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About the obstacle to proving the Baum–Connes conjecture
without coefficient for a non-cocompact lattice in Sp4 in a local

field

Benben Liao�

Abstract. We introduce property .TSchur; G;K/ and prove it for some non-cocompact lattice
in Sp4 in a local field of finite characteristic. We show that property .TSchur; G;K/ for a non-
cocompact lattice � in a higher rank almost simple algebraic group in a local field is an obstacle
to proving the Baum–Connes conjecture without coefficient for � with known methods, and
this is stronger than the well-known fact that � does not have the property of rapid decay
(property (RD)). It is the first example (as announced in [7]) for which all known (as of March,
2015) methods for proving the Baum–Connes conjecture without coefficient fail.
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1. Introduction

N.Higson, V. Lafforgue, andG. Skandalis constructed counterexamples to the Baum–
Connes conjecture for discrete group actions on commutative C � algebras using
Gromov’s groups which do not uniformly embed into Hilbert space [3]. V. Lafforgue
introduced strong Banach property .T / [5,6], proved it for SL3.Qp/, and constructed
the first example of expander graphs which do not embed uniformly into any Banach
space of non-trivial type. Other examples of expander graphs non-embeddable in
Banach spaces of non-trivial type or Banach spaces of weaker properties have been
found [11,13,15]. In [8], V. Lafforgue introduced property .TSchur/ (which is stronger
than strong property .T / [5]) and proved that it is an obstacle to provingBaum–Connes
conjecture for SL3.Qp/ with commutative coefficient containing C0.SL3.Qp//
with known methods. In this article, we introduce property .TSchur; G;K/ in
Definition 1.1 as an analogue of property .TSchur/, prove it for the non-cocompact
lattice � D Sp4.FqŒ��1�/ of Sp4.Fq..�/// in Theorem 1.2 (which is the main result
of this article), and show that it is an obstacle to proving Baum–Connes conjecture
�This work is part of the author’s Ph.D. thesis in Université Paris Diderot - Paris 7.



1244 B. Liao

without coefficients for the lattice � with known methods, which is stronger than the
well-known fact that� does not have the property of rapid decay (property (RD)). It is
the first example for which all known methods for proving Baum–Connes conjecture
without coefficient fail.

We begin with some notations, and then state the main result of this article.
Let G be non-compact locally compact topological group, K ¨ G a compact

subgroup. Let H � G be a non-compact closed subgroup. Let ` W G ! R�0 be a
continuous length function on G. Denote by Bn the ball of radius n in G.

For any continuous function c 2 C.G/ onG, we introduce the following notation
for the norm of the Schur product by c on the subspace

C.H \ Bn/ D ff 2 Cc.H/; supp.f / � Bng

of functions onH with supports in Bn,

kSchurcjC.H\Bn/k
D kSchurc jC.H\Bn/kL.C�r .H//
D supfkSchurc f kC�r .H/; f 2 Cc.H/; supp.f / � Bn; kf kC�r .H/ � 1g;

where Schurc f 2 Cc.H/ denotes the Schur product

Schurc f .h/ D c.h/f .h/;8h 2 H:

Definition 1.1. We say that H has property .TSchur; G;K/ if for any continuous
length function ` W G ! R�0, there exists s0 > 0 such that 8s 2 Œ0; s0/ there exists
a continous function � 2 C0.G/ vanishing at infinity, such that 8C > 0 and for
any family of K-biinvariant functions c 2 C.G/ with the following uniform Schur
condition

kSchurc jC.H\Bn/kL.C�r .H// � Ce
sn;8n 2 N; (1.1)

there exists a limit c1 2 C to which c tends uniformly rapidly

jc.g/ � c1j � C�.g/;8g 2 G:

Let Fq be a finite field of cardinality q which is not divided by 2 (this assumption
is needed in the proofs due to technical reasons - we do not intend to discuss the
case of characteristic 2, since one example is sufficient to elaborate the obstacle
to proving the conjecture). Let G be Sp4.Fq..�/// over the local field Fq..�//,
K D Sp4.FqŒŒ���/ a maximal compact subgroup of G. Let � be the non-cocompact
lattice Sp4.FqŒ��1�/ in G. Let H ¨ � be the unipotent subgroup consisting of
elements of the form 0BB@

1 � � �

1 � �

1 �

1

1CCA 2 �:
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The following is the main result of this article.

Theorem1.2. The unipotent groupH has property .TSchur; G;K/ as inDefinition 1.1.
As a consequence, the non-cocompact lattice � D Sp4.FqŒ��1�/ ¨ G D

Sp4.Fq..�/// also has property .TSchur; G;K/ .

Remark. That � has property .TSchur; G;K/ follows from that H has property
.TSchur; G;K/ . Indeed, it is clear from Definition 1.1 that for any two discrete
subgroups H ¨ H 0 � G, if H has property .TSchur; G;K/ , then H 0 also has
property .TSchur; G;K/ .

H is an amenable group and thus satisfies the Baum–Connes conjecture.
Theorem 1.2 says that the constant function 1 on H cannot be deformed among
K-biinvariant functions on G satisfying the Schur type condition (1.1), whereas it
does not prevent the possibilities of deformations among other functions.

For the non-cocompact lattice � D Sp4.FqŒ��1�/, property .TSchur; G;K/

is an obstacle of known methods for proving Baum–Connes conjecture (without
coefficient). It plays the role of property .TSchur/ for a locally compact group G
(e.g. SL3.Qp/) relative to some open compact subgroup (e.g. SL3.Zp/) as in [8]
being an obstacle of known methods for proving Baum–Connes conjecture for G
with commutative coefficient containing C0.G/. Indeed, if a lattice in a higher rank
almost simple algebraic group has property .TSchur; G;K/ , then it does not have
property (RD) (Proposition 2.3). A. Valette conjectured that any cocompact lattice
in a simple algebraic group over a local field has property (RD), thus cocompact
lattice wouldn’t seem to have property .TSchur; G;K/ . What is shown in this article
is stronger: property .TSchur; G;K/ for a higher rank lattice � prevents the existence
of any reasonable dense subalgebra of C �r .�/ for known methods for proving the
Baum–Connes conjecture (Proposition 2.1), in particular the Jolissaint algebra for
property (RD). We recall known methods for proving Baum–Connes conjecture for a
lattice in a reductive group over a local field in Section 2, and prove in Proposition 2.1
that the conditions of these methods are not satisfied for any lattice with property
.TSchur; G;K/ (by adapting the arguments in [8] to our situation).

We will give two proofs of Theorem 1.2 in Sections 3 and 4, respectively.
The first proof is more in line with the arguments in [9], and is therefore more

transparent and more checkable. What is different from [9] is the use of two families
of parameters (i.e. n D 2 in Lemma 3.3) which yields an improved estimate q�j in
the second inequality of Proposition 3.2.

The second proof makes use of two families of functions onH with exponentially
small C �r norms, and yields a slightly better constant s0 in Definition 1.1. The first
family of functions corresponding to the abelian subgroups are already constructed
and the corresponding estimate is obtained in [7], which we include in this article
using the same arguments. We construct in this article the other family of functions
corresponding to the discrete Heisenberg subgroup. The improved estimate in q�j
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is obtained using harmonic analysis on the Heisenberg group over the ring of
polynomials FqŒ��1�.

Acknowledgements. I would like to thank Vincent Lafforgue for his useful sug-
gestions and precise explanations of various aspects on this problem. I thank Georges
Skandalis for the discussion on algebra A� . I thank Mikael de la Salle for several
corrections to this article, especially for pointing out amistake in the parameterization
of the group of Heisenberg type.

2. An obstacle to proving the Baum–Connes conjecture without coefficient

In this section, G is an arbitary reductive group over a local field,K ¨ G a maximal
compact subgroup, ` W G ! R�0 a continuous length function, and � ¨ G a lattice.

Adapting conditions . QD/ D .D1/C .D2/C .D3/C .D4/ in [8] to our situation,
we list the following conditions . QD0/ D .D1/C .D2/C .D3/C .D40/ to include all
known methods to prove Baum–Connes conjecture for � . More precisely, conditions
.D1/; .D2/; .D3/ are just specialization to A D C of conditions .D1/, .D2/,
.D3/ [8], and condition .D40/ is a variant of .D4/ [8] in which we require that
the representations of � for the homotopy come from representations of G.
(D1) For any s > 0, there exists Cs > 0, and a Banach subalgebra Bs � C �r .�/

containing C.�/ as a dense subalgebra, such that 8n 2 N;8f 2 C.�/ with
supp.f / � Bn,

kf kBs � Cse
sn
kf kC�r .�/;

where Bn � � denotes the ball of length n.
(D2) There exist a homotopy .E; �; T / 2 Eban

�;‹
.C;CŒ0; 1�/ (‹ indicates that there

is no restriction on the norms of the representations of �) from 1 to the 

element, and . QE; Q�; QT / 2 Eban.Bs; C �r .�/Œ0; 1�/ with . QE<; QE>/ containing
.C.�;E</;C.�;E>// as a dense subspace, such that the embeddings

is W C.�/ ,! Bs; ir W C.�;CŒ0; 1�/ ,! C �r .�;CŒ0; 1�/;
i< W C.�;E</ ,! QE<; i> W C.�;E>/ ,! QE>

and
h�; �i W QE< � QE> ! C �r .�/Œ0; 1�

satisfy: 8f 2 C.�/; ' 2 C.�;CŒ0; 1�/; F1 2 C.�;E</; F2 2 C.�;E>/,

i<.'F1/ D ir.'/i
<.F1/; i

<.F1f / D i
<.F1/is.f /;

i>.fF2/ D is.f /i
>.F2/; i

>.F2'/ D i
>.F2/ir.'/;

and
ir.hF1; F2i/ D hi

<.F1/; i
>.F2/i:
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(D3) The CŒ0; 1� pair .E<; E>/ is in isometric duality as defined in [8,
Definition 2.13], i.e. the maps

E< ! LCŒ0;1�.E
>;CŒ0; 1�/; E> ! LCŒ0;1�.E

<;CŒ0; 1�/

are isometries.
(D40) The representation E of � is restriction of some representation of G on

which K acts by isometries, and 8x 2 E>; � 2 E<,

ke0 ˝ xk QE> � kxkE>;ke0 ˝ �k QE< � k�kE< ;

where e0 2 C.�/ is the Dirac function at the neutral element (and thus
e0 ˝ x 2 C.�;E>/; e0 ˝ � 2 C.�;E</).

Proposition 2.1. Suppose � has property .TSchur; G;K/ as in Definition 1.1. Then
for any continuous length function ` on G, the 4-tuple G;K; `; � do not satisfy
. QD0/ D .D1/C .D2/C .D3/C .D40/.

The proof of Proposition 2.1 is an adaptation of the proof of Proposition 4.2 in [8]
to our situation.
Lemma 2.2. Suppose � satisfies .D1/ C .D2/ C .D40/. Then 8s > 0, there
exists Cs > 1, such that 8x 2 E>; � 2 E< both of norms � 1, putting ct .
/ D
h�; �t .
/xi;8
 2 � , we have 8n 2 N;8t 2 Œ0; 1�,

kSchurct jC.�\Bn/k � Cse
sn:

Proof. For any f 2 C.�/ we have the following fundamental calculation

he0 ˝ �; f .e0 ˝ x/i D
X

2�

f .
/h�; �t .
/xie


D Schurct f 2 C.�/:

By condition .D2/ and .D40/,

kSchurct f kC�r .�/ � ke0 ˝ �k QE<kf kBske0 ˝ xk QE>
� k�kE<kf kBskxkE> � kf kBs :

When suppf � Bn, by condition .D1/,

kSchurct f kC�r .�/ � Cse
sn
kf kC�r .�/:

Proof of Proposition 2.1. We prove it by contradiction. Suppose �;G;K; ` sat-
isfy . QD0/ and � has property .TSchur; G;K/ . By Lemma 2.2 we see that when �; x
are both K-invariant, ct .g/ is a Cauchy sequence

jct .g/ � ct .g
0/j � Cs.�.g/C �.g

0//;8g; g0 2 G:
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By condition (D3) we have

sup
k�kE<�1;
K-invariant;
t2Œ0;1�

jh�; .�t .g/ � �t .g
0//xij D kh�; .�.eKeg/ � �.eKeg0//xikL.E<;CŒ0;1�/

D k.�.eKeg/ � �.eKeg0//xkE> ;

where eK is the characteristic function ofK � G. As a consequence, �.eKegeK/ is
also a Cauchy sequence

k�.eKegeK/ � �.eKeg0eK/kLCŒ0;1�.E</ � Cs.�.g/C �.g
0//:

For the same reason

k�.eKegeK/ � �.eKeg0eK/kLCŒ0;1�.E>/ � Cs.�.g/C �.g
0//:

Denote by P the limit of �.eKegeK/. We see that g0kg tends to infinity when g0
tends to infinity since `.gkg0/ � `.g0/ � `.g�1/. Therefore, we have

eKegP D lim
g0
�
�
eK

Z
K

egkg0dkeK

�
D P;

and P 2 D lim
g

lim
g0
�
�
eK

Z
K

egkg0dkeK

�
D P:

Moreover, when Et is a Hilbert space and .�t ; Et / is a unitary representation of G,
Pt 2 L.Et / is the projection onto G-invariant vectors PtEt D EGt . Indeed,
8x 2 PtEt , 8g 2 G,

k�.eg/x � �.eKeg/xk
2
D k�.eg/xk

2
� k�.eKeg/xk

2
D kxk2 � kxk2 D 0;

we have
x D �.eKeg/x D �.eg/x:

P 2 LCŒ0;1�.E/ and consequently PTP 2 LCŒ0;1�.E/. We denote by ImP
the CŒ0; 1�-pair whose underlying Banach spaces are the images of E<; E> under
the maps P<; P>. We have that .ImP;PTP / 2 Eban.C;CŒ0; 1�/. Indeed,
ŒeKegeK ; T � 2 KCŒ0;1�.E/, as a consequence ŒP; T � 2 KCŒ0;1�.E/. Moreover,

P � .PTP /2P D P.1 � T 2/C P ŒP; T �T C PTP ŒP; T � 2 KCŒ0;1�.E/;

which means IdImP �.PTP /2 2 KCŒ0;1�.ImP /.
Now .�0; E0/ is the trivial representation of G .E0 D C/, and .�1; E1/ is a

unitary representation of G without G-invariant vectors. P0T0P0 W C ! 0 has
index 1 whereas P1T1P1 W 0 ! 0 has index 0, this is a contradiction and the
proposition is proved.
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Now let G be a semisimple group over a local field, K ¨ G a maximal compact
subgroup, � ¨ G a lattice.

Let ` W G ! R�0 be the K biinvariant length function induced from the
G-invariant Riemannianmetric from the symmetric space or the Bruhat–Tits building
associated to G. Recall that when the split rank of G is � 2, � has Kazhdan’s
property .T / and thus is finitely generated. The word metric and Riemannian metric
on � are bi-Lipschitz [12].

When � has property .RD/, it is shown in [8] that G;K; `; � satisfy
conditions . QD0/ above, and thus do not fulfil the condition in Definition 1.1. We
give a direct proof of this fact.

Proposition 2.3. If � has property .TSchur; G;K/ as in Definition 1.1, then � does
not have property (RD) for any continuous length function restricted from G. In
particular when the split rank of G is � 2, � does not have property (RD) for the
word length.

Proof. Suppose that� has property (RD)with respect to the polynomialP.n/ D RnD
for some R;D � 0.

Denote by �Bm the characteristic function of Bm (ball of radius m) for m 2 N.
For f 2 C.�/ with suppf � Bn, we have

kSchur�Bm f kC�r .�/ � Rmin.m; n/DkSchur�Bm f k`2.�/ � Rn
D
kf k`2.�/

� RnDkf kC�r .�/;8m 2 N:

Namely, for any s > 0, there exists Cs > 0 such that

kSchur�Bm jC.�\Bn/k � Cse
sn;8n 2 N:

Now let s 2 .0; s0/, by property .TSchur; G;K/ ,

j�Bm.
/j � Cs�.
/;8m 2 N;8
 2 �;

which is a contradiction to the assumption that � 2 C0.�/ is a function vanishing at
infinity.

3. First proof of Theorem 1.2

First let us be more precise on the notations.
Let by Fq a finite field of characteristic different from 2 with cardinality q.

Denote by F D Fq..�// the local field of Laurent series in � with coefficients in Fq ,
O D FqŒŒ��� the ring of formal series in � , i.e. the ring of integers of F .
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Let G D Sp4.F /, i.e. the symplectic group of 4 by 4 matrices A 2 M4.F /

satisfying AJ tA D J , where tA denotes the transpose of A and

J D

0BB@
0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

1CCA :
Let K D Sp4.O/, a maximal compact subgroup of G.

Now let � D Sp4.FqŒ��1�/. By the well-known reduction theory of Harish-
Chandra–Borel–Behr–Harder, � is lattice in G, and by Godement’s compactness
criterion (see [14, IV 1.4] in the case of characteristic p), it is non-cocompact.

Denote byH the unipotent subgroup in � consisting of elements of the form0BB@
1 a12 a13 a14

1 a23 a24
1 a34

1

1CCA 2 �:
Note that for aij 2 F; 1 � i < j � 4, a matrix of this form is in Sp4.F / if and only
if a12 C a34 D 0 and a13 � a12a23 � a24 D 0.

We define an explicit length function on G. Denote by D.i; j / the diagonal
element

D.i; j / D

0BB@
��i

��j

�j

� i

1CCA 2 G
for any .i; j / in the Weyl chamber ƒ D f.i; j / 2 N; i � j g. By Cartan
decomposition, ƒ is in bijection with the double coset KnG=K via the map
.i; j / 7! KD.i; j /K; .i; j / 2 ƒ. Let ` W G ! N be the length function on G
defined by `.kD.i; j /k0/ D i C j; .i; j / 2 ƒ; k; k0 2 K. It is clear that ` is bi-
Lipschitz equivalent to the length function induced from the distance on the Bruhat–
Tits building associated to G. For any continuous length function `0 W G ! R�0,
there exists � > 0 such that `0 � �.`C 1/.

It is clear thatH surjects onto the double cosets KnG=K, since0BB@
1 0 0 ��j

1 ��i 0

1 0

1

1CCA 2 KD.i; j /K:
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The following theorem is a more precise statement of Theorem 1.2 in the
introduction.
Theorem 3.1. Let s0 D logq

6
. There exists a constant Cq > 0 depending only on q,

such that the following holds. For any s 2 Œ0; s0/ and C > 0, for any K-biinvariant
function c 2 C.G/ with the following Schur condition

kSchurc jC.H\Bn/k � Ce
sn; 8n 2 N; (3.1)

there exists a limit c1 2 C to which c tends exponentially fast

jc.g/ � c1j � CCqe
�`.g/.s0�s/=4; 8g 2 G:

Proof of Theorem 1.2 from Theorem 3.1. Let `0 be any length function on G. There
exists � > 0 such that 8g 2 G; `0.g/ � �.`.g/C 1/. With s00 D s0=�; s

0 2 Œ0; s00/

and �0.g/ D Cqes�e�`.g/.s0�s�/=4;8g 2 G, Theorem. 1.2 is proved.

Proposition 3.2. For any K biinvariant function c 2 C.G/, we have

jc.D.i; j // � c.D.i; j C 1//j � 2q�.i�j /=2kSchurc jC.H\B2i /k; (3.2)

for any .i; j / 2 ƒ with i � 1 and

jc.D.i; j // � c.D.i C 1; j � 1//j � 2q3 � q�j kSchurc jC.H\BiCj /k; (3.3)

for any .i; j / 2 ƒ with j � 3.

Proof of Theorem 3.1 from Proposition 3.2. The argument is very similar to that in
the proof of Proposition 3.1 by Lemma 3.3 and 3.4 in [11]. By hypothesis

kSchurc jC.H\Bn/kC�r .H/ � Ce
sn;8n 2 N;

the two inequalities in Proposition 3.2 imply respectively

jc.D.i; j // � c.D.i; j C 1//j � 2q�.i�j /=2Ce2si ; (3.4)

jc.D.i; j // � c.D.i C 1; j � 1//j � 2q3 � q�jCes.iCj /: (3.5)

Combing the two inequalities above we have

jc.D.3j; j // � c.D.3j C 3; j C 1//j � CCqe
�.logq�6s/j :

By moving along the line i D 3j in the Weyl chamber as illustrated below, we have

jc.D.3j; j // � c1j � CCqe
�.logq�6s/j :

When i � 3j ,

jc.D.i; j // � c1/j � CCqe
�.logq�6s/i=3

� CCqe
�.logq�6s/.iCj /=4:

When i � 3j ,

jc.D.i; j // � c1/j � CCqe
�.logq�6s/.iCj /=4:
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(i,j)

i

j

i=3j

i=j

R

6 R

6

R

6

R

6

To prove Proposition 3.2, we quote the following lemma in [10], which will be
applied in the proof to some finite subgroups inH .
Lemma3.3 ([10, Lemma 4.9]). Letm; n 2 N�; k 2 f1; 2; : : : ; mg. LetH be a locally
compact amenable group, ˛; ˇ W .O=�mO/nC1 ! H two maps. Let f 2 Cc.H/
satisfying

f .˛.a1; : : : ; an; b/ˇ.x1; : : : ; xn; y// D �; if y D
nX
iD1

aixi C b C �
k
2 O=�mO;

and

f .˛.a1; : : : ; an; b/ˇ.x1; : : : ; xn; y// D �; if y D
nX
iD1

aixi C b C �
k�1
2 O=�mO:

Then
j� � �j � 2q�nk=2kf kMA.H/

where
kf kMA.H/ D supfkSchurf .'/kC�r .H/; k'kC�r .H/ � 1g:

Let us remark that when H is an arbitrary locally compact group, the lemma
above still holds if in the conclusion kf kMA.H/ is replaced by

kf kM0A.H/ D sup
B H�C�-algebra

fkSchurf .'/kC�r .H;B/; k'kC�r .H;B/ � 1g:

But we do not need this generality in the proof of Proposition 3.2.
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Proof of the first inequality in Proposition 3.2. We adapt the arguments in the proof
of Lemma 2.1 in [9] to our situation by discretizing the matrices.

Denote by Œ�� W Fq..�//! FqŒ��1� the integral part of an element, i.e.

Œai�
�i
C ai�1�

�iC1
C � � � C a1�

�1
C a0 C a�1� C � � � �

D ai�
�i
C ai�1�

�iC1
C � � � C a1� C a0;8a� 2 Fq:

Let� WO=� iC1O!O D FqŒŒ��� be any section. Define˛; ˇ W.O=� iC1O/2!H

by

˛.a; b/ D

0BB@
1 0 Œ��i�.a/� Œ��i�.a2 � b/�

0 1 ��i Œ��i�.a/�

0 0 1 0

0 0 0 1

1CCA ;

ˇ.x; y/ D

0BB@
1 0 Œ��i�.x=2/� Œ��i�.x2=4C y/�

0 1 0 Œ��i�.x=2/�

0 0 1 0

0 0 0 1

1CCA ;
for any a; b; x; y 2 O=� iC1O.

Compute ˛.a; b/ˇ.x; y/

D

0BB@
1 0 Œ��i .�.x=2/C �.a//� Œ��i .�.x2=4C y/C �.a2 � b//�

0 1 ��i Œ��i .�.x=2/C �.a//�

0 0 1 0

0 0 0 1

1CCA :
We see that 8a; b; x; y 2 O=� iC1O; k˛.a; b/ˇ.x; y/k D qi (the .2; 3/ matrix

element achieves the maximal norm). Moreover, we see that

det
�
Œ��i .�.x=2/C �.a//� Œ��i .�.x2=4C y/C �.a2 � b//�

��i Œ��i .�.x=2/C �.a//�

�
D ���2i .y � ax � b/ mod ��iC1O:

So for any l 2 f0; 1; : : : ; ig, when

y � ax � b 2 � lO�=� iC1O (3.6)

(where O� denotes the group of units of O), we have

k ^
2 .˛.a; b/ˇ.x; y//k D q2i�l :

That is to say for any l 2 f0; 1; : : : ; ig, when a; b; x; y 2 O=� iC1O satisfy 3.6, we
have

˛.a; b/ˇ.x; y/ 2 KD.i; i � l/K:
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Now denote for any n 2 N�,

Hn
1 D f

�
1 0 x z
1 y x
1 0
1

�
; x; y; z 2 FqŒ��1�; jxj; jyj; jzj � qng;

which is a finite subgroup of H . Note that the images of ˛ and ˇ both lie in H i
1.

Apply Lemma 3.3 to n D 1;m D i C 1; k D i � j , the finite group H i
1, ˛; ˇ as

above, and f D cjH i
1
; � D c.D.i; j //; � D c.D.i; j C 1//, we have

jc.D.i; j // � c.D.i; j C 1//j � 2q�
i�j
2 kSchurcj

Hi
1

k

� 2q�
i�j
2 kSchurc jC.H\B2i /k:

The last inequality is due to the facts that H i
1 � H \ B2i and kf kC�r .H i1/ D

kf kC�r .H/;8f 2 C.H i
1/ � C.H/.

Proof of the second inequality in Proposition 3.2. We will use discretization as in
the proof of the first inequality, and improve the matrices in the proof of Lemma 2.2
in [9]. This improvement allows us to use the case of n D 2 of Lemma 3.3 (whereas
in the proof of the first inequality only n D 1 can be used), resulting in the better
factor q�j .

We first write the matrices that are useful in both cases when i C j is even and
when i C j is odd. Let m 2 N. Let � W O=�mC1O ! O be any section. Define
˛; ˇ W .O=�mC1O/3 ! H by

˛.a1; a2; b/

D

0BB@
1 �Œ��m�1.1C ��.a1//� Œ��m�1.1C ��.a2//� �Œ��2m�.b/�

0 1 0 Œ��m�1.1C ��.a2//�

0 0 1 Œ��m�1.1C ��.a1//�

0 0 0 1

1CCA ;
ˇ.x1; x2; y/

D

0BB@
1 Œ��m�.x2/� Œ��m�.x1/� ��m�1Œ��m.�.x1/C �.x2//�C Œ�

�2m�.y/�

0 1 0 Œ��m�.x1/�

0 0 1 �Œ��m�.x2/�

0 0 0 1

1CCA ;
for a1; a2; b; x1; x2; y 2 O=�mC1O.

Compute

˛.a1; a2; b/ˇ.x1; x2; y/ D

0BB@
1 ��1 �2 �

0 1 0 �2
0 0 1 �1
0 0 0 1

1CCA ;
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where

�1 D Œ�
�m�1.1C ��.a1/ � ��.x2//�;

�2 D Œ�
�m�1.1C ��.a2/C ��.x1//�;

� D Œ��2m.�.y/ � �.b//� � Œ��m�.a1/�Œ�
�m�.x1/� � Œ�

�m�.a2/�Œ�
�m�.x2/�

D ��2m.y � b � a1x1 � a2x2/ mod ��mC1O:

Let us now prove the estimate when i C j 2 2N. Let

m D .i C j /=2 � 1:

We see that for any a1; a2; b; x1; x2; y 2 O=�mC1O,

k ^
2
�
˛.a1; a2; b/ˇ.x1; x2; y/

�
k D q2mC2 D qiCj :

Moreover, when

y � .a1x1 C a2x2 C b/ 2 �
lO�=�mC1O; l 2 f0; 1; : : : ; m � 1g; (3.7)

we have
k˛.a1; a2; b/ˇ.x1; x2; y/k D q

2m�l :

Summarizing, for a1; a2; b; x1; x2; y 2 O=�mC1O satisfying (3.7) above, we have

˛.a1; a2; b/ˇ.x1; x2; y/ 2 KD.i C j � 2 � l; l C 2/K:

Define for n 2 N,

Hn
2 D f

� 1 x y z
1 0 y
1 �x
1

�
; x; y; z 2 FqŒ��1�; jxj; jyj � qn; jzj � q2ng:

It is also a finite subgroup ofH . Note that the images of ˛ andˇ are both inH .iCj /=2
2 .

Apply Lemma 3.3 to n D 2;m D .i C j /=2; k D j � 2;H
.iCj /=2
2 , and ˛, ˇ as

above, and f D cj
H
.iCj/=2
2

; � D c.D.i; j //; � D c.D.i C 1; j � 1//, and since

H
.iCj /=2
2 � H \ BiCj , we have

jc.D.i; j // � c.D.i C 1; j � 1//j � 2q�.j�2/kSchurcj
H
.iCj/=2
2

k

� 2q2 � q�j kSchurc jC.H\BiCj /k:

Now prove the estimate when i C j 2 2NC 1. In this case let

m D .i C j � 1/=2 � 1:
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Define the embedding � W Fq ! H by

�."/ D

0BB@
1 0 0 0

1 ��1" 0

1 0

1

1CCA ; 8" 2 Fq:

DefineH 0n2 ; n 2 N as the following subgroup ofH2,

H 0n2 D f

� 1 x y z
1 0 y
1 �x
1

�
jxj � qn; jyj �; qnC1; jzj � q2nC1g:

H 0n2 is stable under the conjugate action of �.Fq/. Define QHn
2 to be the finite subgroup

QHn
2 D �.Fq/ �H 0n2 .
Now let Q̨ W .O=�mC1O/3 ! H be the map defined by

Q̨ .a1; a2; b/ D �.1/˛.a1; a2; b/; 8a1; a2; b 2 O=�mC1O:

By easy computation we see that 8a1; a2; b; x1; x2; y 2 O=�mC1O,

Q̨ .a1; a2; b/ˇ.x1; x2; y/ D

0BB@
1 ��1 �2 �

0 1 ��1 �2 C �
�1�1

0 0 1 �1
0 0 0 1

1CCA :
We see

k ^
2 . Q̨ .a1; a2; b/ˇ.x1; x2; y//k D q

2mC3
D qiCj :

And when

y � .a1x1 C a2x2 C b/ 2 �
lO�=�mC1O; l 2 f0; 1; : : : ; m � 1g;

we have
k Q̨ .a1; a2; b/ˇ.x1; x2; y/k D q

2m�l :

Namely in this case, we obtain the decomposition

Q̨ .a1; a2; b/ˇ.x1; x2; y/ 2 KD.i C j � l � 3; l C 3/K:

The images of Q̨ and ˇ are both in QH .iCj�1/=2
2 . Now apply Lemma 3.3 to

n D 2, m D .i C j � 1/=2, k D j � 3, QH .iCj�1/=2
2 , Q̨ , ˇ and f D cj QH .iCj�1/=2

2

,

� D c.D.i; j //, � D c.D.i C 1; j � 1//, and since QH .iCj�1/=2
2 � H \ BiCj , we

have

jc.D.i; j // � c.D.i C 1; j � 1//j � 2q�.j�3/kSchurcj
QH
.iCj�1/=2
2

k

� 2q3 � q�j kSchurc jC.H\BiCj /k:
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4. Second proof of Theorem 1.2

In this section, another proof of Theorem 1.2, more precisely of Theorem 3.1, is given
by showing the following proposition (a slightly improved version of Proposition 3.2
in the first inequality).
Proposition 4.1. For any K biinvariant function c 2 C.G/, we have

jc.D.i; j // � c.D.i; j C 1//j � 2q�.i�j /=2kSchurc jC.H\Bn1 /k; (4.1)

for any .i; j / 2 ƒ with i � 1 where

n1 D max.`.D.i; j //; `.D.i; j C 1/// D i C j C 1

and

jc.D.i; j // � c.D.i C 1; j � 1//j � 2q2 � q�j kSchurc jC.H\Bn2 /k; (4.2)

for any .i; j / 2 ƒ with j � 3 where

n2 D max.`.D.i; j //; `.D.i C 1; j � 1/// D i C j:

LetH1 be the abelian subgroup inH

H1 D fh1.x; y; z/ D

�
1 0 x z
1 y x
1 0
1

�
; x; y; z 2 FqŒ��1�g;

and letH2 be the subgroup of Heisenberg type inH

H2 D fh2.x; y; z/ D

 
1 x y=2 z
1 0 y=2

1 �x
1

!
; x; y; z 2 FqŒ��1�g:

The group law is as follows:

h2.x; y; z/h2.x
0; y0; z0/ D h2.x C x

0; y C y0; z C z0 C
1

2
.xy0 � yx0//:

The proof of the two inequalities in Proposition 4.1 relies on the construction as
follows of two family of explicit functions onH1 andH2 respectively.

Denote by Œ�� W Fq..�//! FqŒ��1� the integral part of an element as defined in
the previous section. Now fix .i; j / 2 ƒ. Define

h1;i;j D E
a2O=�iO

eh1.Œ��ia�;��i ;Œ��ia2�C��j /;

h2;i;j D E
a;b;c2O=�iO

eh2.Œ��m.1C�a/�;Œ��mb�;Œ��i .1C�c/�/;
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wherem D mi;j is the integral part of .iCj /=2, i.e. when iCj 2 2N,m D .iCj /=2,
when i C j 2 2NC 1, m D .i C j � 1/=2. More explicitly,

h1.Œ�
�ia�; ��i ; Œ��ia2�C ��j /

D

0BB@
1 0 Œ��ia� Œ��ia2�C ��j

1 ��i Œ��ia�

1 0

1

1CCA ; a 2 O=� iO:

h2.Œ�
�m.1C �a/�; Œ��mb�; Œ��i .1C �c/�/

D

0BB@
1 Œ��m.1C �a/� Œ��mb�=2 Œ��i .1C �c/�

1 0 Œ��mb�=2

1 �Œ��m.1C �a/�

1

1CCA ; a; b; c 2 O=� iO:

The explicit functions are defined as

�1;i;j D h1;i;j � h1;i;jC1 2 CH1;
�2;i;j D h2;i;j � h2;iC1;j�1 2 CH2:

Proposition 4.2.

k�1;i;j kC�r .H1/ � 2q
�.i�j /=2 (4.3)

k�2;i;j kC�r .H2/ � 2q
2
� q�j (4.4)

Proof of Proposition 4.1 from Proposition 4.2. Recall that for any

g D .g˛;ˇ /1�˛;ˇ�4 2 G; g 2 KD.i; j /K

for .i; j / 2 ƒ if and only if

kgk D max
1�˛;ˇ�4

jg˛;ˇ j D q
i

and
k ^

2 gk D max
1�˛1;ˇ1;˛2;ˇ2�4

jg˛1;ˇ1g˛2;ˇ2 � g˛1;ˇ2g˛2;ˇ1 j D q
iCj :

By definition we have

h1.Œ�
�ia�; ��i ; Œ��i .a2 C � i�j /�/ 2 H1 \KD.i; j /K;

i.e.
supp h1;i;j � H1 \KD.i; j /K:
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SinceH is amenable, we have

jc.D.i; j // � c.D.i; j C 1//j D
ˇ̌̌ X
h2H

c.h/�1;i;j .h/
ˇ̌̌

� kSchurc.�1;i;j /kC�r .H/
� kSchurc jC.H\Bn1 /kk�1;i;j kC�r .H/:

Now thatH1 is a subgroup ofH , we have that k�1;i;j kC�r .H/ D k�1;i;j kC�r .H1/,
so the first inequality is proved. The second inequality requires a bit more
computation.

First, when i C j 2 2N, we have by definition

supp h2;i;j � H2 \KD.i; j /K;

jc.D.i; j // � c.D.i C 1; j � 1//j D
ˇ̌̌ X
h2H

c.h/�2;i;j .h/
ˇ̌̌

� kSchurc.�2;i;j /kC�r .H/
� kSchurc jC.H\Bn2 /kk�2;i;j kC�r .H/;

and
k�2;i;j kC�r .H/ D k�2;i;j kC�r .H2/:

When i C j 2 2NC 1,

�.1/h2.Œ�
�m.1C �a/�; Œ��mb�; Œ��i .1C �c/�/

D

0BB@
1 Œ��m.1C �a/� Œ��mb�=2 Œ��i .1C �c/�

1 ��1 Œ��mb�=2 � ��1Œ��m.1C �a/�

1 �Œ��m.1C �a/�

1

1CCA
2 KD.i; j /K;

8a; b; c 2 O=� iO, where m D .i C j � 1/=2 as before, and

�."/ D

0BB@
1 0 0 0

1 "��1 0

1 0

1

1CCA ; " 2 Fq:

Finally, we have

jc.D.i; j // � c.D.i C 1; j � 1//j D
ˇ̌̌ X
h2H

c.h/�2;i;j .�.1/h/
ˇ̌̌

� kSchurc.L�.�1/�2;i;j /kC�r .H/
� kSchurc jC.H\Bn2 /kkL�.�1/�2;i;j kC�r .H/;
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and
kL�.�1/�2;i;j kC�r .H/ D k�2;i;j kC�r .H2/;

so the second inequality is proved.

Now it suffices to show Proposition 4.2, whose proof unlike Proposition 3.2 does
not rely on Lemma 4.9 in [10].

Proof of inequality (4.3) in Proposition 4.2. Here we follow [7].

Lemma 4.3 (Norm of quadratic Gauss sum). If the character � 2 2O=�`O is non-
degenerate (i.e. �j�`�1O=�`O ¤ 1), thenˇ̌̌

E
a2O=�`O

�.a2/
ˇ̌̌
D q�`=2:

Proof.ˇ̌̌
E

a2O=�`O
�.a2/

ˇ̌̌2
D

ˇ̌̌
E

a;b2O=�`O
�.a2 � b2/

ˇ̌̌
D

ˇ̌̌
E

a;b2O=�`O
�
�
.a � b/.aC b/

�ˇ̌̌
:

Since q is odd, we can introduce new variables x D a C b; y D a � b which is an
invertible linear transform on .O=�`O/2, thusˇ̌̌

E
a2O=�`O

�.a2/
ˇ̌̌2
D

ˇ̌̌
E

x;y2O=�`O
�.xy/

ˇ̌̌
D q�`:

SinceH1 is an abelian group, 8' 2 CH1,

k'kC�r .H1/ D sup
�2cH1

ˇ̌
�.'/

ˇ̌
:

Fix � 2 cH1, and suppose �1; �2; �3 2 2FqŒ��1� such that 8x; y; z 2 FqŒ��1�,
�.h1.x; y; z// D �1.x/�2.y/�3.z/.

�.�1;i;j / D �2.�
�i /
�
�3.�

�j / � �3.�
�j�1/

�
E

a2O=�iO
�1
�
Œ��ia�

�
�3
�
Œ��ia2�

�
:

We see that unless �.�1;i;j / D 0, we have Ker
�
�3
�
Œ��i ��

��
� � i�jO, and

Ker
�
�1
�
Œ��i ��

��
� Ker

�
�3
�
Œ��i ��

��
(see footnote1). Consequently, there exists

� 2 O, such that �1
�
Œ��i ��

�
D �3

�
Œ��i� ��

�
.

1If we replace h1;i;j by the function
h01;i;j D E

a;b;c2O=�iO
eh1.Œ��ia�;Œ��i .1C�b/�;Œ��ia2C��j .1C�c/�/;

we can then locate the support of�0
1;i;j
D h0

1;i;j
� h0

1;i;jC1
more precisely, i.e. we have

Ker
�
�3
�
Œ��i ��

��
D �i�jO or �i�jC1O;

Ker
�
�1
�
Œ��i ��

��
� �i�jC1O and Ker

�
�2
�
Œ��i ��

��
� �O:

But this is not very useful in the current situation.
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Now we have

j�.�1;i;j /j � 2
ˇ̌̌

E
a2O=�iO

�3
�
Œ��i .�aC a2/�

�ˇ̌̌
:

Since q is odd, .�=2/2 C �a C a2 D .�=2 C a/2; j�3
�
Œ��i .�=2/2�

�
j D 1, we

have by Lemma 4.3,

j�.�1;i;j /j � 2
ˇ̌̌

E
a2O=�iO

�3
�
Œ��i .�=2C a/2�

�ˇ̌̌
� 2q�.i�j /=2

(see footnote2).

Proof of inequality (4.4) in Proposition 4.2. Let �; �0 2 2FqŒ��1�; � ¤ 0. We define
a unitary representation of ��;�0 W H2 ! U.`2.FqŒ��1�// by

��;�0.h2.a; b; c//f .x/ D f .x C a/�.xb/�
�
c C

1

2
ab
�
�0.b/

(it is well defined since q is odd).

V. Lafforgue suggested the following formula for calculating theC �r norms onH2.
Lemma 4.4. 8' 2 CH2,

k'kC�r .H2/ D sup
�;�022Fq Œ��1�;�¤0

k��;�0.'/kL.`2.Fq Œ��1�//:

Remarks. (1) Being a counterpart ofH2 in a number field, the following discrete
Heisenberg group

H2.Z/ D fh2.x; y; z/ D

 
1 x y=2 z
1 0 y=2

1 �x
1

!
; x; z 2 Z; y 2 2Zg

also admits a similar formula for the C �r norms. More precisely, for �; � 0 2 Œ0; 1/,
define the unitary representation ��;� 0 W H2.Z/ ! U.`2.Z// of central character �
by a similar formula

��;� 0.h2.a; b; c//f .x/ D f .x C a/e
2�i�xbe2�i�.cC

1
2ab/e2�i�

0b;

then we have 8' 2 C.H2.Z//,

k'kC�r .H2.Z// D sup
�;� 02Œ0;1/

k��;� 0.'/kL.`2.Z//:

2In fact, it suffices to prove this final inequality for rational � 2cH1, i.e. there exist 2 bF vanishing
on �O and being non zero on O, and t1; t2; t3 2 FqŒ��1� such that �i .�/ D  .ti �/, i D 1; 2; 3. Note
that  .t �/ vanishes on �`C1O and is non zero on �`O if and only if jt j D q`. With this notation,
jt3j � q

j�1, jt1j � jt3j unless �.�1;i;j / D 0.
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(2) The formula for the C �r norm in the first remark can be reduced to those
irrational � 2 Œ0; 1/nQ and � 0 D 0, i.e. 8' 2 C.H2.Z//,

k'kC�r .H2.Z// D sup
�2Œ0;1/nQ

k��;0.'/kL.`2.Z// :

(The analogues formula also holds for H2, but we don’t use it the proof). Indeed,
when � is irrational, ��;0.H2.Z// generates algebraA� which is a simpleC � algebra,
i.e. any representation of A� is faithful. Moreover, for any C � algebra A and any
representation �1; �2 W A! L.H/, we have

Ker�1 � Ker�2, k�1.a/kL.H/ � k�2.a/kL.H/; 8a 2 A:

By applying the previous fact to the representation of A� generated by ��;� 0.H2.Z//,
we have

k��;� 0.'/k D k��;0.'/k;8�
0
2 Œ0; 1/; 8' 2 C.H2.Z//:

Proof of Lemma 4.4. Let N2 � H2 be the following Heisenberg group

N2 D fh2.x; y; z/ D

 
1 x y=2 z
1 0 y=2

1 �x
1

!
; x; y; z 2 F D Fq..�//g;

and for a character � 2 OF nf0g, denote by �� W N2 ! U.L2.F // the representation
defined by

��.h2.a; b; c//f .x/ D f .x C a/�.xb/�
�
c C

1

2
ab
�
; a; b; c; x 2 F:

LetD be the fundamental domainD D �O for the translation of FqŒ��1� on F .
We have an isomorphism of representations ofH

��jH2 '

Z ˚
D

��jFqŒ��1�;�jFqŒ��1�.ı �/
dı

defined by

L2.F /
�
�!

Z ˚
D

`2.FqŒ��1�/dı;

� 7!
��
r 7! �.r C ı/

�
2 `2

�
Fq
�
��1

���
ı2D

;

where �jFq Œ��1�.ı�/ denotes the character Œ
 7! �.ı
/� 2 2FqŒ��1�.
We write the action of �2;i;j in the following form

��;�0.�2;i;j /f .x/

D C E
a;b2O

�
f
�
xC

�
��m.1C�a/

��
�
��
xC

1

2

�
��m.1C�a/

���
��mb

��
�0
��
��mb

���
;



About the obstacle to proving the Baum–Connes conjecture without coefficient 1263

where
C D E

c2O

�
�
�
Œ��i .1C �c/�

�
� �

�
Œ��i�1.1C �c/�

��
:

We use constantly the following basic fact in the proof: for any finite abelian
group A and any unitary character � 2 bA, we have

E
a2A

�.a/ D 1 when � 2 bA is trivial;

E
a2A

�.a/ D 0 when � 2 bA is non-trivial.
(4.5)

Lemma 4.5. If C ¤ 0, then

�jŒ��iC1O� D 1 2
4Œ��iC1O� and �jŒ��i�1O� ¤ 1 2

3Œ��i�1O�:

Proof of Lemma 4.5. If �jŒ��i�1O� is trivial, then C D 0 since �.z1/ � �.z2/ D 0,
8z1 2 Œ�

�i�1O�, z2 2 Œ��iO�. On the other hand, if �jŒ��iC1O� is non-trivial, then
by (4.5)

E
c2O

�
��
��i .1C �c/

��
D �.��i / E

z2Œ��iC1O�
�.z/ D 0;

E
c2O

�
��
��i�1.1C �c/

��
�.��i�1/ E

z2Œ��iO�
�.z/ D 0;

and therefore C D 0.

Thematrix of��;�0.�2;i;j / is block diagonal and each block corresponds to a coset
x0 C Œ�

�mO�; x0 2 FqŒ��1�. Indeed, the action of ��;�0.�2;i;j / on `2.FqŒ��1�/
only concerns translations of elements in Œ��mO� and scalars.

It remains to show that each block of ��;�0.�2;i;j / associated to the coset
x0 C Œ�

�mO� has norm � 2q2�j ,

k��;�0.�2;i;j /j`2.x0CŒ��mO�/kL.`2.x0CŒ��mO�// � 2q
2�j : (�)

Now fix a coset x0 C Œ��mO� for some x0 2 FqŒ��1�. We provide two proofs
of (�). The two proofs are related, but the author thinks that both have merits and it
might be useful to write them down.

First proof of .�/. Denote byE" the subset x0C��m"CŒ��mC1O� � x0CŒ��mO�
for " 2 Fq . We have a disjoint union decomposition

x0 C Œ�
�mO� D t"2FqE":
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For each " 2 Fq , ��;�0.�2;i;j / sends `2.E"/ to `2.E"�1/, and thus the action of
��;�0.�2;i;j / on `2.x0 C Œ��mO�/ has the following form of block matrix0BBBB@

0 � 0 � � � 0

0 0 � � � � 0

� � �

0 0 0 � � � �

� 0 0 � � � 0

1CCCCA ;
where each block � has size qm�1 and corresponds to the action `2.E"/! `2.E"�1/.

The following lemma claims that after appropriate identification of E" and
E"�1 the block � corresponding to " is Cq�2mC1Ci .' q�j / times the projection
from `2.E"/ onto Œ�m�iO� invariant vectors in `2.E"/, and thus our inequality
follows. More precisely, by identifying x0 C ��m." � 1/ � y C y" 2 E"�1 and
x0 C �

�m"C y 2 E", ��;�0.�2;i;j / sends ıx0C��m"Cy to

Cq�2mC1Ci E
˛2O

ıx0C��m"CyCŒ�m�i˛�;

and thus has norm less than 2q�2mC1Ci � 2q2�j .

Remark. The identification of E"�1 and E" via

x0 C �
�m." � 1/C y" � y ! x0 C �

�m"C y

corresponds to the fact that Ax;y is an anti-diagonal in the second proof below (the
center of the anti-diagonal is x0 C ��m." � 1

2
/C 1

2
y").

Lemma 4.6. If ��;�0.�2;i;j /j`2.E"/ ¤ 0 2 L.`2.E"/; `2.E"�1//, then there exists
y" 2 Œ�

�mC1O�, such that 8y 2 Œ��mC1O�

��;�0.�2;i;j /f .x0 C �
�m." � 1/C y/

D Cq�2mC1Ci E
˛2O

f .x0 C �
�m" � y C y" C Œ�

m�i˛�/;

for any i � j � 2.

Proof of Lemma 4.6. By hypothesis there exist f0 2 `2.E"/ and y0 2 Œ��mC1O�
such that

��;�0.�2;i;j /f0.x0 C �
�m." � 1/C y0/

D C E
a;b2O

�
f0
�
x0 C �

�m"C y0 C
�
��mC1a/

��
� �
��
x0 C �

�m." � 1/C y0 C
1

2

�
��m.1C �a/

���
��mb

��
�0
��
��mb

���
¤ 0:
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By fixing a and averaging over b we see that there exists a0 2 O such that

�
�
.x0 C �

�m." � 1/C y0 C
1

2
Œ��m.1C �a0/�/Œ�

�mb�
�
�0.Œ��mb�/ D 1;

8b 2 O: (4.6)

Set y" D Œ��mC1a0�C 2y0 2 Œ��mC1O�.
By definition 8f 2 `2.E"/; y 2 Œ��mC1O� we have

��;�0.�2;i;j /f .x0 C �
�m." � 1/C y/

D C E
a;b2O

�
f .x0 C �

�m"C y C Œ��mC1a�/

� �
�
.x0 C �

�m." � 1/C y C
1

2
Œ��m.1C �a/�/Œ��mb�

�
�0.Œ��mb�/

�
;

by equality (4.6) it equals

D C E
a;b2O

�
f .x0C�

�m"CyCŒ��mC1a�/�
�
.y�y0C

1

2
Œ��mC1.a�a0/�/Œ�

�mb�
��
;

by the change of variables a0 D a�a0C2�m�1.y�y0/ (where 2�m�1.y�y0/ 2 Fq)
it equals

D C E
a0;b2O

�
f .x0 C �

�m" � y C y" C Œ�
�mC1a0�/�

�1
2
Œ��mC1a0�Œ��mb�

��
:

By hypotheses C ¤ 0, and by Lemma 4.5 we have �jŒ��iC1O� D 1,
�jŒ��i�1O� ¤ 1. There are two cases: �jŒ��iO� D 1 and �jŒ��iO� ¤ 1.

When �jŒ��iO� D 1; �jŒ��i�1O� ¤ 1, we have �.Œ��mc�=2/ D 1;8c 2 O and
then

�
�1
2

�
��mC1a0

��
��mb

��
D �

�1
2

�
��2mC1a0b

��
;8a0; b 2 O:

Thus

��;�0.�2;i;j /f .x0 C �
�m." � 1/C y/

D C E
a0;b2O

�
f .x0 C �

�m" � y C y" C Œ�
�mC1a0�/�

�1
2
Œ��2mC1a0b�

��
:

Being a Fourier transform for the non-degenerate character Œ˛ 7! �.1
2
Œ��2mC1˛�/� 2

6O=�2m�1�iO, it equals

Cq�2mC1Ci E
˛2O

f .x0 C �
�m" � y C y" C Œ�

m�i˛�/:

The case when �jŒ��iC1O� D 1; �jŒ��iO� ¤ 1 can be handled similarly.

This ends the first proof of (�).
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Second proof of .�/ (due to V. Lafforgue).

Lemma 4.7. If �jŒ��iC1O� D 1 24Œ��iC1O� and �jŒ��i�1O� ¤ 1 2 3Œ��i�1O�, then
unless w 2 Œ��.i�m/O�, we have that 8w 2 Œ��mO�,

E
z2Œ��mO�

�
�1
2
wz
�
D 0;

or equivalently by (4.5)�
z 7! �

�1
2
wz
��
2 2Œ��mO� is non-trivial:

Proof of Lemma 4.7. We prove it by contradiction. Suppose w D �m�i�˛w0 2

Œ�m�i�˛O��; w0 2 Fq C � � � C ��mCiC˛Fq; ˛ 2 f1; 2; : : : ; 2m � ig, such that

�jwŒ��mO� D 1 2
2Œ��mO�:

We have
�j��i�1w0.FqCFq�/ D 1:

Indeed, since 1 � ˛ � m, we have

��i�1w0.Fq C Fq�/ D ��i�˛w0.Fq�˛�1 C Fq�˛/
� ��i�˛w0.Fq C Fq� C � � � C Fq�m/ D wŒ��mO�:

Now 8"1; "2 2 Fq , there exist "01; "02 2 Fq such that "1C "2� 2 w0."01C "02�/C
�2O. Since �jŒ��iC1O� D 1, we have

�.��i�1."1 C "2�// D �.�
�i�1w0."

0
1 C "

0
2�// D 1:

As a consequence �jŒ��i�1O� D 1, which is a contradiction to the hypothesis in the
lemma.

Let A D .Ax;y/x;y2x0CŒ��mO� be the matrix of the block of ��;�0.�2;i;j /
associated to `2.x0 C Œ��mO�/.

We will show that kAkL.`2.x0CŒ��mO�// � 2q
1�j .

First we have Ax;y D 0 unless y 2 x C ��m C Œ��mC1O�, and in this case,
(since jŒ��mO�j D qmC1)

Ax;y D Cq
�m�1 E

z2Œ��mO�
�
�x C y

2
z
�
�0.z/;

i.e. by (4.5)

Ax;y D Cq
�m�1 when

�
z 7! �

�x C y
2

z
�
�0.z/

�
2 2Œ��mO� is trivial, and

Ax;y D 0 when
�
z 7! �

�x C y
2

z
�
�0.z/

�
2 2Œ��mO� is non-trivial.
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Now suppose x; y; y0 are elements in x0C Œ��mO� such that bothAx;y andAx;y0
are non-zero. By taking ratio we see that Œz 7! �.1

2
.y �y0/z/� 2 Œ��mO� is a trivial

character. By Lemma 4.7 we see that y � y0 2 Œ��.i�m/O�.
By the same argument for x; x0; y 2 x0C Œ��mO� such that both Ax;y and Ax0;y

are non-zero, we have x � x0 2 Œ��.i�m/O�.
Therefore, each line and column in A has at most jŒ��.i�m/O�j D qi�mC1 non-

zero coefficients. Each coefficient in A has absolute value at most 2q�m�1. The `2
norm of A is at most 2q�m�1 � qi�mC1 D 2qi�2m � 2q�jC1, and so is the operator
norm of A.

Remark 1. By the same argument, for x; x0; y; y0 2 x0 C Œ��mO� such that both
Ax;y and Ax0;y0 are non-zero, we have .x C y/� .x0 C y0/ 2 Œ��.i�m/O�. It means
that A is a block “anti-diagonal”.
Remark 2. Following the previous remark, we can write the action of A in the
following form (supposing Ax;y ¤ 0)

Af .x0/ D
X

y02x0CŒ��mO�

Ax0;y0f .y
0/ D

X
˛2O

Ax0;xCy�x0CŒ�m�i˛�f .x C y � x
0
C Œ�m�i˛�/;

where Ax0;xCy�x0CŒ�m�i˛� D 0 or Cq�m�1, which means that A is roughly
(the precise formula requires a more detailed analysis on Lemma 4.7) Cqi�2m
times the projection onto Œ�m�iO�-invariant functions in `2.x0 C Œ�m�iO�/, after
identifying x0 to xC y � x0, corresponding to the arguments in the first proof above.
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