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Bost—Connes systems, categorification,
quantum statistical mechanics, and Weil numbers

Matilde Marcolli* and Gongalo Tabuada™**

Abstract. In this article we develop a broad generalization of the classical Bost—Connes system,
where roots of unity are replaced by an algebraic datum consisting of an abelian group and
a semi-group of endomorphisms. Examples include roots of unity, Weil restriction, algebraic
numbers, Weil numbers, CM fields, germs, completion of Weil numbers, etc. Making use of the
Tannakian formalism, we categorify these algebraic data. For example, the categorification of
roots of unity is given by a limit of orbit categories of Tate motives while the categorification
of Weil numbers is given by Grothendieck’s category of numerical motives over a finite field.
To some of these algebraic data (e.g. roots of unity, algebraic numbers, Weil numbers, etc),
we associate also a quantum statistical mechanical system with several remarkable properties,
which generalize those of the classical Bost—-Connes system. The associated partition function,
low temperature Gibbs states, and Galois action on zero-temperature states are then studied
in detail. For example, we show that in the particular case of the Weil numbers the partition
function and the low temperature Gibbs states can be described as series of polylogarithms.
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1. Introduction

Bost—Connes systems. Let Q/Z be the abelian group of roots of unity. In [2], Bost
and Connes introduced the group algebra Q[Q/Z], the algebra endomorphisms

QQ/Z] — Q[Q/Z]) s+ns neN, (1.1)
and also the Q-linear additive maps
Q[Q/Z] — Q[Q/Z] s+ Y s neN. (1.2)
s'|ns’=s
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The (continuous) action of the absolute Galois group Gal(Q/Q) on Q/Z extends
to Q[Q/Z] making (1.1)—~(1.2) Gal(Q/Q)-equivariant. The above piece of structure
is very important since it encodes all the arithmetic information about roots of unity.
Making use of it, Bost and Connes constructed in /oc. cit. a quantum statistical
mechanical (QSM) system (Agq,z, 0;) with the following remarkable properties:

(i) The partition function Z () agrees with the Riemann zeta function.

(ii) The low temperature Gibbs states are given by polylogarithms evaluated at
roots of unity.

(iii) The group Gal(Q/Q)™ ~ Z* acts by symmetries on the QSM-system. This
action induces an action on the set of low temperature Gibbs states and on their

zero temperature limits (ground states), where it recovers the Galois action
on Q.

The foundational article [2] was the starting point in the study of the Riemann zeta
function via noncommutative geometry tools, see [4—6, 8]. The main goal of this
article is to extend the above technology from Q/Z to other interesting arithmetic
settings such as the Weil numbers, for example.

Statement of results. Let k be a field of characteristic zero, G := Gal(k/k), =
an abelian group equipped with a continuous G-action, and 0, : ¥ — X,n € N,
G-equivariant homomorphisms such that ¢, = 0, o 6,,. We denote by a(n) the
cardinality of the kernel of o;,. Out of these data, we can construct the k-algebra k[X],
the k-algebra endomorphisms

on  k[Z] — k[Z] s+ o0u(s) neN, (1.3)
and also the k-linear additive maps (defined only when «/(n) is finite)

pnk[Za] —k[Z] s> Y s neN, (1.4)

s'lon (s")=s

here %, stands for the image of 0. The G-action on X extends to k[X] making
(1.3)—~(1.4) G-equivariant. In the particular case where k = Q, ¥ = Q/Z, and o,
is multiplication of n, we recover the original construction of Bost—-Connes. Other
examples include Weil restriction, algebraic numbers, Weil numbers, CM fields,
germs, completion of Weil numbers, etc; consult §2. Making use of the G-action,
we can also consider the k-algebras k[X]¢ and k[Z]°. They carry canonical
Hopf structures and consequently give rise to affine group k-schemes Spec(k[X])
and Spec(k[X]%). Our first main result, which summarizes the content of §3, is
the following:

Theorem 1.1 (Categorification). (i) The affine group k-scheme Spec(k[X]) agrees
with the Galois group of the neutral Tannakian category Vectg (k) of pairs (V, P,ex 75),
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where V' is a finite dimensional k-vector space and P,y V' an appropriate
Y-grading of V := V ® k; see Definition 3.1.

(i) The k-algebraendomorphisms oy, : k[2]¢ — k[X]€ are induced from k-linear
additive symmetric monoidal functors o,: Vectg(k) — Vectg(k). Similarly, the
k-linear additive maps pn: k[Z,]¢ — k[Z]C are induced from k-linear additive

functors pa: Vectgn (k) — VGC@ (k).

(iii) Items (i)~(ii) hold mutatis mutandis with k[S]% replaced by k[£]¢ and
Vectg(k) replaced by the subcategory Vect’% (k) of pairs (V, @sezﬁ), where
P,cx V* is an appropriate X-grading of V; see Definition 3.4.

(iv) When X admits a G-equivariant embedding into Ex, Vectg (k) is equivalent
to the neutral Tannakian category Aut]é (k) of pairs (V, ®), where V is a finite

dimensional k-vector space and ® : V S Va G-equivariant diagonalizable
automorphism whose eigenvalues belong to 3. Moreover, when o, is given
by multiplication by n, the functor o, resp. pn, reduces to the Frobenius,

resp. Verschiebung, endofunctor of Autg k).

Remark 1.2. When the G-action on X is trivial (e.g. k = k), we have k[X]¢ =
k[X]° = k[X]. In this case, Vectg (k) = Vect’f; (k) reduces to the category Vecty (k)
of X-graded k-vector spaces. Similarly, Autg (k) reduces to the category Autx (k) of
diagonalizable automorphisms @ : V S V whose eigenvalues belong to .

Intuitively speaking, Theorem 1.1 provides two simple “models” of the Tannakian
categorification of the k-algebras k[2]%, k[Z]%, k[Z] and of the maps (1.3)—(1.4).
This categorification is often related to the theory of (pure) motives. For example,
in the original case of Bost and Connes, the category Vectg,z(Q) can be described
as the limit lim,>;Tate(Q)q/-gq) of orbit categories of Tate motives; see
Proposition 3.16. More interestingly, in the case where X is the abelian group

of Weil numbers W(g), Vecti%( 2 (Q) agrees with the category of numerical motives

over [F; with @—coeﬂicients; see Theorem 3.18.
Our second main result, which summarizes the content of §4, is the following:

Theorem 1.3 (QSM-systems). Assume that k € C. Given a pair (X,0y) as
above and an appropriate set of G-equivariant embeddings Embo(E,@X) (see
Definition 4.19), we construct a QSM-system (A(s,qo,), 0:) with the remarkable
properties:

(i) Given an embedding 1 € Embo(E,@X), let N,(2) := {|t(s)| such thats € X}
be the associated countable multiplicative subgroup of R;. When N, (X) is the union

of finitely (resp. infinitely) many geometric progressions, the choice of a semi-group
homomorphism g : N — R allows us to describe the partition functor Z(B) of the
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OSM-system as follows
Yo ey (resp. Y g(n)PL(Ba(n))),
HGNLF) n>1 n>1
n<

where { stands for the Riemann zeta function. The left (resp. right) hand side series
converges for all § > Bo (resp. B > max{fo, 3/2}), where By denotes the exponent
of convergence of 3" g(n)B.

(ii) The low temperature Gibbs states @g ,(s), evaluated at s € X with N,(s) = 1,
are given by the following expressions:

ZB)T Y D ) P em)™F (resp. Z(B)T' Y u(9)"¢(nB)g(n) ).

nEN(T) n>1 n=>1
n<1

(iii) The group Z (Gyx) (see Definition 4.35) acts on the set of low temperature
Gibbs states and on their ground states, where it agrees with the Galois 7 (Gx)-action
on ().

In the particular case where k = Q, ¥ = Q/Z, o, is multiplication by n, and
g(n) = n, we have Z(Gy) = Gal(Q/Q) and the remarkable properties (i)(iii) of
Theorem 1.3 reduce to those of the classical Bost—Connes system. Therefore, the
QSM-system of Theorem 1.3 greatly generalizes the original one of Bost—Connes.
Here are some examples (which summarize the content of §5):

Example 1.4 (Algebraic numbers). When £k = Q, ¥ = QX, and o, is raising
to the i‘i power, the choice of an appropriate set of G-equivariant embeddings
Embo(Q ,Q ) gives rise to a QSM-system (A@x Un),(r,) with the following

properties: (i) the partition function Z () is givenby » _, . g(n) B (Ba(n)); (ii) the
low temperature Gibbs states, evaluated at s € @X with |s| = 1, are given by

Yot L)L (B)g(n)F
Y1 SBIEM)F

‘/’ﬁ,t(s) =

(iii) the group Z(Gy) is trivial.

Example 1.5 (Weil numbers of weight zero). Let ¢ = p” be a prime power. When
k = Q, X is the group of Weil numbers of weight zero Wy(q), and oy, is raising
to the n'™ power, the choice of an appropriate set of G-equivariant embeddings
Embo(Wy(q)., @X) gives rise to a QSM-system (A (q),0,)- 0¢) With the following
properties (which are very similar to those of the classical Bost—Connes system):
(i) the partition function Z(f) is givenby ) -, g(n)™#. When g(n) = n, it reduces
to the Riemann zeta function; (ii) the low tEmperature Gibbs states, evaluated at
s € Wo(q), are given by

Lig(e(s))

‘pﬁ,t(s) = TIB) s
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(iii) the group Z (Gwi(g)) acts on the set of low temperature Gibbs states and on their
ground states, where it agrees with the Galois Z (G, (4))-action on t(Wpy(q)).

Example 1.6 (Weil numbers). When k = Q, X is the group of Weil numbers W(q),
and o, is raising to the n" power, the choice of an appropriate set of G-equivariant
embeddings Embo(W(q),@X) gives rise to a QSM-system (A (g),0,). 0r) With
the following properties: (i) the partition function Z(f) is given by a series of
polylogarithm functions ) ;. Lig (q%B/2); (ii) the low temperature Gibbs states,
evaluated at s € Wy(q), are given by

> ko Lig(L()g /%)
> ko Lip (g=*B/2)

(p,B,L(s) =

(iii) the group Z (Gw(qg)) acts on the set of low temperature Gibbs states and on their
ground states, where it agrees with the Galois Z (Gyy4))-action on t(Wy(q)).

Finally, in §6 we outline the construction of “diagonal” QSM-systems associated
to Weil restriction and completion. The details will appear in a forthcoming article.

Notation 1.7. Throughout the article k will be a field of characteristic zero. We will
denote by G its absolute Galois group Gal(k/ k). Unless stated differently, all tensor
products will be taken over k.

2. Bost—Connes systems

In this section we introduce the general notion of an abstract/concrete Bost—Connes
system and describe several examples. Given a set S, we denote by P(S) the set of
subsets of S and by P(S)” the set of subsets of S with cardinality n € N.

Definition 2.1. An abstract Bost—Connes datum (X, 6y,) consists of:

(i) An abelian group ¥ equipped with a G-action G — Aut(X). We assume that
the G-action is continuous, i.e. that ¥ = |, »Galk/D where [ runs through
the finite Galois field extensions of k contained in k.

(i) Group homomorphisms o, : ¥ — X,n € N. We assume that o, is
G-equivariant and that 0, = 0, 0 0y, for every n,m € N.

Notation 2.2. Let us write a(n) for the cardinality of the kernel of o,.

Definition 2.3. An abstract Bost—-Connes datum (X, 05,) is called concrete if a(n) is
finite for every n € N and the assignment & : N — N, n + «a(n), is a non-trivial
multiplicative semi-group homomorphism, i.e. ¢(nm) = «a(n) - a(m).

By definition, every concrete Bost—Connes datum is also an abstract Bost—-Connes
datum. The converse is false; see Examples 2.15-2.16, 2.19-2.22, and 2.26 below.
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Notation 2.4. Let X, be the image of 0, and p, : ¥, — P(X) the map that sends
an element of X, to its pre-image under o,,. Note that X, is a subgroup of X which
is stable under the G-action, that p, is G-equivariant (the G-action on X extends to
a G-action on P(X)), and that we have the following composition:

5, 25 Pe) " ) s o)

Definition 2.5. Let (X,0,) be an abstract Bost—-Connes datum. The associated
abstract Bost—Connes system consists of the following data:
(i) The k-algebra k[]€.
(ii) The k-algebra homomorphisms oy, : k[Z]C — k[Z]C, s — 0n(s).
(iii) The k-linear additive maps (defined only when «(n) is finite)
Pn k[Z,% > k[Z]° s> Z s’
5'€pn (s)
In §3 we will categorify the abstract Bost—Connes systems.

Definition 2.6. Let (X, 0,) be a concrete Bost—-Connes system. The associated
concrete Bost—Connes system consists of the following data:

(i) The k-algebra k[X] equipped with the induced G-action.
(i) The G-equivariant k-algebra homomorphisms o, : k[X] — k[Z], s = 0y (s).

(iii) The G-equivariant k-linear additive maps

pn k[Za] > k[Z] s> Y

s'€pn(s)

In §4 we will associate to every concrete Bost—Connes system a quantum statistical
mechanical system.

Remark 2.7. Let (¥, 0,) be a concrete Bost-Connes datum with trivial G-action.
Since k[X]¢ = k[X], the associated abstract and concrete Bost—Connes sys-
tems agree.

We now describe several examples of abstract/concrete Bost—Connes systems.

Example 1: Original Bost—-Connes system. Let k := Q, ¥ := Q/Z equipgc):(d
with the G-action induced by the identification of QQ /Z with the roots of unity in Q
and o0, the homomorphism n - — : Q/Z — Q/Z. This defines a concrete Bost—
Connes datum. The associated concrete Bost—Connes system agrees with the one
introduced originally by Bost and Connes in [2]; consult [9] for its reformulation.
If we forget about the G-action, then the associated (abstract and concrete) Bost—
Connes system is the arithmetic subalgebra of the Bost—Connes algebra; see [9].
More generally, k = Q can be replaced by any subfield of Q.
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Example 2: Weil restriction. Let k := R, X := Q/Z x Q/Z equipped with the
switch Z/2-action, and o, the homomorphism (n - —,n-—) : Q/Z x Q/Z —
Q/Z x Q/Z. In this case, a(n) = n?. This defines a concrete Bost-Connes datum.
The associated abstract Bost—-Connes system is morally speaking the Weil restriction
along C /R of the arithmetic subalgebra of the Bost—Connes algebra; see §3.

Example 3: Algebraic numbers. Letk = Q, X = Q" equipped with the can-
onical G-action, and o0, the homomorphism (—)" : Q  — Q. This defines a
concrete Bost—-Connes datum. The associated abstract/concrete Bost—Connes system
contains the one of Example 1. More generally, k = Q can be replaced by any
subfield of Q.

Example 4: Weil numbers.

Definition 2.8. Let ¢ = p” be a prime power. An algebraic number 7 is called a
Weil q-number of weight m € Z if the following holds:

(i) For every embedding o : Q[x] — C we have |o(7)| = q%.
(ii) There exists an integer s such that g*7 is an algebraic integer.

Let Wy, (g) be the set of Weil g-number of weight m and W(q) := U,,ez W (q)-

Note that Wy(q) and W(q) are subgroups of @X and that W, (g) is stable under
the canonical Gal(Q/Q)-action.

Proposition 2.9. The following holds:
(1) The group homomorphism (—)" : Wo(q) — W (q) is surjective.

(ii) We have the following group isomorphism

W) > Wolq) X Z 7+ (L w(n)) , @2.1)
lo(m)|

where w () stands for the weight of .
(iii) Under (2.1), the Gal(Q/Q)-action on W(q) identifies with

(y (), m) if v € Ker(Gal(Q/Q) — Gal(Q[/q]/Q))

y((r,m)) = (=D)™y(xr),m) otherwise.

(iv) Under (2.1), the homomorphism (—)" : W(q) — WI(q) identifies with
Wo(q) X Z —> Wo(q) X Z (mt,m) = (7", nm).

Remark 2.10. Note that when ¢ is a even power of p, we have

y((,m)) = (y(x), m).
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Proof. (i) Given m € Wjy(q), we need to show that /7 also belongs to Wy(q).
Condition (i) of Definition 2.8 is clear. Condition (ii) follows from the equality
q° Y = ¢q" - gn Y7 and from the fact that ¢” and g %/7 are algebraic integers.

(ii) The inverse of (2.1) is given by the group homomorphism

m
2

Wo(q) X Z —> W(q) (m,m)+— mq?2 .

(iii) Let (r,m) € Woy(g) x Z. The action of y € Gal(Q/Q) on 7q?
is given by y(mg?) = y(7)y(q%) € W(g). When y belongs to the kernel
of the homomorphism Gal(Q/Q) —» Gal(Q[,/q]/Q). we have v(g?) = q%.
Otherwise, we have y(¢2) = (—1)"¢%. The proof follows now from the above
isomorphism (2.1).

(iv) The proof is by now clear. O

Example 2.11. Let k := Q, ¥ := W)y(q) equipped with the canonical G-action,
and o, the homomorphism (—)" : Wy(q) — Wh(gq). Thanks to Lemma 2.9(i), we
have ¥, = Wy(q). This defines a concrete Bost-Connes datum. The associated
abstract/concrete Bost—Connes system is contained in the one of Example 3 and
contains the one of Example 1. More generally, k = Q can be replaced by any
subfield of Q.

Example 2.12. Let k := Q, ¥ := W(q) equipped with the canonical G-action,
and o, the homomorphism (—)" : W(g) — W(q). Thanks to Lemma 2.9(iv),
we have ¥, = (,,cz Wham(q). This defines a concrete Bost—Connes datum. The
associated abstract/concrete Bost—Connes system is contained in the one of Example 3
and contains the one of Example 2.11. More generally, k = Q can be replaced by
any subfield of Q.

Example 5: CM fields. Let L C Q be a CM field which is Galois over Q. We
denote by ‘B its set of places and by [|-||,, p € *B, the normalized valuations.

Definition 2.13. Let WZ (¢) be the subset of those Weil g-numbers 7 of weight m
such that 7 € L and |||, € g% for every p € B.

Note that WE(g) and WE(q) := U,,cz WE(q) are subgroups of Wo(q)
and W(q), respectively, and that WE (¢) is stable under the canonical Gal(Q/Q)-
action.

Remark 2.14. When /g € L, items (ii)—(iv) of Proposition 2.9 hold mutatis
mutandis with W(q) and Wy (q) replaced by WL (g) and W{ (¢), respectively.

Example 2.15. Let k := Q, X := W{; (¢) equipped with the canonical G-action,
and o, the homomorphism (—)" : WOL (9) — WOL (¢). This defines an abstract
Bost—Connes datum which is not concrete! Since the field extension L/Q is finite,
it contains solely a finite number of roots of unity. Therefore, there exists a natural
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number N > 0 such that «(N) = «(N?), which implies that the assignment
o : N — N is not a semi-group homomorphism. The associated abstract Bost—
Connes system is contained in the one of Example 2.11. More generally, k can be
replaced by any subfield of Q.

Example 2.16. Let k := Q, ¥ := WZX(g) equipped with the canonical G-action,
and o0, the homomorphism ()" : WE(q) — W% (g). Similarly to Example 2.15,
this defines an abstract Bost—Connes datum which is not concrete. The associated
abstract Bost—Connes system is contained in the one of Example 2.12 and contains
the one of Example 2.15. More generally, k can be replaced by any subfield of Q.

Example 6: Germs. When r|r’ we have the group homomorphism

W) — W) m . 2.2)

Definition 2.17. Let W(p®) be the colimit colim, W(p”). Note that W(p>°) comes
equipped with an induced Gal(Q/Q)-action.

Proposition 2.18. The following holds:
(i) The above homomorphism (2.2) sends Wy (p") 10 Wi (p"'). Consequently,
we obtain the abelian group Wy (p®°) := colim, Wy (p").

(ii) Given a CM field L C Q which is Galois over Q, the above homomor-
phism (2.2) sends WE(p") to WE (p” "). Consequently, the obtain the abelian
groups WOL(p°°) = colieré‘(p’) and W (p™>®) := colim, WE(p").

(iii) The group homomorphism (—)" : W(p*>®) — W(p*>°) is surjective.

(iv) The group homomorphism (—)" is also injective.

Proof. (i) Let = be a Weil p”-number of weight m. Making use of the equalities

r'm
2

lo(x ™) = lo(m)|7 = (p2)7 =p 7,

we conclude that nr7/ satisfies condition (i) of Definition 2.8(i) (with ¢ = p” /).

Condition (ii) follows from the equality (p” S 5= (/(p")s7)"" and from the fact

that (p")*m is an algebraic integer.

r/

(ii) The proof follows automatically from the equality |77 7+ =Nl -

(iii) Every element of W(p®) can be represented by a pair (m,r) with
7 € W(p") and r € N, and two pairs (7, r), (', r’) represent the same element
of W(p®) if and only if 7"’V = =N for some N € N. Therefore,
()" = ().

(iv) Note that (,r)* = (1,1) if and only if z%¥ = 1 for some N € N.
Given another pair (/,7) such that 7’V = 1 for some N’ € N, the equality
" NN" = 7/"NN" — 1 allows us to conclude that (,r) = (7, r’). This achieves
the proof. O
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Example 2.19. Let k := Q, ¥ := Wy (p*>) equipped with the induced G-action,
and o, the homomorphism (=) : Wy (p®) — Wp(p*>°). Thanks to Lemma 2.18,
we have X, = Wy(p®) and a(n) = 1 for every n € N. Therefore, this defines an
abstract Bost—-Connes datum and consequently an abstract Bost—-Connes system. It
is not a concrete Bost—Connes system, because «(n) = 1 is the trivial semi-group
homomorphism. More generally, k = Q can be replaced by any subfield of Q.

Example 2.20. Let k := Q, ¥ := W(p*>) equipped with the induced G-action,
and o, the homomorphism (—)" : W(p*°) — W(p*>°). Thanks to Lemma 2.18,
we have X, = W(p*) and a(n) = 1 for every n € N. Therefore, this defines
an abstract Bost—Connes datum that is not concrete. The associated abstract Bost—
Connes system contains the one of Example 2.19. More generally, k = Q can be
replaced by any subfield of Q.

Example 2.21. Let k := Q, = := W[ (p™) equipped with the induced G-action,
and o, the homomorphism (—)" : WOL (p*>°) — WOL (p°°). Thanks to Lemma 2.18,
we have a(n) = 1 for every n € N. Therefore, this defines an abstract Bost—Connes
datum that is not concrete. The associated abstract Bost—Connes system is contained
in the one of Example 2.19, since by Definitions 2.8 and 2.17 and Proposition 2.18,
WE (p°) is a subgroup of Wy (p™).

Example 2.22. Let k = Q, ¥ := WL (p®) equipped with the induced G-
action, and o, the homomorphism ()" : WL (p®) — WL (p>). Similarly to
Example 2.19, this defines an abstract Bost—Connes datum that is not concrete. The
associated abstract Bost—Connes system is contained in the one of Example 2.20 and
contains the one of Example 2.21.

Example 7: Completion. Let W(q) be the limit of the following diagram:
> W) [gn1=1 > W@ fgn=1 —> - > W(@) /221 > WI(@) /g=1 -

Note that W(q) comes equipped with an induced Gal(Q/Q)-action.
Proposition 2.23. (i) We have a group isomorphism W(q) >~ Wo(g) x Q/27Z.
(i) Under (i), the Gal(Q/Q)-action on W(q) identifies with

_ (), m) if y € Ker(Gal(Q/Q) — Gal(Q[/7]/Q))

y((r,m)) = ((_1)|m|y(7t),m) otherwise

where |m| stands for the parity of m € Q/2Z.

(iii) Under (i), the group homomorphism (—)" : W(q) — W(q) identifies with

()" n-=) : Wolq) x Q/2Z — Wo(q) x Q/2Z.
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Proof. Note that (2.1) induces to an isomorphism between WW(q)/4n=1 and the
product Wy(q) x Z/2n. The proof of item (i) follows from the fact that Q/27Z ~
lim,>1Z/2n. In what concerns the proof of item (ii), resp. item (iii), it follows from
the combination of item (i) with Lemma 2.9(ii), resp. Lemma 2.9(iv). ]

Example 2.24. Let k := Q, X : W(q) equipped with the induced G action,
and o, the homomorphism (—)” : W(q) — W(q) In this case, a(n) = n2. Thanks
to Lemma 2.23(iii), we have ¥, = Wp(q) x nQ/2Z. This defines a concrete Bost—
Connes datum and consequently an abstract/concrete Bost—Connes system. More
generally, k = Q can be replaced by any subfield of Q.

Let L C @/\be a CM-field which is Galois over Q. As above, we can define the
abelian group W (q) := lim,>1 W (q) /4n=1 equipped with the Gal(Q/Q)-action.

Remark 2.25. When ,/q € L, Remark 2.14 allows us to conclude that Prop-
osition 2.23 holds mutatis mutandis with Wy(q) and W(q) replaced by Wk (q)
and WL (q).

Example 2.26. Let k := Q, X := = WL (q9) equlpped with the induced G-action,
and o, the homomorphism (—)" : WE (q) — WL (g). Similarly to Example 2.22,
this defined an abstract Bost—-Connes datum which is not concrete. More generally,
k = Q can be replaced by any subfield of Q.

3. Categorification

In this section we categorify the abstract Bost-Connes systems. Given an abstract
Bost—Connes datum (X, 0,,), we start by categorifying the k-algebra k[2]°. Note
that k[X]¢ becomes an Hopf k-algebra when we set A(s) := s ® s, €(s) := 1, and
inv(s) := s~ ! for every s € X. As explained in [16, XIV Thm. 5.3], the assignment
¥ > Spec(k[X]9) gives rise to a contravariant equivalence between the category of
abelian groups equipped with a continuos G-action and the category of affine group
k-schemes of multiplicative type.

Definition 3.1. Let Vectg (k) be the category of pairs (V, P, Vs), where V is a

finite dimensional k-vector space and Py V'isa Y-gradingon V := V ® k. We

assume that Vy( 9 _ YV’ for every s € X and y € G, where YV’ stands for the

k-vector space obtained from Vv’ by restriction of scalars along the automorphism
y L k > k. The morphisms are the k-linear maps f: V — V' such that 7: V-V
preserves the X-grading. The tensor product of k-vector spaces and of X-graded
k-vector spaces gives rise to a symmetric monoidal structure on Vect’% (k).
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Theorem 3.2. The following holds:

(i) The k-linear category Vectg (k) is neutral Tannakian. A fiber functor is given
by the forgetful functor w : Vect’é (k) — Vect(k).

(ii) The category Vectg (k) is semi-simple. Moreover, the isomorphism classes of
simple objects are in one-to-one correspondence with the G-orbits of X.

(iii) There is an isomorphism of affine group k-schemes Aut® (w) ~ Spec(k[Z]%).

Proof. Since Spec(k[X]?) is an affine group k-scheme of multiplicative type, its
group of characters identifies with X equipped with the G-action; see [16, Thm. 5.3].
Consequently, items (i) and (iii) follow from [12, §2.32]. In what concerns item (ii),
it follows from [16, Thm. 5.10]. ]

Remark 3.3. When the G-action G — Aut(X) is trivial, we have k[2]¢ = k[Z] and

Vectg (k) reduces to the category Vecty (k) of finite dimensional X-graded k-vector
spaces. In this case, the simple objects Sy, 5" € X, are given by Sy := (k, D5 k°)
where k* = k when s = §’.

Definition 3.4. Let Vectg (k) be the full subcategory of VectEE (k) consisting of the
pairs (V, Pjex; VF), where 5, V7 is a E-grading of V' such that Vre) = Vs for
every s € X and y € G. Note that Vect’g (k) is a neutral Tannakian subcategory of
Vect’% (k). A fiber functor is given by the forgetful functor w : Vect’% (k) — Vect(k).

Proposition 3.5. We have an isomorphism Aut® (w) ~ Spec(k[Z]%).

Proof. Note first that Vectg (k) naturally identifies with the neutral Tannakian
category Vecty, g (k). Therefore, making use of Theorem 3.2 and of Remark 3.3, we
conclude that Aut® (w) ~ Spec(k[Z/G]). The proof follows now from the canonical

isomorphism of Hopf k-algebras k[2]¢ = k[Z/G]. ]

Remark 3.6. By combining Theorem 3.2 with Proposition 3.5, we observe that the
inclusion of Hopf k-algebras k[X]¢ < k[X]°, or equivalently the quotient of affine
group k-schemes Spec(k[X]¢) — Spec(k[ZjG), is induced by the inclusion of

neutral Tannakian categories Vect’% (k) C Vect])‘: (k).

Theorem 3.2 provides a Tannakian categorification of the k-algebra k[£]€, as well
of its canonical Hopf structure. The Tannakian categorification of the Hopf k-algebra
homomorphism oy, : k[Z]¢ — k[2]C is provided by the following k-linear additive
symmetric monoidal functor (note that the direct sum is finite):

On ! Vectg (k) — VectpE (k)

—S/ .
V)=V ) = | Bremw V" Te
0 otherwise .
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Theorem 3.7. The following holds:

(i) We have natural equalities Opmm = Oy © Oy and w 0 0, = .

(i) The morphism of Hopf k-algebras o, : k[Z]° — k[Z]%, corresponding to
Op : Spec(k[£]9) — Spec(k[2]9), agrees with On.

Proof. (i) Since 0,(V) := V, equality @ o 0, = w is clear. In what concerns
Onm = Opn © Om, it follows from the assumption 0y, = 0y © 04; see Definition 2.1.

(ii) By base-change along k / k, it suffices to show that the following morphisms

- — — — s—op(s) —
on @k k[X] — k[X] o0n: k[X] —  k[X] (3.1)
agree. Thanks to Lemma 3.8 below, 6, ® k can be replaced by the morphism induced

by the functor o, : Vects (k) — Vects (k). Given an arbitrary k-algebra A, let us
then describe the induced group homomorphisms

on(R)* : Aut®(»)(4) = Hom(E, A*) — Hom(Z, 4¥) = Aut®(w)(4)
0,* : Hom(k[X], A) = Hom(XZ, A¥) — Hom(Z, A*) = Hom(k[X], 4).

As explained in Remark 3.3, there is a one-to-one correspondence s +— S between
elements of ¥ and simple objects of Vects(k). Making use of the equality
0n(Ss) = S5, (s)» we hence conclude that the homomorphism ¢, (R)* is given by
pre-composition with 0, : ¥ — X. The group homomorphism o, is also given
by pre-composition with o,,. Since the k-algebra A is arbitrary, this implies that the
above morphisms (3.1) agree, and so the proof is finished. O

Lemma 3.8. The above morphism o, ® k agrees with the one induced by the functor
on : Vecty (k) — Vectz (k).

Proof. Consider the following commutative diagram

Vects (k) e Vectys (k) —2— Vect(k)
NI
Veeth (k) ——= Veetk, (k) —— Vect(k) .
UV, Dses V= (V, Dses V). On one hand, Aut®(0w ® k) ~ Aut®(a)); ~

Spec(E[Z]G)E. On the other hand, since the affine group k-scheme Spec(k[Z]%)
is of multiplicative type, ¥ induces an isomorphism Spec(k[Z]) ~ Spec(E[E]G)E.
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Consequently, we obtain the following commutative square

Spec(k[=]) —— = Spec(k[Z])

NL jN

Spec(k[2]%)z — Spec(k[2]%)z .

This achieves the proof. O

Remark 3.9. Since the functor o, restricts to the category Vect’% (k), the Tannakian
categorification of the Hopf k-algebra homomorphism oy, : k[Z]° — k[X]€ is also
provided by o,.

The k-linear additive map pp, : k[2,]¢ — k[Z]C does not preserve the algebra
structure. Consequently, it does not admit a Tannakian categorification. Nevertheless,
we have the following k-linear additive functor (defined when a(n) is finite):

_ o a(n) _
Pn: Vect’%n (k) — Vectk (k) pa(V) = @ 174 p_,,_(V)s — e

i=1
Recall that 0, o p, = a(n) - 1d. The following result categorifies this equality:

Proposition 3.10. We have a natural equality 6 © pn = 1q®e™)

Proof. The proof follows automatically from the definition of 05, and py. O
Remark 3.11. Similarly to oy, the functor p, restricts to the category Vect’% (k).

Automorphisms, Frobenius, and Verschiebung. Let (X2, 0,,) be an abstract Bost—
Connes datum. Assume that we have a G-equivariant embedding > — & and that
0on : X — X is given by s — s". These conditions are verified by Examples 1
and 3-6 in §2.

Definition 3.12. Let Autzz (k) be the category of pairs (V, @), where V is a finite

dimensional k-vector space and ® : V S5 Va G-equivariant diagonalizable
automorphism whose eigenvalues belong to X. The morphisms (V, ®) — V', )
are the k-linear homomorphisms f* : V' — V' such that f o ® = &' o f". The tensor

product of vector spaces gives rise to a symmetric monoidal structure on Autg (k).

Remark 3.13. When The G-action G — Aut(X) is trivial, the embedding ¥ < K
factors through k* C k. Consequently, Aut’% (k) reduces to the category Auty (k)

of pairs (V, ®), where V is a finite dimensional k-vector space and ® : V SVa
diagonalizable automorphism whose eigenvalues belong to X.
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Note that Autg (k) comes equipped with the forgetful functor (V,®) — V to
finite dimensional k-vector spaces. We have also a “Frobenius” functor

Autk (k) — Auk (k) (V. ®) > (V. ") (3.2)
and a “Verschiebung” functor
Auk (k) — Auk (k) (V. @) > (VO V,(®)), (33)
where
0 0 @
1d 0
Va(@) =)o --. -. . |- (3.4)
O --- 0 Id O

Theorem 3.14. The following holds:

@) Therf is an equivalence of neutral Tannakian categories Autg(k) and
VectX, (k).

(ii) Under equivalence (i), the above functor (3.2) corresponds to .

(iii) Assume that the G-action G — Aut(X) is trivial (e.g. k = k). Under
equivalence (i), the functor (3.3) corresponds to Pn-

Proof. (i) Consider the following additive symmetric monoidal functor

v 1 Autk (k) — Vectk (k) (V. ®) (V,@Vs>,

SEX

where V° stands for the eigenspace of @ associated to the eigenvector s € X. Note
that since ® is G-equivariant, we have Vy(s) =¥V’ for everys € Xandy € G. The

(quasi-)inverse of ¥ is given by the following additive symmetric monoidal functor

¢ : Veet (k) — Aut (k) (V,@Vs> > (V, @),

SEX

where @ stands for diagonal automorphism whose restriction to V' is given by
multiplication by s. The proof follows now from the fact that y and ¢ are compatible
with the forgetful functors to finite dimensional k-vector spaces.

(i) Given an object (V, @) of Aut’f; (k), we claim that o, (¥ (V, ®)) >~ ¢ (V, d").
Note that the eigenspace of " associated to s € X can be expressed as a direct sum,
indexed by the elements s’ such that (s)” = s, of the different eigenspaces of ®
associated to the elements of s’. Therefore, since o, (s") = (s')", our claim follows
from the definition of g,. This achieves the proof.



16 M. Marcolli and G. Tabuada

(ili) Given an object (V, P, 5 V*) of Vectx(k), note that

w(p_n(v,@VS))=(V@",@ @ 7D P Vs). (3.5)

SEX SEX s’€pn(s) SEX s'€pp(s)

Note also that we have the following equality

o(v.@V*) = (V, D B VS) . (3.6)

seX seX seX

Thanks to Lemma 3.15 below, we observe that the “Verschiebung” of the pair (3.6)
is isomorphic in Auty (k) to the pair (3.5). This achieves the proof. 0

Lemma 3.15. The following holds:
(i) Given k-linear automorphisms ® and ®', we have a canonical isomorphism

between YV, (®) & V, (D) and V,,(® & P’).

(ii) Given a k-linear automorphism V = V,s € k*, we have an isomorphism
By (s'—)

s'€pp (s) Vo= EBS’Gpn(S) V.

Proof. (i) Let V, resp. V', be the source (target) of ®, resp. of ®’. The searched

isomorphism is given by the permutation V& @ V'®" ~ (V @ V/)®",

between V, (s - —) and the automorphism €

(ii) The characteristic polynomial p(A) of V(s - —) is given by A" —s = 0.
Therefore, the proof follows from the diagonalization of this latter automorphism. [

Relation with motives. In this subsection we relate the categorification of some of
our examples of abstract Bost—Connes systems with the theory of motives.

Example 1 makes use of the notion of orbit categories. Let (C, ®, 1) be a k-linear,
additive, rigid symmetric monoidal category and O € C a ®-invertible object. The
associated orbit category C/-go has the same objects as C and morphisms

Home/ o, (a,b) := @Homc(a,b ® 0%).
i€Z
Given objects a, b, ¢ and morphisms
f={fiticz € @Home(a.b ® O%) g={gi}icz € ) Home(b.c ® OF)
i€Z i€Z

the i""-component of gof is given by >, ((gi—i ® O®)o ;). The canonical functor
1:C—>Clego arra [fe1i={filiez,

where fo = f and f; = 0 for i # 0, is endowed with an isomorphism

70 (—® O) = t and is 2-universal among all such functors; see [17, §7]. By
construction, C /g is k-linear and additive. Moreover, as proved in [17, Lem. 7.3],
C/_go inherits from C a rigid symmetric monoidal structure making the functor t
symmetric monoidal.
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Example 1: Original Bost-Connes system. Let us first forget about the G-action.
Thanks to Theorem 3.2, we obtain the affine group k-scheme Spec(k[Q/Z]) and the
neutral Tannakian category Vectg,z (k). Under the assignment X ~ Spec(k[X]),
7Z/n corresponds to the affine group k-scheme p,, of n'" roots of unity. Therefore,
making use of Q/Z ~ lim,>;Z/n, we conclude that

Spec(k[Q/Z]) ~ colim,>;Spec(k[Z/n]) >~ colim,>1/n =~ G tors -

Recall from [1, §4.1.5] the construction of the category of Tate motives Tate(k)x
with k-coefficients. This is a neutral Tannakian category which comes equipped with
®-invertible objects k(n),n € Z.

Proposition 3.16. There is an equivalence of neutral Tannakian categories
Vectg,z (k) =~ lim,>Tate(k)x gk () -

Proof. Thanks to the isomorphism Q/Z =~ lim,>1Z/n, we have an induced
equivalence of neutral Tannakian categories Vectg,z(k) =~ lim,>;Vectz,,(k).
Hence, it is enough to construct an equivalence between Tate(k)x/gk(») and
Vectz (k). The category Tate(k); identifies with Vectz(k). Under such
identification, the objects k(72) correspond to the simple objects S, ; see Remark 3.3.
Therefore, we obtain a symmetric monoidal equivalence between Tate(k)x [~ gk(n)
and Vectz(k)/gs,. In order to conclude the proof, it suffices then to construct a
symmetric monoidal equivalence between Vectz (k) /gs, and Vectz,, (k).

Let 0 : Z — Z/n be the projection homomorphism and p : Z/n — P(Z) the
map that sends an element of Z/n to its pre-image under o. Under such notations,
consider the following k-linear additive symmetric monoidal functor

o : Vectz (k) —> Vectz/n(k) o(V):=V a(V) := P V.
s'€pn(s)
Clearly, o sends the simple object S, to the ®-unit of Vectz,, (k). Consequently, by
the universal property of orbit categories, we obtain an induced functor

Vectz (k) /-gs, —> Vectz/n (k). (3.7)

Since ¢ is k-linear, additive, symmetric monoidal, and essentially surjective, (3.7) is
also k-linear, additive, symmetric monoidal, and essentially surjective. Let us now
show that (3.7) is moreover fully-faithful. The homomorphisms in Vectz (k)/gs,
from (V, D,ez VE) to (V. Byey V'*) are given by

B P Hom(vs, vty . (3.8)
i€Z s€Z

On the other hand, the homomorphisms in Vectz,(k) from o (V,Pcz V*)
to g (V',@P,ez V') can be written as

P P Hmr v, (3.9)

se€Z/n s',s"€pn(s)
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The above functor (3.7) identifies (3.8) with (3.9), and it is therefore fully-faithful.
This achieves the proof. O

When we consider the G -action, Theorem 3.2 furnish us the affine group k-scheme

Spec(Q[Q/ Z]G‘“@/ %)) and the neutral Tannakian category Vect% /z (k). Note that
this affine group k-scheme is a twisted form of Gy tors. Definition 3.4 and Propo-

sition 3.5 furnish us also the quotient affine group k-scheme Spec(k[Q/ Z]Gal@/ 2))
and the neutral Tannakian subcategory Vect{é Iz (k).

Example 2: Weil restriction. Thanks to Theorem 3.2, we obtain the following affine
group R-scheme and neutral Tannakian category:

Spec(C[Q/Z x Q/Z)*?)  Vect§,7.q/zR) .-

Under the assignment X +— Spec(C[X]%/2), Z/n x Z/n equipped with the switch
7./ 2-action, corresponds to the Weil restriction Resc/r (ir). Therefore, making use
of the isomorphism Q/Z x Q/Z ~ lim,>1(Z/n x Z/n), we conclude that

Spec(C[Q/Z x Q/Z)%/?) ~ colimys1Resc/r (1n) =~ Resc/R(Gmors) - (3.10)

Recall from [11, §2.1] that the category of real Hodge structures Hod(R) is defined
as Vect%><Z (R). The associated affine group R-scheme is Resc/r (G,). Moreover,
the closed immersion Resc /R (G tors) <> Resc/r (G ) is induced by the functor

Hod(R) = Vect§, ; (R) —> Vect§ .0z (R).

Remark 3.17. As in Example 1, we have also the quotient affine group R-scheme
Spec(R[Q/Z x Q/Z]%/?) and the neutral Tannakian subcategory Vectg jzxQyzR)-

Examples 4, 5: Weil numbers and CM fields. Thanks to Theorem 3.2, we obtain
the affine group k-schemes

Spec(@Wo (@)% @/P)  Spec(@[WV(g)]*@/P) (3.11)
Spec(QIW5 (@)]%@/0)  Spec@W* (9)]'@/P) (3.12)

as well as the neutral Tannakian categories
Vectyy (k) Vet (k) Vect%oL ® Vect‘%L(q)(k). (3.13)

Recall from [15, §1] the construction of the (semi-simple) Tannakian categories of
numerical motives over [F, with k-coefficients:
Moto(F,)r  Mot(F,)r  Motd (F,)x Motk (F,)y . (3.14)

The under-script O stands for numerical motives of weight zero and the upper-script L
for numerical motives whose Frobenius numbers belong to WE (g).
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Theorem 3.18 (Milne [15, §2]). Assuming the Tate conjecture, the following holds:

(i) The above Tannakian categories (3.14) admit Q-valued fiber functors. The
associated affine group k-schemes agree with (3.11)—(3.12).

(ii) In the particular case where k = Q, the Tannakian categories (3.14) become
neutral and moreover equivalent to (3.13).

Example 6: Germs. The preceding Examples 4 and 5 hold mutatis mutandis with
W(q) (and all its variants) replaced by W(p*°) and F, replaced by [F,.

4. Quantum statistical mechanics

In this section we associate to certain Bost—-Connes data (see Convention 4.2 below)
a quantum statistical mechanical system (QSM-system). In what follows, k € C.

Definition 4.1. A guantum statistical mechanical system (A, ;) consists of:

(i) Observables: a separable C*-algebra A and a family R, : A — B(H,) of
representations of A in the algebra of bounded operators B(H,) on separable
Hilbert spaces H,.

(i) Time evolution and Hamiltonian: a continuous 1-parameter family of auto-
morphisms o : R — Aut(A), > o;. We assume that the representations R,
are covariant, i.e. that there exists linear operators H, on H, such that, for every
t € R and a € A, the following equality holds:

Ri(01(a)) = "R (a)e™Hr.

We assume moreover the following:

(iii) Partition function: there exists a real number 8, > 0 such that for every
B > B, the operator e AH: is a trace class operator. The associated convergent
function Z,(B) := Tr(e PH') < oo is called the partition function.

(iv) Symmetries: there exists a G-action G — Aut(A),y + 1,, which is
compatible with the time evolution in the sense that o; o 7, = 1), 0 0y for
every y € G and? € R.

Definition 4.1 is more restrictive than the classical one [3, 8] since we require
that e #H: js a trace class operator for > 0 and also that the group G acts
by automorphisms (as opposed to the more general actions by endomorphisms
considered in [9]). These extra assumptions ensure the existence of interesting
partition functions and are satisfied by the classical Bost—-Connes QSM-system.

Convention 4.2. In what follows, (X, 0y) is a concrete Bost—Connes datum; _see
Definition 2.3. We assume that all the G-equivariant embeddings 1 : ¥ — Q ,
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i.e. G-equivariant injective group homomorphisms,_c)(()ntain the roots of unity. This
holds in Examples 1, 3, and 4 of §2. Let Emb(X, Q ) be the set of G-equivariant
embeddings.

Proposition 4.3. Up to pre-composition with automorphism of X, the homomor-
phisms 0, : £ — X, n € N, are of the form o,(s) = s*™.

Proof. Consider the induced homomorphism 7, = to 0, ot™!' : ((£) — «(X). Since
t(X) contains the e group of roots of unity (which is abstractly isomorphic to Q/Z)
and Hom(Q/Z,Q ) = Hom(Q/Z,Q/Z) ~ Z, the induced homomorphism 7,
restricts to

n:Q/Z— QJZ § (4.1)
withu, € Z. Now recall that 7 = X1 U X5, where X; = NZ* = = UpmeNm 7% and
X, =Uplu € Z | u” = 0}; the union is over the prlme numbers and u = (u(?))
are the coordinates of u in the decomposition 7= I1,2Z pLp. uy, € ZX then (4.1)

is an isomorphism. This implies that «(n) = 1. If u, € mZ C X, withm > 1,
then the kernel of (4.1) consists of the roots of unity of order m. This implies that
a(n) = m. If u, € X,, then there exists a prime number p such that the kernel
of (4.1) contains all the roots of unity whose order is a power of p. This implies that
a(n) = oo. Since by assumption, (X, 0,) is a concrete Bost-Connes system, we
hence conclude that u,, € NZ. Thus, we can write u,, as a product u, = o, (n)v,(n).
The semi-group property 0,, = 0y, 00y, implies thatu, , = u,u,, and consequently
that o, (nm) - v,(nm) = o, (n)a,(m)v,(n)v,(m). We obtain in this way two semi-
group homomorphisms o, : N — N andv, : N — Z*. Now, consider the following
homomorphisms
() D () o () O ().

The assignment n — £, , := =1 0 Y}, o gives rise to a semi-group automorphism
of ¥, and we have the equalities ((0,(s)) = Y,(t(s)*® = 0,,((E.A(5))).
Therefore, it remains only to show that ¢, (n) = «(n) is independent of ¢. This follows
from the equalities o, (n) = #Ker(0, ,) = #1"'Ker(0,,) = #Ker(o,) = a(n). O

Remark 4.4. The automorphisms §, , of X, introduced in the proof of Proposition 4.3,
do not play any significant role in our construction. In what follows, we will therefore
restrict ourselves to the case where o, (s) = s*®.

Corollary 4.5. For every i € Emb(Z,@X) and s € X, we have the equality:

a(m)
1 Z [(S/)a(m) _ L(S) a(n) when a(n)|a(m)
a(n) | 0 otherwise .
s'€pn (s)

Proof. The proof follows automatically from the fact that o,,(s) = s*“; note that
when a(n) + a(m), we have > o) (o) L(s")2m = 0. 0
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Definition 4.6. Given an embedding : € Emb(X, @X), consider the homomorphism
N X —RL s |us)],

where | - | is_tl>1<e absolute value of complex numbers; we are implicitly using a fixed
embedding Q@ C C. Note that N,(X) is a countable multiplicative subgroup of R .

Givent € Emb(E,@X), consider the injective group homomorphism
Y — U1)xRL s (6i(s), N(s)) .

L(s)

where 6,(s) := G- 1t clearly gives rise to the following group decomposition

U(E) —> B, X N(Z)  t(s) = (B(5), N(s)) , (4.2)
where ¥¢, := 6,(¥). Note that the above isomorphism (4.2) generalizes (2.1). In
the latter case, the group decomposition is independent of the embedding ¢.
Corollary 4.7. Given an element s € X, the following conditions are equivalent:

(i) s belongs to the domain of pp, with #p,(s) = a(n).

(ii) |28| admits an a(n)"-root in g, and N,(s) = n*® for some n € N,().

Proof. The proof follows automatically from the above group isomorphism (4.2) and
from the fact that ((X) contains roots of unity of all orders; the injectivity of ¢ then
implies that s has as many a(n)™ roots in X. O

The following result will be used in §4.4.

Lemma 4.8. The group N, (X) C R can always be decomposed into a union of
countably many geometric progressions N,(X) = Urzl /\rZ .

Proof. The group N,(X) is countable. Therefore, it is at most countably generated.
Let {A,}ren be a set of generators. Without loss of generality, we can assume that
A, > 1 for every r > 1. Hence, we conclude that N,(X) = Uer )LrZ. O

We now construct the QSM-system (A(x q,,). 07) associated to (X, 0,).

4.1. Observables. We start by introducing two auxiliary k-algebras. The first one,
denoted by Bz 4,). is a generalization of the Bost—-Connes algebra [2]. The second
one, denoted by BEE op.0)> 1S @N extension of a subalgebra! of the first one by the
multiplicative group. Making use of B(z q,), resp. of BEE’ o> and of an embedding

L € Emb(Z,@x), we then construct the C*-algebra A(g,gn), resp. 'A/(E,on,t)’ of
observables of the QSM-system associated to (X, oy,).

I'This subalgebra depends on the choice of an embedding ¢ : ¥ — @X.
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Definition 4.9. Let B(x ,,) be the k-algebra generated by the elements s € X and
by the partial isometries (,, (), n € N. Besides the relations between the elements
of the abelian group X, we impose that (i, by, = nm and

Pnblyy = mitn  When (a(m),a(n)) =1

ﬁ > siepn(s)S. Whens € Xy,

4.3)
0 otherwise

KnSiy =

Knbybnlby = Mntly — Aplnylin = [iyfn -
Finally, let us write B(s 4,,c) for the C-algebra B(s 4,) ®x C.

Remark 4.10. (i) Unlike the original case [2], we do not require that j)u, = 1.
When this holds, B(x ¢, reduces to the semi-group crossed product k[X] x N where
the semi-group action of N is given by n > (s — wpsuy).

(ii) The k-algebra of Definition 2.6 embeds in B(x 4,,) as the subalgebra generated
by the elements s € X. Moreover, by acting trivially on u, and u, the G-action
on k[X] extends to Bz q,)-

Definition 4.11. Let B’ o) D€ the k-algebra defined similarly to B(s,0,) but with
additional generators W()&) A € k*, and additional relations:

W(hida) = WADW(A2) WA =w@)™!
W)s =sWA) WD) = pa W™ uixWR) = W)*™ s

The new generators W(A) are called the weight operators. Finally, let us write
BEE op.C) for the C-algebra BEE,%) ®x C.

Remark 4.12. The introduction of the weight operators is motivated by the need to
obtain a time evolution whose partition function is convergent for 8 > 0; see §4.2
below. In the particular cases where N,(X) = {1}, such as in the original Bost—
Connes datum, the weight operators are not necessary and we can work solely with
the k-algebra B(z q,)-

Notation 4.13. Let # be the Hilbert space ¢?(N) equipped with the canonical
orthonormal basis {€, },en. We write V for the k-vector space spanned by the €,’s
Note that the C-vector space V¢ := V ®y C is dense in H.

(i) Let Hg be the Hilbert space £?(a(N)) equipped with the orthonormal basis
{€a(n)}nen. We write V, for the k-vector space spanned by the €4(,)’s and V¢
for the C-vector space Vy, ®y C.

(ii) Givent € Emb(X, @X), let H, be the Hilbert space £?(N,(X)) equipped with
the orthonormal basis {€;},en,(z). As above, we write V), for the k-vector
space spanned by the €;’s and V, ¢ for the C-vector space V, @ C.
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(iii) Let Hq, be the tensor product Hy ® H, = £*(¢(N) x N,(X)) and Vy, c
the tensor product V,.c ® V,.c. We write Hoﬁt, resp. V(i LCo for the Hilbert
subspace of Hg,,, resp. C-linear subspace of V,,, c, spanned by the elements
€a(n),y With n < 1. Under these notations, we obtain the splittings Hy,, =

<
H;,L @ H;,L and Vd,t,(c = V(x_,L,(C ©® VOZ>,L,(C'

In the case where N,(X) = |J,5, AZ is a union of infinitely many geometric
progressions we will consider also the following Hilbert space; see Lemma 4.22.

Notation 4.14. Given an embedding ¢ € Emb(2,Q") and r > 1, let H5, be
the Hilbert subspace of £2(N,(X)) spanned by the orthonormal vectors €, such that
In| < 1and n = A* for some k € Zg. In the same vein, let H 5, be the Hilbert space
22@(N) ® R, M=, equipped with the standard orthonormal basis {e
indexed by r > 1,(n) € ¢(N) and k, € Z <.

a(n),x’;r}

Proposition 4.15. Given an embedding 1 € Emb(E,@X), the assignments

RU(S) €anyn = 1()*™ €qiny N, (s)n

€a(mn),e Whenn = E“(’”)

RL(Mm) €a(n),n ‘= 4.4)

0 otherwise

R(W)) €xny,y = ’\a(n)ea(n),n

define a representation R, of the k-algebra BEE’ on) (and hence of the C-algebra
BEE o,.C)) 01 the C-vector space Vo, .

Remark 4.16. By forgetting the action of the weight operators, Proposition 4.15
gives rise to an action of B(x q,) (and hence of B(z 4,,,c)) on Vy,.c-

Proof. We need to verify that the operators R,(s), R, (i), R/(W(L)) satisfy the
relations of Definitions 4.9 and 4.11. Clearly, R,(s152) = R,(s1)R,(s2). Similarly,
R, (un) R, (m) = R,(nm). From the above definitions (4.4), we observe that
operators R,(i,,) = R,(itm)™ are given as follows:

€am) oom Wheno(m)|a(n)in a(N)
R, (M;kn)ea(n),n = atmy ]
0 otherwise.

Hence, we have the following identifications:

Ri(pn)€ at) paomy Whena(m)|o(r)
RL(Mn)RL(M:n)Ea(r),n = aGmy 1

otherwise
— {6‘“{”{,5 when a(m)|a(r) and n*0m = g

0 otherwise .
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On the other hand, we have

R.(iy,)€a(mry,e  Whenn = £@™ for some ¢ € N, ()

R () R (in)ea(ryy = 0 otherwise

_ gfa((ln))’;a(m) when 1 = £*® and a(m)|a(nr)

0 otherwise .

When («x(n), a(m)) = 1, we have a(m)|a(nr) < a(m)|a(r). Moreover, condition
n=¢*" becomes equivalently 7% = ¢*®™) Therefore, by setting £ = %" we
conclude from above that R, (it,) R, (it),) = Ri(iy,) R (ptn) when (e (m), e (n)) = 1.
In what concerns the operator R, (i), 4 ), it corresponds to the projection onto the
subspace of V,, ¢ spanned by the basis elements €4(y),, such that 7 admits an o ()™
root in N,(X). Similarly, R,(imuy,) is the projection onto the subspace of V. c
spanned by the basis elements €y(y),, such that a(m)|a(n). Let us now show the
following equality:

1
RL(/’LM)RL(S)RL(/’L;;)G(I(H),U = m Z RL(S/)ea(n),n-
5" €pm (s)
The left-hand side identifies with
L(S)u(n)/a(m) E(x(l’l),NL (s)l/a(m)fl (45)

when a(m)|a(n) in «(N) and |¢(s)| has an a(m)™ root in N,(X). Otherwise, it is
zero. In what concerns the right-hand side, it identifies with

1
a(m)

Z L(S/)a(n) 6oz(n),Nt(s’)n . (46)

s'€pm (s)

Making use of Corollary 4.5 (and Corollary 4.7), we hence conclude that (4.6) agrees
with (4.5). In what regards the generators W(1), we clearly have

R(W(ik2)) = RWADR(W(R2)), R(WA™Y)) = R(WR)™)
and also the following equalities:

RL(W(A))RL(S)Ea(n),r] = RL(S)RL(W(A))Ga(n),n
RL(W(A))RL(Mm)Ea(n),n = RL(Mm)Rt(W(/\)a(m))fa(n),n
RL(M;)RL(W(A))Ga(n),n = Rt(W(/\)a(m))RL(M;;)ea(n),n .

This achieves the proof. O
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Definition 4.17. Given an embedding « € Emb(Z, Q ) let us denote by B(z onid)

the k-subalgebra of BE ) generated by the elements s € X with N,(s) < 1, by the

weight operators W(A) Wlth |A| < 1, and also by the partial isometries (t,,, iy, n € N.

We write B(E,Un,t,C) for the associated C-algebra B(E’UH,L) Qy C.

Proposition 4.18. (i) When N,(X) = {1}, the C-algebra B(s s, c) acts by
bounded operators on the Hilbert space H.

(ii) In general, the representation R, of Proposition4.15 extends to a representation
R, of the C-algebra BEE, on.,C) by bounded operators on H,

Proof. When N,(X) = {1}, we have ||R,(s)| < sup, |t(s)*®| = 1 for every
s € X. Therefore, item (i) follows from this estimate, together with the fact that
|R,(4m) || = 1. In what concerns item (ii), the action of Proposition 4.15 extends to
an action of BEZ, ont.C) N Va..,c. We claim that this action factors through Vi e
(@) If n < 1land N,(s) <1, then N,(s)n < 1.

(b) If p < land n = %) then £ < 1.

(¢) The weight operators R,(W(4)), A € k*, do not alter 7.

The above items (a)—(c) imply our claim, i.e. that the operators R,(s) with N,(s) <1,
R, (i) and R, (W (X)) preserve V— ..c- Now, since B(): ont.C) only contains elements
s € X with N(s) < 1, ||Rt(s)|| < sup, N,(s)®®™ < 1. Clearly, we have also
R, (n)|l < 1. In what concerns the weight operators, since |A| < 1, we have
IR (W(A))|| < sup,|A|*® < 1. This implies that the action of BEZ,(T”,L,C) on
Vf ,.c extends to an action on HZ, by bounded operators. O

Definition 4.19. A pair ((X,, 0,), Embg LEX,@X)), consisiigg of a concrete Bost—
Connes datum and of a subset Embg(2,Q ) C Emb(XZ,Q ) is cal@xgood if the
algebras B(z op.0,C) Are independent of the embedding ¢ € Embg (X, Q ). The pair
is called very good if both the algebras BE): on.0.C) as well as the Hilbert spaces Hz,
are independent of the embedding ¢. The representations R, may still depend on the
choice of the embedding ¢. Consult §5 for several examples.
Definition 4.20. (i) The C*-algebra A(s q,) is defined as the completion of
B(z,0,,c) in the norm la[| := sup g s 5% [R(@) ]| B31,)-
(ii) When the Bost-Connes datum (X, 0,) is good, the C*-algebra A’
defined as the completion of 3/ (.0,.C) N the following norm

(EO,)IS

lall :=sup | Ri(@)ll gz, -
L€Emb(E,Q )
Remark 4.21. When N,(X) = {1}, we have a family of representations R, of A(s q,)

on B(H,) indexed by embeddings ¢ € Emb(E,@X). In general, for a good Bost—
Connes datum, we have a family of representations R, of .,4/(E o) O0 B(HZ ).
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In the case where N(X) = (,5; AZ is a union of infinitely many geometric
progressions, we have the following analogue of Proposition 4.15 (and hence of
Remark 4.21); recall from Notation 4.14 the definition of the Hilbert space 13 .
Proposition 4.22. The representation R, of the algebra A(5, on B(HZ ) extend
as follows to a representation on B(H3 ) (let N,(s) =[], )Lf’(s)):

R, (S)Ew(n)’;k/'fr = L(S)a(n)ea(n)’ﬂ;r +ar(s),

€ kr/atmy  When a(m)|k
Ri(km)eg gy ptr = 47" ’

0 otherwise
R(WA)€ oy 2kr = Aa(n)ea(n),)t’r" :
Proof. The proof is similar to the one of Proposition 4.15. O

4.2. Time evolution and Hamiltonian. The constructions in this subsection depend
on the choice of an auxiliary semi-group homomorphism g : N — R’ . We assume

always that the pair (X2, 0y,), Embo(E,@X)) is good.
Proposition 4.23. Given 1 € Embo(E,@X), the following assignments

0r(s) == WN()™'s  0r(pn) := g(0)" ttn 0:(W(R)) := W(A)
define a continuous 1-parameter family of automorphisms o : R — Aut(A’(E’ an))'

Proof. We need to verify that o;(ab) = o;(a)o;(b) and o414 (a) = o¢(0oy(a)) for
every t,t' € Randa,b € Al(): o). The latter equality is clear, since oy (ov/(s)) =

W(N,(s))"2 ¢+ )5 and o, (0 (11n)) = g(n)' "t . Let us focus then in the first
equality. Since N, is a group homomorphism, we have

01 (s152) = W(Ni(5152)) 5152 = 07 (51)04(52) -

Similarly, since g is a semi-group homomorphism, we have

0t (tnftm) = 0t (Unm) = gMmM)" tnm = 01 (Ln)0¢ (1m) -

The action on . is then given by o,(u*) = g(n)™"' . Note that it is compatible
with all the relations between p, and p;. In what concerns the weight operators,
we clearly have the equality o; (W (A1) W(X2)) = 0:(W(A1))o:(W(A3)). In order to
conclude the proof, it remains then to verify the relations of Definitions 4.9 and 4.11.
We will focus ourselves in (4.3) and leave the simple verification of the remaining
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relations to the reader. On one hand, we have:

1
o(nsiiy) = Sos Y ouls))

s'€pn (s)

W) S

a(n) s'€pp (s)

o1
— W(NL(S)l/a(n))—tt Z Y

a(n) s'€pn (s)
. 1
— W(N[(S))_”/a(n) - Z s
a(n) s'e
on(s)
On the other hand, we have:
01 (1n)01 ()07 (1) = g(n)"* pn W(N,(5)) ™5 g(m) ™

= W)™ sy,

1

= W(N —it/a(n) /’
(N0 s D s
s'€pn (s)

where the last equality follows from the relations A/(Z on) between the genera-
tors W(A) and p,. This achieves the proof. O

Let ¢ € Emb(E,@X) be an embedding and R, : “4/(2 o) B(H3,) the
associated representation of Proposition 4.18. Consider the following linear operator:
H, : Hoil - ,Hoit €a(n),n > (—Ol(l’l) 10g(77) + log(g(n)))ea(n),n .

Proposition 4.24. For everyt € R anda € "4/(2 o) W have the equality:
R.(01(a)) = "R (a)e ™" Hr. 4.7

Proof. Clearly, it suffices to verify the above equality (4.7) in the case where a is a
generator of .A’( o) In what concerns the generators s € X, we have:

R.(01(8))€a(m.n = RU(W(N.() )R (5)€an).n
= R(W(N,(5)) ™" )e()" ™ eauy,n, (s
= Ni(s) "™ i()* @ eqny, N, ()
= pite) (S)—itoz(n)g(n)itL(S)Ot(n)nim(n)g(n)_itEa(n),NL(s)n
= !"Hiy () i g () ey Ny 5y
= e""H R (5)n"" "™ g(n) " €qny

itH, —itH,
= e R/(s)e “€q(n),n -
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For the generators w,,, m € N, the left-hand side of (4.7) identifies with

g(m)it€a(nm),$ when n= Ea(m)

R(01 (m))€atny.n = 8(m)" Ru(lm)eaimn = 0 otherwise

On the other hand, the right-hand side identifies with

pitH: RL(//Lm)e_itHle(X(n),Tl — pitH. RL(Mm)nim(n)g(”)_itEa(n),n

(when 7 = £ 0 otherwise) = &/"Hin/**™ g (n) ™ ¢4 um) &
_ ‘i:—ztoc(nm)g(nm)ttr’tto:(n)g(n)—ltem(nm)’S
= g(m)" ea(um).z -

Finally, in what concerns the generators W(A4), A € k™, we have:

RL(W(A))Ga(n),n = )La(n)ea(n),n = n—ita(n)g(n)itka(n)nitoc(n)g(n)—itea(n),n

— eitHLka(n) nita(n)g(n)—itea(n) ,
= "R (WO D g(n) ™ €qmy,n

= "R (W) e ey -
This achieves the proof. O

Remark 4.25. By combining Propositions 4.23-4.24 with §4.1, we hence obtain
the QSM-system (.A/(Z on)’G’) associated to (X,0y) (and to an embedding ¢ €

Emb(X, @X)). In the next two subsections we prove that this QSM-system satisfies
the extra assumptions (iii)—(iv) of Definition 4.1.

4.3. Partition function: finite union of geometric progressions. Recall from §4.2
that g : N — R is an auxiliary semi-group homomorphism. Let us denote by Bo
the exponent of convergence of the series ) )= gm)~P.

In this subsection we assume that for every embedding ¢ € Emb(E,@X), the
countable multiplicative subgroup N,(X) of R} is a finite union of geometric
progressions N, (X) = U?’I lq%j, with g, ; > 1.

Proposition 4.26. The partition function Z,(B) is computed by the series:

Yoo > ™Egm)h . 4.8)

NEN (D) a(n)=1
n<l

Moreover, for every B > o, the above series (4.8) is convergent. Consequently,
e BH. s trace class operator.
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Proof. By construction, the operator H, is diagonal in the basis €4(;),; of 7-[@
Hence, the associated partition function agrees with the following series

Z(B):=Tee Py = " > (eatmyn € P euimn)

NEN(Z) a(m)=1
n=<l1

= Y Y epemom o)

NEN (D) a(m)=1
n=<l1

= > D P,

NEN(Z) a(m)=1
n=<l1

Under the above assumption on N,(X), the sum (4.8) can be re-written as

> Zqu R IORESDY Z _a(n),,g(n)‘ 49)

am)=1j=1k>0 a(n)>11—1 B

Let jmax (resp. jmin) be the index j that realize the maximum (resp. minimum) above.

Since 1 — g, Zfa’i)ﬂ >1— qt_’]‘.?nax when () > land 1 —¢, ;™" < 1, we have

_ M _ _ M _
g(n) ﬂm < g(n) ﬂl—q and  g(n) ﬂmié’(ﬂ) M.

’-ajmax L5 Jmax szmin

This implies that (4.9) is bounded above and below by series whose convergence
and divergence depends only on the series Za(n)zl g(n)™#. As a consequence, the
above series (4.8) converges for every B > o and diverges for every 8 < Bo. This
concludes the proof. O

4.4. Partition function: infinite union of geometric progressions. In Proposi-
tion 4.26 we have only treated the convergence of the partition function Z(B) in
the case where the group N,(X) C R} has the form N, (X) = UM 1% _j» for some
q.,j > 1. Here we treat the case of 1nﬁn1tely many progressions.

In order to control the convergence properties of the partition function, it is
useful to introduce another choice of a homomorphism, in addition to the choice of
g : N — RZ. We modify the time evolution by introducing an additional auxiliary
choice of a group homomorphism 4 : N (X) — RX.

Proposition 4.27. Given homomorphisms g : N — R and h : N(X) — RZ, the
Jfollowing assignments

01(s) = WhNN s 01(im) = gm)" tm  0:(W(R)) = W(R)

defines a 1-parameter family of automorphisms o : R — Aut(A’(E, an))'
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Proof. The proof is similar to the one of Proposition 4.23. O

Proposition 4.28. The Hamiltonian implementing the time evolution of Proposi-
tion 4.27 in the representation of Lemma 4.22 is given by

Hi €y 2k = (—a(n)klog(h(A;)) + log(g(n))) € (m) Ak -

Proof. The proof is analogous to the one of Proposition 4.24; instead of HZ,
and €4(y),;, we use the Hilbert space H3 , and its standard orthonormal basis €

a(n), Ak
see Notation 4.14. O

All the above constructions work with an arbitrary homomorphism % . Let us
now focus on the following example:

Example 4.29. Recall that {A,};>; is a set of generators of N,(X). Let
h: N(X) — R be the homomorphism defined as h(A,) := p,, where {p,};>1
stands for an enumeration of the prime numbers (for example the natural one in
increasing order).

Recall that B denotes the exponent of convergence of the series Y, ;)= g(n)™A.

Theorem 4.30. When h is as in Example 4.29, the partition function Z,(B) is
computed by the following series:

> gm)Pr(Bam)). (4.10)
a(n)>1

Moreover, for every B > max{Bg,3/2}, the series (4.10) is convergent. Conse-
quently, e BH. (where H, is as in Proposition (4.28)) is a trace class operator.

Proof. Since the operator H, (hence also e~BH.) is diagonal on the orthonormal basis
skr Of H5 ,» we have the following equality

Z(B) := Tr(e PH) = Z ()P H Z h(A,)kre®8

a(n)>1 r kr=0

Ga(n),

where the negative sign in the exponent of 4(A,) comes from the fact that we are
writing the sum over k, > 0 instead of k, < 0. For each fixed r € N, we can
compute the following series

S akeams !
i [ h(h,) o8

as the sum of a geometric series. For the particular choice of 4(A,) = p;, this is
equal to (1 — p,_a(")ﬁ)_l. Thus, we can rewrite the trace as

o gy P - pe™A (4.11)
p

a(n)>1
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where the product is over the prime numbers. The Euler product converges to the
Riemann zeta function, | | p(I=p7 )~! = ¢(s). Therefore, we can rewrite (4.11) as

> gm)Pr(Bam)). (4.12)

a(n)>1

In order to understand the convergence of this series, we need to estimate the behavior
of the values ¢ (Ba(n)) of the Riemann zeta function. When s isrealand 2(s—1) > 1,
we can use the estimate

{(s)zZn_sz1+Zn_s§1+/wi—f=1—2(sl_l)51.

n>1 n>2 2

Hence, for 2(Ba(n) — 1) > 1, the terms {(Ba(n)) are all bounded above by
C(Ba(n)) < 1. This gives rise to the following inequality:

Yo g PeBam) < Y gmF.

a(n)=1 a(n)=1

Since a(n) > 1 for all n € N, the condition 2(Ba(n) — 1) > 1 is satisfied for all
n € N if 2(8 — 1) > 1 is satisfied, that is, if 8 > 3/2. We hence conclude that the
above series (4.12) converges for every 8 > max{B¢, 3/2}. O

Remark 4.31. Unlike Proposition 4.26, we are only using an estimate from above.
Therefore, we can conclude only that e “#H¢ s trace class for f > max{Bo, 3/2}.

4.5. Symmetries. Given an embedding ¢ € Emb(E,@X), consider the (sub)group
G.:=1{y € G| N.(y(s) = Ni(s). Vs € £} C G.

Notation _4;(32. Let Gy be the intersection of the subgroups G, with ¢ €

Emby (2, Q).

Proposition 4.33. The following assignments

s yE) pn = pn WQA) = WQ)

/
(Z,0n,0)°

define an action of G on the k-algebra B(s 4,y and of G, on the k-algebra B
Proof. It follows automatically from the definition of B(x ,) and Bzz onid) in terms
of generators and relations; see Definitions 4.9 and 4.17. Note that in the case of
the k-algebra BEE o) e need to restrict to the subgroup G, C G to ensure that
s > yp(s) preserves the subset {s € X | N,(s) < 1}. O
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Proposition 4.34. The actions of Proposition 4.33 extend to actions
7:G - Aut(Aizp,)) and tv:G, — Aut(A’(E,Un,L)). (4.13)

These actions are compatible with the time evolution in the sense that 6,01, = T, 00;
foreveryy € G (ory € G,)andt € R.

Proof. Since (X, 0y,) is a Bost—-Connes datum, the group G acts continuously on X.
Therefore, the G-action of Proposition 4.33 extends first to the C-algebra B(s ¢, .c)
and then to the C*-algebras A(x,). Similarly, the G,-action extends first to
BEE,%,L’C) and then to A/(Z,Un,t)' We obtain in this way the above actions (4.13).
The compatibility with the time evolution is given by the following equalities:

01 (ty (Un)) = 01 (n) = g()" pn = g(M)" 7y (1tn) = Ty (01 (1)) .

Similarly, we have 7, (0;(W(A)) = o;(t,(W(A))). Note also that when y € G,, we
have moreover the following equalities:

01 (1 (5)) = W(N(ty (5)) 7" 1y (5) = & (W(N() )y (5) = 7 (01(5))

This achieves the proof. O

4.6. Gibbs states. Recall from [3, Vol. I §2.3.3] that a state on a unital C *-algebra
A is a continuous linear functional ¢ : A — C that is normalized, i.e. ¢(1) =1,
and satisfied the positivity condition, i.e. ¢(a*a) > 0 for all a € A. An equilibrium
state of a quantum statistical mechanical system (A, ;) is a state ¢ that is invariant
with respect to the time evolution, ¢(o;(a)) = ¢(a), for allt € R and a € A;
consult [3, Vol. IT §5.3] for further details. If the QSM-system (A, o;) has a
representation R, on a Hilbert space H, with a Hamiltonian H, for which the partition
function Z(B) = Tr(e PH) is convergent for all B > B,, then we can define a special
class of equilibrium states, namely the Gibbs states at inverse temperature §3:

Tr(R,(a) e BHY)

Trie P (4.14)

pp.la) =
Definition 4.35. Let ® : G — Aut(X) be the G-action on X and Gy the quotient
G/Ker(®). We denote by 7y, : G — Gy the quotient map, by Z(Gx) the center
of Gy, and by Z(Gx) the preimage 7' (Z(Gyx)) C G.

Example 4.36. In thigase where ¥ = Q/Z, we have Gy = G® = Z(Gyg). In
contrast, when ¥ = Q , we have Gy = G and (by the Neukirch-Uchida theorem)
Z(G) ={1}.

Recall from Notation 4.32 the definition of the group Go. Let G, be its image
under the quotient map 7y, : G — Gy and Gx o the pre-image ngl (Z(G2)NGx ).
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Lemma 4.37. Given a good pair ((E,Gn),Embo(E,@X)) in the sense of
Definition 4.19, the Gg-action t : Gy — Aut(BEE Un)) induces a Gy g-action
R, — Roy on the set {R,} of representations R, : BEE,%) — B(H3).

Proof. The condition that ¢ o y is still a G-equivariant embedding implies that the
image of y € Gy in the quotient Gy commutes with all elements of Gx. Therefore,
it belongs to the center and hence to the intersection Z(Gx) N Gx 0. We now verify
on the generators of BEZ’UH) that R,(ty(a)) = Rioy(a). For s € ¥ we have

Ri(ty ($))ainyn = L) *Peaqmy,nrsnn = Rioy (9)eam).n-

In the remaining cases, since the action of R,(u,) does not depend on ¢ and
is fixed by G, we have R,(ty(1n)) = R/ (Un) = Rioy(in). Similarly, we have
R.(ty(W(4))) = R(W(A)) = Rioy (W(R)). O

Proposition 4.38. Given a good pair ((g),an),Embo(E,@X)), the Gy-action
7:Go > Aut(BEZ crn)) induces a pullback G, o-action

Ppu = T; (B.) = ¢puoTy = @B oy
on the set of Gibbs states at a fixed inverse temperature f3.

Proof. Let (A, 0;) be a quantum statistical mechanical system. Tt is well-known
(see [3]) that an action 7 : Gy — Aut(.A) by automorphisms which verifies 0; o7, =
7y 0 07, (for all y € Go and ¢ € R) induces a pullback action on the set of Gibbs
states of (A, oy) at a fixed inverse temperature f:

P T;((Pﬂ,L) = QB0 Ty.
For elements in Gg,o we have:

Tr(R.(t,(a)) e PH)  Tr(R,oy(a) e PH)
Tr(e—FH:) - Tr(e—AH:)

B, ° ry(a) = = @B,0y (a).

Therefore, the proof follows now from Lemma 4.37. O

Recall from [9] that the ground states (or zero temperature equilibrium states) of
a quantum statistical mechanical system are defined as weak limits when 8 — oo of
the Gibbs states at inverse temperature B. Concretely, @oo, (@) 1= limg_.o ¢g,.(a).
These are given by traces of projections onto the Kernel of the Hamiltonian H,.

The following result rephrases in our setting the “fabulous states" property of the
Bost—Connes system (as formulated in [9]), namely the intertwining of symmetries
of the quantum statistical mechanical system and Galois symmetries.
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Proposition 4.39. Given a good pair (2, 0,), Embg(X, @X)), there is an induced
Gz,o-action Qoo,. M Poo,0y On the ground states. In the particular case where
N,(X2) = {1}, the ground states take values ¢oo,(s) = t(s) on the generators s € X
of the algebra of observables. Moreover, this action recovers the Galois action of the

subgroup Z(Gx) C G on ((X).

Proof. Recall from §4.2 that the Hamiltonian H, is given by

Htea(n),r] = (—O((I’l) 10g(77) + log(g(n)))ea(n),r] .

Its kernel is one-dimensional and it is spanned by the vector €1 ;. Thus, the ground
state ¢, is given by the projection onto the kernel H,, that is, by

Yoo, (@) = (€1,1, Ri(a) €1,1).

When we evaluate it on a generator s € ¥ we obtain

(e1,1, Ri(s)er,1) = t(s){e1,1. €1,N,(5))-

This is zero unless N,(s) = 1, in which case it is equal to ((s). Note that in the
case where N, (X) = {1}, we have Gy = G. Hence, G~E,0 = Z(Gs). By the
G-equivariance of the embedding ¢, this implies that the Z(Gyx)-action is given by
t(y(s)) = y(u(s)), i.e. by the restriction to the subgroup Z(Gy) of the Galois action
of G on ((X). This achieves the proof. O

4.7. Bost—-Connes data with trivial «. Let (X, 0,) be an abstract Bost—Connes
datum for which the semi-group homomorphism « is trivial, i.e. a(n) = 1 for
every n € N. By Definition 2.1, (X, 0y,) is not a concrete Bost-Connes datum.
Nevertheless, we explain here how we can still construct a partial QSM-system.

Lemma 4.40. When N, (X) = {1}, the algebra B = Bz ¢,) is isomorphic to the
group crossed product algebra k[X] x Q.

Proof. When a(n) = 1 for every n € N, p, and o, are inverse of each other. In
particular, they are automorphisms of k[X]. The relation (4.3) hence implies that
Unity = 1. Consequently, the i, s are not just isometries but rather unitaries, with
Wy = f, " = W1/n, implementing the action of Q% on k[X]. Making use of them,
we then obtain an isomorphism between B = B(x ;,) and k[Z] x Q7. O

Thanks to Lemma 4.40, the operators p;’s are invertible. Therefore, the Hilbert
space representations of B = Bz 4,) need to be modified accordingly. There is
a unique natural way to proceed: the action of the semi-group N on the Hilbert
space £2(N) is just the regular representation. In the case where the semi-group
is replaced by the group it generates, we correspondingly consider the regular
representation of the group. In our case, this means the action of Q7 on the Hilbert
space {2 (Q%) is given by multiplication on its basis elements.
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Lemma 4.41. Assume that N, (X) = {1}. Given an embedding | € Emb(E,@X),
the assignments Ry, ()€, 1= y(m)" €, and Ry (jus)€r 1= €, withmw € X and s, 1 €
QX define a representation of B(s o) = k[X] x Q on the Hilbert space EZ(Qi).

Proof. The crossed product relation is satisfied since Ry (is) Ry (7)Ry (1s)* e, =
y(m)" /Se,.. The remaining arguments are analogous to the semi-group case discussed
in Proposition 4.15. O

The C *-algebra completion of B(x 4, is the crossed product A(s 4,)=C*(Z)x Q.
The time evolution discussed in §4.2 extends naturally as follows:

Lemma 4.42. The choice of a semi-group homomorphism g : N — R’ determines
a time evolution on the C*-algebra A(s 5,) = C*(Z) x Q7.

Proof. Note that g extends uniquely to a group homomorphism g : Q% — R7.
Therefore, it suffices to set 0y (i1,) := g(r)" u, for every r € QX and o;(7) 1= 7
forevery r € . 0

Remark 4.43. The time evolution of Lemma 4.42 is the natural generalization of the
one of Proposition 4.23. However, it is clear that the resulting “partial QSM-system”
Q = (C*(2) x Q. 0y) does not have a convergent partition function Z(f) for
B > 0, neither low-temperature Gibbs states.

5. Examples of QSM-systems

In this section we describe in detail the QSM-systems associated to our examples of
concrete Bost—Connes data (as in Convention 4.2).

Example 1: Original Bost-Connes system. Let k¥ = Q. Recall from §2 the
definition of the concrete Bost-Connes datum (Q/Z, o,,). What follows is standard
and can be found in the foundational article of Bost and Connes [2]; consult also [8,
§3]. The only novelty is that in the construction of the time evolution we consider
more general choices of the auxiliary semi-group homomorphism g : N — R .

Lemma 5.1. For every embedding € Emb(Q/Z, @X), the countable multiplicative
subgroup N, (Q/Z) of R} is equal to {1}.

Proof. Asexplained in proof of Proposition 4.3, Hom(Q/Z, @X) :_HXom(Q 17.,Q/7).
Therefore, ((Q/Z) is contained in the subgroup of roots of unity of QQ . This implies
that N,(s) = |i(s)| = 1 forevery s € Q/Z. O

The Q-algebra B(q,z,s,) agrees with the crossed product Q[Q/Z] x N, where
the semi-group action of N on Q[Q/Z] is given by n > (s = Y o), (5)8')- On the
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other hand, since N,(Q/Z) = {1}, the Q-algebra BE@ /7.5, IS DOt necessary for the
construction of the QSM-system.

Note that since (1) = n and N,(Q/Z) = {1}, the Hilbert spaces H3 are all
equal to H := [?(N). Similarly, all the C-vector spaces V5, areequalto V := Vc.

Let: € Emb(Q/Z,@X) ~ 7Z*. The representation R, of B(g/z,s,) on V is
given by R,(s)(€,) = t(s)" €, and R, (itm)(€n) = €mn. Following Proposition 4.18,
this representation extends to a representation R, of the C-algebra B(g,z,0,,c) =
C[Q/Z] x N by bounded operators on H. The C *-algebra A(q,z,q,) identifies then
with the closure C*(Q/Z) x N of C[Q/Z] x N inside the C *-algebra of bounded
operators B(H).

Let g : N — R be the standard embedding of N into R% . The associated time
evolution is given by 0;(s) = s and 0y (j4,) = n** u,, and the associated Hamiltonian
H = H, : I>(N) — [?*(N) by €, + log(n)e,. Consequently, the partition
function Z(p) agrees with the Riemann zeta function {(8) = >, nh.

Remark 5.2. Since N is the free commutative semi-group generated by the prime
numbers, every semi-group homomorphism g : N — R is determined by its values

Ap = g(p) at the prime numbers p. Therefore, we can write the partition function
as an Euler product:

zB) =Y e P =T e =TJa-1,5".

n>1 P k>0 p

The first equality is obtained using the primary decomposition of n € N and the fact
that g is a semi-group homomorphism, and the second equality follows by summing
the resulting geometric series.

Example 5.3. Let ¢ be a prime power. Given an algebraic variety X defined
over Z, let A, := #X,(F,) where X, stands for the reduction of X modulo p. The
corresponding semi-group homomorphism g gives then rise to the partition function

Zx(B) = [ —#X,E)~H)7".
p

The absolute Galois group Gal(Q/Q) acts on Q/Z through the quotient group
Gal(@alb /Q) ~ 7. This action of Z* extends to Q [Q/Z]xN and to the C *-algebra
C*(Q/Z) x N as in Propositions 4.33 and 4.34.

Let 8o > 0 be the exponent of convergence of the series Z(8) = ), g(n)~P.
For 8 > Bo, e BH. i5 a trace class operator and we have Gibbs states of the form

Tr(R,(a)e PHt)

(pt,ﬂ (a) = Tr(e_ﬂHt)
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Lemma 5.4. We have the following computation

when a = Spimpy, n # m

0
(pt,ﬂ (a) = -1 n _'B
Z(B)" Yonm1 2oy cit(s))" g(m)™F whena =3 cjsj € Q[Q/Z].
Proof. On an additive basis of A,z 0,), given by monomials of the form st i),
we have g, g (sptmil) = Z(B) 3, {er, Re(stimpts)e PHe €) = 0 when n £ m,
Therefore, the proof follows from the fact that ¢, g(s) = Z(8)™! D ons1 )" gn)~P
for every s € Q/Z. O

Remark 5.5. When g(n) = n, we have ¢, g(s) = ¢(B) 'Lig((s)), where {(B)
is the Riemann zeta function and Lig(t(s)) the evaluation at roots of unity of a
polylogarithm function.

Lemma 5.6. The ground states are given by ¢, oo(s) = t(s). Moreover, the G-action
by automorphisms of AQ/z.0,) agrees with the Galois G-action on 1(Q/Z).

Proof. When 8 — oo the Gibbs states converge weakly to ground states of the
form ¢, 00(s) = (€1, R (s)e PHie;) = ((s). The action of G := Gal(Q/Q) on
C*(Q/Z) x N factors through the abelianization G*. Hence, using the terminology
of Definition 4.35, we have Z(Gx) = Gy = G® and Z(Gy) = G. Thanks to
Proposition 4.39, G acts then on the Gibbs states by y : ¢, g = @08, and the
induced action on the limits @, 00 (S) > @i0y,00(s) agrees with the Galois action

on(Q/7Z). O

Example 3: Algebraic numb(is>z Let £k = Q. Recall from §2 the deﬁni_ti)c(m of the
concrete Bost-Connes datum (Q , 05,). We consider a fixed embedding Q  C C*.

Definition 5.7. Let @; = {s € @X [ls] < 1}, S = {Is||s € @X} and S< =
{Is||s € @2} Note that S is a multiplicative subgroup of R* and S< a subset
of SN (0, 1].

Remark 5.8. The subgroup & C RZ is a union of infinitely many geometric
progressions. Therefore, in the construction of the QSM-system, we will use the
Hilbert space H= ; see Notation 4.14.

o,

Le@xmbg (@X, @X)_l;e the set of embeddings {¢ € Emb(@X , @X) | N, (@x) =S}
and ((Q )< := {s € Q |N,(s) < 1}. In what follows we consider the following
subset of G-equivariant embeddings:

Embo(Q", Q") := {t € Emb@ ", Q") [(Q%) = «(@ )<} (5.1)
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Lemma 5.9. We have an inclusion Emby (@X,@X) C Embg (@X,@X).

Proof. Notethatevery embeddmgt € Embo(Q ,Q )maps theset{s € Q ||s| < 1}
isomorphically to the set {s € Q | N(s) < 1}. Consequently, N, (Q<) surjects
onto S<. This implies that N, (Q ) surjects onto S since any element of Ss. := S~S<
is the absolute value |s~!| = |s|~! of some s € @2 Therefore, if the absolute values
N,(s) = |i(s)], with s € @2, fill up the set S<, N,(s™!) fill up the complementary
subset S-. We hence conclude that N, (@X) surjects onto S. O

The Q-algebra B@x on) is generated by the elements s € @X and by the
partial symmetries u,, iy, n € N, as in Definition 4.9. Similarly, the (Q-algebra
B;@X ) is generated by s, u,, 1, and by the weight operators W(A),A € Q*;

sOn
see Definition 4.11. Given ¢ € Emby (@X,@X), we obtain a representation R, of
BE T 0y 8 the Hilbert space H, of Notation 4.14.

sOn

Lemma 5.10. For every embedding . € Embg(@x,@x), we have R, () pn) = 1.

Proof. The operator R, (i) ,) is the projection onto the subspace spanned by the
vectors €, , such that n = £”" for some § € Nl(@x). Given an embedding ¢ €
Embg (@X,@X), we have N, g@x) = &S. This implies that for every n € N, (@X) we
have 1 = |s| for some s € Q. Hence, we can always find an n'" root in S by taking
£ = |s/"] for some n'™ root of s in @X. In conclusion, R, (i) pn) = 1. O

Remark 5.11. Lemma 5.10 implies that if ¢ € Embg (@X,@X), we can then work
with the algebra BE T o) with the additional relation ) u, = 1.

s0n

Lemma 5.12. The pair ((@x, On), Embo(@x,@x)) is a very good concrete Bost—
Connes datum, in the sense of Definition 4.19.

Proof. Recall from the proof of Lemma 5.9 that for every ¢ € Embo(Q ,Q )
have N, (Q ) N (0,1] = S<. Hence, the Hilbert space HS, of Notation 4.14 is

independent of . Moreover, ¢ maps isomorphically the set Q < to L(@X)S. Now,

recall that the algebra 5/, and its C*-completion A’__ have generators
Q ,on,t Q" ,on,t

O[L

s € L(@X)S. The isomorphisms L(@X)S ~ @2 induce isomorphisms between the
algebras for different choices of «. Therefore, we can conclude that the algebras are
also independent of . 0
Notation 5.13. We write H= for the Hilbert space 7—[5 , With @ = id. Note that
thanks to Lemma 5.12, H= is independent of . Similarly, we write .A’( " for the

s0n

C*-algebra actm%(by bounded operators on H= through the representations R,, with

t € Embo(Q ,Q ).



BC-systems, categorification, QSM-systems, and Weil numbers 39

Given a semi-group homomorphism g : N — R and the homomorphism
—X
h: N(@Q ) — RX,A, > p,, we obtain a time evolution o, on A’ _, as in

Q ,0n)
Proposition 4.27, with a Hamiltonian as in Proposition 4.28, and a partition function

as in Theorem 4.30. This gives rise to the following result:

Proposition 5.14. Let t(@x)l ={s € @X | N(s) = 1}. Wh_e)r(t g(n) = n, and for
all B > 3/2, the Gibbs states evaluated on elements s € ((Q )1 are given by the
following convergent series (Z(B) := ), {(Bn) nh):

0Lp(s) = Z(B) Y us)" {(BrynF . (5.2)

n>1

Proof. The partition function of the QSM-system was obtained in Theorem 4.30. Its
trace Tr(R, (s)e #H") identifies with

D (e R Pie i) =3 )" g PR (e, ki€, s hrtare)

where the sum is taken over the elements of the orthonormal basis. The inner products
vanish unless a; (s) iXO for all r, i.e. unless N,(s) = 1. In the case N,(s) = 1, for
the choice of & : N,(Q ) — RX, A, — p,, we obtain

Y gm) P hO) ™ =N ")y gy P [Ja = pP)7
ro ky n D

n

The product over r reflects the fact that the Hilbert space H= is a tensor product
over r; see Theorem 4.30. L]

In contrast with the original Bost—Connes case, the following result shows that
—X
the “fabulous states” property is not satisfied! Intuitively speaking, QQ is “too large”
to give rise to a well behaved Bost—Connes system.
Proposition 5.15. In the limit B — oo the ground states take values ¢, 5o (s) = ()

—X —X
onalls € 1(Q ). The G-action on Q  induces the trivial action on the values of
the ground states.

Proof. In the limit 8 — oo, the Gibbs states ¢, g converge weakly to the ground
states ¢, 0, Which are given by the projection onto the kernel €; ; of the Hamiltonian.
The basis element €7, is given by the vector €, ® &), €, kr withn = land k, =0

for all r, so that n = ]_[r )Llf’ = 1. Thus, we have

t(s) when N,(s) =1

s) = (e ,Rse_ﬁHe = (€1.1,L(8)e =
(pL,OO( ) ( 1,1 L( ) 1,1) ( 1,1 ( ) 1,NL(s)) 0 when NL(S) # 1.

The absolute Galois group G = Gal(@/ Q) acts on @X. In this case Gy = G, hence
we have Z(Gyx) = {1}, see Example 4.36. Thus, the group Z(G) N Gy is also trivial,
hence the induced action on Gibbs states is trivial. ]
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Remark 5.16. It is also possible to construct a Bost—Connes type QSM-system
—X

for Q@ in a different way: using the logarithmic height function as a specialization

of a more general construction for toric varieties; see [13, §4].

Example 4: Weil numbers of weight zero. Let k = Q. Recall from Example 2.11
the definition of the concrete Bost—Connes datum (Wy(q), 07).

Let us denote by ¢ tIEXﬁxed embedding W(q) C @X, which restricts to
an embedding Wy(q) C Q of the Weil numbers of weight zero. Let Gy ()
and Gyy,(4) be the quotients, as in Definition 4.35, of the G-action on W(gq) and
Wo(q), respectively. Thanks to Proposition 2.9(iii), the G-action on YW(gq) preserves
weights. Therefore, Gy (g) = Gy, (g)-

In what follgvxs, we consider the following subset of G-equivariant embeddings
Embo(Wo(q), Q) = Z(Gw(q)) - to. Where y - 19 :=tg 0 .

Lemma 5.17. For every embedding « € Embg(Wy(q), @X), the countable
multiplicative subgroup N,(Wo(q)) of R is equal to {1}.

Proof. Thanks to Proposition 2.9(iii), the G-action on W(q) preserves weights.
Therefore, for every s € Wp(q), we have Ny oy (s) = Ni(y(s)) = grve) =
qv® = N, (s) = 1. O

Lemma 5.18. The Q-algebra By, (q),0,) agrees with the crossed product Q[Wy(q)]x
N, where the semi-group action of N on Q[Wy(q)] is given by

nl—)(sn—) Zs/).

s'€pn (s)

Proof. The two algebras have the same sets of generators and relations. In fact, the
crossed product algebra Q[Wp(g)] @ N is generated by the elements s € Wy(g) and
by isometries w,, for the generators p of the semi-group N, and their adjoints M;,
with the semi-group action implemented by s +— u pS/L;- The p, satisfy the
relations Upppy = [pp, Wpip = 1, and ,u;,up = /LppL;, for p # p’. The
subalgebra generated by the p, and ,u}'; is clearly isomorphic to the subalgebra of
Bow(q),0,) generated by the i, and ), by writing ,, as a product of s according
to the primary decomposition of n. The subalgebras Q[Wy(q)] of By (q),0,) and
Q[Wo(g)] x N also match, and the semi-group action inSii, = D vep, (5) S gives
the remaining relation of By, (4),0,)- O]

Remark 5.19. Since N,(Wy(q)) = {1}, the Q-algebra BEWo(q) o) 18 MO necessary
for the construction of the QSM-system.

Note that since a(n) = n and N,(Wo(q)) = {1}, the Hilbert spaces Hz,
are all equal to H := [?(N). Similarly, all the C-vector spaces &, are equal

V:=Vc. Given t € Embo(Wo(q),@X), the representation R, of By, (g),00)
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on V is given by R,(s)(¢) = (s)"€, and R,(Um)(€n) = €mn. Following
Proposition 4.18, this representation extends to a representation R, of the k-algebra
Bowvo(@),on,c) = CWo(q)] x N by bounded operators on H. The C*-algebra
Ao (q),0,) identifies then with the closure C*(Wy(g)) x N of C[Wy(g)] x N inside
the C*-algebra of bounded operators B(H.).

We construct the time evolution as in the case of the original Bost—-Connes system.
Let g : N — R be the standard embedding of N into R . The associated time
evolution is given by o;(s) = s and o7 (i) = n*’ u,, and the associated Hamiltonian
H := H, : I>(N) — [?*(N) by ¢, + log(n)e,. Consequently, the partition
function Z () agrees with the Riemann zeta function {(8) = >, n~B. The series
converges for B > 1. B

The absolute Galois group G = Gal(Q/Q) acts on Wy(q) through the
quotient Gyy(). This action extends to Q[Wp(q)] © N and to the C*-algebra
C*Wo(q)) x N as in Propositions 4.33 and 4.34.

Proposition 5.20. With the time evolution determined by g(n) = n, the low
temperature (8 > 1) Gibbs states of the quantum statistical mechanical system for the
concrete datum Wy (q), o) are polylogarithms evaluated at numbers m € Wy(q),
normalized by the Riemann zeta function. The action of the Galois group G as
symmetries of the system induces an action of the subgroup 7(Gw(q)) on the zero
temperature Gibbs states, which agrees with the restriction to 7(Gw(q)) of the Galois
action on t(Wy(q)).

Proof. For g(n) = n, the Hamiltonian is H €, = log(n) €,, with partition function
the Riemann zeta function, as in the original Bost—-Connes case. The low temperature
Gibbs states, evaluated on s € Wy(q), are of the form

o0 =i 52 0

n>1

For B — oo the weak limits of these Gibbs states define the zero temperature
ground states. These are given by the projection onto the kernel of the Hamiltonian.
Evaluated on elements s € Wy(q), they give

Grgor,o0(s) = (€1, Ry (m)e PHer) = y(s).

The action of G by automorphisms of the algebra determines an induced action of
Z(Gyy(g)) on the ground states states, as in Proposition 4.38. O

Example 4: Weil numbers. Let k¥ = Q. Recall from Example 2.12 the definition
of the concrete Bost—-Connes datum (WW(g), 0,,). As in the Erfcedirlg Example, we
will make use of the notations Gyy(g), to, and Embo(WV(q), Q ) = Z(Gyy(g)) - to-

Lemma 5.21. For every embedding ¢ € Emby (W(q),@x), the countable
multiplicative subgroup N,(W(q)) of R is equal to {q" | r € %}
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Proof. Thanks to Proposition 2.9(iii), the G-action on W(q) preserves weights.
Therefore, for every s € Wo(q), we have Nyjoy (s) = N,(y(s)) = gD = gv©,
This implies that N,,0, WV(q)) = N,(W(q)) = q%Z‘ O

Remark 5.22. Note that the semi-group N,(W(g)) C R is given by a single
geometric progression generated by the element ql/ 2,

The Q-algebra By (g),0,,) is generated by the elements s € WW(g) and by the
partial symmetries j,, 4y, n € N, as in Definition 4.9. Similarly, the Q-algebra
B is generated by s, i1, i and by the weight operators W(A),A € W(q);

W(q),on)
see Definition 4.11.

Lemma 5.23. The pair (W(q), 0,), Embyg (W(q),@x)) is a very good concrete
Bost—Connes datum, in the sense of Definition 4.19.

Proof. Since a(n) = n and N,(W(q)) is independent of ¢, the Hilbert spaces HZ ,
resp. the C-linear subspaces Vast ¢ are all equal to the Hilbert subspace H= of

H =12 (N)®/2({q" | r € £}), resp. to the C-linear subspace V=of V := Ve ®V, c,
spanned by the elements ¢, 4~ with r < 0. Moreover, since by Proposition 2.9(iii)
the G-action on W(qg) preserves weights, the set_{;v € W(g)|N(s) < 1} is
independent of the embedding ¢ € Emby(W(g),Q ). As a consequence, the
Q-algebra BEW( )0y and its C*-completion .A’(W( ). &r€ independentof ¢. [

Notation 5.24. Let A/(w( )0, DC the resulting C *-algebra acting on the Hilbert

space H= through the representations R,, with ¢ € Embo(WV(q), @X).

Remark 5.25. Let ¢ € Embo(W(q),@X). In contrast with the case of algebraic
numbers, the operator R, (14 [4») is not the identity but rather the projection onto the
subspace spanned by the vectors €, ,r/2 such that n|r.

Given a semi-group homomorphism g : N — R, we obtain the time evolution

or(n) = W(@) ™' or(n) = g) a0 (W) = W),
where w(7r) stands for the weight of 7. This gives rise to the Hamiltonian
H:=H :H>— H> e€pq > log(qg7" g(n))enqgr

and consequently to the partition function

ZB):=Tre Py =" 3" ¢"Pem)”. (5.3)

n€Z r<oe’

We denote by B the exponent of convergence of the series ), g(n)_ﬂ.
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Proposition 5.26. The partition function (5.3) is computed by the series
gn)~*
Z(p) = _, 5.4
B)=2 "3 (54)
n>1 q

which converges for B > B and diverges for B < Bo. In the case where g(n) = n,
(5.4) can be written as the series of polylogaritms Z(B) = ) ;~Lip (q_kg).

Proof. The first claim follows directly from Proposition 4.26 (with a single geometric
progression with generator ql/ 2). Concretely, we have:

_ “inb gn)~#
Y P =3 % g e =)
nez rs()e% n>1k>0 n>1 1_C] 2

with the estimate
g gm)F
1—q% " 1-¢q7%

g™ <

We now assume that g(n) = n. For § > B¢ = 1, and after exchanging the order of
summation, the above series can be re-written as

Y Y g = Y gl 0
k>0n>1 k>0

Lemma 5.27. When g(n) = n, for B > 1, the Gibbs states, evaluated on elements
s € W(q) are zero for weight w(s) # 0, while for s € Wy(q) they are given by

Y=o Lig(t(s)g /%)
Y k=0 Lig(g7*P12)

Proof. The partition function is provided by Theorem 5.26. Thus, we just need to
compute the trace

Tr(Rl(s)e_ﬂHl) = Z Z(en,q*kﬂ? Rl(s)e_ﬂHlEn,q*k/Z)

n=1k>0

= Z Z ()" g*BI2 g(n)7B (€n.g—k/2s €n g—k/2tw(s)

n>=1k>0

@Lp(s) = (5.5)

Yot Lks0 () g2 gm)™F when w(s) =0
0 when w(s) # 0.

This implies that ¢, g(s) = 0 when w(s) # 0. For s € Wy(q), and after exchanging
the order of summation, the above expression can be re-written as follows:

DD e g = TLig(us)g ).

k=0n>1 k>0



44 M. Marcolli and G. Tabuada

As a consequence, we obtain the above equality (5.5):

Te(R,(s)e PH) Yoo Lig(t(s)g™P/?)

P.p(s) = = . O

v Z(p) Y=o Lig(47#72)
Recall that the absolute Galois group G = Gal(Q/Q) acts on W(q) through the
quotient Gyy(q). This action extends to B, . , and to the C*-algebra A, ) - |

as in Propositions 4.33 and 4.34.

Proposition 5.28. In the limit B — oo the ground states are given by

s) t(s) whenw(s) =0
S) =
Proo 0 when w(s) # 0.

The G-action on W(q) induces an action of the subgroup Z(Gw(q)) C G on the
ground states, which agrees with the Galois action on the values t(Wy(q)).

Proof. The ground states are given by projections onto the kernel of the Hamilto-
nian H,. Therefore, we obtain the following equalities:

t(s) whenw(s) =0

s) = (e ,Rse_ﬂH‘e = US) (€1,1, €1 quwsn) =
Proo(s) = (€1,1, Ri(s) 1,1) (s) (€11 l.q ®) 0 when w(s) # 0.

/
—_ W(q),on)
Z(Gyw(q)) C G on the Gibbs states and on the ground states by ¢, g > @i0y,. This

follows from the fact that for every ¢« € Embg (W(q),@x) andy € Z (Gw(g))> we
have ¢ o y € Embo(W(q), @X). This action on ground states agrees with the Galois
action on the values, since ¢,o0y,00(s) = t(y(s)) = y(1(s)), by G-equivariance of the
embeddings. O

The G-action by automorphisms of the algebra A induces an action of

Examples 5 and 6 of §2 are only abstract Bost-Connes data. Example 5 is not a
concrete datum because « is not a semi-group homomorphism. The case of Germs in
Example 6 is also not a concrete datum, because alpha is the trivial homomorphism
a(n) = 1. Moreover, we do not have an embedding of Wy(p®°) in @X, so even the
partial construction for @(n) = 1 discussed in §4.7 does not apply. The case of the
completion WL (g) in Example 7 of §2 is also not a concrete Bost—Connes datum.
We consider the remaining cases in §6.

6. Weil restriction and completion

The concrete Bost—Connes data of Examples 2 (Weil restriction) and 7 (Completion)
do not satisfy the assumption of Convention 4.2. Nevertheless, we explain briefly in
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this section how they still give rise to QSM-systems. The key idea is to consider them
as “diagonal subsystems” of larger QSM-systems. The latter are related to the higher
rank Bost—Connes systems introduced in [13, 14]. We only give an outline of the
constructions. The details, along with a general treatment of “high rank Bost—-Connes
data”, will appear in a forthcoming article.

Example 2: Weil restriction. Let ¥ = R. Recall from §2 the definition of the
concrete Bost—-Connes datum (Q/Z x Q/Z, o,,). In this case, a(n) = n?.

We now construct a large QSM-system (which is not associated to a Bost—Connes
datum) and an involution on it. The QSM-system associated to (Q/Z x Q/Z, o,)
will be defined as a subsystem. Given a pair (n,m) € N2, let 6y, be the
homomorphism (n-— m-—) : Q/ZxQ/Z — Q/Z xQ/Z and p, ,, the associated
map Q/Z x Q/Z — P(Q/Z) x P(Q/Z) that sends an element (s1,53) to its
pre-image under 0,,,. Let B(s g, ,,) be the R-algebra generated by the elements
(s51,52) € Q/Z x Q/Z and by the isometries fin,m, jiy ,, With (n,m) € N2, We
assume that (p, m ik i = Unk,mi, that u;’mun,m =1, and

Mnmigy = R Hnm When (n.k) = (m.1) =1

/'Ln,m(sl,sz)/’bz,m = ﬁ Z (Sll’s/z) .
(57-55)€0n.m (51,52)
Remark 6.1. Intuitively speaking, the R-algebra B(s g, ,,) is a “higher rank”
generalization of the one of Definition 4.9, where the semi-group homomorphism o
is now given by N2 — N, (n,m) + nm. The generalizations include the higher
rank Bost—Connes algebras [13, 14] and will be discussed in a future work.

We have isomorphisms of R-algebras

B(s.0p.m = RIQ/Z]1®? x N? ~ Bgz,06,) ® BQ/Z.0m) (6.1)

where B@/z,0,) = R[Q/Z] x N is the R-algebra of the original Bost-Connes
system. We have a Z /2-action on (6.1) which switches the two copies of B(q,z,6,,)-
Consider the Hilbert space £2(N x N) equipped with the standard orthonormal basis
{€n.m}. Via the identification between ¢,> and €, ,, the Hilbert space ¢?(a(N))
can be regarded as a subspace of £2(N x N). Given an embedding t = (u;,u;) €
2 x 1> = Emb(Q/Z,@X) X Emb(Q/Z,@X), the assignments

R,(nm)ert = €nkmi  Ri(s1,52)€ks = u1(s1)F uz(s2)! exy

define a representation R, of the R-algebra B(s 4, ,,) on £2(N?). The C*-completion
Az .onm) OF Bs.opm ®r C is isomorphic to C*(Q/Z)®* x N2, This is a
particular case of a higher rank Bost—Connes algebra [14]. Given a semi-group
homomorphism g : N x N — R, the assignments o;(sq,52) := (s51,52) and
0t (finm) 1= &(n,m)" iy m define a time evolution on Az g, ,,)-
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We now construct the QSM-system associated to (Q/Z x Q/Z, 0,,). Let us write
B(/zxQ/z.0,) for the subalgebra of Bg/zxQ/z,0,.,,) generated by the elements
(51,52) € Q/Z x Q/Z and by the isometries u,, with n € N. Under the
representations R,, B(Q/zxQ/z.0,) preserves the subspace £2(a(N)) C £*(N?).
Therefore, the C*-completion AQ;zxQ/z.0,) of B@/zxQ/z.0,) ®r C can be
identified with C*(Q/Z x Q/Z) x N, with the semi-group action given by

1
(51,52) > fnn(S1,52) [y i= P Z (51,55) -

(S; ,Sé)epn,n (s1,52)

Note that the assignments (s1,s2) — (s2,51) and Upn, — Unn define a Z/2-
action by automorphisms of A(Q/zxQ/z.0,)- Let § : N> — RX be a semi-group
homomorphism of the form g(n,m) := g(n)g(m), with g : N — R a semi-group
homomorphism. The time evolution determined by g preserves the C *-algebra
A©/zxQ/z,0,)- Moreover, the Hamiltonian generating the restriction of the time
evolution to A(Q,zxQ/z.c,) in the representations R, on the Hilbert space £2(a(IN))
is given by He, , = 2log(g(n))e€,,». Hence, the partition function Z(f8) agrees
with ), g(n)~2B. Finally, the Z /2-action on A(Q,zxQ/z,0,) is compatible with the
time evolution.

Example 7: Completion. Let &k = Q. Recall from Example 2.24 the definition of
the concrete Bost—-Connes datum (WW(q), 0,,). In this case, a(n) = n?. As proved in
Proposition 2.23, we have a natural identification

V), 0n) = Wo(q), 0n) X (Q/2Z, ).

The QSM-system associated to (W(q), 0y,) will be obtained as a subsystem.

Let Bovy(q)xQ/22,0, ) be the Q-algebra generated by the elements s = (77, 7) €
Wo(q) x Q/2Z and by the isometries ft ,» with (n,m) € N2. We assume that
MnmPk,] = MKnk,ml> that iy tn.m = 1, and that

Mn,m//vz,l = Mz,lﬂn,m when (n,k) = (m,l) =1
. 1
(T g = — Y (1),

T en mry= ()
The Q-algebra By, (q)xQ/22.0, ) identifies with the semi-group crossed product
Q[Wh(q) x Q/2Z]x N2, As in the preceding example, the Hilbert spaces £?(a(N))
can be regarded as a subspace of ¢£2(N2). Now, consider the following set of
embeddings

Embo(Wo(q) X Q/2Z, Q" x Q) = Z(Gy(g)) - to X Emb(Q/2Z, Q/Z), (6.2)
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where Z (Gwi(g)) - to € Emb(Wh(q). @X) is defined as in §5. Given an embedding
t = (Lo o y,u) € (6.2), the assignments

R(inm)eks = €nkmi R, r)er = to(y(m)*u(r) e,

define a representation R, of the Q-algebra B, (q)xQ/22,0y.n) ON (2(N?). The
C*-completion A (g)xQ/2Z.0n.m) oF Bove(@)xQ/22,04.m) ®Q C can be identified
with C*(Wo(q) x Q/2Z) x N2. The choice of § : N> — R* determines a time
evolution on A (q)xQ/22,04.m)» With 07 (lm.n) = &(m,n)" iy n and oy (7, 1) =
(7, 7).

We now construct the QSM-system associated to (Wy(q) x Q/27Z,0,). Let
Bovo(@)xQ/22.0,) be the subalgebra of By g)xQ/22.0,.,) generated by the
elements s = (mw,r) € Wy(g) x Q/2Z and by the isometries u,,. Under
the representations R, Bw,(q)xQ/2Z.0,) Preserves the subspace £(a(N)) C
€?(N?). Therefore, the C*-completion Ay, (g)xQ/22,0,) can be identified with
the C *-algebra C*(Wy(gq) x Q/27Z) x N, with the semi-group acting diagonally by

1
() B (T Oy = Y (6.
E"nr)=(m,r)

Let § : N> — RX be a semi-group homomorphism of the form g(n,m) :=
g(n)g(m), with ¢ : N — RY a semi-group homomorphism. The time
evolution determined by & preserves the C*-algebra A, (4)xQ/22,0,)- Moreover,
the Hamiltonian implementing it in the representation R, on £?(a(N)) is given
by He,, = 2log(g(n))e,,. Hence, the partition function Z(f) agrees
with ), g(n)™28. In the particular case where g(n) = n the Gibbs states are
of the following form:

Lizg (1o (y ())u(r))
)

The group Z(Gw(q)) acts by automorphisms of the algebras B, q)xQ/22Z.,07.m)
and Ay (q)xQ/2Z,0n.m)- This action preserves the subalgebras By, (q)xQ/22,01)
and A, (q)xQ/22.5,,) and induces an action on the set of representations by R, —
R,y . Finally, the action on the subalgebras is compatible with the time evolution and
agrees with the Galois action on the values of ground states at elements s = (7,r) €

Wo(q) x Q/2Z.

(pﬁ,L(ﬂs r) =

References

[11 Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et
Syntheses, 17, Société Mathématique de France, Paris, 2004. Zbl 1060.14001 MR 2115000


https://zbmath.org/?q=an:1060.14001
http://www.ams.org/mathscinet-getitem?mr=2115000

48

(2]

(3]

(4]

(51

(6]

(7]

(8]

(91

(10]

(11]

[12]

[13]

[14]

(15]

(16]

(17]

M. Marcolli and G. Tabuada

J. B. Bost and A. Connes, Hecke algebras, type III factors and phase transitions with
spontaneous symmetry breaking in number theory, Selecta Math. (N.S.), 1 (1995), no. 3,
411-457. Zbl 0842.46040 MR 1366621

O. Bratteli and D.W. Robinson, Operator algebras and quantum statistical mechanics,
Vol. I and II, second ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.
Zbl 0903.46066 MR 1441540

A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta
function, Selecta Math. (N.S.), 5 (1999), no. 1, 29-106. Zbl 0945.11015 MR 1694895

A. Connes, C. Consani and M. Marcolli, Noncommutative geometry and motives: the
thermodynamics of endomotives, Adv. Math., 214 (2007), no. 2, 761-831. Zbl 1125.14001
MR 2349719

A. Connes, C. Consani and M. Marcolli, The Weil proof and the geometry of the adele
class space, in Algebra, Arithmetic, and Geometry: in honor of Yu. I. Manin, 339-406,
Progress in Mathematics, 270, Part I, Birkhéuser, 2009. Zbl 1208.11108 MR 2641176

A. Connes, C. Consani and M. Marcolli, Fun with Iy, J. Number Theory, 129 (2009),
1532-1561. Zbl 1228.11143 MR 2521492

A. Connes and M. Marcolli, Noncommutative geometry, quantum fields and
motives, American Mathematical Society Colloquium Publications, 55, AMS, 2008.
7Zbl 1159.58004 MR 2371808

A. Connes and M. Marcolli, From physics to number theory via noncommutative geometry,
in Frontiers in number theory, physics, and geometry. I, 269-347, Springer, 20006.
Zbl 1126.58006 MR 2261099

A. Connes, M. Marcolli and N. Ramachandran, KMS states and complex multiplication,
Selecta Math. (N.S.), 11 (2005), no. 3-4, 325-347. Zbl 1106.58005 MR 2215258

P. Deligne, Théorie de Hodge. Il, Inst. Hautes Etudes Sci. Publ. Math., 40 (1971), 5-57.
7Zbl 0219.14007 MR 0498551

P. Deligne and J. S. Milne, Tannakian Categories, in Hodge Cycles, Motives,
and Shimura Varieties, 101-228, Lecture Notes in Mathematics, 900, 1982.
Available at J. S. Milne’s webpage: http://www. jmilne.org/math/xnotes/tc.html
7Zbl 0477.14004 MR 0654325

Z. Jin and M. Marcolli, Endomotives of toric varieties, J. Geom. Phys., 77 (2014), 48-71.
7Zbl 1315.14010 MR 3157902

M. Marcolli, Cyclotomy and Endomotives, p-Adic Numbers Ultrametric Anal. Appl., 1
(2009), no. 3, 217-263. Zbl 1236.46067 MR 2566053

J. S. Milne, Motives over finite fields, in Motives (Seattle, WA, 1991), 401-459, Proc.
Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994. Zbl 0811.14018
MR 1265538

J. S. Milne, Basic theory of affine group schemes, Available at J. S. Milne’s webpage:
www. jmilne.org/math/CourseNotes/ala.html

G. Tabuada, Chow motives versus versus noncommutative motives, J. Noncommutative
Geometry, 7 (2013), no. 3, 767-786. Zbl 1296.14019 MR 3108695


https://zbmath.org/?q=an:0842.46040
http://www.ams.org/mathscinet-getitem?mr=1366621
https://zbmath.org/?q=an:0903.46066
http://www.ams.org/mathscinet-getitem?mr=1441540
https://zbmath.org/?q=an:0945.11015
http://www.ams.org/mathscinet-getitem?mr=1694895
https://zbmath.org/?q=an:1125.14001
http://www.ams.org/mathscinet-getitem?mr=2349719
https://zbmath.org/?q=an:1208.11108
http://www.ams.org/mathscinet-getitem?mr=2641176
https://zbmath.org/?q=an:1228.11143
http://www.ams.org/mathscinet-getitem?mr=2521492
https://zbmath.org/?q=an:1159.58004
http://www.ams.org/mathscinet-getitem?mr=2371808
https://zbmath.org/?q=an:1126.58006
http://www.ams.org/mathscinet-getitem?mr=2261099
https://zbmath.org/?q=an:1106.58005
http://www.ams.org/mathscinet-getitem?mr=2215258
https://zbmath.org/?q=an:0219.14007
http://www.ams.org/mathscinet-getitem?mr=0498551
http://www.jmilne.org/math/xnotes/tc.html
https://zbmath.org/?q=an:0477.14004
http://www.ams.org/mathscinet-getitem?mr=0654325
https://zbmath.org/?q=an:1315.14010
http://www.ams.org/mathscinet-getitem?mr=3157902
https://zbmath.org/?q=an:1236.46067
http://www.ams.org/mathscinet-getitem?mr=2566053
https://zbmath.org/?q=an:0811.14018
http://www.ams.org/mathscinet-getitem?mr=1265538
www.jmilne.org/math/CourseNotes/ala.html
https://zbmath.org/?q=an:1296.14019
http://www.ams.org/mathscinet-getitem?mr=3108695

BC-systems, categorification, QSM-systems, and Weil numbers 49
Received 20 March, 2015

M. Marcolli, Department of Mathematics, California Institute of Technology,
Mail Code 253-37, 1200 E California Blvd, Pasadena, CA 91101, USA
E-mail: matilde @caltech.edu

G. Tabuada, Department of Mathematics, Massachusetts Institute of Technology,
Building E17, Room 444, Cambridge, MA 02139, USA

E-mail: tabuada@math.mit.edu


mailto:matilde@caltech.edu
mailto:tabuada@math.mit.edu

	Introduction
	Bost–Connes systems
	Categorification
	Quantum statistical mechanics
	Observables
	Time evolution and Hamiltonian
	Partition function: finite union of geometric progressions
	Partition function: infinite union of geometric progressions
	Symmetries
	Gibbs states
	Bost–Connes data with trivial 

	Examples of QSM-systems
	Weil restriction and completion

