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K -theory for the crossed products by certain actions of Z2

Selçuk Barlak�

Abstract.We investigate theK-theory of crossed product C�-algebras by actions ofZ2. Given a
Z2-action, we associate to it a homomorphism between certain subquotients of theK-theory of
the underlying C�-algebra, which we call the obstruction homomorphism. This homomorphism
together with the K-theory of the underlying algebra and the induced action in K-theory
determine the K-theory of the associated crossed product C�-algebra up to group extension
problems. A concrete description of this obstruction homomorphism is provided as well. We
give examples of Z2-actions, where the associated obstruction homomorphisms are non-trivial.
One class of examples comprises certain outer Z2-actions on Kirchberg algebras, which act
trivially on KK-theory. This relies on a classification result by Izumi and Matui. A second
class of examples consists of certain pointwise inner Z2-actions. One instance is given as a
natural action on the group C�-algebra of the discrete Heisenberg group. We also compute
the K-theory of the corresponding crossed product. A general and concrete construction yields
various examples of pointwise inner Z2-actions on amalgamated free product C�-algebras with
non-trivial obstruction homomorphisms. Among these, there are actions that are universal, in a
suitable sense, for pointwise inner Z2-actions with non-trivial obstruction homomorphisms. We
also compute theK-theory of the crossed products associatedwith these universal C�-dynamical
systems.
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1. Introduction

The study of group actions on C�-algebras and their associated crossed product
C�-algebras plays an important role within the field of operator algebra theory.
Beside the fact that many interesting and prominent C�-algebras arise naturally as
crossed products, their importance is also due to the various connections to other
fields such as representation theory, index theory and topological dynamical systems.
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One of the most important invariants for crossed product C�-algebras is
topological K-theory. However, given an action of a locally compact group on a
C�-algebra, it is often very difficult to compute the K-theory of the corresponding
crossed product, even if theK-theory of the underlyingC�-algebra is well understood.
One approach to the computation of the K-theory of the reduced crossed product,
which is accessible via topological methods, is proposed by the famous Baum–
Connes Conjecture [2,3]. The conjecture is known to hold for a strikingly large class
of groups. In this context, we emphasize the deep work of Higson and Kasparov [12]
on groups with the Haagerup property, and of Lafforgue [16] on hyperbolic groups.

For actions of the integer group, the celebrated Pimsner–Voiculescu exact
sequence [20] is a very powerful tool to compute the K-theory of the corresponding
crossed products. Given a C�-dynamical system .A; ˛;Z/, it gives in particular rise
to a short exact sequence

0 // coker.K�.˛/ � id/ // K�.A Ì˛ Z/ // ker.K�C1.˛/ � id/ // 0:

This shows thatK�.AÌ˛ Z/ is determined by the actionK�.˛/ W Z Õ K�.A/ up to
a group extension problem.

It is natural to ask to what extends this property ofZ-actions generalises to actions
of Zn. More concretely, we can ask the following:
Question. Given a C�-dynamical system .A; ˛;Zn/, does theK-theory of AÌ˛ Zn

only depend on K�.˛/ W Zn Õ K�.A/ up to group extension problems?
In this paper, we provide examples of Z2-actions giving a negative answer to

this question. To this end, we associate to a given C�-dynamical system .A; ˛;Z2/
a group homomorphism d�.˛/ between certain subquotients of K�.A/, which we
call the obstruction homomorphism. It is constructed using the Pimsner–Voiculescu
sequence and its naturality property. This homomorphism together with the action
K�.˛/ W Z2 Õ K�.A/ determines K�.A Ì˛ Z2/ up to group extension problems.
The name for d�.˛/ justifies since it obstructsK�.AÌ˛ Z2/ to be solely determined
by K�.˛/ W Z2 Õ K�.A/ up to group extension problems.

The instances of Z2-actions with negative answer to the above question that we
discuss in thiswork all act trivially onK-theory, but give rise to non-trivial obstruction
homomorphisms. The first class of examples consists of certain Z2-actions on
Kirchberg algebras. The fact that many such actions induce non-trivial obstruction
homomorphisms turns out to be a consequence of Izumi’s and Matui’s classification
of outer locally KK-trivial Z2-actions on Kirchberg algebras, see [13].

As a second class, we consider pointwise inner Z2-actions. Contrary to the naïve
expectation, we find examples with non-trivial obstruction homomorphisms even
within this class of actions. This is even more remarkable, as Z2-actions arising
from group representations into the unitary group of the underlying C�-algebra all
give rise to isomorphic crossed products. An instructive example, which is also of
interest in its own right, is given as a natural pointwise inner Z2-action on the group
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C�-algebra of the discrete Heisenberg group. This C�-algebra has already obtained a
great deal of attention, whereat we point out the thorough investigation of Anderson
and Paschke [1]. We conclude this paper by giving a general construction of pointwise
inner Z2-actions on certain amalgamated free product C�-algebras. Among these,
we find actions that are universal, in a suitable sense, for non-trivial obstruction
homomorphisms coming from pointwise inner Z2-actions. We also compute the
K-theory of the crossed products associated with these universal actions.

The paper is organised as follows. In Section 2, we provide concrete lifts for
images under the boundary map of the Pimsner–Voiculescu sequence �� W K�.A Ì˛
Z/! K�C1.A/. The lifts for �1 are well-known and easily found by using the partial
isometry picture of the index map. They are all given as, what we call, generalised
Bott elements associated with a commuting pair of a projection and a unitary. Finding
suitable lifts for �0 is less obvious. These are given as generalised Bott elements in
the sense of Exel [11]. To define these lifts, we use a result by Dadarlat [9], which
provides a better suitable description of the K1-group for a unital C�-algebra.

In Section 3, we define the obstruction homomorphism associated with a
Z2-action. We use the results of Section 2 to give a concrete description of this
homomorphism in terms of generalised Bott elements.

In Section 4, wemake use of Izumi’s andMatui’s classification result [13] to show
the existence of Z2-actions on Kirchberg algebras, whose associated obstruction
homomorphisms do not vanish. Given a Kirchberg algebra A, we show that their
classification invariant of a locallyKK-trivialZ2-action onA, which is an element in
KK.A; SA/, descends to the associated obstruction homomorphism, which basically
amounts to a homomorphism K�.A/ ! K�C1.A/. They prove that every element
in KK.A; SA/ is realised as the invariant of such a Z2-action, provided that A is
stable. Consequently, ifAmoreover satisfies the universal coefficient theorem (UCT)
by Rosenberg and Schochet [21], then every homomorphism K�.A/ ! K�C1.A/

occurs as the obstruction homomorphism of some Z2-action on A.
In Section 5, we provide examples of pointwise inner Z2-actions, which induce

non-trivial obstruction homomorphisms. We first consider the group C�-algebra of
the discrete Heisenberg group, C�.H3/, equipped with a natural pointwise inner
action. This action is universal in the sense that every pointwise inner Z2-action
on a unital C�-algebra B gives rise to an equivariant and unital �-homomorphism
C�.H3/! B . We show that the associated obstruction homomorphism is non-trivial
and compute theK-theory of the corresponding crossed product. It turns out that this
crossed product is not isomorphic in K-theory to the crossed product of C�.H3/ by
the trivial Z2-action. Finally, we present a general method of constructing pointwise
inner actions, which induce non-trivial obstruction homomorphisms. All occurring
C�-algebras are given as amalgamated free products of the form A �C.T/ B . We
require that A is equipped with a poinwise inner action, which has the property that
the commutator of the two implementing unitaries has full spectrum. Moreover, B is
supposed to contain a central unitarywith full spectrum, which gets identifiedwith the
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commutator. The action ofA extends to a pointwise inner action on the amalgamated
free product, and an additional, relativelymildK-theoretical assumption onB ensures
that the associated obstruction homomorphism is non-trivial. Among the constructed
examples, we find C�-dynamical systems which are universal, in a suitable sense, for
non-trivial obstruction homomorphisms associated with pointwise inner Z2-actions.
We compute the K-theory of the crossed products associated with these universal
C�-dynamical systems by employing a six-term exact sequence for amalgamated free
products by Thomsen [22].

Acknowledgements. This paper is based on results of my doctoral thesis completed
at Westfälische Wilhelms-Universität Münster in 2014. I would like to thank my
advisor Joachim Cuntz for his guidance and several helpful discussions. Moreover, I
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Gábor Szabó, Christian Voigt, Christoph Winges, and Wilhelm Winter for inspiring
dicussions held in the course of my doctoral studies. I am thankful to Dominic
Enders, Sven Raum, Nicolai Stammeier, Gábor Szabó, and Christoph Winges for
their valuable feedback on preliminary versions. Finally, I should also like to thank
Chris Phillips for pointing out to me the existence of certain K-theoretically trivial
actions ˛ W Z2 Õ A with the property that A Ì˛ Z2 and A Ìid Z2 have different
K-theory.

2. The boundary map of the Pimsner–Voiculescu sequence

Let us first recall Exel’s [11] definition and some basic properties of Bott elements
associated with almost commuting unitaries. Let T denote the Toeplitz algebra andK
the algebra of compact operators on a separable infinite dimensional Hilbert space.
Consider the following extension of C�-algebras

0 // K˝ C.T / // T ˝ C.T / // C.T /˝ C.T / // 0

induced by the canonical surjection T ! C.T /. Up to a sign, the Bott element b 2
K0.C.T2// is characterised by the property that its image under the corresponding
index map �0 W K0.C.T /˝ C.T // ! K1.C.T // is a generator for K1.C.T //. We
fix the convention that �0.b/ D Œz�, with z WD idC.T/.

For " � 0, Exel [11] defines the soft torus A" as the universal C�-algebra

A" WD C�.u"; v" unitaries W kŒu"; v"�k � "/;

where Œu"; v"� D u"v"�v"u" denotes the commutator of u" and v". It is obvious from
the definition that A0 D C.T2/, and that for " � 2 the soft torus A" coincides with
the full group C�-algebra of the free group in two generators. There is a canonical
surjective �-homomorphism

'" W A" ! C.T2/ with '".u"/ WD z1, '".v"/ WD z2;
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where z1 and z2 denote the projections onto the first and second coordinate,
respectively. By [11, Theorem 2.4], K�.'"/ is an isomorphism whenever " < 2,
and in this case we define

b" WD K0.'"/
�1.b/ 2 K0.A"/:

Definition 2.1 (cf. [11]). Let 0 < " < 2, B a unital C�-algebra, and u; v 2 B
unitaries satisfying k Œu; v� k � ". The universal property of the soft torus A" yields
a unique �-homomorphism ' W A" ! B with '.u"/ D u and '.v"/ D v. Then the
Bott element associated with u and v is defined as

�.u; v/ WD K0.'/.b"/ 2 K0.B/:

Note that �.u; v/ is independent of " as long as k Œu; v� k � ". By definition,
�.z1; z2/ D b 2 K0.C.T2//. If ' W A ! B is a unital �-homomorphism and
u; v 2 A are unitaries with k Œu; v� k < 2, then

K0.'/.�.u; v// D �.'.u/; '.v//:

For small " > 0, the Bott element �.u; v/ is given (up to a sign) by the following
description due to Loring [17]. Consider the real-valued functions f; g; h 2 C.T /
defined as

f .e2�it / D

(
1 � 2t; if 0 � t � 1=2;
�1C 2t; if 1=2 � t � 1;

g.e2�it / D

(
.f .exp.2�it// � f .exp.2�it//2/1=2; if 0 � t � 1=2;
0; if 1=2 � t � 1;

h.e2�it / D

(
0; if 0 � t � 1=2;
.f .exp.2�it// � f .exp.2�it//2/1=2; if 1=2 � t � 1;

and set
e.u; v/ WD

�
f .v/ g.v/C h.v/u

g.v/C u�h.v/ 1 � f .v/

�
2M2.B/:

One checks that e.u; v/ is always self-adjoint and a projection whenever u and v
commute. Loring observed in [17, Proposition 3.5] that there is a universal constant
ı > 0 such that whenever k Œu; v� k < ı, then the spectrum of e.u; v/ does not
contain 1=2. In this case, �Œ1=2;1/.e.u; v// 2 M2.B/ is a projection, and Loring’s
Bott element is given as

Œ�Œ1=2;1/.e.u; v//� � Œ1� 2 K0.B/:

The Bott elements also have the following well-known properties. We leave the
proof to the reader.
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Proposition 2.2. Let B be a unital C�-algebra and u; v; u1; v1; : : : ; un; vn 2 B
unitaries. Then the following statements hold true:

(i) If ut 2 B is a homotopy of unitaries with k Œut ; v� k < 2 for all t 2 Œ0; 1�, then
�.u0; v/ D �.u1; v/.

(ii) If k Œui ; vi � k < 2 for i D 1; : : : ; n, then

�.diag.u1; : : : ; un/; diag.v1; : : : ; vn// D
nX
iD1

�.ui ; vi /:

(iii) If
nP
iD1

k Œu; vi � k < 2, then �.u; v1v2 : : : vn/ D
nP
iD1

�.u; vi /.

(iv) If k Œu; v� k < 2, then �.u; v/ D ��.u; v�/ D ��.v; u/.

For a unital, purely infinite and simple C�-algebra A, Elliott and Rørdam showed
in [10, Theorem 2.2.1] that every element x 2 K0.A/ is a Bott element x D �.u; v/
for some pair of commuting unitaries u; v 2 A (with full spectrum). On the other
hand, if A is a unital C�-algebra admitting a tracial state � , then every Bott element
inK0.A/ associated with exactly commuting unitaries vanishes underK0.�/. In fact,
if �2 denotes the induced (unnormalized) trace onM2.A/, then �2.e.u; v// D 1.

It will turn out to be convenient to consider the following analogous notion of
Bott elements in the K1-group of a unital C�-algebra.

Notation 2.3. Let A be a unital C�-algebra. Let p 2 A be a projection and u 2 A a
unitary commuting with p. Then pup C 1 � p 2 A is a unitary, and we define the
Bott element associated with p and u as

�.p; u/ WD Œpup C 1 � p� 2 K1.A/:

Observe that the Bott isomorphismK0.A/
Š
�! K1.SA/ indeed sends Œp� to �.p; z/.

Now let A be a C�-algebra and ˛ 2 Aut.A/ an automorphism on A. Recall the
Pimsner–Voiculescu exact sequence [20]

K0.A/
K0.˛/�id // K0.A/

K0.j / // K0.A Ì˛ Z/

�0

��
K1.A Ì˛ Z/

�1

OO

K1.A/
K1.j /
oo K1.A/

K1.˛/�id
oo

with j W A ,�! A Ì˛ Z denoting the canonical embedding. It is natural in the sense
that for any equivariant �-homomorphism ' W .A; ˛;Z/! .B; ˇ;Z/, the following
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diagram commutes

K�.A/
K�.˛/�id //

K�.'/

��

K�.A/ //

K�.'/

��

K�.A Ì˛ Z/

K�. L'/

��

�� // K�C1.A/

K�C1.'/

��
K�.B/

K�.ˇ/�id // K�.B/ // K�.B Ìˇ Z/
�� // K�C1.B/

where L' W AÌ˛Z! BÌˇZ denotes the natural extension of ' to a�-homomorphism
between the crossed products. Furthermore, we recall that the boundary maps
of the Pimsner–Voiculescu sequence coincide (at least up to an application of the
stabilisation isomorphism) with the ones of the six-term exact sequence associated
with the Toeplitz extension

0 // K˝ A // T .A; ˛/ // A Ì˛ Z // 0;

where
T .A; ˛/ WD C�.v ˝ au W a 2 A/ � T ˝ .A Ì˛ Z/

is the crossed Toeplitz-algebra associated with ˛, see also [8]. Here, v 2 T denotes
the canonical isometry and u 2 M.A Ì˛ Z/ denotes the canonical unitary in the
multiplier algebra of A Ì˛ Z implementing ˛.
Notation 2.4. For a C�-algebra A and n 2 N, let Pn.A/ denote the set of
projections in Mn.A/. If A is unital, then Un.A/ denotes the set of unitaries
in Mn.A/. Furthermore, if ˛ 2 Aut.A/ is an automorphism, then we write
˛.n/ WD ˛˝id 2 Aut.A˝Mn.C//. Similarly, we definea.n/ WD a˝1n 2 A˝Mn.C/
for a 2 A.

Assume that A is unital. We now describe preimages of the boundary map
�1 W K1.AÌ˛Z/! K0.A/ of the Pimsner–Voiculescu sequence. Observe that every
element g2K0.A/ can be expressed as gD Œp�� Œ1n� for some p2Pm.A/ and n�0.
It is obvious that g 2 ker.K0.˛/ � id/ if and only if Œp� 2 ker.K0.˛/ � id/. Hence,
it suffices to describe lifts for elements of the form Œp� 2 im.�1/ D ker.K0.˛/� id/.
Proposition 2.5. Let A be a unital C�-algebra, ˛ 2 Aut.A/, and p 2 Pk.A/ a
projection satisfying Œp� 2 ker.K0.˛/ � id/. By the standard picture of K0.A/, we
find l; m � 0 and a unitary w 2 Un.A/ such that

˛.n/.q/ D wqw�;

where n WD k C l Cm and q WD diag.p; 1l ; 0m/ 2 Pn.A/. Then

�1.�.q; w
�u.n// � Œu.l/�/ D Œp�:

Proof. Assume first that k D 1 and l D m D 0. It is easy to verify that

y WD v ˝ .pw�up/C 1˝ .1 � p/ 2 T .A; ˛/



1566 S. Barlak

is an isometry that lifts pwu�pC1�p 2 AÌ˛Z. Using the partial isometry picture
of the index map, one computes

�1.�.p;w
�u// D Œ1 � yy�� � Œ1 � y�y� D Œ1 � yy��

D Œ.1 � vv�/˝ p� 2 K0.K˝ A/:

By the stabilisation isomorphism K0.A/ Š K0.K˝ A/, we deduce that

�1.�.p;w
�u// D Œp� 2 K0.A/:

Now, let q 2 Pn.A/ and w 2 Un.A/ be as in the statement. The canonical
isomorphism � WMn.A/Ì˛.n/ Z

Š
�! AÌ˛ Z˝Mn.C/ gives rise to a commutative

diagram

K�.Mn.A/ Ì˛.n/ Z/
�

.n/
� //

K�.�/

��

K�C1.A/

K�.A Ì˛ Z/

��

66

relating the boundary maps of the respective Pimsner–Voiculescu sequences. Hence,

�1.�.q; w
�u.n/// D .�1 ıK1.�//.�.q; w

�u// D �
.n/
1 .�.q; w�u// D Œq�:

It follows that

�1.�.q; w
�u.n// � Œul �/ D Œq� � Œ1l � D Œdiag.p; 1l/� � Œ1l � D Œp�:

For the boundary map �0 W K0.A Ì˛ Z/! K1.A/, we use an alternative picture
for K1.A/, derived from the natural identification K�.A/ Š KK.C.T /; A/ together
with Dadarlat’s result [9, Theorem A] applied to T .
Theorem 2.6 (cf. [9]). Let A be a unital C�-algebra and u; v 2 U.A/ two unitaries.
Then Œu�D Œv�2K1.A/ if and only if for every " > 0, there exist k�1, �1; : : : ; �k 2T ,
and a unitary w 2MkC1.A/ such that

kw.diag.u; �1; : : : ; �k//w� � diag.v; �1; : : : ; �k/k � ":

For 0 < " < 2, define the universal C�-algebra

T" WD C�
�
s isometry; u unitary W k Œs; u� k � "; uss� D ss�u

�
:

Consider the extension of C�-algebras

0 // I" // T" // A" // 0

induced by the canonical surjection T" ! A" mapping s to u" and u to v".
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We denote the exponential map of the associated six-term exact sequence by
�" W K0.A"/! K1.I"/. Set e WD 1� ss� 2 I". As u and ss� commute, euC 1� e
defines a unitary in the minimal unitization of I".

Lemma 2.7. The exponential map �" W K0.A"/! K1.I"/ satisfies

�".b"/ D ŒeuC 1 � e�:

Proof. Using that u and e commute, one computes�
s� 0

e s

��
euC 1 � e 0

0 u

��
s e

0 s�

�
D

�
1 0

0 euC sus�

�
:

As kŒs; u�k � ", 



�1 0

0 euC sus�

�
�

�
1 0

0 u

�



 � " < 2:
Thus, the above computation shows that in K1.T"/,��

euC 1 � e 0

0 u

��
D

��
1 0

0 euC sus�

��
D

��
1 0

0 u

��
;

and hence ŒeuC 1 � e� D 0 2 K1.T"/. Consequently,

ŒeuC 1 � e� 2 im.�"/ � K1.I"/;

so that we find n 2 Z such that �".n � b"/ D ŒeuC 1 � e�.
Consider now the commutative diagram with exact rows

0 // I" //

 0"
��

T" //

 "

��

A" //

'"

��

0

0 // K˝ C.T / // T ˝ C.T / // C.T /˝ C.T / // 0

induced by the surjective �-homomorphism  " W T" ! T ˝ C.T / given by  ".s/ D
v ˝ 1 and  ".u/ D 1˝ z. Naturality of K-theory yields a commutative diagram

K0.A"/
�" //

K0.'"/

��

K1.I"/

K1. 
0
"/

��
K0.C.T /˝ C.T // �0 // K1.C.T //
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Thus,

n �K1. 
0
"/ ı �".b"/ D K1. 

0
"/.ŒeuC 1 � e�/ D Œz� D �0.b/

D �0 ıK0.'"/.b"/ D K1. 
0
"/ ı �".b"/;

which implies that n D 1. This completes the proof.

Proposition 2.8. Let A be a unital C�-algebra, ˛ 2 Aut.A/, and x 2 Uk.A/ a
unitary satisfying Œx� 2 ker.K1.˛/ � id/. An application of Theorem 2.6 yields
l � 0, �1; : : : ; �l 2 T , and w 2 Um.A/ satisfying


˛.m/.y/ � wyw�


 < 2;
where m WD k C l and y WD diag.x; �1; : : : ; �l/ 2 Um.A/. Then

�0.�.w
�u.m/; y// D Œx�:

Proof. First assume that k D 1 and l D 0. For suitably chosen 0 < " < 2, there
exists a �-homomorphism

 W T" ! T .A; ˛/;  .s/ D v ˝ w�u;  .u/ D 1˝ x:

This homomorphism fits into the commutative diagram

0 // I" //

 0

��

T" //

 

��

A" //

'

��

0

0 // K˝ A // T .A; ˛/ // A Ì˛ Z // 0

where ' is given by '.u"/ D w�u and '.v"/ D x. By Lemma 2.7 and stability of
K-theory,

�0.�.w
�u; x// D �0 ıK0.'/.b"/ D K1. 

0/ ı �".b"/

D K1. 
0/.ŒeuC 1 � e�/ D Œx� 2 K1.A/:

If w; y 2 Um.A/ are as in the statement, then by a similar reasoning as in the
proof of Proposition 2.5,

�0.�.w
�u.m/; y// D .�0 ıK0.�//.�.w

�u; y//

D �
.m/
0 .�.w�u; y// D Œy� D Œx�:
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3. The obstruction homomorphism

Notation 3.1. For a C�-dynamical system .A; ˛;Z2/, we write ˛1 and ˛2 for the
automorphisms corresponding to .1; 0/ and .0; 1/, respectively. Moreover, we denote
by L̨2 W AÌ˛1

Z! AÌ˛1
Z the natural extension of˛2 to an automorphismofAÌ˛1

Z.
Given a C�-dynamical system .A; ˛;Z2/, we denote by

k�.˛2/ W ker.K�.˛1/ � id/! ker.K�.˛1/ � id/;
co�.˛2/ W coker.K�.˛1/ � id/! coker.K�.˛1/ � id/

the endomorphisms induced by K�.˛2/ � id. We remark that these are well-defined
as ˛1 and ˛2 commute. By naturality of the Pimsner–Voiculescu sequence, the
equivariant �-automorphism ˛2 W .A; ˛1;Z/! .A; ˛1;Z/ gives rise to the following
commutative diagram with exact rows

0 // coker.K�.˛1/ � id/ //

co�.˛2/
��

K�.A Ì˛1
Z/

�� //

K�. L̨2/�id
��

ker.K�C1.˛1/ � id/
k�C1.˛2/
��

// 0

0 // coker.K�.˛1/ � id/ // K�.A Ì˛1
Z/

�� // ker.K�C1.˛1/ � id/ // 0

(3.1)
Applying the snake lemma (see e.g. [23, 1.3.2]) to this diagram, we obtain a group
homomorphism d�.˛/ W S�.˛/! T�C1.˛/, where

S�.˛/ WD ker.K�.˛1/ � id/ \ ker.K�.˛2/ � id/;
T�.˛/ WD K�.A/

ı
him.K�.˛1/ � id/; im.K�.˛2/ � id/i :

We call d�.˛/ the obstruction homomorphism associated with ˛. It satisfies the
following naturality property.
Proposition 3.2. If ' W .A; ˛;Z2/! .B; ˇ;Z2/ is an equivariant �-homomorphism
between C�-dynamical systems, then the following diagram commutes

S�.˛/
d�.˛///

K�.'/

��

T�C1.˛/

K�C1.'/

��
S�.ˇ/

d�.ˇ/// T�C1.ˇ/

Proof. This follows directly from the naturality of the Pimsner–Voiculescu sequence
and the naturality of the snake lemma exact sequence.

The K-theory of A Ì˛ Z2 is determined by .K�.A/;K�.˛1/;K�.˛2/; d�.˛//
up to group extension problems. In this sense, d�.˛/ is indeed an obstruction
for that K�.A Ì˛ Z2/ only depends on K�.A/, K�.˛1/, and K�.˛2/ up to group
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extension problems. To see this, observe first that the Pimsner–Voiculescu sequence
for .A Ì˛1

Z; L̨2;Z/ induces a short exact sequence

0 // coker.K�. L̨2/ � id/ // K�.A Ì˛ Z2/
�� // ker.K�C1. L̨2/ � id/ // 0:

Moreover, by definition of the obstruction homomorphism, the snake lemma exact
sequence associated with (3.1) splits into two extensions, namely

0 // ker.co�.˛2// // ker.K�. L̨2/ � id/ // ker.d�C1.˛// // 0

and
0 // coker.d�C1.˛// // coker.K�. L̨2/ � id/ // coker.k�C1.˛2// // 0:

We proceed with a concrete description of the obstruction homomorphism in
terms of generalised Bott elements.
Theorem 3.3. Let A be a unital C�-algebra and ˛ W Z2 Õ A an action. Let
p 2 Pk.A/ be a projection satisfying Œp� 2 S0.˛/. Find l; m � 0 and unitaries
v;w 2 Un.A/ with

˛
.n/
1 .q/ D vqv� and ˛

.n/
2 .q/ D wqw�;

where n WD k C l Cm and q WD diag.p; 1l ; 0m/ 2 Pn.A/. Then

d0.˛/.Œp�/ D
�
�.q; w�˛

.n/
2 .v/�˛

.n/
1 .w/v/

�
2 T1.˛/:

Proof. If �1 W K1.A Ì˛1
Z/ ! K0.A/ denotes the index map of the Pimsner–

Voiculescu sequence for ˛1, then Proposition 2.5 yields

�1
�
�.q; v�u.n// � Œu.l/�

�
D Œp�:

One computes that

.K0. L̨2/ � id/.�.q; v�u.n// � Œu.l/�/ D .K0. L̨2/ � id/.�.q; v�u.n///

D �.˛
.n/
2 .q/; ˛

.n/
2 .v/�u.n// � �.q; v�u.n//

D �.wqw�; ˛
.n/
2 .v/�u.n//C �.q; u.n/

�
v/

D �.q; w�˛
.n/
2 .v/�u.n/w/C �.q; u.n/

�
v/

D �.q; w�˛
.n/
2 .v/�u.n/wu.n/

�
v/

D �.q; w�˛
.n/
2 .v/�˛

.n/
1 .w/v/ 2 K1.A/:

By definition of the snake lemma homomorphism, we get that

d0.˛/.Œp�/ D
�
�.q; w�˛

.n/
2 .v/�˛

.n/
1 .w/v/

�
2 T1.˛/:
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Observe that d0.˛/ is completely determined by Theorem 3.3. In fact, for any
g 2 S0.˛/, there is a projection p 2 Pm.A/ and some n � 0 such that g D
Œp� � Œ1n� 2 K0.A/. In this situation, Œp� 2 S0.˛/ and d0.˛/.g/ D d0.˛/.Œp�/.

For the description of d1.˛/, we need the following perturbation result.
Lemma 3.4. Let 0 < " < 2

3
. Let A be a unital C�-algebra and u; Qu; v 2 U.A/

unitaries satisfying
ku � Quk; k Œu; v� k � ":

Then there is a homotopy ut 2 U.A/ with u0 D u, u1 D Qu, and k Œut ; v� k � 3" for
all t 2 Œ0; 1�.

Proof. Since ku � Quk < 2
3
, the spectrum of u� Qu does not contain �1. Therefore,

we can define h WD �i log.u� Qu/ 2 A, where log denotes the principal branch of
the logarithm. This yields a continuous path of unitaries ut WD u exp.i th/ 2 A,
t 2 Œ0; 1�, with u0 D u and u1 D u exp.log.u� Qu// D Qu. For s; t 2 Œ0; 1�,

kus � utk D k1 � exp.i.s � t /h/k � k1 � exp.ih/k D ku � Quk � ":

One now computes

k Œut ; v� k � kutv � uvk C kvut � vuk C k Œu; v� k � 3":

Theorem 3.5. Let A be a unital C�-algebra and ˛ W Z2 Õ A an action. Let
v 2 Uk.A/ be a unitary satisfying Œv� 2 S1.˛/. By Theorem 2.6, there are l � 0,
�1; : : : ; �l 2 T , and unitaries x; y 2 Um.A/ such that

˛.m/1 .w/ � xwx�



; 

˛.m/2 .w/ � ywy�


 < 1

2
;

where m WD k C l and w WD diag.v; �1; : : : ; �l/ 2 Um.A/. Then

d1.˛/.Œv�/ D
�
�.y�˛

.m/
2 .x/�˛

.m/
1 .y/x;w/

�
2 T0.˛/:

Proof. Using the isomorphismMm.A Ì˛1
Z/ ŠMm.A/ Ì

˛
.m/
1

Z, we compute that



�x�u.m/; w�

 D 

u.m/wu.m/� � xwx�

 D 

˛.m/1 .w/ � xwx�


 < 1

2
:

By Proposition 2.8, the boundary map �0 W K0.A Ì˛1
Z/! K1.A/ of the Pimsner–

Voiculescu sequence for ˛1 satisfies

�0.�.x
�u.m/; w// D Œv�:

The naturality of the Bott elements and Proposition 2.2(iv) yield

.K0. L̨2/ � id/.�.x�u.m/; w// D �.˛.m/2 .x/�u.m/; ˛
.m/
2 .w// � �.x�u.m/; w/

D �.˛
.m/
2 .x/�u.m/; ˛

.m/
2 .w//C �.u.m/

�
x;w/:
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Since 

˛.m/2 .w/ � ywy�


; 

�˛.m/2 .x/�u.m/; ˛

.m/
2 .w/

�

 < 1

2
;

we can apply Lemma 3.4 and find a homotopy wt 2 Um.A/ between ˛.m/2 .w/ and
ywy� such that 

�wt ; ˛.m/2 .x/�u.m/

�

 < 3

2
for all t 2 Œ0; 1�:

By Proposition 2.2(i) and the naturality of the Bott elements, we obtain that

�.˛
.m/
2 .x/�u.m/; ˛

.m/
2 .w// D �.˛

.m/
2 .x/�u.m/; ywy�/

D �.y�˛
.m/
2 .x/�u.m/y;w/:

Moreover, 

�u.m/�x;w�

C 

�y�˛.m/2 .x/�u.m/y;w
�

 < 1

2
C
3

2
D 2;

and therefore Proposition 2.2(iii) yields

.K0. L̨2/ � id/.�.x�u.m/; w// D �.y�˛.m/2 .x/�u.m/y;w/C �.u.m/
�
x;w/

D �.y�˛
.m/
2 .x/�u.m/yu.m/

�
x;w/

D �.y�˛
.m/
2 .x/�˛

.m/
1 .y/x;w/ 2 K0.A/:

By the definition of the snake lemma homomorphism, it follows that

d1.˛/.Œv�/ D
�
�.y�˛

.m/
2 .x/�˛

.m/
1 .y/x;w/

�
2 T0.˛/:

4. Locally KK -trivial Z2-actions on Kirchberg algebras

Let A be a C�-algebra and ˛ W Z2 Õ A an action. We present another description of
the obstruction homomorphism d�.˛/, making use of the mapping torus for ˛1,

M˛1
.A/ WD ff 2 C.Œ0; 1�; A/ W f .1/ D ˛1.f .0//g :

Consider the short exact sequence

0 // SA //M˛1
.A/

ev0 // A // 0

induced by evaluation at 0. It is well-known that the Pimsner–Voiculescu exact
sequence can be derived from the six-term exact sequence corresponding to
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this extension. More concretely, there is an isomorphism K�.A Ì˛1
Z/ Š

K�C1.M˛1
.A// making the following diagram commute

K�.A/
K�.j / //

��

K�.A Ì˛1
Z/

��

��
K�C1.M˛1

.A//

Š

55

K�C1.ev0/
// // K�C1.A/

where the left vertical map is given by composition of the natural mapK�C1.SA/!
K�C1.M˛1

.A// with the Bott isomorphism. We refer to [6] and [18] for details.
Denote by Q̨2 2 Aut.M˛1

.A// the automorphism given by

Q̨2.f /.t/ WD ˛2.f .t//; f 2M˛1
.A/; t 2 Œ0; 1�:

This indeed is a self map of M˛1
.A/, as ˛1 and ˛2 commute. The isomorphism

K�.A Ì˛1
Z/ Š K�C1.M˛1

.A// is natural, so that in particular, the diagram

K�.A Ì˛1
Z/

Š //

K�. L̨2/

��

K�C1.M˛1
.A//

K�C1. Q̨2/

��
K�.A Ì˛1

Z/
Š // K�C1.M˛1

.A//

is commutative. It now follows from the construction of the obstruction
homomorphism that the snake lemma homomorphism associated with the diagram

coker.K�C1.˛1/ � id/ �
� //

co�C1.˛2/

��

K�.M˛1
.A//

K�.ev0/ // //

K�. Q̨2/�id
��

ker.K�.˛1/ � id/

k�.˛2/

��
coker.K�C1.˛1/ � id/ �

� // K�.M˛1
.A//

K�.ev0/ // // ker.K�.˛1/ � id/

with exact rows coincides with d�.˛/.
Now assume that ˛1 is homotopic to idA in Aut.A/. Fix a homotopy ˇt 2 Aut.A/

between ˇ0 D ˛1 and ˇ1 D idA and consider the induced �-automorphism ' 2

Aut.A˝ C.T // given by

'.f /.exp.2�it// D
�
ˇt ı ˛2 ı ˇ

�1
t

�
.f .exp.2�it///;

for f 2 A ˝ C.T / and t 2 Œ0; 1�. Note that ' is well-defined since ˛1 and ˛2
commute. Obviously, ' restricts to an automorphism '0 W SA

Š
�! SA and fits into
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the following commutative diagram with split-exact rows

0 // SA //

'0

��

A˝ C.T / ev1 //

'

��

A

˛2

��

//

j

yy
0

0 // SA // A˝ C.T / ev1 // A //

j

ee 0

(4.1)

Here, j W A ,�! A˝ C.T / denotes the canonical embedding. Futhermore, there is
a �-isomorphism  WM˛1

.A/
Š
�! A˝ C.T / satisfying

 .f /.exp.2�it// D .ˇt ı ˛�11 /.f .t//; f 2M˛1
.a/; t 2 Œ0; 1�:

Its restriction  0 2 Aut.SA/ is homotopic to idSA via  0s 2 Aut.SA/ given by

 0s.f /.t/ D .ˇst ı ˛
�1
1 /.f .t//; f 2 SA; s; t 2 Œ0; 1�:

Proposition 4.1. Let A be a C�-algebra and ˛ W Z2 Õ A an action such that ˛1 is
homotopic to idA inAut.A/. Then the obstruction homomorphism d�.˛/ W K�.A/!
K�C1.A/ satisfies

d�.˛/ D .K�.'/ � id/ ıK�.j /;

where we use the Bott isomorphism to identifyK�C1.A/ŠK�.SA/�K�.A˝C.T //.

Proof. The isomorphism WM˛1
.A/

Š
�! A˝C.T / and (4.1) induce the following

commutative diagram

0 // SA //

'0

��

A˝ C.T / //

'

��

A

˛2

��

// 0

0 // SA //

S˛2

��

 0
>>

M˛1
.A/ //

Q̨2

��

 
88

A

˛2

��

// 0

0 // SA // A˝ C.T / // A // 0

0 // SA //
 0

>>

M˛1
.A/

 

88

// A // 0

Observe that all occurring rows are split-exact. ApplyK-theory to thewhole diagram,
use Bott periodicity for the left hand square involving the suspensions of A and
subtract the respective identity morphism at each vertical arrow. The snake lemma
homomorphism of the resulting front diagram is d�.˛/, and the one of the back side
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diagram is .K�.'/� id/ıK�.j /. The naturality of the snake lemma homomorphism
and the fact that  0 acts trivially on K-theory yield that these two homomorphisms
coincide.

Assume now that ˛ W Z2 Õ A is an action on a Kirchberg algebra. We follow [13]
and say that ˛ is locally KK-trivial if KK.˛1/ D KK.˛2/ D 1A. Moreover, we
call two actions ˛; ˇ W Z2 Õ A KK-trivially cocycle conjugate if there exists an ˛-
cocyle u, that is, a map u W Z2 ! U.M.A// into the unitary group of the multiplier
algebra of A satisfying ug˛g.uh/ D ugh for all g; h 2 Z2, and an automorphism
� 2 Aut.A/withKK.�/ D 1A such that Ad.ug/ı˛g D �ıˇg ı��1 for all g 2 Z2.

Given a locally KK-trivial action ˛ on a Kirchberg algebra A, Izumi and
Matui [13] associate an element ˆ.˛/ 2 KK.A; SA/ as follows. Since KK.˛1/ D
1A 2 KK.A;A/, [19, Theorem 4.1.1] yields a homotopy ˇt 2 Aut.A ˝ K/
between ˇ0 D ˛1 ˝ idK and ˇ1 D idA˝K. As above, we define the automorphism
' 2 Aut.A˝K˝ C.T // by

'.f /.exp.2�it// D
�
ˇt ı .˛2 ˝ idK/ ı ˇ�1t

�
.f .exp.2�it///

for f 2 A˝ K ˝ C.T / and t 2 Œ0; 1�. Denote by j W A˝ K ,�! A˝ K ˝ C.T /
the canonical embedding. Using stability of the KK-bifunctor and the fact that
KK.˛2/ D 1A, we obtain that

ˆ.˛/ WD KK.' ı j / �KK.j / 2 KK.A; SA/ � KK.A;A˝ C.T //:

If

� W KK.A; SA/! Hom.K�.A/;K�C1.A//

denotes the natural homomorphism, then Izumi’s and Matui’s result is given as
follows.
Theorem 4.2 (cf. [13]). Let A be a unital Kirchberg algebra. The assignment
˛ 7! ˆ.˛/ induces a well-defined bijection between the following two sets:

(i) KK-trivial cocycle conjugacy classes of locally KK-trivial outer Z2-actions
on A;

(ii) fx 2 KK.A; SA/ W 
0.x/.Œ1�/ D 0 2 K1.A/g.
If A is a stable Kirchberg algebra, then the statement remains true when we take
KK.A; SA/ as a classifying invariant.

By the definition of 
�,


�.ˆ.˛// D K�.'ıj /�K�.j / D .K�.'/� id/ıK�.j / 2 Hom.K�.A/;K�C1.A//

for any locally KK-trivial Z2-action ˛. Hence, 
�.ˆ.˛// coincides with the
obstruction homomorphism associated with .A˝K; ˛˝ idK;Z2/ by Proposition 4.1.
Using stability ofK-theory and Proposition 3.2, we conclude that 
�.ˆ.˛// D d�.˛/.
Combining this observation with Theorem 4.2, we draw the following consequence.
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Corollary 4.3. Let A be a unital Kirchberg algebra satisfying the UCT. Let �� W
K�.A/! K�C1.A/ be a homomorphisms with �0.Œ1�/ D 0. Then there is a locally
KK-trivial Z2-action ˛ on A such that d�.˛/ D ��. Moreover, K�.A Ì˛ Z2/ fits
into a six-term exact sequence

K1.A/˚K0.A/
�1˚0 // K0.A/˚K1.A/ // K0.A Ì˛ Z2/

��
K1.A Ì˛ Z2/

OO

K1.A/˚K0.A/oo K0.A/˚K1.A/
�0˚0
oo

IfA is a stable Kirchberg algebra satisfying the UCT, then the statement remains true
if the condition on the class of the unit is removed.

Proof. Since A satisfies the UCT, we find some element x 2 KK.A; SA/ satisfying

�.x/ D ��. Observe that ifA is unital, then the condition 
0.x/.Œ1�/ D 0 is satisfied
by assumption. Theorem 4.2 yields a locally KK-trivial action ˛ with ˆ.˛/ D x,
and hence

�� D 
�.x/ D 
�.ˆ.˛// D d�.˛/:

As ˛1˝idK is homotopic to idA˝K, we have thatKi .AÌ˛1
Z/ Š K0.A/˚K1.A/

for i D 0; 1. The claim now follows from the Pimsner–Voiculescu sequence for
.A Ì˛1

Z; L̨2;Z/.

5. Pointwise inner Z2-actions with non-trivial obstruction homomorphisms

Definition 5.1. Let A be a unital C�-algebra and n 2 N. We say that an action
˛ W Zn Õ A is pointwise inner if ˛g is an inner automorphisms for all g 2 Zn.
If n D 2, ˛1 D Ad.v/, and ˛2 D Ad.w/ for unitaries v;w 2 U.A/, then we call
u.˛/ WD v�w�vw 2 U.A/ the commutator associated with ˛.

It is easy to check that u.˛/ 2 Z.A/ and that u.˛/ does not depend on the choice
of the implementing unitaries. Here and in the following, Z.A/ denotes the center
of A.

Next, we give a description of the obstruction homomorphism associated with a
pointwise inner Z2-action.
Corollary 5.2. Let A be a unital C�-algebra and ˛ W Z2 Õ A a pointwise inner
action. Let n � 1, x 2 Un.A/, and p 2 Pn.A/. Then

d0.˛/.Œp�/ D �.p; u.˛/
.n// and d1.˛/.Œx�/ D �.u.˛/

.n/; x/:

Proof. One computes that

w�˛2.v/
�˛1.w/v D w

�wv�w�vwv�v D v�w�vw D u.˛/:
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As the automorphisms ˛1 D Ad.v/ and ˛2 D Ad.w/ satisfy

˛
.n/
1 .p/ D v.n/pv.n/

�
and ˛

.n/
2 .p/ D w.n/pw.n/

�
;

Theorem 3.3 implies that

d0.˛/.Œp�/ D �.p; u.˛/
.n//:

The proof for d1.˛/.Œx�/ follows similarly from Theorem 3.5.

Consequently, d�.˛/ can only be non-trivial if the unitary u.˛/ has full spectrum.
Otherwise, u.˛/ is connected to 1 by unitaries in C�.u.˛// � Z.A/. In fact, we
have the following result.
Proposition 5.3. Let A be a unital C�-algebra and ˛1; : : : ; ˛n pairwise commuting
inner automorphisms on A. Let ˛ W Zn Õ A denote the induced pointwise inner
action. Assume that for i; j 2 f1; : : : ; ng, the commutator associated with the Z2-
action generated by ˛i and ˛j is homotopic to 1 in U.Z.A//. ThenK�.AÌ˛ Zn/ Š
K�.A˝ C.Tn//.

Proof. The proof goes by induction over n 2 N. For a single automorphism, this
is trivial since A ÌAd.v/ Z Š A ˝ C.T /. Assume now that the statement is true
for n � 1. Denote by L̨ the Zn�1-action on A Ì˛1

Z induced by L̨2; : : : ; L̨n. For
i; j 2 f1; : : : ; ng, let v.i; j / denote the commutator associated with the Z2-action
generated by ˛i and ˛j . As inner automorphisms fix the center pointwise, it holds
that v.i; j / 2 Z.A/ � Z.A Ì˛1

Z/. Hence, ˛2; : : : ; ˛n give rise to a pointwise
inner action ˛0 W Zn�1 Õ A Ì˛1

Z. Observe that ˛0 is as in the statement, so that
we can apply the induction hypothesis to it. For i D 1; : : : ; n, we find homotopies
wt;i 2 U.Z.A//, t 2 Œ0; 1�, with w0;i D v.i; 1/ and w1;i D 1. Since these
homotopies lie in the centre of A Ì˛1

Z, we can define automorphisms

't;i W A Ì˛1
Z
Š
�! A Ì˛1

Z; 't;i .a/ D ˛i .a/; 't;i .u/ D wt;iu:

For all s; t 2 Œ0; 1� and i; j D 2; : : : ; n, one computes that

's;i ı 't;j .u/ D wt;jws;iu D ws;iwt;ju D 't;j ı 's;i .u/:

Thus, the 't;i define a homotopy between the Zn-actions L̨ and ˛0. In particular,
the corresponding crossed products have isomorphic K-theory. By the induction
hypothesis, we therefore obtain that

K�.A Ì˛ Zn/ Š K�.A Ì˛1
Z Ì L̨ Zn�1/ Š K�.A Ì˛1

Z Ì˛0 Zn�1/
Š K�..A Ì˛1

Z/˝ C.Tn�1// Š K�.A˝ C.Tn//:

The next result shows that there are certain restrictions on obstruction
homomorphisms associated with pointwise inner Z2-actions.
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Proposition 5.4. Let A be a unital C�-algebra and ˛ W Z2 Õ A a pointwise inner
action. Then d�C1.˛/ ı d�.˛/ D 0.

Proof. Using the canonical isomorphism

K�.C.T /˚ C.T // Š K�.C.T //˚K�.C.T //;

we compute

�.z ˚ z; z ˚ 1/ D �.z; z/˚ �.z; 1/ D 0 2 K0.C.T //˚K0.C.T //:

Given a projection p 2 Pn.A/, there exists a unital �-homomorphism ' W C.T /˚
C.T /!Mn.A/ satisfying '.z˚z/ D u.˛/.n/ and '.1˚0/ D p. By Corollary 5.2,
we get that

d1.˛/.�.p; u.˛/
.n/// D �.u.˛/.n/; pu.˛/.n/p C 1n � p/

D K0.'/.�.z ˚ z; z ˚ 1//

D 0:

This shows that d1.˛/ ı d0.˛/ D 0. Applying this to .A ˝ C.T /; ˛ ˝ id;Z2/, we
conclude that the obstruction homomorphism for .SA; S˛;Z2/ also has this property.
Bott periodicity thus shows that d0.˛/ ı d1.˛/ D 0.

5.1. A natural action on the group C�-algebra of the discrete Heisenberg group.
Recall the discrete Heisenberg group

H3 WD
˝
r; s W rsr�1s�1 is central

˛
and its associated (full) group C�-algebra

C�.H3/ WD C�.u; v unitaries W uvu�v� is central/:

Consider the pointwise inner Z2-action ˛ on C�.H3/ given by ˛1 D Ad.u/ and
˛2 D Ad.v/. The associated C�-dynamical system .C�.H3/; ˛;Z2/ is universal in
the following sense. Let B be a unital C�-algebra and ˇ W Z2 Õ B a pointwise
inner action. If ˇ1 D Ad.x/ and ˇ2 D Ad.y/, then there is a unital and equivariant
�-homomorphism ' W .C�.H3/; ˛;Z2/ ! .B; ˇ;Z2/ satisfying '.u/ D x and
'.v/ D y.

The Heisenberg group also admits the following description as a semidirect
product

H3 D Z2 ÌQ� Z; with Q�.e1/ D e1, Q�.e2/ D e1 C e2:

Hence, the �-automorphism � 2 Aut.C.T2// satisfying �.z1/ D z1 and �.z2/ D
z1z2 gives rise to an isomorphism

C�.H3/
Š
�! C.T2/ Ì� Z; u 7! u; v 7! z2;
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where u 2 C.T2/ Ì� Z denotes the canonical unitary implementing � . Using this
identification, the action ˛ is given by ˛1 D Ad.u/ and ˛2 D Ad.z2/, and the
commutator associated with ˛ satisfies

u.˛/ D u�z�2uz2 D z1z
�
2z2 D z1 2 C.T2/ Ì� Z:

The Bott projection e WD e.z1; z2/ 2 M2.C.T2// is unitarily equivalent
to � .2/.e/, see [1, Section 1]. So, we find a unitary x 2 U2.C.T2// with � .2/.e/ D
xex�, which in turn gives rise to a Bott element �.e; x�u.2// 2 K1.C�.H3//.

Let us recall the K-theory of C�.H3/, which was determined in [1, Proposi-
tion 1.4(a)]. For the reader’s convenience, we also provide a short proof.
Proposition 5.5. The K-theory of C�.H3/ is given by

K0.C�.H3// D Z3
�
�.z1; z2/; �.z1; u/; Œ1�

�
;

K1.C�.H3// D Z3
�
Œz2�; Œu�; �.e; x

�u.2//
�
:

Proof. As K0.�/ D id, the Pimsner–Voiculescu sequence for � is of the form

K0.C.T2//
0 // K0.C.T2// // K0.C.T2/ Ì� Z/

�0

��
K1.C.T2/ Ì� Z/

�1

OO

K1.C.T2//oo K1.C.T2//
K1.�/�id
oo

Moreover, ker.K1.�/ � id/ D ZŒz1�. This yields

K0.C�.H3// Š K1.C�.H3// Š Z3:

We also conclude that the natural inclusions K0.C.T2// ,�! K0.C.T2/ Ì� Z/
and ZŒz2� ,�! K1.C.T2/ Ì� Z/ are split-injective. Proposition 2.5 implies that
�1.Œu�/ D Œ1� and �1.�.e; x�u.2/// D Œe�. This shows the assertion forK1.C�.H3//.
Analogously, the claim for K0.C�.H3// follows since �0.�.z1; u// D Œz1� by
Proposition 2.8.

Theorem 5.6. The obstruction homomorphism associated with the natural action
˛ W Z2 Õ C�.H3/ is non-trivial. TheK-theory of the crossed productC�.H3/Ì˛Z2

satisfies
K0.C�.H3/ Ì˛ Z2/ Š K1.C�.H3/ Ì˛ Z2/ Š Z10:

In particular, C�.H3/Ì˛ Z2 and C�.H3/˝ C.T2/ are not isomorphic inK-theory.

Proof. By applying Corollary 5.2 to d1.˛/ W K1.C�.H3// ! K0.C�.H3//, we
obtain

d1.˛/.Œz2�/ D �.u.˛/; z2/ D �.z1; z2/ and d1.˛/.Œu�// D �.z1; u/:
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The discussion in Section 2 shows that the canonical trace on C�.H3/ prevents
Œ1� 2 K0.C�.H3// from being a Bott element associated with two exactly commuting
unitaries. Since ˛ is pointwise inner, every element in the image of d1.˛/ is
representable in such a way. Hence,

im.d1.˛// D Z2 Œ�.z1; z2/; �.z1; u/� � K0.C�.H3//;

which sits inside K0.C�.H3// as a direct summand.
It holds that d0.˛/.Œ1�/ D 0, and by Proposition 5.4, we also have that d0.˛/ ı

d1.˛/ D 0. It now follows from Proposition 5.5 that d0.˛/ D 0.
If G0 WD K0.C�.H3// and G1 WD K1.C�.H3//, then the Pimsner-Voiculescu

sequence for .C�.H3/ Ì˛1
Z; L̨2;Z/ is of the form

G1 ˚G0
d1.˛/˚0 // G0 ˚G1 // K0.C�.H3/ Ì˛ Z2/

��
K1.C�.H3/ Ì˛ Z2/

OO

G1 ˚G0oo G0 ˚G1
0oo

(5.1)

The result now follows by splitting up this six-term exact sequence into two extension,
and then comparing the ranks of the occurring abelian groups.

We also find pointwise innerZ2-actions on C�.H3/whose corresponding crossed
products have torsion in K-theory.
Corollary 5.7. Let m; n 2 N and denote by N̨ the pointwise inner Z2-action on
C�.H3/ generated by ˛m1 and ˛n2 . Then

K0.C�.H3/ Ì N̨ Z2/ Š Z10 ˚ Z
ı
mnZ˚ Z

ı
mnZ;

K1.C�.H3/ Ì N̨ Z2/ Š Z10:

Proof. A similar proof as in Theorem 5.6 shows that theK-theory of C�.H3/Ì N̨ Z2

fits into the exact sequence (5.1) with d1.˛/ replaced by d1. N̨ / D mn � d1.˛/.

5.2. Certain pointwise inner actions on amalgamated free product C�-algebras.
Throughout this section, A denotes a unital, separable C�-algebra and ˛ W Z2 Õ A

a pointwise inner action whose associated commutator u.˛/ has full spectrum. Let
u; v 2 A be unitaries satisfying ˛1 D Ad.u/ and ˛2 D Ad.v/.

Let B be a unital, separable C�-algebra whose K-groups both do not vanish.
Also assume that there exists a central unitary w 2 U.Z.B//, some n 2 N, and a
projection p 2 Pn.B/ such that

�.p;w.n// ¤ kŒw� 2 K1.B/ for all k 2 Z: (5.2)

Observe that w must have full spectrum.
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Consider the two injective �-homomorphisms

i1 W C.T / ,�! A; i1.z/ WD u.˛/ and i2 W C.T / ,�! B; i2.z/ WD w;

and form the amalgamated free product C WD A �C.T/ B , see [5, Section 10.11.11].
There are natural unital �-homomorphisms j1 W A ! C and j2 W B ! C , which
are also injective by [4, Theorem 3.1]. Since u.˛/ D w is central in C , the action
on A extends to a pointwise inner Z2-action on C , which we also denote by ˛. The
associated obstruction homomorphism d�.˛/ W K�.C /! K�C1.C / satisfies

d0.˛/.Œp�/ D �.p; u.˛/
.n// D �.p;w.n// 2 K1.C /:

Lemma 5.8. We have that d0.˛/.Œp�/ D �.p;w.n// ¤ 0 2 K1.C /.

Proof. By [22, Theorem 6.3], there exists a six-term exact sequence

K0.C.T //
K0.i1/˚K0.i2/ // K0.A/˚K0.B/

K0.j1/�K0.j2/ // K0.C /

��
K1.C /

OO

K1.A/˚K1.B/
K1.j1/�K1.j2/oo K1.C.T //

K1.i1/˚K1.i2/oo

(5.3)

Since
.K1.j1/ �K1.j2//.0˚��.p;w

.n/// D �.p;w.n//;

it suffices to check that 0 ˚ ��.p;w.n// … im.K1.i1/ ˚ K1.i2//. We have that
Œu.˛/� D 0 2 K1.A/, and therefore

im.K1.i1/˚K1.i2// D 0˚ ZŒw�:

By assumption, �.p;w.n// ¤ kŒw� for all k 2 Z, and the proof is complete.

As the conditions onA andB are verymild, Lemma5.8 applies inmany situations.
We would like to discuss one example, which is of particular interest. Take A WD
C �.H3/ and equip it with the natural action ˛ defined in the last subsection. Let
B WD C.T /˚C.T / and setw WD z˚z and p WD 1˚0. Observe that these elements
satisfy (5.2). Define the amalgamated free product C1 WD A �C.T/ B and consider
the pointwise inner action onC1 induced by ˛ W Z2 Õ A, which we also denote by ˛.
By Lemma 5.8, �.p;w/ ¤ 0 2 K1.C1/.

The C�-dynamical system .C1; ˛;Z2/ is universal for K1-obstructions for
pointwise inner Z2-actions in the following sense. For every unital C�-algebra D,
any pointwise inner action 
 W Z2 Õ D with 
1 D Ad. Qu/ and 
2 D Ad. Qv/, and
every projection Qp 2 D, there is a unital and equivariant �-homomorphism

' W .C1; ˛;Z
2/! .D; 
;Z2/; u 7! Qu; v 7! Qv; p 7! Qp:
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By naturality of the obstruction homomorphism (Proposition 3.2),

K1.'/.d0.˛/.Œp�// D d0.
/.Œ Qp�/:

Therefore, we can think of d0.˛/.Œp�/ D �.p; u.˛// 2 K1.C1/ as the universal
K1-obstruction for pointwise inner Z2-actions.

The universal property of .C1; ˛;Z2/ also yields that �.p; u.˛// 2 K1.C1/ has
infinite order and induces a split-injection Z Œ�.p; u.˛//� ,�! K1.C1/. To see this,
consider the C�-dynamical system .A˝O1; ˛˝ id;Z2/, whereO1 is the (unique)
UCT Kirchberg algebra with K0.O1/ D 0 and K1.O1/ Š Z. The proof of
Theorem 5.6 and the fact that A˝ O1 is properly infinite show that there exists a
projection q 2 A˝O1 such that the cyclic subgroup generated by

0 ¤ d0.˛ ˝ id/.Œq�/ 2 K1.A˝O1/

sits inside K1.A˝O1/ Š Z3 as a direct summand. Hence, the universal property
of .C1; ˛;Z2/ applied to .A˝O1; ˛ ˝ id;Z2/ and q yields the desired result.
Proposition 5.9. The canonical embedding j1 W A ,�! C1 is split-injective in
K-theory and induces the following decompositions:

K0.C1/ Š K0.A/˚ ZŒp� and K1.C1/ Š K1.A/˚ ZŒ�.p; u.˛//�:

In particular, K0.C1/ Š K1.C1/ Š Z4.

Proof. Direct computation shows that

K�.i1/˚K�.i2/ W K�.C.T //! K�.A/˚K�.B/

is split-injective. Hence the six-term exact sequence (5.3) associated with the
amalgamated free product C1 D A �C.T/ B reduces to a split-extension

0 // K�.C.T //
K�.i1/˚K�.i2/ // K�.A/˚K�.B/
ww K�.j1/�K�.j2/// K�.C1/ // 0:

(5.4)
Consequently,K�.C1/ is torsion-free. AsK0.A/ Š K1.A/ Š Z3 by Proposition 5.5,
we conclude that K0.C1/ Š K1.C1/ Š Z4.

The universal property of the amalgamated free product yields a homomorphism
' W C1 ! A satisfying ' ı j1 D idA, .' ı j2/.p/ D 1, and .' ı j2/.w/ D u.˛/.
Obviously, ' is surjective with splitting j1 W A ,�! C1. This shows that K�.j1/ is
split-injective. Moreover, we get that Œp� 2 K0.C1/ has infinite order and induces
a split-injection ZŒp� ,�! K0.C1/. Since we already know that the analogous
statement for �.p; u.˛// 2 K1.C1/ is true as well, it remains to show that Œp� and
�.p; u.˛// both do not lie in K�.j1/.K�.A// � K�.C1/.

Suppose that there is some g 2 K0.A/ with K0.j1/.g/ D Œp�. As

.K0.j1/ �K0.j2//.0˚�Œ1˚ 0�/ D Œp�;
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exactness of (5.4) yields the existence of some k 2 Z satisfying

k.Œ1�˚ Œ1˚ 1�/C g ˚ 0 D 0˚�Œ1˚ 0�:

This is a contradiction, and thus Œp� … K0.j1/.K0.A//. A similar argument yields
�.p; u.˛// … K1.j1/.K1.A// using that

.K1.j1/ �K1.j2//.0˚�Œz ˚ 0�/ D �.p; u.˛// 2 K1.C1/:

Theorem 5.10. The obstruction homomorphism associated with ˛ W Z2 Õ C1 is
non-trivial. Moreover, the K-theory of C1 Ì˛ Z2 satisfies

K0.C1 Ì˛ Z2/ Š K1.C1 Ì˛ Z2/ Š Z13:

In particular, K�.C1 Ì˛ Z2/ © K�.C1 ˝ C.T2//.

Proof. We have that

d0.˛/.Œp�/ D �.p; u.˛// and d1.˛/.�.p; u.˛/// D 0;

where the second equality is a consequence of Proposition 5.4. As K�.j1/ W
K�.A/! K�.C1/ is split-injective by Proposition 5.9, naturality of the obstruction
homomorphism yields that on K�.A/ � K�.C1/, d�.˛/ W K�.C1/ ! K�C1.C1/

coincides with the obstruction homomorphism associated with .A; ˛;Z2/. The proof
of Theorem 5.6 therefore yields that

coker.d0.˛// Š ker.d0.˛// Š Z3 and coker.d1.˛// Š ker.d1.˛// Š Z2:

As in the proof of Theorem 5.6, the statement now follows from the Pimsner–
Voiculescu sequence associated with .C1 Ì˛1

Z; L̨2;Z/.

Let us present another instance of a C�-dynamical with non-trivial obstruction
homomorphism arising from the above construction. Whereas .C1; ˛;Z2/ is
interesting for its universal property, the next C�-dynamical system is minimal
concerning the K-groups of the underlying C�-algebra.

Theorem 5.11. There exists a unital, separable C�-algebra C with K0.C / Š
K1.C / Š Z, which admits a pointwise innerZ2-action ˛ that is pointwise homotopic
to the trivial action inside Inn.A/ and whose associated obstruction homomorphism
is non-trivial. The K-theory of the associated crossed product is given by

K0.C Ì˛ Z2/ Š K1.C Ì˛ Z2/ Š Z3:

In particular, K�.C Ì˛ Z2/ © K�.C ˝ C.T2//.
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Proof. Define A WD C�.H3/ ˝ O2 and note that this C�-algebra has trivial
K-theory, see [7, Theorem 2.3]. Kirchberg’s absorption theorem [15] implies that
A Š A ˝ Z , where Z denotes the Jiang-Su algebra. Hence A is K1-injective
by [14, Corollary 2.10]. The unitaries u˝ 1 and v˝ 1 2 A are therefore homotopic
to 1 2 U.A/. By identifying u.˛/˝ 1 2 A with z˚ z 2 C.T /˚ C.T /, we can form
the amalgamated free product

C WD A �C.T/ .C.T /˚ C.T //:

Consider the pointwise inner Z2-action ˛ onC induced by Ad.u˝1/ and Ad.v˝1/,
which is obviously pointwise homotopic to the trivial action inside Inn.A/. A
similar calculation as in the proof of Proposition 5.9 shows that K0.C / D ZŒp� and
K1.C / D Z Œ�.p; u.˛//�, where p WD 1˚ 0. Moreover, d0.˛/.Œp�/ D �.p; u.˛//

and d1.˛/ D 0. The result now follows from the Pimsner–Voiculescu sequence for
.C Ì˛1

Z; L̨2;Z/.

Next, we present an analogous construction yielding pointwise innerZ2-actions ˛
on amalgamated free product C�-algebras with non-trivial obstruction homomor-
phisms d1.˛/. Let B be a unital, separable C�-algebra whose K-groups both do
not vanish. Assume further that there is a central unitary w 2 U.Z.B// with full
spectrum and a unitary x 2 Un.B/ such that

�.w.n/; x/ ¤ kŒ1� 2 K0.B/ for all k 2 Z: (5.5)

The two injective �-homomorphisms

i1 W C.T / ,�! A; i1.z/ WD u.˛/ and i2 W C.T / ,�! B; i2.z/ WD w;

give rise to an amalgamated free product C WD A�C.T/B . Observe that u.˛/ D w is
a central unitary in C , and hence ˛ extends to a pointwise inner action on C , which
we also denote by ˛. Then d1.˛/ W K1.C /! K0.C / satisfies

d1.˛/.Œx�/ D �.u.˛/
.n/; x/ D �.w.n/; x/ 2 K0.C /:

Lemma 5.12. It holds that d1.˛/.Œx�/ D �.w.n/; x/ ¤ 0 2 K0.C /.

Proof. The proof is very similar to the one of Lemma 5.8.

Remark 5.13. If Œ1� 2 K0.A/ has infinite order, then Lemma 5.12 remains true if
we replace (5.5) by the condition that �.w.n/; x/ ¤ 0 2 K0.B/.

There exists a C�-dynamical system .C0; ˛;Z2/ which is universal for K0-
obstructions for pointwise inner Z2-actions. To define it, let again A WD C�.H3/
and equip it with the natural Z2-action ˛ from the last subsection. Moreover, let
B WD C.T2/ and set w WD z1 and x WD z2. As �.w; x/ D b 2 K0.B/, (5.5) is
clearly satisfied. Form the amalgamated free product C0 WD A �C.T/ C.T2/, which
carries the induced pointwise inner Z2-action ˛.
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Universality of this system expresses in the following property. Given a unital
C�-algebra D, a pointwise inner action 
 W Z2 Õ D with 
1 D Ad. Qu/ and 
2 D
Ad. Qv/ and a unitary Qx 2 U.D/, there is a unital and equivariant �-homomorphism

' W .C0; ˛;Z
2/! .D; 
;Z2/; u 7! Qu; v 7! Qv; x 7! Qx:

By the naturality of the obstruction homomorphism (Proposition 3.2),

K0.'/.d1.˛/.Œx�// D d1.
/.Œ Qx�/:

In this way, d1.˛/.Œx�/ D �.u.˛/; x/ 2 K0.C0/ can be considered as the universal
K0-obstruction for pointwise inner Z2-actions.

Note that the proof of Theorem 5.6 shows that �.u.˛/; x/ 2 K0.C0/ has infinite
order and that ZŒ�.u.˛/; x/� ,�! K0.C0/ is split-injective.

Proposition 5.14. The canonical embedding j1 W A ,�! C0 is split-injective in
K-theory and induces the following decompositions:

K0.C0/ Š K0.A/˚ ZŒ�.u.˛/; x/� and K1.C0/ Š K1.A/˚ ZŒx�:

In particular, K0.C0/ Š K1.C0/ Š Z4.

Proof. The proof is similar to the one of Proposition 5.9.

Theorem 5.15. The obstruction homomorphism associated with ˛ W Z2 Õ C0 is
non-trivial. Moreover, the K-theory of C0 Ì˛ Z2 satisfies

K0.C0 Ì˛ Z2/ Š K1.C0 Ì˛ Z2/ Š Z13:

In particular, K�.C0 Ì˛ Z2/ © K�.C0 ˝ C.T2//.

Proof. It holds that

d1.˛/.Œx�/ D �.u.˛/; x/ and d0.˛/.�.u.˛/; x// D 0;

where the second equality is a consequence of Proposition 5.4. As K�.j1/ W
K�.A/! K�.C0/ is split-injective by Proposition 5.14, naturality of the obstruction
homomorphism yields that on K�.A/ � K�.C0/, d�.˛/ W K�.C0/ ! K�C1.C0/

coincides with the obstruction homomorphism associated with .A; ˛;Z2/. The proof
of Theorem 5.6 therefore yields

d0.˛/ D 0 and ker.d1.˛// Š coker.d1.˛// Š Z:

Finally, we proceed as in the proof of Theorem 5.6, and consider the Pimsner–
Voiculescu sequence for .C0 Ì˛1

Z; L̨2;Z/.
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