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Bost–Connes systems, categorification,
quantum statistical mechanics, and Weil numbers

Matilde Marcolli� and Gonçalo Tabuada��

Abstract. In this article we develop a broad generalization of the classical Bost–Connes system,
where roots of unity are replaced by an algebraic datum consisting of an abelian group and
a semi-group of endomorphisms. Examples include roots of unity, Weil restriction, algebraic
numbers, Weil numbers, CM fields, germs, completion of Weil numbers, etc. Making use of the
Tannakian formalism, we categorify these algebraic data. For example, the categorification of
roots of unity is given by a limit of orbit categories of Tate motives while the categorification
of Weil numbers is given by Grothendieck’s category of numerical motives over a finite field.
To some of these algebraic data (e.g. roots of unity, algebraic numbers, Weil numbers, etc),
we associate also a quantum statistical mechanical system with several remarkable properties,
which generalize those of the classical Bost–Connes system. The associated partition function,
low temperature Gibbs states, and Galois action on zero-temperature states are then studied
in detail. For example, we show that in the particular case of the Weil numbers the partition
function and the low temperature Gibbs states can be described as series of polylogarithms.
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1. Introduction

Bost–Connes systems. Let Q=Z be the abelian group of roots of unity. In [2], Bost
and Connes introduced the group algebra QŒQ=Z�, the algebra endomorphisms

QŒQ=Z� �! QŒQ=Z� s 7! ns n 2 N ; (1.1)

and also the Q-linear additive maps

QŒQ=Z� �! QŒQ=Z� s 7!
X

s0jns0Ds

s0 n 2 N : (1.2)

�M. Marcolli was partially supported by the NSF grants DMS-1007207, DMS-1201512, and
PHY-1205440.
��G. Tabuada was partially supported by a NSF CAREER Award.



2 M. Marcolli and G. Tabuada

The (continuous) action of the absolute Galois group Gal.Q=Q/ on Q=Z extends
to QŒQ=Z�making (1.1)–(1.2) Gal.Q=Q/-equivariant. The above piece of structure
is very important since it encodes all the arithmetic information about roots of unity.
Making use of it, Bost and Connes constructed in loc. cit. a quantum statistical
mechanical (QSM) system .AQ=Z; �t / with the following remarkable properties:

(i) The partition function Z.ˇ/ agrees with the Riemann zeta function.
(ii) The low temperature Gibbs states are given by polylogarithms evaluated at

roots of unity.
(iii) The group Gal.Q=Q/ab ' bZ� acts by symmetries on the QSM-system. This

action induces an action on the set of low temperature Gibbs states and on their
zero temperature limits (ground states), where it recovers the Galois action
on Qab.

The foundational article [2] was the starting point in the study of the Riemann zeta
function via noncommutative geometry tools, see [4–6, 8]. The main goal of this
article is to extend the above technology from Q=Z to other interesting arithmetic
settings such as the Weil numbers, for example.

Statement of results. Let k be a field of characteristic zero, G WD Gal.k=k/, †
an abelian group equipped with a continuous G-action, and �n W † ! †; n 2 N,
G-equivariant homomorphisms such that �nm D �n ı �m. We denote by ˛.n/ the
cardinality of the kernel of �n. Out of these data, we can construct the k-algebra kŒ†�,
the k-algebra endomorphisms

�n W kŒ†� �! kŒ†� s 7! �n.s/ n 2 N ; (1.3)

and also the k-linear additive maps (defined only when ˛.n/ is finite)

�n W kŒ†n� �! kŒ†� s 7!
X

s0j�n.s0/Ds

s0 n 2 N ; (1.4)

here †n stands for the image of �n. The G-action on † extends to kŒ†� making
(1.3)–(1.4) G-equivariant. In the particular case where k D Q, † D Q=Z, and �n
is multiplication of n, we recover the original construction of Bost–Connes. Other
examples include Weil restriction, algebraic numbers, Weil numbers, CM fields,
germs, completion of Weil numbers, etc; consult §2. Making use of the G-action,
we can also consider the k-algebras kŒ†�G and kŒ†�G . They carry canonical
Hopf structures and consequently give rise to affine group k-schemes Spec.kŒ†�G/
and Spec.kŒ†�G/. Our first main result, which summarizes the content of §3, is
the following:
Theorem 1.1 (Categorification). (i) The affine group k-scheme Spec.kŒ†�G/ agrees
with theGalois group of the neutral Tannakian categoryVectk†.k/of pairs .V;

L
s2† V

s
/,
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where V is a finite dimensional k-vector space and
L
s2† V

s an appropriate
†-grading of V WD V ˝ k; see Definition 3.1.

(ii) The k-algebra endomorphisms �nW kŒ†�G!kŒ†�G are induced from k-linear
additive symmetric monoidal functors �nWVectk†.k/ ! Vectk†.k/. Similarly, the
k-linear additive maps �nW kŒ†n�G ! kŒ†�G are induced from k-linear additive
functors �nWVectk†n.k/! Vectk†.k/.

(iii) Items (i)–(ii) hold mutatis mutandis with kŒ†�G replaced by kŒ†�G and
Vectk†.k/ replaced by the subcategory Vectk†.k/ of pairs .V;

L
s2† V

s/, whereL
s2† V

s is an appropriate †-grading of V ; see Definition 3.4.

(iv) When† admits a G-equivariant embedding into k
�
, Vectk†.k/ is equivalent

to the neutral Tannakian category Autk†.k/ of pairs .V;ˆ/, where V is a finite
dimensional k-vector space and ˆ W V

�
! V a G-equivariant diagonalizable

automorphism whose eigenvalues belong to †. Moreover, when �n is given
by multiplication by n, the functor �n, resp. �n, reduces to the Frobenius,
resp. Verschiebung, endofunctor of Autk†.k/.

Remark 1.2. When the G-action on † is trivial (e.g. k D k), we have kŒ†�G D
kŒ†�G D kŒ†�. In this case, Vectk†.k/ D Vectk†.k/ reduces to the category Vect†.k/
of†-graded k-vector spaces. Similarly, Autk†.k/ reduces to the category Aut†.k/ of
diagonalizable automorphisms ˆ W V

�
! V whose eigenvalues belong to †.

Intuitively speaking, Theorem 1.1 provides two simple “models” of the Tannakian
categorification of the k-algebras kŒ†�G ; kŒ†�G ; kŒ†� and of the maps (1.3)–(1.4).
This categorification is often related to the theory of (pure) motives. For example,
in the original case of Bost and Connes, the category VectQ=Z.Q/ can be described
as the limit limn�1Tate.Q/Q=�˝Q.n/ of orbit categories of Tate motives; see
Proposition 3.16. More interestingly, in the case where † is the abelian group
of Weil numbersW.q/, VectQW.q/

.Q/ agrees with the category of numerical motives
over Fq with Q-coefficients; see Theorem 3.18.

Our second main result, which summarizes the content of §4, is the following:

Theorem 1.3 (QSM-systems). Assume that k � C. Given a pair .†; �n/ as
above and an appropriate set of G-equivariant embeddings Emb0.†;Q

�
/ (see

Definition 4.19), we construct a QSM-system .A.†;�n/; �t / with the remarkable
properties:

(i) Given an embedding � 2 Emb0.†;Q
�
/, letN�.†/ WD fj�.s/j such that s 2 †g

be the associated countable multiplicative subgroup of R�C. WhenN�.†/ is the union
of finitely (resp. infinitely) many geometric progressions, the choice of a semi-group
homomorphism g W N ! R�C allows us to describe the partition functor Z.ˇ/ of the
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QSM-system as followsX
�2N�.†/
��1

X
n�1

�˛.n/ˇg.n/�ˇ .resp:
X
n�1

g.n/�ˇ �.ˇ˛.n/// ;

where � stands for the Riemann zeta function. The left (resp. right) hand side series
converges for all ˇ > ˇ0 (resp. ˇ > maxfˇ0; 3=2g), where ˇ0 denotes the exponent
of convergence of

P
g.n/�ˇ .

(ii) The low temperature Gibbs states 'ˇ;�.s/, evaluated at s 2 †withN�.s/ D 1,
are given by the following expressions:

Z.ˇ/�1
X

�2N�.†/
��1

X
n�1

�.s/n�˛.n/ˇg.n/�ˇ .resp: Z.ˇ/�1
X
n�1

�.s/n�.nˇ/g.n/�ˇ / :

(iii) The group QZ.G†/ (see Definition 4.35) acts on the set of low temperature
Gibbs states and on their ground states, where it agrees with theGalois QZ.G†/-action
on �.†/.

In the particular case where k D Q, † D Q=Z, �n is multiplication by n, and
g.n/ D n, we have QZ.G†/ D Gal. NQ=Q/ and the remarkable properties (i)–(iii) of
Theorem 1.3 reduce to those of the classical Bost–Connes system. Therefore, the
QSM-system of Theorem 1.3 greatly generalizes the original one of Bost–Connes.
Here are some examples (which summarize the content of §5):
Example 1.4 (Algebraic numbers). When k D Q, † D Q

�, and �n is raising
to the nth power, the choice of an appropriate set of G-equivariant embeddings
Emb0.Q

�
;Q
�
/ gives rise to a QSM-system .A

.Q
�
;�n/

; �t / with the following
properties: (i) the partition functionZ.ˇ/ is given by

P
n�1 g.n/

�ˇ �.ˇ˛.n//; (ii) the
low temperature Gibbs states, evaluated at s 2 Q

� with jsj D 1, are given by

'ˇ;�.s/ D

P
n�1 �.s/

n�.ˇn/g.n/�ˇP
n�1 �.ˇn/g.n/

�ˇ
I

(iii) the group QZ.G†/ is trivial.
Example 1.5 (Weil numbers of weight zero). Let q D pr be a prime power. When
k D Q, † is the group of Weil numbers of weight zero W0.q/, and �n is raising
to the nth power, the choice of an appropriate set of G-equivariant embeddings
Emb0.W0.q/;Q

�
/ gives rise to a QSM-system .A.W0.q/;�n/; �t / with the following

properties (which are very similar to those of the classical Bost–Connes system):
(i) the partition functionZ.ˇ/ is given by

P
n�1 g.n/

�ˇ . When g.n/ D n, it reduces
to the Riemann zeta function; (ii) the low temperature Gibbs states, evaluated at
s 2W0.q/, are given by

'ˇ;�.s/ D
Liˇ .�.s//
�.ˇ/

I
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(iii) the group QZ.GW0.q// acts on the set of low temperature Gibbs states and on their
ground states, where it agrees with the Galois QZ.GW0.q//-action on �.W0.q//.

Example 1.6 (Weil numbers). When k D Q,† is the group of Weil numbersW.q/,
and �n is raising to the nth power, the choice of an appropriate set of G-equivariant
embeddings Emb0.W.q/;Q

�
/ gives rise to a QSM-system .A.W.q/;�n/; �t / with

the following properties: (i) the partition function Z.ˇ/ is given by a series of
polylogarithm functions

P
k�0 Liˇ .q�kˇ=2/; (ii) the low temperature Gibbs states,

evaluated at s 2W0.q/, are given by

'ˇ;�.s/ D

P
k�0 Liˇ .�.s/q�kˇ=2/P
k�0 Liˇ .q�kˇ=2/

I

(iii) the group QZ.GW.q// acts on the set of low temperature Gibbs states and on their
ground states, where it agrees with the Galois QZ.GW.q//-action on �.W0.q//.

Finally, in §6 we outline the construction of “diagonal” QSM-systems associated
to Weil restriction and completion. The details will appear in a forthcoming article.

Notation 1.7. Throughout the article k will be a field of characteristic zero. We will
denote by G its absolute Galois group Gal.k=k/. Unless stated differently, all tensor
products will be taken over k.

2. Bost–Connes systems

In this section we introduce the general notion of an abstract/concrete Bost–Connes
system and describe several examples. Given a set S , we denote by P.S/ the set of
subsets of S and by P.S/n the set of subsets of S with cardinality n 2 N.

Definition 2.1. An abstract Bost–Connes datum .†; �n/ consists of:

(i) An abelian group † equipped with a G-action G ! Aut.†/. We assume that
the G-action is continuous, i.e. that † D

S
l †

Gal.k=l/ where l runs through
the finite Galois field extensions of k contained in k.

(ii) Group homomorphisms �n W † ! †; n 2 N. We assume that �n is
G-equivariant and that �nm D �n ı �m for every n;m 2 N.

Notation 2.2. Let us write ˛.n/ for the cardinality of the kernel of �n.

Definition 2.3. An abstract Bost–Connes datum .†; �n/ is called concrete if ˛.n/ is
finite for every n 2 N and the assignment ˛ W N ! N; n 7! ˛.n/, is a non-trivial
multiplicative semi-group homomorphism, i.e. ˛.nm/ D ˛.n/ � ˛.m/.

By definition, every concrete Bost–Connes datum is also an abstract Bost–Connes
datum. The converse is false; see Examples 2.15–2.16, 2.19–2.22, and 2.26 below.
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Notation 2.4. Let †n be the image of �n and �n W †n ! P.†/ the map that sends
an element of †n to its pre-image under �n. Note that †n is a subgroup of † which
is stable under the G-action, that �n is G-equivariant (the G-action on † extends to
a G-action on P.†/), and that we have the following composition:

†n
�n
�! P.†/

P.�n/
�! P.†/ s 7! fsg :

Definition 2.5. Let .†; �n/ be an abstract Bost–Connes datum. The associated
abstract Bost–Connes system consists of the following data:

(i) The k-algebra kŒ†�G .
(ii) The k-algebra homomorphisms �n W kŒ†�G ! kŒ†�G ; s 7! �n.s/.
(iii) The k-linear additive maps (defined only when ˛.n/ is finite)

�n W kŒ†n�
G
! kŒ†�G s 7!

X
s02�n.s/

s0 :

In §3 we will categorify the abstract Bost–Connes systems.
Definition 2.6. Let .†; �n/ be a concrete Bost–Connes system. The associated
concrete Bost–Connes system consists of the following data:

(i) The k-algebra kŒ†� equipped with the induced G-action.
(ii) The G-equivariant k-algebra homomorphisms �n W kŒ†�! kŒ†�, s 7! �n.s/.
(iii) The G-equivariant k-linear additive maps

�n W kŒ†n�! kŒ†� s 7!
X

s02�n.s/

s0 :

In §4wewill associate to every concreteBost–Connes system a quantum statistical
mechanical system.
Remark 2.7. Let .†; �n/ be a concrete Bost–Connes datum with trivial G-action.
Since kŒ†�G D kŒ†�, the associated abstract and concrete Bost–Connes sys-
tems agree.

We now describe several examples of abstract/concrete Bost–Connes systems.

Example 1: Original Bost–Connes system. Let k WD Q, † WD Q=Z equipped
with theG-action induced by the identification of Q=Z with the roots of unity in Q

�,
and �n the homomorphism n � � W Q=Z ! Q=Z. This defines a concrete Bost–
Connes datum. The associated concrete Bost–Connes system agrees with the one
introduced originally by Bost and Connes in [2]; consult [9] for its reformulation.
If we forget about the G-action, then the associated (abstract and concrete) Bost–
Connes system is the arithmetic subalgebra of the Bost–Connes algebra; see [9].
More generally, k D Q can be replaced by any subfield of Q.
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Example 2: Weil restriction. Let k WD R, † WD Q=Z �Q=Z equipped with the
switch Z=2-action, and �n the homomorphism .n � �; n � �/ W Q=Z � Q=Z !
Q=Z �Q=Z. In this case, ˛.n/ D n2. This defines a concrete Bost–Connes datum.
The associated abstract Bost–Connes system is morally speaking the Weil restriction
along C=R of the arithmetic subalgebra of the Bost–Connes algebra; see §3.

Example 3: Algebraic numbers. Let k WD Q, † WD Q
� equipped with the can-

onical G-action, and �n the homomorphism .�/n W Q
�
! Q

�. This defines a
concrete Bost–Connes datum. The associated abstract/concrete Bost–Connes system
contains the one of Example 1. More generally, k D Q can be replaced by any
subfield of Q.

Example 4: Weil numbers.
Definition 2.8. Let q D pr be a prime power. An algebraic number � is called a
Weil q-number of weight m 2 Z if the following holds:

(i) For every embedding % W QŒ�� ,! C we have j%.�/j D qm2 .
(ii) There exists an integer s such that qs� is an algebraic integer.

LetWm.q/ be the set of Weil q-number of weight m andW.q/ WD
S
m2Z Wm.q/.

Note thatW0.q/ andW.q/ are subgroups of Q
� and thatWm.q/ is stable under

the canonical Gal.Q=Q/-action.
Proposition 2.9. The following holds:

(i) The group homomorphism .�/n WW0.q/!W0.q/ is surjective.
(ii) We have the following group isomorphism

W.q/
�
�!W0.q/ � Z � 7!

�
�

j%.�/j
; w.�/

�
; (2.1)

where w.�/ stands for the weight of � .
(iii) Under (2.1), the Gal.Q=Q/-action onW.q/ identifies with

..�;m// D

(
..�/;m/ if  2 Ker.Gal.Q=Q/� Gal.QŒpq�=Q//
..�1/m.�/;m/ otherwise :

(iv) Under (2.1), the homomorphism .�/n WW.q/!W.q/ identifies with

W0.q/ � Z �!W0.q/ � Z .�;m/ 7! .�n; nm/ :

Remark 2.10. Note that when q is a even power of p, we have

..�;m// D ..�/;m/:



8 M. Marcolli and G. Tabuada

Proof. (i) Given � 2 W0.q/, we need to show that n
p
� also belongs to W0.q/.

Condition (i) of Definition 2.8 is clear. Condition (ii) follows from the equality
qs n
p
� D qn � q

s
n n
p
� and from the fact that qn and q sn n

p
� are algebraic integers.

(ii) The inverse of (2.1) is given by the group homomorphism

W0.q/ � Z �!W.q/ .�;m/ 7! �q
m
2 :

(iii) Let .�;m/ 2 W0.q/ � Z. The action of  2 Gal.Q=Q/ on �q
m
2

is given by .�qm2 / D .�/.q
m
2 / 2 W.q/. When  belongs to the kernel

of the homomorphism Gal.Q=Q/ � Gal.QŒpq�=Q/, we have .qm2 / D q
m
2 .

Otherwise, we have .qm2 / D .�1/mq
m
2 . The proof follows now from the above

isomorphism (2.1).
(iv) The proof is by now clear.

Example 2.11. Let k WD Q, † WD W0.q/ equipped with the canonical G-action,
and �n the homomorphism .�/n W W0.q/ ! W0.q/. Thanks to Lemma 2.9(i), we
have †n D W0.q/. This defines a concrete Bost–Connes datum. The associated
abstract/concrete Bost–Connes system is contained in the one of Example 3 and
contains the one of Example 1. More generally, k D Q can be replaced by any
subfield of Q.
Example 2.12. Let k WD Q, † WD W.q/ equipped with the canonical G-action,
and �n the homomorphism .�/n W W.q/ ! W.q/. Thanks to Lemma 2.9(iv),
we have †n D

S
m2Z Wnm.q/. This defines a concrete Bost–Connes datum. The

associated abstract/concreteBost–Connes system is contained in the one of Example 3
and contains the one of Example 2.11. More generally, k D Q can be replaced by
any subfield of Q.

Example 5: CM fields. Let L � Q be a CM field which is Galois over Q. We
denote by P its set of places and by k-kp; p 2 P, the normalized valuations.
Definition 2.13. Let WL

m.q/ be the subset of those Weil q-numbers � of weight m
such that � 2 L and k�kp 2 qZ for every p 2 P.

Note that WL
0 .q/ and WL.q/ WD

S
m2Z WL

m.q/ are subgroups of W0.q/

and W.q/, respectively, and that WL
m.q/ is stable under the canonical Gal.Q=Q/-

action.
Remark 2.14. When pq 2 L, items (ii)–(iv) of Proposition 2.9 hold mutatis
mutandis withW.q/ andW0.q/ replaced byWL.q/ andWL

0 .q/, respectively.
Example 2.15. Let k WD Q, † WD WL

0 .q/ equipped with the canonical G-action,
and �n the homomorphism .�/n W WL

0 .q/ ! WL
0 .q/. This defines an abstract

Bost–Connes datum which is not concrete! Since the field extension L=Q is finite,
it contains solely a finite number of roots of unity. Therefore, there exists a natural
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number N � 0 such that ˛.N / D ˛.N 2/, which implies that the assignment
˛ W N ! N is not a semi-group homomorphism. The associated abstract Bost–
Connes system is contained in the one of Example 2.11. More generally, k can be
replaced by any subfield of Q.
Example 2.16. Let k WD Q, † WD WL.q/ equipped with the canonical G-action,
and �n the homomorphism .�/n W WL.q/ ! WL.q/. Similarly to Example 2.15,
this defines an abstract Bost–Connes datum which is not concrete. The associated
abstract Bost–Connes system is contained in the one of Example 2.12 and contains
the one of Example 2.15. More generally, k can be replaced by any subfield of Q.

Example 6: Germs. When r jr 0 we have the group homomorphism

W.pr/ �!W.pr
0

/ � 7! �
r0

r : (2.2)

Definition 2.17. LetW.p1/ be the colimit colimrW.pr/. Note thatW.p1/ comes
equipped with an induced Gal.Q=Q/-action.
Proposition 2.18. The following holds:

(i) The above homomorphism (2.2) sends Wm.p
r/ to Wm.p

r 0/. Consequently,
we obtain the abelian groupW0.p

1/ WD colimrW0.p
r/.

(ii) Given a CM field L � Q which is Galois over Q, the above homomor-
phism (2.2) sendsWL

m.p
r/ toWL

m.p
r 0/. Consequently, the obtain the abelian

groupsWL
0 .p

1/ WD colimrWL
0 .p

r/ andWL.p1/ WD colimrWL.pr/.
(iii) The group homomorphism .�/n WW.p1/!W.p1/ is surjective.
(iv) The group homomorphism .�/n is also injective.

Proof. (i) Let � be a Weil pr -number of weight m. Making use of the equalities

j%.�
r0

r /j D j%.�/j
r0

r D .p
rm
2 /

r0

r D p
r0m
2 ;

we conclude that � r
0

r satisfies condition (i) of Definition 2.8(i) (with q D pr
0).

Condition (ii) follows from the equality .pr 0/s� r
0

r D . r
p
.pr/s�/r

0 and from the fact
that .pr/s� is an algebraic integer.

(ii) The proof follows automatically from the equality k� r
0

r kp D k�k
r0

r
p .

(iii) Every element of W.p1/ can be represented by a pair .�; r/ with
� 2W.pr/ and r 2 N, and two pairs .�; r/; .� 0; r 0/ represent the same element
of W.p1/ if and only if �r 0N D � 0rN for some N 2 N. Therefore,
. n
p
�; r/n D .�; r/.
(iv) Note that .�; r/n D .1; 1/ if and only if �N D 1 for some N 2 N.

Given another pair .� 0; r 0/ such that � 0N 0 D 1 for some N 0 2 N, the equality
�r
0NN 0 D � 0rNN

0

D 1 allows us to conclude that .�; r/ D .� 0; r 0/. This achieves
the proof.
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Example 2.19. Let k WD Q, † WD W0.p
1/ equipped with the induced G-action,

and �n the homomorphism .�/n W W0.p
1/ ! W0.p

1/. Thanks to Lemma 2.18,
we have †n D W0.p

1/ and ˛.n/ D 1 for every n 2 N. Therefore, this defines an
abstract Bost–Connes datum and consequently an abstract Bost–Connes system. It
is not a concrete Bost–Connes system, because ˛.n/ D 1 is the trivial semi-group
homomorphism. More generally, k D Q can be replaced by any subfield of Q.

Example 2.20. Let k WD Q, † WD W.p1/ equipped with the induced G-action,
and �n the homomorphism .�/n W W.p1/ ! W.p1/. Thanks to Lemma 2.18,
we have †n D W.p1/ and ˛.n/ D 1 for every n 2 N. Therefore, this defines
an abstract Bost–Connes datum that is not concrete. The associated abstract Bost–
Connes system contains the one of Example 2.19. More generally, k D Q can be
replaced by any subfield of Q.

Example 2.21. Let k WD Q, † WD WL
0 .p

1/ equipped with the induced G-action,
and �n the homomorphism .�/n WWL

0 .p
1/!WL

0 .p
1/. Thanks to Lemma 2.18,

we have ˛.n/ D 1 for every n 2 N. Therefore, this defines an abstract Bost–Connes
datum that is not concrete. The associated abstract Bost–Connes system is contained
in the one of Example 2.19, since by Definitions 2.8 and 2.17 and Proposition 2.18,
WL
0 .p

1/ is a subgroup ofW0.p
1/.

Example 2.22. Let k WD Q, † WD WL.p1/ equipped with the induced G-
action, and �n the homomorphism .�/n W WL.p1/ ! WL.p1/. Similarly to
Example 2.19, this defines an abstract Bost–Connes datum that is not concrete. The
associated abstract Bost–Connes system is contained in the one of Example 2.20 and
contains the one of Example 2.21.

Example 7: Completion. LetcW.q/ be the limit of the following diagram:

� � ��W.q/=qnC1D1�W.q/=qnD1� � � ��W.q/=q2D1�W.q/=qD1 :

Note thatcW.q/ comes equipped with an induced Gal.Q=Q/-action.

Proposition 2.23. (i) We have a group isomorphismcW.q/ 'W0.q/ �Q=2Z.

(ii) Under (i), the Gal.Q=Q/-action oncW.q/ identifies with

..�;m// D

(
..�/;m/ if  2 Ker.Gal.Q=Q/� Gal.QŒpq�=Q//
..�1/jmj.�/;m/ otherwise

;

where jmj stands for the parity of m 2 Q=2Z.

(iii) Under (i), the group homomorphism .�/n WcW.q/!cW.q/ identifies with

..�/n; n � �/ WW0.q/ �Q=2Z �!W0.q/ �Q=2Z :
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Proof. Note that (2.1) induces to an isomorphism between W.q/=qnD1 and the
product W0.q/ � Z=2n. The proof of item (i) follows from the fact that Q=2Z '
limn�1Z=2n. In what concerns the proof of item (ii), resp. item (iii), it follows from
the combination of item (i) with Lemma 2.9(ii), resp. Lemma 2.9(iv).

Example 2.24. Let k WD Q, † WD cW.q/ equipped with the induced G-action,
and �n the homomorphism .�/n WcW.q/!cW.q/. In this case, ˛.n/ D n2. Thanks
to Lemma 2.23(iii), we have †n DW0.q/� nQ=2Z. This defines a concrete Bost–
Connes datum and consequently an abstract/concrete Bost–Connes system. More
generally, k D Q can be replaced by any subfield of Q.

Let L � Q be a CM-field which is Galois over Q. As above, we can define the
abelian groupcWL.q/ WD limn�1WL.q/=qnD1 equipped with the Gal.Q=Q/-action.

Remark 2.25. When pq 2 L, Remark 2.14 allows us to conclude that Prop-
osition 2.23 holds mutatis mutandis with W0.q/ and cW.q/ replaced by WL

0 .q/

andcWL.q/.

Example 2.26. Let k WD Q, † WD cWL.q/ equipped with the induced G-action,
and �n the homomorphism .�/n W cWL.q/ ! cWL.q/. Similarly to Example 2.22,
this defined an abstract Bost–Connes datum which is not concrete. More generally,
k D Q can be replaced by any subfield of Q.

3. Categorification

In this section we categorify the abstract Bost–Connes systems. Given an abstract
Bost–Connes datum .†; �n/, we start by categorifying the k-algebra kŒ†�G . Note
that kŒ†�G becomes an Hopf k-algebra when we set �.s/ WD s ˝ s, �.s/ WD 1, and
inv.s/ WD s�1 for every s 2 †. As explained in [16, XIV Thm. 5.3], the assignment
† 7! Spec.kŒ†�G/ gives rise to a contravariant equivalence between the category of
abelian groups equipped with a continuos G-action and the category of affine group
k-schemes of multiplicative type.

Definition 3.1. Let Vectk†.k/ be the category of pairs .V;
L
s2† V

s
/, where V is a

finite dimensional k-vector space and
L
s2† V

s is a†-grading on V WD V ˝ k. We
assume that V .s/ D V

s for every s 2 † and  2 G, where V s stands for the
k-vector space obtained from V

s by restriction of scalars along the automorphism
�1W k

�
! k. The morphisms are the k-linear maps f WV ! V 0 such that f WV ! V 0

preserves the †-grading. The tensor product of k-vector spaces and of †-graded
k-vector spaces gives rise to a symmetric monoidal structure on Vectk†.k/.
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Theorem 3.2. The following holds:

(i) The k-linear category Vectk†.k/ is neutral Tannakian. A fiber functor is given
by the forgetful functor ! W Vectk†.k/! Vect.k/.

(ii) The category Vectk†.k/ is semi-simple. Moreover, the isomorphism classes of
simple objects are in one-to-one correspondence with the G-orbits of †.

(iii) There is an isomorphism of affine group k-schemes Aut˝.!/ ' Spec.kŒ†�G/.

Proof. Since Spec.kŒ†�G/ is an affine group k-scheme of multiplicative type, its
group of characters identifies with† equipped with theG-action; see [16, Thm. 5.3].
Consequently, items (i) and (iii) follow from [12, §2.32]. In what concerns item (ii),
it follows from [16, Thm. 5.10].

Remark 3.3. When theG-actionG ! Aut.†/ is trivial, we have kŒ†�G D kŒ†� and
Vectk†.k/ reduces to the category Vect†.k/ of finite dimensional †-graded k-vector
spaces. In this case, the simple objects Ss0 ; s0 2 †, are given by Ss0 WD .k;

L
s2† k

s/

where ks D k when s D s0.
Definition 3.4. Let Vectk†.k/ be the full subcategory of Vectk†.k/ consisting of the
pairs .V;

L
s2† V

s/, where
L
s2† V

s is a †-grading of V such that V .s/ D V s for
every s 2 † and  2 G. Note that Vectk†.k/ is a neutral Tannakian subcategory of
Vectk†.k/. A fiber functor is given by the forgetful functor ! W Vectk†.k/! Vect.k/.
Proposition 3.5. We have an isomorphism Aut˝.!/ ' Spec.kŒ†�G/.

Proof. Note first that Vectk†.k/ naturally identifies with the neutral Tannakian
category Vect†=G.k/. Therefore, making use of Theorem 3.2 and of Remark 3.3, we
conclude that Aut˝.!/ ' Spec.kŒ†=G�/. The proof follows now from the canonical
isomorphism of Hopf k-algebras kŒ†�G

�
! kŒ†=G�.

Remark 3.6. By combining Theorem 3.2 with Proposition 3.5, we observe that the
inclusion of Hopf k-algebras kŒ†�G ,! kŒ†�G , or equivalently the quotient of affine
group k-schemes Spec.kŒ†�G/ � Spec.kŒ†�G/, is induced by the inclusion of
neutral Tannakian categories Vectk†.k/ � Vectk†.k/.

Theorem3.2 provides a Tannakian categorification of thek-algebrakŒ†�G , aswell
of its canonical Hopf structure. The Tannakian categorification of the Hopf k-algebra
homomorphism �n W kŒ†�

G ! kŒ†�G is provided by the following k-linear additive
symmetric monoidal functor (note that the direct sum is finite):

�n W Vectk†.k/! Vectk†.k/

�n.V / WD V �n.V /
s
WD

(L
s02�n.s/

V
s0 if s 2 †n

0 otherwise :
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Theorem 3.7. The following holds:

(i) We have natural equalities �nm D �n ı �m and ! ı �n D !.

(ii) The morphism of Hopf k-algebras �n W kŒ†�G ! kŒ†�G , corresponding to
�n W Spec.kŒ†�G/! Spec.kŒ†�G/, agrees with �n.

Proof. (i) Since �n.V / WD V , equality ! ı �n D ! is clear. In what concerns
�nm D �n ı �m, it follows from the assumption �nm D �n ı �m; see Definition 2.1.

(ii) By base-change along k=k, it suffices to show that the following morphisms

�n ˝ k W kŒ†� �! kŒ†� �n W kŒ†�
s 7!�n.s/
�! kŒ†� (3.1)

agree. Thanks to Lemma 3.8 below, �n˝k can be replaced by the morphism induced
by the functor �n W Vect†.k/ ! Vect†.k/. Given an arbitrary k-algebra A, let us
then describe the induced group homomorphisms

�n.R/
�
W Aut˝.!/.A/ D Hom.†;A�/ �! Hom.†;A�/ D Aut˝.!/.A/

�n
�
W Hom.kŒ†�; A/ D Hom.†;A�/ �! Hom.†;A�/ D Hom.kŒ†�; A/ :

As explained in Remark 3.3, there is a one-to-one correspondence s 7! Ss between
elements of † and simple objects of Vect†.k/. Making use of the equality
�n.Ss/ D S�n.s/, we hence conclude that the homomorphism �n.R/

� is given by
pre-composition with �n W † ! †. The group homomorphism �n

� is also given
by pre-composition with �n. Since the k-algebra A is arbitrary, this implies that the
above morphisms (3.1) agree, and so the proof is finished.

Lemma 3.8. The above morphism �n˝k agrees with the one induced by the functor
�n W Vect†.k/! Vect†.k/.

Proof. Consider the following commutative diagram

Vect†.k/
�n // Vect†.k/

! // Vect.k/

Vectk†.k/ �n

//

‰

OO

Vectk†.k/ !
//

‰

OO

Vect.k/ ;

�˝k

OO

‰.V;
L
s2† V

s
/ WD .V ;

L
s2† V

s
/. On one hand, Aut˝.! ˝ k/ ' Aut˝.!/k '

Spec.kŒ†�G/k . On the other hand, since the affine group k-scheme Spec.kŒ†�G/
is of multiplicative type, ‰ induces an isomorphism Spec.kŒ†�/ ' Spec.kŒ†�G/k .
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Consequently, we obtain the following commutative square

Spec.kŒ†�/

�

��

�n // Spec.kŒ†�/

�

��
Spec.kŒ†�G/k

�n˝k

// Spec.kŒ†�G/k :

This achieves the proof.

Remark 3.9. Since the functor �n restricts to the category Vectk†.k/, the Tannakian
categorification of the Hopf k-algebra homomorphism �n W kŒ†�

G ! kŒ†�G is also
provided by �n.

The k-linear additive map �n W kŒ†n�G ! kŒ†�G does not preserve the algebra
structure. Consequently, it does not admit a Tannakian categorification. Nevertheless,
we have the following k-linear additive functor (defined when ˛.n/ is finite):

�n W Vectk†n.k/ �! Vectk†.k/ �n.V / WD

˛.n/M
iD1

V �n.V /
s
WD V

�n.s/
:

Recall that �n ı �n D ˛.n/ � Id. The following result categorifies this equality:

Proposition 3.10. We have a natural equality �n ı �n D Id˚˛.n/.

Proof. The proof follows automatically from the definition of �n and �n.

Remark 3.11. Similarly to �n, the functor �n restricts to the category Vectk†.k/.

Automorphisms, Frobenius, and Verschiebung. Let .†; �n/ be an abstract Bost–
Connes datum. Assume that we have a G-equivariant embedding † ,! k

�
and that

�n W † ! † is given by s 7! sn. These conditions are verified by Examples 1
and 3–6 in §2.

Definition 3.12. Let Autk†.k/ be the category of pairs .V;ˆ/, where V is a finite
dimensional k-vector space and ˆ W V

�
! V a G-equivariant diagonalizable

automorphism whose eigenvalues belong to †. The morphisms .V;ˆ/ ! .V 0; ˆ0/

are the k-linear homomorphisms f W V ! V 0 such that f ıˆ D ˆ0 ıf . The tensor
product of vector spaces gives rise to a symmetric monoidal structure on Autk†.k/.

Remark 3.13. When TheG-actionG ! Aut.†/ is trivial, the embedding† ,! k
�

factors through k� � k
�
. Consequently, Autk†.k/ reduces to the category Aut†.k/

of pairs .V;ˆ/, where V is a finite dimensional k-vector space and ˆ W V
�
! V a

diagonalizable automorphism whose eigenvalues belong to †.
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Note that Autk†.k/ comes equipped with the forgetful functor .V;ˆ/ 7! V to
finite dimensional k-vector spaces. We have also a “Frobenius” functor

Autk†.k/ �! Autk†.k/ .V;ˆ/ 7! .V;ˆn/ (3.2)

and a “Verschiebung” functor

Autk†n.k/ �! Autk†.k/ .V;ˆ/ 7! .V ˚n;Vn.ˆ// ; (3.3)

where

Vn.ˆ/ WD

0BBBBBBB@

0 � � � � � � 0 ˆ

Id : : :
: : :

: : : 0

0
: : :

: : :
: : :

:::
:::

: : :
: : :

: : :
:::

0 � � � 0 Id 0

1CCCCCCCA : (3.4)

Theorem 3.14. The following holds:

(i) There is an equivalence of neutral Tannakian categories Autk†.k/ and
Vectk†.k/.

(ii) Under equivalence (i), the above functor (3.2) corresponds to �n.

(iii) Assume that the G-action G ! Aut.†/ is trivial (e.g. k D k). Under
equivalence (i), the functor (3.3) corresponds to �n.

Proof. (i) Consider the following additive symmetric monoidal functor

 W Autk†.k/ �! Vectk†.k/ .V;ˆ/ 7!
�
V;
M
s2†

V
s
�
;

where V s stands for the eigenspace of ˆ associated to the eigenvector s 2 †. Note
that sinceˆ isG-equivariant, we have V .s/ D V

s for every s 2 † and  2 G. The
(quasi-)inverse of  is given by the following additive symmetric monoidal functor

' W Vectk†.k/ �! Autk†.k/
�
V;
M
s2†

V
s
�
7! .V;ˆ/ ;

where ˆ stands for diagonal automorphism whose restriction to V s is given by
multiplication by s. The proof follows now from the fact that and ' are compatible
with the forgetful functors to finite dimensional k-vector spaces.

(ii) Given an object .V;ˆ/ of Autk†.k/, we claim that �n. .V;ˆ// '  .V;ˆn/.
Note that the eigenspace ofˆn associated to s 2 † can be expressed as a direct sum,
indexed by the elements s0 such that .s0/n D s, of the different eigenspaces of ˆ
associated to the elements of s0. Therefore, since �n.s0/ D .s0/n, our claim follows
from the definition of �n. This achieves the proof.



16 M. Marcolli and G. Tabuada

(iii) Given an object .V;
L
s2† V

s/ of Vect†.k/, note that

'
�
�n

�
V;
M
s2†

V s
��
D

�
V ˚n;

M
s2†

M
s02�n.s/

V s
˚s˚s0 .s

0��/
�!

M
s2†

M
s02�n.s/

V s
�
: (3.5)

Note also that we have the following equality

'
�
V;
M
s2†

V s
�
D

�
V;
M
s2†

V s
˚s.s��/
�!

M
s2†

V s
�
: (3.6)

Thanks to Lemma 3.15 below, we observe that the “Verschiebung” of the pair (3.6)
is isomorphic in Aut†.k/ to the pair (3.5). This achieves the proof.

Lemma 3.15. The following holds:
(i) Given k-linear automorphisms ˆ and ˆ0, we have a canonical isomorphism

between Vn.ˆ/˚ Vn.ˆ0/ and Vn.ˆ˚ˆ0/.

(ii) Given a k-linear automorphism V
s��
! V; s 2 k�, we have an isomorphism

between Vn.s � �/ and the automorphism
L
s02�n.s/

V
˚s0 .s

0��/
!

L
s02�n.s/

V .

Proof. (i) Let V , resp. V 0, be the source (target) of ˆ, resp. of ˆ0. The searched
isomorphism is given by the permutation V ˚n ˚ V 0˚n ' .V ˚ V 0/˚n.

(ii) The characteristic polynomial p.�/ of V .s � �/ is given by �n � s D 0.
Therefore, the proof follows from the diagonalization of this latter automorphism.

Relation with motives. In this subsection we relate the categorification of some of
our examples of abstract Bost–Connes systems with the theory of motives.

Example 1 makes use of the notion of orbit categories. Let .C;˝; 1/ be a k-linear,
additive, rigid symmetric monoidal category and O 2 C a ˝-invertible object. The
associated orbit category C=�˝O has the same objects as C and morphisms

HomC=�˝O .a; b/ WD
M
i2Z

HomC.a; b ˝O˝i / :

Given objects a; b; c and morphisms

f D ffigi2Z 2
M
i2Z

HomC.a; b ˝O˝i / g D fgigi2Z 2
M
i2Z

HomC.b; c ˝O˝i /

the i 0th-component of gı f is given by
P
i ..gi 0�i˝O˝i /ıfi /. The canonical functor

� W C ! C=�˝O a 7! a f 7! f D ffigi2Z ;

where f0 D f and fi D 0 for i ¤ 0, is endowed with an isomorphism
� ı .�˝O/

�

) � and is 2-universal among all such functors; see [17, §7]. By
construction, C=�˝O is k-linear and additive. Moreover, as proved in [17, Lem. 7.3],
C=�˝O inherits from C a rigid symmetric monoidal structure making the functor �
symmetric monoidal.
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Example 1: Original Bost–Connes system. Let us first forget about the G-action.
Thanks to Theorem 3.2, we obtain the affine group k-scheme Spec.kŒQ=Z�/ and the
neutral Tannakian category VectQ=Z.k/. Under the assignment † 7! Spec.kŒ†�/,
Z=n corresponds to the affine group k-scheme �n of nth roots of unity. Therefore,
making use of Q=Z ' limn�1Z=n, we conclude that

Spec.kŒQ=Z�/ ' colimn�1Spec.kŒZ=n�/ ' colimn�1�n ' Gm;tors :

Recall from [1, §4.1.5] the construction of the category of Tate motives Tate.k/k
with k-coefficients. This is a neutral Tannakian category which comes equipped with
˝-invertible objects k.n/; n 2 Z.
Proposition 3.16. There is an equivalence of neutral Tannakian categories

VectQ=Z.k/ ' limn�1Tate.k/k=�˝k.n/ :

Proof. Thanks to the isomorphism Q=Z ' limn�1Z=n, we have an induced
equivalence of neutral Tannakian categories VectQ=Z.k/ ' limn�1VectZ=n.k/.
Hence, it is enough to construct an equivalence between Tate.k/k=�˝k.n/ and
VectZ=n.k/. The category Tate.k/k identifies with VectZ.k/. Under such
identification, the objects k.n/ correspond to the simple objects Sn; see Remark 3.3.
Therefore, we obtain a symmetric monoidal equivalence between Tate.k/k=�˝k.n/
and VectZ.k/=�˝Sn . In order to conclude the proof, it suffices then to construct a
symmetric monoidal equivalence between VectZ.k/=�˝Sn and VectZ=n.k/.

Let � W Z� Z=n be the projection homomorphism and � W Z=n ! P.Z/ the
map that sends an element of Z=n to its pre-image under � . Under such notations,
consider the following k-linear additive symmetric monoidal functor

� W VectZ.k/ �! VectZ=n.k/ � .V / WD V � .V /s WD
M

s02�n.s/

V s
0

:

Clearly, � sends the simple object Sn to the˝-unit of VectZ=n.k/. Consequently, by
the universal property of orbit categories, we obtain an induced functor

VectZ.k/=�˝Sn �! VectZ=n.k/ : (3.7)

Since � is k-linear, additive, symmetric monoidal, and essentially surjective, (3.7) is
also k-linear, additive, symmetric monoidal, and essentially surjective. Let us now
show that (3.7) is moreover fully-faithful. The homomorphisms in VectZ.k/=�˝Sn
from .V;

L
s2Z V

s/ to .V 0;
L
s2Z V

0s/ are given byM
i2Z

M
s2Z

Hom.V s; V 0niCs/ : (3.8)

On the other hand, the homomorphisms in VectZ=n.k/ from � .V;
L
s2Z V

s/

to � .V 0;
L
s2Z V

0s/ can be written asM
s2Z=n

M
s0;s002�n.s/

Hom.V s0 ; V s00/ : (3.9)
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The above functor (3.7) identifies (3.8) with (3.9), and it is therefore fully-faithful.
This achieves the proof.

Whenwe consider theG-action, Theorem3.2 furnish us the affine groupk-scheme
Spec.QŒQ=Z�Gal.Q=k// and the neutral Tannakian category VectQQ=Z.k/. Note that
this affine group k-scheme is a twisted form of Gm;tors. Definition 3.4 and Propo-
sition 3.5 furnish us also the quotient affine group k-scheme Spec.kŒQ=Z�Gal.Q=Z//
and the neutral Tannakian subcategory VectkQ=Z.k/.

Example 2:Weil restriction. Thanks to Theorem 3.2, we obtain the following affine
group R-scheme and neutral Tannakian category:

Spec.CŒQ=Z �Q=Z�Z=2/ VectCQ=Z�Q=Z.R/ :

Under the assignment † 7! Spec.CŒ†�Z=2/, Z=n � Z=n equipped with the switch
Z=2-action, corresponds to the Weil restriction ResC=R.�n/. Therefore, making use
of the isomorphism Q=Z �Q=Z ' limn�1.Z=n � Z=n/, we conclude that

Spec.CŒQ=Z �Q=Z�Z=2/ ' colimn�1ResC=R.�n/ ' ResC=R.Gm;tors/ : (3.10)

Recall from [11, §2.1] that the category of real Hodge structures Hod.R/ is defined
as VectCZ�Z.R/. The associated affine group R-scheme is ResC=R.Gm/. Moreover,
the closed immersion ResC=R.Gm;tors/ ,! ResC=R.Gm/ is induced by the functor

Hod.R/ D VectCZ�Z.R/ �! VectCQ=Z�Q=Z.R/ :

Remark 3.17. As in Example 1, we have also the quotient affine group R-scheme
Spec.RŒQ=Z�Q=Z�Z=2/ and the neutral Tannakian subcategory VectRQ=Z�Q=Z.R/.

Examples 4, 5: Weil numbers and CM fields. Thanks to Theorem 3.2, we obtain
the affine group k-schemes

Spec.QŒW0.q/�
Gal.Q=k// Spec.QŒW.q/�Gal.Q=k// (3.11)

Spec.QŒWL
0 .q/�

Gal.Q=k// Spec.QŒWL.q/�Gal.Q=k// (3.12)

as well as the neutral Tannakian categories

VectQW0.q/
.k/ VectQW.q/

.k/ VectQ
WL
0
.q/
.k/ VectQWL.q/

.k/ : (3.13)

Recall from [15, §1] the construction of the (semi-simple) Tannakian categories of
numerical motives over Fq with k-coefficients:

Mot0.Fq/k Mot.Fq/k MotL0 .Fq/k MotL.Fq/k : (3.14)

The under-script 0 stands for numerical motives of weight zero and the upper-scriptL
for numerical motives whose Frobenius numbers belong toWL.q/.
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Theorem 3.18 (Milne [15, §2]). Assuming the Tate conjecture, the following holds:

(i) The above Tannakian categories (3.14) admit Q-valued fiber functors. The
associated affine group k-schemes agree with (3.11)–(3.12).

(ii) In the particular case where k D Q, the Tannakian categories (3.14) become
neutral and moreover equivalent to (3.13).

Example 6: Germs. The preceding Examples 4 and 5 hold mutatis mutandis with
W.q/ (and all its variants) replaced byW.p1/ and Fq replaced by Fp .

4. Quantum statistical mechanics

In this section we associate to certain Bost–Connes data (see Convention 4.2 below)
a quantum statistical mechanical system (QSM-system). In what follows, k � C.
Definition 4.1. A quantum statistical mechanical system .A; �t / consists of:

(i) Observables: a separable C �-algebra A and a family R� W A ! B.H�/ of
representations of A in the algebra of bounded operators B.H�/ on separable
Hilbert spacesH�.

(ii) Time evolution and Hamiltonian: a continuous 1-parameter family of auto-
morphisms � W R! Aut.A/; t 7! �t . We assume that the representations R�
are covariant, i.e. that there exists linear operatorsH� onH� such that, for every
t 2 R and a 2 A, the following equality holds:

R�.�t .a// D e
itH�R�.a/e

�itH� :

We assume moreover the following:
(iii) Partition function: there exists a real number ˇ� > 0 such that for every

ˇ > ˇ� the operator e�ˇH� is a trace class operator. The associated convergent
function Z�.ˇ/ WD Tr.e�ˇH�/ <1 is called the partition function.

(iv) Symmetries: there exists a G-action G ! Aut.A/;  7! � , which is
compatible with the time evolution in the sense that �t ı � D � ı �t for
every  2 G and t 2 R.

Definition 4.1 is more restrictive than the classical one [3, 8] since we require
that e�ˇH� is a trace class operator for ˇ � 0 and also that the group G acts
by automorphisms (as opposed to the more general actions by endomorphisms
considered in [9]). These extra assumptions ensure the existence of interesting
partition functions and are satisfied by the classical Bost–Connes QSM-system.
Convention 4.2. In what follows, .†; �n/ is a concrete Bost–Connes datum; see
Definition 2.3. We assume that all the G-equivariant embeddings � W † ,! Q

�,
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i.e. G-equivariant injective group homomorphisms, contain the roots of unity. This
holds in Examples 1, 3, and 4 of §2. Let Emb.†;Q�/ be the set of G-equivariant
embeddings.
Proposition 4.3. Up to pre-composition with automorphism of †, the homomor-
phisms �n W †! †; n 2 N, are of the form �n.s/ D s˛.n/.

Proof. Consider the induced homomorphism�n D � ı �n ı ��1 W �.†/! �.†/. Since
�.†/ contains the group of roots of unity (which is abstractly isomorphic to Q=Z)
and Hom.Q=Z;Q�/ D Hom.Q=Z;Q=Z/ ' bZ, the induced homomorphism �n
restricts to

�n W Q=Z �! Q=Z � 7! �un (4.1)
with un 2 bZ. Now, recall thatbZ D X1[X2, whereX1 WD NbZ� D [m2NmbZ� and
X2 D [pfu 2 bZ ju.p/ D 0g; the union is over the prime numbers and u D .u.p//

are the coordinates of u in the decomposition bZ D Q
p
bZp . If un 2 bZ�, then (4.1)

is an isomorphism. This implies that ˛.n/ D 1. If un 2 mbZ � X1, with m > 1,
then the kernel of (4.1) consists of the roots of unity of order m. This implies that
˛.n/ D m. If un 2 X2, then there exists a prime number p such that the kernel
of (4.1) contains all the roots of unity whose order is a power of p. This implies that
˛.n/ D 1. Since by assumption, .†; �n/ is a concrete Bost–Connes system, we
hence conclude that un 2 NbZ. Thus, we can write un as a product un D ˛�.n/v�.n/.
The semi-group property �nm D �nı�m implies that unm D unum and consequently
that ˛�.nm/ � v�.nm/ D ˛�.n/˛�.m/v�.n/v�.m/. We obtain in this way two semi-
group homomorphisms ˛� W N ! N and v� W N ! bZ�. Now, consider the following
homomorphisms

‡n W �.†/
�.s/7!�.s/v�.n/

�! �.†/ ��;n W �.†/
�.s/ 7!�.s/˛�.n/

�! �.†/ :

The assignment n 7! ��;n WD ��1 ı ‡n ı � gives rise to a semi-group automorphism
of †, and we have the equalities �.�n.s// D ‡n.�.s//

˛�.n/ D ��;n.�.��;n.s///.
Therefore, it remains only to show that ˛�.n/ D ˛.n/ is independent of �. This follows
from the equalities ˛�.n/ D #Ker.��;n/ D #��1Ker.��;n/ D #Ker.�n/ D ˛.n/.

Remark4.4. The automorphisms ��;n of†, introduced in the proof of Proposition 4.3,
do not play any significant role in our construction. In what follows, we will therefore
restrict ourselves to the case where �n.s/ D s˛.n/.
Corollary 4.5. For every � 2 Emb.†;Q�/ and s 2 †n, we have the equality:

1

˛.n/

X
s02�n.s/

�.s0/˛.m/ D

(
�.s/

˛.m/
˛.n/ when ˛.n/j˛.m/

0 otherwise :

Proof. The proof follows automatically from the fact that �n.s/ D s˛.n/; note that
when ˛.n/ − ˛.m/, we have

P
s02�n.s/

�.s0/˛.m/ D 0.



BC-systems, categorification, QSM-systems, and Weil numbers 21

Definition 4.6. Given an embedding � 2 Emb.†;Q�/, consider the homomorphism

N� W † �! R�C s 7! j�.s/j ;

where j � j is the absolute value of complex numbers; we are implicitly using a fixed
embedding Q

�
� C. Note thatN�.†/ is a countable multiplicative subgroup of R�C.

Given � 2 Emb.†;Q�/, consider the injective group homomorphism

† �! U.1/ �R�C s 7! .��.s/; N�.s// ;

where ��.s/ WD �.s/
j�.s/j

. It clearly gives rise to the following group decomposition

�.†/
�
�! †0;� �N�.†/ �.s/ 7! .��.s/; N�.s// ; (4.2)

where †0;� WD ��.†/. Note that the above isomorphism (4.2) generalizes (2.1). In
the latter case, the group decomposition is independent of the embedding �.
Corollary 4.7. Given an element s 2 †, the following conditions are equivalent:

(i) s belongs to the domain of �n, with #�n.s/ D ˛.n/.
(ii) �.s/

j�.s/j
admits an ˛.n/th-root in †0;� and N�.s/ D �˛.n/ for some � 2 N�.†/.

Proof. The proof follows automatically from the above group isomorphism (4.2) and
from the fact that �.†/ contains roots of unity of all orders; the injectivity of � then
implies that s has as many ˛.n/th roots in †.

The following result will be used in §4.4.
Lemma 4.8. The group N�.†/ � R�C can always be decomposed into a union of
countably many geometric progressions N�.†/ D

S
r�1 �

Z
r .

Proof. The group N�.†/ is countable. Therefore, it is at most countably generated.
Let f�rgr2N be a set of generators. Without loss of generality, we can assume that
�r > 1 for every r � 1. Hence, we conclude that N�.†/ D

S
r�1 �

Z
r .

We now construct the QSM-system .A.†;�n/; �t / associated to .†; �n/.

4.1. Observables. We start by introducing two auxiliary k-algebras. The first one,
denoted by B.†;�n/, is a generalization of the Bost–Connes algebra [2]. The second
one, denoted by B0

.†;�n;�/
, is an extension of a subalgebra1 of the first one by the

multiplicative group. Making use of B.†;�n/, resp. of B0.†;�n;�/, and of an embedding
� 2 Emb.†;Q�/, we then construct the C �-algebra A.†;�n/, resp. A0.†;�n;�/, of
observables of the QSM-system associated to .†; �n/.

1This subalgebra depends on the choice of an embedding � W † ,!Q
�
.
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Definition 4.9. Let B.†;�n/ be the k-algebra generated by the elements s 2 † and
by the partial isometries �n, ��n, n 2 N. Besides the relations between the elements
of the abelian group †, we impose that �n�m D �nm and

�n�
�
m D �

�
m�n when .˛.m/; ˛.n// D 1

�ns�
�
n D

(
1
˛.n/

P
s02�n.s/

s0 when s 2 †n
0 otherwise

(4.3)

�n�
�
n�n�

�
n D �n�

�
n ��n�n�

�
n�n D �

�
n�n :

Finally, let us write B.†;�n;C/ for the C-algebra B.†;�n/ ˝k C.

Remark 4.10. (i) Unlike the original case [2], we do not require that ��n�n D 1.
When this holds, B.†;�n/ reduces to the semi-group crossed product kŒ†�ÌN where
the semi-group action of N is given by n 7! .s 7! �ns�

�
n/.

(ii) The k-algebra ofDefinition 2.6 embeds inB.†;�n/ as the subalgebra generated
by the elements s 2 †. Moreover, by acting trivially on �n and ��n, the G-action
on kŒ†� extends to B.†;�n/.
Definition 4.11. Let B0

.†;�n/
be the k-algebra defined similarly to B.†;�n/ but with

additional generators W.�/; � 2 k�, and additional relations:

W.�1�2/ D W.�1/W.�2/ W.��1/ D W.�/�1

W.�/s D sW.�/ W.�/�n D �nW.�/
˛.n/ ��nW.�/ D W.�/

˛.n/��n :

The new generators W.�/ are called the weight operators. Finally, let us write
B0
.†;�n;C/

for the C-algebra B0
.†;�n/

˝k C.

Remark 4.12. The introduction of the weight operators is motivated by the need to
obtain a time evolution whose partition function is convergent for ˇ � 0; see §4.2
below. In the particular cases where N�.†/ D f1g, such as in the original Bost–
Connes datum, the weight operators are not necessary and we can work solely with
the k-algebra B.†;�n/.
Notation 4.13. Let H be the Hilbert space `2.N/ equipped with the canonical
orthonormal basis f�ngn2N . We write V for the k-vector space spanned by the �n’s.
Note that the C-vector space VC WD V ˝k C is dense inH.

(i) Let H˛ be the Hilbert space `2.˛.N// equipped with the orthonormal basis
f�˛.n/gn2N . WewriteV˛ for the k-vector space spanned by the �˛.n/’s andV˛;C
for the C-vector space V˛ ˝k C.

(ii) Given � 2 Emb.†;Q�/, letH� be the Hilbert space `2.N�.†// equipped with
the orthonormal basis f��g�2N�.†/. As above, we write V� for the k-vector
space spanned by the ��’s and V�;C for the C-vector space V� ˝k C.
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(iii) Let H˛;� be the tensor product H˛ ˝ H� D `2.˛.N/ � N�.†// and V˛;�;C
the tensor product V˛;C ˝ V�;C . We write H�˛;�, resp. V

�

˛;�;C , for the Hilbert
subspace of H˛;�, resp. C-linear subspace of V˛;�;C , spanned by the elements
�˛.n/;� with � � 1. Under these notations, we obtain the splittings H˛;� D

H�˛;� ˚H>
˛;� and V˛;�;C D V�˛;�;C ˚ V>˛;�;C .

In the case where N�.†/ D
S
r�1 �

Z
r is a union of infinitely many geometric

progressions we will consider also the following Hilbert space; see Lemma 4.22.
Notation 4.14. Given an embedding � 2 Emb.†;Q�/ and r � 1, let H��;r be
the Hilbert subspace of `2.N�.†// spanned by the orthonormal vectors �� such that
j�j � 1 and � D �kr for some k 2 Z�0. In the same vein, let eH�˛;� be the Hilbert space
`2.˛.N// ˝

N
r�1H��;r equipped with the standard orthonormal basis f�

˛.n/;�
kr
r
g

indexed by r � 1; ˛.n/ 2 ˛.N/ and kr 2 Z�0.

Proposition 4.15. Given an embedding � 2 Emb.†;Q�/, the assignments

R�.s/ �˛.n/;� WD �.s/
˛.n/ �˛.n/;N�.s/�

R�.�m/ �˛.n/;� WD

(
�˛.mn/;� when � D �˛.m/

0 otherwise

R�.W.�// �˛.n/;� WD �
˛.n/�˛.n/;�

(4.4)

define a representation R� of the k-algebra B0
.†;�n/

(and hence of the C-algebra
B0
.†;�n;C/

) on the C-vector space V˛;�;C .
Remark 4.16. By forgetting the action of the weight operators, Proposition 4.15
gives rise to an action of B.†;�n/ (and hence of B.†;�n;C/) on V˛;�;C .

Proof. We need to verify that the operators R�.s/; R�.�m/; R�.W.�// satisfy the
relations of Definitions 4.9 and 4.11. Clearly, R�.s1s2/ D R�.s1/R�.s2/. Similarly,
R�.�n/R�.�m/ D R�.�nm/. From the above definitions (4.4), we observe that
operators R�.��m/ D R�.�m/� are given as follows:

R�.�
�
m/�˛.n/;� D

(
� ˛.n/
˛.m/

;�˛.m/
when ˛.m/j˛.n/ in ˛.N/

0 otherwise:

Hence, we have the following identifications:

R�.�n/R�.�
�
m/�˛.r/;� D

(
R�.�n/� ˛.r/

˛.m/
;�˛.m/

when ˛.m/j˛.r/

0 otherwise

D

(
�˛.nr/
˛.m/

;�
when ˛.m/j˛.r/ and �˛.m/ D �˛.n/

0 otherwise :
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On the other hand, we have

R�.�
�
m/R�.�n/�˛.r/;� D

(
R�.�

�
m/�˛.nr/;� when � D �˛.n/ for some � 2 N�.†/

0 otherwise

D

(
�˛.nr/
˛.m/

;�˛.m/
when � D �˛.n/ and ˛.m/j˛.nr/

0 otherwise :

When .˛.n/; ˛.m// D 1, we have ˛.m/j˛.nr/, ˛.m/j˛.r/. Moreover, condition
�D �˛.n/ becomes equivalently �˛.m/D �˛.nm/. Therefore, by setting �D�˛.m/, we
conclude from above thatR�.�n/R�.��m/ D R�.��m/R�.�n/when .˛.m/; ˛.n// D 1.
In what concerns the operator R�.��m�m/, it corresponds to the projection onto the
subspace of V˛;�;C spanned by the basis elements �˛.n/;� such that � admits an ˛.m/th
root in N�.†/. Similarly, R�.�m��m/ is the projection onto the subspace of V˛;�;C
spanned by the basis elements �˛.n/;� such that ˛.m/j˛.n/. Let us now show the
following equality:

R�.�m/R�.s/R�.�
�
m/�˛.n/;� D

1

˛.m/

X
s02�m.s/

R�.s
0/�˛.n/;� :

The left-hand side identifies with

�.s/˛.n/=˛.m/ �˛.n/;N�.s/1=˛.m/� (4.5)

when ˛.m/j˛.n/ in ˛.N/ and j�.s/j has an ˛.m/th root in N�.†/. Otherwise, it is
zero. In what concerns the right-hand side, it identifies with

1

˛.m/

X
s02�m.s/

�.s0/˛.n/ �˛.n/;N�.s0/� : (4.6)

Making use of Corollary 4.5 (and Corollary 4.7), we hence conclude that (4.6) agrees
with (4.5). In what regards the generators W.�/, we clearly have

R�.W.�1�2// D R�.W.�1//R�.W.�2//; R�.W.�
�1// D R�.W.�/

�1/

and also the following equalities:

R�.W.�//R�.s/�˛.n/;� D R�.s/R�.W.�//�˛.n/;�

R�.W.�//R�.�m/�˛.n/;� D R�.�m/R�.W.�/
˛.m//�˛.n/;�

R�.�
�
m/R�.W.�//�˛.n/;� D R�.W.�/

˛.m//R�.�
�
m/�˛.n/;� :

This achieves the proof.
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Definition 4.17. Given an embedding � 2 Emb.†;Q�/, let us denote by B0
.†;�n;�/

the k-subalgebra of B0
.†;�n/

generated by the elements s 2 † with N�.s/ � 1, by the
weight operatorsW.�/with j�j � 1, and also by the partial isometries�n; ��n; n 2 N.
We write B0

.†;�n;�;C/
for the associated C-algebra B0

.†;�n;�/
˝k C.

Proposition 4.18. (i) When N�.†/ D f1g, the C-algebra B.†;�n;C/ acts by
bounded operators on the Hilbert spaceH˛ .

(ii) In general, the representationR� of Proposition 4.15 extends to a representation
R� of the C-algebra B0

.†;�n;�;C/
by bounded operators onH�˛;�.

Proof. When N�.†/ D f1g, we have kR�.s/k � supn j�.s/˛.n/j D 1 for every
s 2 †. Therefore, item (i) follows from this estimate, together with the fact that
kR�.�m/k D 1. In what concerns item (ii), the action of Proposition 4.15 extends to
an action of B0

.†;�n;�;C/
on V˛;�;C . We claim that this action factors through V�˛;�;C:

(a) If � � 1 and N�.s/ � 1, then N�.s/� � 1.
(b) If � � 1 and � D �˛.n/, then � � 1.
(c) The weight operators R�.W.�//; � 2 k�, do not alter �.
The above items (a)–(c) imply our claim, i.e. that the operatorsR�.s/withN�.s/ � 1,
R�.�n/ andR�.W.�// preserveV�˛;�;C . Now, sinceB0.†;�n;�;C/ only contains elements
s 2 † with N�.s/ � 1, kR�.s/k � supnN�.s/˛.n/ � 1. Clearly, we have also
kR�.�n/k � 1. In what concerns the weight operators, since j�j � 1, we have
kR�.W.�//k � supn j�j˛.n/ � 1. This implies that the action of B0

.†;�n;�;C/
on

V�˛;�;C extends to an action onH�˛;� by bounded operators.

Definition 4.19. A pair ..†n; �n/;Emb0.†;Q
�
//, consisting of a concrete Bost–

Connes datum and of a subset Emb0.†;Q
�
/ � Emb.†;Q�/ is called good if the

algebras B0
.†;�n;�;C/

are independent of the embedding � 2 Emb0.†;Q
�
/. The pair

is called very good if both the algebras B0
.†;�n;�;C/

as well as the Hilbert spacesH�˛;�
are independent of the embedding �. The representations R� may still depend on the
choice of the embedding �. Consult §5 for several examples.
Definition 4.20. (i) The C �-algebra A.†;�n/ is defined as the completion of

B.†;�n;C/ in the norm kak WD sup
�2Emb.†;Q�/ kR�.a/kB.H�/.

(ii) When the Bost–Connes datum .†; �n/ is good, the C �-algebra A0
.†;�n/

is
defined as the completion of B0

.†;�n;C/
in the following norm

kak WD sup
�2Emb.†;Q�/

kR�.a/kB.H�˛;�/ :

Remark 4.21. WhenN�.†/ D f1g, we have a family of representationsR� ofA.†;�n/
on B.H˛/ indexed by embeddings � 2 Emb.†;Q�/. In general, for a good Bost–
Connes datum, we have a family of representations R� of A0.†;�n/ on B.H

�
˛;�/.
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In the case where N�.†/ D
S
r�1 �

Z
r is a union of infinitely many geometric

progressions, we have the following analogue of Proposition 4.15 (and hence of
Remark 4.21); recall from Notation 4.14 the definition of the Hilbert space eH�˛;�.
Proposition 4.22. The representation R� of the algebra A0

.†;�n/
on B.H�˛;�/ extend

as follows to a representation on B.eH�˛;�/ (let N�.s/ DQr �
ar .s/
r ):

R�.s/�˛.n/;�krr
WD �.s/˛.n/�

˛.n/;�
krCar .s/
r

;

R�.�m/�˛.n/;�krr
WD

(
�
˛.nm/;�

kr=˛.m/
r

when ˛.m/jkr
0 otherwise

R�.W.�//�˛.n/;�krr
WD �˛.n/�

˛.n/;�
kr
r
:

Proof. The proof is similar to the one of Proposition 4.15.

4.2. Time evolution andHamiltonian. The constructions in this subsection depend
on the choice of an auxiliary semi-group homomorphism g W N ! R�C. We assume
always that the pair ..†; �n/;Emb0.†;Q

�
// is good.

Proposition 4.23. Given � 2 Emb0.†;Q
�
/, the following assignments

�t .s/ WD W.N�.s//
�its �t .�n/ WD g.n/

it�n �t .W.�// WD W.�/

define a continuous 1-parameter family of automorphisms � W R! Aut.A0
.†;�n/

/.

Proof. We need to verify that �t .ab/ D �t .a/�t .b/ and �tCt 0.a/ D �t .�t 0.a// for
every t; t 0 2 R and a; b 2 A0

.†;�n/
. The latter equality is clear, since �t .�t 0.s// D

W.N�.s//
�i.tCt 0/s and �t .�t 0.�n// D g.n/i.tCt

0/�n. Let us focus then in the first
equality. Since N� is a group homomorphism, we have

�t .s1s2/ D W.N�.s1s2//
�its1s2 D �t .s1/�t .s2/ :

Similarly, since g is a semi-group homomorphism, we have

�t .�n�m/ D �t .�nm/ D g.nm/
it�nm D �t .�n/�t .�m/ :

The action on ��n is then given by �t .��n/ D g.n/�it��n. Note that it is compatible
with all the relations between �n and ��n. In what concerns the weight operators,
we clearly have the equality �t .W.�1/W.�2// D �t .W.�1//�t .W.�2//. In order to
conclude the proof, it remains then to verify the relations of Definitions 4.9 and 4.11.
We will focus ourselves in (4.3) and leave the simple verification of the remaining
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relations to the reader. On one hand, we have:

�t .�ns�
�
n/ D

1

˛.n/

X
s02�n.s/

�t .s
0/

D W.N�.s
0//�it

1

˛.n/

X
s02�n.s/

s0

D W.N�.s/
1=˛.n//�it

1

˛.n/

X
s02�n.s/

s0

D W.N�.s//
�it=˛.n/ 1

˛.n/

X
s02�n.s/

s0 :

On the other hand, we have:

�t .�n/�t .s/�t .�
�
n/ D g.n/

it�nW.N�.s//
�its g.n/�it��n

D W.N�.s//
�it=˛.n/�ns�

�
n

D W.N�.s//
�it=˛.n/ 1

˛.n/

X
s02�n.s/

s0 ;

where the last equality follows from the relations A0
.†;�n/

between the genera-
tors W.�/ and �n. This achieves the proof.

Let � 2 Emb.†;Q�/ be an embedding and R� W A0.†;�n/ ! B.H�˛;�/ the
associated representation of Proposition 4.18. Consider the following linear operator:

H� W H�˛;� �! H�˛;� �˛.n/;� 7! .�˛.n/ log.�/C log.g.n///�˛.n/;� :

Proposition 4.24. For every t 2 R and a 2 A0
.†;�n;�/

, we have the equality:

R�.�t .a// D e
itH�R�.a/e

�itH� : (4.7)

Proof. Clearly, it suffices to verify the above equality (4.7) in the case where a is a
generator of A0

.�;�n/
. In what concerns the generators s 2 †, we have:

R�.�t .s//�˛.n/;� D R�.W.N�.s//
�it /R�.s/�˛.n/;�

D R�.W.N�.s//
�it /�.s/˛.n/�˛.n/;N�.s/�

D N�.s/
�it˛.n/�.s/˛.n/�˛.n/;N�.s/�

D ��it˛.n/N�.s/
�it˛.n/g.n/it �.s/˛.n/�it˛.n/g.n/�it�˛.n/;N�.s/�

D eitH� �.s/˛.n/�it˛.n/g.n/�it�˛.n/;N�.s/�

D eitH�R�.s/�
it˛.n/g.n/�it�˛.n/;�

D eitH�R�.s/e
�itH��˛.n/;� :
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For the generators �m; m 2 N, the left-hand side of (4.7) identifies with

R�.�t .�m//�˛.n/;� D g.m/
itR�.�m/�˛.n/;� D

(
g.m/it�˛.nm/;� when � D �˛.m/

0 otherwise :

On the other hand, the right-hand side identifies with

eitH�R�.�m/e
�itH��˛.n/;� D e

itH�R�.�m/�
it˛.n/g.n/�it�˛.n/;�

.when � D �˛.m/; 0 otherwise/ D eitH��it˛.n/g.n/�it�˛.nm/;�
D ��it˛.nm/g.nm/it�it˛.n/g.n/�it�˛.nm/;�

D g.m/it�˛.nm/;� :

Finally, in what concerns the generators W.�/; � 2 k�, we have:

R�.W.�//�˛.n/;� D �
˛.n/�˛.n/;� D �

�it˛.n/g.n/it�˛.n/�it˛.n/g.n/�it�˛.n/;�

D eitH��˛.n/�it˛.n/g.n/�it�˛.n/;�

D eitH�R�.W.�//�
it˛.n/g.n/�it�˛.n/;�

D eitH�R�.W.�//e
�itH��˛.n/;� :

This achieves the proof.

Remark 4.25. By combining Propositions 4.23–4.24 with §4.1, we hence obtain
the QSM-system .A0

.†;�n/
; �t / associated to .†; �n/ (and to an embedding � 2

Emb.†;Q�/). In the next two subsections we prove that this QSM-system satisfies
the extra assumptions (iii)–(iv) of Definition 4.1.

4.3. Partition function: finite union of geometric progressions. Recall from §4.2
that g W N ! R�C is an auxiliary semi-group homomorphism. Let us denote by ˇ0
the exponent of convergence of the series

P
˛.n/�1 g.n/

�ˇ .
In this subsection we assume that for every embedding � 2 Emb.†;Q�/, the

countable multiplicative subgroup N�.†/ of R�C is a finite union of geometric
progressions N�.†/ D [

M
jD1q

Z
�;j , with q�;j > 1.

Proposition 4.26. The partition function Z�.ˇ/ is computed by the series:X
�2N�.†/
��1

X
˛.n/�1

�˛.n/ˇg.n/�ˇ : (4.8)

Moreover, for every ˇ > ˇ0, the above series (4.8) is convergent. Consequently,
e�ˇH� is trace class operator.
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Proof. By construction, the operator H� is diagonal in the basis �˛.n/;� of H�˛;�.
Hence, the associated partition function agrees with the following series

Z�.ˇ/ WD Tr.e�ˇH�/ D
X

�2N�.†/
��1

X
˛.n/�1

h�˛.n/;�; e
�ˇH��˛.n/;�i

D

X
�2N�.†/
��1

X
˛.n/�1

e�ˇ.�˛.n/ log.�/Clog.g.n///

D

X
�2N�.†/
��1

X
˛.n/�1

�˛.n/ˇg.n/�ˇ :

Under the above assumption on N�.†/, the sum (4.8) can be re-written as

X
˛.n/�1

MX
jD1

X
k�0

q
�k˛.n/ˇ
�;j g.n/�ˇ D

X
˛.n/�1

MX
jD1

1

1 � q
�˛.n/ˇ
�;j

g.n/�ˇ : (4.9)

Let jmax (resp. jmin) be the index j that realize the maximum (resp. minimum) above.
Since 1 � q�˛.n/ˇ�;jmax

� 1 � q
�ˇ
�;jmax

when ˛.n/ � 1 and 1 � q�˛.n/ˇ�;jmin
� 1, we have

g.n/�ˇ
M

1 � q
�˛.n/ˇ
�;jmax

� g.n/�ˇ
M

1 � q
�;j
�ˇ
max

and g.n/�ˇ
M

1 � q
�˛.n/ˇ
�;jmin

� g.n/�ˇM :

This implies that (4.9) is bounded above and below by series whose convergence
and divergence depends only on the series

P
˛.n/�1 g.n/

�ˇ . As a consequence, the
above series (4.8) converges for every ˇ > ˇ0 and diverges for every ˇ � ˇ0. This
concludes the proof.

4.4. Partition function: infinite union of geometric progressions. In Proposi-
tion 4.26 we have only treated the convergence of the partition function Z.ˇ/ in
the case where the group N�.†/ � R�C has the form N�.†/ D [

M
jD1q

Z
�;j , for some

q�;j > 1. Here we treat the case of infinitely many progressions.
In order to control the convergence properties of the partition function, it is

useful to introduce another choice of a homomorphism, in addition to the choice of
g W N ! R�C. We modify the time evolution by introducing an additional auxiliary
choice of a group homomorphism h W N�.†/! R�C.
Proposition 4.27. Given homomorphisms g W N ! R�C and h W N�.†/! R�C, the
following assignments

�t .s/ D W.h.N�.s///
�its �t .�m/ D g.m/

it�m �t .W.�// D W.�/

defines a 1-parameter family of automorphisms � W R! Aut.A0
.†;�n/

/.
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Proof. The proof is similar to the one of Proposition 4.23.

Proposition 4.28. The Hamiltonian implementing the time evolution of Proposi-
tion 4.27 in the representation of Lemma 4.22 is given by

H� �˛.n/;�kr
D .�˛.n/k log.h.�r//C log.g.n/// �˛.n/;�kr :

Proof. The proof is analogous to the one of Proposition 4.24; instead of H�˛;�
and �˛.n/;� , we use theHilbert space eH�˛;� and its standard orthonormal basis �

˛.n/;�
kr
r
;

see Notation 4.14.

All the above constructions work with an arbitrary homomorphism h . Let us
now focus on the following example:
Example 4.29. Recall that f�rgr�1 is a set of generators of N�.†/. Let
h W N�.†/! R�C be the homomorphism defined as h.�r/ WD pr , where fprgr�1
stands for an enumeration of the prime numbers (for example the natural one in
increasing order).

Recall thatˇ0 denotes the exponent of convergence of the series
P
˛.n/�1 g.n/

�ˇ .
Theorem 4.30. When h is as in Example 4.29, the partition function Z�.ˇ/ is
computed by the following series:X

˛.n/�1

g.n/�ˇ �.ˇ˛.n// : (4.10)

Moreover, for every ˇ > maxfˇ0; 3=2g, the series (4.10) is convergent. Conse-
quently, e�ˇH� (whereH� is as in Proposition (4.28)) is a trace class operator.

Proof. Since the operatorH� (hence also e�ˇH�) is diagonal on the orthonormal basis
�
˛.n/;�

kr
r

of eH�˛;�, we have the following equality

Z.ˇ/ WD Tr.e�ˇH�/ D
X
˛.n/�1

g.n/�ˇ
Y
r

X
kr�0

h.�r/
�kr˛.n/ˇ ;

where the negative sign in the exponent of h.�r/ comes from the fact that we are
writing the sum over kr � 0 instead of kr � 0. For each fixed r 2 N, we can
compute the following seriesX

kr�0

��kr˛.n/ˇr D
1

1 � h.�r/�˛.n/ˇ

as the sum of a geometric series. For the particular choice of h.�r/ D pr , this is
equal to .1 � p�˛.n/ˇr /�1. Thus, we can rewrite the trace asX

˛.n/�1

g.n/�ˇ
Y
p

.1 � p�˛.n/ˇ /�1; (4.11)
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where the product is over the prime numbers. The Euler product converges to the
Riemann zeta function,

Q
p.1�p

�s/�1 D �.s/. Therefore, we can rewrite (4.11) asX
˛.n/�1

g.n/�ˇ �.ˇ˛.n// : (4.12)

In order to understand the convergence of this series, we need to estimate the behavior
of the values �.ˇ˛.n// of the Riemann zeta function. When s is real and 2.s�1/ > 1,
we can use the estimate

�.s/ D
X
n�1

n�s D 1C
X
n�2

n�s � 1C

Z 1
2

dx

xs
D 1 �

1

2.s � 1/
� 1:

Hence, for 2.ˇ˛.n/ � 1/ � 1, the terms �.ˇ˛.n// are all bounded above by
�.ˇ˛.n// � 1. This gives rise to the following inequality:X

˛.n/�1

g.n/�ˇ �.ˇ˛.n// �
X
˛.n/�1

g.n/�ˇ :

Since ˛.n/ � 1 for all n 2 N, the condition 2.ˇ˛.n/ � 1/ � 1 is satisfied for all
n 2 N if 2.ˇ � 1/ � 1 is satisfied, that is, if ˇ > 3=2. We hence conclude that the
above series (4.12) converges for every ˇ > maxfˇ0; 3=2g.

Remark 4.31. Unlike Proposition 4.26, we are only using an estimate from above.
Therefore, we can conclude only that e�ˇH� is trace class for ˇ > maxfˇ0; 3=2g.

4.5. Symmetries. Given an embedding � 2 Emb.†;Q�/, consider the (sub)group

G� WD f 2 G jN�..s// D N�.s/; 8s 2 †g � G:

Notation 4.32. Let G0 be the intersection of the subgroups G� with � 2

Emb0.†;Q
�
/.

Proposition 4.33. The following assignments

s 7! .s/ �n 7! �n W.�/ 7! W.�/

define an action of G on the k-algebra B.†;�n/ and of G� on the k-algebra B0.†;�n;�/.

Proof. It follows automatically from the definition of B.†;�n/ and B0.†;�n;�/ in terms
of generators and relations; see Definitions 4.9 and 4.17. Note that in the case of
the k-algebra B0

.†;�n;�/
we need to restrict to the subgroup G� � G to ensure that

s 7! .s/ preserves the subset fs 2 † jN�.s/ � 1g.
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Proposition 4.34. The actions of Proposition 4.33 extend to actions

� W G ! Aut.A.†;�n// and � W G� ! Aut.A0.†;�n;�// : (4.13)

These actions are compatible with the time evolution in the sense that �t ı� D � ı�t
for every  2 G (or  2 G�) and t 2 R.

Proof. Since .†; �n/ is a Bost–Connes datum, the group G acts continuously on †.
Therefore, the G-action of Proposition 4.33 extends first to the C-algebra B.†;�n;C/
and then to the C �-algebras A.†;�n/. Similarly, the G�-action extends first to
B0
.†;�n;�;C/

and then to A0
.†;�n;�/

. We obtain in this way the above actions (4.13).
The compatibility with the time evolution is given by the following equalities:

�t .� .�n// D �t .�n/ D g.n/
it�n D g.n/

it� .�n/ D � .�t .�n// :

Similarly, we have � .�t .W.�// D �t .� .W.�///. Note also that when  2 G�, we
have moreover the following equalities:

�t .� .s// D W.N�.� .s///
�it� .s/ D � .W.N�.s//

�it /� .s/ D � .�t .s// :

This achieves the proof.

4.6. Gibbs states. Recall from [3, Vol. I §2.3.3] that a state on a unital C �-algebra
A is a continuous linear functional ' W A ! C that is normalized, i.e. '.1/ D 1,
and satisfied the positivity condition, i.e. '.a�a/ � 0 for all a 2 A. An equilibrium
state of a quantum statistical mechanical system .A; �t / is a state ' that is invariant
with respect to the time evolution, '.�t .a// D '.a/, for all t 2 R and a 2 A;
consult [3, Vol. II §5.3] for further details. If the QSM-system .A; �t / has a
representationR� on a Hilbert spaceH� with a HamiltonianH� for which the partition
functionZ.ˇ/ D Tr.e�ˇH�/ is convergent for all ˇ > ˇ�, then we can define a special
class of equilibrium states, namely the Gibbs states at inverse temperature ˇ:

'ˇ;�.a/ WD
Tr.R�.a/ e�ˇH�/

Tr.e�ˇH�/
: (4.14)

Definition 4.35. Let ˆ W G ! Aut.†/ be the G-action on † and G† the quotient
G=Ker.ˆ/. We denote by �† W G ! G† the quotient map, by Z.G†/ the center
of G†, and by QZ.G†/ the preimage ��1† .Z.G†// � G.

Example 4.36. In the case where † D Q=Z, we have G† D Gab D Z.G†/. In
contrast, when † D Q

�, we have G† D G and (by the Neukirch–Uchida theorem)
Z.G/ D f1g.

Recall from Notation 4.32 the definition of the group G0. Let G†;0 be its image
under the quotient map �† W G ! G† and eG†;0 the pre-image ��1† .Z.G†/\G†;0/.
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Lemma 4.37. Given a good pair ..†; �n/;Emb0.†;Q
�
// in the sense of

Definition 4.19, the G0-action � W G0 ! Aut.B0
.†;�n/

/ induces a eG†;0-action
R� 7! R�ı on the set fR�g of representations R� W B0.†;�n/ ! B.H�˛ /.

Proof. The condition that � ı  is still a G-equivariant embedding implies that the
image of  2 G0 in the quotient G† commutes with all elements of G†. Therefore,
it belongs to the center and hence to the intersection Z.G†/\G†;0. We now verify
on the generators of B0

.†;�n/
that R�.� .a// D R�ı .a/. For s 2 † we have

R�.� .s//�˛.n/;� D �..s//
˛.n/�˛.n/;N�..s//� D R�ı .s/�˛.n/;�:

In the remaining cases, since the action of R�.�n/ does not depend on � and �n
is fixed by G, we have R�.� .�n// D R�.�n/ D R�ı .�n/. Similarly, we have
R�.� .W.�/// D R�.W.�// D R�ı .W.�//.

Proposition 4.38. Given a good pair ..†; �n/;Emb0.†;Q
�
//, the G0-action

� W G0 7! Aut.B0
.†;�n/

/ induces a pullback QG†;0-action

'ˇ;� 7! �� .'ˇ;�/ D 'ˇ;� ı � D 'ˇ;�ı

on the set of Gibbs states at a fixed inverse temperature ˇ.

Proof. Let .A; �t / be a quantum statistical mechanical system. It is well-known
(see [3]) that an action � W G0 ! Aut.A/ by automorphisms which verifies �t ı � D
� ı �t , (for all  2 G0 and t 2 R) induces a pullback action on the set of Gibbs
states of .A; �t / at a fixed inverse temperature ˇ:

'ˇ;� 7! �� .'ˇ;�/ WD 'ˇ;� ı � :

For elements in QG†;0 we have:

'ˇ;� ı � .a/ D
Tr.R�.� .a// e�ˇH�/

Tr.e�ˇH�/
D

Tr.R�ı .a/ e�ˇH�/
Tr.e�ˇH�/

D 'ˇ;�ı .a/ :

Therefore, the proof follows now from Lemma 4.37.

Recall from [9] that the ground states (or zero temperature equilibrium states) of
a quantum statistical mechanical system are defined as weak limits when ˇ !1 of
the Gibbs states at inverse temperature ˇ. Concretely, '1;�.a/ WD limˇ!1 'ˇ;�.a/.
These are given by traces of projections onto the Kernel of the HamiltonianH�.

The following result rephrases in our setting the “fabulous states" property of the
Bost–Connes system (as formulated in [9]), namely the intertwining of symmetries
of the quantum statistical mechanical system and Galois symmetries.
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Proposition 4.39. Given a good pair ..†; �n/;Emb0.†;Q
�
//, there is an induced

QG†;0-action '1;� 7! '1;�ı on the ground states. In the particular case where
N�.†/ D f1g, the ground states take values '1;�.s/ D �.s/ on the generators s 2 †
of the algebra of observables. Moreover, this action recovers the Galois action of the
subgroup QZ.G†/ � G on �.†/.

Proof. Recall from §4.2 that the HamiltonianH� is given by

H��˛.n/;� D .�˛.n/ log.�/C log.g.n///�˛.n/;� :

Its kernel is one-dimensional and it is spanned by the vector �1;1. Thus, the ground
state '1;� is given by the projection onto the kernelH�, that is, by

'1;�.a/ D h�1;1; R�.a/ �1;1i:

When we evaluate it on a generator s 2 † we obtain

h�1;1; R�.s/�1;1i D �.s/h�1;1; �1;N�.s/i:

This is zero unless N�.s/ D 1, in which case it is equal to �.s/. Note that in the
case where N�.†/ D f1g, we have G0 D G. Hence, QG†;0 D QZ.G†/. By the
G-equivariance of the embedding �, this implies that the QZ.G†/-action is given by
�..s// D .�.s//, i.e. by the restriction to the subgroup QZ.G†/ of the Galois action
of G on �.†/. This achieves the proof.

4.7. Bost–Connes data with trivial ˛. Let .†; �n/ be an abstract Bost–Connes
datum for which the semi-group homomorphism ˛ is trivial, i.e. ˛.n/ D 1 for
every n 2 N. By Definition 2.1, .†; �n/ is not a concrete Bost–Connes datum.
Nevertheless, we explain here how we can still construct a partial QSM-system.
Lemma 4.40. When N .†/ D f1g, the algebra B D B.†;�n/ is isomorphic to the
group crossed product algebra kŒ†� ÌQ�C.

Proof. When ˛.n/ D 1 for every n 2 N, �n and �n are inverse of each other. In
particular, they are automorphisms of kŒ†�. The relation (4.3) hence implies that
�n�

�
n D 1. Consequently, the �n’s are not just isometries but rather unitaries, with

��n D ��1n D �1=n, implementing the action of Q�C on kŒ†�. Making use of them,
we then obtain an isomorphism between B D B.†;�n/ and kŒ†� ÌQ�C.

Thanks to Lemma 4.40, the operators ��n’s are invertible. Therefore, the Hilbert
space representations of B D B.†;�n/ need to be modified accordingly. There is
a unique natural way to proceed: the action of the semi-group N on the Hilbert
space `2.N/ is just the regular representation. In the case where the semi-group
is replaced by the group it generates, we correspondingly consider the regular
representation of the group. In our case, this means the action of Q�C on the Hilbert
space `2.Q�C/ is given by multiplication on its basis elements.
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Lemma 4.41. Assume that N .†/ D f1g. Given an embedding � 2 Emb.†;Q�/,
the assignments R .�/�r WD .�/r �r and R .�s/�r WD �sr , with � 2 † and s; r 2
Q�C, define a representation of B.†;�n/ D kŒ†� ÌQ�C on the Hilbert space `2.Q�C/.

Proof. The crossed product relation is satisfied since R .�s/R .�/R .�s/��r D
.�/r=s�r . The remaining arguments are analogous to the semi-group case discussed
in Proposition 4.15.

TheC �-algebra completion ofB.†;�n/ is the crossed productA.†;�n/DC �.†/ÌQ�C.
The time evolution discussed in §4.2 extends naturally as follows:

Lemma 4.42. The choice of a semi-group homomorphism g W N ! R�C determines
a time evolution on the C �-algebra A.†;�n/ D C �.†/ ÌQ�C.

Proof. Note that g extends uniquely to a group homomorphism g W Q�C ! R�C.
Therefore, it suffices to set �t .�r/ WD g.r/it�r for every r 2 Q�C and �t .�/ WD �

for every � 2 †.

Remark 4.43. The time evolution of Lemma 4.42 is the natural generalization of the
one of Proposition 4.23. However, it is clear that the resulting “partial QSM-system”
Q D .C �.†/ Ì Q�C; �t / does not have a convergent partition function Z.ˇ/ for
ˇ � 0, neither low-temperature Gibbs states.

5. Examples of QSM-systems

In this section we describe in detail the QSM-systems associated to our examples of
concrete Bost–Connes data (as in Convention 4.2).

Example 1: Original Bost–Connes system. Let k D Q. Recall from §2 the
definition of the concrete Bost–Connes datum .Q=Z; �n/. What follows is standard
and can be found in the foundational article of Bost and Connes [2]; consult also [8,
§3]. The only novelty is that in the construction of the time evolution we consider
more general choices of the auxiliary semi-group homomorphism g W N ! R�C.

Lemma 5.1. For every embedding � 2 Emb.Q=Z;Q�/, the countable multiplicative
subgroup N�.Q=Z/ of R�C is equal to f1g.

Proof. As explained in proof of Proposition 4.3, Hom.Q=Z;Q�/ D Hom.Q=Z;Q=Z/.
Therefore, �.Q=Z/ is contained in the subgroup of roots of unity of Q

�. This implies
that N�.s/ D j�.s/j D 1 for every s 2 Q=Z.

The Q-algebra B.Q=Z;�n/ agrees with the crossed product QŒQ=Z� Ì N, where
the semi-group action of N on QŒQ=Z� is given by n 7! .s 7!

P
s02�n.s/

s0/. On the
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other hand, since N�.Q=Z/ D f1g, the Q-algebra B0
.Q=Z;�n/

is not necessary for the
construction of the QSM-system.

Note that since ˛.n/ D n and N�.Q=Z/ D f1g, the Hilbert spaces H�˛;� are all
equal toH WD l2.N/. Similarly, all the C-vector spaces V�˛;� are equal to V WD VC .

Let � 2 Emb.Q=Z;Q�/ ' bZ�. The representation R� of B.Q=Z;�n/ on V is
given by R�.s/.�n/ D �.s/n�n and R�.�m/.�n/ D �mn. Following Proposition 4.18,
this representation extends to a representation R� of the C-algebra B.Q=Z;�n;C/ D
CŒQ=Z�ÌN by bounded operators onH. The C �-algebraA.Q=Z;�n/ identifies then
with the closure C �.Q=Z/ ÌN of CŒQ=Z� ÌN inside the C �-algebra of bounded
operators B.H/.

Let g W N ! R�C be the standard embedding of N into R�C. The associated time
evolution is given by �t .s/ D s and �t .�n/ D nit�n and the associated Hamiltonian
H WD H� W l

2.N/ ! l2.N/ by �n 7! log.n/�n. Consequently, the partition
function Z.ˇ/ agrees with the Riemann zeta function �.ˇ/ D

P
n�1 n

�ˇ .

Remark 5.2. Since N is the free commutative semi-group generated by the prime
numbers, every semi-group homomorphism g W N ! R�C is determined by its values
�p WD g.p/ at the prime numbers p. Therefore, we can write the partition function
as an Euler product:

Z.ˇ/ WD
X
n�1

g.n/�ˇ D
Y
p

X
k�0

g.p/�kˇ D
Y
p

.1 � ��ˇp /�1 :

The first equality is obtained using the primary decomposition of n 2 N and the fact
that g is a semi-group homomorphism, and the second equality follows by summing
the resulting geometric series.

Example 5.3. Let q be a prime power. Given an algebraic variety X defined
over Z, let �p WD #Xp.Fq/ where Xp stands for the reduction of X modulo p. The
corresponding semi-group homomorphism g gives then rise to the partition function

ZX .ˇ/ D
Y
p

.1 � #Xp.Fq/�ˇ /�1 :

The absolute Galois group Gal.Q=Q/ acts on Q=Z through the quotient group
Gal.Qab

=Q/ ' bZ�. This action ofbZ� extends toQŒQ=Z�ÌN and to theC �-algebra
C �.Q=Z/ ÌN as in Propositions 4.33 and 4.34.

Let ˇ0 > 0 be the exponent of convergence of the series Z.ˇ/ D
P
n�1 g.n/

�ˇ .
For ˇ > ˇ0, e�ˇH� is a trace class operator and we have Gibbs states of the form

'�;ˇ .a/ D
Tr.R�.a/e�ˇH�/

Tr.e�ˇH�/
:
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Lemma 5.4. We have the following computation

'�;ˇ .a/ D

(
0 when a D s�m��n, n ¤ m
Z.ˇ/�1

P
n�1

P
j cj �.sj /

n g.n/�ˇ when a D
P
j cj sj 2 QŒQ=Z� :

Proof. On an additive basis of A.Q=Z;�n/, given by monomials of the form s�m�
�
n,

we have '�;ˇ .s�m��n/ D Z.ˇ/�1
P
rh�r ; R�.s�m�

�
n/e
�ˇH� �ri D 0 when n ¤ m.

Therefore, the proof follows from the fact that '�;ˇ .s/ D Z.ˇ/�1
P
n�1 �.s/

n g.n/�ˇ

for every s 2 Q=Z.

Remark 5.5. When g.n/ D n, we have '�;ˇ .s/ D �.ˇ/�1Liˇ .�.s//, where �.ˇ/
is the Riemann zeta function and Liˇ .�.s// the evaluation at roots of unity of a
polylogarithm function.

Lemma 5.6. The ground states are given by '�;1.s/ D �.s/. Moreover, theG-action
by automorphisms of A.Q=Z;�n/ agrees with the Galois G-action on �.Q=Z/.

Proof. When ˇ ! 1 the Gibbs states converge weakly to ground states of the
form '�;1.s/ D h�1; R�.s/e

�ˇH��1i D �.s/. The action of G WD Gal.Q=Q/ on
C �.Q=Z/ÌN factors through the abelianizationGab. Hence, using the terminology
of Definition 4.35, we have Z.G†/ D G† D Gab and eZ.G†/ D G. Thanks to
Proposition 4.39, G acts then on the Gibbs states by  W '�;ˇ 7! '�ı;ˇ , and the
induced action on the limits '�;1.s/ 7! '�ı;1.s/ agrees with the Galois action
on �.Q=Z/.

Example 3: Algebraic numbers. Let k D Q. Recall from §2 the definition of the
concrete Bost–Connes datum .Q

�
; �n/. We consider a fixed embedding Q

�
� C�.

Definition 5.7. Let Q
�

� WD fs 2 Q
�
j jsj � 1g, S WD fjsj j s 2 Q

�
g and S� D

fjsj j s 2 Q
�

�g. Note that S is a multiplicative subgroup of R�C and S� a subset
of S \ .0; 1�.

Remark 5.8. The subgroup S � R�C is a union of infinitely many geometric
progressions. Therefore, in the construction of the QSM-system, we will use the
Hilbert space eH�˛;�; see Notation 4.14.

Let EmbS.Q
�
;Q
�
/ be the set of embeddings f� 2 Emb.Q�;Q�/ jN�.Q

�
/ D Sg

and �.Q�/� WD fs 2 Q
�
jN�.s/ � 1g. In what follows we consider the following

subset of G-equivariant embeddings:

Emb0.Q
�
;Q
�
/ WD f� 2 Emb.Q�;Q�/ j �.Q��/ D �.Q

�
/�g: (5.1)
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Lemma 5.9. We have an inclusion Emb0.Q
�
;Q
�
/ � EmbS.Q

�
;Q
�
/.

Proof. Note that every embedding � 2 Emb0.Q
�
;Q
�
/maps the set fs 2 Q

�
j jsj � 1g

isomorphically to the set fs 2 Q
�
jN�.s/ � 1g. Consequently, N�.Q

�

�/ surjects
ontoS�. This implies thatN�.Q

�
/ surjects ontoS since any element ofS> WD SXS�

is the absolute value js�1j D jsj�1 of some s 2 Q
�

�. Therefore, if the absolute values
N�.s/ D j�.s/j, with s 2 Q

�

�, fill up the set S�, N�.s�1/ fill up the complementary
subset S>. We hence conclude that N�.Q

�
/ surjects onto S .

The Q-algebra B
.Q
�
;�n/

is generated by the elements s 2 Q
� and by the

partial symmetries �n; ��n; n 2 N, as in Definition 4.9. Similarly, the Q-algebra
B0
.Q
�
;�n/

is generated by s; �n; ��n and by the weight operators W.�/; � 2 Q�;

see Definition 4.11. Given � 2 Emb0.Q
�
;Q
�
/, we obtain a representation R� of

B0
.Q
�
;�n/

on the Hilbert space eH�˛;� of Notation 4.14.

Lemma 5.10. For every embedding � 2 EmbS.Q
�
;Q
�
/, we have R�.��n�n/ D 1.

Proof. The operator R�.��n�n/ is the projection onto the subspace spanned by the
vectors �n;� such that � D �n for some � 2 N�.Q

�
/. Given an embedding � 2

EmbS.Q
�
;Q
�
/, we have N�.Q

�
/ D S . This implies that for every � 2 N�.Q

�
/ we

have � D jsj for some s 2 Q
�. Hence, we can always find an nth root in S by taking

� D js1=nj for some nth root of s in Q
�. In conclusion, R�.��n�n/ D 1.

Remark 5.11. Lemma 5.10 implies that if � 2 EmbS.Q
�
;Q
�
/, we can then work

with the algebra B0
.Q
�
;�n/

with the additional relation ��n�n D 1.

Lemma 5.12. The pair ..Q�; �n/;Emb0.Q
�
;Q
�
// is a very good concrete Bost–

Connes datum, in the sense of Definition 4.19.

Proof. Recall from the proof of Lemma 5.9 that for every � 2 Emb0.Q
�
;Q
�
/,

have N�.Q
�
/ \ .0; 1� D S�. Hence, the Hilbert space eH�˛;� of Notation 4.14 is

independent of �. Moreover, � maps isomorphically the set Q
�

� to �.Q�/�. Now,
recall that the algebra B0

.Q
�
;�n;�/

and its C �-completion A0
.Q
�
;�n;�/

have generators

s 2 �.Q
�
/�. The isomorphisms �.Q�/� ' Q

�

� induce isomorphisms between the
algebras for different choices of �. Therefore, we can conclude that the algebras are
also independent of �.

Notation 5.13. We write eH� for the Hilbert space eH�˛;� with ˛ D id. Note that
thanks to Lemma 5.12, eH� is independent of �. Similarly, we writeA0

.Q
�
;�n/

for the

C �-algebra acting by bounded operators on eH� through the representationsR�, with
� 2 Emb0.Q

�
;Q
�
/.
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Given a semi-group homomorphism g W N ! R�C and the homomorphism
h W N�.Q

�
/ ! R�C; �r 7! pr , we obtain a time evolution �t on A0

.Q
�
;�n/

as in
Proposition 4.27, with a Hamiltonian as in Proposition 4.28, and a partition function
as in Theorem 4.30. This gives rise to the following result:
Proposition 5.14. Let �.Q�/1 WD fs 2 Q

�
jN�.s/ D 1g. When g.n/ D n, and for

all ˇ > 3=2, the Gibbs states evaluated on elements s 2 �.Q�/1 are given by the
following convergent series (Z.ˇ/ WD

P
n�1 �.ˇn/ n

�ˇ ):

'�;ˇ .s/ D Z.ˇ/
�1
X
n�1

�.s/n �.ˇn/ n�ˇ : (5.2)

Proof. The partition function of the QSM-system was obtained in Theorem 4.30. Its
trace Tr.R�.s/e�ˇH�/ identifies withX
h�
n;�

kr
r
; R�.s/e

�ˇH��
n;�

kr
r
i D

X
�.s/ng.n/�ˇh.�r/

�krnˇ h�
n;�

kr
r
; �
n;�

krCar .s/
r

i ;

where the sum is taken over the elements of the orthonormal basis. The inner products
vanish unless ar.s/ D 0 for all r , i.e. unless N�.s/ D 1. In the case N�.s/ D 1, for
the choice of h W N�.Q

�
/! R�C; �r 7! pr , we obtainX

n

�.s/ng.n/�ˇ
Y
r

X
kr

h.�r/
�krnˇ D

X
n

�.s/ng.n/�ˇ
Y
p

.1 � p�nˇ /�1 :

The product over r reflects the fact that the Hilbert space eH� is a tensor product
over r ; see Theorem 4.30.

In contrast with the original Bost–Connes case, the following result shows that
the “fabulous states” property is not satisfied! Intuitively speaking, Q

� is “too large”
to give rise to a well behaved Bost–Connes system.
Proposition 5.15. In the limit ˇ !1 the ground states take values '�;1.s/ D �.s/
on all s 2 �.Q�/1. The G-action on Q

� induces the trivial action on the values of
the ground states.

Proof. In the limit ˇ ! 1, the Gibbs states '�;ˇ converge weakly to the ground
states '�;1, which are given by the projection onto the kernel �1;1 of the Hamiltonian.
The basis element �1;1 is given by the vector �n ˝

N
r ��krr

with n D 1 and kr D 0
for all r , so that � D

Q
r �

kr
r D 1. Thus, we have

'�;1.s/ D h�1;1; R�.s/e
�ˇH �1;1i D h�1;1; �.s/�1;N�.s/i D

(
�.s/ when N�.s/ D 1
0 when N�.s/ ¤ 1 :

The absolute Galois groupG D Gal.Q=Q/ acts on Q
�. In this caseG† D G, hence

we haveZ.G†/ D f1g, see Example 4.36. Thus, the groupZ.G/\G0 is also trivial,
hence the induced action on Gibbs states is trivial.
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Remark 5.16. It is also possible to construct a Bost–Connes type QSM-system
for Q

� in a different way: using the logarithmic height function as a specialization
of a more general construction for toric varieties; see [13, §4].

Example 4: Weil numbers of weight zero. Let k D Q. Recall from Example 2.11
the definition of the concrete Bost–Connes datum .W0.q/; �n/.

Let us denote by �0 the fixed embedding W.q/ � Q
�, which restricts to

an embedding W0.q/ � Q
� of the Weil numbers of weight zero. Let GW.q/

and GW0.q/ be the quotients, as in Definition 4.35, of the G-action on W.q/ and
W0.q/, respectively. Thanks to Proposition 2.9(iii), theG-action onW.q/ preserves
weights. Therefore, GW.q/ D GW0.q/.

In what follows, we consider the following subset of G-equivariant embeddings
Emb0.W0.q/;Q

�
/ D eZ.GW.q// � �0, where  � �0 WD �0 ı  .

Lemma 5.17. For every embedding � 2 Emb0.W0.q/;Q
�
/, the countable

multiplicative subgroup N�.W0.q// of R�C is equal to f1g.

Proof. Thanks to Proposition 2.9(iii), the G-action on W.q/ preserves weights.
Therefore, for every s 2 W0.q/, we have N�0ı .s/ D N�..s// D qw..s// D

qw.s/ D N�0.s/ D 1.

Lemma5.18. TheQ-algebraB.W0.q/;�n/ agreeswith the crossed productQŒW0.q/�Ì
N, where the semi-group action of N on QŒW0.q/� is given by

n 7!

�
s 7!

X
s02�n.s/

s0
�
:

Proof. The two algebras have the same sets of generators and relations. In fact, the
crossed product algebra QŒW0.q/�ÌN is generated by the elements s 2W0.q/ and
by isometries �p , for the generators p of the semi-group N, and their adjoints ��p ,
with the semi-group action implemented by s 7! �ps�

�
p . The �p satisfy the

relations �p�p0 D �pp0 , ��p�p D 1, and ��p0�p D �p�
�
p0 for p ¤ p0. The

subalgebra generated by the �p and ��p is clearly isomorphic to the subalgebra of
B.W0.q/;�n/ generated by the�n and��n, by writing�n as a product of�p’s according
to the primary decomposition of n. The subalgebras QŒW0.q/� of B.W0.q/;�n/ and
QŒW0.q/� ÌN also match, and the semi-group action �ns��n D

P
s02�n.s/

s0 gives
the remaining relation of B.W0.q/;�n/.

Remark 5.19. Since N�.W0.q// D f1g, the Q-algebra B0
.W0.q/;�n/

is not necessary
for the construction of the QSM-system.

Note that since ˛.n/ D n and N�.W0.q// D f1g, the Hilbert spaces H�˛;�
are all equal to H WD l2.N/. Similarly, all the C-vector spaces V�˛;� are equal
V WD VC . Given � 2 Emb0.W0.q/;Q

�
/, the representation R� of B.W0.q/;�n/
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on V is given by R�.s/.�/ D �.s/n�n and R�.�m/.�n/ D �mn. Following
Proposition 4.18, this representation extends to a representation R� of the k-algebra
B.W0.q/;�n;C/ D CŒW0.q/� Ì N by bounded operators on H. The C �-algebra
A.W0.q/;�n/ identifies then with the closureC �.W0.q//ÌN of CŒW0.q/�ÌN inside
the C �-algebra of bounded operators B.H/.

We construct the time evolution as in the case of the original Bost–Connes system.
Let g W N ! R�C be the standard embedding of N into R�C. The associated time
evolution is given by �t .s/ D s and �t .�n/ D nit�n and the associated Hamiltonian
H WD H� W l

2.N/ ! l2.N/ by �n 7! log.n/�n. Consequently, the partition
functionZ.ˇ/ agrees with the Riemann zeta function �.ˇ/ D

P
n�1 n

�ˇ . The series
converges for ˇ > 1.

The absolute Galois group G D Gal.Q=Q/ acts on W0.q/ through the
quotient GW.q/. This action extends to QŒW0.q/� Ì N and to the C �-algebra
C �.W0.q// ÌN as in Propositions 4.33 and 4.34.
Proposition 5.20. With the time evolution determined by g.n/ D n, the low
temperature (ˇ > 1) Gibbs states of the quantum statistical mechanical system for the
concrete datum .W0.q/; �n/ are polylogarithms evaluated at numbers � 2 W0.q/,
normalized by the Riemann zeta function. The action of the Galois group G as
symmetries of the system induces an action of the subgroup eZ.GW.q// on the zero
temperature Gibbs states, which agrees with the restriction toeZ.GW.q// of the Galois
action on �.W0.q//.

Proof. For g.n/ D n, the Hamiltonian is H �n D log.n/ �n, with partition function
the Riemann zeta function, as in the original Bost–Connes case. The low temperature
Gibbs states, evaluated on s 2W0.q/, are of the form

'�0ı;ˇ .s/ D �.ˇ/
�1
X
n�1

.�/n

nˇ
D

Liˇ ..s//
�.ˇ/

:

For ˇ ! 1 the weak limits of these Gibbs states define the zero temperature
ground states. These are given by the projection onto the kernel of the Hamiltonian.
Evaluated on elements s 2W0.q/, they give

'�0ı;1.s/ D h�1; R .�/e
�ˇH �1i D .s/:

The action of G by automorphisms of the algebra determines an induced action ofeZ.GW.q// on the ground states states, as in Proposition 4.38.

Example 4: Weil numbers. Let k D Q. Recall from Example 2.12 the definition
of the concrete Bost–Connes datum .W.q/; �n/. As in the preceding Example, we
will make use of the notations GW.q/; �0, and Emb0.W.q/;Q

�
/ D eZ.GW.q// � �0.

Lemma 5.21. For every embedding � 2 Emb0.W.q/;Q
�
/, the countable

multiplicative subgroup N�.W.q// of R�C is equal to fqr j r 2 Z
2
g.
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Proof. Thanks to Proposition 2.9(iii), the G-action on W.q/ preserves weights.
Therefore, for every s 2W0.q/, we have N�0ı .s/ D N�..s// D qw..s// D qw.s/.
This implies that N�0ı .W.q// D N�0.W.q// D q

1
2Z.

Remark 5.22. Note that the semi-group N�.W.q// � R�C is given by a single
geometric progression generated by the element q1=2.

The Q-algebra B.W.q/;�n/ is generated by the elements s 2 W.q/ and by the
partial symmetries �n; ��n; n 2 N, as in Definition 4.9. Similarly, the Q-algebra
B0
.W.q/;�n/

is generated by s; �n; ��n and by the weight operators W.�/; � 2 W.q/;
see Definition 4.11.

Lemma 5.23. The pair ..W.q/; �n/;Emb0.W.q/;Q
�
// is a very good concrete

Bost–Connes datum, in the sense of Definition 4.19.

Proof. Since ˛.n/ D n and N�.W.q// is independent of �, the Hilbert spaces H�˛;�,
resp. the C-linear subspaces V�˛;�;C , are all equal to the Hilbert subspace H� of
H WD l2.N/˝l2.fqr j r 2 Z

2
g/, resp. to theC-linear subspaceV� ofV WD VC˝V�;C ,

spanned by the elements �n;qr with r � 0. Moreover, since by Proposition 2.9(iii)
the G-action on W.q/ preserves weights, the set fs 2 W.q/ jN�.s/ � 1g is
independent of the embedding � 2 Emb0.W.q/;Q

�
/. As a consequence, the

Q-algebra B0
.W.q/;�n;�/

and its C �-completionA0
.W.q/;�n;�/

are independent of �.

Notation 5.24. Let A0
.W.q/;�n/

be the resulting C �-algebra acting on the Hilbert
spaceH� through the representations R�, with � 2 Emb0.W.q/;Q

�
/.

Remark 5.25. Let � 2 Emb0.W.q/;Q
�
/. In contrast with the case of algebraic

numbers, the operator R�.��n�n/ is not the identity but rather the projection onto the
subspace spanned by the vectors �n;qr=2 such that njr .

Given a semi-group homomorphism g W N ! R�C, we obtain the time evolution

�t .�/ D W.!.�//
�it� �t .�n/ D g.n/

it�n �t .W.�// D W.�/ ;

where !.�/ stands for the weight of � . This gives rise to the Hamiltonian

H WD H� W H� �! H� �n;qr 7! log.q�nrg.n//�n;qr

and consequently to the partition function

Z.ˇ/ WD Tr.e�ˇH / D
X
n2Z

X
r�02Z

2

qnrˇg.n/�ˇ : (5.3)

We denote by ˇ0 the exponent of convergence of the series
P
n g.n/

�ˇ .
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Proposition 5.26. The partition function (5.3) is computed by the series

Z.ˇ/ D
X
n�1

g.n/�ˇ

1 � q�n
ˇ
2

; (5.4)

which converges for ˇ > ˇ0 and diverges for ˇ � ˇ0. In the case where g.n/ D n,
(5.4) can be written as the series of polylogaritms Z.ˇ/ D

P
k�0 Liˇ .q�k

ˇ
2 /.

Proof. The first claim follows directly from Proposition 4.26 (with a single geometric
progression with generator q1=2). Concretely, we have:X

n2Z

X
r�02Z

2

qnrˇg.n/�ˇ D
X
n�1

X
k�0

q�kn
ˇ
2 g.n/�ˇ D

X
n�1

g.n/�ˇ

1 � q�n
ˇ
2

;

with the estimate

g.n/�ˇ �
g.n/�ˇ

1 � q�n
ˇ
2

�
g.n/�ˇ

1 � q�
ˇ
2

:

We now assume that g.n/ D n. For ˇ > ˇ0 D 1, and after exchanging the order of
summation, the above series can be re-written asX

k�0

X
n�1

q�kn
ˇ
2 n�ˇ D

X
k�0

Liˇ .q�k
ˇ
2 / :

Lemma 5.27. When g.n/ D n, for ˇ > 1, the Gibbs states, evaluated on elements
s 2W.q/ are zero for weight w.s/ ¤ 0, while for s 2W0.q/ they are given by

'�;ˇ .s/ D

P
k�0 Liˇ .�.s/q�kˇ=2/P
k�0 Liˇ .q�kˇ=2/

: (5.5)

Proof. The partition function is provided by Theorem 5.26. Thus, we just need to
compute the trace

Tr.R�.s/e�ˇH�/ D
X
n�1

X
k�0

h�n;q�k=2 ; R�.s/e
�ˇH��n;q�k=2i

D

X
n�1

X
k�0

�.s/n q�knˇ=2 g.n/�ˇ h�n;q�k=2 ; �n;q�k=2Cw.s/i

D

(P
n�1

P
k�0 �.s/

n q�knˇ=2 g.n/�ˇ when w.s/ D 0
0 when w.s/ ¤ 0:

This implies that '�;ˇ .s/ D 0 when w.s/ ¤ 0. For s 2W0.q/, and after exchanging
the order of summation, the above expression can be re-written as follows:X

k�0

X
n�1

�.s/n q�knˇ=2 n�ˇ D
X
k�0

Liˇ .�.s/q�kˇ=2/ :
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As a consequence, we obtain the above equality (5.5):

'�;ˇ .s/ D
Tr.R�.s/e�ˇH�/

Z.ˇ/
D

P
k�0 Liˇ .�.s/q�kˇ=2/P
k�0 Liˇ .q�kˇ=2/

:

Recall that the absolute Galois group G D Gal.Q=Q/ acts onW.q/ through the
quotient GW.q/. This action extends to B0.W.q/;�n/

and to the C �-algebraA0
.W.q/;�n/

as in Propositions 4.33 and 4.34.
Proposition 5.28. In the limit ˇ !1 the ground states are given by

'�;1.s/ D

(
�.s/ when w.s/ D 0
0 when w.s/ ¤ 0:

The G-action on W.q/ induces an action of the subgroup eZ.GW.q// � G on the
ground states, which agrees with the Galois action on the values �.W0.q//.

Proof. The ground states are given by projections onto the kernel of the Hamilto-
nianH�. Therefore, we obtain the following equalities:

'�;1.s/ D h�1;1; R�.s/e
�ˇH��1;1i D �.s/ h�1;1; �1;qw.s/i D

(
�.s/ when w.s/ D 0
0 when w.s/ ¤ 0 :

The G-action by automorphisms of the algebra A0
.W.q/;�n/

induces an action ofeZ.GW.q// � G on the Gibbs states and on the ground states by '�;ˇ 7! '�ı;ˇ . This
follows from the fact that for every � 2 Emb0.W.q/;Q

�
/ and  2 QZ.GW.q//, we

have � ı  2 Emb0.W.q/;Q
�
/. This action on ground states agrees with the Galois

action on the values, since '�ı;1.s/ D �..s// D .�.s//, by G-equivariance of the
embeddings.

Examples 5 and 6 of §2 are only abstract Bost–Connes data. Example 5 is not a
concrete datum because ˛ is not a semi-group homomorphism. The case of Germs in
Example 6 is also not a concrete datum, because alpha is the trivial homomorphism
˛.n/ D 1. Moreover, we do not have an embedding of W0.p

1/ in Q
�, so even the

partial construction for ˛.n/ D 1 discussed in §4.7 does not apply. The case of the
completion cWL.q/ in Example 7 of §2 is also not a concrete Bost–Connes datum.
We consider the remaining cases in §6.

6. Weil restriction and completion

The concrete Bost–Connes data of Examples 2 (Weil restriction) and 7 (Completion)
do not satisfy the assumption of Convention 4.2. Nevertheless, we explain briefly in
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this section how they still give rise to QSM-systems. The key idea is to consider them
as “diagonal subsystems” of larger QSM-systems. The latter are related to the higher
rank Bost–Connes systems introduced in [13, 14]. We only give an outline of the
constructions. The details, along with a general treatment of “high rank Bost–Connes
data”, will appear in a forthcoming article.

Example 2: Weil restriction. Let k D R. Recall from §2 the definition of the
concrete Bost–Connes datum .Q=Z �Q=Z; �n/. In this case, ˛.n/ D n2.

We now construct a large QSM-system (which is not associated to a Bost–Connes
datum) and an involution on it. The QSM-system associated to .Q=Z �Q=Z; �n/
will be defined as a subsystem. Given a pair .n;m/ 2 N2, let �n;m be the
homomorphism .n ��; m ��/ W Q=Z�Q=Z! Q=Z�Q=Z and �n;m the associated
map Q=Z � Q=Z ! P.Q=Z/ � P.Q=Z/ that sends an element .s1; s2/ to its
pre-image under �n;m. Let B.†;�n;m/ be the R-algebra generated by the elements
.s1; s2/ 2 Q=Z � Q=Z and by the isometries �n;m; ��n;m with .n;m/ 2 N2. We
assume that �n;m�k;l D �nk;ml , that ��n;m�n;m D 1, and

�n;m�
�
k;l D �

�
k;l�n;m when .n; k/ D .m; l/ D 1

�n;m.s1; s2/�
�
n;m D

1

nm

X
.s0
1
;s0
2
/2�n;m.s1;s2/

.s01; s
0
2/ :

Remark 6.1. Intuitively speaking, the R-algebra B.†;�n;m/ is a “higher rank”
generalization of the one of Definition 4.9, where the semi-group homomorphism ˛

is now given by N2 ! N; .n;m/ 7! nm. The generalizations include the higher
rank Bost–Connes algebras [13, 14] and will be discussed in a future work.

We have isomorphisms of R-algebras

B.†;�n;m/ ' RŒQ=Z�˝2 ÌN2
' B.Q=Z;�n/ ˝R B.Q=Z;�m/ (6.1)

where B.Q=Z;�n/ D RŒQ=Z� Ì N is the R-algebra of the original Bost–Connes
system. We have a Z=2-action on (6.1) which switches the two copies of B.Q=Z;�n/.
Consider the Hilbert space `2.N �N/ equipped with the standard orthonormal basis
f�n;mg. Via the identification between �n2 and �n;n, the Hilbert space `2.˛.N//
can be regarded as a subspace of `2.N � N/. Given an embedding � D .u1; u2/ 2
OZ� � OZ� D Emb.Q=Z;Q�/ � Emb.Q=Z;Q�/, the assignments

R�.�n;m/�k;l WD �nk;ml R�.s1; s2/�k;l WD u1.s1/
k u2.s2/

l �k;l

define a representationR� of theR-algebraB.†;�n;m/ on `2.N2/. TheC �-completion
A.†;�n;m/ of B.†;�n;m/ ˝R C is isomorphic to C �.Q=Z/˝2 Ì N2. This is a
particular case of a higher rank Bost–Connes algebra [14]. Given a semi-group
homomorphism Og W N � N ! R�C, the assignments �t .s1; s2/ WD .s1; s2/ and
�t .�n;m/ WD Og.n;m/

it�n;m define a time evolution on A.†;�n;m/.
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We now construct the QSM-system associated to .Q=Z�Q=Z; �n/. Let us write
B.Q=Z�Q=Z;�n/ for the subalgebra of B.Q=Z�Q=Z;�n;m/ generated by the elements
.s1; s2/ 2 Q=Z � Q=Z and by the isometries �n;n with n 2 N. Under the
representations R�, B.Q=Z�Q=Z;�n/ preserves the subspace `2.˛.N// � `2.N2/.
Therefore, the C �-completion A.Q=Z�Q=Z;�n/ of B.Q=Z�Q=Z;�n/ ˝R C can be
identified with C �.Q=Z �Q=Z/ ÌN, with the semi-group action given by

.s1; s2/ 7! �n;n.s1; s2/�
�
n;n WD

1

n2

X
.s0
1
;s0
2
/2�n;n.s1;s2/

.s01; s
0
2/ :

Note that the assignments .s1; s2/ 7! .s2; s1/ and �n;n 7! �n;n define a Z=2-
action by automorphisms of A.Q=Z�Q=Z;�n/. Let Og W N2 ! R�C be a semi-group
homomorphism of the form Og.n;m/ WD g.n/g.m/, with g W N ! R�C a semi-group
homomorphism. The time evolution determined by Og preserves the C �-algebra
A.Q=Z�Q=Z;�n/. Moreover, the Hamiltonian generating the restriction of the time
evolution toA.Q=Z�Q=Z;�n/, in the representationsR� on the Hilbert space `2.˛.N//
is given by H�n;n D 2 log.g.n// �n;n. Hence, the partition function Z.ˇ/ agrees
with

P
n g.n/

�2ˇ . Finally, the Z=2-action onA.Q=Z�Q=Z;�n/ is compatible with the
time evolution.

Example 7: Completion. Let k D Q. Recall from Example 2.24 the definition of
the concrete Bost–Connes datum .cW.q/; �n/. In this case, ˛.n/ D n2. As proved in
Proposition 2.23, we have a natural identification

.cW.q/; �n/ D .W0.q/; �n/ � .Q=2Z; �n/ :

The QSM-system associated to .cW.q/; �n/ will be obtained as a subsystem.
Let B.W0.q/�Q=2Z;�n;m/ be the Q-algebra generated by the elements s D .�; r/ 2

W0.q/ � Q=2Z and by the isometries �n;m with .n;m/ 2 N2. We assume that
�n;m�k;l D �nk;ml , that ��n;m�n;m D 1, and that

�n;m�
�
k;l D �

�
k;l�n;m when .n; k/ D .m; l/ D 1

�n;m.�; r/�
�
n;m D

1

nm

X
.�n;mr 0/D.�;r/

.�; r 0/ :

The Q-algebra B.W0.q/�Q=2Z;�n;m/ identifies with the semi-group crossed product
QŒW0.q/�Q=2Z�ÌN2. As in the preceding example, the Hilbert spaces `2.˛.N//
can be regarded as a subspace of `2.N2/. Now, consider the following set of
embeddings

Emb0.W0.q/ �Q=2Z;Q
�
�Q

�
/ D QZ.GW.q// � �0 � Emb.Q=2Z;Q=Z/; (6.2)
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where QZ.GW.q// � �0 � Emb.W0.q/;Q
�
/ is defined as in §5. Given an embedding

� D .�0 ı ; u/ 2 (6.2), the assignments

R�.�n;m/�k;l WD �nk;ml R�.�; r/�k;l WD �0..�//
ku.r/l�k;l

define a representation R� of the Q-algebra B.W0.q/�Q=2Z;�n;m/ on `2.N2/. The
C �-completion A.W0.q/�Q=2Z;�n;m/ of B.W0.q/�Q=2Z;�n;m/ ˝Q C can be identified
with C �.W0.q/ �Q=2Z/ Ì N2. The choice of Og W N2 ! R�C determines a time
evolution on A.W0.q/�Q=2Z;�n;m/, with �t .�m;n/ D Og.m; n/it�m;n and �t .�; r/ D
.�; r/.

We now construct the QSM-system associated to .W0.q/ � Q=2Z; �n/. Let
B.W0.q/�Q=2Z;�n/ be the subalgebra of B.W0.q/�Q=2Z;�n;m/ generated by the
elements s D .�; r/ 2 W0.q/ � Q=2Z and by the isometries �n;n. Under
the representations R�, B.W0.q/�Q=2Z;�n/ preserves the subspace `2.˛.N// �
`2.N2/. Therefore, the C �-completion A.W0.q/�Q=2Z;�n/ can be identified with
the C �-algebra C �.W0.q/�Q=2Z/ÌN, with the semi-group acting diagonally by

.�; r/ 7! �n;n.�; r/�
�
n;n D

1

n2

X
.�n;nr 0/D.�;r/

.�; r 0/ :

Let Og W N2 ! R�C be a semi-group homomorphism of the form Og.n;m/ WD
g.n/g.m/, with g W N ! R�C a semi-group homomorphism. The time
evolution determined by Og preserves the C �-algebra A.W0.q/�Q=2Z;�n/. Moreover,
the Hamiltonian implementing it in the representation R� on `2.˛.N// is given
by H�n;n D 2 log.g.n//�n;n. Hence, the partition function Z.ˇ/ agrees
with

P
n g.n/

�2ˇ . In the particular case where g.n/ D n the Gibbs states are
of the following form:

'ˇ;�.�; r/ D
Li2ˇ .�0..�//u.r//

�.2ˇ/
:

The group eZ.GW.q// acts by automorphisms of the algebras B.W0.q/�Q=2Z;�n;m/

and A.W0.q/�Q=2Z;�n;m/. This action preserves the subalgebras B.W0.q/�Q=2Z;�n/

and A.W0.q/�Q=2Z;�n/ and induces an action on the set of representations by R� 7!
R�ı . Finally, the action on the subalgebras is compatible with the time evolution and
agrees with the Galois action on the values of ground states at elements s D .�; r/ 2
W0.q/ �Q=2Z.
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