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Abstract. We construct a variant Kn of the Hopf algebra Hn, which acts directly on the
noncommutative model for the space of leaves of a general foliation rather than on its frame
bundle. We prove that the Hopf cyclic cohomology of Kn is isomorphic to that of the pair
.Hn; gln/ and thus consists of the universal Hopf cyclic Chern classes. We also realize these
classes in terms of geometric cocycles.
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1. Introduction

The application of Connes’ cyclic category [4] to the cohomology of Hopf algebras,
originally employed to compute the local index formula [6] for hypoelliptic operators
on spaces of leaves of foliations [7], has stimulated the interest in developing a theory
of Hopf cyclic characteristic classes in the framework of noncommutative geometry.
To this end the geometric characteristic classes of foliations (see e.g. [3]) have been
gradually reconfigured in the context of Hopf cyclic cohomology [18, 19, 21, 22, 24],
which holds the potential of being applicable to other noncommutative spaces
(cf. [10]).

In this paper we construct a variant Kn of the Hopf algebra Hn (cf. [7, 18]),
which acts directly on the noncommutative model for the generic space of leaves
rather than on its frame bundle. Associated to a Kac decomposition of the group
Diff.Rn/ distinct from that employed in defining Hn, the Hopf algebra Kn has a
different Hopf cyclic cohomology, which is no longer identifiable as the Gelfand–
Fuks cohomology of the Lie algebra an of formal vector fields of Rn. Instead, in
analogy with the van Est isomorphism for algebraic groups (see [15]), the (absolute)
Hopf cyclic cohomology of Kn is canonically isomorphic to the relative Lie algebra
cohomology of the pair .an; gln/, or equivalently to theHopf cyclic cohomology of the
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pair .Hn; gln/ (cf. [18,19]), and therefore it also is a repository of the universal Hopf
cyclic Chern classes. The proof of this isomorphism is achieved by supplementing
our earlier techniques with those in [23]. By a construction parallel to that in [21],
we then realize these classes in terms of concrete geometric cocycles, in the spirit of
the Chern–Weil theory.

The paper is organized as follows. In §2 we define the Hopf algebra Kn via its
natural action on the étale groupoidRnÌDiff.Rn/ı . In broad outline this construction
parallels that of Hn at the level of the prolongation groupoid on frame bundle.
However, unlike Hn, Kn is no longer isomorphic as an algebra with a quotient of
a universal enveloping algebra, and its antipode is more intricate. To prove that it
actually is a Hopf algebra we employ the Lie–Hopf algebra techniques developed
in [23] in order to realize it as a bicrossed product.

In §3 we refine the Lie–Hopf algebra decomposition of Kn by means of a
further bicrossed product factorization of its commutative Hopf subalgebra FK.
Using the full factorization so obtained, we then prove in §4 that the Hopf cyclic
cohomology of Kn is isomorphic to the relative Hopf cyclic cohomology of the pair
.Hn; gln/, and therefore (cf. [18]) to the truncated polynomial ring of Chern classes.
A crucial ingredient of the proof is supplied by [23, Theorem 4.10], which provides
the appropriate version of the van Est isomorphism in the present context.

The Chern–Weil type construction of cocycles representing the Hopf cyclic
classes of Kn is carried out in §5, by an adaptation of the methods developed
in [21, 22]. This construction is then illustrated in a very concrete fashion in §6,
where we produce completely explicit cocycles representing the Hopf cyclic classes
of K1 and of the pair .H1; gl1/. The detailed calculation shows clearly how
the equivariant Chern classes c0 � 1 and c1 in the Bott complex become Hopf
cyclic Chern classes of K1, respectively .H1; gl1/. Particularly noteworthy is the
metamorphosis of the (secondary) Godbillon–Vey cocycle ofH1 into a representative
of a (primary) Chern class. To further clarify this phenomenon we follow through
with an additional calculation which shows how to restore the Godbillon–Vey class.
This also serves to point out that in order to incorporate the secondary Hopf cyclic
transverse characteristic classes at the same direct level it is necessary to pass to a
topological enhancement of the Hopf algebra K1.

Consisting exclusively of primary classes, the Hopf cyclic cohomology of Kn is
perfectly positioned to be a receptacle for the yet elusive transverse index formula
representing the Connes–Chern character in equivariant K-homology. On the other
hand, as mentioned above, a full Hopf cyclic representation of all the geometric
transverse characteristic classes requires the passage to a topological enhancement
of these Hopf algebras. This is a separate development of interest in its own, which
is work in progress and will make the object of a forthcoming paper [20].
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2. The Hopf algebraKn and its standard action

Let M D Rn and let G WD Diff.M/ı be the group of all orientation preserving
diffeomorphisms of M equipped with the discrete topology. The Hopf algebra Kn
arises in the same way asHn (cf. [7]), only at the level of the action groupoidM ËG
rather than of its frame bundle prolongationM Ë G.

Thus, we consider the crossed product algebra A � AG WD C1c .M/ Ì G,
where G acts on C1c .M/ by ' F f D f ı '�1. A typical element of AG is a finite
sum

P
i fiU

�
'i
, where fi 2 C1c .M/ and U �'i stands for '�1i 2 G. The product

of AG is determined by the multiplication rule

f U �' gU
�
 D f � .g ı '/U

�
 ' : (2.1)

The vector fields Xk Š @k WD @

@xk
are made to act on AG by

Xk.f U
�
' / D Xk.f /U

�
' D @k.f /U

�
' : (2.2)

One observes that

Xk.f U
�
' � gU

�
 / D Xk.f � .g ı '//U

�
 '

D @k.f /U
�
' � gU

�
 C

X
i

@k.'
i / � f U �' @i .g/U

�
 ;

(2.3)

which proves that for all a; b 2 A one has

Xk.ab/ D Xk.a/b C
X
i

� ik.a/Xi .b/; (2.4)

where
� ij .f U

�
' / D @j .'

i /f U �' : (2.5)
Another elementary manipulation gives

� ij .f U
�
' � gU

�
 / D �

i
j .f � .g ı '//U

�
 ' D

X
k

@j .'
k/ f U �' � @k. 

i / gU � ; (2.6)

showing that for any a; b 2 A

� ij .ab/ D
X
k

� ik.a/ �
k
j .b/: (2.7)

In addition, we introduce the Jacobian operator,

�.f U �' / D det J.�/ � f U �' ; (2.8)

where J.�/.x/ D �0.x/ stands for the Jacobian matrix of � at x 2 V . It is an algebra
automorphism of A, whose inverse acts by

��1.f U �' / D det J.'�1/ ı ' f U �' D det J.'/�1 f U �' : (2.9)
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Definition 2.1. The algebra Kn is the unital subalgebra of L.AG/ generated by the
operators fXk; � ij ; �

�p j i; j; k D 1; : : : ; nI p 2 Ng.
Note that the algebra Kn also contains � D

P
�2Sn

.�1/��1
�.1/
� � � �n

�.n/
, as well

as the operators � ij1;:::;jk , where 1 � i; j1; : : : ; jk � n,

� ij1;:::;jk .f U
�
' / D @jk � � � @j1.'

i / � f U �' ; (2.10)

which are iteratively generated by the commutators

ŒX` ; �
i
j1;:::;jk

� D � ij1;:::;jk ;l ; (2.11)

Other obvious relations are

ŒXi ; Xj � D 0; (2.12)
� ij1;:::;jk D �

i
j�.1/;:::;j�.k/

; for any permutation � 2 Sk; (2.13)

Œ� ij1;:::;jk ; �
p
q1;:::;qm

� D 0; Œ��1; � ij1;:::;jk � D 0; (2.14)

��1
X
�2Sn

.�1/��1�.1/ � � � �
n
�.n/ D 1 ; (2.15)

ŒXk; �
�1� D ���2

X
�2Sn

.�1/�
�
�1�.1/k � � � �

n
�.n/ C � � � C �

1
�.1/ � � � �

n
�.n/k

�
: (2.16)

Proposition 2.2. The following collection of operators forms linear basis for Kn :

��p�
i1
J1
� � � �

im
Jm
X
q1
`1
� � �X

qk
`k
I (2.17)

here 1 � i1; : : : ; im � n, 1 � `1; : : : ; `k � n, p; q1; : : : ; q` 2 ZC, and Jp are finite
ordered sets Jp D fj1 � j2 � � � � � jmpg, with 1 � jr � n.

Proof. Similar to that of [18, Proposition 1.3] .

We use the action ofKn onAG and the corresponding Leibnitz rules, such as (2.4),
(2.5), to equip Kn with the bialgebra structure defined by the condition

�.k/ D k.1/ ˝ k.2/ iff k.ab/ D k.1/.a/k.2/.b/;
".k/1A D k.1/:

In particular,

�.X`/ D X` ˝ 1C �
k
` ˝Xk; (2.18)

�.� ij / D �
k
j ˝ �

i
k; (2.19)

�.�/ D � ˝ �; �.��1/ D ��1 ˝ ��1; (2.20)

�.� ij;k/ D �
m
j;k ˝ �

i
m C �

`
k�

m
j ˝ �

i
m;l ; (2.21)

�.� ij1;:::;jk / D Œ�.Xjk /;�.�
i
j1;:::;jk�1

/�; (2.22)

".�/ D ".��1/ D 1; ".� ij / D ı
i
j ; ".X`/ D ".�

i
j1;:::;jk

/ D 0: (2.23)
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Let Kab be the commutative polynomial algebra generated by � ij1;:::;jk and ��1.
It is obvious that Kab is a subbialgebra of Kn.

For k 2 Kab we define �K.k/ W G! C1.V / by

�K.k/. / D k.U
�
 /U : (2.24)

One readily checks that the following cocycle property holds

�K.k/. 1 2/ D �K.k.1//. 2/�K.k.2//. 1/ ı  2: (2.25)

Using the above operators we then define the map S W Kab ! Kab by

S.f /.gU � / D �K.f /. 
�1/ ı  � g U � : (2.26)

Lemma 2.3. The map S defined in (2.26) is the antipode of Kab and hence Kab is a
Hopf algebra.

Proof. We should show that S is the inverse of IdKab in the convolution algebra
Hom.Kab;Kab/. Indeed we first verify that S is the left inverse,

.IdKab �S/.f /.U
�
 / D f .1/S.f .2//.U

�
 / D f .1/.�K.f .2//. 

�1/ ı  U � /

D �K.f .1//. /�K.f .2//. 
�1/ ı  U � 

D �K.f /.e/U
�
 D ".f /U

�
 :

(2.27)

Here in the last two equalities we have used the cocycle property (2.25) of �K and
the very definition of ". Similarly, one proves that S is a right convolution inverse
to IdKab .

To equip the algebra Kn itself with a Hopf algebra structure, we shall check that
the Lie algebra V generated by the X`’s together with the copposite Hopf algebra
FK D Kab

cop form a Lie–Hopf pair in the sense of [23]. It will follow that the
universal enveloping algebra U.V / of V together with FK form a matched pair of
Hopf algebras (cf. [16]), from which we will reassemble Kn.

The Lie algebra V acts on FK from the left via

F W V ˝FK ! FK; X F f D ŒX; f �: (2.28)

Explicitly, for f 2 FK,

.X` F f /.gU
�
 / D .X`f � fX`/.gU

�
 / D X`.�K.f /gU

�
 / � f .@`.g/U

�
 /

D @`.�K.f /gU
�
 C�K.f /@`.g/U

�
 � �K.f /. /@`.g/U

�
 

D X`.�K.f //gU
�
 :

(2.29)

We also define the following right coaction of FK on V by

H W V ! V ˝FK;H.X`/ D Xk ˝ �k` : (2.30)
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Lemma 2.4. Via the action and coaction defined in (2.28) and (2.30),FK is aV -Hopf
algebra.

Proof. Using the coproduct of � ij , it is straightforward to see that (2.30) defines a
coaction. We need to verify that the action F and the coactionH satisfy the conditions
required for a Lie–Hopf pair (cf. [23]).

First we should check that for any g 2 FK and any X 2 V one has

�.X F g/ D X ��.g/ D g.1/ ˝X F g.2/ CX<0> F g.1/ ˝X<1>g.2/ : (2.31)

Indeed if a; b 2 A and f 2 Kab then

�.X` F f /.ab/ D ŒX`; f �.ab/ D X`f .ab/ � fX`.ab/

D X`.f .1/.a/f .2/.b// � f .X`.a/b C �
k
` .a/Xk.b//

D X`.f .1/.a//f .2/.b/C �
k
` .f .1/.a//Xk.f .2/.b//

� f .1/.X`.a//f .2/.b/ � f .1/.�
k
` .a//f .2/.Xk.b//

D ŒX`; f .1/ �.a/f .2/.b/C �
k
` f .1/.a/ŒXk; f .2/ �.b/

D X` F f .1/.a/f .2/.b/C .X <̀1>
f .1//.a/.X <̀0>

F f .2//.b/:

(2.32)

Thus, for any X 2 V ,

�.X F f / D X F f .1/ ˝ f .2/ CX<1>f .1/ ˝X<0> F f .2/ : (2.33)

Since the Lie algebra V is commutative and � i
j;k
D � i

k;j
the coaction H satisfies the

structure identity of V:
Finally, ".X` F f / D 0 for any f 2 Kab, which completes the verification of the

axioms of a Lie–Hopf pair.

As a consequence, the bicrossed product Hopf algebra FK IC U.V / is well-
defined. We define the map

I W FK IC U.V /! Kcop
n ; I.f IC u/ D f u: (2.34)

Proposition 2.5. The above map I is an isomorphism of bialgebras.

Proof. One uses the linear basis (2.17) for K to see that I is an isomorphism of
vector spaces. Let us check that the map I is an algebra homomorphism. We first
use (2.29) to see that uf D u.1/ F f u.2/ in Kn,

uf .gU � / D u.�K.f /. /gU
�
 / D u.�K.f /. /g/U

�
 

D u.1/.�K.f /. //u.2/.g/U
�
 D ..u.1/ F f /u.2//.gU

�
 /:

(2.35)

This shows that I is indeed an algebra map.
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To show that I is a coalgebra map it is necessary and sufficient to check that I
commutes with coproduct on the generators. Indeed,

.I ˝ I/.�FKICU.V /.f IC 1// D .I ˝ I/.f .2/ IC 1/˝ I.f .1/ IC 1/

D f .2/ ˝ f .1/ D HKcop.f /I

.I ˝ I/.�FKICU.V /.1 IC X`// D .I ˝ I/.1 IC Xk ˝ �
k
` IC 1

C 1 IC 1˝ 1 IC X`/

D Xk ˝ �
k
` C 1˝X` D HKcop.X`/:

Corollary 2.6. The following defines the antipode of Kn:

SK.u/ D SFK.u<1>/SU .u<0>/; SK.f / D SFK.f /: (2.36)

Hence Kn is a Hopf algebra and I is an isomorphism of Hopf algebras.

Proof. One uses the antipode definition for a bicrossed product

S.f IC u/ D .1 IC S.u
<0>

//.S.f u
<1>

/ IC 1/; f 2 F ; u 2 U : (2.37)

and the fact that U is cocommutative and FK is commutative to see

S�1FKICU .f IC u/ D SFK.f u<1>/ IC SU .u<0>/: (2.38)

Since I is isomorphism of bialgebras and FK IC U is a Hopf algebra, I induces a
unique antipode on Kn. Equivalently, S W K! K is defined by the identity

SK D I ı S�1FKICU ı I�1:

One sees that

S.� ij / D �
�1m

j
i ; (2.39)

where mpq D .�1/pCq detMp
q , with Mp

q signifying the .n � 1/ � .n � 1/ matrix
obtained by removing the qth row and pth column of the matrix Œ� ij �. Also,

S.�/ D ��1; S.��1/ D �;

S.� ijk/ D �S.�
i
r /S.�

s
j /S.�

t
k/�

r
st ;

S.Xk/ D �S.�
`
k/X`:

(2.40)

3. Bicrossed product decomposition ofFK

We start with the decomposition of G D T �G�, where

T D f' 2 G j '.x/ D x C b; for some b 2 Rng ; (3.1)

G� D f 2 G j  .0/ D 0g: (3.2)
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Any � 2 G can be written uniquely as

� D '� ı  � ; '� 2 T;  � 2 G�: (3.3)

where
'�.x/ D x C �.0/;  �.x/ D �.x/ � �.0/: (3.4)

This yields that .T;G�/ is a matched pair of groups with respect to the left action
of G� on T and the right action of T on G� determined by

 ı ' D . F '/ ı . G '/: (3.5)

Thus, for ' 2 G� defined by '.x/ D x C b, and for  2 GC one has

 F '.x/ D x C  .b/;  G '.x/ D  .x C b/ �  .b/: (3.6)

The first equation shows that under the canonical identification of Rn with the
translation group, ' 2 T $ b D '.0/ 2 Rn, the action of G� on T is just its
natural action on Rn.

Let F.G�/ be the commutative unital algebra of functions on G� generated by
the coefficients of the Taylor expansion at 0,

ˇij1;:::;jk . / D @jk : : : @j1 
i .x/

ˇ̌̌
xD0

; 1 � i; j1; : : : ; jk � n;  2 G�;

ˇ�1. / D
1

det.ˇij /
:

(3.7)

One proves as in [18, Proposition 2.5] that the group structure of G� induces a
Hopf algebra structure on F.G�/, determined by

�.f /. 1;  2/ D f . 1 ı  2/;  1;  2 2 G�; (3.8)

S.f /. / D f . �1/;  2 G�; (3.9)
".f / D f .e/: (3.10)

One notes that for � ij1;:::;jk 2 Kn we have

ˇij1;:::;jk . / D �.�
i
j1;:::;jk

/. /.0/; ˇ�1. / D �.��1/. /.0/: (3.11)

There is a unique isomorphism of Hopf algebras

� W Kab
cop
Š FK ! F.G�/; (3.12)

with the property that

�.��1/ D ˇ�1; �.� ij1;:::;jk / D ˇ
i
j1;:::;jk

; 1 � i; j1; : : : ; jk � n; k 2 N: (3.13)
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One uses the right action of T on G� to get a left action of T on F.G�/ by

' F f . / D f . G '/: (3.14)

We identify V with the Lie algebra of the Lie group T, as the left invariant vector
fields, and hence get the following action of V on F.T/

.X F f /. / D
d

dt

ˇ̌̌̌
tD0

f . G exp.tX//; f 2 F.G�/;  2 G�; X 2 V: (3.15)

To illustrate this action on the generators we compute:

@j . G exp.tX`//i .x/
ˇ̌̌
xD0

D @j . 
i .x C te`/ �  i .te`//

D .@j 
i /.x C te`/

ˇ̌̌
xD0

D .@j 
i /.te`/

(3.16)

and continue by

X` F ˇ
i
j . / D

d

dt

ˇ̌̌̌
tD0

ˇij . G exp.tX`//

D
d

dt

ˇ̌̌̌
tD0

.@j 
i /.te`/ D @`@j 

i .x/
ˇ̌̌
xD0

D ˇij;l. /:

(3.17)

Similarly one proves that

X` F ˇ
i
j1;:::;jk

D ˇij1;:::;jk ;l : (3.18)

One observe that the action of G� on T is smooth and hence induces an action of G�
on V ,

 FX.g/ D
d

dt

ˇ̌̌̌
tD0

g. F exp.tX//; g 2 C1.Rn/: (3.19)

In dual fashion, the action of G� on V defines a coaction

HV W V ! V ˝F.G�/; (3.20)

defined by

HV .X`/ D Xj ˝ f j` ; if and only if f j
`
. /Xj D  FX` (3.21)

Let us explicitly compute this coaction. Since the action of G� on T is the natural
one,

 F exp.tX`/.x/ D x C  .te`/: (3.22)
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So for any g 2 C1c .Rn/ one has,

. FX`/.g/.x/ D
d

dt

ˇ̌̌̌
tD0

g. F exp.tX`//

D
d

dt

ˇ̌̌̌
tD0

g. .te`//

D .@kg/.x/@` 
k.x/

ˇ̌̌
xD0

D Xk.g/.x/ˇ
i
j . /:

(3.23)

We thus proved that
HV .X`/ D Xk ˝ ˇk` :

This show that (3.15), makes F.G�/ a U.V /-module algebra and the map � W FK !

F.G�/ is V -linear, where action of V on FK is defined by (2.28). Via the coaction
defined by (3.21) F.G�/ is a V -Hopf algebra. The map � induces the following
isomorphism

� IC Id W FK IC U.V /! F.G�/ IC U.V /; (3.24)

Now we decompose the group G� into G�0 � N, where

G�0 D f 2 G� j  .x/ D ax; a 2 GLng; (3.25)

N D f 2 G� j  0.0/ D Idg: (3.26)

Precisely, for any  2 c we define � 2 G�0, and � 2 N by

� .x/ D  
0.0/x; � .x/ D . 

0.0//�1 .x/: (3.27)

This unique decomposition determines the actions of G�0 on N and of N on G�0, by
the prescription

� ı � D .� F �/ ı .� G �/; (3.28)

for � 2 G�0 and � 2 N. More exactly, with �.x/ D a � x, a 2 GLn.R/,

� F � D �; and .� G �/.x/ D a�1�.a � x/; (3.29)

reflecting the fact that N is a normal subgroup of G�.
We let F.G�0/ be the algebra generated by the functions

˛ij .�/ D @j�
j .x/

ˇ̌̌
xD0

D aij ; ˛�1.�/ D det.a/; for �.x/ D a � x; (3.30)

i.e. the algebra P.GLn/ of regular functions on GLn.R/.
Similarly, we let F.N/ be the algebra generated by the restrictions to N of the

Taylor coordinates (3.7) on G�,

˛ij1;:::;jk .�/ WD ˇ
i
j1;:::;jk

.�/ D @jk � � � @j1 .x/
ˇ̌̌
xD0

; � 2 N: (3.31)
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Once again, F.G�0/ and F.N/ are in fact Hopf algebras with the usual structure,

�.f /. 1;  2/ D f . 1 ı  2/; ".f / D f .e/; S.f /. / D f . �1/: (3.32)

In particular

�.˛ij / D ˛
i
k ˝ ˛

k
j ; �.˛�1/ D ˛�1 ˝ ˛�1; (3.33)

�.˛ij;k/ D ˛
i
j;k ˝ 1C 1˝ ˛

i
j;k (3.34)

Thus, the restriction maps of Hopf algebras

�1 W F.G�/! F.G�0/; �2 W F.G�/! F.N/;
�1.ˇ

i
j / D ˛

i
j ; �1.ˇ

�1/ D ˛�1; �1.ˇ
i
j1;:::;jk

/ D 0;

�2.ˇ
i
j / D ı

i
j ; �2.ˇ

�1/ D 1; �2.ˇ
i
j1;:::;jk

/ D ˛ij1;:::;jk

(3.35)

are maps of Hopf algebras. These projections admit as cross-sections the obvious
inclusion maps Ii W F.GCi /! F.G�/; i D 1; 2.

I1.˛ij / D ˇij ; I1.˛�1/ D ˛�1; I2.˛ij1;:::;jk / D ˇ
i
j1;:::;jk

: (3.36)

Lemma 3.1. The map H W F.N/! F.N/˝F.G�0/ defined by

H.f /.�; �/ D f .� G �/; (3.37)

is a coaction and makes F.N/ a F.G�0/ a comodule Hopf algebra.

Proof. Denoting the inclusion F.N/ ,! F.G�/ by

Of . / D f .� /; (3.38)

one observes that

H.f /.�; �/ D f .� G �/ D Of .� ı �/ (3.39)

D Of .1/.�/ Of .2/.�/ D �2. Of .1//˝ �1. Of .2//.�; �/: (3.40)

Since G is a group action, it is easily seen that H is a coaction. The fact that H
preserves the product,

H.f 1f 2/ D H.f 1/H.f 2/;

is also clear.
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Next we show that F.N/ is F.G�0/-comodule coalgebra. Indeed,

f
<0>.1/

˝ f
<0>.2/

˝f
<1>

.�1; �2; �/

D f
<0>
˝ f

<1>
.�1 ı �2; �/

D f ..�1 ı �2/ G �/

D f ..�1 G .�2 F �// ı .�2 G �//

D f ..�1 G �/ ı .�2 G �//

D f .1/.�1 G �/f .2/.�2 G �/

D f .1/<0>.�1/f .1/<1>.�/f .2/<0>.�2/f .2/<1>.�/

D f .1/<0> ˝ f .2/<0> ˝ f .1/<1>f .2/<1>.�1; �2; �/:

(3.41)

The last required condition is also satisfied:

".f
<0>

/f
<1>

.�/ D H.f /.e; �/ D f .e G �/ (3.42)
D f .e/ D ".f /1F.G1GC/.�/:

We note that, with the notation introduced above, the following identity holds:

L̨
i
s Ǫ
s
j1;:::;jk

D ˇij1;:::;jk : (3.43)

Since the action of F.N/ on F.G�0/ is trivial, that is given by " , we see that all
conditions ofmatched pair of Hopf algebras are satisfied andwe have theHopf algebra
F.G�0/ IC F.N/. Moreover, as an algebra F.G�0/ IC F.N/ is just F.G�0/˝F.N/
and as a coalgebra it is F.G�0/ I< F.N/. We will therefore adopt the latter notation.

There also is a natural left coaction of F.N/ on F.G�0/, which we record below.

Lemma 3.2. The map HL W F.N/! F.G�0/˝F.N/ defined by

HL.f /.�; �/ D I2.f /.�; �/: (3.44)

defines a left coaction, which satisfies

HL.˛ij1;:::;jk / D ˛
i
s ˝ ˛

s
j1;:::;jk

: (3.45)

Proof. It suffices to prove that (3.45) holds, and this is straightforward:

HL.˛ij1;:::;jk /.�; �/ D ˇ
i
j1;:::;jk

.� ı �/

D ˇis.�/ˇ
s
j1;:::;jk

.�/ D ˛is.�/˛
s
j1;:::;jk

.�/:

We now define a natural map ˆ W F.G�/! F.G�0/˝F.N/ by

ˆ.f /.�; �/ D f .� ı �/ D �1.f .1//˝ �2.f .2//.�; �/: (3.46)
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Lemma 3.3. The mapˆ W F.G�/! F.G�0/˝F.N/ is an isomorphism of algebras.

Proof. ˆ is obviously linear, and

ˆ�1.f 1 ˝ f 2/ D I1.f 1/S.I1.f 2<�1>//I2.f 2<0>/: (3.47)

defines a two sided inverse for ˆ. Indeed,

ˆ.ˇij / D ˛
i
j ˝ 1; ˆ.ˇ�1/ D ˛�1 ˝ 1; ˆ.ˇij1;:::;jk / D ˛

i
s ˝ ˛

s
j1;:::;jk

;

ˆ�1.˛ij ˝ 1/ D ˇ
i
j ; ˆ�1.˛�1 ˝ 1/ D ˇ�1;

ˆ�1.1˝ ˇij1;:::jk / D S.ˇ
i
s/ˇ

s
j1;:::;jk

:

(3.48)

Since both maps ˆ and ˆ�1 are algebra maps, the claim follows.

Proposition 3.4. The mapˆ W F.G�/! F.G�0/˝F.N/ is an isomorphism of Hopf
algebras.

Proof. Both sides being commutative, it suffice to check the compatibility ofˆ with
the coalgebra structures.

Let f 2 F.G�/ be of the form f D f 1f 2, with f1 2 F.G�0/, f2 2 F.N/,
which means that ˆ.f / D f 1 I< f 2. The comultiplication of F.G�0/ I< F.N/ is
given by

�F1.G�/I<F2.G�/.ˆ.f //.�1; �1I�2; �2/

D
�
f 1.1/ I< f 2.1/<0> ˝ f

1
.2/f 2.1/<0> I< f 2.2/

�
.�1; �1I�2; �2/

D f 1.1/.�1/f
2
.1/<0>

.�1/f
1
.2/.�2/f

2
.1/<0>

.�2/f
2
.2/.�2/

D .f 1.1/.�1/f
1
.2/.�2// .f

2
.1/<0>

.�2/f
2
.1/<0>

.�1// f
2
.2/.�2/

D f 1.�1 ı �2/f
2
.1/.�1 G �2/f

2
.2/.�2/

D f 1.�1 ı �2/f
2..�1 G �2/ ı �2/:

(3.49)

On the other hand one uses (3.28) and the fact that � F � D � for any � 2 G�0 and
any � 2 GC2 to see that

ˆ˝ˆ.�.f //.�1; �1I�2; �2/ D ˆ.f .1//.�1; �2/ˆ.f .2//.�2; �2//

D f .1/.�1 ı �1/f .2/.�2 ı �2/

D f .�1 ı �1 ı �2 ı �2/

D f .�1 ı �2 ı .�2 G �1/ ı �2/

D f 1.�1 ı �2/f
2.�2 G �1/ ı �2/:

(3.50)

Finally it is easy to see that

"F1.G�/I<F2.G�/.ˆ.f // D f
1.e/f 2.e/ D f .e/ D "F.G�/.f /: (3.51)
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Via the above isomorphism we identify

ˇij D ˛
i
j I< 1; ˇ�1 D ˛�1 I< 1; ˇij1;:::jk D ˛

i
s I< ˛sj1;:::;jk (3.52)

For ˛ij1;:::;jk we have

H.˛ij1;:::;jk / D ˛
r
s1;:::;sk

˝ S.˛ir/˛
s1
j1
� � �˛

sk
jk
: (3.53)

Let gln be the Lie algebra GLn.R/. One defines a Hopf pairing between F.G�0/
and U.gln/ by extending the natural pairing

hf; Y i D Y.f / D
d

dt

ˇ̌̌̌
tD0

f .exp.tY //; Y 2 gln; � 2 G�0: (3.54)

This means that

hf 1f 2; ui D hf 1; u.1/ihf 2; u.2/i; hf; u1u2i D hf .1/ ; u1ihf .2/ ; u2i;

hf; 1i D ".f /; h1; ui D ".u/; hf; S.u/i D hS.f /; ui:
(3.55)

We now define the action gln ˝F.N/! F.N/ by

Y F f D f
<0>

Y.f
<1>

/: (3.56)

We denote the standard basis of gln by Y ij , 1 � i; j � n. One first observes that
Y ij .˛

p
q / D ı

i
qı
p
j . Then we use the Hopf pairing properties (3.55) to see that

Y ij F ˛
p
q1;:::;qm

D

X
s

ıiqs˛
p
q1;:::;j;:::qm

� ı
p
j ˛

i
q1;:::;qm

; (3.57)

By restricting the action of G� on T to G�0 we get the coaction

V ! V ˝F.G�0/;
Xk ! Xs ˝ ˛

s
k :

(3.58)

We use this coaction to define an action of gln on V via

Y FX D hX
<0>

; Y iX
<1>

: (3.59)

Note that the action of Y ij on Xk is indeed the natural action of gln on Rn, i.e.

Y ij FXk D ı
i
k Xj : (3.60)
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4. Hopf cyclic cohomology ofKn

For the reader’s convenience we recall two basic notions.
Given a Hopf algebraH, a character ı W H! C and a group-like element � 2 H,

the pair .ı; �/ is called a modular pair in involution if

ı.�/ D 1; and S2ı D Ad� ; (4.1)

where Ad� .h/ D �h��1 and Sı.h/ D ı.h.1//S.h.2//, h 2 H. To such a datum was
associated in [9] a cyclic module whose cohomology, called Hopf cyclic, is denoted
HC �.HI �Cı/.

Let now g be a finite-dimensional Lie algebra and let F be a g-Hopf algebra
(cf. [23]), on which g coacts via Hg W g ! g ˝ F . The modular character of
ı W g! C,

ı.X/ D Trace.adX /; X 2 g;

extends to a character ofU.g/. One then further extends ı to a character ofF IC U.g/
by

ı.f IC u/ D ".f /ı.u/:

In a dual fashion, one defines a group-like element in F as follows. The (first-order)
matrix coefficients f ij 2 F of the coaction Hg are given by the equation

Hg.Xj / D

nX
iD1

Xi ˝ f
i
j ; n D dim gI

they satisfy the relation

�.f
j
i / D

nX
kD1

f
j

k
˝ f ki :

�F WD det.f ij / D
X
�2Sn

.�1/�f 1�.1/ � � � f
n
�.n/: (4.2)

One then defines a group-like element in F IC U.g/ by setting

� WD �F IC 1; where �F WD
P
�2Sn

.�1/�f 1
�.1/
� � � f n

�.n/
:

It is shown in [23, Theorem 3.2] that the .ı; �/ defines a modular pair in involution
for the Hopf algebra F IC U.g/.

We now return to the V -Hopf algebra FK of §1, equipped with the action and
the coaction defined in (3.15) and (3.20). Since the Lie algebra V is commutative, ı
coincides with " and hence ."; �/ is a modular pair in involution for FK IC U.V /.
Denoting by �C the one-dimensional left comodule and right module overFK IC U
determined by the group-like � and the character " respectively, we are thus in a
position to form theHopf cyclic cohomologyHC �.FK IC U ;� C/ of the canonically
associated .b; B/-bicomplex (cf. [7–9]).
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In order to compute this cohomology, we employ a quasi-isomorphic bicomplex,
which takes advantage of the bicrossed product structure of the Hopf algebra Kn as
well as of the particular nature of its components. Referring the reader to [14,18,19]
for details concerning the intermediate steps, we proceed to describe the resulting
quasi-isomorphic bicomplex.

The Lie algebra V admits the following right action on FK
˝q

X � .f 1 ˝ � � � ˝ f q/ D X.1/<0> F f
1
˝X.1/<1>.X.2/<0> F f

2/˝ � � �

� � � ˝X.1/<q�1> � � �X.q�1/<1>.X.q/ F f
q/; (4.3)

On the other hand, sinceFK is commutative, the coaction H W V ! V ˝FK, extends
from V to a unique coaction HV W ^pV ! ^pV ˝ FK. After tensoring it with the
right coaction of �C we obtain the coaction

H�C˝^V .1˝X1^� � �^Xq/ D 1˝X1
<0>
^� � �^Xq

<0>
˝��1X1

<1>
� � �Xq

<1>
: (4.4)

Let fXig1�i�n be the basis for V and let f�j g1�j�n denote the dual basis of V �.
One defines the dual left coaction on H�V W V

� ! V � ˝FK by

H�V .�
i / D

X
j

ˇij ˝ �
j ; where HV .Xi / D Xj ˝ ˇji : (4.5)

We extend this coaction on ^�V � diagonally and observe that the result is a left
coaction just because FK is commutative. For later use we record below that if
! WD � i1 ^ � � � ^ � ik then

!
<�1>

˝ !
<0>
D

X
1�lj�m

f
i1
l1
� � � f

ik
lk
˝ � l1 ^ � � � ^ � lk : (4.6)

One uses the antipode of FK to turn it into a right coaction H^V � W ^pV � !
^pV � ˝FK, as follows:

H^V �.!/ D !<1> ˝ S.!<�1>/: (4.7)

We now use the above ingredients to build the following bicomplex:

:::
:::

:::

^2V �

@V�

OO

b�FK // ^2V � ˝FK

@V�

OO

b�FK // ^2V � ˝FK
˝2

@V�

OO

b�FK // � � �

V �

@V�

OO

b�FK // V � ˝FK

@V�

OO

b�FK // V � ˝FK
˝2

@V�

OO

b�FK // � � �

C

@V�

OO

b�FK // FK

@V�

OO

b�FK // FK
˝2

@V�

OO

b�FK // � � �

(4.8)
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The vertical coboundary @V � W Cp;q ! Cp;qC1 is the Lie algebra cohomology
coboundary of the Lie algebra V with coefficients in FK

˝p , where the action of V
is given by

.1˝ f 1 ˝ � � � ˝ f p/ J X D �1˝X � .f 1 ˝ � � � ˝ f p/: (4.9)

The horizontal b-coboundary b�FK has the expression

b�FK.˛ ˝ f
1
˝ � � � ˝ f q/ D ˛ ˝ 1˝ f 1 ˝ � � � ˝ f q C

qX
iD1

.�1/i˛ ˝ f 1 ˝ � � �

� � � ˝�.f i /˝ � � � ˝ f q C .�1/qC1 ˝
<̨1>
˝ f 1 ˝ � � � ˝ f q ˝

<̨�1>
: (4.10)

At this stage we recall that by Proposition (3.4) the Hopf subalgebra has a further
factorization,

FK Š F.G�0/ I< F.N/: (4.11)

This allows to apply the same treatment alluded to above to each row of the
bicomplex (4.8).

Let us describe the bicomplexwhich computes the cohomology of thepth row. To
simplify the notation, in what follows we abbreviateF1 WD F.G�0/ andF2 WD F.N/.

Diagrammatically,

:::
:::

:::

^pV � ˝F˝22

b�F1

OO

b�F1 // ^pV � ˝F˝22 ˝F1

b�F2

OO

b�F1 // ^pV � ˝F˝22 ˝F˝21

b�F2

OO

b�F1 // � � �

^pV � ˝F2

b�F2

OO

b�F1 // ^pV � ˝F2 ˝F1

b�F2

OO

b�F1 // ^pV � ˝F2 ˝F˝21

b�F2

OO

b�F1 // � � �

^pV �

b�F2

OO

b�F1 // ^pV � ˝F1

b�F2

OO

b�F1 // ^pV � ˝F˝21

b�F2

OO

b�F1 // � � �

(4.12)
The qth row above is the Hochschild complex of the coalgebra F1 with coefficients
in the comodule ^pV � ˝F˝q2 defined by

HV �˝F2 W ^
qV � ˝F˝�2 ! F1 ˝^qV � ˝F˝�2 ;

H.! ˝ Qf / D !
<�1>

S. Qf
<1>

/˝ !
<0>
˝ Qf

<0>
;

(4.13)

where we use the natural left coaction of F1 on ^pV � defined in (4.6).
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In the above bicomplex we also use the coaction of F1 on F2 defined in (3.37)
and extend it on Qf D f 1 ˝ � � � ˝ f q 2 F˝q2 by

Qf
<0>
˝ Qf

<1>
D f 1

<0>
˝ � � � ˝ f q

<0>
˝ f 1

<1>
� � � f q

<1>
; (4.14)

The columns of the bicomplex are just the Hochschild complexes of the coalgebraF2
with trivial coefficients ^pV � ˝F˝�1 .
Proposition 4.1. The cohomology of the qth row of the bicomplex (4.12) is
concentrated in the first column and coincides with .^pV � ˝F˝q2 /gln .

Proof. The Lie algebra gln, viewed as a subalgebra of formal vector fields on Rn,
acts naturally on both V � and on F2; it is this standard action which appears in the
above statement.

Set Zp;q D ^pV �˝F˝q2 . The qth row is theHochschild complex of theF1with
coefficients in Zp;q . We use the identification of F1 with P.GLn/ and, since GLn is
reductive, we are in a position to apply [23, Theorem 4.8] to infer that the cohomology
of the row is concentrated in the 0th cohomology group, in other words that

H k.F1; Zp;q/ D 0; k > 0; H 0.F1; Zp;q/ D .Zp;q/F1 : (4.15)

Here .Zp;q/F1 is the space of coinvariants elements with respect to the coaction F1
on Zp;q defined in (4.7), i.e.,

.Zp;q/
F1 D f! ˝ Qf j HV �˝F2.! ˝

Qf / D 1˝ ! ˝ Qf g (4.16)

The action of gln on F2 is that defined in (3.57). The action of gln on V � comes
from the coaction of F1 on V � defined by (4.5). Explicitly,

�k G Y ij D hˇ
k
` ; Y

i
j i �

`
D ıkj ı

i
` �

`
D ıkj �

i ; (4.17)

which is transpose of the standard action of gln on V defined in (3.59).
Let us show that this space of coinvariants coincides with the invariants under gln.

The right action of gln on Zp;q is given by

.! ˝ Qf / G Y D h.! ˝ Qf /
<�1>

; Y i .! ˝ Qf /
<0>

; (4.18)

and we need to check that ! ˝ Qf 2 .Zp;q/F1 if and only if ! ˝ Qf 2 .Zp;q/gln , or
equivalently,

! ˝ Qf 2 .Zp;q/F1 ” ! G Y ˝ Qf � ! ˝ Y F Qf D 0: (4.19)

Theorem 4.2. The periodic Hopf cyclic cohomologyHP �.KnI �
�1C/ is isomorphic

to the truncated ring of Chern classes P2nŒc1; : : : ; cn�.



Hopf algebras and universal Chern classes 89

Proof. By Proposition 4.1 the total cohomology of the bicomplex (4.12) reduces to
the cohomology of the following complex

.^pV �/gln
b�F2 // .^pV � ˝F2/gln

b�F2 // � � � (4.20)

We still need to calculate the total cohomology of (4.8). Via the above identification,
that bicomplex is quaisi-isomorphic with the following one,

:::
:::

:::

.^2V �/gln

@V�

OO

b�F2 // .^2V � ˝F2/gln

@V�

OO

b�F2 // .^2V � ˝F2˝2/gln

@V�

OO

b�F2 // � � �

.V �/gln

@V�

OO

b�F2 // .V � ˝F2/gln

@V�

OO

b�F2 // .V � ˝F2˝2/gln

@V�

OO

b�F2 // � � �

C

@V�

OO

b�F2 // .F2/gln

@V�

OO

b�F2 // .F2˝2/gln

@V�

OO

b�F2 // � � �
(4.21)

One uses (3.2), (3.26), and (3.31) on one hand and [18, Proposition 2.1, Definition 2.4]
on the other hand to observe that

F2 D FH ; (4.22)

where FH � Hn is the Hopf subalgebra, denoted by F.N/ in [18], such that
Hcop
n D FH IC U.glaffn /.
After this identification one applies (3.56), (3.58), and (3.60) to observe that

the bicomplex (4.21) is identified with the bicomplex in [19, (4.12)] for h D gln,
or alternately with the bicomplex in [18, (3.42)]. The total cohomology of the
latter bicomplex is computed in [18, Theorem 3.25], and shown to be isomorphic to
P2nŒc1; : : : ; cn�.

There is an alternative way to formulate the above result, which relies on
identifying, as coalgebras, Kn and the quotient coalgebraQn WD Hn ˝U.gln/ C.

First, one identifies the copposite coalgebraQcop
n to FH IC U.glaffn /˝U.gln/ C as

the U.gln/, is isomorphic to the crossed product coalgebras FH I< U.V /, via the
map

�H W H
cop

n ˝U.gln/ C D .FH IC U.glaffn //˝U.gln/ C! FH I< U.V /
�H.f IC XY ˝U.gln/ 1/ D ".Y /f I< X I

(4.23)
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here FH coacts on U.V / via its coaction on U.glaffn / followed by the projection
� W U.glaffn /! U.V / that is defined by�.XY / D ".Y /X , and is amap of coalgebras.
It is clear that �H is an isomorphism.

We next consider the map �� W F.G�/ I< U.V /! FH I< U.V / by the formula

��.ˇij1;j2;:::js I< u/ D ıis˛
s
j1;j2;:::;js

I< u; (4.24)

where ıij is the Kronecker’s delta tensor and ˛ij WD ıij . This map is quite natural,
being the same as rH˝ Id, where rH W F.G�/! F.N/ Š FH is the restriction map,
dual to the inclusion N ,! G�.
Theorem 4.3. The map � WD ��1H ı �

� W F.G�/ I< U.V / ! Hcop
n ˝U.gln/ C

is a morphism of coalgebras which induces a quasi-isomorphism of Hochschild
cohomology complexes

f
�C˝Kcop˝�

; bg ! fCı ˝U.gln/ Q
cop

n

˝�
; bg:

This in turn yields an isomorphismHC �.KI ��1C/ Š HC.Hn; GLnICı/.

Proof. Proposition 3.4 guarantees that �� is a map of coalgebras. Using the definition
(4.24), which in particular implies that ��.ˇij / D ı

i
j , it is easy to check that � induces

a chain map at the level of Hochchild complexes.
The second claim follows by combining the following two facts: the vanishing of

the Connes boundary mapB at the level of both Hochschild complexes; the vanishing
of the Hochschild cohomology groups outside degree n of both sides, ensured by
Theorem 4.2, resp. [18, Theorem 3.25].

5. Geometric representation of the Hopf cyclic Chern classes

In order to exhibit concrete cocycles representing a basis ofHP �.KnI �C/, we take
the same approach as in [21,22]. The gist of that construction is summarized below.

With M D Rn and G D Diff.Rn/ı , let f��.j N4GM j/; dg be the complex
of Dupont’s [11] complex of de Rham simplicial compatible forms. We will
actually work with its homogeneous version f��.j N4GM j/; dg. The identification
between compatible forms ! D f!pgp�0 in the first complex and their homogeneous
counterpart N! D f!pgp�0 in the second, i.e. satisfying

N!.tI �0�; : : : ; �p�; �/ D �� N!.tI �0; : : : ; �p; �/; 8 �; �i 2 G;

is made via the exchange relations

!.tI�1; : : : ; �p; x/ D N!.�1 � � ��p; �2 � � ��p; : : : ; �p; x/ ;
resp. N!.tI �0; : : : ; �p; �/ D ��p!.tI �0��11 ; �1�

�1
2 ; : : : ; �p�1�

�1
p ; �/:
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In [22] we introduced the subcomplex f��rd.j N4GM j/; dg of the above complex
consisting of regular differentiable simplicial de Rham forms. These are compatible
forms ! D f!pgp�0 on the geometric realization j4GM j D

Q1
pD0�

p �4GMŒp�

of the simplicial manifold 4GM D fGp �M gp�0, whose components (expressed
in homogeneous group coordinates, but with the “overline” mark omitted from the
notation from now on) have the property that

!p.tI �0; : : : ; �p; x/ D
X

PI;J
�
tI x; j kx .�0/; : : : ; j kx .�p/

�
dtI ^ dxJ ; (5.1)

with PI;J depending polynomially of a finite number of jet components of �a,
1 � a � p and of

�
det �0a.x/

��1, where �0a.x/ signifies the Jacobian matrix
�0a.x/

j
i D @i�

j
a.x/, 1 � i; j � n.

��rd.j4GM j/ is a differential graded algebra, whose corresponding cohomology
ringH �rd.j N4GM j;C/ was shown in [22, Thm. 1.4] to be isomorphic to the truncated
polynomial ring of Chern classes P2nŒc1; : : : ; cn�.

More precisely, let r be the flat connection on the frame bundle FM !M , with
connection form !r D

�
!ij

�
, !ij WD .y�1/i

�
dy�j D

�
y�1 dy

�i
j
, i; j D 1; : : : ; n.

The associated simplicial connection form-valued matrix O!r D f O!pgp2N on the
frame bundle of j4GM j has components

O!p.tI �0; : : : ; �p/ WD
pX
iD0

ti�
�
i .!r/I (5.2)

accordingly, the simplicial curvature form O�r WD d O!r C O!r ^ O!r has components

O�p.tI �0; : : : ; �p/ D
pX
iD0

dti ^ �
�
i .!r/ �

pX
iD0

ti�
�
i .!r/ ^ �

�
i .!r/

C

pX
i;jD0

ti tj �
�
i .!r/ ^ �

�
j .!r/: (5.3)

Under the action of � 2 G on FM the pull-back of the connection form is

��.!ij / D !
i
j C  ijk.�/ �

k; where �k D .y�1 � dx/k

 ij k.�/.x; y/ D
�
y�1 � �0.x/�1 � @��0.x/ � y

�i
j
y�k ; x 2M; y 2 GLn.R/:

(5.4)

This clearly shows that the simplicial forms O!ij and O�ij belong to the regular
differentiable de Rham complex ��rd.j N4GFM j/.

The cohomologyH �rd.j N4GM j/ of the Dupont complex forM was shown in [22]
to be isomorphic to the truncated polynomial ring of Chern classes P2nŒc1; : : : ; cn�.
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More precisely, by [22, Thm. 1.3 and Eq. (1.13)], the choice of the connection gives
rise to a canonical quasi-isomorphism of complexes

CGLn
r
W OW .gln;GLn/! ��rd.j

N4GM j/; (5.5)

which in fact reproduces the classical Chern–Weil construction for the Diff-
equivariant case. Indeed, the left hand stands for the subalgebras consisting of
the GLn-basic elements in the quotient OW .gln/ D W.gln/=I2n of the Weil algebra
W.gln/ D ^

�gl�n ˝ S.gln/ by the ideal generated by the elements of S.gln/ of
degree > 2n. The cohomology of OW .gln;GLn/ is well known to be isomorphic
to P2nŒc1; : : : ; cn�, with c1; : : : ; cn given by the standard generators of the ring
S.gln/

GLn of GLn.C/-invariant polynomials on gln.C/,

ck.A/ D
X

1�i1<���
���<ik�n

X
�2Sk

.�1/�A
i1
�.i1/
� � �A

ik
�.ik/

; A 2 gln.C/: (5.6)

The corresponding Chern forms ck. O�r/ 2 ��rd.j N4GFM j/ are GLn-basic and thus
descend to forms in �2krd .j4GM j/. As a result, the collection of closed forms

cJ . O�r/ D cj1.
O�r/ ^ � � � ^ cjq .

O�r/ 2 �
2jJ j
rd .j4GM j; (5.7)

with J D .j1 � � � � � jq/ and jJ j WD j1 C � � � C jq � n, give a complete set of
representatives for a (linear) basis of the cohomology H �rd.j N4GM j;C/ of the Rham
complex f��rd.j4GM j/; dg.

Consider now the subcomplex f NC �rd .G; ��.M// ; ı; dg of the (homogeneous
version of the) Bott bicomplex (see [1,2]) f NC � .G; ��.M// ; ı; dg, formed of regular
differentiable homogeneous group cochains. By definition (cf. [22]), a cochain
! 2 NC

p
rd .G; �q.M// if for any local chart U �M with coordinates .x1; : : : ; xn/,

!.�0; : : : ; �p; x/ D
X

PI

�
x; j kx .�0/; : : : ; j

k
x .�p/

�
dxI ; (5.8)

where the coefficients PI as in (5.1). By [22, Thm. 1.1], which is a variant of
Dupont’s [11, Theorem 2.3], the operation of integration along the fiberI

��
W ��rd.j

N4GM j/! NC �rd
�
G; ��.M/

�
(5.9)

establishes a quasi-isomorphism between the complexes f��rd.j N4GM j/; dg and
f NC tot

rd .G; ��.M// ; ı ˙ dg. Thus, the composition of (5.5) and (5.9)

DGLn
r
WD

I
��
ıCGLn
r
W OW .gln;GLn/! NC tot �

rd
�
G; ��.M/

�
(5.10)

is also a quasi-isomorphism. In conclusion the cocycles

CJ . O�r/ WD

I
��
cJ . O�r/; J D .j1 � � � � � jq/; jJ j � n: (5.11)

represent a basis for the cohomologyH �rd;G.M;C/ of f NC
tot
rd .G; ��.M// ; ı ˙ dg.
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On the other hand, in [19] we have introduced Hopf cyclic counterparts of the
Bott complexes. In particular, in the case of FK the analogue of the homogeneous
Bott complex is the anti-symmetrized and coinvariant subcomplex of (4.8),

NC �.^V �;^FK/ D .^
pV � ˝^FK/

FK ; V �M D Rn; (5.12)

defined as follows. An element
P
˛˝ Qf 2 .^pV � ˝^qC1FK/

FK if it satisfies the
FK-coinvariance condition:X

<̨0>
˝ Qf ˝ S.

<̨1>
/ D

X
˛ ˝ Qf

<0>
˝ Qf

<1>
I (5.13)

here for Qf D f 0 ^ � � � ^ f q , we have denoted

Qf
<0>
˝ Qf

<1>
D f 0.1/ ^ � � � ^ f q.1/ ˝ f 0.2/ � � � f q.2/ : (5.14)

One identifies the anti-symmetrized-coinvariant bicomplex as a homotopy retraction
sub-bicomplex of (4.8) as in [19].

:::
:::

:::

^2V �

@^

OO

b^ // .^2V � ˝^2FK/
FK

@^

OO

b^ // .^2V � ˝^3FK/
FK

@^

OO

b^ // � � �

V �

@^

OO

b^ // .V � ˝^2FK/
FK

@^

OO

b^ // .V � ˝^3FK/
FK

@^

OO

b^ // � � �

C

@^

OO

b^ // .C˝^2FK/
FK

@^

OO

b^ // .C˝^3FK/
FK

@^

OO

b^ // � � �
(5.15)

The identification simplifies the action of V on
V

FK into the diagonal action

X F .f 0 ˝ � � � ˝ f q/ D

qX
iD0

f 0 ˝ � � � ˝X F f i ˝ � � � ˝ f q: (5.16)

and also the coboundaries are simplified to

b^.˛ ˝ f
0
^ � � � ^ f q/ D ˛ ˝ 1 ^ f 0 ^ � � � ^ f q; (5.17)

and
@^.˛ ˝ f

0
^ � � � ^ f q/ D �

X
i

� i ^ ˛ ˝^˝Xi F .f
0
^ � � � ^ f q/: (5.18)

The total cohomology of this bicomplex is denoted byHP �CE.Kn;�
�1 C/.
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A similar bicomplex is defined for FH/, namely

NC �.^V �;^FH/
gln WD

�
.^pV � ˝^qC1FH/

FH
�gln

; (5.19)

and the restriction map rH W FK ! FH induces a quasi-isomorphism between (5.15)
and (5.19).

The total cohomology of this bicomplex is denoted byHP �CE.Hn;GLn W Cı/
At this stagewe recall that in [19, §3.2] we have constructed amap of bicomplexes,

‚ from the bicomplex NC �.^g�aff;^FH/
gln of antisymmetrized FH-coinvariant

cochains to NC �.G; ��.FM//. In order to write its expression, we also need to
recall (cf. [18]) that there is a canonical isomorphism �� W Hcop

ab ! FH and �ı D ���1
denotes its inverse. For f 2 FH, one defines the function �H.f / W G! C1.G/ by

�ı.S.f //.U�/ D �H.f /.�/U
�
� ; 8� 2 G; (5.20)

where the left hand side uses the action of Hn on the crossed product algebra
C1.Gaff/ Ì G, with Gaff D V Ë GLn.R/. The function �H.f /.�/ 2 C

1.G/,
depends algebraically on the components of the k-jet of �, for some k 2 N. For
example, if f D �i

jk`1:::`r
is one of the canonical algebra generators of FH,

�ijk`1:::`r . / D 
i
jk`1:::`r

. /.e/;  2 N (5.21)
then

�H.S.�
i
jk`1:::`r

//. �1/ D  ijk`1:::`r . /: (5.22)

With these notions clarified, the map ‚ is given by the formula

‚
�X

I

˛I ˝
If 0 ^ � � � ^ If p

�
.�0; : : : ; �p/

D

X
I

X
�2SpC1

.�1/��H.S.
If �.0///.��10 / � � � �H.S.

If �.p///.��1p / Q̨I ; (5.23)

where gaff is the Lie algebra of the affine group Gaff Š FM , and f Q̨I g are the
left-invariant form associated to the elements of a basis f˛I g � ^�g�aff .

From its very definition, it is obvious that ‚ actually lands in NC �rd.G; ��.FM//.
It is also transparent that ‚ is injective.

On the other hand, ‚ is clearly GLn-equivariant and thus, by restriction to
GLn-invariants, it gives the map ‚GLn W NC �.^V �;^FH/

gln ! NC �rd.G; ��.M//,

‚GLn
� X
jI jDq

dxI ˝
If 0 ^ � � � ^ If p

�
.�0; : : : ; �p/

D

X
I

X
�2SpC1

.�1/��H.S.
If �.0///.��10 / : : :�H.S.

If �.p///.��1p /dxI : (5.24)
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Theorem 5.1. The chain map ‚GLn W NC �.^V �;^FH/
gln ! NC �rd.G; ��.M// is a

quasi-isomorphism.

Proof. The proof follows along exactly the same lines as that of [21, Thm. 3.6],
the only difference being that all the differentiable subcomplexes are replaced by
their regular differentiable counterparts. This also entails replacing the horizontal
homotopy used in the proof of [21, Thm. 1.2] by the algebraic homotopy employed
in the proof of [22, Thm. 1.3].

The preimage by ‚GLn of the cocycles CJ . O�r/ defined by (5.11) can be exactly
computed. Indeed, first we observe that by [19, Remark 3.9] the map‚ is insensitive
to affine transformations, i.e. if '0; : : : ; 'q 2 Gaff and  0; : : : ;  q 2 N, then

‚
�X
I

˛I ˝
If0 ^ � � � ^

Ifq

�
.'0 0; : : : ; 'q q/

D ‚
�X
I

˛I ˝
If0 ^ � � � ^

Ifq

�
. 0; : : : ;  q/: (5.25)

Next we note that being given by invariant polynomials, the Chern cocycles (5.11)
are built out of the pull-back of the curvature form by the cross-section x 2 Rn 7!
.x; 1/ 2 Rn � GLn. The resulting simplicial matrix-valued form is

OR.tI�0; : : : ; �p/ D
pX
rD0

dtr ^ �.�r/ �

pX
rD0

tr �.�r/ ^ �.�r/

C

pX
r;sD0

tr ts �.�r/ ^ �.�s/; where �.�/ WD .�0/�1 � d�0; (5.26)

which by restriction to j N4NM j becomes

OR.tI 0; : : : ;  p/ D
pX
rD0

dtr ^ d 
0
r �

pX
rD0

tr d 
0
r ^ d 

0
r C

pX
r;sD0

tr ts d 
0
r ^ d 

0
s:

(5.27)
For 2 N, .d 0/ij D

Pn
kD1 @k@j 

i dxk and so .d 0/ij jxD0D
Pn
kD1 �

i
jk
. / dxk .

This clearly shows that the restriction of the simplicial Chern form cJ . O�r/ to j N4NM j

evaluated at x D 0 gives by integration over the simplices a cocycle CJ . ORj0/ 2
C �F .^M

�;^FH/. Moreover, by the very construction,

‚GLn
�
CJ . ORj0/

�
D CJ . O�r/: (5.28)
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Combining Theorem 5.1 with the statement (5.11) we obtain:
Corollary 5.2. The cocycles

CJ . ORj0/ 2 NC
�.^V �;^FH/

gln ;

with J D .j1 � � � � � jq/, jJ j � n, represent classes which form a basis for the
cohomologyHP �CE.Hn;GLn W Cı/.

To reproduce the same approach for the algebra Kn, we replace the map ‚ by its
counterpart corresponding to the decompositionG D T�G�. The new chainmap‚K,
from the subcomplex NC �.^V �;^FK/ ofFK-coinvariant cochains inC �.^V �;^FK/

to NC �.G; ��.FM//, is defined by the similar formula

‚K

�X
I

˛I ˝
If 0 ^ � � � ^ If p

�
.�0; : : : ; �p/

D

X
I

X
�2SpC1

.�1/��K.S.
If �.0///.��10 / � � � �K.S.

If �.p///.��1p / Q̨I : (5.29)

The analogous property to (5.25) reads as follows: if '0; : : : ; 'q 2 T and
 0; : : : ;  q 2 G�, then

‚K

�X
I

˛I ˝
If0 ^ � � � ^

Ifq

�
.'0 0; : : : ; 'q q/

D ‚K

�X
I

˛I ˝
If0 ^ � � � ^

Ifq

�
. 0; : : : ;  q/: (5.30)

This follows from the simple fact that for any translation '.x/ D x C b, one has
� ij .U

�
' / D ı

i
jU
�
' .

The dual to the projection map  2 G� 7! � 2 N gives an inclusion
�H W FH ! FK, which is defined by

�H.f / D ˆ
�1.1˝ f /;

where ˆ�1 is defined in (3.48). One observes that �H is a cross-section of
the restriction map rH W FK ! FH. In turn, �H gives rise to a chain map

��H W
NC �.^V �;^FH/ ! NC �.^V �;^FK/ at the level of Hochschild complexes.

Manifestly, one has
‚K ı �

�
H D ‚

GLn : (5.31)

Lemma 5.3. The chain map ��H W NC �.^V �;^FH/
gln ! NC �.^V �;^FK/ is a quasi-

isomorphism of bicomplexes.

Proof. By construction, r�H ı ��H D Id. On the other hand the very same arguments
invoked in the proof of Theorem 4.3 show that r�H is a quasi-isomorphism
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in Hochschild cohomology, which moreover induces an isomorphism in cyclic
cohomology. Therefore, its right inverse ��H, which is a chain map of bicomplexes,
gives an isomorphism in the cohomology of the total complexes.

We next build the preimage by ‚K of the cocycles CJ . O�r/ in exactly the same
fashion as for ‚GLn , except that instead of using the simplicial curvature (5.27) on
j�NM j, we use the simplicial curvature form (5.26) on j�G�M j. Note that the latter
involves the forms �. / WD . 0/�1 � d 0, for  2 G�. The cocycles thus obtained,
C
�
J .
ORj0/ are uniquely determined by the equation

‚K
�
C
�
J .
ORj0/

�
D CJ . O�r/: (5.32)

Corollary 5.4. The cocyclesC �J . ORj0/ 2 NC �.^V �;^FK/, withJ D .j1 � � � � � jq/,
jJ j � n, represent a basis of cohomology classes forHP �CE.KnI�

�1 C/.

Proof. The relation (5.31) implies that �H.CJ . ORj0// D C
�
J .
ORj0/, since ‚K is

injective. The claim then follows from Lemma 5.3.

6. Characteristic map and Hopf cyclic Chern cocycles

The crossed product algebraA D C1c .M/ Ì G has a canonical state-like functional
� W A! C, determined by the standard volume form onM D Rn,$ D dx1^ : : :^
dxn; it is given by

�.f U �� / D

˚Z
M

f$; if � D Id;

0; otherwise:
(6.1)

Unlike its forerunner on the frame bundle employed in [7, 8], the linear map � is not
a trace. It is however easy to check that � is a ��1-trace, i.e.

�.ab/ D �.b��1.a//; 8a; b 2 A; (6.2)

and that it is "-invariant with respect to the action of Kn, meaning that

�.k.a// D ".k/�.a/; 8k 2 Kn; a 2 AI (6.3)

in particular, �.�.a// D �.a/.
Having these two properties, one can define (cf. [7,9]) a characteristicmap�� from

the standard Hopf cyclic .b; B/-complex CC �.KnI�
�1 C/ to the cyclic cohomology

.b; B/-complex CC �.A/, by

�� .k
1; : : : ; kq/.a0 : : : ; aq/ D �.a0k

1.a1/ � � � kq.aq//; (6.4)
k1; : : : ; kq 2 Kn; a0; : : : ; aq 2 A: (6.5)
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which is a map of cyclic complexes. As a matter of fact, this map is injective and
the model for the Hopf cyclic structure in the left hand side was originally imported
in [7] from that of the right hand side. We will show below that this structural
characteristic map also allows to transfer the geometric cocycles constructed in §5 to
the Hopf cyclic complex CC �.KnI �

�1C/.
Connes has constructed (see [5, III.2.ı]) a map of bicomplexes

ˆC W NC
�.�;��.M//! CC �.C1c .M/ Ì G/;

whose definition we quickly recall.
Let BG.M/ denote the DG-algebra ��c .M/ ˝ ^CŒG0�, where G0 D G n feg

with the differential d ˝ Id. After labeling the generators of CŒG0� as � , � 2 G,
with 1 D 0, one forms the crossed product CG.M/ D BG.M/ Ì G, with the
multiplication rules

U �� !U� D �
�!; ! 2 ��c .M/;

U ��1�2U�1 D �2ı�1 � �1 ; �1; �2 2 G :

CG.M/ is itself a DG-algebra, equipped with the differential

d.bU �� / D dbU
�
� � .�1/

@bb�U
�
� ; b 2 BG.G/; � 2 G; (6.6)

Any � 2 NC q.G; �p.M// gives rise a linear forme� on CG.G/ as follows:e�.bU �� / D 0
for � ¤ 1; if � D 1 and b D ! ˝ �1 : : : �q thene�.! ˝ �1 : : : �q / D Z

M

�.1; �1; : : : ; �q/ ^ !: (6.7)

The map ˆC from NC �.G; ��.G// to the .b; B/-complex of the algebra A D

C1c .M/ Ì G is now defined for � 2 NC q.G; �p.M// by

ˆC.�/.a
0; : : : ; am/ D

pŠ

.mC 1/Š

mX
jD0

.�1/j.m�j /e�.dajC1 � � � dama0da1 � � � daj /
(6.8)

wherem D dimG�pCq, a0; : : : ; am 2 A. As proved in [5, III.2, Thm. 14],ˆC is
a chain map to the total .b; B/-complex of the algebra A.

We denote by ˆrd the restriction of ˆC to the subcomplex
NC tot
‚ .G; �

�.M// WD ‚K
�
NC �.^V �;^FK/

�
� NC tot

rd .G; ��.M//:

By reasoning as in [7, pp. 223–234], it can be shown that if � 2 NC q‚.G; �p.M//

then there exists Qk.�/ D
P
˛
Pk1˛ ˝ � � � ˝

Pk
q
˛ 2 K˝qn such that

ˆC.�/ D
X
˛

�� .k
1
˛; : : : ; k

q
˛/I
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due to the faithfulness of �� , the element Qk.�/ is necessarily unique. This gives a
canonical identification between the two .b; B/-complexes,

CC �.KnI �
�1C/ Š Im.ˆrd/; (6.9)

which allows us to regard ˆrd as a chain map to CC tot.Kn �
�1C/.

Theorem 6.1. The map ˆrd W NC
tot
‚ .G; ��.M// ! CC tot.KnI �

�1C/ is a quasi-
isomorphism. Moreover, via the above identification, the cocycles

�J . O�r/ WD ˆrd
�
CJ . O�r/

�
2 CC tot.Kn �

�1C/; (6.10)

with J D .j1 � � � � � jq/, jJ j � n, represent a basis of cohomology classes for
HP �.KnI�

�1 C/.

Proof. By construction,

ˆrd ı‚K ı �
�
H D ˆrd ı‚

GLn :

The right hand side was shown to be a quasi-isomorphism in [22, §2.2], while ��H is
quasi-isomorphism by Lemma 5.3.

7. Explicit calculations for n D 1

We illustrate the above results, by producing completely explicit cocycles for the
Hopf cyclic classes of K1 and .H1;GL1/.

The connection form on FM D R�R� being ! � !11 WD y�1dy, the associated
simplicial connection form is

O!p.tI �0; : : : ; �p/ WD
pX
iD0

ti�
�
i .!/ D

pX
iD1

si .�
�
i�1.!/ � �

�
i .!//C �

�
p.!/:

The pull-back of the connection form is

��.!11/ D !
1
1 C 

1
11.�/y�1 � dx;

111.�/.x; y/ D y�1 � �0.x/�1 � @�0.x/ � yy;
that is

��.!/ D y�1dyC
�00

�0
dx:

One has

O!p.tI �0; : : : ; �p/ D
pX
iD1

si

�
�00i�1
�0i�1

�
�00i
�0i

�
dx C

�00p

�0p
dx C y�1dy:
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The simplicial curvature form O� D d O!r C O!r ^ O!r has components

O�p.tI �0; : : : ; �p/ D
pX
iD1

�
�00i�1
�0i�1

�
�00i
�0i

�
dsidx

C

� pX
iD1

si

�
�00i�1
�0i�1

�
�00i
�0i

�
C
�00p

�0p

�
y�1dxdy:

Its pull-back by the canonical section is the curvature form

ORp.tI �0; : : : ; �p/ D
pX
iD1

�
�00i�1
�0i�1

�
�00i
�0i

�
dsidx:

The image f
H
�p
ORpgp in the Bott complex is nontrivial only for p D 1, giving

the cochain c1 2 NC 1.G; �1.M//,

c1.�0; �1/ D

�
�000
�00
�
�001
�01

�
dx (7.1)

Let us compute ˆC.c1/. Recall that Qc1 is the current

Qc1.˛ ˝ '/ D

Z
M

c1.1; '/ ^ ˛; a 2 �qc .M/; (7.2)

which only pairs nontrivially if ˛ 2 �0c.M/. Then

ˆC.c1/.a0; a1/ D
1

2
Qc1.da1a0 C a0da1/; a0; a1 2 A: (7.3)

Takea0 D f0U ��0 anda1 D f1U
�
�1

with�1�0 D 1. Thena WDa0a1Df0��.f1/ WDf ,
hence

Qc1.da/ D Qc1.df / D 0: (7.4)

So we can rewrite (7.3) as

ˆC.c1/.a0; a1/ D
1

2
Qc1.da1a0 � da0a1/; a0; a1 2 A: (7.5)

One has

da1a0 � da0a1

D .df1U
�
�1
� f1�1U

�
�1
/f0U

�
�0
� .df0U

�
�0
� f0�0U

�
�0
/f1U

�
�1

D df1U
�
�1
f0U

�
�0
� f1�1U

�
�1
f0U

�
�0
� df0U

�
�0
f1U

�
�1
C f0�0U

�
�0
f1U

�
�1

D df1 �1
�.f0/ � f1 �1

�.f0/ �1 � df0 �0
�.f1/C f0 �0

�.f1/ �0 :
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Hence

2ˆC.c1/.a0; a1/ D Qc1.f0�0
�.f1/�0 � f1�1

�.f0/�1/

D

Z
M

f0�0
�.f1/c1.1; �0/ �

Z
M

f1�1
�.f0/c1.1; �1/

So letting �0 D �; �1 D ��1, one has

2ˆC.c1/.a0; a1/ D

Z
M

f0�0
�.f1/

�
�
�000
�00

�
dx �

Z
M

f1�1
�.f0/

�
�
�001
�01

�
dx

D �

Z
M

f0.f1 ı �/
�00

�0
dx C

Z
M

f1.f0 ı �
�1/

.��1/00

.��1/0
dx:

Note now that, by substitution one hasZ
M

f0.x/.f1.�.x//
�00.x/

�0.x/
dx

D

Z
M

f1.x/.f0.�
�1.x//

�00.��1.x/

�0.��1.x/
.��1/0.x/dx

D

Z
M

f1.x/.f0.�
�1.x//�00.��1.x/.��1/0.x/2dx

D �

Z
M

f1.x/.f0.�
�1.x//

.��1/00.x/

.��1/0.x//
dxI

the last equality uses the elementary identity

�00.��1.x//.��1/0.x/2 C
.��1/00.x/

.��1/0.x//
D 0:

Thus we get

2ˆC.c1/.a0; a1/ D 2

Z
M

f1.f0 ı �
�1/

.��1/00

.��1/0
dx

D 2�.��1�111.a1/a0/ D 2�.a0�
�2�111.a1//:

(7.6)

Equivalently,
ˆC.c1/.a0; a1/ D �� .�

�2�111/.a0; a1/: (7.7)
The other class arises from the constant simplicial form 1 2 �0.j�GM j/, which
gives the cochain c0 2 NC 0.G; �0.M//,

c0.�/ � 1 I (7.8)

thus Qc0 is the “transverse fundamental” current

Qc.˛/ D

Z
M

˛; ˛ 2 �0.M/ :
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As in the previous case, taking �0 D �; �1 D ��1 and using the similar observation
Qc0.da/ D 0, one has

2ˆC.c0/.a0; a1/ D Qc0.da1a0 � da0a1/

D Qc0
�
df1�1

�.f0/ � df0�0
�.f1/

�
D

Z
M

.f0 ı �
�1/df1 �

Z
M

.f1 ı �/df0

D

Z
M

.f0 ı �
�1/X1.f1/dx �

Z
M

.f1 ı �/X1.f0/dx

D 2

Z
M

.f0 ı �
�1/X1.f1/dx

D 2�.X1.a1/a0/ D 2�.a0�
�1X1.a1//:

(7.9)

Thus,
ˆC.c0/.a0; a1/ D �� .�

�1X1/.a0; a1/: (7.10)

Summing up, we have established the following result.
Proposition 7.1. Via the characteristic map (6.4), the formulas (7.10) and (7.7)
determine uniquely the cyclic cocycles cK0 and cK1 in CC 1.K1; �

�1C/,

cK0 WD 1˝ ��1X1; cK1 WD 1˝ ��2�11;1 (7.11)

whose cohomology classes form a basis ofHP �.K1; �
�1C/.

We now recall the definition of the characteristic map for the action of H1 on
QA D C1c .FM/ Ì G. The group G acts on the frame bundle FM D R Ì RC by
prolongation, i.e.,

�.x; y/ D .�.x/; �0.x/y/; x 2 R; y 2 RC; � 2 G: (7.12)

Dual to the canonical framing by the horizontal and the vertical vector fields,
X1 D y@x , resp. Y 11 D y@y , there is the basis of 1-forms �1 D y�1dx, !11 D y�1dy.
The volume form Q$ D �1 ^ !11^ D y�2 dx ^ dy is G-invariant and gives rise to a
canonical trace Q� W QA! C,

Q�.f U �� / D

˚Z
FM

f Q$; if � D Id;

0; otherwise:
(7.13)

Besides the usual trace property

Q�.ab/ D Q�.ba/; 8 a; b 2 A; (7.14)

Q� is also "-invariant with respect to the action ofH1,

Q�.h.a// D ".h/ Q�.a/; 8 h 2 Hn; a 2 QA: (7.15)
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Thanks to these properties the characteristic map �Q� from the standard Hopf cyclic
.b; B/-complex CC �.H1I Cı/ to the cyclic cohomology .b; B/-complex CC �.A/,
defined by

�Q� .h
1; : : : ; hq/.a0 : : : ; aq/ D Q�.a0h

1.a1/ � � � hq.aq//;

h1; : : : ; hq 2 Hn; a0; : : : ; aq 2 QA;
(7.16)

is a map of cyclic complexes. Moreover, this map is injective.
The relative version of this map for the pair .H1;GLC1 / (see [22] for general

dimension n 2 N) is obtained as follows. For a q-cochain in the relative cohomology
complex c D

P
˛ 1˝ Ph1˛ ˝ � � � ˝ Ph

q
˛ 2 Cı ˝U.gl1/ Q

cop
1

˝q , with Ph 2 Q1 denoting
the class of h 2 H1, one defines

�rel.c/.a0; : : : ; aq/ WD
X
˛

�. Qa0h
1
˛. Qa

1/ � � � hqq. Qaq/ jyD1/I (7.17)

here Qa D Qf U �
Q�
2 QA stands for the natural lift to the frame bundle FM D R Ì RC

of a D f U �� 2 A. Note that the twisted trace � ofA is applied only after evaluating
at y D 1 a product which was performed in QA; as will be seen in the computation
below, this compensates for the twisting.
Proposition 7.2. Via the characteristic map (7.17), the formulas (7.10) and (7.7)
determine uniquely the cyclic cocycles cH0 and cH1 in Cı ˝U.gl1/ Q

cop
1 ,

cH0 WD 1˝ PX1; cH1 WD 1˝ Pı11;1 (7.18)

whose cohomology classes form a basis ofHP �.H1;GLC1 ICı/.

Proof. To recognize cH0 , we note that in QA one has

Qf0U
�
Q�
�X1.f1U Q�/ D f0.x/U

�
Q�
� yf 01.x/U Q� D f0.x/ Q�

�.yf 01.x//

D f0.x/�
0.x/yf 01.�.x//;

therefore,

�rel.1˝ PX1/ D
Z
M

f0.x/ �
0.x/f 01.�.x//dx D

Z
M

f0.�
�1.x//f 01.x/dx:

By (7.9), the last integral coincides with ˆC.c0/. Since ˆC and ˆGL1
C are the same,

this proves the first identity in the statement.
Similarly,

Qf0U
�
Q�
� ı11;1.f1U Q�/ D f0.x/U

�
Q�
� y
.��1/00.x/

.��1/0.x/
f1.x/U Q�

D f0.x/�
0.x/y

.��1/00..�.x//

.��1/0..�.x//
f1..�.x//;



104 H. Moscovici and B. Rangipour

which implies

�rel.1˝ Pı11;1/ D
Z
M

f0.x/�
0.x/

.��1/00..�.x//

.��1/0..�.x//
f1..�.x//dx

D

Z
M

f0.�
�1.x//

.��1/00.x/

.��1/0.x/
f1.x/dx:

By (7.6) the result coincides with ˆC.c1/, completing the proof.

Remark 7.3. In the model given by the Hopf–Chevalley–Eilenberg bicomplex (5.19)
the above classes are represented by the cocycles

C0. ORj0/ D 1 2 FH; C1. ORj0/ D �
1
˝ 1 ^ ˛11;1 2 V

�
˝^

2FH: (7.19)

The corresponding cocycles, via the map ‚K, in the bicomplex (5.15) are given by

C
�
0 .
ORj0/ D 1 2 FK; C

�
1 .
ORj0/ D �

1
˝ 1 ^ ˇ�1ˇ11;1 2 V

�
˝^

2FK: (7.20)

In contrast to the case ofH1, theHopf cyclic cohomology ofK1 contains theChern
class cK1 but is missing the Godbillon–Vey class. The reason is the algebraic nature
of the cochains of the latter. We proceed to show that if one allows transcendental
cocycles, the Chern class cK1 vanishes, while the Godbillon–Vey class reappears.

Indeed, let QK1 be the Hopf algebra obtained by adjoining a primitive element
log � to K1, subject to the commutation relations

ŒX; log �� D ��1�11;1; Œlog �; �k� D 0; 8k 2 N:

With the Hopf algebraic structure dictated by the Leibniz rule as follows,

�.log �/ D log � ˝ 1C 1˝ log �1; (7.21)

Proposition 7.4. The 2-cochain

u1 WD 1˝ ��1X1 ˝ ��2 log � (7.22)

is a Hochschild cocycle whose Connes boundary is cK1 .

Proof. By transfer via the characteristic map �� , we can work in the cyclic complex
of A� . Denoting the transported cochain by

Qu1.f0U ��0 ; f1U
�
�1
; f2U

�
�2
/ D �

�
f0U

�
�0
�01
�1
� f 01U

�
�1
�02
�1
� f2 � log.�02/U

�
�2

�
;
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let us first check that it is a Hochschild cocycle.

b. Qu1/.f0U ��0 ; : : : ; f3U
�
�3
/

D �
�
f0 � .f1 ı �0/U

�
�1ı�0

�01
�1
� f 02U

�
�2
�03
�1
� f3 � log.�03/U

�
�3

�
� �

�
f0U

�
�0
.�2 ı �1/

0�1.f1 � .f2 ı �1//
0U ��2ı�1�

0
3
�1
� f3 � log.�03/U

�
�3

�
C �

�
f0U

�
�0
�01
�1
� f 01U

�
�1
.�3 ı �2/

0�1f2 � .f3 ı �2/ � log..�3 ı �2/0/U ��3ı�2
�

� �
�
f3 � .f0 ı �3/U

�
�0ı�3

�01
�1
� f 01U

�
�1
�02
�1
� f2 � log.�02/U

�
�2

�
:

By the Leibniz rule we see that,

.�2 ı �1/
0�1
� .f1 � f2 ı �1/

0

D .�02 ı �1/ � �
0
1
�1
� f 01 � .f2 ı �1/C �

0
2 ı �1

�1
� f1 � .f

0
2 ı �1/

and

.�3 ı �2/
0�1
� f2 � .f3 ı �2/ � log..�3 ı �2/0/

D �03 ı �2
�1
� �02 .f3 � log.�

0
3// ı �2 C �

0
2
�1
� f2 � log.�02/�

0
3 ı �2

�1
� f3 ı �2

which yields that

b. Qu1/.f0U ��0 ; : : : ; f3U
�
�3
/

D �
�
f0U

�
�0
�01
�1
� f 01U

�
�1
�02
�1
� f2 � log.�02/U

�
�2
�03
�1
� f3U

�
�3

�
� �

�
f3U

�
�3
f0U

�
�0
�01
�1
f 01U

�
�1
�02
�1
f2 � log.�02/U

�
�2

�
:

Finally by the ��1-tracial property of � we see b. Qu1/ D 0.
To show thatB. Qu1/ D cK1 , we first observe that Qu1 is normalized. So we continue

by
B. Qu1/.a; b/ D Qu1.1; a; b/ � Qu1.1; b; a/:

B. Qu1/.f0U ��0 ; f1U
�
�1
/

D �
�
�00
�1
� f 00U

�
�0
�01
�1
� f1 � log.�01/U

�
�1

�
� �

�
�01
�1
� f 01U

�
�1
�00
�1
� f0 � log.�00/U

�
�0

�
:
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Without loss of generality we assume that ��10 D �1. Then again by using the
��1-tracial property of � we have

�
�
�01
�1
� f 01U

�
�1
�00
�1
� f0 � log.�00/U

�
�0

�
D �

�
f0U

�
�0
�00 ı �1

�1
� log.�00 ı �1/ � .�

0
1/
�2f 01U

�
�1

�
D ��

�
f0U

�
�0
�01
�2
� f 01 � log.�

0
1/U

�
�1

�
On the other hand one uses the integration by part property of � to see

�
�
�00 � f

0
0U
�
�0
�01
�1
f1 � log.�01/U

�
�1

�
D ��

�
f0U

�
�0
�01
�1
�
�01 � �

0
1
�1
� f1 � log.�01/

�0
U ��1

�
D ��

�
f0U

�
�0
�01
�1
� f 01 � log.�

0
1/U

�
�1

�
� �

�
f0U

�
�0
.�01/

�2
� f1 � �

00
1U
�
�1

�
:

This completes the proof of the claimed result.

When dealing with QK1, one may import the Godbillon–Vey cocycle from the Bott
bicomplex via the characteristic map

�� W
��1C˝ QK˝2 ! CC 2.A/ ;

as we show below.
Proposition 7.5. The element

GV WD 1˝ log � ˝ ��2�11;1 � 1˝ ��2�11;1 ˝ ��1 log � 2 ��1C˝ QK1 ˝ QK1
is a cyclic cocycle.

Proof. On the one hand, one has

b.1˝ log � ˝ ��2�11;1/ D 1˝ 1˝ log � ˝ ��2�11;1
� 1˝ 1˝ log � ˝ ��2�11;1 � 1˝ log � ˝ 1˝ ��2�11;1/
C 1˝ log � ˝ 1˝ ��2�11;1 C 1˝ log � ˝ ��2�11;1 ˝ �

�1

� 1˝ log � ˝ ��2�11;1 ˝ �
�1
D 0;

(7.23)

and also

b.1˝ ��2�11;1 ˝ ��1 log �/ D 1˝ 1˝ ��2�11;1 ˝ ��1 log �
� 1˝ ��2�11;1 ˝ ��1 ˝ ��1 log � � 1˝ 1˝ ��2�11;1 ˝ ��1 log �
C 1˝ ��2�11;1 ˝ ��1 log � ˝ ��1 C 1˝ ��2�11;1 ˝ ��1 ˝ log �
� 1˝ ��2�11;1 ˝ ��1 log � ˝ ��1 D 0:

(7.24)
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On the other hand,

�2.1˝ log � ˝ ��2�11;1/
D 1˝�S.log �/ � ��2�11;1 ˝ ��1

D �1˝�.log �/ � ��2�11;1 ˝ ��1

D �.1˝ ��2�11;1 log � ˝ ��1 C 1˝ ��2�11;1 ˝ ��1 log �/;
(7.25)

while, taking into account that S.��2�11;1/ D ���1�11;1,

�2.1˝ ��2�11;1 ˝ ��1 log �/
D 1˝�S.��2�11;1/ � ��1 log � ˝ ��1

D �1˝�.��1�11;1/ � ��1 log � ˝ ��1

D �.1˝ ��2�11;1 log � ˝ ��1 C 1˝ log � ˝ ��2�11;1/:
(7.26)

Therefore,

�2.1˝ log � ˝ ��2�11;1 � 1˝ ��2�11;1 ˝ ��1 log �/
D 1˝ log � ˝ ��2�11;1 � 1˝ ��2�11;1 ˝ ��1 log �: (7.27)
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