closed quantum subgroup of (M, I').

7.5. Another example.

7.5.1 Theorem. Let G be a locally compact group and H a closed normal subgroup
of G. Then:

(i) The von Neumann algebra L(H), which can be considered as a sub-von
Neumann algebra of L(G), is invariant under the coproduct T'¢ of L(G),
considered as a right action of the locally compact quantum group G
on L(G), and under the adjoint action ad of G on L(G). Therefore,
(L(H),TG|zH), ad|2(a)) is a braided-commutative 6-Yetter—Drinfel’d alge-
bra, which is a subalgebra of the canonical example (L(G), I'g, ad) described
in7.2.

(ii) The Plancherel vﬁeight on on L(H) satisfies the conditions of 5.9, and the
crossed product G X, . ;) L(H) (which is isomorphic to (C(H)UL*(G))")
carries a structure of measured quantum groupoid

S(L(H). L. adicam), 9H)
over the basis L(H ).
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Proof. (i) Let Ag (resp. Apg) be the left regular representation of G (resp. H).
It is well known that the application which sends Ay (s) to Ag(s), where s € H,
extends to an injection from L(H) into £(G), which will send the coproduct 'y
of L(H) on the coproduct I'¢ of £L(G). Let us identify £L(H) with this sub-von
Neumann algebra of £(G). Then for all x € L(H),

Tg(x) = Tu(x) € L(H) ® L(H) C L(G) ® L(H),

so that the coproduct, considered as a right action of G on L(G), gives also a right
action of G on L(H).

Let W be the fundamental unitary of G, which belongs to L>*°(G) ® L(G). The
adjoint action of G on L(G) is given, for x € L(G) by ad(x) = W5 (1 ® x)Wg, and
is therefore the function on G given by s > Ag(s)xAg(s)*. Hence, if 1 € H, we
get that ad(A g (s)) is the function s > Ag(sts™!). As H is normal, sts~! belongs
to H, and this function takes its values in £(H). By density, we get that for any
x € L(H), ad(x) belongs to L>*(G) ® L(H), and, therefore, the restriction of the
adjoint action of G to L(H ) is an action of G on L(H).

(ii) The Haar weight ¢ g is invariant under I'g|.(m) because (id®¢ g ) (I'c (x)) =
(id ® pg)(Tg(x)) = @g(x)1 for all x € L(H)T. We can therefore apply 5.9
to that braided-commutative Yetter—Drinfel’d algebra, equipped with this relatively
invariant weight, and get (ii). Let us remark that G X620 L(H) is equal to
(TG (L(H)) U L®(G) ® 112(g))"” which we can write:

(VO NHWs(J @ I)NLH)®112(6)(J @ NWs(J ® J)UL®(G) ® 112(6))”

which is clearly isomorphic to (L(H) U L*°(G))". O

7.5.2 Remark. Let us take again the hypotheses of 7.5.1, in the particular case
where G is abelian. Then G (resp. H) is a commutative locally compact group, and
we have constructed a right action of G on the set H, which leads to a transformation
groupoid H ~ G. Then, the measured quantum groupoid constructed in 7.5.1(ii) is
just the dual of this transformation groupoid.

8. Quotient type co-ideals and Morita equivalence

In this chapter, we show that, in the case of a quotient type co-ideal N' of a compact
quantum group G, the measured quantum groupoid G x,q |y N is Morita equivalent
to the quantum subgroup G (8.3).
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8.1. Definitions of actions of a measured quantum groupoid and Morita
equivalence.
8.1.1 Definition ([16, 2.4]). Let & = (N, M,«,B,T,T,T’,v) be a measured
quantum groupoid, and let A be a von Neumann algebra.

A right action of & on A is a couple (b, a), where:

(i) b is an injective anti-*-homomorphism from N into A;

(ii) ais an injective *-homomorphism from A into A p*q M;
N

(iii) b and a satisfy

a(b(n)) = 1,®q B(n) foralln € N,
N

which allow us to define a p*4 id from A p* M into A p*¢ M g*xq M, and
N N N N

(@ p*q id)a = (id p*q [')a.
N N

If there is no ambiguity, we shall say that a is the right action.

So, a measured quantum groupoid & can act only on a von Neumann algebra A
which is a right module over the basis N.
Moreover, if M is abelian, then a(b(n)) = 1, ®4 f(n) commutes with a(x) for all
N

n € Nandx € A,sothatbh(N)isinthecenter of A. Asinthatcase (5.1) the measured
quantum groupoid comes from a measured groupoid G, we have N = L®(G©®, v),
and A can be decomposed as A = |, g A dv(x).

The invariant subalgebra A% is defined by

A2 ={x e AND(N) : a(x) = X ®q 1}
N

As A* C b(N)', A (and L?(A))is a A®-N°-bimodule. If A* = C, the action (b, a)
(or, simply a) is called ergodic.
Let us write, for any x € A", Ty(x) = (id p* P)a(x). This formula defines
Y

a normal faithful operator-valued weight from A onto A%, and the action a will be
called integrable if T, is semi-finite [15, 6.11, 12, 13 and 14].
The crossed product of A by & via the action a is the von Neumann algebra
generated by a(A) and 1 Qg M’ [13, 9.1] and is denoted by A xq &. There
N

exists [13, 9.3] an integrable dual action (1 ,®¢ &, @) of (@)C on A x4 6.
N

We have (4 X4 ®)§ = a(A) [13, 11.5], and, therefore, the normal faithful semi-
finite operator-valued weight T; sends A x4 & onto a(A). Starting with a normal

semi-finite weight ¥ on A, we can thus construct a dual weight 1} on A x4 & by the
formulayy =Y oa~!o T5 [15,13.2].
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Moreover [13, 13.3], the linear set generated by all the elements (1 Q4 @)a(x),
N

where x € 9y and a € Ng NN,
representation of A x4 & associated to the weight ¥ with the natural representation

on Hy ,®, H by writing
%

is a core for A i and one can identify the GNS

Azl pBa Wa()] = Ay (¥) p®a Ag.(a),

which leads to the identification of Hj with Hy ,®q H.
v

Let us suppose now that the action a is integrable. Let /o be a normal semi-finite
weighton A%, and let us write Yy = Yoo To. If we write V- = J ;. (Jy, a®p J5), we
N()

get a representation of & which implements a and which we shall call the standard
implementation of a ([16, 3.2] and [15, 8.6]).
Moreover, there exists then a canonical isometry G from Hy, ¢®, Hy, into

0
Hy, »®q H such that, for any x € Mg, NNy, & € D((Hy,)p. v°) and e in Ne,
%
(1 bBa Joe )G (Ay, (x) sip@r §) = a(x)(§ pQa JoAa(e)),
0 v

where r is the canonical injection of A% into A4, and s(x) = Jy, x*Jy, for all

x € A®%. There exists a surjective *-homomorphism 7, from the crossed product

(A x4 ®) onto s(A%), defined, for all X in 4 xq & by 74(X) s®, 1 = G*XG. It
Ao

should be noted that this algebra s(A%)’ is the basic construction for the inclusion
A% C A[16,3.6]. If the operator G is unitary (or, equivalently, the x-homomorphism
g is an isomorphism), then the action a is called a Galois action [16, 3.11] and the
unitary G = 0,G its Galois unitary.
8.1.2 Definition ([15, 6.1]). A left action of & on a von Neumann algebra A4 is a
couple (a, b), where
(i) a is an injective *-homomorphism from N into A;
(ii) b is an injective *-homomorphism from 4 into M g*, A;
N
(iii) b(a(n)) = a(n) g®q 1 foralln € N, and (id g*, b)b = (" g*, id)b.
N N N

Then, it is clear that (a, ¢x b) is a right action of &° on A. Conversely, if (b, a) is a
left action of & on A, then, (b, ¢y a) is a left action of &° on A.
The invariant subalgebra A% is defined by

A ={x e Ana(N) :b(x) = 1 p®aq X},
N

and Ty, = (Po R g*,id)b is a normal faithful operator-valued weight from A4 onto AL,

Y
The action b will be called integrable if Ty is semi-finite. Itis clear that b is integrable
if and only if ¢ b is integrable, and Galois if and only if ¢ b is Galois.
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8.1.3 Definition ([16, 2.4]). Let (b, a) be a right action of
B = (N1, My a1, B1.T1, 1, T{, v1)
on a von Neumann algebra A and (a, b) a left action of
Gy = (N2, M, 02, B2, T2, 15, T, v2)
on A such that a(N,) C b(N1)' We shall say that the actions a and b commute if

b(N1) € A% a(N2) € A%, (bp*o, id)a = (id g, %, a)b.
N N>

Let us remark that the first two properties allow us to write the fiber products b *, id
N

and id g, *4 a. 1

N>

8.1.4 Definition ([16, 6.5]). Fori = 1,2, let &; = (N;, M;,a;, Bi, T;, T/, v;) be

a measured quantum groupoid. We shall say that &; is Morita equivalent to &, if

there exists a von Neumann algebra A4, a Galois right action (b, a) of &; on A, and a

Galois left action (a, b) of &, on A such that

(i) A® = a(N,), A® = b(Ny), and the actions (b, a) and (a, b) commute;
(ii) the modular automorphism groups of the normal semi-finite faithful weights
viob 1 oTyand vy 0oa! o T, commute.
Then A (or, more precisely, (A4, b, a, a, b)) will be called an imprimitivity bi-comodule
for &1 and &,.

8.2 Proposition. Let N be a quotient type co-ideal of (the von Neumann version
of a) compact quantum group G = (M, T, w, w), and let us consider the measured
quantum groupoid &(N, ad|y, I'|y, w|n) constructed in 7.4.4.

(i) There exists a unitary Vy from H Ry ®ady (H® wa) onto H ® H such
w|N
that

ad
Va (S Ry Bady Ua‘iulvN (7] ® JwNAww(X*))) = R(X)§®1n
a)‘N
forall x € N and &, nin H. Moreover, for all z € R(N), x € N and
y € B(H),
V4(Z R|N®ad|N 1) = (Z b lH)V4a
N

ad o ad *
V4(1H Ry ®Oadiy Unpy (v ® X°)(Usy') ) = (R(x) ® y)Va.
N
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(ii) Lety € M and a(y) = V;T'(y)Va. Then a(y) belongs to

M R‘N*ad“\] (@ l><ad‘1\] N)
N

(iii) Let x € N. Then a(R(x)) = 1 Ry ®ady ,/g(x), where E is the canonical
N

anti-representation of the basis N into G Xadjy N-
(iv) (Ryn,q) is a right action of &(N,ad|y, I'\n,w|n) on M.

(v) The action a is ergodic, and integrable. More precisely, the canonical
operator-valued weight T, is equal to the Haar state w.

(vi) The action a is Galois and its Galois unitary is V,; W*o.

Proof. (i) By 4.3 (i) applied to the braided- commutative G-Yetter-Drinfel’d
algebra (N, ad|y, I'|x), we get that Uw M ®J, oy Moy (X)) belongs to

D((H ® Hw|N)ad‘N s (1)|N)
and that
ad) v

d
Rad'N’w'N(U n®J o|N w|N(x ) = Ciu‘le wax Joy -

Therefore, using standard arguments, we get an isometry V4 given by the formula
above. As its image is trivially dense in H ® H, we get that Vy is unitary. The
commutation relations are straightforward.

(ii) Thanks to the commutation property in (i), a(y) belongs to

M Ry *ay B(H ® Hy ).

N
By 2.5 (i),
(6 wagy N) = Uyt (G <o, NO) (Ui )
= Ug ¥ (M’ ® 1 U adSy (N°))" (Uayi¥)*.
On one hand, the commutation relations in (i) imply
1 Ry ®adyy Uyt (M’ @ D)(Uai)* = V(1 © M')Va,

a>|N

which evidently commutes with a(M) = V,*T'(M)V,. On the other hand, if z € M
and x € N, then

V4(1 Ry ®ad )y £|,|\,N(Z ® x°)(U. ;Tl,‘vN *>V4* =Jx*T®:

w|N

=TI ® Doz x)o(JT 1)
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and hence
Va(1 Ry @ay Usyiy’ adfyy (N)Uah)* ) Vit = (77 ® Do ady (N0 (/T @ 1)
w|N

= ([ ®J)oady(N)o(J ® J)
=T NWN1mW*(T ®J)
= W*(R(N) @ 1g)W

which commutes with '(M) = W*(1g ® M)W.

Therefore, a(y) commutes with 1 g, ®ale (@ Xady N)'.

ad|N o® adW

(iii) Using2.5.4 applied to (G adjy, I'|yv), we get thatﬂ(x) Uoy o°(x°) Uy,
where we write o = ')y and 2°(x°) = (R® .°)['(x) € M ® N° to avoid confusion
with I'°. Then the commutation relations in (i) imply that

> ad 0/..0 ad
V4(1H Ry Bady ﬂ(x)) V4* = V4(1H Ry ®ad y wUlVN (x°)( wl]\VN)*)V4*
N N

isequal to (R ® R)(I'(x)) = I'(R(x)) = Vaa(R(x))V,".
(iv) Let us first fix notation. We denote by

goam:@b(adw N — (@ Xad| v Ny M

the dual action followed by the flip. Standard arguments show that there exists a
unitary

Vs:(H ® H“"N)?w? wipy (H ® Hoy) = H ® Hyy ® H
N

such that .
—_ a n —
V5(85,8 ain Vo (19 Aoy (7)) = BOE @1
forall E € H®wa,n eH, xeN.
We need to prove commutativity of the following diagram,

r “vy

M MM MR;\k[ad(@xN)

FJ (1)

M®MT>M®M®MW(M®M)(FOR);\I;M1(GD<N)

zlde J/ ®3)

Mg (G xo N) ——== Mp* @i o) (G Xy N) @ M) ——
N idkgad N

I'®id 2) ll"*id

ad id ad *id
a v ®i 4) l vy

s MR * ad(G Xad N)’\ ad(@ X N),
()

idskad,, x

where we dropped the subscripts from R and ad.
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Commutativity of cells (1) and (2) is evident or easy.

Let us show that cell (3) commutes. By definition,
(s 0ddiy)(X) = Wi5(X ® D(W55)"
forall X € G Xad, v N, where
We=TeNHhWITeJ)eM &M,
and I'(x) = Wc(x ® 1)15[\/C for all x € M. Therefore,
(ady ®id)((id ® n)(y) = ad(V4*®1H)(1H®WC)(Y ®1), (6)
(id*co a’dm)(adVZ (Y)) =ad H)(Y ®1)

we *
(IR‘N“’?N @iy @D W)V 81

forall Y € M ® M. To prove that the two expressions coincide, it suffices to show
that the following diagram (%) commutes:

lR‘Nw%v(ad'N enWis

HR‘N & ad|N(H®Hw|N)®H HR‘N & ad|N(H®Hw|N)®H
W\N OIN
V4®1Hl \LV4®1H
H®H®H — H®H®H
W53
) (x5)
But since the first legs of U;ll‘VN € M ® B(Hyy) and W€ € (M)’ ® M commute,

(17c d o
(V4 ® IH)(lRlN(o® (ad|N ®1)W13)(§R\N ® ad|y Uc;a)ul\/N (77 X x Aa)|N(1)) ® 19)
IN

w‘N

ad (17¢ 0
= (V4 ® 1H)(§R|Nw® (ad|N ®1)(Uw|1|\/N)12W13(77 Q@ x Aa)w(l) ® 19))
IN

= ROEQRW(n® D)
= WS (Va ® 1) (ERyy ® i U (1 ® X° Ay (1) ® 0).
O|N

for all ¥ € H. Therefore, diagram (**) commutes, the expressions (6) and (7)
coincide, and cell (3) commutes.

To see that cell (4) commutes as well, consider the following diagram:

1QV:
Hiin 8 s (H ® Ho )5 © wyy (H @ Hoyy ) > Hpy ® wpy(H® Hopy)®H
N

2% (2,

Va®1 iV4®l

(H @ H)Tor ) ® adjy (H ® Hy,y) 7 H®HQ®H
o|N 4
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We show that this diagram commutes, and then cell (4) commutes as well. We first
compute

ad|N

(V@D AV (ER iy ® s Uiy’ (18X Ay (D)8 i U (9@ Ay (1)

We use (iii) and find that this vector is equal to

(V4 ® 1)(5 RN ®ad\N E(y)Uc?)”‘VN (77 ® ona)\N(l)) ® 19)

a)‘N

and therefore

(TR @ D5 & D(Ery ® iy Vo' (18 3°Aoyy (1) 29)
= (MR ® DREE D@ D).
On the other hand,

Qe Vy)(Va®1)
ad ad
' (éRIN w(? adiy “’lzlvN (n®x Aww(l)) ® ad|y wII‘VN @ ® ykolN(l)))
N

is equal to

(10 V) ((REIE ® e ® s Uiy () © 3°Aol1)
= TRONRW)E @ 1) ®

as well, which finishes the proof of (iv).

(v)Lety € M N R(N)" and assume a(y) = yRry (12\27) ad y 1. Then by (i),

C(y)Va= V4(yR|N%ad|N1> =(®1g)Vs

and hence I'(y) = y ® 1y, whence y is a scalar and a is ergodic.
The canonical operator-valued weight T is equal to (idg dd| N CD) o a, where

® = woad™! ol — e and Tm is the left-invariant weight from G Xady N toad(N),

i.e. the operator-valued weight arising from the dual action on G Xad y IV, that is,
(w ®id) o adjy. In fact, these operator-valued weights are conditional expectations.
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We write Tm = (id ® w) o gad|y and use commutativity of the cells (1) and (3)
in diagram (x), and find that for any x € M T,
(ldR\N Tk adIN ) o Cl(X)
= (idR|N >|k adIN ) © adV>’< OF(X)
= ((idR\N * ad‘Nld) ® C()) o (idR|N * ad|y ga,aTX’) ° adV* OF(X)
o|N o|N 4

= (iR * aayid) ® ©) o (ady; @ id) o r® )

= adyy o(id ® id ® w) o TP (x)
= ady o(lyem - ®)(x)
=1 -w(x),

(MRleTNad‘N ad|NN)

where T® = (I' ® id) o T" and, for any von Neumann algebra P, 1 p - @ denotes the
positive application x — w(x)1p. Therefore, we get (v).
As a is integrable and ergodic, by [16, 3.8] or 8.1.2 , there exists an isometry G

from H ® H to HR,y ® udy Hoy suchthat, forall{ € D(Hg|y, (0n)°), x € M
O\N

ande € G Xady N,
(1o ® s F3e/5) G (1)®§)—a(x)(§R|N i T3A5(0)):

Let y* € M and letus take e = y* ® 1 € G Xadqy N. The relation Jg =
UMY (@ Jwy) implies JzeJ adIN(y ® 1)(Uad'N)* and

w‘N a)|N

dd|N dd|N

(u|N (yOAa)(l) ®Aw|N(1)) = w‘N (Jy*Aw(1)®Aw|N(1))
ad
= Ua)‘JVN J® Jw|N)A$(e)
= J&;Aa;(e).
We then get that for all £ € H, z € M, the vector

(1 Ry Raayy Jgeda) Ve (€ ® 2A4 (1)
N

is equal to

ad|N

(1R|N%adw oV (0 ® 1) (Ua ™V )* )(SR.N B iy STJVN(zAw(l)QaAwlN(l)))

= bRy B s U 07200 (1) @ Ay (1))

=V (E®yzh0(1)).
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Therefore,
(1ri @ sy Jge5) Vi Woo (rhu (1) @ 0)

=V 1@ yIW*(C ®xAu(l))
=V 1@ y)T(x)(E ® Ap(1))
=V T(x)(¢ ® y°Au(1))
= a0V ® ¥y Ap(l))

= 000 (S B s Vs 0° Ao () @ Aoy (1))

zg(x)(zRW ® wi J3h5(@).

w|N
Thus, we get that (1R, QAKI) adWJaeJ&;)V:W*o = (Iry (15\3[) ady Jg€J5) G for all
e=y*®1l,andso G =V, W¥o. O

8.3 Theorem. Let G = (M,T',w,w) be a (von Neumann version of a) compact
quantum group, G1 a compact quantum subgroup, and N the quotient type co-ideal.
Then the von Neumann algebra M, equipped with the right Galois action (R|n , a) of
G Xad,y N constructed in 8.2 and the left Galois action 'y of G defined in 7.4, is an
imprimitivity bimodule which is a Morita equivalence between the compact quantum
group Gy and the measured quantum groupoid &(N, ad|y, ' |y, oy ).

Proof. Let x € M. Commutativity of the cells (1) and (2) in diagram (x) implies
that

(T Ry Fadyy 10)a(6) = (d @ DT ()
N

and applying (7 ® id) R|, *uad,, id to this relation, we get:
N

(T Ry gy 1)) = (d @ T (x),
N

which is the commutativity of the right Galois action (R|y, a) of G Xad y N and the
left Galois action I'; of Gj.

Moreover, we had got in 8.2 that the canonical operator-valued weight T, was the
Haar state w. Let w; be the Haar state of G;. Then the canonical operator-valued
weight T, is equal to (w; o  ® id)I", which is, in fact, a conditional expectation
from M into MT! = R(N). Composed with the state oy © R = w|p(n), we get
(w10 Q@ w)I' = w1 (w(1))w = w. Therefore, using 8.1.4, we get the result. O

8.4 Corollary. The measured quantum groupoid S/U;\(2) Mad o> qu constructed
q

in 7.4.5 is Morita equivalent to T.
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Proof. Apply 8.3 to 7.4.5. O

8.5 Corollary ([33]). Let G be a compact group and G a compact subgroup of G.
The the right action of G on G/ G defines a transformation groupoid (G/G1) v G
and this groupoid is Morita equivalent to G.

Proof. The canonical surjective x-homomorphism from L°°(G) onto L°°(G1) gives
to L°(G/Gq) a structure of a quotient type co-ideal. The restriction of the
coproduct I'zeo(g) to L°°(G/Gy) is just the right action of G on G/Gy, and
the measured quantum groupoid G xp L°°(G/G1) is the dual of the groupoid
(G/G1) v G. Therefore, by 7.1, its dual is just the abelian von Neumann algebra
L*®((G/Gy) v G), and, by 8.3, we get the result. O
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