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Abstract. In this article, whenG is a locally compact quantum group, we associate, to a braided-
commutative G-Yetter–Drinfel’d algebra .N; a;ba/ equipped with a normal faithful semi-finite
weight verifying some appropriate condition (in particular if it is invariant with respect to a, or
toba), a structure of a measured quantum groupoid. The dual structure is then given by .N;ba; a/.
Examples are given, especially the situation of a quotient type co-ideal of a compact quantum
group. This construction generalizes the standard construction of a transformation groupoid.
Most of the results were announced by the second author in 2011, at a conference in Warsaw.
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1. Introduction

1.1. Locally compact quantum groups. The theory of locally compact quantum
groups, developed by J. Kustermans and S. Vaes [22, 23], provides a comprehensive
framework for the study of quantum groups in the setting of C �-algebras and von
Neumann algebras. It includes a far reaching generalization of the classical Pontrjagin
duality of locally compact abelian groups, that covers all locally compact groups.
Namely, if G is a locally compact group, its dual bG will be the von Neumann
algebra L.G/ generated by the left regular representation �G of G, equipped with a
coproduct �G from L.G/ on L.G/˝L.G/ defined, for all s 2 G, by �G.�G.s// D
�G.s/˝ �G.s/, and with a normal semi-finite faithful weight, called the Plancherel
weight 'G , associated via the Tomita–Takesaki construction, to the left Hilbert
algebra defined by the algebra K.G/ of continuous functions with compact support
(with convolution as product), this weight 'G being left- and right-invariant with
respect to �G [38, VII, 3].

This theory builds onmany precedingworks, byG.Kac, G.Kac andL.Vainerman,
the first author and J.-M. Schwartz [18,19], S. Baaj andG. Skandalis [4], A.VanDaele,
�The second author was supported by the SFB 878 of the Deutsche Forschungsgemeinschaft.
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S. Woronowicz [47, 50, 51] and many others. See the monography written by the
second author for a survey of that theory [39], and the introduction of [19] for a
sketch of the historical background. It seems to have reached now a stable situation,
because it fits the needs of operator algebraists for many reasons:

First, the axioms of this theory are very simple and elegant: they can be given
in both C �-algebras and von Neumann algebras, and these two points of view are
equivalent, as A. Weil had shown it was the fact for groups (namely any measurable
group equippedwith a left-invariant positivemeasure bears a topologywhichmakes it
locally compact, and this measure is then the Haar measure [46]). In a von Neumann
setting, a locally compact quantum group is just a von Neumann algebra, equipped
with a co-associative coproduct, and two normal faithful semi-finite weights, one
left-invariant with respect to that coproduct, and one right-invariant. Then, many
other data are constructed, in particular a multiplicative unitary (as defined in [4])
which is manageable (as defined in [51]).

Second, all preceeding attemps [19, 50] appear as particular cases of locally
compact quantum groups; and many interesting examples were constructed [43, 48,
49].

Third, many constructions of harmonic analysis, or concerning group actions on
C �-algebras and von Neumann algebras, were generalized up to locally compact
quantum groups [41].

Finally, many constructions made by algebraists at the level of Hopf �-algebras, or
multipliers Hopf �-algebras can be generalized for locally compact quantum groups.
This is the case, for instance, for Drinfel’d double of a quantum group [10], and for
Yetter–Drinfel’d algebras which were well-known in an algebraic approach in [26].

1.2. Measured Quantum Groupoids. In two articles [44, 45], J.-M. Vallin has
introduced two notions (pseudo-multiplicative unitary, Hopf bimodule), in order to
generalize, to the groupoid case, the classical notions of multiplicative unitary [4]
and of a co-associative coproduct on a von Neumann algebra. Then, F. Lesieur [24],
starting from a Hopf bimodule, when there exist a left-invariant operator-valued
weight and a right-invariant operator-valued weight, mimicking in that wider setting
what was done in [22, 23], obtained a pseudo-multiplicative unitary, and called
“measured quantum groupoids” these objects. A new set of axioms had been given
in an appendix of [13]. In [13] and [14], most of the results given in [41] were
generalized up to measured quantum groupoids.

This theory, up to now, bears two defects:
First, it is only a theory in a von Neumann algebra setting. The second author

had made many attemps in order to provide a C �-algebra version of it (see [39] for a
survey); these attemps were fruitful, but not sufficient to complete a theory equivalent
to the von Neumann one.

Second, there is a lack of interesting examples. For instance, the transformation
groupoid (i.e. the groupoid given by a locally compact group right acting on a locally
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compact space), which is the first non-trivial example of a groupoid [32, 1.2.a], had
no quantum analog up to this article.

1.3. Measured quantum transformation groupoid. This article is devoted to the
construction of a family of examples of measured quantum groupoids. Most of the
results were announced in [40]. The key point, is, when looking at a transformation
groupoid given by a locally compact group G having a right action a on a locally
compact space X , to add the fact that the dual bG is trivially right acting also
on L1.X/, and that the triple .L1.X/; a; id/ is a G-Yetter–Drinfel’d algebra, and,
more precisely, a braided-commutative G-Yetter–Drinfel’d algebra.

The aim of this article is to generalize the construction of transformation
groupoids, using this remark which shows that this generalization is not to be found
for any action of a locally compact quantum group, but for a braided-commutative
G-Yetter–Drinfel’d algebra.

Then, for any locally compact quantum group G, looking at any braided-
commutative Yetter–Drinfel’d algebra .N; a;ba/, it is possible to put a structure
of Hopf bimodule on the crossed product G Ëa N , equipped with a left-invariant
operator-valued weight, and with a right-invariant operator-valued weight. In order
to get a measured quantum groupoid, one has to choose on N (which is the basis of
the measured quantum groupoid) a normal faithful semi-finite weight � that satisfies
some condition with respect to the action a; for example, � could be invariant with
respect to a. It appears then that the dual measured quantum groupoid is the structure
associated to the braided-commutative Yetter–Drinfel’d algebra .N;ba; a/.

In an algebraic framework, similar results were obtained in [25] and [3]. It is also
interesting to notice that, as for locally compact quantum groups, the framework of
measured quantum groupoids appears to be a good structure in which the algebraic
results can be generalized.

The article is organized as follows:
In Section 2 are recalled all the necessary results needed: namely locally compact

quantum groups (2.1), actions of locally compact quantum groups on a von Neumann
algebra (2.2), Drinfel’d double of a locally compact quantum group (2.3), Yetter–
Drinfel’d algebras (2.4), and braided-commutative Yetter–Drinfel’d algebras (2.5).

In Section 3, we study relatively invariant weights with respect to an action, and
then invariant weights for a Yetter–Drinfel’d algebra, and prove that such a weight
exists when the von Neumann algebra N is properly infinite.

In Section 4, we construct the Hopf–von Neumann structure associated to a
braided-commutative G-Yetter–Drinfel’d algebra. The precise definition of such a
structure is given in 4.1 and 4.2. We construct also a co-inverse of this Hopf–von
Neumann structure.

In Section 5, we study the conditions to put on theweight � to construct ameasured
quantum groupoid associated to a braided-commutative G-Yetter–Drinfel’d algebra.
These conditions hold, in particular, if the weight � is invariant with respect to a. The
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precise definition and properties of measured quantum groupoids are given in 5.1,
5.2, 5.3.

In Section 6, we obtain the dual of this measured quantum groupoid, which is the
measured quantum groupoid obtained when permuting the actions a andba.

Finally, in Section 7, we give several examples of measured quantum groupoids
which can be constructed this way, and in Section 8, we study more carefully the
case of a quotient type co-ideal of a compact quantum group: in that situation, one
of the measured quantum groupoids constructed in 7.4.4 is Morita equivalent to the
quantum subgroup.

2. Preliminaries

2.1. Locally compact quantum groups. A quadruplet G D .M; �; ';  / is a
locally compact quantum group if:

(i) M is a von Neumann algebra,
(ii) � is an injective unital �-homomorphism from M into the von Neumann

tensor productM ˝M , called a coproduct, satisfying .�˝ id/� D .id˝�/�
(the coproduct is called co-associative),

(iii) ' is a normal faithful semi-finite weight onMC which is left-invariant, i.e.,

.id˝ '/�.x/ D '.x/1M for all x 2MC' I

(iv)  is a normal faithful semi-finite weight onMC which is right-invariant, i.e.,

. ˝ id/�.x/ D  .x/1M for all x 2MC :

In this definition (and in the following),˝means the vonNeumann tensor product,
.id˝'/ (resp. . ˝ id/) is an operator-valued weight fromM ˝M toM ˝C (resp.
C ˝M ). This is the definition of the von Neumann version of a locally compact
quantum group [23]. See also, of course [22].

We shall use the usual data H' , J' , �' of Tomita–Takesaki theory associated
to the weight ' (see [38, Chap. 6–9], [36, Chap. 10], [35, Chap. 1–2]), which, for
simplification, we write asH , J ,�. We regardM as a von Neumann algebra onH'
and identify the opposite von Neumann algebraM o with the commutantM 0.

On the Hilbert tensor product H ˝ H , Kustermanns and Vaes constructed a
unitary W , called the fundamental unitary, which satisfies the pentagonal equation

W23W12 D W12W13W23;

where, we use, as usual, the leg-numbering notation. This unitary contains all
the data of G: M is the weak closure of the vector space (which is an algebra)
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f.id˝ !/.W / W ! 2 B.H/�g and � is given by [22, 3.17]

�.x/ D W �.1˝ x/W for all x 2M;

and
.id˝ !J'ƒ'.y�1 y2/;ƒ'.x//.W / D .id˝ !J'ƒ'.y2/;J'.y1//�.x

�/

for allx, y1, y2 inN' . It is then possible to construct an unital anti-�-automorphismR
ofM which is involutive (R2 D id), defined by

RŒ.id˝ !�;�/.W /� D .id˝ !J�;J �/.W / for all �; � 2 H:

This map is a co-inverse (often called the unitary antipode), which means that

� ıR D & ı .R˝R/ ı �;

where & is the flip ofM ˝M [22, 5.26]. It is straightforward to get that ' ı R is a
right-invariant normal semi-finite faithful weight and, thanks to a unicity theorem, is
therefore proportional to  . We shall always suppose that  D ' ıR.

Associated to .M; �/ is a dual locally compact quantum group .cM;b�/,
where cM is the weak closure of the vector space (which is an algebra)
f.! ˝ id/.W / W ! 2 B.H/�g, and b� is given byb�.y/ D �W.y ˝ 1/W �� for all y 2cM:

Here, � denotes the flip ofH ˝H . Let

k!k' D supfj!.x�/j W x 2 N' ; '.x
�x/ � 1g; I' D f! 2M� W k!k' <1g:

Then, it is possible to define a normal semi-finite faithful weight b' oncM such thatb'..! ˝ id/.W /�.! ˝ id/.W // D k!k2' [22, 8.13], and it is possible to prove thatb'
is left-invariant with respect to b� [22, 8.15]. Moreover, the application y 7! Jy�J

is a unital anti-�-automorphism bR of cM , which is involutive (bR2 D id) and is a
co-inverse. Therefore,b' ı bR is right-invariant with respect to b� .

Therefore bG D .cM;b�;b';b' ı bR/ is a locally compact quantum group, called
the dual of G. Its multiplicative unitary bW is equal to �W �� . The bidual locally
compact quantum group bbG is equal to G. In particular, the construction of the dual
weight, when applied to bG gives that, for any ! incM �, .id˝!/.W �/ belongs toN'

if and only if ! belongs to Ib' , and we have then kƒ'..id˝ !/.W �//k D k!kb' .
The Hilbert space Hb' is isomorphic to (and will be identified with) H . For

simplification, we write bJ for Jb' and b� for �b' ; we have, for all x 2 M , R.x/ DbJx�bJ [23, 2.1]. The operator W satisfies

.b�it ˝�it /W.b��it ˝��it / D W
and .bJ ˝ J /W.bJ ˝ J / D W �.
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Associated to .M; �/ is a scaling group, which is a one-parameter group �t
of automorphisms of M , such that [23, 2.1], for all x 2 M , t 2 R, we have
�t .x/ D b�itxb��it , satisfying�ı�t D .�t˝�t /� [22, 5.12],Rı�t D �tıR [22, 5.21],
and � ı�'t D .�t˝�

'
t /� [22, 5.38] (and, therefore, � ı�'ıRt D .�

'ıR
t ˝��t /� [22,

5.17]).
The application S D R ı ��i=2 is called the antipode of G.
The modular groups of the weights ' and ' ı R commute, which leads to the

definition of the scaling constant � 2 R and the modulus, which is a positive self-
adjoint operator ı affiliated toM , such that .D' ıR W D'/t D �it

2=2ıit .
We have ' ı �t D �t', and the canonical implementation of �t is given by a

positive non-singular operatorP defined byP itƒ'.x/ D �t=2ƒ'.� t .x//. Moreover,
the operator b� is equal to the closure of PJı�1J , and the operatorbı is equal to the
closure of P�1J ıJ ı�1��1 ([23, 2.1] and [54, 2.5]).

We have bJJ D �i=4JbJ [23, 2.12]. The operator bP is equal to P , the scaling
constantb� is equal to ��1. Moreover, we have [54, 3.4]

W.b�it ˝ b�it /W � D ıitb�it ˝ b�it :
A representation ofG on aHilbert spaceK is a unitaryU 2M˝B.K/, satisfying

.� ˝ id/.U / D U23U13. It is well known that such a representation satisfies that, for
any �, � in K, the operator .id˝ !�;�/.U / belongs to D.S/ and that

SŒ.id˝ !�;�/.U /� D .id˝ !�;�/.U �/

(a proof for measured quantum groupoids can be found in [13, 5.10]).
Other locally compact quantum groups areGo D .M; &ı�; 'ıR; '/ (the opposite

locally compact quantum group) and Gc D .M 0; .j ˝ j / ı � ı j; ' ı j; ' ı R ı j /

(the commutant locally compact quantum group) where j.x/ D J'x
�J' is the

canonical anti-�-isomorphism betweenM andM 0 given by Tomita–Takesaki theory.
It is easy to get that cGo D .bG/c and cGc D .bG/o [23, 4.2]. We have M \cM D

M 0 \cM D M \cM 0 D M 0 \cM 0 D C. The multiplicative unitary W o of Go is
equal to .bJ ˝ bJ /W.bJ ˝ bJ /, and the multiplicative unitary W c of Gc is equal to
.J ˝ J /W.J ˝ J /.

Moreover, the norm closure of the space f.id ˝ !/.W / W ! 2 B.H/�g is a
C �-algebra denoted C r

0.G/, which is invariant under R, and, together with the
restrictions of � , ' and ' ı R will give the reduced C �-algebraic locally compact
quantum group [22,23]. In [21] was defined also a universal versionC u

0 .G/, which is
equipped with a coproduct �u. There exists a canonical surjective �-homomorphism
�G from C u

0 .G/ to C r
0.G/, such that .�G ˝ �G/�u D � ı �G. Then, ' ı �G

(resp. ' ı R ı �G) is a (non-faithful) weight on C u
0 .G/ which is left-invariant (resp.

right-invariant).
If G is a locally compact group equipped with a left Haar measure ds, then, by

duality of the Banach algebra structure of L1.G; ds/, it is possible to define a co-
associative coproduct �aG on L1.G; ds/ and to give to .L1.G; ds/; �aG ; ds; ds

�1/
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a structure of locally compact quantum group, called G again; any locally compact
quantum group whose underlying von Neumann algebra is abelian is of that
type. Then, its dual locally compact quantum group bG is .L.G/; �sG ; 'G ; 'G//,
where L.G/ is the von Neumann algebra generated by the left regular represen-
tation �G of G on L2.G; ds/, �sG is defined, for all s 2 G, by �sG.�G.s// D
�G.s/ ˝ �G.s/, and 'G is defined, for any f in the algebra K.G/ of continuous
functions with compact support, by 'G.

R
G
f .s/�G.s/ds/ D f .e/, where e is the

neutral element of G. Any locally compact quantum group which is symmetric (i.e.
such that & ı � D �) is of that type.

Let .A; �/ be a compact quantum group, that is, A is a unital C �-algebra and �
is a coassociative coproduct from A to A˝minA satisfying the cancellation property,
i.e., .A˝min1/�.A/ and .1˝minA/�.A/ are dense inA˝minA [50]. Then, there exists
a left- and right-invariant state ! onA, and we can always restrict to the case when !
is faithful. Moreover, � extends to a normal �-homomorphism from �!.A/

00 to the
(von Neumann) tensor product �!.A/00 ˝ �!.A/00, which we shall still denote by � ,
for simplification, and ! can be extended to a normal faithful state on �!.A/00, we
shall still denote ! for simplification. Then, .�!.A/00; �; !; !/ is a locally compact
quantum group, which we shall call the von Neumann version of .A; �/. Its dual is
called a discrete quantum group.

2.2. Left actions of a locally compact quantum group. A left action of a locally
compact quantum group G on a von Neumann algebra N is an injective unital
�-homomorphism a from N into the von Neumann tensor productM ˝N such that

.id˝ a/a D .� ˝ id/a;

where id means the identity onM or on N as well [41, 1.1].
We shall denote by N a the sub-algebra of N such that x 2 N a if and only if

a.x/ D 1 ˝ x [41, .2]. If N a D C, the action a is called ergodic. The formula
Ta D .'ıR˝id/a defines a normal faithful operator-valued weight fromN ontoN a.
We shall say that a is integrable if and only if this operator-valued weight is semi-
finite [41, 1.3, 1.4].

To any left action is associated [41, 2.1] a crossed productGËaN D.a.N /[cM˝C/00
on which bGo acts canonically by a left action Qa, called the dual action [41, 2.2], as
follows:

Qa.X/ D .bW o�
˝ 1/.1˝X/.bW o

˝ 1/ for all X 2 G Ëa N I

in particular, for any x 2 N and y 2cM ,

Qa.a.x// D 1˝ a.x/; Qa.y ˝ 1/ D b�o.y/˝ 1:

Moreover, we have .G Ëa N/
Qa D a.N / [41, 2.7].
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The operator-valuedweightTQa D .b'˝id/ıQa is semi-finite [41, 2.5], which allows,
for any normal faithful semi-finite weight � on N , to define a lifted or dual normal
faithful semi-finite weight Q� on G Ëa N by Q� D � ı a�1 ı TQa [41, 3.1]. The Hilbert
spaceHQ� is canonically isomorphic to (and will be identified with) the Hilbert tensor
product H ˝ H� [41, 3.4 and 3.10], and this isomorphism identifies, for x 2 N�

and y 2 Nb' , the vector ƒQ�..y ˝ 1/a.x// with ƒb'.y/˝ƒ�.x/. Moreover, for any
X 2 NQ� , there exists a family of operatorsXi of the formXi D †j .yi;j ˝1/a.xi;j /,
such that Xi is weakly converging to X andƒQ�.Xi / is converging toƒQ�.X/ [41, 3.4
and 3.10].

Then
U a
� D JQ�.

bJ ˝ J�/
is a unitary which belongs toM ˝B.H�/, satisfies .� ˝ id/.U a

� / D .U
a
� /23.U

a
� /13

and implements a in the sense that a.x/ D U a
� .1˝ x/.U

a
� /
� for all x 2 N [41, 3.6,

3.7 and 4.4]. The operator U a
� is called the canonical implementation of a on H� .

Moreover, we have, trivially, .U a
� /
� D .bJ ˝ J�/JQ� D .bJ ˝ J�/U a

� .
bJ ˝ J�/, and we

get that
JQ�ƒQ�..y ˝ 1/a.x// D U

a
� .
bJƒb'.y/˝ J�ƒ�.x//:

If we take another normal faithful semi-finite weight  onN , there exists a unitary u
fromH� ontoH which intertwines the standard representations �� and � , and we
have then U a

 D .1˝ u/U
a
� .1˝ u

�/ [41, 4.1].
The application .&˝ id/.id˝a/ is a left action ofG onB.H/˝N . Moreover, in

the proof of [41, 4.4], we find that .�˝ id/U .&˝id/.id˝a/T r˝� .�˝ id/ D 1˝U a
� , where �

is the flip fromH ˝H� toH� ˝H , or vice versa.
A right action of a locally compact quantum G on a von Neumann algebra N is

an injective unital �-homomorphism a fromN into the von Neumann tensor product
N ˝M such that

.a˝ id/a D .id˝ �/a:

Then, &a is a left action ofGo onN (where & is the flip fromN ˝M ontoM ˝N ).
In [54, 2.4] and [2, Appendix] is defined, for any normal faithful semi-finite

weight � on N and t 2 R, the Radon–Nykodym derivative

.D� ı a W D�/t D �
it
Q� .
b��it ˝��it� /:

This unitary, denotedDt for simplification, belongs toM ˝N and

.� ˝ id/.Dt / D .id˝ a/.Dt /.1˝Dt /;

([2, 10.3] or [53, 3.4] and [54, 3.7]). Moreover, it is straightorward to get

DtCs D Dt .�t ˝ �
�
t /.Ds/ D Ds.�s ˝ �

�
s /.Dt /:
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2.3. Drinfel’ddouble of a locally compact quantumgroup. LetGD.M; �; '; 'ıR/
be a locally compact quantum group,bG D .cM;b�;b';b'ıbR/ its dual, then it is possible
to construct [2, 27, 52] another locally compact quantum group

D.G/ D .M ˝cM;�D; ' ˝b' ı bR; ' ˝b' ı bR/;
called the Drinfel’d double of G, where �D is defined by

�D.x ˝ y/ D Ad.1˝ �W ˝ 1/.�.x/˝b�.y//
for all x 2 M , y 2 cM . Here and throughout this paper, given a unitary U on a
Hilbert space H, we denote by Ad.U / the automorphism of B.H/ defined as usual
by x 7! UxU � for all x 2 B.H/.

The co-inverse RD ofD.G/ is given by

RD.x ˝ y/ D Ad.W �/.R.x/˝ bR.y//:
This locally compact quantum group is always unimodular, which means that the
left-invariant weight is also right-invariant. In the sense of [42, 2.9], bG and G are
closed quantum subgroups of 1D.G/, which means that the injection ofcM (resp. M )
into the underlying von Neumann algebra of its dual 1D.G/ preserve the coproduct.
(See 7.4.1 for more details about this definition.)

2.4. Yetter–Drinfel’d algebras. Let G D .M; �; '; ' ı R/ be a locally compact
quantum group andbG D .cM;b�;b';b'ıbR/ its dual. AG-Yetter–Drinfel’d algebra [28]
is a von Neumann algebra N with a left action a of G and a left actionba of bG such
that

.id˝ a/ba.x/ D Ad.�W ˝ 1/.id˝ba/a.x/ for all x 2 N:

One should remark that if .N; a;ba/ is aG-Yetter–Drinfel’d algebra, then .N;ba; a/
is a bG-Yetter–Drinfel’d algebra.

If B is a von Neumann sub-algebra of N such that a.B/ � M ˝ B andba.B/ �cM ˝ B , then, it is clear that the restriction ajB (resp. bajB ) is a left action of G
(resp. bG) on B , and that .B; ajB ;bajB/ is a Yetter–Drinfel’d algebra, which we shall
call a sub-G-Yetter–Drinfel’d algebra of .N; a;ba/.
2.4.1 Theorem ([28, 3.2]). LetG D .M; �; '; ' ıR/ be a locally compact quantum
group, bG D .cM;b�;b';b' ı bR/ its dual, D.G/ its Drinfel’d double and N a von
Neumann algebra equipped with a left action a of G and a left actionba of bG. Then
the following conditions are equivalent:

(i) .N; a;ba/ is a G-Yetter–Drinfel’d algebra;

(ii) .id˝ba/a is a left action ofD.G/ on N .
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2.4.2 Theorem ([28, 3.2]). LetG D .M; �; '; ' ıR/ be a locally compact quantum
group, bG D .cM;b�;b';b' ı bR/ its dual, D.G/ its Drinfeld’s double and aD a left
action of D.G/ on a von Neumann algebra N . Then there exist a left action a of G
on N and a left actionba of bG on N such that aD D .id ˝ba/a. These actions are
determined by the conditions

.id˝ id˝ a/aD D Ad.1˝ �W ˝ 1/.� ˝ id˝ id/aD;

.id˝ id˝ba/aD D .id˝b� ˝ id/aD;

and .N; a;ba/ is a G-Yetter–Drinfel’d algebra.

2.4.3 Proposition. With the notation of 2.4.2, we have N aD D N a \Nba.
Proof. As aD D .id˝ba/a, we get thatN a\Nba � N aD . On the other hand, using the
formula .id˝id˝ba/aD D .id˝b�˝id/aD , we get that every x 2 N aD belongs toNba.
Moreover, using the formula .id˝ id˝ a/aD D Ad.1˝ �W ˝ 1/.� ˝ id˝ id/aD ,
we then get that every x 2 N aD also belongs to N a.

2.4.4 Proposition. Let G D .M; �; '; ' ı R/ be a locally compact quantum group,bG D .cM;b�;b';b' ı bR/ its dual, .N; a;ba/ a G-Yetter–Drinfel’d algebra and � a
normal faithful semi-finite weight on N . Let t 2 R, Dt D .D� ı a W D�/t andbDt D .D� ıba W D�/t . Then

Ad.�W ˝ 1/Œ.id˝ba/.Dt /.1˝ bDt /� D .id˝ a/.bDt /.1˝Dt /;

and if Q� andeO� denote the weights on G Ëa N and bG Ëba N , respectively, dual to �,
then

Ad.�W ˝ 1/Œ.id˝ba/.Dt /.b�it ˝�iteO� /� D .id˝ a/.bDt /.�
it
˝�it

Q� /:

Proof. As .�t ˝b� t /.W / D W for all t 2 R, the first equation is a straightforward
application of [2, 10.4]. The second one follows easily using the relations

.b�it ˝�iteO� /.W �� ˝ 1/ D .1˝ bDt /.b�it ˝�it ˝�it� /.W �� ˝ 1/
D .1˝ bDt /.W

�� ˝ 1/.�it ˝ b�it ˝�it� /
andDt .b�it ˝�it� / D �itQ� .
2.4.5. Basic example and De Commer’s construction [7]. We can consider the
coproduct �D ofD.G/ as a left action ofD.G/ onM ˝cM . Using 2.4.1, we get that
there exist a left action b of G onM ˝cM and a left actionbb of bG onM ˝cM such
that �D D .id˝bb/b. We easily obtain that for all X 2M ˝cM ,

b.X/ D .� ˝ id/.X/; bb.X/ D Ad.�W ˝ 1/Œ.id˝b�/.X/�:
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Therefore, b andbb appear as the actions associated by [7, 6.5.2] to the closed quantum
subgroups G and bG of 1D.G/.

De Commer’s construction allows us to make a link between this basic example
and any Yetter–Drinfel’d algebra; namely, if .N; a;ba/ is a Yetter–Drinfel’d algebra,
let us define aD D .id ˝ba/a the left action of D.G/ on N , and, given a normal,
semi-finite faithful weight � onN , letU aD

� ,U a
� ,Uba� be the canonical implementation

of aD , a,ba. In the sense of De Commer, a andba are “restrictions” (toG and bG) of aD
and, using [7, 6.5.3 and 6.5.4], we get that

.b˝ id/.U aD
� / D .U a

� /14.U
aD
� /234; .bb˝ id/.U aD

� / D .Uba� /14.U aD
� /234:

In particular,

.U aD
� /125.U

aD
� /345 D .�D ˝ id/.U aD

� /

D .id˝bb˝ id/.b˝ id/.U aD
� /

D .id˝bb˝ id/Œ.U a
� /14.U

aD
� /234� D .U

a
� /15.U

ba
� /25.U

aD
� /345;

whenceU aD
� D .U a

� /23.U
ba
� /13. As this result depends on an unpublished part of [7],

we shall give a different proof of this formula in 3.8, using the techniques of invariant
weights, and then give several technical corollaries of this fact which will be used
throughout this paper.

2.5. Braided-commutativity of Yetter–Drinfel’d algebras.
2.5.1 Definition. LetG be a locally compact quantum group and a a left action ofG
on a von Neumann algebra N . For any x 2 N , let us define

ac.xo/ D .j ˝ :o/a.x/ D Ad.J ˝ J�/Œa.x/��;

ao.xo/ D .R˝ :o/a.x/ D Ad.bJ ˝ J�/Œa.x/��:
Then ac is a left action of Gc on N o, and ao is a left action of Go on N o.

Let � be a normal semi-finite faithful weight on N and �o the normal semi-
finite faithful weight on N o defined by �o.xo/ D �.x/ for any x 2 NC. Let
Dt D .D� ı a W D�/t , Do

t D .D�o ı ao W D�o/t , which belongs to M ˝ N o, and
Dc
t D D.�

o ı ac W D�o/t , which belongs toM 0 ˝N o. Then for all t 2 R,

Do
�t D Ad.bJ ˝ J�/ŒDt �; Dc

�t D Ad.J ˝ J�/ŒDt �:

2.5.2 Lemma. Let G be a locally compact quantum group, a a left action of G on
a von Neumann algebra N , � a normal faithful semi-finite weight on N , and U a

� the
standard implementation of a. Then:

(i) .G Ëa N/
0 D U a

� .G
o Ëao N

o/.U a
� /
�;
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(ii) .U a
� /
� is the standard implementation of the left action ao on N o with respect

to the opposite weight �o. In particular, .U a
� /
� is a representation of Go and

ao.xo/ D .U a
� /
�.1˝ xo/U a

� for all x 2 N .

(iii) �it
Q�
U a
� D U

a
�D

o
�t .
b�it˝�it� / andAd.b�it˝�it� /Œ.U a

� /
�� D .Do

�t /
�.U a

� /
�Dt

for all t 2 R.

Proof. (i) The relation U a
� D JQ�.bJ ˝ J�/ and the definition of the crossed

products imply

U a
� .G

o Ëao N
o/.U a

� /
�
D JQ�.bJ ˝ J�/..bJcMbJ ˝ 1H� / [ ao.N o//00.bJ ˝ J�/JQ�
D JQ�.G Ëa N/JQ�

D .G Ëa N/
0:

(ii) Denote by � the weight on Go Ëao N
o dual to �o. By §3 in [41], there exists

a GNS-map ƒ�WN� ! H ˝H� determined by

ƒ�..bJybJ ˝ 1H� /ao.xo/�/ D bJbƒ.y/˝ J�ƒ�.x/ (1)

for all y 2 Nb� and x 2 N� , and the standard implementation U ao
�o of ao with respect

to �o is given by U ao
�o D J�.

bJ ˝ J�/.
On the other hand, the GNS-mapƒQ� for the dual weight Q� yields a GNS-mapƒQ�o

for the opposite Q�o on the commutant JQ�.M Ëa N/JQ� , determined by

ƒQ�o.JQ�.y ˝ 1/a.x/JQ�/ D JQ�ƒQ�..y ˝ 1/a.x// D JQ�.bƒ.y/˝ƒ�.x// (2)

for y 2 Nb� and x 2 N� .

Comparing (1) with (2) and using the relationU a
� D JQ�.

bJ˝J�/, we can conclude
that

ƒ�..U
a
� /
�aU a

� / D .U
a
� /
�ƒQ�o.a/

for all a 2 NQ�o . Consequently, J� D .U a
� /
�JQ�U

a
� andU ao

�o D J�.
bJ ˝J�/ D .U a

� /
�.

(iii) Using 2.2, we have:

�it
Q� U

a
� .
b��it ˝��it� / D �it

Q� JQ�.
bJ ˝ J�/.b��it ˝��it� /

D JQ��
it
Q� .
bJ ˝ J�/.b��it ˝��it� /

D JQ�Dt .b�it ˝�it� /.bJ ˝ J�/.b��it ˝��it� /

D JQ�.bJ ˝ J�/Do
�t

D U a
�D

o
�t

from which we get the first formula, and then the second one by taking the adjoints.
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2.5.3 Definition. Let G be a locally compact quantum group and .N; a;ba/ a
G-Yetter–Drinfel’d algebra. Since Ad.bJJ / D Ad.JbJ /, the following two properties
are equivalent:

(i) ac.N o/ andbac.N o/ commute;
(ii) ao.N o/ andbao.N o/ commute;

We shall say that .N; a;ba/ is braided-commutative if these conditions are fulfilled.
It is clear that any sub-G-Yetter–Drinfel’d algebra of a braided-commutative

G-Yetter–Drinfel’d algebra is also braided-commutative.
2.5.4 Theorem ( [40]). Let G be a locally compact quantum group, .N; a;ba/ a
G-Yetter–Drinfel’d algebra, � a normal faithful semi-finite weight on N , and U a

� the
standard implementation of a. Define an injective anti-�-homomorphism ˇ by

ˇ.x/ D U a
�bao.xo/.U a

� /
�
D Ad.U a

� .U
ba
� /
�/Œ1˝ J�x

�J� � for all x 2 N:

Then:

(i) ˇ.N / commutes with a.N /.
(ii) .N; a;ba/ is braided-commutative if and only if ˇ.N / � G Ëa N .

Proof. (i) The two formulas for ˇ.x/ coincide by Lemma 2.5.2 (ii), and clearly,
ˇ.N / � U a

� .
cM ˝N o/.U a

� /
� commutes with a.N / D U a

� .1˝N/.U
a
� /
�.

(ii) Using Lemma 2.5.2 (i), we see that ˇ.N / D U a
�bao.N o/.U a

� /
� lies inGËaN

if and only if it commutes with .G Ëa N/
0 D U a

� .G
o Ëao N

o/.U a
� /
�, that is, if

and only if bao.N o/ commutes with bJcMbJ ˝ 1H� and with ao.N o/. But sincebao.N o/ �cM ˝N o, the first condition is always satisfied.

2.5.5 Proposition. Let G be a locally compact quantum group and .N; a;ba/
a braided-commutative G-Yetter–Drinfel’d algebra. Then N a � Z.N/ and
Nba � Z.N/.
Proof. Using 2.5.1, we get that the algebra 1˝ .N a/o commutes withbao.N o/, and,
therefore, that 1 ˝ N a commutes withba.N /. As it commutes with B.H/ ˝ 1, it
will commute with B.H/˝N , by [41, Th. 2.6]. This is the first result. Applying it
to the braided-commutative bG-Yetter–Drinfel’d algebra .N;ba; a/, we get the second
result.

3. Invariant weights on Yetter–Drinfel’d algebras

In this chapter, we recall the definition (3.1) and basic properties (3.2), (3.3) of a
normal semi-finite faithful weight on a von Neumann algebra N , relatively invariant
with respect to a left action a of a locally compact quantum group G on N . Then,
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we study the case of an invariant weight on a Yetter–Drinfel’d algebra .N; a;ba/ (3.4),
(3.5), and we prove that if N is properly infinite, there exists such a weight (3.10).
3.1 Definition. Let G be a locally compact quantum group and a a left action of G
on a von Neumann algebraN . Let k be a positive invertible operator affiliated toM .
A normal faithful semi-finite weight � on N is said to be k-invariant under a if for
all x 2 NC,

.id˝ �/a.x/ D �.x/k:

Applying � to this formula, one gets �.k/ D k ˝ k, whence kit is a (one-
dimensional) representation of G for all t 2 R. So, kit belongs to the von Neumann
subalgebra I.M/ ofM generated by all unitaries u ofM such that �.u/ D u˝ u.
As I.M/ is globally invariant by �t and R, using [2, 10.5], we get that it is a locally
compact quantum group, whose scaling group will be the restriction of �t to I.M/.
Since this locally compact quantum group is cocommutative, we therefore get that
the restriction of �t to I.M/ is trivial, fromwhich we get that �t .k/ D k for all t 2 R.

This property implies that P and k (resp. b� and k) strongly commute. Therefore
their product kP (resp. kb�) is closable, and its closure will be denoted again kP
(resp. kb�).

It is proved in [54, 4.1] that � is k-invariant if and only if, for all t 2 R, we have
.D� ı a W D�/t D k

�it ˝ 1 (or, equivalently, �it
Q�
D k�itb�it ˝�it� ).

If k D 1, we shall say that � is invariant under a.
3.2 Proposition. Let G be a locally compact quantum group, a a left action of G on
a von Neumann algebraN , and �1 and �2 two k-invariant normal faithful semi-finite
weights on N . Then .D�1 W D�2/t belongs to N a for all t 2 R.

Proof. For k D 1, this result had been proved in [14, 7.8] for right actions ofmeasured
quantum groupoids. To get it for left actions of locally compact quantum groups is
just a translation. The generalization for any k is left to the reader (see [41, 3.9]).

3.3 Proposition. Let G be a locally compact quantum group, a a left action of G
on a von Neumann algebraN , and � a k-invariant faithful normal semi-finite weight
on N . Then:

(i) a.��t .x// D .Ad k�it ı �t ˝ ��t /a.x/ for all x 2 N and t 2 R;
(ii) for all x 2 N� , � 2 D.k�1=2/ and � 2 H , .!k�1=2�;� ˝ id/a.x/ belongs

to N� , and the canonical implementation U a
� is given by

.!�;� ˝ id/.U a
� /ƒ�.x/ D ƒ� Œ.!k�1=2�;� ˝ id/a.x/�:

Proof. (i) Since �it
Q�
D k�itb�it ˝�it� ,

a.��t .x// D �
Q�
t .a.x// D .k

�itb�it ˝�it� /a.x/.b��itkit ˝��it� /

for all t 2 R.
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(ii) The first result of (ii) is proved (for k D ı�1) in [41, 2.4], and the general
case can be proved the same way.

3.4 Theorem. Let G be a locally compact quantum group, .N; a;ba/ a G-Yetter–
Drinfel’d algebra, aD D .id˝ba/a the action of D.G/ introduced in 2.4.1, and � a
faithful normal semi-finite weight onN . Then the following conditions are equivalent:

(i) the weight � is invariant under a and invariant underba.
(ii) the weight � is invariant under aD .

Proof. The fact that (i) implies (ii) is trivial. Suppose that (ii) holds. Choose a
state ! in cM � and define �0 D .! ˝ �/ba. As .id ˝ id ˝ �/aD D �, we get that
.id˝ �0/a D �.

But

.id˝ id˝ �0/aD D .id˝ id˝ .! ˝ �/ba/.id˝ba/a
D .id˝ id˝ ! ˝ �/.id˝b� ˝ id/.id˝ba/a;

and, for any state !0 incM �,
.id˝ !0 ˝ �0/aD D .id˝ .!0 ˝ !/ ıb� ˝ �/aD D �:

Therefore, by linearity, we get that .id˝ id˝ �0/aD D �. On the other hand,

.id˝ id˝ �0/aD D Ad.W ��/.id˝ id˝ �0/.id˝ a/ba
D Ad.W ��/.id˝ .id˝ �0/a/ba
D Ad.W ��/.id˝ �/ba

But, as .id˝ id˝�0/aD D �, we get that � D .id˝�/ba, and, therefore, � is invariant
underba. So, we get that �0 D �, and � is invariant under a.
3.5 Definition. Let G be a locally compact quantum group and .N; a;ba/ a
G-Yetter–Drinfel’d algebra. A normal faithful semi-finite weight onN will be called
Yetter–Drinfel’d invariant if it satisfies one of the equivalent conditions of 3.4.

3.6 Theorem. Let G be a locally compact quantum group, .N; a;ba/ a G-Yetter–
Drinfel’d algebra and aD D .id˝ba/a the action ofD.G/ introduced in 2.4.1. If aD
is integrable, then there exists a Yetter–Drinfel’d invariant normal faithful semi-finite
weight on N .

Proof. Clear by [41, 2.5], using the fact that the locally compact quantumgroupD.G/
is unimodular.
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3.7 Corollary. Let G D .M; �; ';  / be a locally compact quantum group
and .N; a;ba/ a G-Yetter–Drinfel’d algebra. Denote by H the Hilbert space
L2.M/ D L2.cM/. Then .B.H/ ˝ N; .& ˝ id/.id ˝ ˛/; .& ˝ id/.id ˝ b̨// is a
G-Yetter–Drinfel’d algebra which has a normal semi-finite faithful Yetter–Drinfel’d
invariant weight.

Proof. Let aD D .id˝ba/a be the action ofD.G/ introduced in 2.4.1. Using [41, 2.6],
we know that the action .& ˝ id/.id˝ aD/ is a left action ofD.G/ which is cocycle-
equivalent to the bidual action of aD . As this bidual action is integrable [41, 2.5], it
has a Yetter–Drinfel’d invariant semi-finite faithful weight by 3.6. Using [41, 2.6.3],
one gets that this weight is invariant as well under .& ˝ id/.id˝ aD/.

3.8 Corollary. Let G be a locally compact quantum group, .N; a;ba/ a G-Yetter–
Drinfel’d algebra, � a normal semi-finite faithful weight on N , U a

� and Uba� the
canonical implementations of the actions a andba, and ˇ the anti-�-homomorphism
introduced in 2.5.4. Then:

(i) the unitary implementations of the actions a, ba and aD are linked by the
relation

U aD
� D .U a

� /23.U
ba
� /13I

(ii) .U a
� /13.U

ba
� /23 D W12.U

ba
� /23.U

a
� /13W

�
12;

(iii) Ad.1˝ Uba� .U a
� /
�/ŒW ˝ 1� D .U a

� /
�
13W12 D .U

a
� /
�
23W

�
12.U

a
� /23;

(iv) writing ˇ� for the map xo 7! ˇ.x/, we have

Ad.W ˝ 1/Œ1˝ ˇ.x/� D .id˝ ˇ�/.ao.xo// for all x 2 N:

Proof. (i) Suppose first that there is a faithful semi-finite Yetter–Drinfel’d
invariant weight �0 for .N; a;ba/. Then, for �1, �2, �1, �2 in H , x 2 N� , we
get, using 3.3,

.!�1˝�2;�1˝�2 ˝ id/.U aD
�0 /ƒ�0.x/ D ƒ�0 Œ.!�1˝�2;�1˝�2 ˝ id/aD.x/�

D ƒ�0 Œ.!�2;�2 ˝ id/ba.!�1;�1 ˝ id/a.x/�

D .!�2;�2 ˝ id/.Uba�0/.!�1;�1 ˝ id/.U a
�0/ƒ�0.x/m;

from which we get (i) for such a weight �0. Applying that result to 3.7, we get that
there exists a normal semi-finite faithful weight  on B.H/˝N such that

U
.&˝id/.id˝aD/
 D .U

.&˝id/.id b̋a/
 /234.U

.&˝id/.id˝a/
 /134:

Using now [41, 4.1], we get that for every normal semi-finite faithful weight on N ,

U
.&˝id/.id˝aD/
T r˝� D .U

.&˝id/.id b̋a/
T r˝� /234.U

.&˝id/.id˝a/
T r˝� /134

which by [41, 4.4] implies (i).
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(ii) From (i) we get that .U a
� /23.U

ba
� /13 is a representation ofD.G/. Therefore,

.Uba� /45.U a
� /35.U

ba
� /25.U

a
� /15

D Ad.1˝ �W ˝ 1˝ 1/Œ.� ˝b� ˝ id/..Uba� /23.U a
� /13/�

D Ad.1˝ �W ˝ 1˝ 1/Œ.Uba� /45.Uba� /35.U a
� /25.U

a
� /15�

D .Uba� /45Ad.1˝ �W ˝ 1˝ 1/Œ.Uba� /35.U a
� /25�.U

a
� /15;

from which we infer that

.U a
� /35.U

ba
� /25 D Ad.1˝ �W ˝ 1˝ 1/Œ.Uba� /35.U a

� /25�:

After renumbering the legs, we obtain (ii).

(iii) The relation W �12.U a
� /
�
23W12 D .� ˝ id/.U a

� /
� D .U a

� /
�
13.U

a
� /
�
23 implies

.U a
� /
�
23W12.U

a
� /23 D W12.U

a
� /
�
13:

Using (ii), we get

.U a
� /13.U

ba
� /23 D W12.U

ba
� /23.U

a
� /
�
23W

�
12.U

a
� /23

and, therefore,

W �12.U
a
� /13 D .U

ba
� /23.U

a
� /
�
23W

�
12.U

a
� /23.U

ba
� /
�
23

which implies (iii).

(iv) Relation (iii) and 2.5.2 imply

Ad.W12/Œˇ.x/23� D Ad.W12.U a
� /23.U

ba
� /23/Œ1˝ 1˝ x

o�

D Ad..U a
� /23.U

ba
� /
�
23.U

a
� /
�
13W12/Œ1˝ 1˝ x

o�

D Ad..U a
� /23.U

ba
� /
�
23/Œa

o.xo/13�

D .id˝ ˇ�/.ao.xo//:

3.8.1 Remark. We have quickly shown in 2.4.5 that (i) can also be deduced from a
particular case of [7, 6,5], which remains unpublished.

3.9 Lemma. Let N be a properly infinite von Neumann algebra.

(i) Let .en/n2N be a sequence of pairwise orthogonal projections inN , equivalent
to 1 and whose sum is 1, and let .vn/n2N be a sequence of isometries in N
such that v�nvn D 1 and vnv�n D en for all n 2 N, (and, therefore v�i vj D 0
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if i 6D j ). Let H be a separable Hilbert space and ui;j a set of matrix units
of B.H/ acting on an orthonormal basis .�i /i . For any x 2 N , let

ˆ.x/ D
X
i;j

ui;j ˝ v
�
i xvj

Thenˆ is an isomorphismofN ontoB.H/˝N , andˆ�1.1˝x/ D
P
i vixv

�
i .

(ii) Let a be a left action of a locally compact quantum group G D .M; �; ';  /

with separable predualM� on N . Then the operator V D
P
n.1˝ vn/a.v

�
n/

exists, is a unitary in M ˝ N and a cocycle for a, that is, .� ˝ id/.V / D
.1˝V /.id˝a/.V /. Moreover, the actions .&˝ id/.id˝a/ and .id˝ˆ/aˆ�1
are linked by the relation

.& ˝ id/.id˝ a/.X/ D Ad..id˝ˆ/.V //Œ.id˝ˆ/aˆ�1.X/�:

(iii) Let � be a normal semi-finite faithful weight on N . Then for each n 2 N, the
weight �n on N defined by �n.x/ D �.vnxv

�
n/ for all x 2 N

C is faithful,
normal and semi-finite, and � ıˆ�1 D

P
n.!�n ˝ �n/.

(iv) Let  be a normal semi-finite faithful weight on B.H/˝ N . Then, with the
notations of (iii) . ıˆ/n.x/ D  .un;n˝x/ for all x 2 NC. If is invariant
under .& ˝ id/.id ˝ a/, then each . ı ˆ/n is a normal semi-finite faithful
weight on N , invariant under a.

Proof. (i) This result is taken from [37, Th. 4.6].
(ii) This assertion is proved in [12, Th. IV.3] for right actions of Kac algebras,

but remains true for left actions of any locally compact quantum group.
(iii) Let .�i /i2N be the orthonormal basis of H defined by the matrix units ui;j .

Thenwe can define an isometry I fromL2.N / intoH˝L2.N / by I� D
P
n �n˝v

�
n�

for all � 2 L2.N /. It is then straightforward to get that, for all sequences .�n/n2N such
that

P
n k�nk

2 <1, we have I �.
P
n �n˝ �n/ D

P
n vn�n. Therefore, I is unitary

and ˆ.x/ D IxI � and for all x 2 N . So, for any � 2 L2.N /, !� ıˆ�1 is equal to
the normal weight

P
n !�n ˝ !v�n� . Hence, � ıˆ

�1 is the weight
P
n !�n ˝ �n.

Let now x 2 N such that �n.x�x/ D 0. By definition, we get that xv�n D 0 and
therefore x D 0. So, the weight �n is faithful. As � is semi-finite, there exists inMC�
an increasing family xk " 1. For all n 2 N, we get yk D .!�n ˝ id/ˆ.xk/ " 1 and
�n.yk/ D .!�n ˝ �n/ˆ.xk/ � �.xk/ <1, which gives that �n is semi-finite.

(iv) First,

. ıˆ/n.x/ D . ıˆ/.v
�
nxvn/ D  

�X
i;j

ui;j ˝ v
�
i vnxv

�
nvj

�
D  .un;n ˝ x/:

If  is invariant under .& ˝ id/.id˝ a/, then it is clear that all . ıˆ/n are normal
semi-finite faithful weights on N , invariant under a.
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3.10 Corollary. LetG D .M; �; ';  / be a locally compact quantum group such that
the predualM� is separable, and .N; a;ba/ a G-Yetter–Drinfel’d algebra, where N is
a properly infinite von Neumann algebra. Then thisG-Yetter–Drinfel’d algebra has a
normal faithful semi-finite invariant weight.

Proof. Use the left action aD D .id ˝ba/a of D.G/ on N and apply 3.7 and
3.9 (iv).

4. The Hopf bimodule associated to a braided-commutative Yetter–Drinfel’d
algebra

In this chapter, we recall the definition of the relative tensor product of Hilbert
spaces, and of the fiber product of von Neumann algebras (4.1). Then, we recall the
definition of a Hopf bimodule (4.2) and a co-inverse. Starting then from a braided-
commutative Yetter–Drinfel’d algebra .N; a;ba/, and any normal semi-finite faithful
weight � onN , we first construct an isomorphism of the Hilbert spacesH˝H˝H�
and .H ˝ H�/ ˇ˝a

�

.H ˝ H�/ (4.3) and then show that the dual action Qa of bGo

on the crossed product G Ëa N , modulo this isomorphism, can be interpreted as a
coproduct onGËaN (4.4). Finally, we construct an involutive anti-�-automorphism
of G Ëa N which turns out to be a co-inverse (4.6).

4.1. Relative tensor products of Hilbert spaces and fiber products of von
Neumann algebras [5, 17, 34, 38]. Let N be a von Neumann algebra,  a normal
semi-finite faithful weight on N ; we shall denote by H , N ; : : : the canonical
objects of the Tomita–Takesaki theory associated to the weight  .

Let ˛ be a non-degenerate faithful representation ofN on a Hilbert spaceH. The
set of  -bounded elements of the left module ˛H is

D.˛H;  / D f� 2 H W 9C <1; k˛.y/�k � Ckƒ .y/k;8y 2 N g:

For any � inD.˛H;  /, there exists a bounded operatorR˛; .�/ fromH toH such
that

R˛; .�/ƒ .y/ D ˛.y/� for all y 2 N ;

and this operator intertwines the actions of N . If � and � are bounded vectors, we
define the operator product

h�j�i˛; D R
˛; .�/�R˛; .�/;

which belongs to � .N /0. This last algebra will be identified with the opposite von
Neumann algebra N o using Tomita–Takesaki theory.
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If nowˇ is a non-degenerate faithful anti-representation ofN on aHilbert spaceK,
the relative tensor productK ˇ˝˛

 

H is the completion of the algebraic tensor product

K ˇD.˛H;  / by the scalar product defined by

.�1 ˇ �1j�2 ˇ �2/ D .ˇ.h�1j�2i˛; /�1j�2/

for all �1; �2 2 K and �1; �2 2 D.˛H;  /. If � 2 K and � 2 D.˛H;  /, we denote
by � ˇ˝˛

 

� the image of � ˇ � intoK ˇ˝˛
 

H. Writing �ˇ;˛� .�/ D � ˇ˝˛
 

�, we get a

bounded linear operator fromH into K ˇ˝˛
�

H, which is equal to 1K ˝ R˛; .�/.

Changing the weight  will give an isomorphic Hilbert space, but the
isomorphism will not exchange elementary tensors!

We shall denote by � the relative flip, which is a unitary sendingK ˇ˝˛
 

H onto

H ˛˝ˇ
 o

K, defined by

� .� ˇ˝˛
 

�/ D � ˛˝ˇ
 o

�

for all � 2 D.Kˇ ;  o/ and � 2 D.˛H;  /.
If x 2 ˇ.N /0 and y 2 ˛.N /0, it is possible to define an operator x ˇ˝˛

 

y on

K ˇ˝˛
 

H, with natural values on the elementary tensors. As this operator does not

depend upon the weight  , it will be denoted by x ˇ˝˛
N

y.

If P is a von Neumann algebra on H with ˛.N / � P , and Q a von
Neumann algebra on K with ˇ.N / � Q, then we define the fiber product
Qˇ�˛

N

P as fx ˇ˝˛
N

y W x 2 Q0; y 2 P 0g0. This von Neumann algebra can be defined

independently of the Hilbert spaces on which P and Q are represented. If for
i D 1; 2, ˛i is a faithful non-degenerate homomorphism from N into Pi , and ˇi
is a faithful non-degenerate anti-homomorphism from N into Qi , and ˆ (resp. ‰)
a homomorphism from P1 to P2 (resp. from Q1 to Q2) such that ˆ ı ˛1 D ˛2
(resp. ‰ ı ˇ1 D ˇ2), then, it is possible to define a homomorphism ‰ ˇ1�˛1

N

ˆ from

Q1 ˇ1�˛1
N

P1 intoQ2 ˇ2�˛2
N

P2.

We define a relative flip &N from L.K/ ˇ�˛
N

L.H/ onto L.H/ ˛�ˇ
N o

L.K/ by

&N .X/ D � X.� /
� for any X 2 L.K/ ˇ�˛

N

L.H/ and any normal semi-finite

faithful weight  on N .
Let now U be an isometry from a Hilbert space K1 in a Hilbert space K2, which

intertwines two anti-representations ˇ1 and ˇ2 of N , and let V be an isometry from
a Hilbert space H1 in a Hilbert space H2, which intertwines two representations ˛1
and ˛2 of N . Then, it is possible to define, on linear combinations of elementary
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tensors, an isometry U ˇ1˝˛1
 

V which can be extended to the whole Hilbert space

K1 ˇ1˝˛1
 

H1 with values in K2 ˇ2˝˛2
 

H2. One can show that this isometry does

not depend upon the weight  . It will be denoted by U ˇ1˝˛1
N

V . If U and V are

unitaries, then U ˇ1˝˛1
N

V is an unitary and .U ˇ1˝˛1
N

V /� D U � ˇ2˝˛2
N

V �.

In [7, Chap. 11], De Commer had shown that, if N is finite-dimensional, the
Hilbert space K ˇ˝˛

�

H can be isometrically imbedded into the usual Hilbert tensor

product K˝H.
4.2 Definitions. A quintuple .N;M; ˛; ˇ; �/ will be called a Hopf bimodule,
following [45], [17, 6.5], if N , M are von Neumann algebras, ˛ is a faithful
non-degenerate representation of N into M , ˇ is a faithful non-degenerate anti-
representation of N into M , with commuting ranges, and � is an injective
�-homomorphism fromM intoM ˇ�˛

N

M such that, for all X in N ,

(i) �.ˇ.X// D 1 ˇ˝˛
N

ˇ.X/,

(ii) �.˛.X// D ˛.X/ ˇ˝˛
N

1,

(iii) � satisfies the co-associativity relation

.� ˇ�˛
N

id/� D .id ˇ�˛
N

�/�

This last formula makes sense, thanks to the two preceeding ones and 4.1. The von
Neumann algebra N will be called the basis of .N;M; ˛; ˇ; �/.

In [7, Chap. 11], De Commer had shown that, if N is finite-dimensional, the
Hilbert space L2.M/ ˇ˝˛

�

L2.M/ can be isometrically imbedded into the usual

Hilbert tensor productL2.M/˝L2.M/ and the projection p on this closed subspace
belongs to M ˝M . Moreover, the fiber product M ˇ�˛

N

M can be then identified

with the reduced von Neumann algebra p.M ˝M/p and we can consider � as a
usual coproductM 7!M ˝M , but with the condition �.1/ D p.

A co-inverse R for a Hopf bimodule .N;M; ˛; ˇ; �/ is an involutive (R2 D id)
anti-�-isomorphism of M satisfying R ı ˛ D ˇ (and therefore R ı ˇ D ˛) and
� ıR D &N o ı .R ˇ�˛

N

R/ ı� , where &N o is the flip fromM ˛�ˇ
N o

M ontoM ˇ�˛
N

M .

A Hopf bimodule is called co-commutative if N is abelian, ˇ D ˛, and � D & ı � .
For an example, suppose that G is a measured groupoid, with G.0/ as its set of

units. We denote by r and s the range and source applications from G to G.0/, given
by xx�1 D r.x/ and x�1x D s.x/, and by G.2/ the set of composable elements, i.e.

G.2/ D f.x; y/ 2 G2 W s.x/ D r.y/g:
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Let .�u/u2G.0/ be a Haar system on G and � a measure on G.0/. Let us denote by �
the measure on G given by integrating �u by �,

� D

Z
G.0/

�ud�:

By definition, � is called quasi-invariant if � is equivalent to its image under the
inversion x 7! x�1 of G (see [32], [6, II.5], [30] and [1] for more details, precise
definitions and examples of groupoids).

In [52–54] and [45] was associated to a measured groupoid G, equipped with a
Haar system .�u/u2G.0/ and a quasi-invariant measure � on G.0/, a Hopf bimodule
with an abelian underlying vonNeumann algebra .L1.G.0/; �/; L1.G; �/; rG ; sG ; �G/,
where rG.g/ D g ı r and sG.g/ D g ı s for all g in L1.G.0// and where �G.f /,
for f in L1.G/, is the function defined on G.2/ by .s; t/ 7! f .st/. Thus, �G is an
involutive homomorphism fromL1.G/ intoL1.G.2//, which can be identified with
L1.G/s�rL1.G/.

It is straightforward to get that the inversion of the groupoid gives a co-inverse
for this Hopf bimodule structure.
4.3 Proposition ([40]). Let G be a locally compact quantum group, .N; a;ba/ a
braided-commutativeG-Yetter–Drinfel’d algebra,ˇ the injective anti-�-homomorphism
fromN intoGËaN introduced in 2.5.4, and � a normal semi-finite faithful weight �
onN . Then the relative tensor product .H ˝H�/ˇ˝a

�

.H ˝H�/ can be canonically

identified withH ˝H ˝H� as follows:

(i) For any � 2 H , p 2 N� , the vector U a
� .� ˝ J�ƒ�.p// belongs to

D.a.H ˝H�/; �/ and

Ra;�.U a
� .�˝ J�ƒ�.p/// D U

a
� l�J�pJ� ;

where l� is the application � ! �˝ � from H� into H ˝H� . There exists a
unitary V1 from .H ˝H�/ ˇ˝a

�

.H ˝H�/ ontoH ˝H ˝H� such that

V1.„ ˇ˝a
�

U a
� .�˝ J�ƒ�.p/// D �˝ ˇ.p

�/„ for all „ 2 H ˝H� ;

and V1.X ˇ˝a
N

.1H ˝1H� // D .1H ˝X/V1 for allX 2 ˇ.N /0, in particular,

for X 2 a.N /. Morover, writing ˇ� for the map xo 7! ˇ.x/, we have for all
x 2 N ,

V1Œ.1H ˝ 1H� / ˇ˝a
N

.1H ˝ x
o/� D .id˝ ˇ�/.ao.xo//V1;

V1Œ.1H ˝ 1H� / ˇ˝a
N

ˇ.x/� D .id˝ ˇ�/.bao.xo//V1:
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(ii) For any � 2 H , q 2 N� , the vector U a
� .U

ba
� /
�.� ˝ ƒ�.q// belongs to

D.ˇ .H ˝H�/; �
o/ and

Rˇ;�
o
.U a
� .U

ba
� /
�.� ˝ƒ�.q/// D U

a
� .U

ba
� /
�l�q:

There exists a unitary V2 from .H ˝H�/ ˇ˝a
�

.H ˝H�/ ontoH ˝H ˝H�

such that

V2ŒU
a
� .U

ba
� /
�.� ˝ƒ�.q// ˇ˝a

�

„� D � ˝ a.q/„ for all „ 2 H ˝H� ;

and V2..1H ˝1H� / ˇ˝a
N

X/ D .1H ˝X/V2 for allX 2 a.N /0, in particular,

for X 2 ˇ.N /.

(iii) V2V �1 D �12.U a
� /13.U

ba
� /23.U

a
� /
�
23 D �12W12.U

ba
� /23.U

a
� /
�
23W

�
12.

Proof. (i) For all n 2 N� ,

U a
� l�J�pJ�ƒ�.n/ D U

a
� .�˝ J�pJ�ƒ�.n//

D U a
� .�˝ nJ�ƒ�.p// D a.n/U a

� .�˝ J�ƒ�.p//;

which gives the proof of the first part of (i). Let now �0 2 H , p0 2 N� ,„0 2 H˝H� .
Then

hU a
� .�
0
˝ J�ƒ�.p

0//jU a
� .�˝ J�ƒ�.p//i

o
a;� D J�p

�J�l
�
� l�0J�p

0J�

D .�j�0/J�p
�p0J�

and hence

.„ ˇ˝a
�

U a.�˝ J�ƒ�.p//j„
0
ˇ˝a
�

U a.�0 ˝ J�ƒ�.p
0///

D .ˇ.hU a.�0 ˝ J�ƒ�.p
0//; U a.�˝ J�ƒ�.p//i

o
a;�/„j„

0/

D .�j�0/.ˇ.p�p0/„j„0/

which proves the existence of an isometry V1 satisfying the above formula. As the
image of V1 is dense inH ˝H ˝H� , we get that V1 is unitary.

Next, let z 2 B.H/, x 2 N . Then

.z ˝ ˇ.x//V1Œ„ ˇ˝a
�

U a
� .�˝ J�ƒ�.p//�

D z�˝ ˇ.x/ˇ.p�/„

D z�˝ ˇ..x�p/�/„

D V1Œ„ ˇ˝a
�

U a
� .z�˝ J�ƒ�.x

�p//�

D V1Œ„ ˇ˝a
�

U a
� .z ˝ x

o/.�˝ J�ƒ�.p//�;
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that is, .z ˝ ˇ.x//V1 D V1.1 ˇ˝a
�

U a
� .z ˝ x

o/.U a
� /
�/. In particular,

.id˝ ˇ�/.ao.xo//V1 D V1.1 ˇ˝a
�

U a
� a

o.xo/.U a
� /
�/ D V1.1 ˇ˝a

�

.1H ˝ x
o//;

.id˝ ˇ�/.bao.xo//V1 D V1.1 ˇ˝a
�

U a
�bao.xo/.U a

� /
�/ D V1.1 ˇ˝a

�

ˇ.x//:

(ii) We proceed as above. First, we have

U a
� .U

ba
� /
�l�qJ�ƒ�.n/ D U

a
� .U

ba
� /
�.� ˝ J�nJ�ƒ�.q//

D ˇ.n�/U a
� .U

ba
� /
�.� ˝ƒ�.q//;

which gives the proof of the first part of (ii). Let now � 0 2 H , q0 2 N� . Then

.U a
� .U

ba
� /
�.� ˝ƒ�.q// ˇ˝a

�

„jU a
� .U

ba
� /
�.� 0 ˝ƒ�.q

0// ˇ˝a
�

„0/

D .a.hU a
� .U

ba
� /
�.� ˝ƒ�.q//; U

a
� .U

ba
� /
�.� 0 ˝ƒ�.q

0//iˇ;�o/„j„
0/

D .�j� 0/.a.q0�q/„j„0/

which proves the existence of an isometry V2 satisfying the above formula. Again,
as the image of V2 is dense inH ˝H ˝H� , we get (ii).

(iii) Applying (i), we get

V1ŒU
a
� .U

ba
� /
�.� ˝ƒ�.q// ˇ˝a

�

U a
� .�˝ J�ƒ�.p//�

D �˝ ˇ.p�/U a
� .U

ba
� /
�.� ˝ƒ�.q//

D �˝ U a
� .U

ba
� /
�.� ˝ J�pJ�ƒ�.q//

D �˝ U a
� .U

ba
� /
�.� ˝ qJ�ƒ�.p//;

and, applying (ii), we get

V2ŒU
a
� .U

ba
� /
�.� ˝ƒ�.q// ˇ˝a

�

U a
� .�˝ J�ƒ�.p//�

D � ˝ a.q/U a
� .�˝ J�ƒ�.p//

D � ˝ U a
� .�˝ qJ�ƒ�.p//;

from which we easily get .1H ˝Uba� .U a
� /
�/V1 D .�˝1H�/.1H ˝ .U

a
� /
�/V2. Using

Corollary 3.8 (iii), we conclude

V2V
�
1 D �12.U

a
� /13.U

ba
� /23.U

a
� /
�
23 D �12W12.U

ba
� /23.U

a
� /
�
23W

�
12:
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4.4 Theorem ([40]). Let G be a locally compact quantum group and .N; a;ba/ a
braided-commutative G-Yetter–Drinfel’d algebra. We use the notations of 4.3.

(i) For X 2 G Ëa N , let e�.X/ D V �1 Qa.X/V1. Then this defines a normal
�-homomorphism e� from G Ëa N into .G Ëa N/ ˇ�a

N

.G Ëa N/. For all

x 2 N ,

e�.a.x// D a.x/ ˇ˝a
N

.1H ˝ 1H� /;e�.ˇ.x// D .1H ˝ 1H� / ˇ˝a
N

ˇ.x/;

and for all y 2cM ,

e�.y ˝ 1H� / D V �1 .b�o.y/˝ 1/V1 D V
�
2 .
b�.y/˝ 1H� /V2:

(ii) .N;G Ëa N; a; ˇ;e�/ is a Hopf bimodule.
(iii) We have Qa.ˇ�.xo// D .id ˝ ˇ�/bao.xo/, where ˇ� has been defined in 4.3.

Proof. (i) and (iii) Let x 2 N . Then 4.3 (iii) implies

e�.a.x// D V �1 Qa.a.x//V1 D V �1 .1H ˝ a.x//V1 D a.x/ ˇ˝˛
N

.1H ˝ 1H� /;

in particular, e�.a.x// lies in .G Ëa N/ ˇ�a
N

.G Ëa N/.

Next, by definition,

e�.ˇ.x// D Ad.V �1 bW o�
12/Œ1˝ ˇ.x/� D Ad.V �1 bW o�

12.U
a
� /23/Œ1˝bao.xo/�:

Since U a
� 2M ˝ B.H�/ commutes with bW o 2cM ˝M 0, this is equal to
Ad.V �1 .U

a
� /23/

bW o�
12/Œ1˝bao.xo/� D Ad.V �1 /Œ.id˝ ˇ

�/.bao.xo//�
D .1H ˝ 1H� / ˇ˝˛

N

ˇ.x/;

where we used 4.3 (i). From this calculation, one gets (iii) as well.

For y 2cM , we get by definition of Q�

Q�.y ˝ 1/ D Ad.V �1 /ŒQa.y ˝ 1/�

D Ad.V �1 /Œb�o.y/˝ 1� D Ad.V �1 W12/Œy ˝ 1˝ 1�:
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By 4.3 (iii), V �1 W12 D V �2 �12W12.Uba� /23.U a
� /
�
23 and hence

Q�.y ˝ 1/ D Ad.V �2 �12W12.U
ba
� /23.U

a
� /
�
23/Œy ˝ 1˝ 1�

D Ad.V �2 /.b�.y/˝ 1/:
To see that Q�.y˝1/ lies in .GËaN/ˇ�a

N

.GËaN/, note that for any Y in .GËaN/
0,

Ad.V1/ŒY ˇ˝˛
N

.1H ˝ 1H� /� D 1H ˝ Y D Ad.V2/Œ.1H ˝ 1H� / ˇ˝˛
N

Y �

by 4.3, and 1H ˝ Y commutes with

Ad.V1/.e�.y ˝ 1// D b�o.y/˝ 1 and Ad.V2/.e�.y ˝ 1// D b�.y/˝ 1:
(ii) To get (ii), we must verify that e� is co-associative. It is trivial to get that

.e� ˇ�a
N

id/e�.a.x// D a.x/ ˇ˝a
N

.1H ˝ 1H� / ˇ˝a
N

.1H ˝ 1H� /

D .id ˇ�a
N

e�/e�.a.x//
for all x 2 N .

Next, let y 2cM and consider the following diagrams,

cM ˝ 1H� b�˝id //
e�

((

cM ˝cM ˝ 1H�
ad
.V�
2
/
˝id

��

id˝e� //cM ˝ .G Ëa N/ ˇ�a
N

.G Ëa N/

ad
.V�
2
/ ˇ
�a
N

id

��
.G Ëa N/ ˇ�a

N

.G Ëa N/
idˇ�a
N

e�// .G Ëa N/ ˇ�a
N

.G Ëa N/ ˇ�a
N

.G Ëa N/

cM ˝ 1H� &23.b�˝id/ //
Q�

((

cM ˝ 1H� ˝cM e�˝id //

id˝ad
. QV�
1
/

��

.G Ëa N/ ˇ�a
N

.G Ëa N/˝cM
idˇ�a
N

ad
. QV�
1
/

��
.G Ëa N/ ˇ�a

N

.G Ëa N/e�ˇ�a
N

id
// .G Ëa N/ ˇ�a

N

.G Ëa N/ ˇ�a
N

.G Ëa N/

where QV1 denotes the composition of the unitary V1 with the flip �˝�˝� 7! �˝�˝�

(for � , � inH and � inH�). The triangles commute by (i) and the squares commutes
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by definition of V1 and V2. Next, consider the following diagram:

cM ˝ 1H�
&23.b�˝id/

++
b�˝id

sscM ˝cM ˝ 1H�
id˝e�

��

id˝&23.b�˝id/
++

cM ˝ 1H� ˝cM
e�˝id
��

b�˝id˝id
sscM ˝cM ˝ 1H� ˝cM

id˝ad
. QV�
1
/

tt

ad
.V�
2
/
˝id

**cM ˝ .G Ëa N/ ˇ�a
N

.G Ëa N/
ad
.V�
2
/ ˇ
�a
N

id

**

.G Ëa N/ ˇ�a
N

.G Ëa N/˝cM
idˇ�a
N

ad
. QV�
1
/

tt
.G Ëa N/ ˇ�a

N

.G Ëa N/ ˇ�a
N

.G Ëa N/

The upper middle cell commutes by co-associativity of b� , the left and the right
triangle commute by (i), and the lower middle cell commutes because the following
diagram does,

.H ˝H�/ ˇ˝a
�

.H ˝H�/ ˇ˝a
�

.H ˝H�/

V2ˇ˝a
N

id
//

idˇ˝a
N

QV1

��

H ˝ ..H ˝H�/ ˇ˝a
�

.H ˝H�//

id˝ QV1
��

..H ˝H�/ ˇ˝a
�

.H ˝H�//˝H
V2˝id

// H ˝ .H ˝H�/˝H

where both compositions are given by

U a
� .U

ba
� /
�.� ˝ƒ�.q// ˇ˝a

�

„ ˇ˝a
�

U a
� .�˝ J�ƒ�.p// 7! � ˝ a.q/ˇ.p�/„˝ �:

Combining everything, we can conclude that

.e� ˇ�a
N

id/ ıe�.y ˝ 1/ D .id ˇ�a
N

e�/ ıe�.y ˝ 1/:
4.5 Proposition ([40]). Consider on the Hilbert space H ˝ H� the anti-linear
operator:

I D U a
� .J ˝ J�/U

ba
� .U

a
� /
�
D U a

� .U
ba
� /
�.J ˝ J�/.U

a
� /
�
D U a

� .U
ba
� /
�JeO�Uba� .U a

� /
�;

whereeO� denotes the dual weight of � on the crossed product bG Ëba N .

(i) I is a bijective isometry and I 2 D 1.

(ii) Ia.x/�I D ˇ.x/ and Iˇ.x/�I D a.x/ for all x 2 N .
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(iii) I.y� ˝ 1/I D bR.y/˝ 1 for all y 2cM .
(iv) If �� denotes the flip from .H˝H�/ˇ˝a

�

.H˝H�/ to .H˝H�/a˝ˇ
�o
.H˝H�/,

then
V2 D .J ˝ I /V1.I a˝ˇ

N o
I /�� :

Proof. (i) The relation Uba� D JeO�.J ˝ J�/ (2.2) shows that the three expressions
given for I coincide and that I is isometric, bijective, anti-linear, and equal to I �.
Moreover, the formula I D U a

� .U
ba
� /
�JeO�Uba� .U a

� /
� shows that I 2 D 1H ˝ 1H� .

(ii) We only need to prove the first equation. But by 2.5.4,

Ia.x/�I � D Ad.U a
� .U

ba
� /
�.J ˝ J�/.U

a
� /
�/Œa.x/��

D Ad.U a
� .U

ba
� /
�/Œ1˝ xo� D ˇ.x/:

(iii) Using 3.8(iii) and the fact that U a
� is a representation, we find that

.bJ ˝ I /W12.bJ ˝ I / D Ad..U a
� /23.

bJ ˝ J ˝ J�/.Uba� /23.U a
� /
�
23/ŒW12�

D Ad..U a
� /23.

bJ ˝ J ˝ J�//Œ.U a
� /
�
13W12�

D Ad..U a
� /23/Œ.U

a
� /13W

�
12�

D W �12:

For any � , � inH , we can conclude that

I.J.!�;� ˝ id/.W /�J ˝ 1/I D I..!bJ�;bJ� ˝ id/.W /˝ 1/I

D .!�;� ˝ id/.W /� ˝ 1;

from which (iii) follows by continuity.
(iv) By (ii),

V1.I a˝ˇ
�o

I /�� ŒU
a
� .U

ba
� /
�.� ˝ƒ�.q// ˇ˝a

�

„�

D V1ŒI„ ˇ˝a
�

U a
� .J � ˝ J�ƒ�.q//�

D J � ˝ ˇ.q�/I„

D J � ˝ Ia.q/„

D .J ˝ I /V2ŒU
a
� .U

ba
� /
�.� ˝ƒ�.q// ˇ˝a

�

„�:

4.6 Theorem ([40]). LetG be a locally compact quantum group, .N; a;ba/ a braided-
commutative G-Yetter–Drinfel’d algebra and I the anti-linear surjective isometry
constructed in 4.5. Then:
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(i) For all z 2 G Ëa N , let eR.z/ D Iz�I . Then eR is an involutive anti-
�-isomorphism of G Ëa N , and eR.a.x// D ˇ.x/, eR.ˇ.x// D a.x/ andeR.y ˝ 1H� / D bR.y/˝ 1H� for all x 2 N and y 2cM .

(ii) eR is a co-inverse for the Hopf bimodule .N;G Ëa N; a; ˇ;e�/ constructed
in 4.4.

Proof. (i) This is just a straightforward corollary of 4.5 (ii) and (iii).
(ii) We need to prove thate� D &N o.eR ˇ˝˛

N

eR/e�eR:
Using (i), we find that for x 2 N ,

&N o.eR ˇ˝˛
N

eR/e�eR.a.x// D &N o.eR ˇ˝˛
N

eR/e�.ˇ.x//
D &N o.eR ˇ˝˛

N

eR/..1H ˝ 1H� / ˇ˝˛
N

ˇ.x//

D a.x/ ˇ˝a
N

.1H ˝ 1H� /

coincides with e�.a.x//. For y 2cM , we conclude from 4.4 and 4.5 (iv) that

&N o.eR ˇ˝˛
N

eR/e�eR.y ˝ 1H� / D &N o.eR ˇ˝˛
N

eR/e�.bR.y/˝ 1H� /
D &N o.eR ˇ˝˛

N

eR/ŒV �2 .b�.bR.y/˝ 1H� /V2�
D V �1 ..

bR˝ bR/b�.bR.y//˝ 1H� /V1
D e�.y ˝ 1H� /

As G Ëa N is the von Neumann algebra generated by a.N / and cM ˝ 1H� , this
finishes the proof of (ii).

4.7 Lemma. Let G be a locally compact quantum group, .N; a;ba/ a braided-com-
mutative G-Yetter–Drinfel’d algebra, e� the injective �-homomorphism from GËa N

into .G Ëa N/ ˇ�a
N

.G Ëa N/ defined in 4.4, Qa the dual action of bG on G Ëa N ,

and V1 as in 4.3. Denote by � the flip from .H ˝H�/ˇ ˝
�
.1˝a/.H ˝H ˝H�/ onto

H ˝ Œ.H ˝H�/ ˇ˝a
�

.H ˝H�/� given by

�.„ˇ˝
�
.1˝a/.� ˝„

0// D � ˝„ ˇ˝˛
�

„0

for all � 2 H , „ 2 D.ˇ .H ˝H�/; �o/, „0 2 D.a.H ˝H�/; �/. Then:
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(i) .id ˇ�a
N

Qa/e�.X/ D ��.id˝e�/Qa.X/� for all X 2 G Ëa N .

(ii) V2e�.X/V �2 D .bR˝ eR/Qa.eR.X//.
Proof. (i) For any x0 2M 0, we have

V1Œ.1H ˝ 1H� / ˇ˝a
N

.x0 ˝ 1H� /� D .x
0
˝ 1H ˝ 1H� /V1:

As bW o belongs tocM ˝M 0, we infer
.1H ˝ V1/�Œ.1H ˝ 1H� /ˇ˝

N
1˝a.bW o

˝ 1H� /� D .
bW o
˝ 1H ˝ 1H� /.1H ˝ V1/�:

(3)

Therefore, we can conclude that for all X 2 G Ëa N ,

.id ˇ�a
N

Qa/e�.X/
D Ad.Œ.1H ˝ 1H� /ˇ˝

N
1˝a.bW o�

˝ 1H� /��
�.1H ˝ V

�
1 //Œ1H ˝ Qa.X/�

D Ad.��.1H ˝ V �1 /.bW o�
˝ 1H ˝ 1H� //Œ1H ˝ Qa.X/�

D Ad.��.1H ˝ V �1 //Œ.b�o
˝ id/Qa.X/�

D Ad.��.1H ˝ V �1 //Œ.id˝ Qa/Qa.X/�
D ��.id˝e�/Qa.X/�:

(ii) By 4.5 (iii),

Ad.V2/Œe�.X/� D Ad..J ˝ I /V1��o.I ˇ˝a
N

I //Œe�.X/�
D Ad..J ˝ I /V1/Œe�eR.X�/�
D .bR˝ eR/Qa.eR.X//:

5. Measured quantum groupoid structure associated to a braided-commutative
Yetter–Drinfel’d algebra equipped with an appropriate weight

In this chapter, after recalling the definition of a measured quantum groupoid (5.1)
and describing themajor data associated to ameasured quantum groupoid (5.2), (5.3),
we try to construct, given a braided-commutativeG-Yetter–Drinfel’d algebra .A; a;ba/
and a normal semi-finite faithful weight on N , a structure of a measured quantum
groupoid, denotedG.N; a;ba; �/, on the crossed productGËaN or, more precisely, on
the Hopf bimodule constructed in 4.6. Without any hypothesis on the normal faithful
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semi-finite weight � on N , we construct a left-invariant operator-valued weight (5.4)
and a right-invariant one (5.4), and we give a necessary and sufficient condition for
a weight � on N to be relatively invariant with respect to these two operator-valued
weights (5.9). This condition is clearly satisfied (5.10) if � is k-invariant with respect
to a (for k affiliated to Z.M/, or k D ı�1).

5.1. Definition of measured quantum groupoids [13, 24]. A measured quantum
groupoid is an octuple G D .N;M; ˛; ˇ; �; T; T 0; �/ such that [13, 3.8]:

(i) .N;M; ˛; ˇ; �/ is a Hopf bimodule,
(ii) T is a left-invariant normal, semi-finite, faithful operator-valued weight

fromM to ˛.N / (to be more precise, fromMC to the extended positive elements of
˛.N / (cf. [38, IX.4.12])), which means that, for any x 2MCT , we have

.id ˇ�˛
�

T /�.x/ D T .x/ ˇ˝˛
N

1:

(iii) T 0 is a right-invariant normal, semi-finite, faithful operator-valued weight
fromM to ˇ.N /, which means that, for any x 2MCT 0 , we have

.T 0 ˇ�˛
�

id/�.x/ D 1 ˇ˝˛
N

T 0.x/:

(iv) � is normal semi-finite faithful weight on N , which is relatively invariant
with respect to T and T 0, which means that the modular automorphisms groups of
the weights ˆ D � ı ˛�1 ı T and ‰ D � ı ˇ�1 ı T 0 commute. The weight ˆ will
be called left-invariant, and ‰ right-invariant.

For example, let G be a measured groupoid equipped with a left Haar system
.�u/u2G.0/ and a quasi-invariant measure � on G.0/. Let us use the notations
introduced in 4.2. If f 2 L1.G; �/C, consider the function on G.0/, u 7!

R
G fd�

u,
which belongs to L1.G.0/; �/. The image of this function by the homomorphism rG
is the function on G, 
 7!

R
G fd�

r.
/, and the application which sends f to
this function can be considered as an operator-valued weight from L1.G; �/ to
rG.L

1.G.0/; �// which is normal, semi-finite and faithful. By definition of the
Haar system .�u/u2G.0/ , it is left-invariant in the sense of (ii). We shall denote this
operator-valued weight from L1.G; �/ to rG.L1.G.0/; �// by TG . If we write �u
for the image of �u under the inversion x 7! x�1 of the groupoid G, starting from
the application which sends f to the function on G.0/ defined by u 7!

R
G fd�u,

we define a normal semifinite faithful operator-valued weight from L1.G; �/ to
sG.L

1.G.0/; �//, which is right-invariant in the sense of (ii), and which we shall
denote by T .�1/G .

We then get that

.L1.G.0/; �/; L1.G; �/; rG ; sG ; �G ; TG ; T
.�1/
G ; �/

is a measured quantum groupoid, which we shall denote again G.
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It can be proved [15] that any measured quantum groupoid, whose underlying
von Neumann algebra is abelian, is of that type.

5.2. Pseudo-multiplicative unitary. Let G D .N;M; ˛; ˇ; �; T; T 0; �/ be an
octuple satisfying the axioms (i), (ii) (iii) of 5.1. We shall write H D Hˆ, J D Jˆ
and 
.n/ D J˛.n�/J for all n 2 N .

Then [24, 3.7.3 and 3.7.4], G can be equipped with a pseudo-multiplicative
unitaryW which is a unitary fromH ˇ˝˛

�

H ontoH ˛˝

�o
H [13, 3.6] that intertwines

˛, 
 , ˇ in the following way: for all X 2 N ,

W.˛.X/ ˇ˝˛
N

1/ D .1 ˛˝

N o

˛.X//W;

W.1 ˇ˝˛
N

ˇ.X// D .1 ˛˝

N o

ˇ.X//W;

W.
.X/ ˇ˝˛
N

1/ D .
.X/ ˛˝

N o

1/W;

W.1 ˇ˝˛
N


.X// D .ˇ.X/ ˛˝

N o

1/W:

Moreover, the operator W satisfies the pentagonal relation

.1 ˛˝

N o

W /.W ˇ˝˛
N

1H / D .W ˛˝

N o

1/�23˛;ˇ .W 
˝˛
N

1/.1 ˇ˝˛
N

��o/.1 ˇ˝˛
N

W /;

where �23
˛;ˇ

goes from .H ˛˝

�o

H/ ˇ˝˛
�

H to .H ˇ˝˛
�

H/ ˛˝

�o

H , and 1 ˇ˝˛
N

��o

goes fromH ˇ˝˛
�

.H ˛˝

�o

H/ toH ˇ˝˛
�

H 
˝˛
�

H . The operators in this formula

are well defined because of the intertwining relations listed above.
Moreover, W ,M and � are related by the following results:

(i) M is the weakly closed linear space generated by all operators of the form
.id � !�;�/.W /, where � 2 D.˛H; �/ and � 2 D.H
 ; �o/ see [13, 3.8(vii)].

(ii) �.x/ D W �.1 ˛˝

N o

x/W for all x 2M [13, 3.6].

(iii) For any x, y1, y2 in NT \Nˆ, we have [13, 3.6]

.id � !Jˆƒˆ.y�1 y2/;ƒˆ.x//.W / D .id ˇ�˛
N

!Jˆƒˆ.y2/;Jˆƒˆ.y1//�.x
�/:

If N is finite-dimensional, using the fact that the relative tensor products can be
identified with closed subspaces of the usual Hilbert tensor product (4.1), we get
that W can be considered as a partial isometry, which is multiplicative in the usual
sense (i.e. such that W23W12 D W12W13W23.)
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5.3. Other data associated to a measured quantum groupoid [13, 24]. Suppose
that G D .N;M; ˛; ˇ; �; T; T 0; �/ is a measured quantum groupoid in the sense
of 5.1. Let us write ˆ D � ı ˛�1 ı T , which is a normal semi-finite faithful
left-invariant weight onM . Then:

(i) There exists an anti-�-automorphism R onM such that

R2 D id; R.˛.n// D ˇ.n/ for all n 2 N; � ıR D &N o.R ˇ�˛
N

R/�

and
R..id � !�;�/.W // D .id � !J�;J �/.W / for all � 2 D.˛H; �/; � 2 D.H
 ; �o/:

This map R will be called the co-inverse.

(ii) There exists a one-parameter group �t of automorphisms ofM such that

R ı �t D �t ıR; �t .˛.n// D ˛.�
�
t .n//; �t .ˇ.n// D ˇ.�

�
t .n//;

� ı �ˆt D .�t ˇ�˛
N

�ˆt /�

for all t 2 R and and n 2 N . This one-parameter group will be called the scaling
group.

(iii) The weight � is relatively invariant with respect to T and RTR. Moreover,
R and �t are still the co-inverse and the scaling group of this new measured quantum
groupoid, which we shall denote by

G D .N;M; ˛; ˇ; �; T;RTR; �/;

and for simplification we shall assume now that T 0 D RTR and ‰ D ˆ ıR.

(iv) There exists a one-parameter group 
t of automorphisms of N such that

�Tt .ˇ.n// D ˇ.
t .n//

for all t 2 R and n 2 N . Moreover, we get that � ı 
t D �.

(v) There exist a positive non-singular operator� affiliated toZ.M/ and a positive
non-singular operator ı affiliated withM such that

.Dˆ ıR W Dˆ/t D �
it2=2ıit ;

and therefore
.Dˆ ı �ˆıRs W Dˆ/t D �

ist :

The operator � will be called the scaling operator, and there exists a positive non-
singular operator q affiliated to N such that � D ˛.q/ D ˇ.q/. We have R.�/ D �.
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The operator ı will be called the modulus. We have R.ı/ D ı�1 and �t .ı/ D ı

for all t 2 R, and we can define a one-parameter group of unitaries ıit ˇ˝˛
N

ıit which

acts naturally on elementary tensor products and satisfies for all t 2 R

�.ıit / D ıit ˇ˝˛
N

ıit :

(vi) We have .Dˆ ı �t W Dˆ/s D ��ist , which proves that �t ı �ˆs D �ˆs ı �t
for all s, t in R and allows to define a one-parameter group of unitaries by

P itƒˆ.x/ D �
t=2ƒˆ.�t .x// for all x 2 Nˆ:

Moreover, for any y inM , we get that

�t .y/ D P
ityP�it :

As for the multiplicative unitary associated to a locally compact quantum group, one
can prove, using this operator P , a “managing property” forW , and we shall say that
the pseudo-multiplicative unitary W is manageable, with “managing operator” P .

As �t ı �ˆt D �ˆt ı �t , we get that JˆPJˆ D P .
(vii) It is possible to construct a dual measured quantum groupoid

bG D .N;cM;˛; 
;b�;bT ; bT 0; �/
where cM is equal to the weakly closed linear space generated by all oper-
ators of the form .!�;� � id/.W /, for � 2 D.Hˇ ; �

o/ and � 2 D.˛H; �/,b�.y/ D ��oW.y ˇ˝˛
N

1/W ��� for all y 2 cM , and the dual left operator-valued

weight bT is constructed in a similar way as the dual left-invariant weight of a locally
compact quantum group. Namely, it is possible to construct a normal semi-finite
faithful weight b̂ on cM such that, for all � 2 D.Hˇ ; �o/ and � 2 D.˛H; �/ such
that !�;� belongs to Iˆ,b̂..!�;� � id/.W /�.!�;� � id/.W // D k!�;�k2ˆ:
We can prove that �b̂t ı ˛ D ˛ ı ��t for all t 2 R, which gives the existence of an
operator-valued weight bT , which appears then to be left-invariant.

As the formulay 7! Jy�J (y 2cM ) gives a co-inverse for the coproductb� , we get
also a right-invariant operator-valued weight. Moreover, the pseudo-multiplicative
unitary bW associated to bG is bW D ��W ��� , its managing operator bP is equal to P ,
its scaling group is given by b� t .y/ D P ityP�it , its scaling operator b� is equal
to ��1, and its one-parameter group of unitariesb
 t of N is equal to 
�t .
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We write b̂ for � ı ˛�1 ı bT , identify Hb̂ with H , and write bJ D Jb̂. Then
R.x/ D bJx�bJ for all x 2M and W � D .bJ ˛˝


N o
J /W.bJ ˛˝


N o
J /.

Moreover, we have bbG D G.
For example, let G be a measured groupoid as in 5.1. The dualbG of the measured

quantum groupoid constructed in 5.1 (and denoted again by G) isbG D .L1.G.0/; �/;L.G/; rG ; rG ;b�G ;bT G ;bT G/;

where L.G/ is the von Neumann algebra generated by the convolution algebra
associated to the groupoid G, the coproduct b�G had been defined in [44, 3.3.2],
and the operator-valued weight bT G had been defined in [44, 3.3.4]. The underlying
Hopf bimodule is co-commutative.
5.4 Theorem ([40]). Let G be a locally compact quantum group and .N; a;ba/ a
braided-commutativeG-Yetter–Drinfel’d algebra. Then the normal faithful semi-finite
operator-valued weight TQa fromGËa A onto a.N / [41, 1.3 and 2.5] is left-invariant
with respect to the Hopf bimodule structure constructed in 4.6, and QR ı TQa ı QR is
right-invariant.

Proof. For all positive X in G Ëa N , we find, using 4.7 (i) and 4.6,

.id ˇ�a
N

TQa/e�.X/ D .id ˇ�a
N

.b' ı bR˝ id/Qa/e�.X/
D .b' ı bR˝ id/.id˝e�/Qa.X/
D e�.TQa.X//
D TQa.X/ ˇ˝a

N

.1H ˝ 1H� /

which proves that TQa is left-invariant. Using 4.6, we get trivially that eR ı TQa ıeR is a
normal faithful semi-finite operator valued weight from G Ëa N onto ˇ.N /, which
is right-invariant with respect to the coproduct e� .

In the situation above, we shall denote by G.N; a;ba; �/ the Hopf-bimodule
.N;GËaN; a; ˇ;e�/ constructed in 4.4 (ii), equippedwith its co-inverseeR constructed
in 4.6 (ii), with the left-invariant operator-valued weight TQa and the right-invariant
operator-vlaued weight eR ı TQa ıeR, and with the normal semi-finite faithful weight �
on N .
5.5 Proposition. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutativeG-Yetter–Drinfel’d algebra, � a normal semi-finite faithful weight onN ,
Dt its Radon–Nikodym derivative with respect to a (2.2) andDo

t the Radon–Nikodym
derivative of the weight �o onN o with respect to the action ao (2.5.1). For all t 2 R,
denote bye� t the map AdŒU a

� .U
ba
� /
��iteO� Uba� .U a

� /
�� defined on B.H ˝H�/, whereeO�

is the dual weight of � on the crossed product bG Ëba N . Then:
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(i) e� t ı ˇ.x/ D ˇ.��t .x// for all x 2 N and t 2 R.

(ii) for all t 2 R,e� t commutes with Ad I , where I had been defined in 4.5, and,
thereforee� t .a.x// D a.��t .x// for all x 2 N and t 2 R.

(iii) Denote by ˇ� the application xo 7! ˇ.x/ from N o into G Ëa N . Then

.id˝e� t /.W12/ D b��it1 .id˝ ˇ�/.Do
�t /W12.id˝ a/.Dt /b�it1

D .��t ˝ ˇ
�/.Do

�t /.id˝b�/.W /12.��t ˝ a/.Dt /:

(iv) e� t .G Ëa N/ D G Ëa N ande� t ı eR D eR ıe� t .
Proof. (i) For any x 2 N ,

e� t .ˇ.x// D Ad.U a
� .U

ba
� /
�/Œ�iteO� � � Ad.U a

� .U
ba
� /
�/Œ1˝ xo� � Ad.U a

� .U
ba
� /
�/Œ��iteO� �

D Ad.U a
� .U

ba
� /
��iteO� /Œ1˝ xo�

D Ad.U a
� .U

ba
� /
�/ŒDt .1˝ �

�
t .x/

o/D�t �

D Ad.U a
� .U

ba
� /
�/Œ1˝ ��t .x/

o�

D ˇ.��t .x//

(ii) The first assertion follows from the fact that JeO� and �iteO� commute. To
conclude thate� t .a.x// D a.��t .x//, use (i) and 4.5 (ii).

(iii) Let t 2 R. Then 2.5.2 (iii) and 2.1 imply

Ad..b�˝�eO�/it /Œ.U a
� /
�
13W12� D Ad..bDt /23.b�˝�˝��/it /Œ.U a

� /
�
13W12�

D .bDt /23.D
o
�t /
�
13.U

a
� /
�
13.Dt /13W12.

bDt /
�
23

D .Do
�t /
�
13.
bDt /23.U

a
� /
�
13.Dt /13W12.

bDt /
�
23:

But 2.4.4 gives that .id ˝ba/.Dt /.bDt /23 D W �12.U
a
� /13.

bDt /23.U
a
� /
�
13.Dt /13W12,

whence

.bDt /23.U
a
� /
�
13.Dt /13W12.

bDt /
�
23 D .U

a
� /
�
13W12.1˝ba/.Dt /:

We insert this relation above and find

Ad..b�˝�eO�/it /Œ.U a
� /
�
13W12� D .D

o
�t /
�
13 � .U

a
� /
�
13W12 � .id˝ba/.Dt /:
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We use this relation and Ad.1˝ Uba� .U a
� /
�/ŒW12� D .U

a
� /
�
13W12 (3.8), and find

.id˝e� t /.W12/
D Ad.1H ˝ U a

� .U
ba
� /
��iteO� Uba� .U a

� /
�/ŒW12�

D Ad.b��it ˝ U a
� .U

ba
� /
�/ŒAd..b�˝�eO�/it /..U a

� /
�
13W12/�

D Ad.b��it ˝ U a
� .U

ba
� /
�/Œ.Do

�t /
�
13 � .U

a
� /
�
13W12 � .id˝ba/.Dt /�

D b��it1 .id˝ ˇ�/.Do
�t /W12.id˝ a/.Dt /b�it1 :

(iv) For any ! 2 M�, the element e� t Œ.! ˝ id/.W / ˝ 1� belongs to G Ëa N

becausee� t Œ.! ˝ id/.W /˝ 1� D .! ı ��t /Œ.id˝ ˇ�/.Do
�t /W12.id˝ a/.Dt /�:

By continuity, we get thate� t .y ˝ 1/ belongs to G Ëa N for any y 2 cM . Together
with (ii), we obtain thate� t .GËaN/ � GËaN , and, ase� is a one-parameter group of
automorphisms, we havee� t .GËa N/ D GËa N . By (ii),e� t commutes with eR.
5.6 Lemma. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutativeG-Yetter–Drinfel’d algebra, � a normal faithful semi-finite weight onN ,
Dt its Radon–Nikodym derivative with respect to a (2.2) and Q� the dual weight of �
on the crossed product G Ëa N . Then for all t 2 R,

.id˝ � Q�t /.W12/ D ı
�it
1
b��it1 W12.id˝ a/.Dt /b�it1 D .id˝b� t /.W /12.��t ˝ a/.Dt /:

Proof. By [54, 3.4] and 2.2,

.id˝ � Q�t /.W12/ D ŒDt .b�it ˝�it� /�23W12Œ.b��it ˝��it� /D�t �23

D ı�it1
b��it1 .Dt /23W12b�it1 .D�t /23

D ı�it1
b��it1 W12.� ˝ id/.Dt /.D�t /23b�it1

D ı�it1
b��it1 W12.id˝ a/.Dt /b�it1 :

5.7 Proposition. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutativeG-Yetter–Drinfel’d algebra, � a normal faithful semi-finite weight onN ,
and Q� the dual weight of � on the crossed product G Ëa N . Then the one-parameter
groupe� t of G Ëa N constructed in 5.5 satisfies, for all t 2 R,e� ı � Q�t D .e� t ˇ�a

N

� Q�t / ı
e�; e� ı � Q�ıeRt D .� Q�ıeRt ˇ�a

N

e��t / ıe�:
Proof. Let x 2 N and t 2 R. Then 5.5 (ii) and 4.4 implye� ı � Q�t .a.x// D e�.a.��t .x/// D a.��t .x// ˇ˝a

N

1

D .e� t ˇ�a
N

� Q�t /.a.x/ ˇ˝a
N

1/ D .e� t ˇ�a
N

� Q�t /
e�.a.x//:
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Next, let V2 be the unitary from .H ˝ H�/ ˇ˝a
�

.H ˝ H�/ onto H ˝ H ˝ H�

introduced in 4.3, and denote byeO� the weight on bG Ëa N dual to � as before. Then

V2ŒU
a
� .U

ba
� /
��iteO� Uba.U a

� /
�
ˇ˝a
N

�it
Q� �V

�
2 .� ˝ a.q/„/

D V2ŒU
a
� .U

ba
� /
��iteO� .� ˝ƒ�.q// ˇ˝a

N

�it
Q� „�

D V2ŒU
a
� .U

ba
� /
�bDt .�

it� ˝ƒ�.�
�
t .q/// ˇ˝a

N

�it
Q� „�

D .id˝ a/.bDt /.�
it� ˝ a.��t .q//�

it
Q� „/

D .id˝ a/.bDt /.�
it
˝�it

Q� /.� ˝ a.q/„/:

Let now y 2cM . Then by 4.4,

Ad.V2/Œ Q�.y ˝ 1/� D b�.y/˝ 1 D Ad.�12W12/Œy ˝ 1�:

Using these two relations and 2.4.4, we find

Ad.V2/Œ. Q� ˇ�˛
N

� Q�t /.
Q�.y ˝ 1//�

D Ad..id˝ a/.bDt /.�
it
˝�it

Q� /�12W12/Œy ˝ 1˝ 1�

D Ad.�12W12.id˝ba/.Dt /.b�it ˝�iteO� //Œy ˝ 1˝ 1�
D Ad.�12W12.Uba� /23.Dt /13/Œb� t .y/˝ 1˝ 1�:

By 4.3 (iii), �12W12.Uba� /23 D V2V �1 W12.U a
� /23 and hence

Ad.V1/Œ. Q� ˇ�˛
N

� Q�t /.
Q�.y ˝ 1//�

D Ad.W12.U a
� /23.Dt /13/Œb� t .y/˝ 1˝ 1�

D Ad.W12.id˝ a/.Dt /.Dt /23/Œb� t .y/˝ 1˝ 1�
D Ad..Dt /23W12/Œb� t .y/˝ 1˝ 1�
D Ad..Dt /23/Œb�o.b� t .y//˝ 1�:

On the other hand,

Ad.V1/Œ Q�.� Q�t .y ˝ 1//� D Qa.�
Q�
t .y ˝ 1//

D Ad..bW o
12/
�/Œ� Q�t .y ˝ 1/�

D Ad..bW o
12/
�.Dt /23/Œb� t .y/˝ 1�

D Ad..Dt /23.bW o/�12/Œb� t .y/˝ 1�
D Ad..Dt /23/Œ.b�o.b� t .y//˝ 1/�;

showing that . Q� ˇ�˛
N

� Q�t /.
Q�.y ˝ 1// D Q�.� Q�t .y ˝ 1//.
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Since G Ëa N is generated by a.N / and cM ˝ 1, the first of the two formulas
follows. Using 5.5 (iv), the second one is easy to prove from the first one.

5.8 Corollary. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutativeG-Yetter–Drinfel’d algebra, � a normal faithful semi-finite weight onN ,
and Q� the dual weight of � on the crossed product G Ëa N . Then there exists a
one-parameter group 
t of automorphisms of N such that � Q�t .ˇ.x// D ˇ.
t .x//.

Proof. Using 5.7, we get that for all x 2 N and t 2 R,e�.� Q�t .ˇ.x/// D .e� t ˇ�a
N

� Q�t /.
e�.ˇ.x/// D .e� t ˇ�a

N

� Q�t /.1ˇ˝a
N

ˇ.x// D 1ˇ˝a
N

� Q�t .ˇ.x//

from which we get the result by [24, 4.0.9].

5.9 Theorem. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutativeG-Yetter–Drinfel’d algebra, � a normal faithful semi-finite weight onN ,
Dt the Radon–Nikodym derivative of � with respect to the action a, Q� the dual weight
of � on the crossed productGËaN ,e� t the one parameter group of automorphisms of
G Ëa N constructed in 5.5, and 
t the one parameter group of automorphisms of N
constructed in 5.8. Letˆt be the automorphism ofM defined byˆt .x/ D �t ıAd ı�it
(let us remark that ˆt is an automorphism of G). Then the following conditions are
equivalent:

(i) .ˆt ˝ 
t /.Ds/ D Ds for all s, t in R.

(ii) � Q�t ande� s commute for all s, t in R.
(iii) � Q�t and � Q�ıeRs commute for all s, t in R.

(iv) G.N; a;ba; �/ is a measured quantum groupoid.

If these conditions hold, thene� t is the scaling group of G.N; a;ba; �/, and 
t is the
one parameter group of automorphisms of N defined in 5.3 (iv).

Proof. The restrictions of � Q�t and e� s on a.N / always commute because � Q�t ıe� s.a.x// D a.��t ı �
�
s .x// and e� s ı � Q�t .a.x// D a.��s ı �

�
t .x// for all x 2 N

by 5.5 (ii).
Using now 5.6, 5.5 (iii) and 2.2, we get that

.id˝e� s� Q�t /.W12/
D ı�it1

b��it1 .id˝e� s/.W12/.id˝e� sa/.Dt /b�it1
D ı�it1

b��it1
b��is1 .id˝ ˇ�/.Do

�s/W12.id˝ a/.Ds/b�is1 .id˝ a��s /.Dt /b�it1
D ı�it1

b��i.sCt/1 .id˝ ˇ�/.Do
�s/W12.id˝ a/.Ds.�s ˝ �

�
s /.Dt //

b�i.sCt/1

D ı�it1
b��i.sCt/.id˝ ˇ�/.Do

�s/W12.id˝ a/.DsCt /b�i.sCt/1
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and, on the other hand,

.id˝ � Q�t e� s/.W12/
D b��is1 .id˝ �e�t ˇ�/.Do

�s/.id˝ �
Q�
t /.W12/.id˝ �

e�
t a/.Ds/b�is1

D b��is1 .id˝ ˇ�
ot /.D
o
�s/ı

�it
1
b��it1 W12.id˝ a/.Dt /b�it1 .id˝ � Q�t a/.Ds/b�is1

D b��i.sCt/1 ı�it1 .ˆt ˝ ˇ
�
ot /.D

o
�s/W12.id˝ a/.Dt .�t ˝ �

�
t /.Ds//

b�i.sCt/1

D b��i.sCt/1 ı�it1 .ˆt ˝ ˇ
�
ot /.D

o
�s/W12.id˝ a/.DsCt /b�i.sCt/1 :

Consequently, .id˝� Q�t e� s/.W12/ D .id˝e� s� Q�t /.W12/ if and only if .ˆt ˝ 
t /.Ds/ D Ds ,
which gives the equivalence of (i) and (ii).

Let us suppose (ii). Using 5.7, we gete�.� Q�t � Q�ıeRs / D .e� t� Q�ıeRs ˇ�a
N

� Q�t e��s/ ıe�
and e�.� Q�ıeRs � Q�t / D .�

Q�ıeR
s e� t ˇ�a

N

e��s� Q�t / ıe�;
and by the commutation ofe� with � Q� and with � Q�ıeR, we get (iii).

By definition of a measured quantum groupoid, we have the equivalence of (iii)
and (iv). The fact that (iv) implies (ii) is given by 5.3 (vi).

5.10 Corollary. LetG be a locally compact quantum group and .N; a;ba/ a braided-
commutative G-Yetter–Drinfel’d algebra such that one of the following conditions
holds:

(i) N is properly infinite, or
(ii) a is integrable, or
(iii) G is (the von Neumann version of) a compact quantum group.

Then there exists a normal semi-finite faithful weight � on N such that G.N; a;ba; �/
is a measured quantum groupoid.

Proof. We consider the individual cases:
(i) By 3.10, there exists a normal semi-finite faithful weight � on N , invariant

under a; therefore its Radon–Nikodym derivative Dt D 1, and we get the result
by 5.9.

(ii) In that case, there exists a weight � on N which is ı�1-invariant with respect
to a; so we can apply again 5.9 to get the result.

(iii) We are here in a particular case of (ii), but with ı D 1.

5.11 Proposition. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutativeG-Yetter–Drinfel’d algebra, � a normal faithful semi-finite weight onN ,
k-invariant with respect to a (with k affiliated to Z.M/). Then:
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(i) the scaling groupe� t of G.N; a;ba; �/ is given by

e� t .X/ D .P it ˝�it� /X.P�it ˝��it� /

for all X 2 G Ëa N ;

(ii) the scaling operatore� is equal to ��1, where � is the scaling constant of G,
and the managing operator eP is equal to P ˝�� .

Proof. (i) The scaling group e� t satisfies e� t .a.x// D a.��t .x// for all x 2 N
(5.5 (ii)). Using now 3.3 (i), we get thate� t .a.x// D .�t ˝ ��t /.a.x//.

On the other hand, using 5.5 (iii) and 3.1, we get that

.id˝e� t /.W12/ D b��it1 R.k�it /1W12k
itb�it1 D .��t˝id/.W /˝1 D .id˝b� t /.W /˝1:

So, for all y 2cM , we havee� t .y ˝ 1/ Db� t .y/˝ 1, from which we get (i).
(ii) The scaling operator is equal to ��1 because

Q�.e� t .a.x�/.y�y ˝ 1H� /a.x/// D Q�Œa.��t .x�//.b� t .y�y/˝ 1H� /a.��t .x//�
D �.��t .x

�x//b'.b� t .y�y//
D ��t�.x�x/b'.y�y/
D ��t Q�.a.x�/.y�y ˝ 1H� /a.x//;

and eP is equal to P ˝�� because

ƒQ�.e� t ..y ˝ 1H� /a.x/// D ƒQ� Œ.b� t .y/˝ 1H� /a.��t .x//�
D ƒb'.b� t .y//˝ƒ�.��t .x//
D �t=2.P it ˝�it� /.ƒb'.y/˝ƒ�.x//:

6. Duality

In this chapter, we prove (6.5) that, ifG.N; a;ba; �/ is a measured quantum groupoid,
its dual is isomorphic to G.N;ba; a; �/, which is therefore also a measured quantum
groupoid.
6.1 Lemma. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutative G-Yetter–Drinfel’d algebra and � a normal faithful semi-finite weight
on N , and let G.N; a;ba; �/ be the associated Hopf-bimodule, equipped with a co-
inverse, a left-invariant operator-valued weight and a right-invariant valued weight
by 4.4 (ii), 4.6 and 5.4. Then:

(i) The anti-representation 
 of N is given by 
.x�/ D 1H ˝ J�xJ� for all
x 2 N .
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(ii) For any � 2 H , p 2 N� , the vector �˝ƒ�.p/ belongs toD..H ˝H�/
 ; �o/,
and R
;�o.� ˝ ƒ�.p// D l�p, where l� is the linear application from H� to
H ˝H� given by l�� D � ˝ � for all � 2 H� .

(iii) There exists a unitary V3 from .H ˝H�/ a˝

�o

.H ˝H�/ ontoH ˝H ˝H�

such that

V3Œ„ a˝

�o

.� ˝ƒ�.p//� D � ˝ a.p/„ for all „ 2 H ˝H� :

Moreover, .1˝X/V3 D V3.X a˝

N o

1/ for all X 2 a.N /0.

(iv) V3.I ˇ˝a
N

JQ�/ D .bJ ˝ I /V1.
Proof. (i) By definition (5.2), the left-invariant weight of G.N; a;ba; �/ is the
dual weight Q�. Therefore, by definition (5.2), and using 2.2,


.x�/ D JQ�a.x/JQ� D .bJ ˝ J�/.U a
� /
�a.x/U a

� .
bJ ˝ J�/ D 1H ˝ J�xJ� :

(ii) This follows from the relation

l�pJ�ƒ�.x/ D � ˝ J�xJ�ƒ�.p/ D 
.x
�/.� ˝ƒ�.p//:

(iii) For any � 0 2 H , „0 2 H ˝H� , p0 2 N� ,

.„ a˝

�o

.� ˝ƒ�.p//j„
0
a˝

�o
.� 0 ˝ƒ�.p

0//

D .a.h� ˝ƒ�.p/; �
0
˝ƒ�.p/i
;�o/„j„

0/

D .a.p0�l��0 l�p/„j„
0/

D .� ˝ a.p/„j� 0 ˝ a.p0/„0/;

from which we get the existence of V3 as an isometry. As it is trivially surjective, we
get it is a unitary. The last formula of (iii) is trivial.

(iv) Using 4.5 (ii) and 6.1 (i), we get the existence of an anti-linear bijective
isometry I ˇ˝a

N

JQ� from .H ˝H�/ ˇ˝a
�

.H ˝H�/ onto .H ˝H�/ a˝

�o

.H ˝H�/

with trivial values on elementary tensors. Moreover, for any „ 2 H ˝H� , � 2 H ,
p 2 N� , analytic with respect to �, we have, using successively 2.2, (iii), and 4.3 (i),

V3.I ˇ˝a
N

JQ�/.„ ˇ˝a
�

U a
� ..� ˝ƒ�.p///

D V3ŒI„ a˝

�

.bJ � ˝ J�ƒ�.p//�
D bJ � ˝ a.��

�i=2.p
�///I„

D bJ � ˝ Iˇ.��i=2.p//„
D .bJ ˝ I /V1Œ„ ˇ˝a

�

U a
� .� ˝ƒ�.p//�:
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6.2 Theorem ([40]). LetG be a locally compact quantum group, .N; a;ba/ a braided-
commutativeG-Yetter–Drinfel’d algebra, � a normal faithful semi-finite weight onN ,
and letG.N; a;ba; �/ be the associated Hopf-bimodule, equipped with a co-inverse, a
left-invariant operator-valued weight and a right-invariant valued weight by 4.4 (ii),
4.6 and 5.4. Let eW be the pseudo-mutiplicative unitary associated by 5.2. TheneW D V �3 .W � ˝ 1H� /V1;
where V1 had been defined in 4.3 and V3 in 6.1. Moreover, for any � , � in H , p, q
in N� ,

.id � !Ua
� .�˝J�ƒ�.p//;�˝ƒ�.q//.

eW / D a.q�/Œ.!�;� ˝ id/.W �/˝ 1H� �ˇ.p
�/:

Proof. Let x, x1, x2 inN� and y, y1, y2 inNb' . Then .y˝1/a.x/, .y1˝1H� /a.x1/,
.y2 ˝ 1H� /a.x2/ belong to NQ� \NT Qa , and by (2.2),

ƒQ� Œ.y ˝ 1H� /a.x/� D ƒb'.y/˝ƒ�.x/
and

JQ�ƒQ� Œ.y ˝ 1H� /a.x/� D U
a
� .
bJƒb'.y/˝ J�ƒ�.x//

JQ�ƒQ� Œa.x
�
1 /.y

�
1y2 ˝ 1H� /a.x2/� D .1H ˝ J�x

�
1J�/U

a
� Œ
bJƒb'.y�1y2/˝ J�ƒ�.x2/�:

By definition of eW (5.2), we find that for any„1,„2 inH ˝H� , the scalar product

.eW Œ„2 ˇ˝a
�

JQ�ƒQ�.a.x
�
1 /.y

�
1y2 ˝ 1H� /a.x2//�j„1 a˝


�o
.ƒb'.y/˝ƒ�.x///

is equal to

.e�Œ.y ˝ 1/a.x/��
� .„2 ˇ˝a

�

U a
� .
bJƒb'.y2/˝ J�ƒ�.x2//j„1 ˇ˝a

�

U a
� .
bJƒb'.y1/˝ J�ƒ�.x1////:

Using 4.4, we get that this is equal to

..b�o.y�/˝ 1H� /

�V1Œ„2ˇ˝a
�

U a
� .
bJƒb'.y2/˝J�ƒ�.x2//�jV1Œa.x/„1ˇ˝a

�

.U a
� .
bJƒb'.y1/˝J�ƒ�.x1///;

which, thanks to 4.3 (i), is equal to

..b�o.y�/˝ 1H� /.
bJƒb'.y2/˝ ˇ.x�2 /„2/jbJƒb'.y1/˝ ˇ.x�1 /a.x/„1/

and to

.ˇ.x1/..!bJƒb'.y2/;bJƒb'.y1/ ˝ id/.b�o.y�//˝ 1H� /ˇ.x
�
2 /„2ja.x/„1/

D .ˇ.x1/..id˝ !bJƒb'.y2/;bJƒb'.y1//.b�.y�//˝ 1H� /ˇ.x�2 /„2ja.x/„1/;
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which, by 2.1, is equal to

.ˇ.x1/..id˝ !bJƒb'.y�1 y2/;ƒb'.y//.bW /˝ 1H� /ˇ.x�2 /„2ja.x/„1/
D .ˇ.x1/..!bJƒb'.y�1 y2/;ƒb'.y/ ˝ id/.W �/˝ 1H� /ˇ.x�2 /„2ja.x/„1/;

which is, using 4.3 (i) and 6.1, equal to

..1H ˝ ˇ.x1//.W
�
˝ 1H� /

� V1.„2 ˇ˝a
�

U a
� .
bJƒb'.y�1y2/˝ J�ƒ�.x2///jV3.„1 a˝


�o
.ƒb'.y/˝ƒ�.x////;

which, using 3.8 (iv), is the scalar product of the vector

W �12.id˝ ˇ
�/.ao.xo1//V1.„2 ˇ˝a

�

U a
� .
bJƒb'.y�1y2/˝ J�ƒ�.x2///

with V3.„1 a˝

�o

.ƒb'.y/˝ƒ�.x///. But, using 4.3 (i), this vector is equal to

.W � ˝ 1H� /

� V1Œ.1H ˝ 1H� / ˇ˝a
N

.1H ˝ J�x
�
1J�/�.„2 ˇ˝a

�

U a
� .
bJƒb'.y�1y2/˝ J�ƒ�.x2///:

Finally, we get that the initial scalar product

.eW Œ„2 ˇ˝a
�

JQ�ƒQ�.a.x
�
1 /.y

�
1y2 ˝ 1/a.x2//�j„1 a˝


�o
.ƒb'.y/˝ƒ�.x///

is equal to

..W � ˝ 1H� /

� V1Œ„2 ˇ˝a
�

JQ�ƒQ�.a.x
�
1 /.y

�
1y2 ˝ 1/a.x2//�jV3.„1 a˝


�o
.ƒb'.y/˝ƒ�.x////:

By density of linear combinations of elements of the form ƒb'.y/ ˝ ƒ�.x/ in
D..H ˝H�/
 ; �

o/, and then of linear combinations of elements of the form
„1 a˝


�o
.ƒb'.y/˝ƒ�.x// in .H ˝H�/ a˝


�o
.H ˝H�/, we get that

eW Œ„2 ˇ˝a
�

JQ�ƒQ�.a.x
�
1 /.y

�
1y2 ˝ 1/a.x2//�

D V �3 .W
�
˝ 1H� /V1Œ„2 ˇ˝a

�

JQ�ƒQ�.a.x
�
1 /.y

�
1y2 ˝ 1/a.x2//�;

and, with the same density arguments, we get that eW D V �3 .W
� ˝ 1H� /V1.

Therefore, using again 4.3 (i) and 6.1, we get that

.eW Œ„2 ˇ˝a
�

U a
� .�˝ J�ƒ�.p//�j„1 a˝


�o
.� ˝ƒ�.q///

D ..W � ˝ 1H� /V1Œ„2 ˇ˝a
�

U a
� .�˝ J�ƒ�.p//�jV3Œ„1 a˝


�o
.� ˝ƒ�.q//�/
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is equal to

..W � ˝ 1H� /.�˝ ˇ.p
�/„2/j� ˝ a.p/„1/

D ...!�;� ˝ id/.W �/˝ 1H� /ˇ.p�/„2ja.p/„1/;

which finishes the proof.

6.3 Theorem. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutative G-Yetter–Drinfel’d algebra, and � a normal faithful semi-finite weight
on N such that G.N; a;ba; �/ is a measured quantum groupoid in the sense of 5.1.
Let 5G.N; a;ba; �/ be its dual measured quantum groupoid in the sense of 5.3, and for
all X 2 bG Ëba N , let

I.X/ D U a
� .U

ba
� /
�XUba� .U a

� /
�:

Then I is an isomorphism of Hopf bimodule structures from G.N;ba; a; �/ onto
5G.N; a;ba; �/.
Proof. To prove this result, we calculate the pseudo-multplicative ebW ofG.N;ba; a; �/,
using 6.2 applied to .N;ba; a; �/. We first define, as in 4.3 (i) and 6.1, a unitary bV1
from .H ˝ H�/ b̌˝ba

�

.H ˝ H�/ onto H ˝ H ˝ H� , and a unitary bV3 from

.H ˝H�/ba˝b

�o

.H ˝H�/ ontoH ˝H ˝H� , where, for all x 2 N ,

b̌.x/ D Uba� .U a
� /
�.1H ˝ J�x

�J�/U
a
� .U

ba
� /
�;b
.x/ D JeO�ba.x�/JeO� D 1H ˝ J�x�J� D 
.x/;eO� denoting the dual weight on bG Ëba N as before. More precisely, applying 4.3 (i) to

.N;ba; a; �/, we get that for any � , � inH and p, q in N� ,

bV1.Uba� .U a
� /
� b̌˝ba

N

Uba� .U a
� /
�/��o ŒU

a
� .�˝ J�ƒ�.q// a˝


�o
.� ˝ƒ�.p//�

is equal to

bV1ŒUba� .U a
� /
�.� ˝ƒ�.p//b̌˝ba

�

Uba� .�˝ J�ƒ�.q//�
D �˝ b̌.q�/Uba� .U a

� /
�.� ˝ƒ�.p//

D �˝ Uba� .U a
� /
�.� ˝ J�qJ�ƒ�.p//

D .1H ˝ U
ba
� .U

a
� /
�/.�˝ � ˝ pJ�ƒ�.q//:
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On the other hand, using 6.1, we get that

V3ŒU
a
� .�˝ J�ƒ�.q// a˝


�o
.� ˝ƒ�.p//� D � ˝ a.p/U a

� .�˝ J�ƒ�.q//

D � ˝ U a
� .�˝ pJ�ƒ�.q//

D .1H ˝ U
a
� /.� ˝ �˝ pJ�ƒ�.q//;

from which we get that

bV1.Uba� .U a
� /
� b̌˝ba

N

Uba� .U a
� /
�/��o D .1H ˝ U

ba
� .U

a
� /
�/.� ˝ 1H� /.1H ˝ .U

a
� /
�/V3:

Applying this result to .N;ba; a; �/ and taking the adjoints, we find that

bV3.Uba� .U a
� /
�

a˝ˇ
N o

Uba� .U a
� /
�/�� D .1H ˝ U

ba
� /.� ˝ 1H�/.1H ˝ U

ba
� .U

a
� /
�/V1:

Applying 6.2 to .N;ba; a; �/, we get that ebW D bV3�.�˝1H� /.W ˝1H� /.�˝1H� /bV1
and, therefore, that ��o ŒU a

� .U
ba
� /
�ba˝

N o

U a
� .U

ba
� /
��
ebW ŒUba� .U a

� /
�

˝a
N

Uba� .U a
� /
����o is

equal to:
V �1 .U

a
� /23.U

ba
� /
�
23.U

ba
� /
�
13W12.U

ba
� /13.U

a
� /
�
13.U

a
� /
�
23V3

But, as .b�˝id/.Uba� / D .Uba� /23.Uba� /13, we get that .Uba� /�23.Uba� /�13 D W12.Uba� /�13W �12,
and therefore that .Uba� /�23.Uba� /�13W12.Uba� /13 D W12. On the other hand, by the same
argument, .U a

� /
�
13.U

a
� /
�
23 D W

�
12.U

a
� /
�
23W12. Finally, we get that

��o ŒU
a
� .U

ba
� /
�ba˝

N o

U a
� .U

ba
� /
��
ebW ŒUba� .U a

� /
�

˝a
N

Uba� .U a
� /
����o D V

�
1 W12V3 D

eW �;
and therefore

ŒU a
� .U

ba
� /
�ba˝

N o

U a
� .U

ba
� /
��
ebW ŒUba� .U a

� /
�

˝a
N

Uba� .U a
� /
�� D �� eW ��� :

So, up to the isomorphism, the pseudo-multiplicative unitary ebW of G.N;ba; a; �/ is
equal to the dual pseudo-muliplicative untary beW , which finishes the proof.

6.4 Proposition. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutative G-Yetter–Drinfel’d algebra, and � a normal faithful semi-finite weight
onN . Suppose thatG.N; a;ba; �/ is a measured quantum groupoid in the sense of 5.1,
and let bG.N; a;ba; �/ be its dual measured quantum groupoid in the sense of 5.3.

(i) The co-inverse eR constructed in 4.6 (ii) is the canonical co-inverse of the
measured quantum groupoid G.N; a;ba; �/.
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(ii) The isomorphim of Hopf bimodules from G.N;ba; a; �/ onto bG.N; a;ba; �/
constructed in 6.3 exchanges the canonical co-inverses of these Hopf-
bimodules.

Proof. (i) By 6.1 (iv), V3.I ˇ˝a
N

JQ�/ D .bJ ˝ I /V1. Taking adjoints, we also get
V1.I a˝


N o
JQ�/ D .bJ ˝ I /V3. Therefore, we get, using 6.2 and 4.5 (iii),

.I a˝

N o

JQ�/eW .I a˝

N o

JQ�/ D .I a˝

N o

JQ�/V
�
3 .W

�
˝ 1H� /V1.I a˝


N o
JQ�/

D V �1 .
bJ ˝ I /.W � ˝ 1H� /.bJ ˝ I /V3

D V �1 .W ˝ 1H� /V3

D eW �:
For all „ 2 D.a.H ˝H�/; �/ and „0 2 D..H ˝H�/
 ; �o/, we therefore have

I.id � !„;„0/.eW /�I D .id � !J Q�„0;J Q�„/.eW /;
which proves that the canonical co-inverse is given by eR.X/ D IX�I for all X 2
G Ëa N .

(ii) By 5.3, the canonical co-inverse of bG.N; a;ba; �/ is implemented by JQ� .
Using (ii) applied to G.N;ba; a; �/, we therefore get that the canonical co-inverse of
G.N;ba; a; �/ is implemented bybI D Uba� .U a

� /
�JQ�U

a
� .U

ba/�.
6.5 Theorem. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutative G-Yetter–Drinfel’d algebra, and � a normal faithful semi-finite weight
onN . Suppose thatG.N; a;ba; �/ is a measured quantum groupoid in the sense of 5.1,
let bG.N; a;ba; �/ be its dual measured quantum groupoid in the sense of 5.3, and let I
be the isomorphism ofHopf bimodule structures constructed in 6.3. ThenI exchanges
the left-invariant and the right-invariant operator-valued weights on G.N;ba; a; �/
and bG.N; a;ba; �/. Therefore, G.N;ba; a; �/ is also a measured quantum groupoid.

Proof. Using 6.4 (ii), it suffices to verify that I exchanges the left-invariant operator
valued weights, of G.N;ba; a; �/ and bG.N; a;ba; �/. The left-invariant weight of
G.N;ba; a; �/ is the dual weighteO� on the crossed product bGËbaN . Let us denote by b̂
the left-invariant weight of bG.N; a;ba; �/.

We apply 6.2 to G.N;ba; a; �/ and get that, for any � inH , z 2 Nb' , p, q in N� ,�
id�!

Uba� .bJƒb'.z/˝J�ƒ�.p//;�˝ƒ�.q/
�
.
ebW /�id�!

Uba� .bJƒb'.z/˝J�ƒ�.p//;�˝ƒ�.q/
�
.
ebW /�

is equal to

ba.q�/��id˝ !bJƒb'.z/;�
�
.W /˝ 1

�b̌.pp�/��id˝ !bJƒb'.z/;�
�
.W /� ˝ 1

�ba.q/;
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where, as in 6.3, ebW denotes the pseudo-multiplicative unitary associated to
G.N;ba; a; �/, and b̌ is defined, for x 2 N , byb̌.x/ D Uba� .U a

� /
�.1H ˝ J�x

�J�/U
a
� .U

ba
� /
�:

Let us take now a family .pi /i2I inMC� , increasing to 1. Then, we get that

ba.q�/��id˝ !bJƒb'.z/;�
�
.W /

�
id˝ !bJƒb'.z/;�

�
.W /� ˝ 1

�ba.q/
is the increasing limit of�
id�!

Uba� .bJƒb'.z/˝J�ƒ�.p1=2i //;�˝ƒ�.q/

�
.
ebW /�id�!

Uba� .bJƒb'.z/˝J�ƒ�.p1=2i //;�˝ƒ�.q/

�
.
ebW /�:

But, using 6.3, we get that
�
id � !

Uba� .bJƒb'.z/˝J�ƒ�.p1=2i //;�˝ƒ�.q/

�
.
ebW / is equal to

I�1
��

id � !
Ua
� .bJƒb'.z/˝J�ƒ�.p1=2i //;Ua

� .U
ba
� /
�.�˝ƒ�.q//

�
.��o eW ���o/�

D I�1
��
!
Ua
� .U

ba
� /
�.�˝ƒ�.q//;U

a
� .bJƒb'.z/˝J�ƒ�.p1=2i //

� id
�
.eW /��:

Therefore, we get that

b̂ ı I�ba.q�/��id˝ !bJƒb'.z/;�
�
.W /

�
id˝ !bJƒb'.z/;�

�
.W /� ˝ 1

�ba.q/�
is the increasing limit of

b̂��!
Ua
� .U

ba
� /
�.�˝ƒ�.q//;U

a
� .bJƒb'.z/˝J�ƒ�.p1=2i //

� id
�
.eW /�

�

�
!
Ua
� .U

ba
� /
�.�˝ƒ�.q//;U

a
� .bJƒb'.z/˝J�ƒ�.p1=2i //

� id
�
.eW /�;

which, using 5.3, is equal, by definition, to the increasing limit of


!
Ua
� .U

ba
� /
�.�˝ƒ�.q//;U

a
� .bJƒb'.z/˝J�ƒ�.p1=2i //




2
Q�
:

For X 2 NQ� , the scalar !
Ua
� .U

ba
� /
�.�˝ƒ�.q//;U

a
� .bJƒb'.z/˝J�ƒ�.p1=2i //

.X�/ is equal to

.X�U a
� .U

ba
� /
�.� ˝ƒ�.q//jU

a
� .
bJƒb'.z/˝ J�ƒ�.p1=2i ///

D .U a
� .U

ba
� /
�.� ˝ƒ�.q//jXJQ�ƒQ� Œ.z ˝ 1/a.p

1=2
i /�/

D .U a
� .U

ba
� /
�.� ˝ƒ�.q//jJQ�.z ˝ 1/a.p

1=2
i /JQ�ƒQ�.X//
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and, therefore,


!
Ua
� .U

ba
� /
�.�˝ƒ�.q//;U

a
� .bJƒb'.z/˝J�ƒ�.p1=2i //




2
Q�

D kJQ�a.p
1=2
i /.z� ˝ 1/JQ�U

a
� .U

ba
� /
�.� ˝ƒ�.q//k

2:

The limit when pi goes to 1 is equal to

k.bJ z�bJ ˝ 1/.Uba� /�.� ˝ƒ�.q//k2 D k.bJ z�bJ ˝ 1/.� ˝ƒ�.q//k2
D kbJ z�bJ �k2kƒ�.q/k2
D




!
�;bJƒb'.z/




2b'kƒ�.q/k2
D





ƒ'��id˝ !�;bJƒb'.z/
�
.W �/

�
˝ƒ�.q/





2
D





ƒeO����id˝ !�;bJƒb'.z/
�
.W �/˝ 1H�

�ba.q/�



2;
from which we get that



ƒb̂ıI���id˝ !�;bJƒb'.z/

�
.W �/˝ 1H�

�ba.q/�



2
D





ƒeO����id˝ !�;bJƒb'.z/
�
.W �/˝ 1H�

�ba.q/�



2;
which proves that the left-invariant weight b̂ ı I CeO� is semi-finite. Using now [24,
5.2.2], we get that there exists an invertible p 2 NC, p � 1, such that

.DeO� W D.b̂ ı I CeO�//t D ˇ.p/it
for all t 2 R. So, ˇ.p/ is invariant under the modular group �eO� (i.e. p is invariant
under 
 ) and we get that

2





ƒeO����id˝!�;bJƒb'.z/
�
.W �/˝ 1H�

�ba.q/�



2
D





ƒb̂ıICeO����id˝ !�;bJƒb'.z/
�
.W �/˝ 1H�

�ba.q/�



2
D





JeO�ˇ.p�1/JeO�ƒeO����id˝ !�;bJƒb'.z/
�
.W �/˝ 1H�

�ba.q/�



2;
from which we get that p D 1=2, andeO� D 1=2.b̂ ı I CeO�/. Thus,eO� D b̂ ı I .



1192 M. Enock and T. Timmermann

6.6 Theorem. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutativeG-Yetter–Drinfel’d algebra, � a normal faithful semi-finite weight onN .
LetDt be the Radon–Nikodym derivative of the weight � with respect to the action a
and bDt be the Radon–Nikodym derivative of the weight � with respect to the actionba.
Then the following conditions are equivalent:

(i) G.N; a;ba; �/ is a measured quantum groupoid;

(ii) G.N;ba; a; �/ is a measured quantum groupoid;

(iii) .�tAd.ı�it /˝ 
t /.Ds/ D Ds for all s; t 2 R;

(iv) .b� tAd.bı�it /˝ 
�t /.bDs/ D Ds for all s; t 2 R.

Proof. By 6.5, we know that (i) implies (ii), and is therefore equivalent to (ii).
Moreover, by 5.9, we know that (i) is equivalent to (iii). Applying 5.9 toG.N;ba; a; �/,
we obtain (iv), because the one-parameter groupb
 t is equal to 
�t . The proof that (iv)
implies (ii) is the same as in 5.9, where we use again that the one-parameter groupb
 t
ofN constructed from the dual measured quantum groupoid is equal to 
�t (5.3).

6.7 Corollary. Let G be a locally compact quantum group, .N; a;ba/ a braided-
commutative G-Yetter–Drinfel’d algebra, and � a normal faithful semi-finite weight
on N . If the weight � is bk-invariant with respect to ba, for bk affiliated to the
center Z.cM/ or bk D bı�1, then G.N; a;ba; �/ is a measured quantum groupoid
and its dual is isomorphic to G.N;ba; a; �/.
Proof. We verify easily property (iv) of 6.6, and then obtain the result by 6.6 and 6.5.

7. Examples

In this chapter, we give several examples of measured quantum groupoids constructed
from a braided-commutative Yetter–Drinfel’d algebra. First, in 7.1, we show that
usual transformation groupoids are indeed a particular case of this construction,
which justifies the terminology. Other examples are constructed from quotient type
co-ideals of compact quantum groups, in particular one is constructed from the
Podleś sphere S2q (7.4.5). Another example (7.5.1) is constructed from a normal
closed subgroupH of a locally compact group G.

7.1. Transformation Groupoid. Let us consider a locally compact group G right
acting on a locally compact space X ; let us denote a this action. It is well known
that this leads to a locally compact groupoidX Ô

a
G, usually called a transformation

groupoid. This groupoid is the set X � G, with X as set of units, and range and
source applications given by r.x; g/ D x and s.x; g/ D ag.x/, the product being
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.x; g/.ag.x/; h/ D .x; gh/, and the inverse .x; g/�1 D .ag.x/; g
�1/ [32, 1.2.a].

This locally compact groupoid has a left Haar system [32, 2.5a], and for anymeasure �
on X , the lifted measure on X �G is � ˝ �, where � is the left Haar measure on G.

The measure � is then quasi-invariant in the sense of [32] and 4.2 if and only
if � ˝ � is equivalent to its image under the inversion .x; g/ ! .x; g/�1. This is
equivalent [32, 3.21] to asking that, for all g 2 G, the measure � ı ag is equivalent
to �, which leads to a Radon–Nikodym �.x; g/ D

d�ıa
g�1

d�
.x/. Then, the Radon–

Nikodym derivative between � ˝ � and its image under the inversion .x; g/ !
.x; g/�1 is �.x; g/�G.g/, where �G is the modulus of G.

Let us consider the trivial action of the dual locally compact quantum group bG,
defined by �.f / D 1 ˝ f for all f 2 L1.X/. It is straightforward to verify that
.L1.X/; a; �/ is a G-Yetter–Drinfel’d algebra which is braided-commutative. The
measure �, regarded as a normal semi-finite faithful weight on L1.X/, is evidently
invariant under �. So, by 6.7, we obtain measured quantum groupoid structures on
the crossed products G Ëa L

1.X/ and bG Ë� L1.X/.
The von Neumann algebra bG Ë� L1.X/ is L1.G/˝L1.X/, or L1.X Ô

a
G/,

and the structure of measured quantum groupoid is nothing but the structure given
by the groupoid structure of X Ô

a
G.

The dual measured quantum groupoid 2X Ô
a
G is the von Neumann algebra

generated by the left regular representation of X Ô
a
G, which is the crossed

product G Ëa L
1.X/. Let us note that this measured quantum grouped is co-

commutative, in particular, ˇ D a and 
t D ��t D idL1.X;�/ for all t 2 R. As
�t D Ad.�itG/ D idL1.G/, we see thatDt D �.x; g/it satisfies the condition of 6.6.
Moreover, bDt D 1 for all t 2 R.

Therefore, we get that any transformation groupoid gives a very particular case of
our “measured quantum transformation groupoids”, which explains the terminology.

7.2. Basic example. LetG D .M; �; '; 'ıR/ be a locally compact quantum group,
D.G/ its quantum double, and let us use the notation introduced in 2.4.5. There exists
an action aD ofD.G/ onM such that

aD.x/˝ 1 D �D.x ˝ 1/:

The Yetter–Drinfel’d algebra associated to this action is given by the restrictions
of the applications b and bb to M , which are, respectively, the coproduct � (when
considered as a left action ofG onM ), and the adjoint action ad of bG onM given by

ad.x/ D �W.x ˝ 1/W �� D bW �.1˝ x/bW ; (4)
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and we get this way the Yetter–Drinfel’d algebra .M; �; ad/, which is the basic
example given in [28]. Moreover, as

&�.x/ D ..R˝R/ ı � ıR/.x/

D .bJ ˝bJ /W �.bJ ˝bJ /.1˝ x/.bJ ˝bJ /W.bJ ˝bJ /; (5)

we get that that

&˛o.xo/ D .JbJ ˝ 1/W �.1˝bJxbJ /W.bJJ ˝ 1/
D .J ˝ J /W.1˝ JbJxbJJ /W �.J ˝ J /

(where we prefer to note ˛ the left action � to avoid confusion between ˛o defined
in 2.5.1 and the coproduct �o of the locally compact quantum group Go). But

& ado.xo/ D .J ˝ J /W.x ˝ 1/W �.J ˝ J /

from which we get that this Yetter–Drinfel’d algebra is braided-commutative.
As ' is invariant under � , using 5.9, we can equip the crossed products G Ë� M

and bG Ëad M with structures of measured quantum groupoids.
Let us describebGËadM inmore detail. We claim that themapˆ WD Ad..JbJ ˝ 1/bW /

identifies bG ËadM withM 0 ˝M . Indeed, the first algebra is generated by elements
of the form .z ˝ 1/ ad.x/ and x; z 2M , and

Ad.bW /Œ.z ˝ 1/ ad.x/� D �o.z/.1˝ x/ D Ad.�/.�.z/.x ˝ 1//:

But elements of the form �.z/.x˝ 1/ generateM ˝M , and as Ad.JbJ /.M/ DM 0,
the assertion follows. We just saw that ˆ.ad.x// D 1 ˝ x, and we claim that
ˆ.ˇ.x// D xo ˝ 1. Using (4) and the fact that bW � is a cocycle for the trivial action
of bG onM , we get [41, 4.2]

U ad
� D

bW �.J ˝ J /bW .J ˝ J /
and therefore, using the relations .J˝bJ /bW �.J˝bJ / D bW and�ıR D .R˝R/ı�o

(2.1),

ˆ.ˇ.x// D Ad..JbJ ˝ 1/bWU ad
� .
bJ ˝ J //Œ�.x/�

D Ad..JbJ ˝ 1/.J ˝ J /bW .J ˝ J /.bJ ˝ J //Œ�.x/�
D Ad..bJ ˝ J /bW .JbJ ˝bJbJ //Œ�.x/�
D Ad..bJJ ˝ JbJ /bW �/Œ�o.R.x//�

D Ad..bJJ ˝ JbJ //ŒR.x/˝ 1�
D xo ˝ 1:

Therefore, ˆ defines an isomorphism between G.M; ad; �; �/ and the pair quantum
groupoid M 0 ˝M of Lesieur [24, 15], and induces an isomorphism between the
respective duals, which are (isomorphic to)G.M; �; ad; �/ and the dual pair quantum
groupoid B.H/ constructed in [24, 15.3.7], respectively.
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7.3. Quantum measured groupoid associated to an action. Let us apply 7.2
to bGo. We obtain that .cM;b�o; ad/ is a bGo-Yetter–Drinfel’d algebra, where ad means
here ad.x/ D W c�.1˝ x/W c . As noticed by [28, 3.1], we can extend this example
to any crossed-product G Ëa N, where a is a left action of G on a von Neumann
algebra N . Let us recall this construction. For any X 2 G Ëa N, the dual actionea is
given by ea.X/ D .bW o�

˝ 1/.1˝X/.bW o
˝ 1/:

Let us also write
ad.X/ D .W c�

˝ 1/.1˝X/.W c
˝ 1/:

We first show that this formula defines an action ad ofGo onGËa N. If X D y˝ 1,
with y 2cM , we get that ad.1˝ y/ D ad.y/˝ 1, which belongs toM 0 ˝ G Ëa N.
If X D a.x/, with x 2 N , we get that ad.a.x// D .W c� ˝ 1/.1˝ a.x//.W c ˝ 1/,
which belongs toM 0 ˝G Ëa N ; moreover, the properties of W c� give then that ad
is an action.

To prove that .GËaN;ea; ad/ is a bGo-Yetter–Drinfel’d algebra, we have to check
that, for any X 2 bGo,

Ad.�12bW o
12/.id˝ ad/ea.X/ D .id˝ea/ad.X/:

To check that, it suffices to prove that �12bW o
12W

c�
23
bW o�
13 D

bW o�
23W

c
13, which follows

from bW o D �W c�� and the pentagonal relation for W c .
7.3.1 Proposition. Let a an action of a locally compact quantum group G on a von
Neumann algebra N and let B D G Ëa N \ a.N/0. Then the formulas

b.X/ D .bW o�
˝ 1/.1˝X/.bW o

˝ 1/;bb.X/ D .W c�
˝ 1/.1˝X/.W c

˝ 1/

define actions b andbb of bGo and Gc, respectively, on B and .B; b;bb/ is a braided-
commutative Yetter–Drinfel’d algebra.

Proof. Asea.a.x// D 1˝ a.x/, for all x 2 N , we get that b is an action of bGo on
B D GËaN \ a.N /0.

To prove a similar result for bb, we need to make a detour via the inclusion
a.N / � G Ëa N which is depth 2 [41, 5.10]. Let � be a normal faithful semi-finite
weight on N , ande� its dual weight on GËaN . Then, we have

Jb�a.N /0Jb� D .bJ ˝ J�/.U a
� /
�a.N /0U a

� .
bJ ˝ J�/

D .bJ ˝ J�/.B.H/˝N 0/.bJ ˝ J�/ D B.H/˝N
and therefore B.H/˝N \ .G Ëa N/

0 D Je�BJe� .
Moreover [41, 2.6 (ii)], we have an isomorphism ˆ from B.H/˝N with Go Ëea

G Ëa N which sends G Ëa N ontoea.G Ëa N/. Via this isomorphism, the bidual
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actioneea of Goc on Go Ëea G Ëa N gives an action 
 of G on B.H�/ ˝ N . Aseea
is invariant onea.G Ëa N/, 
 is invariant on G Ëa N , and its restriction to Je�BJe�
defines an action of G on Je�BJe� , and, thanks to this restriction, we can define an
action of Gc on B . Let’s have a closer look at this last action: 
 is given, for any
X 2 B.H/˝N , by [41, 2.6 (iii)]


.X/ D W o
12.& ˝ id/.id˝ a/.X/W o�

12 D AdŒW o
12.U

a
� /13�.X23/:

So, the opposite action of its restriction to Je�BJe� will be implemented by

.J ˝ Je�/W o
12.U

a
� /13.

bJ ˝ Je�/
D .U a

� /23.J ˝
bJ ˝ J�/W o

12.U
a
� /13.

bJ ˝bJ ˝ J�/.U a
� /
�
23

D .U a
� /23.J ˝

bJ ˝ J�/W o
12.
bJ ˝bJ ˝ J�/.U a

� /
�
13.U

a
� /
�
23

D .JbJ /1.U a
� /23W12.U

a
� /
�
13.U

a
� /
�
23

D .JbJ /1W12
So, we get an action of Gc on B given by

z 7! Ad..JbJ /1W12/.1˝ z/ D W c�.1˝ z/W c ;

which isbb. Thus,bb is an action ofGc onB , and, by restriction of .GËaN;ea; ad/, we
have obtained that .B; b;bb/ is a bGo-Yetter–Drinfel’d algebra. Let’s now prove that it
is braided-commutative. Let us write J .x/ D JbJxbJJ for any x 2M 0. We get that
.J ˝ id/bb.B/ is included inM˝B , and, therefore, commutes with 1˝a.N /. On the
other hand, we get that .J ˝ id/.bb.B// D .W ˝1/.1˝B/.W �˝1/ commutes with
.W �˝1/.cM˝1˝1/.W ˝1/ D b�o.cM/˝1. Therefore, we get that .J ˝ id/.bb.B//
commutes withea.G Ëa N/, and, therefore, with b.B/. This finishes the proof.

Applying now 4.4 to this braided-commutative Yetter–Drinfel’d algebra, we
recover the Hopf-bimodule introduced in [13, 14.1]

7.3.2 Theorem. Let a an action of a locally compact quantum group G on a von
Neumann algebra N , let B D G Ëa N \ a.N /0, let b (resp. bb) be the action ofbGo (resp. Gc) on B introduced in 7.3.1, and suppose that there exists a normal
semi-finite faithful weight � on B , invariant under the modular group �Tba . Then,
G.B; b;bb; �/ is a measured quantum groupoid, which is equal to the measured
quantum groupoid G.a/ introduced in [13, 14.2].

Proof. With the hypotheses, the measured quantum groupoid G.a/ is constructed
in [13, 14.2]; so, we get that the Hopf-bimodule constructed in 7.3.1 is a measured
quantum groupoid. So, we may apply 5.9 to get that G.B; b;bb; �/ is measured
quantum groupoid equal to G.a/.
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7.3.3 Theorem. Let .N; a;ba/ be a G-Yetter–Drinfel’d algebra with a norm
faithful semi-finite weight � on N satisfying the conditions of 5.9, which allow
us to construct the measured quantum groupoid G.N; a;ba; �/. Suppose that
ˇ.N / D G Ëa N \ a.N /0. Then, the weight �o ı ˇ�1 on ˇ.N / allows us to
define the measured quantum groupoid G.a/, which is canonically isomorphic to
G.N o;bao; ao; �o/.
Proof. We have, for all x 2 N and t 2 R, �T Qat .ˇ.x// D ˇ.
t .x//. As � ı 
t D �,
we get that the weight �o ı ˇ�1 on ˇ.N / allows us to define the measured quantum
groupoidG.a/. Moreover, the dual actionea of bGo onGËaN satisfies, for all x 2 N ,
by 4.4 (iii), ea.ˇ.n// D .id˝ ˇ�/.bao.xo//;
which gives that ˇ� is an isomorphism betweeneajˇ.N/ D b andbao. So, the result
follows.

We are indebted to the referee who suggested us to look at the relation betwen the
construction made in [13, 14.2] and the measured quantum transformation groupoids
considered in this article.

7.4. Quotient type co-ideals.
7.4.1 Definitions. LetG D .M; �; '; ' ıR/ andG1 D .M1; �1; '1; '1 ıR1/ be two
locally compact quantum groups. Following [21], amorphism fromG onG1 is a non-
degenerate strict �-homomorphism ˆ from C u

0 .G/ on the multipliers M.C u
0 .G1//

(which means that ˆ extends to a unital �-homomorphism onM.C u
0 .G//) such that

�1;u ıˆ D .ˆ˝ˆ/�u, where �1;u denotes the coproduct of C u
0 .G1/. In [21, 10.3

and 10.8], it was shown that a morphism is equivalently given by a right action �r
ofG1 onM satisfying, in addition to the action condition .id˝�/�r D .�r˝ id/�r ,
also the relation .� ˝ id/�r D .id˝ �r/� . The morphism ˆ and the action �r are
related by the formula

�r.�G.x// D .�G ˝ �G1 ıˆ/�u.x/ for all x 2 C u
0 .G/:

We get as well a left action �l ofG1 onM such that .id˝�l/�l D .�1˝ id/�l and
.id˝ �/�l D .�l ˝ id/� .

Following [11, Th. 3.6], we shall say that G1 is a closed quantum subgroup of
G in the sense of Woronowicz, if, in the situation above, the �-homomorphism ˆ is
surjective. In [11, 3.3], G1 is called a closed quantum subgroup of G in the sense
of Vaes if there exists an injective �-monomorphism 
 from cM1 into cM such thatb� ı 
 D .
 ˝ 
/ ıb�1. Moreover, any closed quantum subgroup ofG in the sense of
Vaes is a closed quantum subgroup in the sense of Woronowicz [11, 3.5], and if G1
is (the von Neumann version of) a compact quantum group, then the two notions are
equivalent [11, 6.1]. It is also remarked that if G is (the von Neumann version of)
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a compact quantum group, then any closed quantum subgroup of G is also (the von
Neumann version of) a compact quantum group.
7.4.2 Proposition. Let G D .M; �; '; ' ı R/ and G1 D .M1; �1; '1; '1 ı R1/ be
two locally compact quantum groups and ˆ a surjective morphism from G to G1 in
the sense of 7.4.1. Let �r be the right action of G1 on M defined in 7.4.1, and let
N DM�r D fx 2M W �r.x/ D x ˝ 1g. Then:

(i) �jN is a left action of G on N .

(ii) adjN is a left action of bG on N .
(iii) .N; �jN ; adjN / is a braided-commutative G-Yetter–Drinfel’d algebra.
(iv) Let �l be the left action of G1 on M defined in 7.4.1. Then its invariant

algebraM�l is equal to R.N/, which is a right co-ideal of G.
In the situation above, we call N a quotient type left co-ideal of G.

Proof. (i) Since .id˝�r/� D .�˝id/�r by construction, we get that for every x
in N DM�r , the coproduct �.x/ belongs toM ˝N .

(ii) By [21, 6.6], there exists a unique unitary U 2 M.C u
0 .G/ ˝ C

r
0.
bG// such

that .�u ˝ id/.U / D U13U23 and .�G ˝ id/.U / D W , where �u denotes the
comultiplication onC u

0 .G/. Let bU D &.U �/ 2M.C r
0.
bG/˝C u

0 .G// and x 2 C u
0 .G/.

Then ad.�G.x// D .id˝�G/.bU �.1˝x/bU/, and using the relation .id˝�u/.bU �/ DbU �12bU �13, we find
.id˝ �r/.ad.�G.x/// D .id˝ �G ˝ �G1ˆ/..id˝ �u/.bU �.1˝ x/bU//

D .id˝ �G ˝ �G1ˆ/.bU �12bU �13.1˝ �u.x//bU 13bU 12/
D bW �12eU �13.1˝ �r.�G.x///eU 13bW 12;

where eU D .id˝ �G1ˆ/.V /. By continuity, we get that for any y 2 N ,

.id˝ �r/.ad.y// D bW �12eU �13.1˝ y ˝ 1/eU 13bW 12 D ad.y/˝ 1;

showing that ad.y/ 2cM ˝N .
(iii) This follows immediately from 2.4.
(iv) This follows easily from the fact that the unitary antipode reverses the

comultiplication.

7.4.3 Theorem. Let G D .M; �; '; ' ı R/ be a locally compact quantum group
and .A1; �1/ a compact quantum group which is a closed quantum subgroup
in the sense of 7.4, and denote by N the quotient type co-ideal defined by this
closed subgroup, as defined in 7.4.2. Then, the restriction of the weight ' ı R
to N is semi-finite and ı�1-invariant with respect to the action �jN . Therefore,
G.N; �jN ; adjN ; ' ı RjN / and G.N; adjN ; �jN ; ' ı RjN / are measured quantum
groupoids, dual to each other.
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Proof. The formula E D .id ˝ !1/ ı �r , where !1 is the Haar state of .A1; �1/,
and �r is the right action of .A1; �1/ onM defined in 7.4, defines a normal faithful
conditional expectation fromM onto N DM�r .

By definition of �r (7.4.1), and using the right-invariance of ' ı R ı �G with
respect to the coproduct �u of C u

0 .G/, we get that for any y 2 C u
0 .G/, with the

notations of 7.4.1,

' ıR ıE.�G.y// D .' ıR˝ !1/�r.�.y//

D .' ıR ı �G ˝ !1 ı �G1 ıˆ/�u.y/

D .' ıR ı �G/.y/.!1 ı �G ıˆ/.1/

D .' ıR ı �G/.y/:

Therefore, ' ı R ı E.x/ D ' ı R.x/ for all x 2 C r
0.G/, and, by continuity, for all

x 2 M , which gives that this conditional expectation E is invariant under ' ı R.
Moreover, we get that ' ıRjN is semi-finite and �'ıRt ıE D E ı �

'ıR
t .

This weight 'ıRjN is clearly ı�1-invariant with respect to�jN . The result comes
then from 5.9 and 6.5.

7.4.4 Corollary. Let .A; �/ be a compact quantum group, ! its Haar state (which
we can suppose to be faithful) and let G D .�!.A/

00; �; !; !/ be the von Neumann
version of .A; �/ (2.1). Let N be a sub-von Neumann algebra N of �!.A/00. Then
the following conditions are equivalent:

(i) �jN is a left action of G on N and adjN is a left action of bG on N .

(ii) There exists a quantum compact subgroup of .A; �/ such thatN is the quotient
type co-ideal of G constructed from this quantum compact subgroup.

If (i) and (ii) hold, then the crossed products G Ë�jN N and bG ËadjN N carry
mutually dual structures of measured quantum groupoidsG.N; �jN ; adjN ; !jN / and
G.N; adjN ; �jN ; !jN /, respectively.

Proof. The fact that (ii) implies (i) is given by 7.4.3. Suppose (i). Then N is, by
7.4.2, a quotient type co-ideal of G, which is defined as the invariants by a right
action �r of a closed quantum subgroup of G, which is (7.4.1) a compact quantum
group .A1; �1/. Denote its Haar state by !1. Then �r.A/ � A ˝ A1, and the
conditional expectationE D .id˝!1/�r which sends �!.A/00 ontoN , sendsA onto
A\N . From this it is easy to get that A\N is weakly dense in N . But N \A is a
sub-C �-algebra ofAwhich is invariant under � and ad; therefore, using [29, Th. 3.1],
we get (ii). If these conditions hold, we can apply 7.4.3.
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7.4.5. Example of a measured quantum groupoid constructed from a quotient
type coideal of a compact quantum group. Let us take the compact quantum group
SUq.2/ [48], which is the C �-algebra generated by elements ˛ and 
 satisfying the
relations

˛�˛ C 
�
 D 1; ˛˛� C q2

� D 1;



� D 
�
; q
˛ D ˛
; q
�˛ D ˛
�:

The circle group T appears as a closed quantum subgroup via the morphism ˆ

from C u
0 .SUq.2// to C u

0 .T/ D C0.T/ given by ˆ.˛/ D 0 and ˆ.
/ D id. Then
we obtain the Podleś sphere S2q as a quotient type coideal from this map [31], and
mutually dual structures of measured quantum groupoids G.S2q ; �jS2q ; adjS2q ; !jS2q /

on SUq.2/Ë�
jS2q

S2q andG.S2q ; adjS2q ; �jS2q ; !jS2q / on
2SUq.2/Ëad

jS2q

S2q , respectively.

7.4.6. Further examples. Here we quickly give examples of situations in which the
hypothesis of 7.4.3 are fulfilled.

Let us consider the (non-compact) quantum group Eq.2/ constructed by
Woronowicz in [49]. In [20, 2.8.36] is proved that the circle group T is a closed
quantum subgroup of Eq.2/.

In [43] is constructed the cocycle bicrossed product of two locally compact
quantum groups .M1; �1/ and .M2; �2/, and it is proved [43, 3.5] that .cM1;c�1/ is
a closed subgroup (in the sense of Vaes) of .M; �/. So, if .M1; �1/ is a discrete
quantum group, then .cM1;c�1/ is the von Neumann version of a compact quantum
group which is a closed quantum subgroup of .M; �/.

7.5. Another example.
7.5.1 Theorem. LetG be a locally compact group andH a closed normal subgroup
of G. Then:

(i) The von Neumann algebra L.H/, which can be considered as a sub-von
Neumann algebra of L.G/, is invariant under the coproduct �G of L.G/,
considered as a right action of the locally compact quantum group bG
on L.G/, and under the adjoint action ad of G on L.G/. Therefore,
.L.H/; �GjL.H/; adjL.H// is a braided-commutative bG-Yetter–Drinfel’d alge-
bra, which is a subalgebra of the canonical example .L.G/; �G ; ad/ described
in 7.2.

(ii) The Plancherel weight 'H on L.H/ satisfies the conditions of 5.9, and the
crossed productbGË�GjL.H/L.H/ (which is isomorphic to .L.H/[L1.G//00)
carries a structure of measured quantum groupoid

G.L.H/; �GjL.H/; adjL.H/; 'H /

over the basis L.H/.
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Proof. (i) Let �G (resp. �H ) be the left regular representation of G (resp. H ).
It is well known that the application which sends �H .s/ to �G.s/, where s 2 H ,
extends to an injection from L.H/ into L.G/, which will send the coproduct �H
of L.H/ on the coproduct �G of L.G/. Let us identify L.H/ with this sub-von
Neumann algebra of L.G/. Then for all x 2 L.H/,

�G.x/ D �H .x/ 2 L.H/˝ L.H/ � L.G/˝ L.H/;

so that the coproduct, considered as a right action of bG on L.G/, gives also a right
action of bG on L.H/.

LetWG be the fundamental unitary ofG, which belongs toL1.G/˝L.G/. The
adjoint action ofG on L.G/ is given, for x 2 L.G/ by ad.x/ D W �G .1˝ x/WG , and
is therefore the function on G given by s 7! �G.s/x�G.s/

�. Hence, if t 2 H , we
get that ad.�H .s// is the function s 7! �G.sts

�1/. As H is normal, sts�1 belongs
to H , and this function takes its values in L.H/. By density, we get that for any
x 2 L.H/, ad.x/ belongs to L1.G/˝ L.H/, and, therefore, the restriction of the
adjoint action of G to L.H/ is an action of G on L.H/.

(ii) TheHaarweight'H is invariant under�GjL.H/ because .id˝'H /.�G.x// D
.id ˝ 'H /.�H .x// D 'H .x/1 for all x 2 L.H/C. We can therefore apply 5.9
to that braided-commutative Yetter–Drinfel’d algebra, equipped with this relatively
invariant weight, and get (ii). Let us remark that bG Ë�GjL.H/ L.H/ is equal to
.�G.L.H// [ L1.G/˝ 1L2.G//00 which we can write:

..J ˝ J /W �G .J ˝ J /.L.H/˝ 1L2.G//.J ˝ J /WG.J ˝ J / [ L1.G/˝ 1L2.G//00

which is clearly isomorphic to .L.H/ [ L1.G//00.

7.5.2 Remark. Let us take again the hypotheses of 7.5.1, in the particular case
where G is abelian. Then bG (resp. bH ) is a commutative locally compact group, and
we have constructed a right action of bG on the set bH , which leads to a transformation
groupoid bH Ô bG. Then, the measured quantum groupoid constructed in 7.5.1(ii) is
just the dual of this transformation groupoid.

8. Quotient type co-ideals and Morita equivalence

In this chapter, we show that, in the case of a quotient type co-ideal N of a compact
quantum group G, the measured quantum groupoid bG Ëad jN N is Morita equivalent
to the quantum subgroup G1 (8.3).
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8.1. Definitions of actions of a measured quantum groupoid and Morita
equivalence.
8.1.1 Definition ( [16, 2.4]). Let G D .N;M; ˛; ˇ; �; T; T 0; �/ be a measured
quantum groupoid, and let A be a von Neumann algebra.

A right action of G on A is a couple .b; a/, where:

(i) b is an injective anti-�-homomorphism from N into A;
(ii) a is an injective �-homomorphism from A into A b�˛

N

M ;

(iii) b and a satisfy

a.b.n// D 1 b˝˛
N

ˇ.n/ for all n 2 N;

which allow us to define a b�˛
N

id from A b�˛
N

M into A b�˛
N

M ˇ�˛
N

M , and

.a b�˛
N

id/a D .id b�˛
N

�/a:

If there is no ambiguity, we shall say that a is the right action.

So, a measured quantum groupoid G can act only on a von Neumann algebra A
which is a right module over the basis N .

Moreover, ifM is abelian, then a.b.n// D 1b˝˛
N

ˇ.n/ commutes with a.x/ for all

n 2 N andx 2 A, so that b.N / is in the center ofA. As in that case (5.1) themeasured
quantum groupoid comes from a measured groupoid G, we have N D L1.G.0/; �/,
and A can be decomposed as A D

R
G.0/ A

xd�.x/.
The invariant subalgebra Aa is defined by

Aa
D fx 2 A \ b.N /0 W a.x/ D x b˝˛

N

1g:

As Aa � b.N /0, A (and L2.A/) is a Aa-N o-bimodule. If Aa D C, the action .b; a/
(or, simply a) is called ergodic.

Let us write, for any x 2 AC, Ta.x/ D .id b�˛
�
ˆ/a.x/. This formula defines

a normal faithful operator-valued weight from A onto Aa, and the action a will be
called integrable if Ta is semi-finite [15, 6.11, 12, 13 and 14].

The crossed product of A by G via the action a is the von Neumann algebra
generated by a.A/ and 1 b˝˛

N

cM 0 [13, 9.1] and is denoted by A Ìa G. There

exists [13, 9.3] an integrable dual action .1 b˝˛
N

b̨; Qa/ of .bG/c on A Ìa G.

We have .A Ìa G/
Qa D a.A/ [13, 11.5], and, therefore, the normal faithful semi-

finite operator-valued weight TQa sends A Ìa G onto a.A/. Starting with a normal
semi-finite weight  on A, we can thus construct a dual weight Q on A Ìa G by the
formula Q D  ı a�1 ı TQa [15, 13.2].
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Moreover [13, 13.3], the linear set generated by all the elements .1 b˝˛
N

a/a.x/,

where x 2 N and a 2 Nb̂c \NbT c , is a core for ƒ Q , and one can identify the GNS
representation of A Ìa G associated to the weight Q with the natural representation
onH b˝˛

�
H by writing

ƒ Q Œ.1 b˝˛
N

a/a.x/� D ƒ .x/ b˝˛
�
ƒb̂c.a/;

which leads to the identification ofH Q withH b˝˛
�
H .

Let us suppose now that the action a is integrable. Let  0 be a normal semi-finite
weight onAa, and let us write 1 D  0 ıTa. If we write V D J Q 1.J 1 a˝ˇ

N o
Jb̂/, we

get a representation of G which implements a and which we shall call the standard
implementation of a ([16, 3.2] and [15, 8.6]).

Moreover, there exists then a canonical isometry G from H 1 s˝r
 0

H 1 into

H 1 b˝˛
�
H such that, for any x 2 NTa \N 1 , � 2 D..H 1/b; �o/ and e in Nˆ,

.1 b˝˛
N

JˆeJˆ/G.ƒ 1.x/ s˝r
 0

�/ D a.x/.� b˝˛
�
Jˆƒˆ.e//;

where r is the canonical injection of Aa into A, and s.x/ D J 1x
�J 1 for all

x 2 Aa. There exists a surjective �-homomorphism �a from the crossed product
.A Ìa G/ onto s.Aa/0, defined, for all X in A Ìa G by �a.X/ s˝r

Aa
1 D G�XG. It

should be noted that this algebra s.Aa/0 is the basic construction for the inclusion
Aa � A [16, 3.6]. If the operatorG is unitary (or, equivalently, the �-homomorphism
�a is an isomorphism), then the action a is called a Galois action [16, 3.11] and the
unitary eG D ��G its Galois unitary.
8.1.2 Definition ([15, 6.1]). A left action of G on a von Neumann algebra A is a
couple .a; b/, where

(i) a is an injective *-homomorphism from N into A;
(ii) b is an injective �-homomorphism from A intoM ˇ�a

N

A;

(iii) b.a.n// D ˛.n/ ˇ˝a
N

1 for all n 2 N , and .id ˇ�a
N

b/b D .� ˇ�a
N

id/b.

Then, it is clear that .a; &Nb/ is a right action of Go on A. Conversely, if .b; a/ is a
left action of G on A, then, .b; &N a/ is a left action of Go on A.

The invariant subalgebra Ab is defined by

Ab
D fx 2 A \ a.N /0 W b.x/ D 1 ˇ˝a

N

xg;

and Tb D .ˆıRˇ�a
�

id/b is a normal faithful operator-valued weight fromA ontoAb.

The action bwill be called integrable if Tb is semi-finite. It is clear that b is integrable
if and only if &Nb is integrable, and Galois if and only if &Nb is Galois.
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8.1.3 Definition ([16, 2.4]). Let .b; a/ be a right action of

G1 D .N1;M1; ˛1; ˇ1; �1; T1; T
0
1; �1/

on a von Neumann algebra A and .a; b/ a left action of

G2 D .N2;M2; ˛2; ˇ2; �2; T2; T
0
2; �2/

on A such that a.N2/ � b.N1/0 We shall say that the actions a and b commute if

b.N1/ � A
b; a.N2/ � A

a; .b b�˛1
N1

id/a D .id ˇ2�a
N2

a/b:

Let us remark that the first two properties allow us to write the fiber products bb�˛1
N1

id

and id ˇ2�a
N2

a.

8.1.4 Definition ( [16, 6.5]). For i D 1; 2, let Gi D .Ni ;Mi ; ˛i ; ˇi ; Ti ; T
0
i ; �i / be

a measured quantum groupoid. We shall say that G1 is Morita equivalent to G2 if
there exists a von Neumann algebra A, a Galois right action .b; a/ of G1 on A, and a
Galois left action .a; b/ of G2 on A such that

(i) Aa D a.N2/, Ab D b.N1/, and the actions .b; a/ and .a; b/ commute;
(ii) the modular automorphism groups of the normal semi-finite faithful weights

�1 ı b
�1 ı Tb and �2 ı a�1 ı Ta commute.

ThenA (or, more precisely, .A; b; a; a; b/) will be called an imprimitivity bi-comodule
for G1 and G2.
8.2 Proposition. Let N be a quotient type co-ideal of (the von Neumann version
of a) compact quantum group G D .M; �; !; !/, and let us consider the measured
quantum groupoid G.N; adjN ; �jN ; !jN / constructed in 7.4.4.

(i) There exists a unitary V4 from H RjN˝adjN
!jN

.H ˝H!jN / onto H ˝H such

that

V4

�
� RjN˝adjN

!jN

U
adjN
!jN

�
�˝ J!jNƒ!jN .x

�/
��
D R.x/� ˝ �

for all x 2 N and � , � in H . Moreover, for all z 2 R.N/0, x 2 N and
y 2 B.H/,

V4

�
z RjN˝adjN

N

1
�
D .z ˝ 1H /V4;

V4

�
1H RjN˝adjN

N

U
adjN
!jN .y ˝ xo/.U

adjN
!jN /�

�
D .R.x/˝ y/V4:
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(ii) Let y 2M and a.y/ D V �4 �.y/V4. Then a.y/ belongs to

M RjN �adjN
N

.bG ËadjN N/:

(iii) Let x 2 N . Then a.R.x// D 1 RjN˝adjN
N

b̌.x/, where b̌ is the canonical

anti-representation of the basis N into bG ËadjN N .
(iv) .RjN ; a/ is a right action of G.N; adjN ; �jN ; !jN / onM .
(v) The action a is ergodic, and integrable. More precisely, the canonical

operator-valued weight Ta is equal to the Haar state !.
(vi) The action a is Galois and its Galois unitary is V �4 W

�� .

Proof. (i) By 4.3 (i) applied to the braided-commutative bG-Yetter–Drinfel’d
algebra .N; adjN ; �jN /, we get that U

adjN
!jN .�˝ J!jNƒ!jN .x

�// belongs to

D..H ˝H!jN /adjN ; !jN /

and that
RadjN ;!jN .U

adjN
!jN .�˝ J!jNƒ!jN .x

�/// D U
adjN
!jN l�J!jN x

�J!jN :

Therefore, using standard arguments, we get an isometry V4 given by the formula
above. As its image is trivially dense in H ˝ H , we get that V4 is unitary. The
commutation relations are straightforward.

(ii) Thanks to the commutation property in (i), a.y/ belongs to

M RjN �adjN
N

B.H ˝H!jN /:

By 2.5 (i),

.bG ËadjN N/
0
D U

adjN
!jN .bGo Ëado

jN
N o/.U

adjN
!jN /�

D U
adjN
!jN .M 0 ˝ 1 [ ado

jN .N
o//00.U

adjN
!jN /�:

On one hand, the commutation relations in (i) imply

1 RjN˝adjN
!jN

U
adjN
!jN .M 0 ˝ 1/.U

adjN
!jN /� D V �4 .1H ˝M

0/V4;

which evidently commutes with a.M/ D V �4 �.M/V4. On the other hand, if z 2cM
and x 2 N , then

V4

�
1 RjN˝adjN

!jN

U
adjN
!jN .z ˝ xo/.U

adjN
!jN /�

�
V �4 D

bJx�bJ ˝ z
D .bJJ ˝ 1/�.z ˝ xo/�.JbJ ˝ 1/
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and hence

V4

�
1 RjN˝adjN

!jN

U
adjN
!jN ado

jN .N
o/.U

adjN
!jN /�

�
V �4 D .

bJJ ˝ 1/� ado
jN .N

o/�.JbJ ˝ 1/
D .bJ ˝ J /� adjN .N /�.bJ ˝ J /
D .bJ ˝ J /W.N ˝ 1H /W �.bJ ˝ J /
D W �.R.N /˝ 1H /W

which commutes with �.M/ D W �.1H ˝M/W .
Therefore, a.y/ commutes with 1 RjN˝adjN

N

.bG ËadjN N/
0.

(iii) Using 2.5.4 applied to .bG; adjN ; �jN /, we get thatb̌.x/ D U adjN
!jN ˛o.xo/.U

adjN
!jN /�,

where we write ˛ D �jN and ˛o.xo/ D .R˝ :o/�.x/ 2M ˝N o to avoid confusion
with �o. Then the commutation relations in (i) imply that

V4

�
1H RjN˝adjN

N

b̌.x/�V �4 D V4�1H RjN˝adjN
N

U
adjN
!jN ˛o.xo/.U

adjN
!jN /�

�
V �4

is equal to &.R˝R/.�.x// D �.R.x// D V4a.R.x//V �4 .
(iv) Let us first fix notation. We denote by

& ı eadjN WbG ËadjN N ! .bG ËadjN N/˝M

the dual action followed by the flip. Standard arguments show that there exists a
unitary

V5W .H ˝H!jN /b̌ ˝!jN adjN .H ˝H!jN /! H ˝H!jN ˝H

such that
V5

�
„b̌ ˝!jN adjNU

adjN
!jN .�˝ƒ!jN .x

�//
�
D b̌.x/„˝ �

for all „ 2 H ˝H!jN , � 2 H , x 2 N .
We need to prove commutativity of the following diagram,

M
� //

.1/�

��

M ˝M
ad
V�
4 //

�˝id

��

.2/

MR �
N

ad.bG ËN/

��id
��

M ˝M
id˝�

//

ad
V�
4

��
.3/

M ˝M ˝M
id˝ad

V�
4

//

ad
V�
4
˝id

��
.4/

.M ˝M/.�ıR/�
N

ad.bG ËN/

ad
V�
4
�id

��
MR �

N
ad.bG Ëad N/

id�&ead //MR �
N
.ad˝1/..bG Ëad N/˝M/ id�ad

V�
5

//MR �
N

ad.bG Ëad N/b̌�N ad.bG ËN/;

(�)
where we dropped the subscripts from R and ad.
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Commutativity of cells (1) and (2) is evident or easy.
Let us show that cell (3) commutes. By definition,

.& ı eadjN /.X/ D bW c
13.X ˝ 1/.

bW c
13/
�

for all X 2 bG ËadjN N , where

bW c
D .bJ ˝bJ /bW .bJ ˝bJ / 2cM 0 ˝M;

and �.x/ D bW c.x ˝ 1/bW c for all x 2M . Therefore,

.adV �
4
˝id/..id˝ �/.Y // D ad

.V �
4
˝1H /.1H˝bW c/

.Y ˝ 1/; (6)

.id � & ı eadjN /.adV �
4
.Y // D ad

.1RjN ˝!jN
.adjN ˝1/

bW c
13
/.V �

4
˝1H /

.Y ˝ 1/ (7)

for all Y 2 M ˝M . To prove that the two expressions coincide, it suffices to show
that the following diagram (��) commutes:

HRjN ˝
!jN

adjN .H ˝H!jN /˝H

1RjN ˝!jN
.adjN ˝1/

bW c
13

//

V4˝1H

��

HRjN ˝
!jN

adjN .H ˝H!jN /˝H

V4˝1H

��
H ˝H ˝H bW c

23

// H ˝H ˝H

(��)
But since the first legs of U adjN

!jN 2
cM ˝ B.H!jN / and bW c 2 .cM/0 ˝M commute,

.V4 ˝ 1H /.1RjN ˝
!jN

.adjN ˝1/
bW c
13/.�RjN ˝

!jN
adjNU

adjN
!jN .�˝ xoƒ!jN .1//˝ #/

D .V4 ˝ 1H /.�RjN ˝
!jN

.adjN ˝1/.U
adjN
!jN /12bW c

13.�˝ x
oƒ!jN .1/˝ #//

D R.x/� ˝ bW c.�˝ #/

D bW c
23.V4 ˝ 1H /.�RjN ˝

!jN
adjNU

adjN
!jN .�˝ xoƒ!jN .1//˝ #/:

for all # 2 H . Therefore, diagram (��) commutes, the expressions (6) and (7)
coincide, and cell (3) commutes.

To see that cell (4) commutes as well, consider the following diagram:

HRjN ˝
!jN

adjN .H ˝H!jN /b̌ ˝!jN adjN .H ˝H!jN /
1˝V5 //

V4˝1

��

HRjN ˝
!jN

adjN .H ˝H!jN /˝H

V4˝1

��
.H ˝H/.�ıRjN / ˝

!jN
adjN .H ˝H!jN / 1˝V4

// H ˝H ˝H
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We show that this diagram commutes, and then cell (4) commutes as well. We first
compute

.V4˝1/.1˝V5/
�
�RjN ˝

!jN
adjNU

adjN
!jN .�˝xoƒ!jN .1//b̌˝!jN adjNU

adjN
!jN .#˝yoƒ!jN .1//

�
:

We use (iii) and find that this vector is equal to

.V4 ˝ 1/
�
� RjN˝adjN

!jN

b̌.y/U adjN
!jN .�˝ xoƒ!jN .1//˝ #

�
and therefore

.�.R.y//˝ 1/.V5 ˝ 1/
�
�RjN ˝

!jN
adjNU

adjN
!jN .�˝ xoƒ!jN .1//˝ #

�
D .�.R.y//˝ 1/.R.x/� ˝ �˝ #/:

On the other hand,

.1˝ V4/.V4 ˝ 1/

�

�
�RjN ˝

!jN
adjNU

adjN
!jN .�˝ xoƒ!jN .1//b̌ ˝!jN adjNU

adjN
!jN .# ˝ yoƒ!jN .1//

�
is equal to

.1˝ V4/
�
.R.x/� ˝ �/.�ıRjN / ˝

!jN
adjNU

adjN
!jN .# ˝ yoƒ!.1//

�
D �.R.y//.R.x/� ˝ �/˝ #

as well, which finishes the proof of (iv).

(v) Let y 2M \R.N/0 and assume a.y/ D yRjN˝
N

adjN 1. Then by (i),

�.y/V4 D V4

�
yRjN˝

N
adjN 1

�
D .y ˝ 1H /V4

and hence �.y/ D y ˝ 1H , whence y is a scalar and a is ergodic.

The canonical operator-valued weight Ta is equal to .idRjN �
N

adjN
b̂/ ı a, whereb̂ D !ıad�1 ıTeadjN , and TeadjN is the left-invariant weight frombGËadjN N to ad.N /,

i.e. the operator-valued weight arising from the dual action on bG ËadjN N , that is,
.! ˝ id/ ı eadjN . In fact, these operator-valued weights are conditional expectations.
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We write TeadjN D .id˝!/ı& eadjN and use commutativity of the cells (1) and (3)
in diagram (�), and find that for any x 2MC,

.idRjN �!jN adjN TeadjN / ı a.x/

D .idRjN �!jN adjN TeadjN / ı adV �4 ı�.x/

D ..idRjN �!jN adjN id/˝ !/ ı .idRjN �!jN adjN & eadjN / ı adV �4 ı�.x/

D ..idRjN �!jN adjN id/˝ !/ ı .adV �4 ˝ id/ ı �.2/.x/

D adV �
4
ı.id˝ id˝ !/ ı �.2/.x/

D adV �
4
ı.1M˝M � !/.x/

D 1
.MRjN

�
!jN

adjNbGËadjNN/
� !.x/;

where �.2/ D .� ˝ id/ ı� and, for any von Neumann algebra P , 1P �! denotes the
positive application x 7! !.x/1P . Therefore, we get (v).

As a is integrable and ergodic, by [16, 3.8] or 8.1.2 , there exists an isometry G
fromH ˝H toHRjN ˝

!jN
adjNH!jN such that, for all � 2 D.HRjN ; .!jN /o/, x 2M

and e 2 bG ËadjN N ,�
1RjN˝

N
adjN Jb̂eJb̂�G.xƒ!.1/˝ �/ D a.x/

�
�RjN ˝

!jN
adjN Jb̂ƒb̂.e/�:

Let y� 2 M and let us take e D y� ˝ 1 2 bG ËadjN N . The relation Jb̂ D
U

adjN
!jN .J ˝ J!jN / implies Jb̂eJb̂ D U adjN

!jN .yo ˝ 1/.U
adjN
!jN /� and

U
adjN
!jN .yoƒ!.1/˝ƒ!jN .1// D U

adjN
!jN .Jy�ƒ!.1/˝ƒ!jN .1//

D U
adjN
!jN .J ˝ J!jN /ƒb̂.e/

D Jb̂ƒb̂.e/:
We then get that for all � 2 H , z 2M , the vector

.1 RjN˝adjN
N

Jb̂eJb̂/V �4 .� ˝ zƒ!.1//
is equal to�
1RjN˝

N
adjNU

adjN
!jN .yo

˝ 1/.U
adjN
!jN /�

��
�RjN ˝

!jN
adjNU

adjN
!jN .zƒ!.1/˝ƒ!jN .1//

�
D �RjN ˝

!jN
adjNU

adjN
!jN .yozƒ!.1/˝ƒ!jN .1///

D V �4 .� ˝ y
ozƒ!.1//:
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Therefore,�
1RjN˝

N
adjN Jb̂eJb̂�V �4 W ��.xƒ!.1/˝ �/

D V �4 .1˝ y
o/W �.� ˝ xƒ!.1//

D V �4 .1˝ y
o/�.x/.� ˝ƒ!.1//

D V �4 �.x/.� ˝ y
oƒ!.1//

D a.x/V �4 .� ˝ y
oƒ!.1//

D a.x/
�
�RjN ˝

!jN
adjNU

adjN
!jN .yoƒ!.1/˝ƒ!jN .1//

�
D a.x/

�
�RjN ˝

!jN
adjN Jb̂ƒb̂.e/�:

Thus, we get that .1RjN ˝
N

adjN Jb̂eJb̂/V �4 W �� D .1RjN ˝
N

adjN Jb̂eJb̂/G for all

e D y� ˝ 1, and so G D V �4 W �� .

8.3 Theorem. Let G D .M; �; !; !/ be a (von Neumann version of a) compact
quantum group, G1 a compact quantum subgroup, and N the quotient type co-ideal.
Then the von Neumann algebraM , equipped with the right Galois action .RjN ; a/ ofbGËadjN N constructed in 8.2 and the left Galois action �l ofG1 defined in 7.4, is an
imprimitivity bimodule which is a Morita equivalence between the compact quantum
group G1 and the measured quantum groupoid G.N; adjN ; �jN ; !jN /.

Proof. Let x 2 M . Commutativity of the cells (1) and (2) in diagram (�) implies
that �

� RjN �adjN
N

id
�
a.x/ D .id˝ a/�.x/

and applying .� ˝ id/ RjN �adjN
N

id to this relation, we get:

�
�l RjN �adjN

N

id
�
a.x/ D .id˝ a/�l.x/;

which is the commutativity of the right Galois action .RjN ; a/ of bGËadjN N and the
left Galois action �l of G1.

Moreover, we had got in 8.2 that the canonical operator-valued weight Ta was the
Haar state !. Let !1 be the Haar state of G1. Then the canonical operator-valued
weight T�l is equal to .!1 ı � ˝ id/� , which is, in fact, a conditional expectation
from M into M�l D R.N/. Composed with the state !jN ı R D !jR.N/, we get
.!1 ı � ˝ !/� D !1.�.1//! D !. Therefore, using 8.1.4, we get the result.

8.4 Corollary. The measured quantum groupoid 2SUq.2/ Ëad
jS2q

S2q constructed
in 7.4.5 is Morita equivalent to T.
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Proof. Apply 8.3 to 7.4.5.

8.5 Corollary ([33]). Let G be a compact group and G1 a compact subgroup of G.
The the right action of G on G=G1 defines a transformation groupoid .G=G1/ Ô G

and this groupoid is Morita equivalent to G1.

Proof. The canonical surjective �-homomorphism fromL1.G/ ontoL1.G1/ gives
to L1.G=G1/ a structure of a quotient type co-ideal. The restriction of the
coproduct �L1.G/ to L1.G=G1/ is just the right action of G on G=G1, and
the measured quantum groupoid G Ë� L1.G=G1/ is the dual of the groupoid
.G=G1/ Ô G. Therefore, by 7.1, its dual is just the abelian von Neumann algebra
L1..G=G1/ Ô G/, and, by 8.3, we get the result.
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