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Derivatives in noncommutative calculus
and deformation property of quantum algebras
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Abstract. The aim of the paper is twofold. First, we introduce analogs of (partial) derivatives
on certain noncommutative algebras, including some enveloping algebras and their “braided
counterparts” — the so-called modified Reflection Equation algebras. With the use of the
mentioned derivatives we construct an analog of the de Rham complex on these algebras.
Second, we discuss deformation property of some quantum algebras and show that contrary to
a commonly held view, in the so-called q-Witt algebra there is no analog of the PBW property.
In this connection, we discuss different forms of the Jacobi condition related to quadratic-linear
algebras.
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1. Introduction

In our recent publications [7, 10] we introduced the notion of partial derivatives on
some noncommutative (NC) algebras, in particular, on the enveloping algebras of the
Lie algebras gl.m/ and on their super and braided (see below) analogs. These partial
derivatives differ from their classical counterparts by the form of the Leibniz rule.

In this connection a natural question arises: given aNC algebraA, which operators
acting on this algebra can be considered as appropriate analogs of partial derivatives?
This question is pertinent if A is a deformation (quantization) of the symmetric
algebra Sym.V / of a vector space V or its super or braided analog. In this paper we
give an answer to this question for the enveloping algebras of some Lie algebras.

Note that the answer depends on a given Lie algebra. Nevertheless, once
such partial derivatives are introduced, we are able to define an analog of the de
Rham complex on the corresponding enveloping algebra. Compared with all known
�The work of P. Saponov was supported by a subsidy granted to the National Research University

Higher School of Economics by the Government of the Russian Federation for the implementation of the
Global Competitiveness Program.
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approaches to the problem of defining such a complex, our method leads to objects
possessing a good deformation property1. However, the terms of our complex are
endowed with a one-sided A-module structure, whereas using the classical Leibniz
rule for the de Rham operator requires a two-sided A-module structure. Also, we
define the notion of theWeyl algebraW.U.g// generated by the enveloping algebra of
a given Lie algebra and the corresponding partial derivatives and give some example
of these Weyl algebras.

Besides, we generalize all considered objects (partial derivatives, Weyl algebra,
de Rham complex) to the Reflection Equation algebra and its modified version. This
algebra and all related objects are called braided since they arise from braidings (see
Section 4). For a more precise meaning of this term the reader is referred to [10]. The
explicit construction of the braided objects mentioned above is one of the purposes of
the present paper. It is worth noting, that certain deformations of the usual derivative
are known since long ago, for instance, the q-derivative (also called the Jackson
derivative) defined by

@q.f .t// D
f .qt/ � f .t/

t.q � 1/
(1.1)

and the difference operator

@„.f .t// D
f .t C „/ � f .t/

„
(1.2)

(called below the „-derivative), or their slight modifications. It is tempting to use
them in order to introduce analogs of algebras whose construction is based on the
usual derivative. The most known examples are the q-Witt and q-Virasoro algebras.

The other purpose of the paper is to study the deformation property of the
enveloping algebra of the q-Witt algebra. In Section 5 we show that contrary to
the claim of [11], the PBW property fails for this enveloping algebra. The same is
true for the enveloping algebra of the „-Witt algebra, constructed with the use of the
„-derivative instead of the usual one. Our reasoning is based on the paper [16] where
a version of the Jacobi condition useful for dealing with quadratic algebras and their
quadratic-linear deformations is exhibited2. This condition is necessary for the PBW
property and since it is not satisfied for the aforementioned algebras, we arrive to our
conclusion.

In this connection we discuss other forms of the Jacobi condition which are
useful for generalizing some other objects and operators associated with Lie algebras,

1For finitely generated quadratic-linear(-constant) algebras (in particular, enveloping ones) we deal
with, this property means that an analog of the PBW theorem is valid for them and homogeneous
components of the corresponding quadratic algebra have stable dimensions (at least for a generic value of
the deformation parameter). Note that nowadays the term “PBW property” is often used as a synonym of
our “good deformation property”. We prefer to reserve this term for a deformation of quadratic algebras
by linear(-constant) terms.

2A version of this construction covering quadratic-linear-constant deformations of quadratic algebras
was considered in [1].
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namely, the Chevalley–Eilenberg complex and the adjoint representation. It is worth
noting, that in general these forms of the Jacobi condition are not equivalent and each
of them plays its own role in the theory of quadratic(-linear) algebras.

The paper is organized as follows. In the next section we compare different
ways of associating a differential algebra with the enveloping algebra of gl.m/. In
Section 3we discuss a generalization of this construction onto the enveloping algebras
of some other Lie algebras. In Section 4 we extend our construction to the Reflection
Equation algebra. Here, the central problem consists in a convenient definition of
the algebra generated by the differentials of the generators of the initial algebra such
that the corresponding de Rham operator d meets the usual property d2 D 0. In
Section 5 we consider the aforementioned versions of the Witt algebra and show
that the PBW property fails in their enveloping algebras. We complete the paper
(Section 6) with a discussion on different forms of the Jacobi condition related to
different generalizations of the Lie algebra notion.

2. Partial derivatives on U.gl.m//: different approaches

In what followswe deal with different deformations of the symmetric algebra Sym.g/,
where g is a Lie algebra. Our main example is g D gl.m/„, where the subscribe „
means that the parameter „ is introduced as a multiplier in the gl.m/ Lie bracket. As
usual, we fix a basis fnji g, 1 � i; j � m, in gl.m/. The Lie brackets in this basis
read

Œn
j
i ; n

l
k� D „.n

l
iı
j

k
� n

j

k
ı
j
i /; 1 � i; j; k; l;� m:

In each homogenous component of the algebra Sym.gl.m// we fix a basis
consisting of symmetric elements, i.e. those invariant with respect to the action
of the symmetric group. Denote feˇ g the corresponding basis of the whole
algebra Sym.gl.m//. Any element eˇ is a polynomial in the generators of the algebra
Sym.gl.m//. A similar basis in the filtered quadratic-linear algebra U.gl.m/„/ will
be denoted f Oeˇ g. The element Oeˇ can be obtained by replacing the generators
of Sym.gl.m// in the polynomial eˇ by the corresponding generators of the algebra
U.gl.m/„/.

Now, consider a linear map

˛ W Sym.gl.m//! U.gl.m/„/

defined on the above bases as follows

˛.eˇ / D Oeˇ :

This map is the central ingredient of the Weyl quantization method.
Using this map we can push forward any operator

Q W Sym.gl.m//! Sym.gl.m//



1218 D. Gurevich and P. Saponov

to that
Q˛ W U.gl.m/„/! U.gl.m/„/

as follows
Q˛ D ˛ ıQ ı ˛�1:

In particular, we can push forward partial derivatives from the algebra Sym.gl.m//
to that U.gl.m/„/ and consider them as an appropriate noncommutative analog of
the usual partial derivatives. And visa versa, any operator defined in the algebra
U.gl.m/„/ can be pulled back to Sym.gl.m//. For instance, the product in the
algebra U.gl.m/„/ being pulled back to the algebra Sym.gl.m// is called ?-product
(induced fromU.gl.m/„/). This product is often used in a quantization of dynamical
models (see [12]). In such models (for example, the Schrödinger one) the kinetic part
composed of momenta is classical but the usual product of coordinate functions is
replaced by the ?-product.

Equivalently, these models can be treated in terms of the algebra U.gl.m/„/ but
then the partial derivatives (momenta) of the kinetic part should be replaced by their
images with respect to the map ˛. Emphasize that these images are not subject
to any form of the Leibniz rule. However, if such a “derivative” acts on a totally
symmetrized element, the usual Leibniz rule can be applied.

Note that other methods of defining the map ˛ (for instance, the Wick one) also
can be used. However, the way exhibited above (in fact, the Weyl quantization
method) gives rise to a GL.m/-covariant map.

By contrast to this method of defining analogs of partial derivatives onU.gl.m/„/
ours consists in modifying the Leibnitz rule. The modified Leibniz rule can be
realized via the coproduct defined on the partial derivatives as follows3

�.@
j
i / D @

j
i ˝ 1C 1˝ @

j
i C „

X
k

@
j

k
˝ @ki : (2.1)

Hereafter, we use the notation @ji D @ni
j
for the partial derivative in the element nij .

Thus, we set by definition that

@
j
i .n

l
k/ D ı

l
i ı
j

k
; (2.2)

i.e. this action is nothing but the pairing of the dual bases fnji g and f@
j
i g. Besides, we

naturally assume the derivatives to be linear operators killing elements of the ground
field K which is assumed to be C or R depending on the context. Then, using the
coproduct (2.1), one can extend the action of the derivatives on polynomials in the
generators.

An equivalent form of the Leibniz rule, exhibited in [10], consists in the following.
Consider an associative product nji ı n

l
k
D ı

j

k
nli in the Lie algebra gl.m/. Note that

3This form of the Leibniz rule was found by S.Meljanac and Z.Škoda.
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Œn
j
i ; n

l
k
� D n

j
i ı n

l
k
� nl

k
ı n

j
i . Then, in addition to (2.2), the action of a derivative

on a quadratic monomial in generators is defined as follows:

@
j
i .n

b
a n

d
c / D @

j
i .n

b
a/ n

d
c C n

b
a @

j
i .n

d
c /C „ @

j
i .n

b
a ı n

d
c /:

In general, the action of a derivative @ji on a p-th order monomial nj1

i1
: : : n

jp

ip
gives

rise to a sum of monomials whose order varies from zero (a constant term) to p � 1.
In this sum the .p � k/-th order component .1 � k � p/ is composed from all
monomials, each of them being obtained by the pairing of @ji and the ı-product
of a subset of k elements from the initial monomial. Besides, the sum of all such
.p � k/-th order monomials has a multiplier „k�1. We illustrate this rule by an
example of a third order monomial:

@
j
i .n

b
a n

d
c n

l
k/ D @

j
i .n

b
a/ n

d
c n

l
k C n

b
a @

j
i .n

d
c / n

l
k C n

b
a n

d
c @

j
i .n

l
k/

C „
�
@
j
i .n

b
a ı n

d
c / n

l
k C @

j
i .n

b
a ı n

l
k/ n

d
c C n

b
a @

j
i .n

d
c ı n

l
k/
�

C „
2@
j
i .n

b
a ı n

d
c ı n

l
k/:

Note that the partial derivatives commute with each other. Denote D the
unital algebra generated by the partial derivatives. It becomes a bi-algebra being
equipped with the coproduct defined on the generators by formula (2.1) and the
counit " W D! K defined in the usual way: it kills all generators @ji and maps 1D
(the unit of D) into the unit of the field.

The above coproduct allows one to introduce the so-called permutation relations
between the partial derivatives and elements of the algebra U D U.gl.m/„/ by the
following rule

@
j
i ˝ n

l
k D .@

j
i /1 F n

l
k ˝ .@

j
i /2; where �.@

j
i / D .@

j
i /1 ˝ .@

j
i /2

in Sweedler’s notation. Also, the notation F stands for the action of an operator on
an element. Explicitly these permutation relations read:

@
j
i ˝ n

l
k � n

l
k ˝ @

j
i D ı

l
i ı
j

k
1U ˝ 1D C „ 1U ˝ .@

l
iı
j

k
� @

j

k
ıli /:

These permutation relations can be presented in a matrix form as follows

D1 P N1 P � P N1 P D1 D P C „.D1 P � P D1/: (2.3)

HereD D k@ji k andN D kn
j
i k are the matrices composed of the elements @ji and n

j
i

respectively (the low index labels the lines) and A1 D A ˝ I for any matrix A, I
being the unit matrix. Also, P stands for the matrix of the usual flip. Besides, we
omit the factors 1U , 1D and the sign˝.

The algebra generated by two subalgebras U.gl.m/„/ and D, equipped with the
permutation relations (2.3), is called theWeyl algebra and is denotedW.U.gl.m/„/.
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Note that for „ D 0 we get the usual Weyl algebra generated by Sym.gl.m// and the
usual partial derivatives in the generators4.

The above permutation relations have been obtained via a passage to a limit
q ! 1 in the permutation relations for themodifiedReflection Equation algebra under
assumption that the Hecke symmetry is a deformation of the usual flip. In general,
the permutation relations themselves can be used for introducing partial derivatives.
In order to define the action of a derivative @ji on an element a 2 U.gl.m/„/ one
proceeds as follows. One permutes the factors in the product @ji ˝ a by means of the
permutation relations and applies the counit to the right factor of the final element
belonging to the tensor product U.gl.m/„/˝D. This counit to be usual: it kills all
monomials in the generators apart from constant ones and maps 1U.gl.m/„/ to 1K.

Concluding this section, we resume that there are three ways of defining our
partial derivatives on the algebra U.gl.m/„/. One of them is based on using the
coproduct (2.1), another one uses the product ı in the algebra U.gl.m/„/. The third
way is based on the related permutation relations. Similar ways also exist on the
enveloping algebras of the Lie super-algebras gl.mjn/„ and their “braided” analogs
related to involutive braidings (see [10]). In Section 4 we consider similar algebras
related to non-involutive (namely, Hecke type) braidings. For them the only way
based on permutation relations is known.

3. Partial derivatives on other enveloping algebras

The methods of defining partial derivatives on the algebra U.gl.m/„/ should be
modified for other enveloping algebras. Consider some examples.

Let gh be a Lie subalgebra of the Lie algebra gl.m/„. In general, the above
method of defining the partial derivatives via the product ı fails since this product is
not well-defined in the subalgebra gh. As for the coproduct (2.1) or the permutation
relations (2.3), in general they cannot be restricted to the algebra U.gh/ (see example
below).

Nevertheless, the partial derivatives in elements of gh are well defined as
operators. To show this, we fix a complementary subspace W to gh that is
gl.m/„ D gh ˚ W as vector spaces. Then we chose a basis in the space gl.m/„
subordinated to the direct sum gh˚W (i.e. composed from some bases of gh andW ).
In the space generated by the partial derivatives we pass to the dual basis.

Letxi be an element of the chosen basis of gh. Then, on applying the derivative @xi

to a monomial composed of elements from gh, we get a polynomial also possessing
this property though in the coproduct (2.1) presented in the new basis of gl.m/ certain
external derivatives (i.e. derivatives in elements from W ) enter.

Now, consider some subalgebras of the Lie algebra gl.2/„ or more precisely, of

4Physicists prefer to call this algebra the Heisenberg one.
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its compact form u.2/„. On fixing in the latter algebra the standard basis ft; x; y; zg
such that

Œx; y� D „z; Œy; z� D „x; Œz; x� D „y; Œt; x� D Œt; y� D Œt; z� D 0;

and taking in the dual space the basis @t , @x , @y , @z , we get the following permutation
relations

@t t � t @t D 1C
„

2
@t @t x � x @t D �

„

2
@x @t y � y @t D �

„

2
@y

@t z � z @t D �
„

2
@z

@x t � t @x D
„

2
@x @x x � x @x D 1C

„

2
@t @x y � y @x D

„

2
@z

@x z � z @x D �
„

2
@y

@y t � t @y D
„

2
@y @y x � x @y D �

„

2
@z @y y � y @y D 1C

„

2
@t

@y z � z @y D
„

2
@x

@z t � t @z D
„

2
@z @z x � x @z D

„

2
@y @z y � y @z D �

„

2
@x

@z z � z @z D 1C
„

2
@t :

First, consider the Lie subalgebra su.2/„ � u.2/„. As follows from [7] for any
polynomial of the form f .x; y; z/ D f1.x/ f2.y/ f3.z/ the action of the partial
derivative @x is defined by

@x.f / D 2„�1 .B.f1/ A.f2/ A.f3/C A.f1/ B.f2/ B.f3//;

where

A.f .v// D
1

2

�
f .v � i „=2/C f .v C i „=2/

�
;

B.f .v// D
i

2

�
f .v � i „=2/ � f .v C i „=2/

�
:

Note that though the quantity i D
p
�1 enters these formulae, the result is real

provided f has real coefficients and „ 2 R. Similar formulae are valid for the
derivatives @y ; @z . Consequently, we have

@x.f /; @y.f /; @z.f / 2 U.su.2/„/:
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Definition 3.1. Let g be a Lie algebra and U.g/ its enveloping algebra. Choose a
basis fxig, 1 � i � m in g, and denote by cki;j the structure constants of g in this basis.
Introduce an algebraW.U.g// generated by U.g/ and a commutative algebraD with
generators @l , 1 � l � m, subject to the permutation relations

Œ@i ; xj � D �Œxj ; @
i � D bij;k @

k
C ıij : (3.1)

We call the algebra W.U.g// the Weyl algebra if the Jacobi identity is valid for the
bracket

Œ ; � W ^2.W /! W ˚K; W D g˚ span.@i /;
defined by the initial Lie bracket on g, by the trivial bracket on D and by the
bracket (3.1) on span.@i /˝ g and on g˝ span.@i /.

Note that the Jacobi identity must be adapted to the case when the image of the
bracket belongs to W ˚K. In fact, we have only to satisfy the relations

Œ@p; Œxi ; xj �� D ŒŒ@
p; xi �; xj � � ŒŒ@

p; xj �; xi �;

or in terms of the structure constants

cki;j b
p

k;l
D b

p

i;k
bkj;l � b

p

j;k
bki;l ; c

p
i;j D b

p
i;j � b

p
j;i :

Note that in virtue of the PBW theorem the graded algebra GrW.U.g// is
canonically isomorphic to the commutative algebra generated by the elements xi
and @j .

It is straightforward checking that the algebra W.U.u.2/„// is a Weyl algebra
in the sense of the above definition. However, an attempt to define a similar Weyl
algebra for the enveloping algebra U.su.2/„/ as a quotient of W.U.u.2/„// fails.
Indeed, it suffices to check that the relation

Œ@x; Œx; y�� D ŒŒ@x; x�; y� � ŒŒ@x; y�; x�

fails, if we assume that @t D 0. This example shows that in order to define the partial
derivatives on an enveloping algebra we have, in general, to consider theWeyl algebra
related to a larger Lie algebra.

It is not the case for the subalgebra g � u.2/„ generated by the elements t and x.
This Lie algebra is commutative. So, its enveloping algebra coincides with Sym.g/
and the corresponding partial derivatives and the Weyl algebra can be defined in the
classical way. However, considering the subalgebra of W.U.u.2/„// generated by
the elements t; x; @t ; @x we get another Weyl algebra corresponding to the same Lie
algebra g. Thus, we get two different Weyl algebras related to the algebra g.

In general, for the two-dimensional commutative Lie algebra the permutation
relations must be of the form

@t t � t@t D 1C .a1@
t
C b1@

x/; @tx � x@t D .a2@
t
C b2@

x/;

@xt � t@x D .c1@
t
C d1@

x/; @xx � x@x D 1C .c2@
t
C d2@

x/:
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It would be interesting to classify all possible families of constants a1; : : : ; d2
giving rise to the Weyl algebras on the two-dimensional commutative Lie algebra (as
well as on two-dimensional noncommutative one). Two examples above correspond
to the following families of these constants. In the classical case all constants are
trivial. In the other one nontrivial constants are: a1 D d1 D �b2 D c2 D „2 .

We get a little bit more general Weyl algebra by putting

b1 D c1 D a2 D 0; a1 D d1 D c2

(here we do not impose any restriction on b2).
In conclusion, we want to mention the following fact. Though the way of

introducing the partial derivatives on an enveloping algebra via permutation relations
is not universal, it is apparently more general than that based on the coproduct defined
on the algebra D. This observation is also valid for braided algebras considered in
the next section. Thus, we have not succeeded in finding a coproduct corresponding
to the permutation relations (4.7).

4. Braided Weyl algebras and related de Rham complex

In this section we consider a braided analog of the enveloping algebra U.gl.m/„/
and differential calculus on it. By braided analog we mean the so-called Reflection
Equation (RE) algebra in its modified form. Let us recall the definition of this algebra.

Let V be a vector space over the ground fieldK and R W V ˝2 ! V ˝2 be a linear
invertible operator satisfying the braid relation

R12R23R12 D R23R12R23

where R12 D R˝ I; R23 D I ˝ R and I is the identity operator (in an equivalent
form it is also called the quantum Yang–Baxter equation). Such an operator R is
called a braiding. If a braiding R is subject to an additional condition

.R � q I /.RC q�1 I / D 0; q 2 K;

it is called a Hecke symmetry provided q 6D 1 and an involutive symmetry provided
q D 1.

By modified Reflection Equation algebra we mean a unital algebra generated by
elements nji , 1 � i; j � m, subject to the system of relations

RN1RN1 �N1RN1R D „ .RN1 �N1R/; „ 2 K (4.1)

where N D knji k and N1 D N ˝ I . We omit the term “modified” if „ D 0. The
algebra (4.1) will be denotedN .q; „/ provided „ 6D 0 orN .q/ provided „ D 0.
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Below we assume R to be a skew-invertible Hecke symmetry. This means that
there exists an operator ‰ W V ˝2 ! V ˝2 such that

Tr2R12‰23 D Tr2‰12R23 D P13; (4.2)

where Tr stands for the usual trace, and indices label the spaces where the operators
act. In what follows we shall need the operators

B D Tr1‰12; C D Tr2‰12: (4.3)

As a direct consequence of the definition of the operator ‰ we have

Tr1B1R12 D I; Tr2C2R12 D I: (4.4)

The operator B is supposed to be invertible. Then, as was shown in [6],

B � C D q�2mI; TrB D TrC D q�m
qm � q�m

q � q�1
: (4.5)

Note, that the algebra (4.1) is filtered. We call it the quadratic-linear one since it
is defined by the quadratic-linear relations. We treat this algebra as a braided analog
of the enveloping algebra U.gl.m/„/. Indeed, it is possible to define a braided Lie
bracket such that the modified RE algebra has the sense of the enveloping algebra of
the corresponding braided Lie algebra (see [8]). Furthermore, the algebra N .q; „/
has the following properties (see [6]):

1. IfR comes from the quantum group (QG) Uq.sl.m//, the algebraN .q; „/ has
a good deformation property. This means that the homogeneous componentsN k.q/,
k D 0; 1; 2; : : : , of the algebraN .q/ have the classical dimensions, i.e.

dim N k.q/ D dimU k.gl.m/„/

for any k and a generic q. Also, for the algebra N .q; „/ there is a sort of the PBW
theorem ensuring that the associated graded algebra Gr .N .q; „// is isomorphic
toN .q/ (for a discussion on the PBW property see the next section).

2. This algebra can be equipped with a braided bi-algebra structure (see [7] for a
definition). This structure is determined by the usual counit and the coproduct such
that for „ D 1 it has the form

�.n
j
i / D n

j
i ˝ 1C 1˝ n

j
i � .q � q

�1/
X
k

nki ˝ n
j

k
:

However, similarly to super-algebras, the product of two such elements�.nji /�.n
l
k
/

involves an operator transposing two middle factors in the product. This operator
results from the initial Hecke symmetry.
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3. The category of finite dimensional representations of this algebra is similar
to that of U.gl.m// or U.gl.mjn// (depending on R), an analog of the adjoint
representation included.

4. The structure of the center of N .q; „/ is similar to that of U.gl.m//
(or U.gl.mjn//).

5. If R comes from Uq.sl.m//, the algebra N .q; „/ is covariant with respect to
the action of this QG. In general, a similar property can be formulated via a coaction
of the RTT algebra on the algebraN .q; „/.

Note that if R is an involutive symmetry, the algebra N .q; „/ turns into the
enveloping algebra of a generalized Lie algebra, introduced by one of the authors in
the 80’s.

The point is that a braided analog of the partial derivatives can be introduced
on the algebra N .q; „/ (first it was done in [7]). This enable us to define a braided
analog of the Weyl algebra corresponding to the algebraN .q; „/.
Definition 4.1. The braidedWeyl algebraW.N .q; „// is an associative unital algebra
generated by two subalgebrasN .q; „/ and D provided that the following conditions
are satisfied:
(1) As a vector space the algebraW.N .q; „// is isomorphic toN .q; „/˝D.
(2) The subalgebra D is generated by elements @ji , 1 � i; j � m, subject to the

following relations

R�1D1R
�1D1 �D1R

�1D1R
�1
D 0; (4.6)

whereD D k@ji k andD1 D D ˝ I .
(3) The permutation relations between the generators nji , 1 � i; j � m; of the

subalgebraN .q; „/ and the generators @ji of the subalgebra D are as follows

D1RN1R �RN1R
�1D1 D RC „D1R: (4.7)

In the limit q D 1 (provided that R is a deformation of the usual flip P ) the
relations (4.6) turn into the commutativity conditions for the generators @ji and the
equalities (4.7) turn into the permutation relations (2.3). Note that the relations (4.6)
and (4.7) have been introduced in [7].

Now, we want to give an operator meaning to the elements of the subalgebra D
since we intend to interpret the generators @ji as analogs of partial derivatives. The
permutation relations (4.7) in the above Definition 4.1 allows one to define an action
of the subalgebra D on the subalgebra N .q; „/ by the same method as above. More
precisely, we have to apply the counit with the same properties. On the level of
generators this action is as follows:

@
j
i .n

p

k
/ D ı

p
i B

j

k
; (4.8)

where kBji k is the matrix of the operator B introduced in (4.3).
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Let us point out that this action gives a representation of the subalgebra D in
the algebra N .q; „/, that is the action (4.8), extended on the whole algebra N .q; „/
via (4.7), respects the algebraic structure ofN .q; „/. In the classical limit q D 1 the
operator @ji turns into the usual partial derivative in nij : @

j
i D @=@n

i
j .

Our next aim is to define the space of differential forms on the algebra N .q; „/
and to introduce an analog of the de Rham operator on it. First of all, we need a
braided analog of the external algebra generated by the differentials dnji . In the
classical case it is identified with the skew-symmetric algebra

V
.gl.m//. In our

current setting we define the corresponding analog
V
q by quotienting the free tensor

algebra, generated by the linear space span.dnji /, over the ideal generated by the
matrix elements of the left hand side of the equality

R12�1 O‰12�1 C�1 O‰12�1R
�1
12 D 0: (4.9)

Here as usual �1 D � ˝ I and the matrix elements �ji of the m � m matrix
� D k�

j
i k are the linear combinations of the differentials:

�
j
i D .B

�1/ki dn
j

k
; (4.10)

where the summation over the repeated index is understood. The symbol O‰ stands
for the following operator

O‰12 D ‰21 C .q � q
�1/q2mB1C2:

Using the definitions and properties (4.2)–(4.5) one can easily verify that

Tr1 O‰12R�113 D P23 D Tr1 O‰21R�131 : (4.11)

Below, we give a motivation for the definition (4.9) of the algebra
V
q .

Consider the product Dq D
V
q˝N .q; „/ which is a right N .q; „/-module. In

order to convert this module into an associative algebra, we have to introduce some
permutation relations between the algebras

V
q and N .q; „/. However, we do not

use this structure and shall consider the space Dq as a one-sided N .q; „/-module
only. Elements of this module are called braided differentials. Elements of the
rightN .q; „/-moduleDk

q D
Vk
q ˝N .q; „/ are called braided k-differentials. Here,

as usual,
Vk
q stands for the k-th degree homogenous component of the quadratic

algebra
V
q .

Now, define the braided analog of the de Rham operator d W Dk
q ! DkC1

q . Let

! D !0 ˝ f; f 2 N .q; „/; !0 2
^k

q

be a k-differential: ! 2 Dk
q . Then we set by definition:

d ! D !0 ˝
X
i;j

�
j
i ˝ @

i
j .f / 2 DkC1

q : (4.12)
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In fact, the map d consists in inserting the element
P
i;j �

j
i ˝ @ij inside of

the k-form ! with subsequent application of the partial derivatives to the element
f 2 N .q; „/. The following claim is the main motivation of our definition of the
algebra

V
q via formula (4.9).

Proposition 4.2. The usual property d2 D 0 holds.

Proof. First, let us recall some facts from the theory of monoidal categories. Let A
be a monoidal rigid category of finite dimensional vector spaces and U be its
object. Let U � be its right dual (see [2] for detail). This means that there exists
an evaluation map U ˝ U � ! K and a coevaluation map K ! U � ˝ U which
are in a sense coordinated. Let fuig be a basis of U and fuj g be its right dual,
i.e. hui ; uj i D ıji . Then as follows from the definition, the coevaluation map is
generated by 1 7!

P
k u

k ˝ uk .
Now, consider a subspace I � U˝2, playing the role of skew-symmetric

subspace, and the quadratic algebra Sym.U / D T .U /=hI i, playing the role of
the symmetric algebra of the space U . Also, consider the subspace I? � .U �/˝2
orthogonal to I with respect to the pairing

hx ˝ y; z ˝ vi D hx; vi hy; zi; x; y 2 U; z; v 2 U �: (4.13)

The algebra
V
.U �/ D T .U �/=hI?i plays the role of the skew-symmetric algebra

of the space U �.
Let us form a complex

ı W
^k

.U �/˝ Syml.U /!
^kC1

.U �/˝ SymlC1.U /;

where the map ı is defined by

uj1˝� � �˝ujk˝ui1˝� � �˝uil
ı
7! uj1˝� � �˝ujk˝

X
m

.um˝um/˝ui1˝� � �˝uil :

Let us emphasize that the map ı consists in introducing the unit 1 inside of the
product

Vk
.U �/˝ Syml.U / with subsequent applying the coevaluation operator to

the unit.
Lemma 4.3. The following property holds: ı2 D 0.

Proof. In order to prove the lemma, we have to show that the elementX
m;n

um ˝ un ˝ un ˝ um; (4.14)

which corresponds to the operator ı applied twice, vanishes in the product
2̂

.U �/˝ Sym2.U /:
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Let fzig be a basis of the subspace I � U˝2 and fzj g be a basis of the subspace
I? � .U �/˝2. Let us complete the former basis up to a basis fzi ; zj g of the whole
space U˝2 and the latter one up to a basis fzi ; zj g of the space .U �/˝2 so that
the basis fzi ; zj g be the right dual of that fzi ; zj g. Then the element (4.14) can be
presented as follows X

i

zi ˝ zi C
X
j

zj ˝ zj :

It is clear that this element vanishes in the product
V2
.U �/˝ Sym2.U /.

Now, go back to the proposition. We treat the space span.@ji / as an object U
from the above lemma and the space span.dnji / as its right dual U

�. Besides, the
basis f�ji g (4.10) of the space U

� is the right dual to f@l
k
g with respect to the pairing

hD1; �2i D P12 or h@ji ; �
p

k
i D ı

p
i ı

j

k
: (4.15)

In fact, if we identify span.nl
k
/ and span.dnl

k
/ as linear spaces, this pairing is nothing

but the action of the partial derivatives on the generators of the RE algebra in the
spirit of the classical differential calculus. It is true in virtue of the definition of the
elements �p

k
and formula (4.8).

The role of the subspace I � U˝2 is played by the left hand side of (4.6), giving
rise to the RE algebra but with the braiding R�1 instead of R. The only claim has
to be shown is that the left hand side of (4.9) is just I?. In order to prove this, we
fix the basis X12 D R�1D1R�1D1 in the space U and that X�12 D �1 O‰�1R in the
space U �.
Lemma 4.4. The basis X�12 is right dual to X12, that is hX12; X�34i D P13P24.

Proof. The claim of the lemma is verified by a direct calculation on the base of
(4.11), (4.13) and (4.15):

hX12; X
�
34i D hR

�1
12D1R

�1
12 hD1; �3i

O‰34�3R34i

D hR�112D1R
�1
12 ;
O‰14�1R14iP13

D R�112 Tr0
�
P01R

�1
12
O‰14hD0; �1i

�
R14P13

D R�112 Tr0
�
P01R

�1
12
O‰14P01

�
R14P13

D R�112 Tr0
�
R�102
O‰04

�
R14P13

D R�112 P24R14P13 D P24P13:

Introduce now two operators Q W U˝2 ! U˝2 and Q0 W U˝2 ! U˝2 defined
as follows

Q.R�1D1R
�1D1/ D D1R

�1D1R
�1; Q0.R�1D1R

�1D1/ D D1R
�1D1R:
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Similar operators were considered in [9]. They were also used in the construction of
a differential calculus on a q-Minkowski space algebra in [14, 15]. It is easy to see
thatQ andQ0 commute with each other and satisfy the following relation

.I �Q/.I CQ0/ D 0:

Also, the subspace I � U˝2 defined by (4.6) can be written as follows

.I �Q/.R�1D1R
�1D1/ D 0:

Whereas, the equation

.I CQ0/.R�1D1R
�1D1/ D 0

defines the subspace of U˝2 which is complementary to I . In fact, the subspace I?
is just .I CQ0�/.U �/˝2 whereQ0� stands for the conjugate operator toQ0.

This shows that the spaces defined respectively by the left hand side of (4.6)
and (4.9) are orthogonal to each other5. The fact that they are maximal (i.e. the
latter space include all elements orthogonal to the former space) can be shown from
considering the dimensions of these spaces (first, for a generic q with subsequent
passage to all q).

This completes constructing an analog of the de Rham complex corresponding to
the modified RE algebra.

Remark 4.5. Note that we precise no way of completing either the basis of the
subspace I or that of the space I?. Nevertheless, there exists the “most natural”
choice to do so or, equivalently, to fix a complimentary subspace to I in the
space U˝2. If the space I � U˝2 is defined by the left hand side of (4.1) then
we define its complementary subspace as

RN1RN1 CN1RN1R
�1: (4.16)

The quotient of the tensor algebra of U over the ideal generated by this subspace is
often treated to be a braided analog of the skew-symmetric algebra of U (see [9]).

5. q-Witt algebra: deformation property

In this section we deal with the so-called q-Witt algebra (q is assumed to be generic).
This algebra is usually defined in the sameway as the classicalWitt algebra is but with
the q-derivative (1.1) instead of the usual one. Let us precise that @q.xk/ D kqxk�1,
k 2 Z. Hereafter, we use the notation mq D qm�1

q�1
.

5This can be also verified by a direct calculation, similar to that in the proof of Lemma 4.4.
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Note that the Leibniz rule for the q-derivative reads

@q.f .x/g.x// D .@qf .x//g.x/C f .qx/@qg.x/; (5.1)

whereas its permutation relation with the generator x is:

@q x � q x @q D 1: (5.2)

Below, we do not use the Leibniz rule (5.1) (see remark at the end of the section).
Now, similarly to the usual Witt algebra, consider the operators

ek D x
kC1 @q; k 2 Z

acting on the algebra KŒx; x�1�. These operators act on the elements xl as follows

ek.x
l/ D lq x

kCl ; l 2 Z

and are subject to the relations

qmC1emen � q
nC1enem � ..nC 1/q � .mC 1/q/emCn D 0: (5.3)

These relations are usually considered (see [11] and the references therein) as a
motivation for introducing the following “q-Lie bracket”

U ˝ U ! U W em ˝ en 7! Œem; en� D ..nC 1/q � .mC 1/q/emCn; (5.4)

where U D span.ek/ is the space of all finite linear combinations of the elements ek .
Then by q-Witt algebra one means the space U endowed with the q-Lie bracket (5.4),
which is assumed, of course to be a bilinear operator. We denote this q-Witt
algebra Wq . Its enveloping algebra U.Wq/ is defined to be the quotient of the
free tensor algebra of the space U over the ideal generated by the left hand side
of (5.3).

Emphasize that the bracket (5.4) is well-defined on the whole space U˝2. This
bracket has the following properties:
(1) The “q-skew-symmetry”:

Œem; en� D �Œen; em�I

(2) The “q-Jacobi relation”:

.1C qk/Œek; Œel ; em��C .1C q
l/Œel ; Œem; ek��C .1C q

m/Œem; Œek; el �� D 0:

The first relation entails the element em ˝ en C en ˝ em to be sent to zero by the
bracket. Consequently, we have two subspaces in the space U˝2

IC D span.em ˝ en C en ˝ em/;
I� D I D span.qmC1em ˝ en � qnC1en ˝ em/;

(5.5)

which are analogs of symmetric and skew-symmetric subspaces (in fact, the
symmetric one is classical).
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Below, we deal with the PBW theorem in the form suggested in [16]. Namely,
let U be a finite dimensional vector space over the field K and I � U˝2 be a
subspace. Consider an operator Œ ; � W I ! U satisfying two conditions
(1) Œ ; �12 � Œ ; �23 W I ˝ U

T
U ˝ I ! I ;

(2) Œ ; � ı .Œ ; �12 � Œ ; �23/ W I ˝ U
T
U ˝ I ! 0;

where Œ ; �12 D Œ ; �˝ I; Œ ; �23 D I ˝ Œ ; �, I is the identity operator and ı means
the composition of the maps. (Below, we omit this symbol.)

If, in addition, the quadratic algebraA D T .U /=hI i is Koszul then the associated
graded algebra GrAŒ ; � where AŒ ; � D T .U /=hI � Œ ; �I i is canonically isomorphic
to A. Here hI i stands for the ideal generated by a set I and by I � Œ ; �I we mean
the family of elements u � Œ ; �u; u 2 I .

This is just the PBW theorem under the form of [16]. Below, the call the both
conditions listed above the Jacobi-PP condition.

Emphasize that the subspace I ˝ U
T
U ˝ I � U˝3 is an analog of the space

of third degree skew-symmetric elements. Note, that the bracket is defined only on
the subspace I . Thus, the first of the above conditions (which means that the bracket
maps I ˝ U

T
U ˝ I into I ) ensures a possibility to apply the bracket once more.

Let us also show that the first condition above (without assuming the algebra
T .U /=hI i to be Koszul) is necessary for the canonical isomorphism. Consider the
element

.Œ ; �12 � Œ ; �23/Z; (5.6)
where Z is an arbitrary element belonging to I ˝ U

T
U ˝ I . Since the element

Z � Z equals to 0 in the algebra AŒ ; �, its image under replacing factors from
I ˝ U (resp., U ˝ I ) by the terms Œ ; �12Z (resp., Œ ; �23Z) is also trivial in the
algebra AŒ ; �. If nevertheless, the term (5.6) does not belong to I , we have that there
is an element which is trivial in GrAŒ ; � and is nontrivial in A. Consequently, the
canonical isomorphism of the algebras GrAŒ ; � and A does not exist.
Remark 5.1. Note that to describe the space I .3/ D I ˝ U

T
U ˝ I � U˝3

explicitly is not an easy deal in general. However, if the subspace I � U˝2 is
generated by elements of the form

eiej � c.i; j /ej ei ; c.i; j / 6D 0 8 i; j (5.7)

the space I .3/ is easy to describe. First, consider the case dim U D 3. Let fx; y; zg
be a basis of the space U . We set

I D span.xy � ayx; yz � bzy; zx � cxz/; a b c 6D 0:

Then the space I .3/ is one-dimensional and is generated by the following element

Z.x; y; z/ D c.xy � ayx/z C a.yz � bzy/x C b.zx � cxz/y

D bz.xy � ayx/C cx.yz � bzy/C ay.zx � cxz/: (5.8)

If dim U > 3, the space I .3/ is generated by all elementsZ.ek; el ; em/, each of them
being associated with a triple ek; el ; em.



1232 D. Gurevich and P. Saponov

Now, go back to the q-Witt algebra. This algebra is infinite dimensional. However,
if by U we mean all finite linear combinations of the generators feig, and by U˝k we
also mean the finite linear combinations of ei1 ˝ ei2 ˝ � � � ˝ eik , then we can extend
our reasoning to this case.

Namely, denote the vector space of finite linear combinations of elements
qkC1ek el � q

lC1el ek by I and consider an element Z 2 I ˝ U
T
U ˝ I of

the following form (we omit the sign˝ between the elements ek):

Z D qlCmC2.qlC1elem � q
mC1emel/ek C q

mCkC2.qmC1emek � q
kC1ekem/el

C qkClC2.qkC1ekel � q
lC1elek/em

D q2.mC1/em.q
kC1ekel � q

lC1elek/C q
2.kC1/ek.q

lC1elem � q
mC1emel/

C q2.lC1/el.q
mC1emek � q

kC1ekem/:

Compute the images of this element under the maps Œ ; �12 and Œ ; �23 correspondingly.
We have

Œ ; �12Z D q
lCmC2..mC 1/q � .l C 1/q/elCmek
C qmCkC2..k C 1/q � .mC 1/q/emCkel

C qkClC2..l C 1/q � .k C 1/q/ekClem;

Œ ; �23Z D q
2.mC1/..l C 1/q � .k C 1/q/emekCl
C q2.kC1/..mC 1/q � .l C 1/q/ekelCm

C q2.lC1/...k C 1/q � .mC 1/q/elemCk :

Let us assume that the numbers k, l ,m, kC l , kCm and lCm are pairwise distinct.
Then the difference Œ ; �12Z � Œ ; �23Z belongs to I iff it is so for the element

qlC1qmC1..mC1/q�.lC1/q/elCmek�q
2.kC1/..mC1/q�.lC1/q/ekelCm (5.9)

and for two similar elements obtained by cyclic permutations k ! l ! m. However,
it is evident that for a generic q the element (5.9) does not belong to I since the
two-dimensional vector

.qlC1qmC1..mC 1/q � .l C 1/q/; �q
2.kC1/..mC 1/q � .l C 1/q//

composed of the coefficients of the element (5.9) is not collinear to the vector
.qlCmC1; �qkC1/ unless k D 0.

Thus, the first of the above conditions is not satisfied. Consequently, the algebra
Gr.U.Wq// is not isomorphic to T .U /=hqkC1ekel � qlC1eleki.

Remark 5.2. If we introduce a parameter „ as a multiplier in the right hand side of
the bracket (5.4) of the q-Witt algebra we get a two parametric analog of the usualWitt
algebra. On putting „ D 0 we get a quadratic algebra T .U /=hqkC1ekel � qlC1eleki
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which possesses a good deformation property. Since this quadratic algebra is infinite
dimensional, we should precise the meaning of this property. The orderedmonomials

e
k1

1 e
k2

2 � � � e
kl

l
; k1 C k2 C � � � C kl D k

form a basis of its k-th degree homogeneous component. It can be considered as a
quantization of the corresponding Poisson structure defined by

fek; elg D .l � k/ek el :

Nevertheless, the algebra U.Wq/ is not a two-parameter quantization of a Poisson
pencil. This is due to the fact that the passage from the mentioned quadratic algebra
to its filtered (quadratic-linear) analog is not a deformation.

In a similar waywe can introduce another analog of theWitt algebra, called „-Witt
one. In its construction the usual derivative is replaced by its difference analog (1.2).
The permutation relation with x reads

@„x � x@„ D 1C „@„:

Note that the algebra generated by x and @„ is a Weyl algebra but it is not so for the
algebra generated by x and @q . (However, it is a Weyl algebra in the sense of a more
general definition exhibited in the next section.)

Now, consider operators ek D eikx@„, k 2 Z acting onto the space of real
continuous functions. Using the permutation relation

@„ e
ikx
� eik.xC„/ @„ D

eik„ � 1

„
eikx;

we get the following:

eik„ ek el � e
il„ el ek D

eil„ � eik„

„
ekCl :

So, denoting q D ei„, we can see that the difference of this structure from that
described above is unessential.

Also, it is tempting to introduce an „-analog of the Lie bracket by putting

Œek; el � D
eil„ � eik„

„
ekCl :

Finally, for the reason presented above, the PBW theorem in the enveloping algebra
of this “generalized Lie algebra” fails. The detail is left to the reader.

Two above analogs of the usual derivatives being put together give rise to a
.q; „/-counterpart of the derivatives defined by

@q;„.f .x// D
f .qx C „/ � f .x/

.q � 1/x C „
:
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This .q; „/-derivative have the following permutation relation with x:

@q;„ x � qx @q;„ D 1C „@q;„:

Note that this .q; „/-derivative can be deduced from the q-derivative via the change
of the generator x ! x C „

q�1
.

Also, note that besides the above analogs of the usual derivative, there are their
slight modifications

Q@q.f .x// D
f .qx/ � f .q�1x/

.q � q�1/x
; Q@„.f .x// D

f .x C „/ � f .x � „/

2„
:

These operators do not give rise to any Weyl algebra on the function space in one
variable. Nevertheless, the operator Q@„ appears in the frameworks of theWeyl algebra
W.U.u.2/„// and its commutative subalgebra considered in Section 3.

We complete this section by the following observation. The q-Witt algebra
contains a subalgebra looking like the enveloping algebra of the Lie algebra sl.2/.
Namely, consider the subalgebra generated by three elements e�1 D @q , e0 D x@q
and e1 D x2@q . They are subject to the following relations

e�1e0 � q e0 e�1 D e�1;

e�1e1 � q
2e1e�1 D .1C q/ e0; (5.10)

e0 e1 � q e1e0 D e1:

This quadratic-linear algebra was considered in [13] in the frameworks of the
so-called Hom–Lie algebras. This notion is based on the modified Leibniz rule (5.1).
In a similar manner the notions of Hom-associative algebras, Hom–Poisson algebras
etc., were introduced. Emphasize that the enveloping algebra of a Hom–Lie algebra
is not an associative one but Hom-associative. By contrast, our approach is based
only on the permutation relations between derivative(s) and generator(s) of a given
algebra. Thus, the algebra defined by the relations (5.10) is a usual associative
algebra. We claim that this algebra has the good deformation property. This property
will be proven in the next section for a larger family of quadratic-linear algebras.

6. Other roles and forms of Jacobi condition for quadratic-linear algebras

In the previous section we presented a form of the Jacobi condition, which is
useful for proving or denying the PBW property of a given quadratic-linear algebra.
Nevertheless, if such an object is the enveloping algebra of a Lie algebra, the Jacobi
condition enables one to construct the adjoint representation of this object. Besides,
the construction of the Chevalley–Eilenberg complex associated with this Lie algebra
is mainly based on the Jacobi identity.
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Below, we discuss other forms the Jacobi condition which are useful for
generalizing the notions of the adjoint representation and the Chevalley–Eilenberg
complex for quadratic-linear algebras. However, first we give some examples of such
algebras subject to Jacobi-PP condition.

Let again U be a three dimensional space and fx; y; zg be its basis. Consider the
quadratic-linear algebra generated by these generators subject to the relations

xy � ayx � l1 D 0; yz � bzy � l2 D 0; zx � cxz � l3 D 0;

where a; b; c 2 K are nontrivial constant and l1; l2; l3 are some elements of U . As
usual, we also consider the corresponding quadratic algebra which is obtained by
setting l1 D l2 D l3 D 0.

It would be interesting to classify all families .a; b; c; l1; l2; l3/ such that the
Jacobi-PP condition for the corresponding quadratic-linear algebras would be valid.
We restrict ourselves to two particular cases.

The first case is sl.2/ like. We assume that

l1 D kx; l2 D lz; l3 D my; k; l;m 2 K; klm 6D 0:

It is easy to see that the Jacobi-PP condition is valid iff b D a and l D k. Thus, the
relations on the generators of the corresponding algebra become

xy � ayx D kx; yz � azy D kz; zx � cxz D my: (6.1)

This algebra can be treated as a multiparameter deformation of the commutative
algebra Sym.U /. It can be easily seen that the algebra defined by (5.10) is a particular
case of the family (6.1). Indeed, by identifying e�1 D x, e0 D y, e1 D zweget (5.10)
if in (6.1) we put

a D q; c D q�2; m D �.q�1 C q�2/:

Since the quadratic algebra corresponding to the quadratic-linear algebra defined
by (6.1) is Koszul, the latter algebra meets the PBW property.

The second case is su.2/ like. We assume that

l1 D kz; l2 D lx; l3 D my; k; l;m 2 K; klm 6D 0:

The Jacobi-PP condition is fulfilled iff a D b D c. Also, by a change of a basis
(over the field K D C) we can get that k D l D m D 1. Thus, we assume that the
generators are bound by the following relations

xy � ayx D z; yz � azy D x; zx � axz D y: (6.2)

Since the corresponding quadratic algebra is Koszul, we conclude that the algebra
defined by (6.2) has the good deformation property. Thus, by introducing a
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parameter „ in front of the right hand side, we get a two parameter deformation
of the same algebra Sym.U /.

Now, we pass to considering other forms of the Jacobi condition. Consider a
quadratic algebraA D T .U /=hI i, I � U˝2 and a quadratic-linear oneAŒ ; � (we use
the notations of the previous section). Assume that the Jacobi-PP condition for the
bracket Œ ; � W I ! U is valid. However, this condition cannot be written in the form

Œ ; �Œ ; �12 D Œ ; �Œ ; �23 on I .3/ D I ˝ U
\
U ˝ I; (6.3)

because the images of the operators Œ ; �12 and Œ ; �23 acting on I .3/ do not belong in
general to I (but their difference does by assumption). Thus, the sides of (6.3) are
not well defined separately.

In order to make this object more similar to a usual Lie algebra we assume that
in the space U˝2 there is a complementary subspace IC (playing the role of the
symmetric subspace) where the bracket acts trivially. Consequently, the bracket
becomes well defined on the whole space U˝2. Thus, we have the following data
.U; I; IC; Œ ; � W U

˝2 ! U/ with complementary subspaces I ˚ IC D U˝2 and
such that the image of the subspace IC under the map Œ ; � is trivial. Thus, the both
sides of (6.3) are well defined.

Definition 6.1. We say that the data .U; I; IC; Œ ; � W U˝2 ! U/ meets the strong
Jacobi condition if the Jacobi-PP condition is valid for the corresponding quadratic-
linear algebra, and the both sides of (6.3) are trivial.

Note that the strong Jacobi identity enables us to define an analog of theChevalley–
Eilenberg complex composed of the terms

I .k/ D I˝U˝.k�2/
\
U˝I˝U˝.k�3/

\
� � �

\
U˝.k�3/˝I˝U

\
U˝.k�2/˝I

with the differential d D Œ ; �12. The relation d2 D 0 follows immediately from the
fact that Œ ; �Œ ; �12 D 0. Observe that the subspaces I .k/ � U˝k are analogs of the
spaces of skew-symmetric elements. Also, observe that the result of applying the
usual Chevalley–Eilenberg operator and that d D Œ ; �12 to a skew-symmetric element
differ by a nontrivial factor. Thus, our complex can be considered as a generalization
of the Chevalley–Eilenberg one.

Now, we go back to the above examples and examine the problem: whether the
corresponding algebras can be completed with convenient subspaces IC � U˝2 such
that the new data .U; I; IC; Œ ; � W U˝2 ! U/ meets the strong Jacobi condition.

First, consider the sl.2/ like algebra. By a straightforward computation it is
possible to check that the strong Jacobi condition ismet if IC contains the elements y2
and cxz C azx.

As for the su.2/ like algebra, we have that the strong Jacobi identity is valid for the
data .U; I; IC; Œ ; � W U˝2 ! U/ iff the subspace IC contains the term x2Cy2Cz2.
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In particular, we can put

IC D span.x2; y2; z2; xyC˛yx; yzC˛zy; zxC˛xz/; ˛ 2 K; ˛ 6D 0: (6.4)

Let us discuss now a form of the Jacobi condition for quadratic-linear algebras
enabling us to construct an analog of the adjoint representation.
Definition 6.2. We say that the data .U; I; IC; Œ ; � W U˝2 ! U/ with complemen-
tary I and IC, such that Œ ; �IC D 0, is an almost Lie algebra, if there exists a nontrivial
number p 2 K such that the map p Œ ; � defines left and right representations of the
quadratic-linear algebra

T .U /=hI � Œ ; �I i: (6.5)

Explicitly, this condition means that

Œ ; �Œ ; �12 D pŒ ; �Œ ; �23 on I ˝ U (6.6)
and Œ ; �Œ ; �23 D pŒ ; �Œ ; �12 on U ˝ I . (6.7)

Also, emphasize that for the enveloping algebra of a Lie algebra the normalizing
factor p equals 2 since, if we define the bracket Œ ; � from the system

Œ ; �.xi ˝ xj � xj ˝ xi / D c
k
i;jxk; Œ ; �.xi ˝ xj C xj ˝ xi / D 0;

we get a half of the usual Lie bracket. In general, the factor p has to be found.
Let us turn to the above examples and look for the values of the parameters

entering the defining relations of these algebras such that these algebras acquire
almost Lie algebra structures.

First, consider the su.2/ like algebra. Let us assume that the subspace IC is given
by (6.4). Then we get a bracket defined on the whole space U˝2 and having the
following multiplication table

Œx; x� D 0; Œx; y� D
˛z



; Œy; x� D

�z



; c:p:

where 
 D aC ˛.
Now, we are able to define the left action (denoted F) of the space U onto itself

which is multiple (with the factor p) of the above bracket action. We have

x F x D 0; x F y D
p˛z



; x F z D

�py




and so on.
Thus, we can represent x; y and z as operators acting in the space U D

span.x; y; z/. We want to classify families of parameters such that the relation (6.6)
is satisfied. Straightforward computing implies the following relations on the
parameters a, ˛ and p:

p D ˛ 
; a˛2p D 
; 
 D aC ˛:
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Treating ˛ as an independent parameter we can express other parameters in terms
of ˛:

a D ˛�3; 
 D ˛ C ˛�3; p D ˛2 C ˛�2:

It is easy to see that the same parameters are convenient for the relation (6.7). Thus,
we get a family of almost Lie algebra structures, parameterized by ˛.

Note that the family of the data satisfying the strong Jacobi condition is larger
than this family since the parameters a entering (6.2) and ˛ entering (6.4) are not
related.

Now, pass to the sl.2/ type algebra. We assume that the subspace IC has the
following form

IC D span.x2; y2; z2; xy C ˛yx; yz C ˇzy; zx C ˇxy/:

By a change of the basis we can get k D 1, l D 2 (see (6.1)). By tedious but straight-
forward computations it can be shown that the data .U; I; IC; Œ ; � W U˝2 ! U/

determines an almost Lie structure iff a D b D ˛ D ˇ D 1; p D 2, i.e. when
it corresponds to the usual sl.2/ Lie structure.

Other examples interesting from the viewpoint of the different forms of the Jacobi
condition arise from braidings. In the early 80’s one of the authors (D.G.) introduced
the notion of generalized Lie algebras associated with involutive symmetries
(see [3, 4]). A gl.m/ type example can be constructed as follows.

Let R W V ˝2 ! V ˝2 be a skew-invertible (see Section 4) involutive symmetry.
Then it can be extended up to an involutive symmetry

REnd W End.V /˝2 ! End.V /˝2:

Besides, in the space End.V / there is a usual product (composition) of endomor-
phisms

End.V / 3 X; Y 7! X ı Y 2 End.V /:

Introduce the following bracket

Œ ; � W End.V /˝2 ! End.V /; ŒX; Y � D X ı Y � ıREnd.X; Y /:

Consider the quadratic-linear algebra defined by the relations

Xi Xj �REnd.Xi ; Xj / D ŒXi ; Xj � (6.8)

where fXig is a basis of the space End.V /. We claim that for this filtered algebra the
Jacobi-PP condition is valid. Moreover, the corresponding quadratic algebra

T .End.V //=hI i;

where I D span.Xi Xj �REnd.Xi ; Xj // is Koszul. This ensures the PBW property
for the algebra defined by (6.8).
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In contrast with the above examples where the bracket was only defined on a
subspace I � U˝2, now we have defined this bracket on the whole space U˝2,
U D End.V /. Consequently, we have no ambiguity in choosing of the subspace IC.
Namely, we have

IC D span.Xi Xj CREnd.Xi ; Xj //:

It is not difficult to see that the bracket above acts on this space trivially. We claim
that for the data .U; I; IC; Œ ; � W U˝2 ! U/ the strong Jacobi identity is also valid.
Moreover, this data defines an almost Lie algebra structure with p D 1.
Remark 6.3. Here p D 1 since Œ ; �.Xi ˝ Xj � REnd.Xi ; Xj // D 2ŒXi ; Xj �. Also
note that for the Jacobi-PP condition, as well as for the strong Jacobi condition, the
normalizing factor p does not matter.

IfR is a skew-invertible Hecke symmetry, a similar constructionmutatis mutandis
can be also defined. Without going into detail, we only give an explicit form of the
subspaces I; IC � U˝2 whereU D End.V /. Namely, I is spanned by the entries of
the left hand side matrix from (4.1) and IC is spanned by those of the matrix (4.16).
Also, we assume that the corresponding bracket maps each entry of the left hand
side matrix from (4.1) to the corresponding entry of the right hand side matrix and is
trivial on the subspace IC. We claim that the corresponding quadratic-linear algebra
(which is nothing but the modified RE algebra) meets the Jacobi-PP condition. Also,
for a generic q the PBW property is valid in it (see [5,6]). Besides, the corresponding
data .U; I; IC; Œ ; � W U˝2 ! U/ defines an almost Lie algebra structure. However,
we do not know whether the strong Jacobi condition is valid for this data.

Now, we want to discuss a possible generalization of the notion of the Weyl
algebra from Section 3 to quadratic-linear algebras.

Let U be a finite-dimensional vector space with a basis fxig. As usual, consider
a quadratic algebra A D T .U /=hI i, where I is a subspace of U˝2, and introduce
its quadratic-linear counterpart AŒ ; � D T .U /=hI � Œ ; �I i, where Œ ; � W I ! U is a
linear map (called bracket). Also, consider the quadratic algebra B D T .U �/=hJ i

where J � .U �/˝2. Let @i be the basis of the space U �, dual to the basis fxig:
h@i ; xj i D ı

j
i . Let some permutation relations of the form

@ixj � ˛
i;k
j;l
xk@

l
D bij;k@

k
C ıij (6.9)

be given. The space spanned by the left hand side of these elementswill be denotedK.
Assume that these permutation relations are compatible with the algebrasAŒ ; � andB,
i.e. modulo these permutation relations any element of the product B ˝AŒ ; � can be
converted into an element ofAŒ ; � ˝ B. Then the product B˝AŒ ; � can be equipped
with an associative algebra structure.
Definition 6.4. This associative algebra is called theWeyl algebra on the algebraAŒ ; �.

Practically, a verification of the fact that the permutation relations (6.9) are
compatible with the structures of the algebrasAŒ ; � and B (i.e. that they preserve the
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ideals generated by defining relations) should be done via the Jacobi condition in the
form of [1], which is a generalization of the Jacobi-PP one. Namely, this condition
must be applied to the subspace

I ˚ J ˚K � .U ˚ U �/˝2

endowed with the bracket, which equals Œ ; � on I , trivial on J and defined by (6.9)
on K.

Note, that the Weyl algebras introduced in Section 3 and the braidedWeyl algebra
from Section 4 are covered by this definition. In the latter case we have to change
the dual basis in the space spanned by the partial derivatives. Our last definition also
covers the algebra defined by (5.2). In this case the subspaces I and J are trivial
and K is generated by the left hand side of (5.2).

Completing the paper, we want to observe the following. Let A and B be two
unital associative algebras and there is a representationB˝A! A of the algebraB.
If the algebra B has a bi-algebra structure (may be braided) then it is possible to
define permutation relations

B ˝A! A˝ B

via the method exhibited above. Inversely, if the algebra B is endowed with a counit
only and the algebras are equipped with some permutation relations, it is possible to
define an action of B ontoA (i.e. a representation of of B inA). However in general,
we cannot find an appropriate coproduct in the algebra B. It is just the case of the
braided Weyl algebra from Section 4.
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