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Abstract.We construct a generalization of Koszul duality in the sense of Keller–Lefèvre for not
necessarily augmented algebras. This duality is closely related to classical Morita duality and
specializes to it in certain cases.

Mathematics Subject Classification (2010). 18-xx; 16-xx.
Keywords. Koszul duality, Morita duality, derived categories.

1. Introduction

Koszul duality is an anti-equivalence between certain subcategories of the derived
category of a quadratic Koszul algebra A and that of its Koszul dual AŠ [1]. More
recently Keller and Lefèvre [4] gave a general formulation which is valid for a general
augmented differential graded (dg) algebra and its dg Koszul dual (which is in that
case naturally a dg coalgebra). The derived category on the dual side is that of dg
comodules over this dg coalgebra; this is a derived category of the second kind in the
sense of [7], in particular acyclic comodules are not necessarily regarded as trivial. In
fact, in the coalgebra-comodule language the Koszul equivalence becomes covariant,
but taking linear duals restores contravariance. We adopt the set-up in which the
Koszul correspondence is contravariant; this allows us to replace coalgebras and
comodules with the dual notions of pseudo-compact algebras and pseudo-compact
modules, cf. [11] concerning these notions. This language is of course equivalent to
the language of coalgebras and comodules.

It is natural to ask whether the assumption that A be augmented is essential for
constructing Koszul duality. One answer which completely removes this assumption
is provided by the work of Positselski [7], but at a price: the Koszul dual object
op. cit. is no longer a pseudo-compact dg algebra but a more general one, called
a (pseudo-compact) curved dg algebra. The category of modules also needs to be
appropriately modified.

We provide a different answer, which ensures that (the analogue of) the Koszul
dual object is still an (ordinary, not curved) pseudo-compact dg algebra, even though
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the original A is not necessarily augmented. It is however, required to possess a
non-zero finite-dimensional dg module M (in the case M D k, the ground field,
this reduces to the Keller–Lefèvre treatment). We prove further, that such a dg
module always exists, at least if we replace A by a quasi-isomorphic dg algebra. The
unexpected conclusion is that the derived category of dg modules over a dg algebra
is always equivalent to some derived category of pseudo-compact modules.

Conversely, we give a necessary and sufficient condition for the derived category
of pseudo-compact dg modules over a pseudo-compact dg algebra to be anti-
equivalent to the derived category of dg modules over some dg algebra. In contrast,
this condition does not always hold, i.e. there are derived categories of pseudo-
compact modules which are not equivalent to any derived module category.

Furthermore, the functor associating to a dg A–module an appropriate pseudo-
compact module on the Koszul dual side is given as a kind of (derived) Hom intoM .
It is, thus, reminiscent of the (derived version of) the classical Morita duality [5,6]. It
turns out that our duality could indeed be viewed as an extension of Morita duality in
the case when A is an ordinary finite-dimensional algebra of finite global dimension.

It seems likely that a large portion of our results could be extended to dg modules
over dg categories, however we refrained from working in this generality to keep
exposition simple. Related results, in the context of dg categories, are contained in
the recent preprint [8]. The main difference in our approach is that the use of the
reduced Hochschild complex allowed us to avoid additional assumptions present in
e.g. Proposition 3.9 of op. cit.

It also is worth noting that equivalences between categories of pseudo-compact
modules (phrased in the language of comodules) were studied in the work of
Takeuchi [10] and so our results could be viewed as linking (derived versions of)
Morita theory and Takeuchi theory.

1.1. Organization of the paper. In Sections 2 through 7we formulate and prove our
main result: a Quillen anti-equivalence between categories of dg modules over a dg
algebra A, possessing a finite-dimensional non-zero dg moduleM , and the category
of pseudo-compact dg modules over a pseudo-compact dg algebra E, which is the
reduced Hochschild complex of A with coefficients in EndM . We note that E
computes the derived endomorphisms of M as an A–module, just as (for example)
the corresponding unreduced complex. However we cannot replace E with the
corresponding unreduced complex or use some other resolution of M since that
will change the derived category of pseudo-compact modules. We do not have a
satisfactory explanation of this striking phenomenon; perhaps it is related to the lack
of an appropriate closed model category structure on all pseudo-compact dg algebras
(or, equivalently, all dg coalgebras).

Our main tool in proving the mentioned Quillen equivalence is Koszul duality
as developed by Positselski [7]. One minor modification that we introduce is the
systematic use of (pseudo-compact) dg modules and their Maurer–Cartan twisting
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which might be of some independent interest. It is worth remarking that the end
result does not involve curved dg algebras and modules even though Positselski’s
results and our use of them do.

In Section 8 we consider the question of when the category of pseudo-compact dg
modules is Quillen equivalent to some (ordinary) derived category of dg modules; a
particularly simple criterion is formulated in the case of an ungraded pseudo-compact
algebra. Finally Section 9 explains how our results essentially reduce to (derived)
Morita duality in the casewhenA is finite-dimensional and of finite global dimension.

2. Formulation of the main result

Let A be a dg algebra over a field k and letM be a non-zero finite-dimensional (dg)
module overA (the adjective “dg” will typically be omitted when applied to a module
over a dg algebra). All dg algebras and modules will be cohomologically graded (so
the differential will have degree 1). Recall (cf., for example [7, Theorem 8.1a]) that
the category of A–modules has the structure of a closed model category where weak
equivalences are quasi-isomorphisms and fibrations are the surjective maps. All
A–modules are fibrant and cofibrant objects are retracts of cell A–modules; the latter
are the A–modules having a filtration whose associated factors are free A–modules.
We can form the reduced Hochschild complex of A with coefficients in End.M/:

Hochn.A;EndM/ � Hom.A˝n;EndM/

consisting of the reduced cochains; that is multilinear maps (over k) A�n ! EndM
which vanish if any of the arguments is 1 2 A. The complex Hoch�.A;EndM/ is a
dg algebra which we will denote by E.

To see that it is a dg algebra first definemultiplication of a degree n element ˛ with
a degree m element ˇ by setting application to elements a1; : : : ; an; b1; : : : ; bm 2 A
to be given by:

.˛ˇ/.a1; : : : ; an; b1; : : : ; bm/ D .�1/
st˛.a1; : : : ; an/ˇ.b1; : : : ; bm/; (2.1)

where s is the sum of the degrees of the ai and t is the degree of ˇ. The multiplication
on the right hand side of his equation is just composition in End.M/.

Note that E has a differential d which is the sum of:

(1) The internal differentials on the copies of A in A˝n,

(2) The differential on End.M/ coming from the internal differential onM ,

(3) Contractions on the copies of A, including the two “end terms” represented by
taking the commutator Œı; _� in E, where ıWA! End.M/ is just the A–action
onM .
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Without these “end terms”, the differential of a reduced cochain would no longer be
reduced.

Moreover,E can be identified (disregarding the differential) with OT†..A=k/�/˝
EndM where here and elsewhere in the paper the tensor product is understood in
the appropriate completed sense. Here † denotes the suspension operator, which
raises the degree of each homogeneous element in a graded algebra/module. Recall
from [11] that a dg algebra is pseudo-compact if it is an inverse limit of finite-
dimensional dg algebras (or. equivalently, is dual to a dg coalgebra). Since M is
finite-dimensional, the dg algebra E is pseudo-compact. In the case M D k, the
pseudo-compact dg algebra E is also local (which is the same as saying that its dual
dg coalgebra is conilpotent).

We also consider the category of left pseudo-compact (dg) modules E-mod;
these are just inverse limits of finite-dimensional E-modules (or comodules in
the dual setting). It has the structure of a closed model category in which the
weak equivalences are strictly stronger than quasi-isomorphisms and fibrations
are surjections [7, Theorem 8.2a]. All E–modules are fibrant and the cofibrant
E–modules are the retracts of free E–modules (disregarding the differential).

Here is our main result; its proof is given is Section 7, after laying the groundwork
in previous sections.
Theorem 2.1. The categories A-mod and .E-mod/op are Quillen equivalent. The
functor F WA-mod ! .E-mod/op, effecting this equivalence, associates to an
A–module N the following E–module:

F.N/ D Hoch.A;Hom.N;M//;

the reduced Hochschild complex of A with coefficients in Hom.N;M/.

Remark 2.2. (1) We use (2.1) to define a left E–action on F.N/, with
multiplication on the right hand side of (2.1) now coming from the EndM–action on
Hom.N;M/.

(2) The complex Hoch.A;End.M// is quasi-isomorphic to the unreduced
Hochschild complexHoch.A;End.M//. However these pseudo-compact dg algebras
do not have equivalent derived categories of pseudo-compact modules. For example,
taking A D k andM D k we have Hoch.A;k/ Š Hoch.A� k;k/; thus the category
of pseudo-compact Hoch.A;k/–modules is Quillen equivalent to the category of
.k�k/–modules. On the other hand, Hoch.A;k/ Š k. Thus, the derived categories of
pseudo-compact Hoch.A;k/–modules and of pseudo-compact Hoch.A;k/–modules
cannot be equivalent and the reduced Hochschild complex cannot be replaced with
the unreduced one in the definition of the pseudo-compact dg algebra E.

(3) It is possible to describe the adjoint functor GW .E-mod/op ! A-mod
explicitly (and this will be done later). However for this we need to develop the
language of twistings and it will be in less traditional terms than the functor F .
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If theA-moduleM is the ground fieldk (so thatA is augmented) then Theorem2.1
is the ordinary dg Koszul duality. However we stress that M could be an arbitrary
non-zero finite-dimensional A-module; in particular it could be acyclic. This leads
to the following result.
Corollary 2.3. For any dg algebra A the category A-mod is Quillen equivalent to
the category .E-mod/op for some pseudo-compact dg algebra E.

Proof. Let C be any finite-dimensional acyclic dg algebra; the smallest example
is a two-dimensional one having basis f1; xg with x2 D 0 and d.x/ D 1. Then
the projection A � C ! A is clearly a quasi-isomorphism and leads to a Quillen
equivalence between the categories of A-modules and A � C -modules. But the
dg algebra A � C has a non-zero finite dimensional module, namely C via the
projectionA�C ! C . We conclude, by Theorem 2.1, that the categoryA�C -mod
and thus, the categoryA-mod, is Quillen equivalent to the category .E-mod/op where
E D Hoch.A � C;EndC/.

3. Curved algebras and modules

Recall from [7] that a curved dg algebra is a graded algebra A together with a
“differential” d WA ! A, a derivation of A of degree one such that d2.a/ D Œh; a�

where a 2 A and h 2 A is an element of degree two such that d.h/ D 0, called the
curvature of A.

A morphism of curved dg algebras f WB ! A is a pair .f; a/ consisting of a
morphism of graded algebras f WB ! A and an element a 2 A1 satisfying the
equations:

f .dB.x// D dA.f .x//C Œa; f .x/�;

f .hB/ D hA C dA.a/C a
2;

for all x 2 B , where B D .B; dB ; hB/ and A D .A; dA; hA/.
The composition ofmorphisms is defined by the rule .f; a/ı.g; b/D.f ıg; aCf .b//.

Identity morphisms are the morphisms .id; 0/.
A morphism .f; 0/ as above is called strict; thus strict morphisms preserve

curvature elements.
Note that a morphism .f; a/ of curved dg algebras is an isomorphism precisely

when f is invertible, since the inverse map is then given by the pair .f �1;�f �1.a//.
Any dg algebra can be viewed as a curved dg algebra with the zero curvature. There
are non-isomorphic dg algebras which are isomorphic as curved dg algebras.

A left module .M; dM / over a curved dg algebra A is a graded left A–module M
endowed with a derivation dM WM ! M compatible with the derivation dA and
such that d2M .x/ D hAx for any x 2 M . Equivalently, a graded k–vector spaceM
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with degree 1 derivation dM WM ! M is a left A–module if it is equipped with a
strict map A! EndM . Here the “differential” on EndM is taking the commutator
with dM and the curvature is d2M .
Remark 3.1. A curved dg algebra A is not necessarily a left (or right) module over
itself. Indeed if it were, then d2A D Œh;�� D lh, where lh is the operator of left
multiplication by h; clearly this holds if and only if h D 0. On the other hand, it is
consistent to consider A as an A-bimodule, i.e. a module over the curved dg algebra
A˝ Aop with the curvature element h˝ 1 � 1˝ h.

We will be interested in the pseudo-compact versions of the above notions,
i.e. pseudo-compact curved dg algebras and modules over them.
Example 3.2. Let A be a unital dg algebra. Choose a k-linear map �WA ! k,
to be regarded as an “augmentation”, even though not required to be multiplicative
nor differential. Then the pseudo-compact graded algebra OT†..A=k/�/ has the
structure of a curved pseudo-compact algebra. To define it, view OT†..A=k/�/ as
a “Hochschild complex” of A with coefficients in k. In other words, define the
“differential” on OT†..A=k/�/ by the formula:

df .a1; : : : ; an/ D �.a1/f .a2; : : : ; an/

C

nX
kD1

.�1/kf .a1; : : : ; akakC1; : : : ; an/

C .�1/nC1f .a1; : : : ; an�1/�.an/:

(3.1)

(here for simplicity it is assumed that all elements and f are of even degree).
Since � is not necessarily an augmentation, d may not square to zero; however

this will define a curved dg algebra structure on OT†..A=k/�/. If � is chosen to
be a dg map, the curvature element is the “homutator” of �; h 2 OT 2†..A=k/�/:
h.a; b/ D �.ab/ � �.a/�.b/. It vanishes iff � is a genuine augmentation in which
case OT†..A=k/�/ becomes uncurved and is isomorphic to Hoch.A;k/.

If A is acyclic then one cannot choose � to be a dg map. In this case the curvature
element has an additional term — the differentiator hd 2 †.A=k/�/, satisfying
hd .a/ D �.da/.

The last example is themain reason (for us) to consider curved dg algebras. For any
unital dg algebraA it determines a (local) pseudo-compact algebra OT†..A=k/�/. The
correspondenceA 7! OT†..A=k/�/ depends on choosing a fake augmentation but any
two choices are canonically isomorphic and thus, it could be viewed as a functor from
dg algebras into local curved pseudo-compact dg algebras. Positselski shows that
this gives a Quillen anti-equivalence between dg algebras and local pseudo-compact
curved dg algebras [7]. This is a unital analogue of Keller–Lefevre’s correspondence.
There is also a Quillen anti-equivalence between A–modules and OT†..A=k/�/–
modules which will be instrumental in establishing our main result.



Koszul–Morita duality 1547

4. Twisting

The notion of Maurer–Cartan (MC) twisting of dg algebras or dg Lie algebras is well
documented [2]. Here we will discuss twistings of curved algebras and modules over
them. Note that Positselski (and others) work with twisted cochains rather than with
MC elements; our point of view is essentially equivalent but more convenient since
it allows one to avoid coalgebras and comodules.
Definition 4.1. (1) Let A D .A; d; h/ be a curved dg algebra and � 2 A1. The

twisting of A by � , denoted by A� , is the curved dg algebra having the same
underlying space as A, the twisted differential d � D d C Œ�; _� and the twisted
curvature h� D hC d� C 1

2
Œ�; ��.

(2) Let M;dM be a module over a curved dg algebra A as above. The twisting
ofM by � , denoted byM Œ��, is the module overA� having the same underlying
space as A and the twisted differential d Œ�� WD dM C � .

Remark 4.2. An uncurved dg algebra A may be viewed as a module over itself, so
given � 2 A1 we have that AŒ�� is a module over A� ; here AŒ�� ¤ A� as they have
different differentials.
Definition 4.3. Let .A; d; h/ be a curved dg algebra; then � 2 A1 is called MC if
hC d� C 1

2
Œ�; �� D 0.

Remark 4.4. The twisting of a curved dg algebra by an MC element is an uncurved
algebra.
Example 4.5. (1) Let A be a unital dg algebra, then BA WD OT†.A�/ is an
(uncurved) acyclic local pseudo-compact algebra. Tensoring it withAwe get another
dg algebra (although not pseudo-compact unless A is finite dimensional): C D
BA˝A. The algebra C has a canonical MC element; choosing a basis feig in A and
the dual basis feig in †.A�/ it is:

� WD
X

ei ˝ ei 2 BA˝ A:

Then .BA˝A/� is isomorphic to Hoch.A;A/, the (unreduced) Hochschild complex
ofAwith coefficients in itself. If C is a (unital) dg algebra supplied with a dg algebra
map A ! C then Hoch.A; C / can similarly be constructed as an algebra twisting
of BA˝ C .

Furthermore, letM be anA-bimodule. Then viewingBA˝M as a bimodule over
BA˝Awe can form the twisted module .BA˝M/Œ�˝1C1˝��. Here �˝1C1˝ � 2
.BA˝A/˝ .BA˝A/op. This results in what normally is denoted by Hoch.A;M/,
the unreduced Hochschild complex of A with coefficients inM ; it is thus naturally a
bimodule over Hoch.A;A/.

(2) Let A be as above and consider a fake augmentation �WA! k as an element
inBA. Twisting by � gives a local curved pseudo-compact algebraBA� with curvature
denoted by w.
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The reduced bar-construction BA WD OT†..A=k/�/ is a (curved) subalgebra
in BA� ; in fact there is an isomorphism BA� Š BAhhxii mapping � 7! x,
where dx D x2 C w.

In the case when � is a genuine augmentation we have w D 0 and the inclusion
BA ,! BA is a quasi-isomorphism as BA is the coproduct (in the category of
associative k-algebras) of BA with an acyclic dg algebra.

(3) Let again A be a unital dg algebra and consider the curved pseudo-compact
algebra BA D OT†..A=k/�/. Let AC be the kernel of the (fake) augmentation
�WA! k. Then .A=k/� can be identified with A�C and BA with OT†.A�C/.
Thus, consider the curved dg algebra OT†.A�C/ ˝ A. It has a canonical element
� D

P
ei ˝ ei where ei is a basis in AC and ei is the dual basis in †.A�C/. It

turns out to be an MC element so twisting by it results in an uncurved dg algebra
. OT†.A�C/ ˝ A/� . The latter dg algebra is Hoch.A;A/, the reduced Hochschild
complex of A with coefficients in itself. If C is a (unital) dg algebra supplied with a
dg algebra map A! C then Hoch.A; C / can similarly be constructed as an algebra
twisting of BA˝ C .

If M is an A-bimodule one can similarly form Hoch.A;M/ as a bimodule over
Hoch.A;A/.

(4) LetM be a left dg module over a dg algebra A and consider Hoch.A;A/ D
.BA ˝ A/� as above and its left module .BA ˝M/Œ��. This module looks similar
to Hoch.A;M/ but the differential is slightly different: one has to omit the last
term in (3.1). The complex .BA˝M/Œ�� is acyclic and is the dual of the standard
bar-resolution ofM � as a right A–module.

Similarly we can form the dg algebra Hoch.A;A/ D .BA ˝ A/� and its left
module .BA˝M/Œ��, which can be identified with the dual reduced standard bar-
resolutionM � as a right A–module.

Proposition 4.6. Let A be a curved pseudo-compact algebra and � 2 A1. Then
the category of A–modules and the category of A�–modules are Quillen equivalent.
To an A–module N we associate an A�–module M Œ�� and to an A�–module N we
associate the module N Œ���.

Proof. Clearly the categories are isomorphic: the A–module .M Œ��/Œ��� is equal
toM and similarly with an A�–module N .

As both the categories are of pseudo-compact modules, cofibrations are
characterized as the injective morphisms with projective cokernels (disregarding
differentials). Clearly this property is preserved by both the functors described in the
proposition.
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5. Koszul duality

Let A be a unital dg algebra and B WD BA be its reduced bar-construction, a curved
local pseudo-compact dg algebra.
Definition 5.1. We define a pair of (contravariant) functors between the categories
of A–modules and of B–modules as follows. The functor F associates to an
A–module N , the twisted module:

F.N/ D .B ˝N �/Œ��:

Here we view B ˝N � as a B ˝ Bop ˝ Aop–module and � is the canonical element
inBop˝Aop. Thus, .B˝N �/Œ�� becomes aB˝.Bop˝Aop/� D B˝Hoch.A;A/op–
module and forgetting the Hoch.A;A/op–action we get a B–module.

The functor G in the opposite direction associates to a B–module L the twisted
module:

G.L/ D .A˝ L�/Œ��:

Here we view A ˝ L� as a Bop ˝ Aop ˝ A D BAop ˝ Aop ˝ A–module; � is
the canonical element in BAop ˝ Aop. Thus, .A ˝ L�/Œ�� is a .BAop ˝ Aop/� ˝

A D Hoch.A;A/op ˝ A–module and forgetting the Hoch.A;A/op–action we get an
A–module.

Explicitly then, if ˛ 2 F.N/ is a map A�k �N ! k, then d˛ maps:

.a1; : : : ; akC1; n/ 7! �.a1/˛.a2; : : : ; akC1; n/

� ˛.a1a2; : : : ; akC1; n/

C � � �

C .�1/kC1˛.a1; : : : ; akC1; n/;

where as before � denotes a fake augmentation and the elements ai , i D 1; : : : ; kC1
are understood to be even, as before. It is clear that d2 induces application of
the curvature element in B rather than commutation with it, so F.N/ is indeed a
B–module.

From [7, Theorem 6.3a] we know that F;G form a mutually inverse pair of
equivalences of categories. This equivalence is then a Quillen equivalence with
respect to the closed model category structures on A-modules and B-modules. Thus
we have:
Theorem 5.2. The functorsF;G form a (contravariant) Quillen equivalence between
the categories of A–modules and B–modules.
Remark 5.3. (1) The action of Hoch.A;A/ was not mentioned in [7] and the
functors F and G were described in a different, although equivalent, language.
The role of the additional right action of Hoch.A;A/ is not completely clear. One
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can speculate that since Hoch.A;A/ is quasi-isomorphic to a strictly commutative
dg algebra, its left and right actions coincide in some strong homotopy sense and
moreover, are formal consequences (again in an appropriate strong homotopy sense)
of the actions of A or B .

(2) The action of the curved dg algebra B on F.N/ is obtained as a restriction
using the inclusion of curved dg algebras B ,! B ˝ Hoch.A;A/W b 7! b ˝ 1. Note
that this required the twist: the corresponding mapB ! B˝Bop˝Aop is not a map
of curved dg algebras and B ˝N � is not a B–module, just as B is not a B–module.

6. Covariant Morita equivalence for modules over a pseudo-compact algebra

LetB be a pseudo-compact curved dg algebra andM be a non-zero finite-dimensional
vector space over k. ThenE 0 WD B˝EndM is a curved dg pseudo-compact algebra.
We have:
Proposition 6.1. The categories of B–modules and of E 0–modules are Quillen
equivalent. To a B–module N we associate the E 0–module F 0.N / WD N ˝ M .
To an E 0–module L we associate a B–module G0.L/ WD HomE .B ˝ M;L/ Š
HomEndM .M;L/.

Proof. We have natural isomorphisms:

G0F 0.N / D HomEndM .M;N ˝M/

Š HomEndM .M;M/˝N Š k˝N D N;

F 0G0.L/ D HomEndM .M;L/˝M

Š Hom.M �;HomEndM .M;L//

Š HomEndM .M
�
˝M;L/

Š HomEndM .EndM;L/ D L:

It remains to verify thatF 0 preserves cofibrations and thatG0 preserves fibrations.
As a module over itself EndM is a direct sum of copies ofM . SoM is a projective
EndM module.

Thus given a surjective map f WL1 ! L2, the induced map G.f / is surjective,
as we may lift any element g 2 HomEndM .M;L2/:

M

g

��}}
L1

f // L2

Thus G0 preserves fibrations.
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A cofibration of B–modules f WN1 ! N2 is characterized by being part of an
exact sequence:

0! N1
f
! N2 ! P ! 0;

for some B-module that is projective as a graded B-module, forgetting differentials.
Applying F 0 we obtain the exact sequence:

0! N1 ˝M
f˝1M
! N2 ˝M ! P ˝M ! 0:

To deduce thatF 0 preserves cofibrations we need only note thatP ˝M is a summand
of the projective module E 0–module P ˝ EndM .

7. Composing the equivalences

We now have all the ingredients to prove our main theorem. We have the following
chain of Quillen equivalences:

A-mod$ .BA-mod/op $ .BA˝ EndM -mod/op:

Note that both BA and BA ˝ EndM are curved pseudo-compact algebras.
Using Example 4.5 (3) we recognize Hoch.A;EndM/ as an appropriate twisting
.BA ˝ EndM/� and using Proposition 4.6 conclude that E 0 WD BA ˝ EndM–
modules are Quillen equivalent to E WD Hoch.A;EndM/–modules.

Moreover, the composition of functors from left to right is clearly F as defined
in Theorem 2.1. This completes the proof of Theorem 2.1.

Tracing the functors going in the opposite direction we can give the following
explicit description of the inverse equivalence .E-mod/op ! A-mod. Let L be
in E-mod. Considering the canonical element � in E we have E�� D BA˝EndM
and so LŒ��� is a module over the curved dg algebra BA˝ EndM .

Applying G0 returns the BA module HomEndM .M;L
Œ���/. In order to dualize

this we employ the following lemma.
Lemma 7.1. Given an EndM–module K we have:

HomEndM .M;K/
�
Š HomEndM .K;M/:

Proof. Replacing B in Proposition 6.1 with k gives us the Morita duality between k
and EndM :

HomEndM .K;M/ Š Homk.HomEndM .M;K/;k/ Š HomEndM .M;K/
�:

Thus applyingG to HomEndM .M;L
Œ���/, we get a twist of theA˝Aop˝BAop–

module:
A˝ HomEndM .L

Œ���;M/:
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Applying this (un)twist, we obtain that .A˝HomEndM .L
Œ���;M//Œ�� is a module

over A ˝ .Aop ˝ BAop/� D A ˝ Hoch.A;A/op (where � is the corresponding
MC element). Finally, forgetting the action of Hoch.A;A/, we obtain an
A–module .A˝ HomEndM .L

Œ���;M//Œ��. This is the value of our composite functor
.E-mod/op ! A-mod on L.

8. Equivalences between categories of modules and pseudo-compact modules

We saw that the category of modules over a dg algebra is always Quillen equivalent
to some category of pseudo-compact modules (Corollary 2.3). It is natural to ask
when, conversely, the category of pseudo-compact modules over a pseudo-compact
dg algebra is Quillen equivalent to the category of modules over some dg algebra.
The following result gives an answer to that question; here and later on D.A/
and D.B/ stand for the derived categories of A-modules and of pseudo-compact
B-modules respectively, i.e. the homotopy categories of the corresponding closed
model structures. The category D.B/ is the derived category of the second kind;
even when B is finite dimensional, it does not coincide, in general, with its usual
derived category (more on that later).
Theorem 8.1. LetB be a pseudo-compact dg algebra. The following are equivalent:
(1) There exists a dg algebra A and an equivalence F WD.A/ Š D.B/op,

(2) D.B/op admits a compact generator,

(3) D.B/op admits a finite-dimensional (necessarily compact) generator.

If any of these conditions holds then in fact there exists a dg algebra A and a Quillen
equivalence between A-mod and .B-mod/op:

In case B D B0, i.e. B is an ordinary pseudo-compact algebra, any of the three
conditions above is equivalent to the following statement:
(4) There are finitely many isomorphism classes of simple (non-dg) B–modules.

Lemma 8.2. Let B be pseudo-compact dg algebra. Then D.B/op is compactly
generated, and an object of D.B/op is compact if and only if it is in the thick
subcategory ofD.B/op generated by (totally) finite-dimensional modules.

Proof. By [7, §5.5], the finite-dimensionalB–modules form a set of compact objects
that generateD.B/op. It follows that the compact objects inD.B/op are generated as a
thick subcategory ofD.B/op by the finite-dimensionalmodules [3, Theorem2.1.3(c)].

Proof of Theorem 8.1. Given an equivalence F , we have that F.A/ is a compact
generator of D.B/op. Hence, by Lemma 8.2, F.A/ is obtained from a finite set
of totally finite-dimensional B–modules by a sequence of shifts, extensions and
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retractions. Thus the direct sum of these finite-dimensional modules is a compact
generator ofD.B/op. This proves that (1) implies (3), and (3) obviously implies (2).

Now suppose (2) holds: let N be a compact generator of D.B/op. Without loss
of generality we may assume N is cofibrant. Define a dg algebra A WD EndB.N /.
Then the functor

F.�/ D HomA.�; N /WA-mod! .B-mod/op

is left adjoint to the functor

G.�/ D HomB.�; N /W .B-mod/op ! A-mod :

Recall [7] that cofibrations in A-mod are the injective maps with cofibrant (in
particular projective) cokernel, whereas fibrations are the surjective maps. Similarly
fibrations in .B-mod/op are the injectivemaps with projective cokernel, and fibrations
are the surjective maps. It is then easy to see that F preserves cofibrations and G
preserves fibrations. Moreover F.A/ Š N and G.N/ Š A. Since A and N are
compact generators in D.A/ and D.B/ respectively, it follows that F and G induce
inverse equivalences ofD.A/ andD.B/op.

Suppose now that B is an ordinary pseudo-compact algebra. Simple (non-dg)
B–modules may be regarded as simple dg B–modules concentrated in degree 0, and
any simple dg B–module arises in this way, up to grading shift. If B has finitely
many isomorphism classes of simple modules, their direct sum is then a compact
generator, as any finite-dimensional dg B–module has a finite composition series.

Conversely suppose B has a finite-dimensional (compact) generator N . It
suffices to show that any simple B–module S is a composition factor of the
cohomology H.N/, regarded as a (finite-dimensional) ungraded B–module. To
confirm the latter, note that S , as a compact object in D.B/op, is contained
in the thick subcategory of D.B/op generated by N , and observe that shifts,
retracts and extensions of dg B–modules cannot create new composition factors
in cohomology.

Remark 8.3. The obvious generalisation of condition (4) in Proposition 8.1 to
arbitrary pseudo-compact dg algebras B would be the following:
(40) There are finitely many isomorphism classes of simple dg B–modules, up to

grading shift.
We do not know whether Proposition 8.1 holds in this generality. As a case in point,
the pseudo-compact dg algebraE D Hoch�.A;EndM/ of Theorem 2.1 has a unique
simple (dg) module up to isomorphism and grading shift — the moduleM .
Remark 8.4. Let G be an affine group over a field k; denote its coordinate ring
by kŒG�. The category of G–modules may be identified with the category of
kŒG�-comodules, or equivalently, with the category of modules over the pseudo-
compact algebra kŒG��. Thus it is natural to consider the derived categoryD.kŒG��/
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and to ask for which G it admits a compact generator. By Theorem 8.1 this holds if
and only if there are finitely many isomorphism classes of simple G–modules.

In caseG is a smooth affine algebraic group over an algebraically closed field, we
can give the following answer: G has finitely many simple modules if and only ifG0,
the connected component of the identity, is unipotent. Indeed, since G0 is a normal
subgroup of finite index inG, the standard arguments of Clifford theory imply thatG
has finitely many simple modules precisely when G0 does. If G0 is unipotent it has
a unique simple module. On the other hand if G0 is not unipotent, it has a nontrivial
reductive quotient and thus infinitely many isomorphism classes of simple modules.

9. Comparison with classical Morita duality

Our main result, Theorem 2.1, is a Quillen anti-equivalence, or duality between two
module categories; it is given as a kind of derived Hom functor. This suggests a close
relationship with Morita duality [5, 6] which also studies contravariant equivalences
between various categories of modules. We will see that that our result can indeed
be viewed as an extension of Morita duality in the case when the algebra in question
is finite dimensional and of finite global dimension.

Let us first present a kind of derived Morita duality when A is an ordinary
(i.e. non-dg) finite-dimensional algebra; this will be our standing assumption in
this section. If M is a finite-dimensional injective cogenerator of the category of
A-modules and � WD EndA.M/ then the category of finite-dimensional A–modules
is anti-equivalent to the category of finite-dimensional �–modules via the functors
F WN 7! HomA.N;M/ and GWL 7! Hom�.L;M/ (see e.g. [9, Theorem 7.11]).
Note that since � is a finite dimensional algebra, it makes sense to consider the
category of its (left) pseudo-compactmoduleswhichwewill denote by�ps–mod; note
that its opposite category is naturally identified with the category of ��-comodules.
The following result is an easy extension of this version of Morita duality.
Theorem 9.1. The functors F and G determine an anti-equivalence between the
abelian categories A–mod and �ps–mod.

Proof. The functor GW�ps–mod! A–mod can be factored as a composition,

�ps-mod �! �-mod �! A-mod;

as follows:
L 7! L� 7! Hom�.M �; L�/ Š Hom�.L;M/;

where L is a pseudo-compact �–module. The functor of linear duality L ! L�

is clearly an anti-equivalence between �ps–mod and �–mod whereas the functor
Hom�.M �;�/ is the usual covariantMorita equivalence between�–mod andA–mod
(note thatM � is a projective generator ofA–mod sinceM is an injective cogenerator).
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Remark 9.2. It follows that F and G determine an anti-equivalence between the
homotopy categories of complexes in A-mod and �ps-mod. Taking the Verdier
quotient by the acyclic complexes, we conclude thatD.A/, the derived category ofA,
is anti-equivalent to DI .�ps/, the derived category of pseudo-compact �–modules
of the first kind (cf. [7] concerning this terminology). Note that our previous results
were concernedwith the derived categories of pseudo-compactmodules of the second
kind.

Recall from [7] that a complex of A-modules is absolutely acyclic if it belongs
to the minimal thick subcategory of the category Hot.A-mod/ of A-modules up
to homotopy, containing acyclic bounded complexes. The Verdier quotient of
Hot.A-mod/ by the subcategory of absolutely acyclic complexes is called the absolute
derived category of A and denoted by Dabs.A/. In the same way we can define
the absolute derived category Dabs.�ps/ of pseudo-compact �-modules. It follows
similarly that the functors F and G determine an anti-equivalence betweenDabs.A/

andDabs.�ps/.
We observe that there is a simple criterion for the two types of derived categories

to coincide.
Lemma 9.3. If a finite-dimensional algebra � has finite global dimension then the
following categories coincide:
(1) Dabs.�/ andD.�/;
(2) Dabs.�ps/,D.�ps/ andDI .�ps/.

Proof. Note first of all that (1) H) (2) by Remark 9.2. Thus, it suffices to prove (1).
To this end let M be an acyclic complex of �–modules; we have to show that � is
absolutely acyclic. LetM hn;mi be the complex of �–modules such that:

M hn;mii D

8̂̂̂̂
<̂
ˆ̂̂:
M i if n < i < m
ker d WM n !M nC1 if i D n
Coker d WMm�1 !Mm if i D m
0 if i < n or i > m

Then clearlyM hn;mi is absolutely acyclic and

M ' holimn hocolimmM hn;mi:

It follows by [7, Theorem 3.6] that the category of absolutely acyclic complexes is
closedwith respect to arbitrary direct sums and direct products (this is where the finite
global dimension assumption is used), and therefore also with respect to homotopy
limits and colimits along directed systems . ThereforeM is absolutely acyclic.

Remark 9.4. If � is a pseudo-compact dg algebra of finite global dimension then
Positselski [7, Theorem 3.6 and 4.5] showed that various derived categories of second
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kind of � coincide. The result above shows that under the additional assumption
that � is concentrated in degree zero, these derived categories of second kind also
coincide with the ordinary derived categories.

We can now formulate the main result of this section.
Theorem 9.5. (1) LetA be a finite-dimensional algebra of finite global dimension.

Then the categories of dg A–modules and of pseudo-compact dg A–modules
are Quillen anti-equivalent.

(2) Conversely, suppose that there exists a finite-dimensional algebra � such that
the categories D.A/ and D.�ps/op are equivalent. Then A and � both have
finite global dimension, andD.A/ andD.�/ are equivalent.

Proof. Note that the k-linear duality functorL 7! L� determines an anti-equivalence
between the abelian categories A-mod and Aps-mod; it is also a Quillen functor
between the corresponding closed model categories. Now the homotopy category of
A-mod (in the sense of closed model categories) is the derived category D.A/. By
Lemma 9.3 the homotopy category of the closed model categoryAps-mod is the same
asDI .Aps/which is then equivalent toD.A/ under the functor of linear duality. This
proves (1).

Now suppose thatD.A/ andD.�ps/ are equivalent. Then arbitrary products and
coproducts exist in D.�ps/. Since absolutely acyclic pseudo-compact �–modules
vanish inD.�ps/, arguing as in the proof of Lemma 9.3 we see, that the same is true of
all acyclic pseudo-compact �–modules. Thus D.�ps/ coincides with DI .�ps/, and
is thus anti-equivalent to D.�/ via linear duality. Now recall from Lemma 8.2 that
finite-dimensional �-modules are compact objects inD.�ps/op. We deduce from the
equivalenceD.�/ Š D.�ps/opWM 7!M � that any finite-dimensional dgA–module
is compact inD.A/, which implies that A has finite global dimension, and therefore
so does � .

Remark 9.6. For a finite-dimensional algebra A there are two natural choices for a
finite-dimensional moduleM ; namely one can takeM D A orM D A�; the latter
choice having the advantage of being an injective cogenerator. Then Theorem 2.1
states that the category A–mod and E–mod where E WD Hoch.A;End.M// are
Quillen equivalent. Since E is quasi-isomorphic to RHomA.M;M/, for M D A

or M D A� it is further quasi-isomorphic to A. One can ask whether the above
equivalence simplifies to a Quillen equivalence between A–modules and pseudo-
compact A–modules. Theorem 9.5 says, in particular, that this is the case only
when A has finite global dimension.
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