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Symmetric monoidal noncommutative spectra, strongly
self-absorbing C �-algebras, and bivariant homology
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Abstract.Continuing our project on noncommutative (stable) homotopywe construct symmetric
monoidal 1-categorical models for separable C�-algebras SC�1 and noncommutative
spectra NSp using the framework of Higher Algebra due to Lurie. We study smashing
(co)localizations of SC�1 and NSp with respect to strongly self-absorbing C�-algebras. We
analyse the homotopy categories of the localizations of SC�1 and give universal characterizations
thereof. We construct a stable 1-categorical model for bivariant connective E-theory and
compute the connective E-theory groups of O1-stable C�-algebras. We also introduce and
study the nonconnective version of Quillen’s nonunital K0-theory in the framework of stable
1-categories. This is done in order to promote our earlier result relating topological T -duality
to noncommutativemotives to the1-categorical setup. Finally, we carry out some computations
in the case of stable and O1-stable C�-algebras.
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1. Introduction

The triangulated noncommutative stable homotopy category NSH (see Remark 2.5)
was constructed in [43] as the receptacle of the universal triangulated homology
theory for separable C �-algebras. Its underlying additive category already appeared
in the seminal paper of Connes–Higson on bivariant E-theory [4] (see also [19]).
In [31] we constructed a stable presentable1-category of noncommutative spectra
NSp and used it to prove that NSH is a topological triangulated category as defined by
Schwede [40]. The stable1-category NSp is an ideal framework for stable homotopy
theory of (pointed) noncommutative spaces. Nevertheless, a very important part of
the homotopy theory package, viz., the symmetric monoidal structure was left out of
the discussion in [31]. This is a glaring omission as it lies at the heart of our goal of
developing a state of the art homotopy theoretic package for operator algebras with
new features (see Remark 1.1). One of the objectives of this article is to prove (using
the formalism of Higher Algebra due to Lurie [26]).
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Theorem (Theorem 2.3). There is a closed symmetric monoidal and compactly
generated stable1-category of noncommutative spectra NSp.

The strongly self-absorbing C �-algebras play a pivotal role in the Classification
Program forC �-algebras [44]. They are automatically simple and nuclear. Prominent
examples of such C �-algebras, that are also purely infinite, are Cuntz algebras O2,
O1, and tensor products of UHF algebras of infinite type withO1. We are interested
in strongly self-absorbing C �-algebras because we construct smashing localizations
of the1-category of separable C �-algebras SC�1 with respect to them. We describe
the homotopy categories of the localized 1-categories (see Proposition 3.8). At
the level of homotopy categories we also characterize them by universal properties
(see Theorem 3.13). The objects of SC�1

op are compact in the 1-category of
pointed noncommutative spaces NS�. Thus it is interesting to observe that nontrivial
smashing (co)localizations exist already within the subcategory of NS� spanned by
the (co)compact objects in contrast to the scenario of pointed spaces.

It was observed in [31] that the homotopy category of noncommutative spectra
hNSp is not an algebraic triangulated category and the question was raised whether
it contains algebraic triangulated subcategories, which would facilitate computations
enormously. With an eye towards such algebraization problems we colocalize the
stable1-category NSp with respect to the suspension spectrum (see Definition 2.4)
of any strongly self-absorbing C �-algebra. Observe that colocalizations of NSp can
be viewed as1-subcategories spanned by certain colocal objects. The triangulated
category of bivariant connective E-theory for separable C �-algebras, denoted by
bu, was constructed by Thom in [43] as a generalization of connective kk-theory of
(pointed compact metrizable) spaces [41] (see also [10]). In terms of computational
complexity bivariant connective E-theory lies in between noncommutative stable
homotopy and bivariant (nonconnective) E-theory. We construct a closed symmetric
monoidal and compactly generated stable 1-category .Ecn1/op WD X 0�1NSp as an
accessible localization of NSp and show
Theorem (Theorem 4.13). There is a fully faithful exact functor bu ,! hEcn1 thereby
showing that bu is a topological triangulated category.
We completely describe the subcategory of hEcn1 spanned by the suspension spectra
of C �-algebras after (co)localization with respect to a purely infinite strongly self-
absorbing C �-algebra satisfying UCT (cf. Theorems 4.15, 4.18, and 4.20). Although
these results do not entirely settle the algebraization problem, they demonstrate that
certain (co)localized subcategories of NSp are amenable to computation as they
reduce to familiar bivariant homology theories. A consequence of Theorem 4.15
is that the canonical map from connective E-theory to topological K-theory is an
isomorphism for O1-stable C �-algebras (see Remarks 4.10 and 4.16). It turns out
that the noncommutative stable cohomotopy of any O1-stable C �-algebra contains
its topological K-theory as a summand (see Proposition 4.6 for a more general
result). Using these results we compute the connective E-theory and identify a
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summand in the noncommutative stable cohomotopy groups of ax C b-semigroup
C �-algebras associated with number rings (see Theorem 4.22 and Remark 4.23).
The colocalization with respect to Z, where Z is the Jiang–Su algebra, is the most
interesting case from the viewpoint of the classification program and for some partial
results in this direction see [30, Section 4].

Algebraic K-theory does not (directly) make sense for topological spaces. The
appropriate theory in this context is Waldhausen’s A-theory [45], which is homotopy
invariant but not excisive. One needs the theory of functor calculus to analyse it.
However, algebraic K-theory does make sense for certain noncommutative spaces.
One can view a compact noncommutative space or a unital C �-algebra simply as a
unital complex algebra and study its algebraic K-theory. Although algebraic K-theory
satisfies excision on the category of C �-algebras [42], it is not homotopy invariant.
Roughly speaking, a spectrum valued functor F on k-algebras satisfies excision,
where k is a field, if for every short exact sequence 0 ! A ! B ! C ! 0

the induced diagram F.A/ ! F.B/ ! F.C/ is a homotopy (co)fiber sequence.
Thus one needs algebraic K-theory to treat unital and nonunital algebras on an equal
footing (note that A is strictly nonunital unless the extension is trivial). Quillen
introduced a K00-theory for nonunital algebras in [34], whose higher (connective)
version was developed by the author in [28]. The author’s motivation in that article
was the categorification of topological T -duality. The higher version of K00-theory
was called KQ-theory by the author in [28] so that a conflict with G-theory (or K0-
theory of pseudo-coherent modules) could be avoided. In the final part of this article
we define nonconnective KQ-theory and show that for stable and O1-stable C �-
algebras it agrees naturally with their nonconnective algebraic as well as topological
K-theory (see Theorem 5.18 for a more general result). These results reinforce
the idea that certain (co)homological invariants tend to become more tractable after
specific (co)localizations. From the computational viewpoint the following picture
emerges:

Theorem (Remark 5.20). For stable and O1-stable separable C �-algebras the
four possible invariants, viz., connective E-theory, nonconnective KQ-theory,
nonconnective algebraic K-theory, and topological K-theory are all naturally
isomorphic.

At least the assertion in the O1-stable case for all four invariants appears to
be new (see also [6, 29]). The results in this part rely on various properties of
algebraic K-theory in the setting of stable 1-categories established by Blumberg–
Gepner–Tabuada [2]. Given any separable C �-algebra A we associate with it
its (K-stabilized) noncommutative motive MK

1.A/ that takes values in the stable
presentable 1-category of noncommutative motives Mloc constructed in [2]. We
then generalize our earlier result on categorification of topological T -duality [28]
to pointed noncommutative spaces in the setting of (stable)1-categories as follows
(see also Remark 5.21):
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Theorem (Theorem 5.15). The functor .MK
1/

op W SC�1
op
! M

op
loc induces the

following two functors:
(1) NS� !M

op
loc that is continuous, and

(2) KK1 !Mloc that is exact.
Here KK1 is a stable 1-categorical incarnation of bivariant K-theory that we
constructed in [30]. The bivariant E-theory counterpart E1 of KK1 can be
constructed similarly (see Remark 4.8) and one may replace KK1 by E1 in the
above result. Our article also demonstrates that noncommutative motives constitute a
bivariant homology theory on the category of separableC �-algebras under favourable
circumstances (see Remark 5.16).
Remark 1.1. The above result opens up the prospect of studying topological
Hochschild (resp. cyclic) homomology of noncommutative (ring) spectra via
noncommutative motives. In fact, one of our motivations behind the introduction of
the symmetric monoidal structures on NS� and NSp is the direct study of such theories
that will be explored elsewhere.

In this article we have decided to change some terminology (see Disambigua-
tion 4.5) used previously by the author in order to align ourselves with the conventions
in topology. For the benefit of the reader we record them here:

� NSHop D noncommutative stable homotopy category,
� .NSHf /op D homotopy category of noncommutative finite spectra,
� NSH.C; A/ D noncommutative stable cohomotopy of A,
� NSH.A;C/ D noncommutative stable homotopy of A.

Notations and conventions. Throughout this article Ő will denote the maximal
C �-tensor product. All C �-algebras are assumed to be separable unless otherwise
stated. For any1-category C we denote by hC its homotopy category. In the context
of1-categories a functor (resp. limit or colimit) will implicitly mean an1-functor
(resp.1-limit or1-colimit). There is a Yoneda embedding j W SC�1

op
! NS� and

a separable C �-algebra A is viewed as a noncommutative space via j.A/. In the
sequel for brevity we suppress j from the notation.

The stable 1-category of noncommutative spectra NSp is a localization (with
respect to a set of maps S ) of the stabilization of pointed noncommutative
spaces NS�. This localization is performed in order to achieve optimal excision
property following [43]. However, there are other conceivable choices for the set of
maps to localize (see the set of maps S 0 � S in [31, Remark 2.29]). Strictly speaking,
one should denote the category NSp by NSpŒT �1� (or something similar) to indicate
the dependence on the localization with respect to a set of maps T . For brevity we
have chosen the concise notation NSp with the understanding that there is an implicit
localization with respect to T D S (other possibilities being T D S 0;;).
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2. The symmetric monoidal version of noncommutative spectra

Recall from [31] that there is an1-category of pointed noncommutative spaces NS�
as well as a stable 1-category of noncommutative spectra NSp, which is obtained
after a localization of the stabilization of the 1-category NS�. In this section we
construct a closed symmetric monoidal structure on NS� (resp. NSp) generalizing the
smash product of pointed finite CW complexes (resp. finite spectra).

Let Fin� denote the category, whose objects are pointed sets hni D f�; 1; : : : ; ng
with � being the basepoint and whose morphisms are pointed maps. Let N.Fin�/
denote its nerve. A symmetric monoidal1-category C˝ is a coCartesian fibration
of simplicial sets p W C˝ ! N.Fin�/ with the property: for each n > 0 there is
an equivalence C˝

hni
' .C˝

h1i
/n induced by the maps f�i W hni ! h1ig16i6n. One

should regard C WD C˝
h1i

as the 1-category, which is symmetric monoidal. It is
customary to work with the underlying symmetric monoidal category C, leaving
out the rest of the structure as implicitly understood. A symmetric monoidal 1-
category can also be regarded as a commutative monoid object in Cat1, which is
the .1; 1/-category of (small) 1-categories (see [27, Definition 3.0.0.1]). Recall
that a symmetric monoidal presentable1-category is said to be closed if the tensor
product preserves colimits separately in each variable. For further details the readers
may consult [26, Chapters 2, 3, and 4].

Proposition 2.1. The 1-categories SC�1 and NS� WD Ind.SC�1
op/ are symmetric

monoidal. Moreover, the tensor product ˝ W NS� � NS� ! NS� preserves small
colimits in each variable separately, i.e., NS� is closed symmetric monoidal and the
Yoneda functor j W SC�1

op
! NS� is symmetric monoidal.

Proof. It is well known that the topological category SC� is symmetric monoidal
under the maximal C �-tensor product Ő . One can verify that Ő W SC� � SC� ! SC�

is a continuous functor that is compatible with the associativity and unit constraints;
moreover, the symmetry maps �A;B W A Ő B ! B Ő A for all A;B 2 SC� constitute
a natural transformation of continuous functors. Hence its topological nerve SC�1
is a symmetric monoidal 1-category. The symmetric monoidal structure on SC�1
endows SC�1

op with a symmetric monoidal structure ˝ that is uniquely defined up
to a contractible space of choices (see [26, Remark 2.4.2.7]). One needs to verify
that ˝ commutes with finite colimits in SC�1

op. For this note that the maximal
C �-tensor product Ő preserves homotopy pullbacks in the topological category SC�



1274 S. Mahanta

(see [39, Corollary 1.9, Proposition 1.11] and [33, Remark 3.10]). Now all other
assertions follow from [26, Corollary 4.8.1.13].

Note that the1-category NS� is pointed and it follows from [26, Proposition 4.8.2.11]
that there is an equivalence NS� ' NS�˝S� WD FunR.NS�op; Sp/. Here˝ is the one
in the symmetric monoidal 1-category of presentable 1-categories with colimit
preserving functors.
Lemma 2.2. The stabilization Sp.NS�/ of NS� is a closed symmetric monoidal
stable presentable1-category and the functor †1 W NS� ! Sp.NS�/ is symmetric
monoidal.

Proof. The assertion is a consequence of Proposition 2.1 and [26, Proposi-
tion 4.8.2.18] (see also [16, Theorem 5.1]). A more step-by-step approach is to
argue via the identification of stable 1-categories Sp.NS�/ ' NS� ˝ Sp (see [26,
Example 4.8.1.22]). Using the stabilization †1 W S� ! Sp of pointed spaces, the
stabilization of pointed noncommutative spaces can be regarded as the composite

NS� ' NS� ˝ S� ! NS� ˝ Sp ' Sp.NS�/:

For any �-homomorphism f W B ! C in SC� there is a canonical map �.f / W
ker.f /! C.f / in SC�1, where C.f / denotes themapping cone of f . Themap �.f /
can also be viewed as an element in SC�1

op.C.f /; ker.f //. Let

T0 D fC.f /! ker.f / j f W A! B surjective in SC�g

denote a small set of morphisms in SC�1
op. Recall from [31] that there is a functor

Stab W SC�1
op
! Sp.NS�/ that arises as a composition of two symmetric monoidal

functors
SC�1

op j
! NS�

†1

! Sp.NS�/;

such that its image lies inside the compact objects of Sp.NS�/. This functor
descends to a symmetric monoidal functor between tensor triangulated categories
Stab W HoSC�Œ†�1� ! hSp.NS�/, where HoSC�Œ†�1� is the Spanier–Whitehead
category of the homotopy category of SC� with respect to †.�/. We construct
a strongly saturated collection of morphisms S (see [27, Definition 5.5.4.5]) in
Sp.NS�/, which is of small generation starting from the small set

S0 D fStab.�/ j � 2 T0g

that is compatible with the triangulation as follows: Let A denote the stable
1-subcategory of Sp.NS�/ generated by the set fcone.�/ j� 2 S0g. Then Ind!.A/
is a stable presentable 1-subcategory of Sp.NS�/ (see [26, Proposition 1.1.3.6]).
Let S denote the class of maps in Sp.NS�/, whose cones lie in the essential image
of Ind!.A/. We deduce from [2, Proposition 5.6] that S is a strongly saturated
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collection of small generation. The cofiber of the map Ind!.A/ ! Sp.NS�/
can be identified with the accessible localization LS W Sp.NS�/ ! S�1Sp.NS�/
(see [2, Proposition 5.6]). Note that in [31] we defined the stable 1-category of
noncommutative spectra as NSp D S�1Sp.NS�/ and denoted the localization functor
LS W Sp.NS�/! S�1Sp.NS�/ simply by L.
Theorem 2.3. There is a colimit preserving symmetric monoidal functor

†1S D LS ı†
1
W NS� ! NSp

between presentable closed symmetric monoidal1-categories.

Proof. We only need to show that the localization LS is symmetric monoidal,
i.e., whenever X ! Y is a LS -equivalence, then so is X ˝ Z ! Y ˝ Z for every
Z 2 Sp.NS�/ (see [26, Proposition 2.2.1.9 and Example 2.2.1.7]). By construction,
NS� is compactly generated by the objects of SC�1

op. Consequently Stab.SC�1
op/

lands inside the1-subcategory of compact objects of Sp.NS�/. It follows from [2,
Proposition 5.7] that there is an equivalence of stable1-categories S�10 Sp.NS�/ '
S�1Sp.NS�/ D NSp. The tensor product˝ on Sp.NS�/ preserves colimits separately
in each variable (see, for instance, [16, Theorem 5.1]) and Sp.NS�/ is compactly
generated by Stab.HoSC�Œ†�1�op/. By [31, Theorem 2.26] it suffices to show: if
�.f / W ker.f /! C.f / is the canonical map in SC�1 for any surjection f W A! B

in SC�, then for any C 2 SC� the map �.f /˝ idC W ker.f / Ő C ! C.f / Ő C is the
same as �.f ˝ idC / W ker.f ˝ idC /! C.f ˝ idC /. This can be verified using the
exactness of the maximal C �-tensor product (see [17, Lemma 4.1]).

Definition 2.4. We call †1S W NS� ! NSp the suspension spectrum of pointed
noncommutative spaces. The composite functor †1S ı j W SC

�
1

op
! NSp was

denoted by stab in [31].
Remark 2.5. Since hSC�1

op is the homotopy category of pointed noncommutative
(compact metrizable) spaces, it seems very natural to consider NSHop as its suspension
stabilization. Thus we propose to (re)define

NSHop D noncommutative stable homotopy category;

deviating from the terminology in [31, 32, 43]. Naturally we refer to its triangulated
subcategory .NSHf /op as the homotopy category of noncommutative finite spectra;
see [32, Definition 2.1], where NSHf was called the homotopy category of
noncommutative finite spectra.
Remark 2.6. The category NSH is a tensor triangulated category with respect to Ő
(see [13,43]. The homotopy category of noncommutative spectra hNSp is also a tensor
triangulated category, containing NSHop as a full tensor triangulated subcategory via
the functor �op W NSHop ! hNSp (see [31, Theorem 2.26]). It also contains .NSHf /op,
defined in [32], as a full tensor triangulated subcategory.
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Remark 2.7. Inside NS� it is possible to identify an1-subcategorywhere surjections
in SC� behave like cofibrations. Let T be the strongly saturated collection
generated by j.T0/ inside NS�. We may construct an accessible localization
LT W NS� ! T �1NS� with respect to T . The presentable 1-category T �1NS�
has the desired property and the suspension spectrum functor †1S W NS� ! NSp
factors through T �1NS�.

3. Strongly self-absorbing C �-algebras and localizations of SC�1

A separable unital C �-algebra D (D ¤ C) is called strongly self-absorbing if
the there is an isomorphism � W D ! D Ő D that is approximately unitarily
equivalent to idD ˝ 1D [44]. In [44] the authors introduced and conducted an
elaborate study of strongly self-absorbingC �-algebrasmainlywith applications to the
Elliott’s Classification Program in mind. These C �-algebras share certain properties
similiar to K, i.e., the C �-algebra of compact operators on a separable Hilbert space.
We are going to use these C �-algebras to construct interesting (co)localizations of
noncommutative spaces and spectra.

Remark 3.1. In [12] the authors showed the for any strongly self-absorbing
C �-algebra D the map idD ˝ 1D is homotopic to an isomorphism � W D! D Ő D.
In [12] the result was asserted under the K1-injectivity condition, which later turned
out to be redundant (see [46, Remark 3.3]).

Let C be a symmetric monoidal 1-category with unit object 1. Then a map
e W 1 ! E exhibits E as an idempotent object if idE ˝ e W E ' E ˝ 1 ! E ˝ E

is an equivalence in C (see, for instance, [26, Definition 4.8.2.1]). Unlike finite CW
complexes it is possible to find several interesting idempotent objects in the world of
separable C �-algebras, which are compact objects in NS�. Indeed, we find

Lemma 3.2. Any strongly self-absorbing C �-algebra D is an idempotent object
in SC�1. The same assertion holds for K.

Proof. For a strongly self-absorbingC �-algebraD the canonical unital�-homomorphism
C ! D exhibits it as an idempotent object in SC�1 (see Remark 3.1). For K the map
C ! K sending 1 7! e11 exhibits K as an idempotent object in SC�1.

Remark 3.3. If E 2 C is an idempotent object, then LE W C ! C of the
form LE .X/ D � ˝ E is a localization. In [16] the authors called localizations
LE W C! C of the form LE .X/ D �˝ E for some E 2 C smashing localizations
in keeping with the terminology prevalent in stable homotopy theory. Any smashing
localization LE W C ! C is compatible with the symmetric monoidal structure
on C and, in fact, LEC inherits a symmetric monoidal structure from C, such that
LE W C ! LEC becomes symmetric monoidal (see [26, Proposition 2.2.1.9 and
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Proposition 4.8.2.7]). By abuse of notation we are sometimes going to drop the
object E from the smashing localization LE and denote it simply by L.

Example 3.4. Smashing localizations of the1-category of separable C �-algebras
SC�1 produces interesting results. By definition SC�1 is opposite to the1-category
of pointed noncommutative compact Hausdorff spaces. We present a few pertinent
examples here.

(1) If L.A/ D A ˝ K, then we denote the smashing localization LSC�1 by
SC�1ŒK

�1�. It is the1-category of C �-stable C �-algebras. For finite pointed
CW complexes .X; x/ and .Y; y/ the homotopy set

hSC�1ŒK
�1�.L.C.X; x//; L.C.Y; y///

is the bivariant connective E-theory group denoted by kk..Y; y/; .X; x// in [10]
(see Remark 3.12 below).

(2) If L.A/ D A ˝ D, where D is a strongly self-absorbing C �-algebra, then
we denote the smashing localization LSC�1 by SC�1ŒD

�1�. We refer to
it as the 1-category of D-stable C �-algebras. From the perspective of
Elliott’s Classification Program the1-category SC�1ŒZ�1� would be the most
interesting localization, where Z is the Jiang–Su algebra. We call it the
1-category of Z-stable C �-algebras.

(3) Let O1 be the universal unital Cuntz algebra on generators fsi ; s�i j i 2 Ng
satisfying s�i sj D ıij . If D D O1 we call SC�1ŒO�11 � the 1-category of
O1-stable C �-algebras. The suspension stable version of this category will
be analysed in the next section.

Proposition 3.5. Let us suppose that there is a unital embedding �D W D ! D0 of
strongly self-absorbing C �-algebras. ThenD0 is an idempotent object in SC�1ŒD�1�.

Proof. Consider the following commutative diagram in SC�

D0
idD0˝1D0 //

idD0˝1D ##F
FF

FF
FF

FF
D0 Ő D0

D0 Ő D:

idD0˝�D

99ttttttttt

Since D0 is strongly self-absorbing idD0 ˝ 1D0 is homotopic to an isomorphism
D0 ! D0 Ő D0. It follows from Proposition 5.12 of [44] that idD0 ˝ 1D is homotopic
to an isomorphism D0 ! D0 Ő D demonstrating that D0 is D-stable whence D0 2

SC�1ŒD
�1�. It follows that idD0 ˝ �D is a homotopy equivalence. Observe that the

unit object in SC�1ŒD�1� is D. Thus the unital embedding �D W D! D0 exhibits D0
as an idempotent object in SC�1ŒD�1�.



1278 S. Mahanta

Corollary 3.6. In the localized1-category SC�1ŒZ�1� every strongly self-absorbing
C �-algebra is an idempotent object.

Proof. The assertion follows from the characterization of Z as the initial object
in the homotopy category of strongly self-absorbing C �-algebras with unital
�-homomorphisms (see [46, Corollary 3.2]).

Remark 3.7. In view of the above Corollary one may construct SC�1ŒD�1� for
any strongly self-absorbing C �-algebra D as a localization of SC�1ŒZ�1�. Thus
equivalences in SC�1ŒZ�1� contain themost refined information amongst all smashing
localizations with respect to strongly self-absorbing C �-algebras.
For anyA;B 2 SC� we denote by ŒA; B� the homotopy classes of �-homomorphisms
A! B .
Proposition 3.8. For anyA;B 2 SC� and any strongly self-absorbingC �-algebraD
there is a natural isomorphism

hSC�1ŒD
�1�.L.A/; L.B// Š ŒA; B Ő D�:

Proof. Let us first observe that there is an identification

hSC�1ŒD
�1�.L.A/; L.B// Š hSC�1.A Ő D; B Ő D/:

There is an element �A D idA ˝ 1D 2 SC�.A;A Ő D/ sending a 7! a ˝ 1D. This
induces a map

K W hSC�1.A Ő D; B Ő D/! hSC�1.A;B Ő D/

by precomposing with Œ�A� (here Œ�� denotes the homotopy class). Using the fact
that idD ˝ 1D W D ! D Ő D is homotopic to an isomorphism 
 W SC�.D;D Ő D/,
we deduce that the map idB ˝ idD ˝ 1D is homotopic to an isomorphism 
B 2

SC�.B Ő D; B Ő D Ő D/. Now we define a map

M W hSC�1.A;B Ő D/! hSC�1.A Ő D; B Ő D/

as follows: M.Œ��/ D Œ
�1B ı .� ˝ idD/�. Observe that

K ıM.Œ��/ D Œ
�1B ı .� ˝ idD/� ı Œ�A� D Œ
�1B ı .idB ˝ idD ˝ 1D/ ı ��:

Since ŒidB ˝ idD˝ 1D� D Œ
B � the compositionK ıM D id W hSC�1.A;B Ő D/!
hSC�1.A;B Ő D/.

NowM ıK.Œ �/ DM.Œ ı �A�/ D Œ
�1B ı .. ı �A/˝ idD/�. Let �D W D! D

denote the tensor flip map, which is also homotopic to the identity. A verification on
the simple tensors demonstrates that Œ.idB ˝ �D/ ı .. ı �A/˝ idD/� D Œ
B ı �. It
follows thatM ıK D id W hSC�1.A Ő D; B Ő D/! hSC�1.A Ő D; B Ő D/. It remains
to observe that hSC�1.A;B Ő D/ Š ŒA; B Ő D� (see [31, Section 2.1]).
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Proposition 3.9. The �-homomorphism id ˝ 1D W K ! K Ő D (resp. idD ˝ e11 W
D ! D Ő K) exhibits K Ő D (resp. D Ő K) as an idempotent object in SC�1ŒK

�1�

(resp. SC�1ŒD�1�).

Proof. We only show that K Ő D is an idempotent object in SC�1ŒK
�1�. The proof

of the other assertion is similar. Consider the diagram C
�
! K

id˝1D
! K Ő D, where

�.1/ D e11. Tensoring with K Ő D we get a diagram

K Ő D! K Ő K Ő D! K Ő D Ő K Ő D

whose composition is the �-homomorphism .a˝ x/ 7! .e11 ˝ 1D/˝ .a˝ x/.
According to the proof of [11, Theorem 2.5] this composition is an equivalence.
Moreover, the map K Ő D ! K Ő K Ő D is an equivalence in SC�1ŒK

�1�. Con-
sequently, the map K Ő K Ő D ! K Ő D Ő K Ő D is also an equivalence exhibiting
K Ő D as an idempotent object in SC�1ŒK�1�.

Remark 3.10. LetD be any strongly self-absorbingC �-algebra. It follows from [11,
Theorem 2.5] that the �-homomorphism C ! D Ő K sending 1 7! 1D ˝ e11
exhibitsD Ő K as an idempotent object in SC�1. Moreover, the argument in the above
Proposition 3.8 goes through to show that

hSC�1Œ.D Ő K/
�1�.L.A/; L.B// Š ŒA; B Ő .D Ő K/�:

Corollary 3.11. The .O1 Ő K/-stable1-category SC�1Œ.O1 Ő K/�1� is equivalent
to the localization of SC�1ŒK�1� with respect to O1 Ő K.
Remark 3.12. Consider the following problem: Given two connected finite pointed
CW complexes .X; x/ and .Y; y/ are the C �-algebras C.X; x/ Ő K and C.Y; y/ Ő K
homotopy equivalent? The answer to the question can be detected in terms of a
bivariant homology theory, viz., connective kk-theory (see [10, Theorem 2.4]). The
connective kk-category for connected finite pointed CW complexes can be viewed
within the localization SC�1ŒK�1� (cf. Example 3.4 (1)) and it should not be confused
with Cuntz kk-theory for m-algebras (or locally convex algebras). Homotopy
equivalences of matrix bundles can also be detected by bivariant connective
E-theory [43]. In order to determine actual isomorphism types (not merely homotopy
types) one needs sharper invariants [11].
Now we demonstrate that the homotopy category of the smashing localization
hSC�1ŒD

�1� admits a universal characterization much like KK-theory. The
localization functor LD W SC

�
1 ! SC�1ŒD

�1� induces a canonical (ordinary)
functor LD W SC

� ! hSC�1ŒD
�1�. Recall that a functor F W SC� ! C (C an

ordinary category) is calledD-stable if F sends the morphism A! A Ő D mapping
a 7! a˝ 1D to an isomorphism in C for all A 2 SC�.
Theorem 3.13. The functor LD W SC

� ! hSC�1ŒD
�1� is the universal homotopy

invariant and D-stable functor on SC�.
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Proof. Let us first show that functor LD is homotopy invariant and D-stable. It is
easy to verify that it is homotopy invariant. It follows from the arguments in the proof
of Proposition 3.8 that the map

hSC�1ŒD
�1�.LD.A Ő D/; LD.B//! hSC�1ŒD

�1�.LD.A/; LD.B//

induced by A ! A Ő D is an isomorphism for all B 2 SC�. For any B 2 SC� the
map

hSC�1ŒD
�1�.LD.B/; LD.A//! hSC�1ŒD

�1�.LD.B/; LD.A Ő D//

is equivalent to that map ŒB; A Ő D�! ŒB; A Ő D Ő D� once again by Proposition 3.8.
This map is induced by A Ő D ! A Ő D Ő D sending a ˝ d 7! a ˝ 1D ˝ d .
SinceD is strongly self-absorbing one easily sees ŒB; A Ő D�! ŒB; A Ő D Ő D� is an
isomorphism. Since LD is surjective on objects we conclude that LD is D-stable.

Let Fi W hSC�1ŒD�1� ! C with i D 1; 2 be two functors making the following
diagram commute

SC�
LD //

F   A
AA

AA
AA

A hSC�1ŒD
�1�

Fizzt
t
t
t
t

C:

(3.1)

On objects they are both determined byD-stability Fi .A Ő D/ Š F.A Ő D/ Š F.A/.
Similarly, on each morphism � W A Ő D ! B Ő D the value of Fi .�/ is uniquely
determined by the following diagram:

Fi .A Ő D/
Fi .�/ // Fi .B Ő D/

F.A/
F.�/ //

Š

OO

F.B/:

Š

OO

For the existence note that for any homotopy invariant and D-stable functor F W
SC� ! C there is a functor F W hSC�1ŒD�1� ! C sending A Ő D to F.A Ő D/ Š
F.A/ thatmakes the above diagram (3.1) commute (up to a natural isomorphism).

4. Bivariant connective E-theory and (co)localizations of NSp

Let us remind the readers that the functor stab W SC�1
op
! NSp arises as a composition

of the following functors

SC�1
op j
! NS�

†1

! Sp.NS�/
LS
! S�1Sp.NS�/ D NSp:
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For any separable C �-algebra A one ought to regard stab.A/ as its suspension
spectrum after localization with respect to S . In the sequel we suppress the functor j
from the notation and simply write†1S .A/ in place of stab.A/ D †1S ı j.A/ for any
separable C �-algebra A.

Definition 4.1. Let C be a symmetric monoidal1-category with unit object 1. We
say that a map e W E ! 1 exhibits E as a coidempotent object in C if the dual map
eop W 1! E exhibits E as an idempotent object in Cop.

Recall that the symmetric monoidal structure on C endows Cop with a symmetric
monoidal structure that is uniquely defined up to a contractible space of choices.

Lemma 4.2. If D is a strongly self-absorbing C �-algebra, then j.D/ is a
coidempotent object in NS�. The same assertion holds for K, i.e., j.K/ is a
coidempotent object in NS�.

Proof. LetX stand forD orK. SinceX is an idempotent object in SC�1, it becomes a
coidempotent object in SC�1

op. Consequently, j.X/ becomes a coidempotent object
in NS� (since j W SC�1

op
! NS� is a fully faithful symmetric monoidal functor).

Lemma4.3. For any strongly self-absorbingC �-algebraD, the stabilization†1S .D/
is a coidempotent object in NSp. The same assertion holds for K, i.e., †1S .K/ is a
coidempotent object in NSp.

Proof. Since †1S W NS� ! NSp is symmetric monoidal (see Theorem 2.3), the
assertion follows from the previous Lemma.

Recall that a functor R W C ! C is called a colocalization if R W C ! RC is the
right adjoint to the inclusion RC � C; in particular, the inclusion is the left adjoint
to R and hence preserves all small colimits. Owing to the fact that NSp is closed
symmetric monoidal (see Theorem 2.3), one may consider the colimit preserving
endofunctor �˝†1S .A/ W NSp! NSp for any A 2 SC�1

op. Often such functors are
colocalizations.

Proposition 4.4. LetA be any strongly self-absorbing C �-algebraD or K. Then the
functors RA W NS� ! NS� and R†1

S
.A/ W NSp! NSp given by RA.X/ D X ˝ j.A/

and R†1
S
.A/.X/ D X ˝†

1
S .A/ respectively are colocalization functors.

Proof. The assertions follow from the dual of [26, Proposition 4.8.2.4].

Disambiguation 4.5. In [32] the author called the groupsNSH.C;�/ (resp.NSH.�;C/)
the noncommutative stable homotopy (resp. noncommutative stable cohomotopy)
groups. The terminology was motivated by the fact that NSH.C;�/ is covariant
and NSH.�;C/ is contravariant. However, it was observed in [32] that NSH.C;�/
generalizes stable cohomotopy, whereas NSH.�;C/ generalizes stable homotopy of
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finite pointed CW complexes. In order to align the theory with the terminology
familiar to topologists, we rename them following [31, Definition 3.2] as follows:

NSH.C;�/ D noncommutative stable cohomotopy
NSH.�;C/ D noncommutative stable homotopy

We also extend the terminology predictably to their graded versions.

4.1. (Co)localizations and purely infinite strongly self absorbing C �-algebras.
The list of known examples of strongly self-absorbing C �-algebras is rather limited.
The list includes Cuntz algebrasO2 andO1, the Jiang–Su algebraZ, UHF algebras of
infinite type, and tensor products ofO1 with UHF algebras of infinite type. It follows
from the results ofKirchberg that strongly self-absorbingC �-algebras are either stably
finite or purely infinite. In the purely infinite case Toms–Winter completely classified
all strongly self-absorbing C �-algebras satisfying UCT [44, Corollary, p. 4022],
viz., they are O2, O1 and tensor products of O1 with UHF algebras of infinite type.
We are particularly interested in the purely infinite ones since ax C b-semigroup
C �-algebras of number rings are all purely infinite [8, Corollary 8.2.11]. Among
the strongly self-absorbing purely infinite C �-algebras O1 plays a distinguished role
in the classification program. The C �-algebra A Ő O1 is purely infinite for any
A 2 SC� [23]. Deviating slightly from the predictable pattern the colocalization
of NSp by the functor R†1

S
.D/.�/ D �˝†

1
S .D/ is denoted by NSpŒD

�1� (and not
by NSpŒ.†1S .D//

�1�). In what follows we are going to drop the object †1S .D/ from
the colocalization functor R†1

S
.D/ and denote it simply by R.

Thanks to Proposition 4.4 above one can study colocalizations of both NS� and NSp
with respect to a strongly self-absorbing C �-algebra D or K. Recall that bivariant
E-theory is a bivariant homology theory of separable C �-algebras that agrees with
KK-theory for all nuclearC �-algebras. Hence it is considered to be quite computable.

Proposition 4.6. LetA;B 2 SC� andD be any purely infinite strongly self-absorbing
C �-algebra satisfying UCT. Then the bivariant noncommutative stable homotopy
group hNSpŒD�1�.R.†1S .A//; R.†

1
S .B/// contains E0.B Ő D; A Ő D/ as a natural

summand.

Proof. By construction there is a natural identification

hNSpŒD�1�.R.†1S .A//; R.†
1
S .B/// Š hNSp.†1S .A Ő D/; †

1
S .B Ő D//;

where we used the fact that †1S W hSC
�
1

op
! hNSp is symmetric monoidal (see

Theorem 2.3). Using [31, Theorem 2.26] we also deduce that

hNSp.†1S .A Ő D/; †
1
S .B Ő D// Š NSH.B Ő D; A Ő D/:
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Thus it suffices to show that NSH.B Ő D; A Ő D/ contains E0.B Ő D; A Ő D/ as a
summand. Now consider the canonical composition of �-homomorphisms

K
i
! D

�
! D Ő K:

Note than any purely infinite strongly self-absorbing C �-algebra D admits a unital
embedding O1

�
,! D [46]. Here i W K! D maps eij to �.si /�.sj /�, where fsigi2N

is the standard set of generators of O1, and � W D! D Ő K is the corner embedding
a 7! a˝ e11. Tensoring the diagram with A Ő D and applying NSH.B Ő D;�/ leads
to the following diagram

NSH.B Ő D; A Ő D Ő K/
i
! NSH.B Ő D; A Ő D Ő D/

�
! NSH.B Ő D; A Ő D Ő D Ő K/:

Observe that for any E;F 2 SC� there is a natural map NSH.E; F /! E0.E; F /,
which becomes an isomorphism as soon as F is stable (see [43, Theorem 4.1.1.];
also [19]). Therefore, the above diagram can be naturally identified with

E0.B Ő D; A Ő D Ő K/
i
! NSH.B Ő D; A Ő D Ő D/

�
! E0.B Ő D; A Ő D Ő D Ő K/:

(4.1)
Since D satisfies UCT, the composition D Ő K

i
! D Ő D

�
! D Ő D Ő K produces

a E-equivalence. Therefore, the composition A Ő D Ő K
i
! A Ő D Ő D

�
!

A Ő D Ő D Ő K is also an E-equivalence whence the composition in diagram (4.1)
is an isomorphism. Using the self-absorbing property of D, i.e., D Š D Ő D, we
conclude that the map

NSH.B Ő D; A Ő D/ Š NSH.B Ő D; A Ő D Ő D/

�
! E0.B Ő D; A Ő D Ő D Ő K/ Š E0.B Ő D; A Ő D Ő K/

is split surjective. Finally, due to C �-stability of bivariant E-theory we may naturally
identify E0.B Ő D; A Ő D Ő K/ Š E0.B Ő D; A Ő D/, i.e., E0.B Ő D; A Ő D/ is a split
summand of

NSH.B Ő D; A Ő D/ Š hNSpŒD�1�.R.†1S .A//; R.†
1
S .B///:

Corollary 4.7. The proof of Proposition 4.6 actually shows that the noncommutative
stable cohomotopy groups of any D-stable separable C �-algebra contains its
topological K-theory groups as natural summands. If D D O1 then one may
replace E0.B Ő D; A Ő D/ in the above Proposition by E0.B;A/ due to O1-stability
of bivariant E-theory in both variables.
Remark 4.8. Recall from Lemma 4.3 that †1S .K/ is a coidempotent object in NSp.
Thus one may construct the smashing colocalizationRK W NSp! NSpŒK�1�. We set
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E1 WD NSpŒK�1�op and it is our proposed stable1-categorical model for bivariant
E-theory. Arguments parallel to those in [30, Section 2] will show that NSpŒK�1� is a
closed symmetric monoidal and compactly generated stable1-category; moreover,
there is an exact fully faithful functor from the bivariant E-theory category of
separable C �-algebras to hE1.

4.2. Bivariant connective E-theory. Earlier we had outlined the construction of
bivariant connective E-theory in the setting of1-categories (see [31, Remark 2.29]).
We furnish the details here. Consider the set of mapsXDfM2.A/!A j A2SC�1

op
g

induced by the corner embeddings in SC�1
op. In [43] Thom constructed the

bivariant connective E-theory category as the Verdier quotient NSH! NSHŒ.Xop/�1�.
Following [43] we denote the Verdier quotient, which is the bivariant connective
E-theory category, by bu. There is a symmetric monoidal colimit preserving
suspension spectrum functor †1S W NS� ! NSp (see Theorem 2.3). Via SC�1

op j
,!

NS�
†1

S
! NSp from X we obtain a set of maps X 0 between compact objects in NSp.

Definition 4.9. We denote the opposite of the codomain of the accessible localization

NSp
LX0

! X 0�1NSp by Ecn1 and this is the stable 1-categorical version of

bivariant connective E-theory [43]. We denote the composite functor NS�op
.†1

S
/op

!

NSpop
.LX0 /

op

! Ecn1 by kcn. See Theorem 4.13 and Example 4.14 below for a justificaton
of this terminology.

Remark 4.10. There is a canonical functor X 0�1NSp! NSpŒK�1� owing to the fact
that the colocalizationRK W NSp! NSpŒK�1� is a colimit preserving functor between
presentable 1-categories that sends the maps in X 0 to equivalences. Taking the
opposite of the functorX 0�1NSp! NSpŒK�1� we get a canonical functor Ecn1 ! E1
(see Remark 4.8).

Proposition 4.11. The localization NSp
LX0

! .Ecn1/
op is a symmetric monoidal colimit

preserving functor between symmetric monoidal and compactly generated stable
1-categories.

Proof. Since NSp is compactly generated and LX 0 is an accessible localization,
such that the domains and codomains of the maps in X 0 are all compact, the stable
1-category Ecn1 is compactly generated and LX 0 is colimit preserving. Moreover,
NSp is a closed symmetric monoidal1-category (see Theorem 2.3). Thus it suffices
to show that LX 0 is a symmetric monoidal localization. For every †1S .M2.A// !

†1S .A/ in X
0 the map †1S .M2.A//˝†

1
S .Y /! †1S .A/˝†

1
S .Y / belongs to the

strongly saturated collection of morphisms in NSp generated byX 0. Arguing as in the
proof of [30, Theorem 1.4] one deduces that LX 0 is a symmetric monoidal functor
between closed symmetric monoidal stable1-categories.
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Corollary 4.12. The functor kcn D .LX 0/
op ı .†1S /

op W NS�
op
! Ecn1 is symmetric

monoidal.
The following theorem demonstrates that Definition 4.9 is appropriate.
Theorem 4.13. There is a fully faithful exact functor bu ,! hEcn1 thereby showing
that bu is a topological triangulated category.

Proof. Recall from [31, Theorem 2.26] that there is a fully faithful exact functor
� W NSH ! hNSpop. We consider its opposite �op W NSHop ! hNSp, which is
also fully faithful and whose image lies inside the compact objects of hNSp. Since
�op.X/ D X 0 by construction there is the following commutative diagram:

NSHop
�op

//

V

��

hNSp

LX0

��
buop //___ hEcn1

op:

The dashed functor making the above diagram commute exists because the
triangulated category ker.V / is generated by fcone.f / jf 2 Xg and ker.LX 0/ is
compactly generated by �op.ker.V //. It follows from [24, Theorem 7.2.1(3) and
Lemma 4.7.1] that the dashed functor is fully faithful. Taking its opposite furnishes
the desired fully faithful exact functor bu ,! hEcn1. An argument similar to [31,
Theorem 2.27] shows that bu is topological.

Example 4.14. Let .X; x/ and .Y; y/ be two finite pointed CW complexes. Then

bu.C.X; x/;C.Y; y// Š colimm Œ†mY;kum ^X�;

where ku denotes the connective K-theory spectrum (see [43, Theorem 4.2.1]).
Thanks to Corollary 4.12 we conclude that ifA is a coidempotent object in SC�1

op

(and hence an idempotent object in SC�1), then kcn.A/ is an idempotent object in Ecn1.
We denote the smashing localization of Ecn1 with respect to such an idempotent object
kcn.A/ by Ecn1ŒA

�1�. From Lemma 3.2 we know that every strongly self-absorbing
C �-algebra D is an idempotent object in SC�1. For brevity we denote the composite
functor NS�op

kcn
! Ecn1 ! Ecn1ŒD

�1� also by kcn in the sequel. Since Ecn1 ! Ecn1ŒD
�1�

is a smashing localization the functor kcn W NS�op ! Ecn1ŒD
�1� is also symmetric

monoidal.
Theorem 4.15. For any A;B 2 SC� there is a natural isomorphism

hEcn1ŒO
�1
1 �.k

cn.A/; kcn.B// Š E0.A;B/:

Proof. By construction there is a natural identification

hEcn1ŒO
�1
1 �.k

cn.A/; kcn.B// Š hEcn1.k
cn.A Ő O1/; kcn.B Ő O1//;
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where we used the fact that hSC�1 ! NS�
op kcn
! hEcn1 is symmetric monoidal (see

Corollary 4.12). Using Theorem 4.13 we also deduce that

hEcn1.k
cn.A Ő O1/; kcn.B Ő O1// Š bu.A Ő O1; B Ő O1/:

Thus it suffices to show that bu.A Ő O1; B Ő O1/ Š E0.A;B/. Now consider again
the composition of �-homomorphisms K

i
! O1

�
! O1 Ő K as in the proof of

Proposition 4.6. Tensoring the diagram with B and applying the functor bu.A;�/
we get

bu.A;B Ő K/
i
! bu.A;B Ő O1/

�
! bu.A;B Ő O1 Ő K/:

From [43, Lemma 4.2.4] we know that for C;D 2 SC� we have bu.C;D/ Š
E0.C;D/ naturally whenever D is stable. Hence the above composition of
homomorphisms can be naturally identified with

E0.A;B Ő K/
i
! bu.A;B Ő O1/

�
! E0.A;B Ő O1 Ő K/:

This composition is an E-equivalence, since � ıi W K! O1 Ő K is an E-equivalence.
It follows that � is surjective. Now consider a different comoposition of �-homo-
morphisms O1

�
! O1 Ő K

�
! O1, where �.a ˝ eij / D sias

�
j . The composite

�-endomorphism � ı � W O1 ! O1 is inner, i.e., a 7! s1as
�
1 and tensoring the

diagram with unital B we again get a composite inner �-endomorphism of B Ő O1.
Now applying the matrix stable functor bu.A;�/ and using [9, Proposition 3.16] we
find that the composition

bu.A;B Ő O1/
�
! bu.A;B Ő O1 Ő K/

�
! bu.A;B Ő O1/

is an isomorphism. Applying [43, Lemma 4.2.4] again we can naturally identify the
above composition with

bu.A;B Ő O1/
�
! E0.A;B Ő O1 Ő K/

�
! bu.A;B Ő O1/;

whose composition is an isomorphism. This implies that � is also injective.
Thus we have proven that � W bu.A;B Ő O1/

�
! E0.A;B Ő O1 Ő K/ is an

isomorphism. Finally, using C �-stability and O1-stability of bivariant E-theory
one has E0.A;B Ő O1 Ő K/ Š E0.A;B/, which is also a natural isomorphism. The
proof extends to all (nonunital) B by a simple excision argument.

Remark 4.16. An inspection of the proof of Theorem 4.15 demonstrates that actually
a stronger result holds, viz.,

hEcn1.k
cn.A/; kcn.B Ő O1// Š E0.A;B/

for any A;B 2 SC�.
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Corollary 4.17. The nonconnective algebraic K-theory of O1-stable separable
C �-algebras factors through the essential image of hSC�1 ! hNS�

op
! hEcn1ŒO

�1
1 �.

Proof. It was shown in [6,29] that the nonconnective algebraicK-theory ofO1-stable
C �-algebras agrees naturally with their topological K-theory. The assertion now
follows since topological K-theory, which is naturally isomorphic to E-theory, has
the desired property.

A more useful version of the above result is proven below (see Theorem 5.15). Let Q
denote any UHF algebra of infinite type, so that O1 Ő Q is a purely infinite strongly
self-absorbing C �-algebra; in fact, any such C �-algebra, that additionally satisfies
UCT, is up to isomorphism O2, O1, or of the form O1 Ő Q (see [44, Corollary,
p. 4022]).
Theorem 4.18. For any A;B 2 SC� there is a natural isomorphism

hEcn1Œ.O1 Ő Q/
�1�.kcn.A/; kcn.B// Š E0.A Ő Q; B Ő Q/:

Proof. As before we first observe that

hEcn1Œ.O1 Ő Q/
�1�.kcn.A/; kcn.B// Š hEcn1.k

cn.A Ő O1 Ő Q/; kcn.B Ő O1 Ő Q//:

Arguing as in the previous theorem one then proves that

hEcn1.k
cn.A Ő O1 Ő Q/; kcn.B Ő O1 Ő Q// Š E0.A Ő Q; B Ő Q/:

Example 4.19. The stable 1-category consisting of the compact objects of
Ecn1Œ.O1 Ő Q/

�1� constitutes an1-categorical model for the opposite of rationalized
bivariant E-theory category. Indeed, it is well known that tensoring with the universal
UHF algebra rationalizes E-theory. For instance, we have the following sequence of
isomorphisms:

Ei .O1 Ő Q; A Ő Q/ Š Ei .O1 Ő Q; A Ő .O1 Ő Q//
[use O1-stability in bivariant E-theory]

Š Ei .A Ő O1 Ő Q/
[use Theorem in [12, Section 3] with D D O1 Ő Q]

Š Ei .A Ő Q/ [use O1-stability in E-theory]
Š Ei .A/˝Z Q [use Künneth formula in E-theory]

for i D 0; 1. Thus this localization can be viewed as an1-categorical model for the
noncommutative Chern–Connes character in bivariant connective E-theory.
Theorem 4.20. For any A;B 2 SC� there is a natural isomorphism

hEcn1ŒO
�1
2 �.k

cn.A/; kcn.B// Š 0:
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Proof. Once again arguing as in Theorem 4.15 we observe that

hEcn1ŒO
�1
2 �.k

cn.A/; kcn.B// Š bu.A Ő O2; B Ő O2/:

Since O2 is a simple and properly infinite C �-algebra one can again find a diagram
in SC�

O2
�
! O2 Ő K

�
! O2;

such that the composition is an inner endormorphism. Indeed, by [35, Proposi-
tion 1.1.2] there is a sequence fsng1nD1 of partial isometries in O2, such that s�i si D 1
for all i and the range projections sis�i are mutually orthogonal subprojections of 1;
thus we may choose �.a/ D a˝ e11 and �.a˝ eij / D sias�j . Tensoring the diagram
with unital B we get another diagram

B Ő O2 ! B Ő O2 Ő K! B Ő O2;

such that the composition is again an inner endormorphism. Applying the matrix
stable functor bu.A Ő O2;�/ to the above diagram we find that bu.A Ő O2; B Ő O2/ is
a summand of bu.A Ő O2; B Ő O2 Ő K/ Š E0.A Ő O2; B Ő O2 Ő K/: Thus it suffices to
show that the group E0.A Ő O2; B Ő O2/ Š E0.A Ő O2; B Ő O2/ vanishes. Since O2
is KK-contractible, so is A Ő O2 and hence it satisfies UCT. Thus one may identify
E0.A Ő O2; B Ő O2/ Š KK0.A Ő O2; B Ő O2/ and the group KK0.A Ő O2; B Ő O2/
evidently vanishes. The general case, i.e., when B is nonunital, is treated again by
an excision argument.

Remark 4.21. The stable 1-category hEcn1ŒO
�1
2 � is compactly generated by the

suspensions and desuspensions of kcn.A/ for all A 2 SC�1. The above theorem
shows that the generators vanish whence the whole stable1-category vanishes.

4.3. Connective E-theory of ax C b-semigroup C �-algebras of number rings.
Number rings are central objects of study in number theory. One can associate an
ax C b-semigroup C �-algebra with any number ring that possesses very intriguing
structure [7]. Given the interest generated by such C �-algebras ascertaining their
(co)homological invariants seems to be an important task. For any A 2 SC� we call
bu.C; A/ the connective E-theory group of A. The corresponding graded version
can be obtained by (de)suspensions.

For a countable integral domain R with vanishing Jacobson radical (which is, in
addition, not a field) the left regular ax C b-semigroup C �-algebra C �

�
.R Ì R�/

is O1-stable, i.e., C �
�
.R Ì R�/ Ő O1 Š C �

�
.R Ì R�/ (see [25, Theorem 1.3]).

Cuntz–Echterhoff–Li computed the topological K-theory of such axC b-semigroup
C �-algebras in [8] as follows:

K�.C �� .R ÌR�// Š ˚
ŒY �2GnI

K�.C �.GY //; (4.2)
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where I is the set of fractional ideal of R, G D K Ì K�, and GY is the stabilizer
of Y under the G-action on I. The orbit space G n I can be identified with the ideal
class group of K. The K-theory of the group C �-algebras appearing as summands
in the above formula can be computed by the Baum–Connes conjecture.
Theorem 4.22. The connective E-theory of the left regular ax C b-semigroup
C �-algebra of the ring of integers R of a number fieldK is 2-periodic and explicitly
given by

bu.C; C �� .R ÌR�// Š ˚
ŒY �2GnI

K0.C �.GY //

and
bu.C; †C �� .R ÌR�// Š ˚

ŒY �2GnI
K1.C �.GY //:

Proof. Since C �
�
.R Ì R�/ is O1-stable, there is an identification of the connective

E-theory group bu.C; C �
�
.RÌR�// Š bu.C; C �

�
.RÌR�/ Ő O1/. By Remark 4.16

we conclude that bu.C; C �
�
.R Ì R�/ Ő O1/ Š E0.C; C �� .R Ì R�//. One may

identify the E-theory of C �
�
.R Ì R�/ naturally with its topological K-theory.

The results now follow from Equation (4.2) (the second one after suspension of
C �
�
.R ÌR�/).

Remark 4.23. Owing to the O1-stability of C �
�
.R Ì R�/, Corollary 4.7 asserts

that its noncommutative stable cohomotopy contains its topological K-theory as a
summand.

5. Nonconnective KQ-theory and1-categorical topological T -duality

We work exclusively in the category of nonunital (not necessarily unital) k-algebras,
denoted by Algk , where k is a field of characteristic zero as in [28]. The morphisms
in Algk are k-algebra homomorphisms. At certain places in the sequel we are
admittedly sloppy regarding size issues; however, as is common in K-theory there
will always be a small skeleton that comes to our rescue.

5.1. Stable 1-category valued noncommutative motives. For any k-algebra A
let QA denote its k-unitization with underlying k-linear spaceA˚k and multiplication
.a; �/.a0; �0/ D .aa0C�a0C�0a; ��0/. The category Mod. QA/ is an abelian category.
In [28] we considered the following differential graded category HPfdg.A/: its objects
are cochain complexes of right QA-modules, such that each such Y is homotopy
equivalent to a complex X satisfying
(1) X is homotopy equivalent to a strictly perfect complex,

(2) the canonical map X ˝ QA A! X is a homotopy equivalence.
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A k-linear cochain complex worth of morphisms between two such objects is
obtained in a standard manner. We are going to consider an1-categorical variant of
HPfdg-construction. There is a differential graded nerve Ndg of a differential graded
category (see [26, Construction 1.3.1.6]). For a differential graded category C as a
simplicial set Ndg.C/ can be described as follows:

� the 0-simplices are the objects of C,
� the 1-simplices are [X;Y2Ob.C/ff 2 C.X; Y /0 j df D 0g.

In order to get an idea about the higher simplices let us note that the differential
graded nerve Ndg.C/ (of a homologically graded differential graded category C)
is obtained by applying the homotopy coherent nerve to a Kan complex enriched
category constructed out of C. The Kan complex enriched category is obtained by
first applying the truncation �>0 to the mapping complexes in C and then applying
the Dold–Kan construction.

Using the above construction we manufacture an 1-category C1. QA/ out of
the differential graded category of cochain complexes of Mod. QA/, which turns out
to be a stable 1-category (see [26, Proposition 1.3.2.10]). By construction the
objects (or 0-simplices) of the differential graded nerve C1. QA/ are complexes of
right QA-modules. Let us set HPf1.A/ to be the stable 1-subcategory of C1. QA/
spanned by the objects of HPfdg.A/.
Remark 5.1. There is an isomorphism of homotopy categories hHPf1.A/ Š
h.HPfdg.A// WD H0.HPfdg.A// (see [26, Remark 1.3.1.11]).
Remark 5.2. In the world of algebra the convention is to grade complexes
cohomologically, whereas, in topology one considers typically homologically graded
complexes. In [28] the differential graded complexes were cohomologically graded
as it built upon the formalism of [22], whereas in [26] they are homologically
graded. The passage between the two is not too difficult (see, for instance, [15,
Definitions 3.1.6 and 3.3.1]).

Let Set� denote the category of simplicial sets with the Joyal model structure,
whose fibrant objects are precisely the1-categories. Recall that Cat1 is1-category
of (small)1-categories, which is obtained by applying the homotopy coherent nerve
to the Kan complex enriched category Cat�1, whose objects are (small)1-categories
and themapping space betweenC andD is given by the largestKan complex contained
in Fun.C;D/ D MapSet�

.C;D/. Let Catex1 denote the 1-subcategory of (small)
stable1-categories with exact functors.
Proposition 5.3. The association A 7! HPf1.A/ produces a functor N.Algk/ !
Catex1.

Proof. Clearly the construction A 7! QA is functorial. It sends any k-algebra
homomorphism to a unital k-algebra homomorphism. Sending QA to the differential
graded category of cochain complexes of right QA-modules is also functorial up to
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a coherent natural isomorphism: QA ! QB induces the map � ˝ QA QB between the
differential graded categories. Application of the differential graded nerve produces
the1-category C1. QA/ and lands inside Set� (see [26, Proposition 1.3.1.20]). Now
applying the homotopy coherent nerve construction we get a functor N.Algk/ !
Cat1. Thus we have demonstrated that the association A 7! C1. QA/ produces a
functor N.Algk/! Cat1.

Let us now verify that � ˝ QA QB W C1. QA/ ! C1. QB/ restricts to an arrow
HPf1.A/! HPf1.B/. It is easy to see that�˝ QA QB sends strictly perfect complexes
of right QA-modules to strictly perfect complexes of right QB-modules. The functor
also preserves homotopy equivalences whence condition (1) above is preserved. We
need to now check that the canonical map Y ˝ QA QB ˝ QB B ! Y ˝ QA

QB is a homotopy
equivalence. Since the functor � ˝ QA QB preserves homotopy equivalences, we may
assume that Y is strictly perfect. Since Y ˝ QA QB ˝ QB B Š Y ˝ QA B it suffices to
show that Y ˝ QAB ! Y ˝ QA

QB is a homotopy equivalence. Tensoring the short exact
sequence of QA-modules 0! B ! QB ! k ! 0 with the strictly perfect complex Y ,
we are reduced to showing Y ˝ QA . QA=A/ Š Y ˝ QA k is acyclic. Since Y 2 HPf1.A/
the canonical map Y ˝ QA A! Y is a homotopy equivalence. It follows that Y ˝ QA k
is acyclic. Consequently, we have a functor HPf1 W N.Algk/! Cat1.

By construction HPf1.A/ is a stable1-category. Thus it suffices to show that the
functor �˝ QA QB W HPf1.A/! HPf1.B/ is exact. The homotopy cofiber sequences
in the differential graded category HPfdg.A/ are equivalent to short exact sequences,
that are split exact in each degree. They produce the cofiber sequences in the stable
1-category HPf1.A/, which are clearly preserved by � ˝ QA QB W HPf1.A/ !
HPf1.B/ whence the assertion follows.

Let us recall from [2] that a diagram A! B! C in Catex1 is called exact if the
sequence of stable presentable1-categories Ind.A/ ! Ind.B/ ! Ind.C/ is exact,
i.e., the composite is trivial, the functor Ind.A/ ! Ind.B/ is fully faithful, and the
canonical map Ind.B/=Ind.A/ ! Ind.C/ is an equivalence. Note that in [2] the
treatment is more general as the notion of exactness is considered in Catex.»/1 for any
regular cardinal �, i.e., the1-category of �-cocomplete small stable1-categories
and �-small colimit preserving functors.
Lemma 5.4. Let 0 ! A ! B ! C ! 0 be a short exact sequence in Algk with
B;C unital and A2 D A. If, in addition, A is a flat B-module, then the induced
diagram in Catex1 HPf1.A/! HPf1.B/! HPf1.C / is exact.

Proof. Lemma 2.14 of [28] shows that the diagram HPfdg.A/ ! HPfdg.B/ !
HPfdg.C / is an exact sequence of differential graded categories. This amounts to
saying that the associated sequence of triangulated categories H0.HPfdg.A// !
H0.HPfdg.B// ! H0.HPfdg.C // is exact, i.e., the composite is trivial, the
functor H0.HPfdg.A// ! H0.HPfdg.B// is fully faithful, and the canonical map
H0.HPfdg.B//=H0.HPfdg.A//! H0.HPfdg.C // is an equivalence after idempotent
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completion. Proposition 5.15 of [2] says that a diagram A ! B ! C in Catex1 is
exact if and only if the sequence of triangulated categories hA! hB! hC is exact,
i.e., the composite is trivial, the functor hA! hB is fully faithful, and the canonical
map hB=hA ! hC is an equivalence after idempotent completion. The assertion
now follows from Remark 5.1 above.

Remark 5.5. We have used [28, Lemma 2.14] in the above argument, which asserts
that if 0 ! A ! B ! C ! 0 is a short exact sequence in Algk with B;C unital
and A2 D A, then HPfdg.A/ ! HPfdg.B/ ! HPfdg.C / is a short exact sequence
of differential graded categories. Unfortunately, the assumption that A is a flat
B-module was not mentioned in [28, Lemma 2.14]. Together with the assumption
A2 D A this hypothesis implies that the homomorphism B ! C is a homological
epimorphism, i.e., C ˝B C Š C and TorBn .C; C / D 0 for n > 1. These hypotheses
are satisfied by any short exact sequence of C �-algebras (see Example 5.6 below).

Example 5.6. It is known that every C �-algebra is universally flat (see [47,
Theorem 2]); indeed, [48, TheoremB] shows that any Banach algebra with a bounded
approximate unit is universally flat and every C �-algebra has a bounded approximate
unit. It follows that, if 0 ! A ! B ! C ! 0 is short exact sequence of
C �-algebras, then A2 D A (Cohen–Hewitt Factorization Theorem) and A is a flat
B-module.

In [28] the KQ-theory of A 2 Algk was defined to be the (connective) algebraic
K-theory of the k-linear differential graded category HPfdg.A/. Any differential
graded category C has an underlying ordinary category C0 with morphisms given
by C0.X; Y / D ff 2 C.X; Y /0 j df D 0g. The underlying category of the
differential graded category HPfdg.A/ will be denoted by HPf.A/. There is a
Waldhausen category structure on HPf.A/. One way to see this is as follows: The
category of unbounded cochain complexes of QA-modules Ch. QA/ admits a model
structure with cohomology isomorphisms as weak equivalences and degreewise
epimorphisms as fibrations (see [21, Theorem 2.3.11]). A map i W X ! Y in Ch. QA/
is a cofibration if it is a degreewise split monomorphism with cofibrant cokernel
(see [21, Proposition 2.3.9]). The subcategory of perfect complexes Perf. QA/, which
are the compact objects in Ch. QA/ [3], is a complete Waldhausen subcategory of
the model category Ch. QA/ in the sense of [14]. The category HPf.A/ is the full
subcategory of Perf. QA/ consisting of cochain complexes X that are homotopy
equivalent to strictly perfect complexes and satisfy X ˝ QA A ! X is a homotopy
equivalence. The strictly perfect complexes of QA-modules are cofibrant in the model
category Ch. QA/ and the weak equivalences between such complexes are precisely the
homotopy equivalences. One can now verify that the Waldhausen category structure
on Perf. QA/ restricts to a Waldhausen category structure on HPf.A/. Summarising,
we have the following lemma.
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Lemma 5.7. The category HPf.A/ is a Waldhausen subcategory of the model
category Ch. QA/ and the canonical inclusion HPf.A/ ,! Perf. QA/ is Waldhausen
exact.

Let Wald denote the category of small Waldhausen categories with Waldhausen
exact functors. One may apply the Waldhausen (connective) K-theory functor Kw W
Wald ! Sp to HPf.A/ to define its K-theory. In [28, Lemma 2.12] we showed
that KQi .A/ Š �i .Kw.HPf.A///. Using the material from [2, Section 7] we can
define the connective K-theory of the stable 1-category HPf1.A/. Let us denote
this connective K-theory functor of small stable1-categories by Kc W Catex1 ! Sp.

Lemma5.8. There is a natural equivalence of spectraKw.HPf.A// �! Kc.HPf1.A//.

Proof. Since in the previous lemma we showed that HPf.A/ is a Waldhausen
subcategory of a model category, the assertion follows from [2, Corollary 7.12].

Remark 5.9. We obtain yet another description of KQ-theory, viz.,

KQi .A/ Š �i .Kc.HPf1.A///:

Using the delooping machinery of [37] one can define the nonconnective
K-theory spectrum. This task was carried out in [2, Section 9] in the setting
of stable 1-categories. Let us denote the nonconnective K-theory functor by
Knc W Catex1 ! Sp.
Proposition 5.10. Let 0! A! B ! C ! 0 be a short exact sequence with B;C
unital, A2 D A, and A a flat B-module. Then there is a cofiber sequence in Sp

Knc.HPf1.A//! Knc.HPf1.B//! Knc.HPf1.C //:

Proof. It follows from Lemma 5.4 that HPf1.A/! HPf1.B/! HPf1.C / is exact
in Catex1. The assertion now follows since nonconnective algebraic K-theory satisfies
localization (see [2, Theorem 9.8]).

In [2] the authors constructed the univeral localizing invariant Uloc W Cat
ex
1 !

Mloc and proposed Mloc as a candidate for noncommutative motives in the setting
of stable1-categories (see [2, Theorem 8.7]). We setM1.A/ WD Uloc ıHPf1.A/ W
Algk !Mloc and call it the stable1-category valued noncommutative motive ofA.
In fact, the1-categoryMloc is itself stable and the exact sequences in Catex1 produce
cofiber sequences in Mloc. It follows from Lemma 5.4 that
Lemma 5.11. For any short exact sequence in 0 ! A ! B ! C ! 0 with B;C
unital, A2 D A, and A a flat B-module, there is cofiber sequence in Mloc

M1.A/!M1.B/!M1.C /:

For any A 2 Algk let Mn.A/ denote the k-algebra of n � n-matrices over A.
There is a canonical corner embedding A!Mn.A/ sending a 7! a.e11/.
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Proposition 5.12. For any A 2 Algk there is an equivalence M1.A/ '

M1.Mn.A// induced by the corner embedding A!Mn.A/.

Proof. From [28, Proposition 2.4] we deduce that HPfdg.A/ Š HPfdg.Mn.A//

induced by the corner embedding A ! Mn.A/. Consequently, HPf1.A/ '
HPf1.Mn.A// in Catex1 (see Proposition 5.3). The assertion follows sinceM1.�/ D
Uloc ı HPf1.�/.

Let C� denote the category of all (possibly nonseparable) C �-algebras viewed as
a subcategory of AlgC . It follows from the Cohen–Hewitt factorization theorem that
any A 2 C� satisfies A2 D A. Summarizing, we have the following:

Theorem 5.13. Viewing C� as an ordinary category (not a topological category)
there is a functor M1 W N.C�/!Mloc that satisfies:

(1) (matrix stability): M1.A/ 'M1.Mn.A// for all A, and

(2) (localization / excision): any short exact sequence 0 ! A ! B ! C ! 0

produces the following cofiber sequence inMloc

M1.A/!M1.B/!M1.C /:

Proof. Only .2/ needs a proof because it has been strengthened (note that B and C
are no longer assumed to be unital). For any short exact sequence 0 ! A ! B

g
!

C ! 0 in C� we need to show thatM1.A/ is the fiber of the inducedmapM1.B/
g
!

M1.C /. We can form another short exact sequence 0 ! A ! QB
Qg
! QC ! 0 with

QB; QC unital. Now there is a diagram inMloc (see Example 5.6 and Lemma 5.11)

fib.g/ //

��

M1.B/
g //

��

M1.C /

��
M1.A/ //

��

M1. QB/
Qg //

��

M1. QC/

��
0 'M1.0/ //M1.C/

Š //

[[

M1.C/:

[[

The bottom two rows and the two columns on the right are cofiber sequences. Since
0 ! B ! QB ! C ! 0 and 0 ! C ! QC ! C ! 0 admit splittings C ! QB

and C ! QC in C� respectively, the indicated splittings exist in the above diagram,
i.e., the two columns on the right are split cofiber sequences. The assertion now
follows by a diagram chase.
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5.2. C �-algebras and nonconnective KQ-theory. We begin with an alternative
description of the 1-category of pointed noncommutative spaces NS�. Let SC�ı

temporarily denote the category of separable C �-algebras, where the morphism
spaces carry the discrete topology; moreover, let SC� denote the topological
category of separable C �-algebras, where the morphism spaces carry the point-
norm topology. We denote the topological nerves of these categories by SC�1

ı

and SC�1 respectively. There is a canonical functor SC�1
ı 

! SC�1 that is identity

on objects. LetH D ff j f homotopy equivalence in SC�opg denote a collection of
maps in .SC�1

ı/op. Setting C WD .SC�1
ı/op we find that 
op W C! SC�1

op sends the
maps inH to equivalences. Thus it follows that 
op factors as

C! CŒH�1�
�
! SC�1

op
:

Here the1-category CŒH�1� is constructed as a fibrant replacement of the marked
simplicial set .C;H/ (see [27, Section 5.2.7], also [20]). The functor � extends to a
continuous functor Ind!.CŒH�1�/

�
! Ind!.SC�1

op/ D NS�.

Lemma 5.14. The functor Ind!.CŒH�1�/
�
! NS� is an equivalence of1-categories.

Proof. The functor CŒH�1�
�
! SC�1

op is an equivalence (see [1, Proposition 3.17]),
from which the assertion follows (see [27, Proposition 5.3.5.11]).

Let MK
1 denote the composite functor SC�1

LK
! SC�1

M1
! Mloc, where the

localization LK is described in Example 3.4. Since Mloc is a stable 1-category
its homotopy category hMloc is triangulated and we denote the triangulated
category valued functor hMK

1 W hSC
�
1 ! hMloc simply by MK. In [30] we

constructed a stable presentable1-category NSp0ŒK�1�, whose opposite1-category
is by definition the bivariant K-theory 1-category KK1 for arbitrary pointed
noncommutative spaces, i.e., KK1 WD NSp0ŒK�1�op. Moreover, it is shown in [30,
Theorem 2.4] that there is a fully faithful exact functor KK ,! hKK1.

Theorem 5.15. The functor .MK
1/

op W SC�1
op
! M

op
loc induces the following two

functors:

(1) NS� !M
op
loc that is continuous, and

(2) KK1 !Mloc that is exact.

Proof. For (1) observe that the functor MK
1 satisfies localization / excision whence

the functor MK is split exact. Since M isMn-stable, MK is also C �-stable (see [9,
Proposition 3.31]). By Higson’s Theorem (see [18, Theorem 3.2.2]) the functor
.MK
1/

op W C D .SC�1
ı/op ! M

op
loc sends the maps in H to equivalences and hence

it factors as C ! CŒH�1�
‚
! M

op
loc. Since M

op
loc admits all (filtered) colimits, the
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functor CŒH�1�
‚
!M

op
loc can be extended to a continuous functor Ind!.CŒH�1�/

‚
!

M
op
loc and by Lemma 5.14 we may identify Ind!.CŒH�1�/ ' NS�.
For (2) observe that the functorCŒH�1�

‚
!M

op
loc preserves finite colimits. Indeed,

thanks to (the dual of) [27, Corollary 4.4.2.5] one simply needs to verify that the
functor ‚op DMK

1 preserves zero objects and pullbacks. Let Sp†.CŒH�1�/ denote
the filtered colimit of CŒH�1�

†
! CŒH�1�

†
! CŒH�1�

†
! � � � in Cat1. Since

M
op
loc is stable ‚ induces an exact functor Sp†.CŒH�1�/

‚
!M

op
loc that, owing to the

cocompleteness ofMop
loc, can be extended to a functor Ind!.Sp†.CŒH�1�//

‚
!M

op
loc.

We may identify Ind!.Sp†.CŒH�1�// ' Sp.Ind!.CŒH�1�// ' Sp.NS�/ furnishing
Sp.NS�/

‚
! M

op
loc. By construction in [30] NSp0 is an accessible localization of

Sp.NS�/ and NSp0ŒK�1� is a smashing colocalization NSp0 whence there are fully
faithful exact functors NSp0ŒK�1� ,! NSp0 ,! Sp.NS�/. Its composition with
Sp.NS�/

‚
! M

op
loc is also exact, whose opposite produces the desired exact functor

KK1 !Mloc.

Remark 5.16. It follows from Theorem 5.15 that the functor MK is a bivariant
homology theory. Using results of [29] one can also show that MO1.�/ D

M.� Ő O1/ is a bivariant homology theory. Thus MK;MO1 W SC� ! hMloc

are noncommutative motive valued bivariant homology theories on the category of
separable C �-algebras.

Definition 5.17. We define the nonconnective KQ-theory or KQnc-theory groups as

KQnc
i .A/ WD �i .Knc.HPf1.A/// for all A 2 Algk and i 2 Z:

Theorem 5.18. Let a C � algebra B be of the form A Ő C , where C D K or any
properly infinite C �-algebra. Then there is a natural isomorphism KQnc

i .B/ Š

Knc
i .B/ for all i 2 Z, where Knc

i .B/ denotes the i -th nonconnective algebraic
K-theory group of B .

Proof. Let us first address the case where C D K and to this end we set AK D

A Ő K. From Lemma 5.7 we have a canonical Waldhausen exact functor HPf.AK/!

Perf. QAK/. The composite HPf.AK/ ! Perf. QAK/
�
! Perf.C/ is trivial, where

� D � ˝L
QAK

C. It follows that there is a canonical map of stable 1-categories

HPf1.AK/ ! F.�/, where F.�/ is the fiber of the map N.M.Perf. QAK//
cf/

�
!

N.M.Perf.C//cf/ (see [2, Lemma 7.11] for the construction ofM.Perf.�//, which
is a Waldhausen subcategory of a simplicial model category. Using Lemma 5.8
and [28, Theorem 3.7] we deduce that the map HPf1.AK/! F.�/ is a connective
K-theory isomorphism, i.e., there is an equivalence Kc.HPf1.AK//

�
! Kc.F.�//.

The connective K-theory spectrum of F.�/ can be identified with Kc.AK/, i.e., the
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connective algebraic K-theory spectrum of AK due to excision [42]. Note that the
nonconnective algebraic K-theory spectrum of a stable1-category is defined in such
a manner (see [2, Section 9]) so that when applied to a C �-algebra B it produces the
expected result, viz.,

Knc.HPf1.B// ' colimn�nKc.†.n/� HPf1.B// ' colimn�nKc.†nB/;

where †nB denotes the n-th Karoubi delooping of B (see, for instance, [5, 38]).
Using localization the nonconnective K-theory spectrum of F.�/ can be identified
with Knc.AK/ [2], which proves the assertion for stable C �-algebras.

If C is properly infinite then using [6, Proposition 2.2] (see also [43]) one obtains
a commutative diagram in C�

C
� //

� ""E
EE

EE
EE

E M2.C /

C Ő K;

�

::ttttttttt

where the top horizontal arrow � W C !M2.C / is the corner embedding. Tensoring
the above diagram with a unital A and applying the functors KQnc.�/ and Knc.�/

along with the natural transformation between them produces a commutative diagram

KQnc
m.A Ő C/

//

��

KQnc
m.A Ő C Ő K/ //

Š

��

KQnc
m.M2.A Ő C//

��
Knc
m.A Ő C/

// Knc
m.A Ő C Ő K/ // Knc

m.M2.A Ő C//;

where the middle verticle arrow is an isomorphism (since A Ő C Ő K is stable).
Observe that both KQnc-theory and Knc-theory are matrix stable whence the top
and the bottom horizontal compositions are isomorphisms. The assertion in the
unital case now follows by a diagram chase. Finally using excision one can prove the
general case.

Remark 5.19. The argument above actually shows that there is a map of spectra
that induces the isomorphism at the level of homotopy groups, which are the KQnc-
theory and Knc-theory groups in the source and target respectively. The map of
connective spectra can also be delooped inductively by a Bass–Heller–Swan splitting
argument [36].

Remark 5.20. Observe that O1 is properly infinite whence the above Theorem 5.18
is applicable to O1-stable C �-algebras. Since we already know that Knc-theory of
a stable or an O1-stable C �-algebra agrees naturally with its topological K-theory
(see [6,29,42]), we conclude that KQnc-theory is naturally isomorphic to topological
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K-theory for such a C �-algebra. From the computational viewpoint it turns out that
for such a C �-algebra

connective E-theoryŠ KQnc-theoryŠ Knc-theoryŠ topological K-theory.

Let us also remark that topological K-theory is Bott 2-periodic and fairly easy to
compute.

Remark 5.21. The above Theorems 5.15 and 5.18 are the key ingredients in
the categorification of topological T -duality. Intuitively, our result asserts that
under favourable circumstances topological T -duality induces an equivalence of
noncommutative motives associated with certain C �-algebras (or, more generally,
noncommutative spaces). Upon passing to the nonconnectiveKQ-theory one recovers
the familiar twisted K-theory isomorphism. For the details we refer the readers
to [28, Example 4.1] and [29, Section 1].
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