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Weighted noncommutative regular projective curves

Dirk Kussin

Abstract. LetH be a noncommutative regular projective curve over a perfect field k. We study
global and local properties of the Auslander–Reiten translation � and give an explicit description
of the complete local rings, with the involvement of � . We introduce the � -multiplicity e� .x/,
the order of � as a functor restricted to the tube concentrated in x. We obtain a local-global
principle for the (global) skewness s.H/, defined as the square root of the dimension of the
function (skew-) field over its centre. In the case of genus zero we show how the ghost group,
that is, the group of automorphisms ofHwhich fix all objects, is determined by the points x with
e� .x/ > 1. Based on work of Witt we describe the noncommutative regular (smooth) projective
curves over the real numbers; those with s.H/ D 2 we call Witt curves. In particular, we study
noncommutative elliptic curves, and present an elliptic Witt curve which is a noncommutative
Fourier–Mukai partner of the Klein bottle. IfH is weighted, our main result will be formulae for
the orbifold Euler characteristic, involving theweights and the � -multiplicities. As an application
we will classify the noncommutative 2-orbifolds of nonnegative Euler characteristic, that is, the
real elliptic, domestic and tubular curves. Throughout, many explicit examples are discussed.
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1. Introduction

In this article we study categories H which have the same formal properties as
categories coh.X/ of coherent sheaves over a regular projective curve over a field k.
The axioms are essentially taken from Lenzing–Reiten [56]. A similar (more general)
system of axioms is formulated by Stafford–van den Bergh [80, Sec. 7.1]. Let k be
a field and H a category satisfying the following properties (NC 1) to (NC 5); the
conditions (NC 6) and (NC 7) will follow from the others.
(NC 1) H is small, connected, abelian, and each object inH is noetherian.
(NC 2) H is a k-category with finite dimensional Hom- and Ext-spaces.
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(NC 3) There is an autoequivalence � onH (called theAuslander–Reiten translation)
such that Serre duality Ext1H.X; Y / D DHomH.Y; �X/ holds, where D D
Homk.�; k/.

(NC 4) H contains an object of infinite length.
It follows from Serre duality that H is a hereditary category, that is, ExtnH vanishes
for all n � 2. Let H0 be the Serre subcategory of H formed by the objects of
finite length, and let HC be the full subcategory of objects not containing a simple
object. Then each indecomposable object of H lies in HC or in H0. Moreover,
H0 D

`
x2X Ux (for some index set X) where Ux are connected uniserial categories,

called tubes. The objects in Ux are called (skyscraper sheaves) concentrated in x.
We also writeH D coh.X/. In order to avoid so-called degenerated cases, discussed
in [56], we additionally assume:
(NC 5) X consists of infinitely many points.
We call H, and also X, a weighted noncommutative regular projective curve over k,
if it satisfies the conditions (NC 1) to (NC 5), and we write H D coh.X/. We recall
that, because of (NC 5), our class of noncommutative curves forms a proper subclass
of those studied in [56].

Axiom (NC 5) implies, by [56, Cor. 2.4], that for each x 2 X the number p.x/
of isomorphism classes of simple objects in Ux is finite. Also the second part of
the following condition will follow, from the theory of hereditary orders, compare
Theorem 7.11 below.
(NC 6) For all points x 2 X we have p.x/ <1, and for all except finitely many we

have p.x/ D 1.
The numbers p.x/, with p.x/ > 1, are called the weights of H. Points x with
p.x/ > 1 are called exceptional. Thus there is a finite number of exceptional
points, and of so-called exceptional simple sheaves S , that is, simple objects S with
Ext1.S; S/ D 0. By [56, Prop. 4.9] each object in the quotient categoryH=H0 is of
finite length. An indecomposable object L 2 H is called a line bundle if it becomes
a simple object modulo H0. We call a line bundle L 2 H special, if for each x 2 X
there is (up to isomorphism) precisely one simple sheaf Sx concentrated in x with
Ext1.Sx; L/ ¤ 0.

If we have p.x/ D 1 for all x, then we call H non-weighted (or homoge-
neous [47]); this can be also expressed as follows
(NC 60) Ext1.S; S/ ¤ 0 (equivalently: �S ' S ) for each simple object S .
Proposition 1.1 (Reduction to the non-weighted case). Let H be a weighted
noncommutative regular projective curve with the exceptional points given by
x1; : : : ; xt , of weights pi D p.xi / > 1. Choose for every i D 1; : : : ; t one simple
sheaf Si concentrated in xi . Let S � H be the system

f�jSi j i D 1; : : : ; t I j D 1; : : : ; pi � 1g:
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(1) The right perpendicular categoryHnw D S ? � H is a full exact subcategory
ofH, and is a non-weighted noncommutative regular projective curve.

(2) There is a special line bundle L inH.

We remark that in general there are line bundles which are not special, cf. [47,
Ex. 8.5.1]. Also, even in the non-weighted cases, the group Aut.H/ is in general not
acting transitively on the set of line bundles.

Proof. This is similar to the proof of [52, Prop. 1]. For (2) we remark that the full
exact embedding Hnw � H preserves the rank. So any line bundle in Hnw gives
rise to a special line bundle inH.

It follows, cf. Proposition 13.2, that each weighted noncommutative regular
projective curveH over k is obtained from a non-weighted noncommutative regular
projective curve Hnw over k by insertion of weights into a finite number of points
of Hnw , in the sense of the p-cycle construction from [53] (we refer also to [47,
Sec. 6.1]). We will always consider a pair .H; L/withL a special line bundle, which
we consider as the structure sheaf ofH. (Later we will require additional properties
on L, cf. 8.1; but in the first sections this will not be needed.)

The quotient category eH D H=H0 is semisimple with one simple object, given
by the class eL of L (or any line bundle), thus eH ' mod.k.H// for the skew
field k.H/ D EndeH.eL/, which we call the function field. Moreover, we have
H=H0 ' Hnw=.Hnw/0, thus k.H/ ' k.Hnw/.

It follows from [8, 50], cf. Remark 3.8, that:

(NC 7) The function field k.H/ is of finite dimension over its centreZ.k.H//, which
is an algebraic function field in one variable over k.

For quotability we put this on record:

Proposition 1.2. Each weighted noncommutative regular projective curveH over a
field k (defined by (NC 1)–(NC 5)) satisfies (NC 6) and (NC 7) as well.

We will later show (Theorem 7.12) that, as in the commutative case, H, if non-
weighted, is uniquely determined by its function field k.H/, moreover:

Theorem 1.3. There is a bijection between the set of isomorphism classes of non-
weighted noncommutative regular projective curves over k and the set of isomorphism
classes of central skew field extensions of algebraic function fields in one variable
over k.

(This was also recently shown in [20, Thm. 6.7].) Thus the study of non-
commutative regular projective curves is equivalent to the study of such skew field
extensions. We call the natural number

s.H/ D Œk.H/ W Z.k.H//�1=2



1468 D. Kussin

the (global) skewness ofH. Moreover, there we have Z.k.H// ' k.X/ for a unique
regular projective curve over k (we refer to 7.2). We call X the centre curve ofH.

Since we are mainly interested in arithmetic effects, we will mostly deal with
this non-weighted case. We will then almost always omit the term “non-weighted”;
instead we will use the term “weighted” for the general case, which we will treat
mainly in the last chapter. In different terminology “weighted” is called or related
to “orbifold” or “stacky”. In order to stress this connection, we keep the term
“weighted” in our general notion, although weights are a built-in feature of general
noncommutative curves, cf. Proposition 1.2.

For the rest of this introduction let H be a noncommutative regular projective
curve over a perfect field k, and non-weighted if not otherwise specified. For each
point x we denote by Sx the unique simple sheaf concentrated in x.

The present paper aims for being a quite detailed introduction to noncommutative
curves, working out a new approach, presenting numerous new results and discussing
many explicit examples. In our approach the main focus is on the functor � , the
Auslander–Reiten translation, which is of course a global datum of the category H.
We will study local properties of this functor. In order to do this, we describe the
structure of the tubes Ux (the full subcategories of skyscaper sheaves concentrated
in one point x) explicitly. The Auslander–Reiten translation � is acting on each Ux ,
and it serves as the Auslander–Reiten translation on Ux , which is itself a hereditary
category with Serre duality. The tubes are the most basic, non-trivial examples of
connected uniserial length categories. P. Gabriel [30] introduced the species of such
a category. In the case of a homogeneous tube with one simple object S this species
is just the D-D-bimodule Ext1.S; S/, where D D End.S/. As the starting point
of our local study of � we determine these bimodules explicitly, by using results of
Lenzing–Zuazua [57] on Serre duality. This is done in Section 4. In Section 5 we
use this to determine the complete local rings as certain twisted power series rings.
Theorem 1.4. For each point x 2 X the full subcategory Ux of skyscraper sheaves
concentrated in x is equivalent to the category of finite length modules over the skew
power series ring End.Sx/ŒŒT; ����. Here the twist ��, with Tf D ��.f /T for all
f 2 End.Sx/, is given by the restriction of the inverse Auslander–Reiten translation
��WH! H to the simple object Sx concentrated in x.

The clou is that the twist is always given by the (inverse) Auslander–Reiten
translation. From this we obtain almost at once a local-global principle of skewness,
in Section 6. Namely, we get that the restriction of � to Ux is of finite order, denoted
by e� .x/, which we call the � -multiplicity in x. Then:
Theorem 1.5 (Local-global principle of skewness). For each point x 2 X we have

s.H/ D e.x/ � e�.x/ � e� .x/;

where e.x/ D ŒExt1.Sx; L/ W End.Sx/�, e�.x/ D ŒEnd.Sx/ W Z.End.Sx//�1=2.
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As before, the clou is the involvement of the global functor � . It should be
noted that the multiplicities e.x/ were introduced in representation theory of finite
dimensional algebras by Ringel [73].

In Section 7we import a theoremofReiten–van denBergh [68]which states thatH
is equivalent to coh.A/, the coherentA-modules, for a sheafA ofmaximalOX -orders
in a central skew field over the function field k.X/ of the centre curve X . We will
sketch the proof. In this section we also show (based on work by Artin–de Jong [7])
the already mentioned important fact that each noncommutative regular projective
curve is uniquely determined by its function field. We then illustrate that many
results and relations, well known in the theory of orders, follow almost automatic
by our explicit constructions before. In particular, we see that the � -multiplicities
are just the ramification indices of A, for which a similar formula is well known in
certain situations [67]. Thus, our approach via � sheds also new light on orders and
ramifications.

In Section 8 we review some facts on the different and dualizing sheaves. Using a
result of van den Bergh–van Geel [83] we see that the Auslander–Reiten translation
lies in the Picard-shift group,

� 2 Pic.H/;

which is defined to be the subgroup of the automorphism (class) group Aut.H/
generated by the tubular shifts �x in the sense of Meltzer [63] and Lenzing–de la
Peña [55] (in this context agreeing with the Seidel–Thomas twists [77]). Moreover,
we show that Pic.H/ is essentially determined by Pic.X/, the Picard group (of line
bundles) over the centre curve X .
Theorem 1.6. There is an exact sequence

1! Pic.X/! Pic.H/!
Y
x2X

Z=e� .x/Z! 1

of abelian groups.

This has, for instance, the effect, if H is, say, elliptic and X is of genus zero (we
will see such an example over the real numbers later), that then Pic.H/ is finitely
generated abelian of rank one.

In Section 9 we define Euler characteristic and genus of a noncommutative regular
projective curve. Our definition of the genus is different and made in a more straight-
forward fashion than the definitions in [83] and [60]; the latter are based on [86].
Our proof of the Riemann–Roch theorem is then almost trivial. We also present
a formula by Artin–de Jong [7] for the Euler characteristic, without restriction
on the characteristic of the base-field. We will, in contrast to [7], normalize the
Euler characteristic, so that it becomes a Morita invariant. This seems to be more
natural, particularly when studying noncommutative curves (or orbifolds) over the
real numbers.
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We show several general results concerning the elliptic case (genus one, Euler
characteristic zero). In particular, the classification of indecomposable objects is
similar to Atiyah’s classification of indecomposable vector bundles for elliptic curves
over an algebraically closed field [10]. One major difference here is that it is possible
that a noncommutative elliptic curve may have a non-trivial Fourier–Mukai partner.
We will exhibit such examples later over the real numbers.

In Section 10 we treat quite detailed certain aspects of the genus zero case. This
is the case which is also motivated by representation theory of finite dimensional
algebras, since this case is characterized by admitting tilting objects. One of the most
important techniques in representation theory is the Auslander–Reiten theory: the
concepts of almost split sequences [12] and the Auslander–Reiten translation � are the
most prominent brands of this theory. Almost split sequences are strongly linked to
Serre duality, see [68]. Ourmain focus in the present paper is on the study of the ghost
group G.H/, that is, the subgroup of Aut.H/ given by those automorphisms fixing
the structure sheaf L and all simple sheaves Sx (x 2 X). In representation theory
of finite dimensional algebras it is often assumed that the base-field is algebraically
closed. Then many problems and questions are already determined combinatorially
(say, by working with dimension vectors instead of representations). This will
typically fail over general base-fields, and the ghost group can be regarded as a
measure for this failure. Good, explicit knowledge of the ghosts, the members of the
ghost group, combined with the combinatorial methods, is therefore important for
exploring categories of finite dimensional modules. Several of the problems posed
in [47] will be solved. Concerning the ghost group our main result is the following.

Theorem 1.7. Let H be of genus zero. Assume that there is a point x such that the
tubular shift �x is efficient in the sense of [47]. Then the ghost group G.H/ is finite,
generated by Picard-shifts �x�d.y/ ı �y , which are of order e� .y/, where y runs
through the points y ¤ x with e� .y/ > 1.

Typically, x itself will be a point with e� .x/ > 1, so that then there are at most
two further points y1; y2 with e� .yi / > 1, and then G.H/ ' Ce� .y1/ � Ce� .y2/.

In order to become able to treat many interesting examples of higher genus
also, we work out the whole picture of noncommutative regular projective curves
over the real numbers. This is based on work by E. Witt [87] on central skew
field extensions of real algebraic function fields in one variable. These skew fields
correspond to noncommutative real regular projective curves, which we call (unless
commutative) Witt curves. It seems that Witt’s function-theoretic study [87] was
never fully exploited in order to study noncommutative curves over the reals. By
Witt’s theorem [87] these curves correspond to Klein surfaces, with each of its ovals
(= boundary components) divided into a finite number of segments, labelled with
alternating signs “C” and “�” (in this context we also call them Witt surfaces if at
least one “�” occurs). We prove a Riemann–Hurwitz formula for the genus (in our
definition) of Witt curves. We classify all genus zero and all genus one Witt curves.
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The latter will be done in Section 12 by classifying topologically the noncommutative
real elliptic curves.

Theorem 1.8. The Klein bottle has as a Fourier–Mukai partner a Witt curve given
by the annulus with two differently signed ovals.

The theorem, a non-weighted analogue of [44], describes a situation where the
conclusion of a theorem of Bondal–Orlov [15] does not hold. It also shows that the
recent result [59] does not extend to the non-algebraically closed base-fields.

We also show that in all elliptic cases the Auslander–Reiten translation � has finite
order, more precisely, given by 1, 2, 3, 4 or 6, depending on the specific example; of
course, over the reals only 1 and 2 occur.

We end the paper with Section 13 about the weighted cases. We are convinced that
separated treatments of the non-weighted and the weighted cases makes the whole
theory more transparent; the focus in the non-weighted cases lies on arithmetic
properties (like the multiplicities and � -multiplicities, ghost group, etc.), and then the
weighted case is of more combinatorial nature. Here our main result are formulae
for the (normalized) orbifold Euler characteristic, of two types:

Theorem 1.9. LetH be a weighted noncommutative regular projective curve. LetX
be the centre curve, Hnw the underlying non-weighted curve. For the normalized
orbifold Euler characteristic �0orb.H/ we have

�0orb.H/ D �0.X/ �
1

2

X
x

�
1 �

1

p.x/e� .x/

�
Œk.x/ W k�

D �0.Hnw/ �
1

2

X
x

1

e� .x/

�
1 �

1

p.x/

�
Œk.x/ W k�:

(Here, the k.x/ are the residue class fields over the centre curve X .) Over the
real numbers this yields a formula for the Euler characteristic of noncommutative
(compact) two-dimensional orbifolds, extending the formula in the classical case
from Thurston’s book [81]:

Corollary 1.10 (General Riemann–Hurwitz formula). Let H be a noncommutative
real 2-orbifold with underlying compact Riemann, Klein or Witt surfaceHnw . Then

�0orb.H/ D �0.Hnw/�
1

4
�

X
x

�
1�

1

p.x/

�
�
1

2
�

X
y

�
1�

1

p.y/

�
�

X
z

�
1�

1

p.z/

�
;

where x runs over the ramification points, y over the other boundary points, and z
over the inner points.

As an application we classify all weighted noncommutative regular projective
curves H with �0orb.H/ D 0 over the real numbers; up to parameters there are 39
cases, 8 elliptic and 31 tubular ones. 17 have s.H/ D 1 and 22 have s.H/ D 2.
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Theorem 1.11. Each tubular curve has (fractional) Calabi–Yau dimension n=n,
where n is the maximum of the numbers p.x/e� .x/. The weight-ramification vector,
given by the numbers p.x/e� .x/ > 1, each counted Œk.x/ W k�-times, is a derived
invariant of a tubular curve.

We start with Section 3 by showing several basic facts about noncommutative
curves (partially extending results from [68]) like the existence of homogeneous
coordinate rings (so that these curves are in particular noncommutative projective
schemes in the sense of Artin–Zhang [9]). We explain two kinds of localizations, one
ring-theoretic (Ore–Asano), the other categorical (Serre–Grothendieck–Gabriel), and
show that both yield the same. They result in the non-complete rings Rx , associated
with each point x 2 X. These rings are noncommutative Dedekind domains with
a unique non-zero prime ideal, but in general not local. Their completions are
(Morita-equivalent to) local rings, which we are going to describe as stated above.

We emphasize that many of our main results are in full generality, without
perfectness or separability assumption. We also elaborate in detail an enlightning
inseparable Example 10.13.

2. Basic concepts

LetH be a weighted noncommutative regular projective curve over the field k.

2.1 (Rank function). LetH! eH D H=H0 D mod.k.H//, X 7! eX be the quotient
functor. The k.H/-dimension on H=H0 induces the rank function rkWK0.H/ ! Z
of H. For an indecomposable object E 2 H we have rk.E/ D 0 if E 2 H0 and
rk.E/ > 0 if E 2 HC. In particular, an object E 2 H has rank 0 if and only if it is
of finite length. An indecomposable object L with rk.L/ D 1 is called a line bundle.
The function field k.H/ is isomorphic to the endomorphism ring of eL in eH.

2.2 (Almost split sequences). We recall that a short exact sequence

�W 0! A
u
! B

v
! C ! 0 (2.1)

in H is called almost split, [12], if it does not split, if A and C are indecomposable,
and if every morphism X ! C , which is not a split epimorphism, factors through v.
(Then also the dual factorization property holds.) Then A is, up to isomorphism,
uniquely determined by C , and conversely. For every indecomposable C (resp. A)
there is an almost split sequence (2.1) ending (starting) in C (in A); then �C D A

and ��A D C , which definemutually quasiinverse autoequivalences �; ��WH! H,
which appear in the Serre duality. For categories of coherent sheaves � is also known
as Serre functor; we will reserve this term for the derived category ofH.

The almost split sequences are fundamental in the definition of the Auslander–
Reiten quiver of H: its vertices are the isomorphism classes of indecomposable



Weighted noncommutative regular projective curves 1473

objects in H, and the arrows between classes of indecomposables are given by the
so-called irreduciblemorphisms, which are the components of the maps which occur
in the corresponding almost split sequences.
2.3 (Homogeneous tubes). Let x 2 X and U D Ux be the corresponding connected
uniserial category inH0. Assuming p.x/ D 1, there is up to isomorphism precisely
one simple object S D Sx in U . Such categories are also called homogeneous tubes.
For each n � 1 we denote by SŒn� the (up to isomorphism) unique indecomposable
object in U of length n. (We additionally set SŒ0� WD 0.) Thus we have U D
add.fSŒn� j n � 1g/. We have injections �nWSŒn� ! SŒn C 1� and surjections
�nWSŒn C 1� ! SŒn�. The Auslander–Reiten translation satisfies �SŒn� ' SŒn�.
We will usually identify them, �SŒn� D SŒn�. We then have almost split sequences
�1W 0! S

�1
�! SŒ2�

�1
�! S ! 0, and for n � 2:

�nW 0! SŒn�
.�n�1;�n/

t

�! SŒn � 1�˚ SŒnC 1�
.�n�1;�n/
�! SŒn�! 0:

The �n and �n are the irreducible maps in U .
2.4 (� -multiplicity). Let Ux be a homogeneous tube with simple object Sx . The
Auslander–Reiten translation � restricts to an autoequivalence of Ux . Up to
isomorphism it fixes all indecomposable objects SxŒn�. If we consider a skeleton
of ind.Ux/, we can assume that equality �SxŒn� D SxŒn� holds for all n � 1. The
action onmorphisms induces, in particular, an automorphism ofDx D End.Sx/, that
is, an element � in Aut.Dx=k/. We define Gal.Dx=k/ D Aut.Dx=k/= Inn.Dx=k/,
the factor group modulo inner automorphisms. By the theorem of Skolem–
Noether [66, 12.6], restriction to the centreZ.Dx/ yields an injective homomorphism
Gal.Dx=k/! Gal.Z.Dx/=k/. We call

e� .x/ D ordGal.Dx=k/.�/; (2.2)

the order of (the class of) � in Gal.Dx=k/, the � -multiplicity of x.
2.5 (Picard-shifts). Let x 2 X be a point and U D Ux be a homogeneous tube inH.
The indecomposable objects in U form the Auslander–Reiten component containing
the simple object S D Sx with support fxg. Then End.S/ is a division algebra
over k, and Ext1.S; S/ is one-dimensional as End.S/-vector space. Thus S is, in
the terminology of [77], a spherical object. (In [77] only the case End.S/ D k

is considered.) For every object E in H, which has no indecomposable summand
in U , one has the S -universal extension 0 ! E ! E.x/ ! Ex ! 0 of E with
Ex D Ext1.S;E/˝End.S/S . The assignmentE 7! E.x/ induces an autoequivalence
�x WH ! H, called the tubular (or Picard-) shift associated with x, coming with a
natural transformation 1H

x
! �x . We refer to [47, 55, 63]. This coincides with the

notion of a Seidel–Thomas twist, [77]. We will later see (Lemma 8.4) that such a
functor �x is given as the tensor product with a certain bimodule. For n 2 Z we write
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E.nx/ D �x
n.E/. The assignment E 7! Ex is also functorial. Following [53, 4.2]

we call Ex the fibre of E; if f 2 Hom.E;E 0/, we call fx 2 Hom.Ex; E 0x/ the
corresponding fibre map.

Let x ¤ y be two points. It is well-known that �x ı �y ' �y ı �x holds, and
that the restriction of �x to Uy is isomorphic to the identity functor on Uy . As
a natural but non-trivial result we will show in Corollary 5.5, that over a perfect
field �x acts functorially on Ux like the inverse Auslander–Reiten translation ��. We
will also point out in Example 10.13 that this is not true in general over non-perfect
fields. We denote by Pic.H/ the Picard-shift group, that is, the subgroup of the
automorphism (class) group Aut.H/ ofH generated by all tubular shifts �x (x 2 X);
it is an abelian group. We call a vector bundle F a Picard-shift of a vector bundle E
if there is � 2 Pic.H/ such that F ' �.E/. In particular, the group Pic.H/ acts
on the set of isomorphism classes of line bundles on H. If H D coh.X/ with X
commutative, then Pic.H/ is isomorphic to the Picard group Pic.X/, given by the
set if isomorphism classes of line bundles with the tensor product. In general the
action of Pic.H/ on line bundles is neither transitive nor faithful. We will see that
in case H is multiplicity free (all e.x/ D 1), the action is transitive. The question
of faithfulness is strongly linked to the study of the ghost group G.H/, the subgroup
of Aut.H/, given by those � fixing the structure sheaf L and all simple sheaves Sx .
We also consider the automorphism group Aut.X/, the subgroup of Aut.H/ given by
those � fixing the structure sheaf L. All three, Pic.H/, G.H/, Aut.X/, are normal
subgroups of Aut.H/.

For the generalization of Picard-shifts with respect to non-homogeneous tubes we
refer to [55] and [47].
2.6 (Multiplicity and comultiplicity). Let L be a special line bundle so that
Ext1.Sx; L/ ¤ 0 holds for all x 2 X. The dimensions

e.x/ D ŒExt1.Sx; L/WEnd.Sx/� (2.3)

are calledmultiplicities, [47,55,73]. In particular, we have the Sx-universal extension

0! L
�x
! L.x/! Sx

e.x/
! 0 (2.4)

of L. The number
e�.x/ D ŒEnd.Sx/ W Z.End.Sx//�1=2 (2.5)

we called comultiplicities in [47], since (in case of genus zero) for almost all x 2 X
the product of e.x/ and e�.x/ coincides with the skewness s.H/, [47, Cor. 2.3.5]. It
was left open in [47] whether e.x/ � e�.x/ is always a divisor of s.H/, not to speak
about what the description of the cofactor could be. To answer this question, and
without being restricted to the case of genus zero, was one of the main motivations
for this article.

We remark that the comultiplicity, like the skewness, can be expressed in terms
of polynomial identity (PI) degree.
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2.7 (Orbit algebras). In (noncommutative) algebraic geometry orbit algebras are
important tools for constructing homogeneous coordinate rings. We refer to the
survey [80]. If E is an object in H and � WH ! H an endofunctor, then we
denote by….E; �/ the positively Z-graded orbit algebra

L
n�0Hom.E; �nE/. The

multiplication is defined on homogeneous elements f WE ! �mE, gWE ! �nE by
the rule g � f D �m.g/ ı f WE ! �mCnE.

The special cases we are interested in are ….L; �x/ with L the structure sheaf
and �x WH ! H a Picard-shift. Then the homogeneous element �x from (2.4) is
central, [47, Lem. 1.7.1]. We denote the (homogeneous) ideal of….L; �x/ generated
by �x by Px . We will later see that Px is a homogeneous prime ideal. Whereas
in [46,47] we fixed one autoequivalence � (with additional good properties) and one
coordinate algebra ….L; �/ for H, we will in this paper for every point x make use
of its “own” orbit algebra ….L; �x/ in order to investigate the numbers e.x/, e�.x/
and e� .x/.

2.8 (PI-degree). We will make use (in Section 6) of some ring-theoretic tools like the
polynomial identity (PI) degree. We will never use the original definition. Instead
in our special situation we could take the following two properties (i) and (ii) as
an equivalent definition for the PI-degree. If R is a ring (always assumed to be
associative and with identity) we denote by Z.R/ its centre.

(i) If D is a skew field which is of finite dimension over its centre, then the
PI-degree of D equals the square root of this dimension, [74, Thm. 1.5.23].
Moreover, the PI-degree of the matrix ring Mn.D/ is n times the PI-degree
ofD, [74, 1.5.16].

(ii) If R is a noetherian domain, so that its quotient division ringQ.R/ is of finite
dimension over its centre, then Posner’s theorem [6, Thm. 7] tells us that the
PI-degree of R equals the PI-degree ofQ.R/.

By mod.R/ we denote the category of finitely presented (right) R-modules, by
mod0.R/ the full subcategory of the modules of finite length. Usually, finite length
is equivalent to finite dimension over the base-field k.

We conclude the section with a motivating simple but non-trivial example,
illustrating some of our results.

Example 2.9. Let R D CŒX IY; �� be the twisted graded polynomial algebra over
k D R. Here the variables X and Y are of degree one, X central, and Yz D �.z/Y
for all z 2 C, where �.z/ D Nz is the complex conjugation. The quotient category
H D qgr.R/ D modZ.R/=modZ

0 .R/ is a noncommutative regular projective curve.
Its function field is k.H/ D C.t; �/, which is the quotient division ring (of degree
zero fractions) of R. The centre of R is RŒX; Y 2�, the centre of k.H/ is R.t2/. For
the skewness we obtain s.H/ D 2. In this example we have an explicit description for
all the points of X. These correspond bijectively to the homogeneous prime elements
in R (up to scalars). With the exception of Y , all prime elements belong to the
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centre; they are listed in Table 1. For a point x we write Dx for the endomorphism
ring of the corresponding simple object Sx . Then e�.x/ D ŒDx W Z.Dx/�

1=2. The
number e.x/ coincides with the number of irreducible factors of the corresponding
prime element. It is shown in [47, Cor. 5.4.4] (and will be again shown in this paper
in a broader context) that the Auslander–Reiten translation � is given as the product
� D �x

�1�y
�1 of two (inverse) Picard-shifts, where (from now on) x and y are the

points corresponding to the primes X and Y , respectively. It follows readily that
e� .p/ D 1 for all points p ¤ x; y. Moreover, the ghost group G.H/ is shown to be
of order 2, generated by  D �x�y�1.

prime/point x Dx e.x/ e�.x/ e� .x/ DxŒŒT; �
���

X , Y C 1 1 2 CŒŒT; ���
.Y �

p
˛X/.Y C

p
˛X/, ˛ > 0 R 2 1 1 RŒŒT ��

Y 2 � ˛X2, ˛ < 0 H 1 2 1 HŒŒT ��
.Y 2 � zX2/.Y 2 � NzX2/, z 2 C nR C 2 1 1 CŒŒT ��

Table 1. k.H/ D C.t; �/

It can be seen directly (though not trivially, cf. [47, Cor. 5.4.3]) that
e� .x/ D 2 D e� .y/. Of course, having already computed e.x/ and e�.x/ (and the
same for y) it will generally follow from Theorem 1.5.

This example is a special case of the treatment of genus zero curves in Section 10,
and it is also a special case of what we call a Witt curve, treated in Section 11. These
are obtained by Klein surfaces (=certain quotients of compact Riemann surfaces)
together with a so-called˙-configuration. These were studied by Witt in his seminal
paper [87]. We will show in Corollary 7.17 that the � -multiplicities coincide with
the ramification indices of the function (skew) field. That in the present example x
and y are the only ramification points (having index 2) then also follows from Witt’s
work.

We sketch another way for computing e� .x/: we can localize R with respect to
the homogeneous prime ideal P D RX , considering only fractions of degree zero,
denoting this ring by Rx . This is (in this special case!) a local ring whose maximal
(left and right) ideal J is generated by � D XY �1, which satisfies �z D Nz� for all
z 2 C. The J -adic completion then is easily seen to be bRx D CŒŒ�; ��� ' CŒŒT; ���
(as indicated in the table). The centre is given by RŒŒ�2�� D RŒŒT 2��. In the language
of valuations, � is a uniformizer for the completion, �2 a uniformizer of the centre.
We see readily that the ramification index era.x/ of x, defined by bRx�2 D bJ era.x/,
equals 2. Since the tube to x is given by Ux D mod0.bRx/ it is not difficult to see
(cf. Theorem 7.21) that the twist � induces the Picard-shift �x jUx , restricted to the
tube Ux . Therefore � acts like �x�1 as functor on Ux with order 2, that is, e� .x/ D 2.
(A similar argument holds for y, considering ��1 D YX�1.) We will use the notion
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of the different in Sec. 8, defined as the Weil divisor� D
P
p.era.p/� 1/ �p. In the

present example it follows from the preceding computations that � D 1x C 1y.

3. Homogeneous coordinate rings and localizations

We assume that .H; L/ is a (non-weighted) noncommutative regular projective curve
over the field k. In this section we show that, via the Serre construction, H is a
noncommutative noetherian projective scheme in the sense of Artin–Zhang [9], and
accordingly X a projective spectrum. Moreover, via localization we study rings
locally at a point x 2 X.
Lemma 3.1. Each vector bundle has a line bundle filtration.

Proof. We refer to [56, Prop. 1.6].

Lemma 3.2. Let 0 ! L
�
�! L.x/ ! Se ! 0 be the S -universal sequence of L

with S D Sx and e D e.x/. For n � 1 we have the exact sequence

0! L
�n

�! L.nx/! SŒn�e ! 0:

Proof. By induction on n. For n D 1 the assertion is trivial. Let n > 1. Write
�W 0! L

�n

�! L.nx/ �! E ! 0. By induction hypothesis, from the snake lemma
we obtain that E appears as the middle term of a short exact sequence

0! Se ! E ! SŒn � 1�e ! 0: (3.1)

Write E D E1 ˚ � � � ˚ Em with Ei D SŒ`i � indecomposable. By uniseriality
we have Soc.Ei / D S . This yields Se D Soc.Se/ � Soc.E/ D Sm, and thus
m � e. On the other hand, assume that m > e. Let ui WS ! SŒ`i � D Ei

ji
�! E

a monomorphism. By the definition of e D e.x/, there are f1; : : : ; fm in End.S/,
not all of them zero, such that 0 D

Pm
iD1 � � uifi D � �

�Pm
iD1 uifi

�
. DenotingPm

iD1 uifi by 0 ¤ hWS ! E, the short exact sequence � � h splits, and we obtain,
that S embeds into L.nx/, which gives a contradiction. We conclude m D e.
Let R D End.SŒ1�/ be the complete local ring with maximal ideal m such that
U D mod0.R/. Since Se is annihilated by m and SŒn � 1�e by mn�1, we deduce
from sequence (3.1) thatE is annihilated bymn, and thus all `i � n. Since the length
of E is n � e, we get `i D n for all i . This completes the proof of the lemma.

Lemma 3.3. Let E be an indecomposable vector bundle and S be a simple sheaf.
Then Hom.E; S/ ¤ 0.

Proof. Using connectedness ofH this is shown like in [55, (S11)] or [68, Cor. IV.1.8].
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Lemma 3.4. Let L and L0 be line bundles, and let x 2 X be a point. Then
Hom.L.�nx/; L0/ ¤ 0 for n� 0.

Proof. By the preceding lemma we have an exact sequence 0 ! L.�nx/ ! L !

SŒn�e ! 0 for each n � 0. Applying Hom.�; L0/ gives 0 ! Hom.L;L0/ !
Hom.L.�nx/; L0/ ! Ext1.SŒn�e; L0/ ! Ext1.L;L0/. By Lemma 3.3 we have
d WD dimk Hom.L0; S/ > 0, and thus dimk Ext1.SŒn�e; L0/ D dne � 0 for n� 0.
From this follows the claim.

Lemma 3.5. For each x 2 X the pair .L; �x/ is ample in the sense of [9].
Accordingly,

H ' modZ.….L; �x//

modZ
0 .….L; �x//

: (3.2)

In particular, a noncommutative regular projective curve H is a noncommutative
projective scheme in the sense of Artin–Zhang [9].

Proof. (Compare the proof of [68, Lem. IV.4.1]) We have the inverse system � � � !
L.�2x/! L.�x/! L of subobjects with zero intersection. By [68, Lem. IV.1.3])
there is a line bundle L0 � L such that Ext1.U;L/ D 0 for all subobjects (line
bundles) U � L0. Moreover, for n � 0 we have L.�nx/ � L0, and we conclude
Ext1.L.�nx/; L/ D 0.

Let E 2 H. Let F � E be the largest subobject such there is an epimorphism
G WD ˚tiD1L.�˛ix/ ! F , and let C D E=F . We assume that C ¤ 0, and will
show that this yields a contradiction. If C is of finite length, then it follows from
Lemma 3.2 that a finite direct sum of copies of Lmaps onto C . Thus we can assume
that C is a vector bundle, and it suffices to assume that C is a line bundle. We have
an exact sequence 0 ! K ! G ! F ! 0 with G a finite direct sum of �x-shifts
of L. By the preceding paragraph there is n0 such that Ext1.L.�nx/;G/ D 0, and
then Ext1.L.�nx/; F / D 0 for all n � n0.

By Lemma 3.4 we have a non-trivial morphismL.�mx/! C for somem � n0.
Since Ext1.L.�mx/; F / D 0, this lifts to a non-trivial morphism L.�mx/ ! E,
giving a contradiction.

Lemma 3.6. The homogeneous ideal Px in….L; �x/ generated by �x is prime.

Proof. This follows like in [47, Thm. 1.2.3]. We only need to show that for n � 0

sufficiently large we have Hom.L; �L.�nx// D 0, as in [47, Lem. 1.2.2]. To this
end, by Lemma 3.4 for n� 0 there is a non-zero morphism gW �L.�nx/! L. We
assume that there is a non-zero morphism f WL ! �L.�nx/. Both, f and g, are
monomorphisms, and g ı f WL! L is an isomorphism, thus g is an isomorphism.
Enlarging n further, we see that there is m > 0 such that L and L.mx/ are
isomorphic. But then, repeating the argument just given, also .�x/m would be
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an isomorphism. But this is not true by Lemma 3.2, giving a contradiction. Thus
Hom.L; �L.�nx// D 0.

Lemma 3.7. For each x 2 X the ring ….L; �x/ is a graded noetherian domain
which has a central prime element �x of degree one, and the quotient division ring
of degree-zero fractions s�1r (with r; s homogeneous of the same degree, s ¤ 0) is
the function field k.H/.

Proof. Noetherianness follows from the proof of [47, Prop. 1.4.4] also in this
more general setting (right-noetherianness is also shown in [9, Thm. 4.5]). Since
non-zero morphisms between line bundles are monomorphisms, the orbit algebra
R D ….L; �x/ is a graded domain. By the preceding lemma the homogeneous
element �x is central and prime. The assertion about the function field follows like
in [68, Lem. IV.4.1 Step 4]. (We remark that like in [68, Lem. IV.4.1 Step 3] the
Gelfand–Kirillov dimension of the finitely graded (in the sense of [8]) k-algebra R
is two, and then [8, Thm. 0.1] implies that (NC 7) holds.)

Remark 3.8. Assume thatH satisfies, more generally, conditions (NC 1) to (NC 5),
and let L be a line bundle. Then similar statements of most of the preceding results
remain true, with similar proofs. More precisely, for � a suitable product of Picard-
shifts, we get an ample pair .L; �/, and R D ….L; �/ is a projective coordinate
algebra for H of Gelfand–Kirillov dimension two, and the zero component of the
graded quotient division ring of R is the function field k.H/; we refer to [68,
Lem. IV.4.1]. Then [8, Thm. 0.1] implies (NC 7).
Lemma 3.9. Let x 2 X be of multiplicity e.x/ and with simple sheaf Sx .
(1) For a non-zero homogeneous element s 2 ….L; �x/ the following conditions

are equivalent:

� s 2 C.Px/, that is, s is regular modulo Px .
� The cokernel of s lies in

`
y¤x Uy .

� The fibre map sx 2 End.Sxe.x// is an isomorphism.

(2) The set C.Px/ is a denominator set.
(3) For the graded localizationRgr

x D ….L; �x/C.Px/ the graded Jacobson radical
is generated by the central element �x1�1 and is the only non-zero graded
prime ideal.

(4) As graded rings, Rgr
x = radgr.R

gr
x / ' Me.x/

�
END.Sx/

�
, where END.Sx/ is the

graded skew field
L
n2Z Hom.Sx; Sx.n//.

Proof. (1) The equivalence of the three conditions is shown in [47, Lem. 2.2.1].
(2) Since….L; �x/ is graded noetherian (left and right) and �x is a central, this

follows from a graded version of [79, Thm. 4.3].
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(3), (4) (For analogous ungraded statementswe refer to [62, Thm. 4.3.18] and [34,
Lem. 14.18].) Localizing the universal exact sequence

0! L
�x
�! L.x/ �! Sx

e.x/
! 0

we get, like in [47, Prop. 2.2.8], a short exact sequence

0! Rgr
x

��x
�! Rgr

x .x/ �! Sx
e.x/
! 0

of graded Rgr
x -modules, where Sx is simple. As graded rings thus Rgr

x =.�x1
�1/ '

Mgr
e.x/

.END.Sx//. The graded Jacobson radical radgr.Rgr
x / is the principal ideal

generated by �x1�1: clearly, 1 � �xr 2 C.Px/ for each r , so that �x1�1 lies
in the radical. The canonical surjective ring homomorphism R

gr
x =.�x1

�1/ !

R
gr
x = radgr.R

gr
x / is an isomorphism, by simplicity of the graded ring on the left

hand side.

We denote by Rx the degree-zero component of the localization….L; �x/C.Px/.
Proposition 3.10. Let X be a noncommutative regular projective curve over the
field k. Let x 2 X be a point. There is an isomorphism

Rx= rad.Rx/ ' Me.x/

�
End.Sx/

�
of rings.

Proof. Since rad.Rx/ is the degree zero part of radgr.Rgr
x /, the assertion follows from

the preceding lemma.

3.11. For x 2 X we denote by Hx D H=h
`
y¤x Uyi the quotient category, modulo

a Serre subcategory, where all tubes except Ux are “removed”, and by px WH! Hx

the quotient functor.
Lemma 3.12. The object Lx D px.L/ is an indecomposable projective generator
of Hx . Accordingly, for the ring Vx D EndHx .Lx/ we have Hx ' mod.Vx/ D
modC.Vx/ _ mod0.Vx/, with mod0.Vx/ ' Ux the finite length modules and
modC.Vx/ the finitely generated torsionfree modules.

Proof. Let y 2 X be another point, y ¤ x. Then �y induces an isomorphism
Lx.�y/ ' Lx . Using ampleness of the pair .L; �y/ we see that Lx is a generator
for Hx . It is easy to see that for each exact sequence �W 0 ! A ! B ! L ! 0

in H the exact sequence px.�/ in Hx splits, showing that Lx is a projective object
inHx . From this it follows that HomHx .Lx;�/WHx ! mod.Vx/ is an equivalence.
It is easy to see that px induces an injective homomorphism Vx ! k.H/ of rings,
and thus Vx is a domain. We infer that Lx is indecomposable.

Proposition 3.13. There is an isomorphism of rings Rx ' Vx .
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Proof. By using the definition of morphisms in the quotient category we see easily
Rx � Vx . Let 0 ! L0

s
�! L ! C ! 0 be an exact sequence in H

with L0 a line bundle and C 2
`
y¤x Uy . By ampleness of .L; �x/ there is

an epimorphism f D .f1; : : : ; fn/W
Ln
iD1L.�˛ix/! L0 (with ˛i � 1). If we

assume that each Ci D Coker.fi / has a non-zero summand in Ux , then there is an
epimorphism Ci ! Sx , and thus we can write fi D �x ı f 0i . But then f D �x ı f

0

is not surjective, giving a contradiction. Thus there is i such that Ci 2
`
y¤x Uy .

We conclude that there is f WL.�˛x/ ! L0 such that s ı f WL.�˛x/ ! L is a
non-zero homogeneous element in ….L; �x/ with Coker.sf / 2

`
y¤x Uy , that is,

sf 2 C.Px/. Thus we can write rs�1 D .rf /.sf /�1, from which we infer the
converse inclusion.

Corollary 3.14. For each x 2 X we have Ux ' mod0.Rx/.
Corollary 3.15. Each ring Rx is a noncommutative Dedekind domain with unique
non-zero prime ideal given by rad.Rx/.

Proof. Rx is right hereditary since mod.Rx/ ' Hx is hereditary. Since Rx is
noetherian, by [78, Cor. 3] it is also left hereditary. It follows from Proposition 3.10
that the radical J D rad.Rx/ is the only (two-sided) maximal ideal. As in [62, 4.3.20]
one shows

T
n�0 J

n D 0. Thus, if r 2 Rx , r ¤ 0, then there is v.r/ D n with
r 2 J n but r 62 J nC1. Let I be a non-zero idempotent ideal in Rx . Let 0 ¤ r 2 I

with v.r/ minimal. From the condition I D I 2 we get v.r/ D 0, and then I D Rx
since J is maximal. ThusRx is Dedekind by [62, 5.6.3]. By [62, 5.2.9] each non-zero
ideal is of the form J n, and it follows that J is the only non-zero prime ideal.

We also consider the category EH D QcohX D ModZ.….L;�x//

ModZ
0
.….L;�x//

of quasicoherent
sheaves, where Mod0 denotes the localizing Serre subcategory of torsion (that
is, locally finite length) graded modules. This is a hereditary, locally noetherian
Grothendieck category. In this we can consider the Prüfer sheaf SxŒ1� for x 2 X,
which is the union

S
n�1 SxŒn�, that is, the direct limit of the direct system .SxŒn�; �n/,

and thus is a quasicoherent torsion sheaf. We now have the main result of this section.
Proposition 3.16. For the rad.Rx/-adic completion of Rx we havebRx ' Me.x/

�
End.SxŒ1�/

�
:

Proof. By [49, Thm. 21.31] the completion bRx is semiperfect, it satisfies, with
Dx D End.Sx/, bRx= rad.bRx/ ' Rx= rad.Rx/ ' Me.x/.Dx/; (3.3)

and from [49, Thm. 23.10] it follows that bRx ' Me.x/.bEx/ for a complete local
ring bEx . Moreover, for the categories of finite length modules we have

mod0.bEx/ ' mod0.bRx/ ' mod0.Rx/ ' Ux :
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The result follows now, since the complete local ring End.SxŒ1�/ is uniquely
determined such that mod0.End.SxŒ1�// ' Ux , by [31, IV. Prop. 13].

4. Serre duality and the bimodule of a homogeneous tube

In [30] P. Gabriel defined the species of a uniserial category U . In the most
basic situation, when there is (up to isomorphism) only one simple object S in U ,
like in the case of a homogeneous tube, then this species is just the bimodule
End.S/ Ext1.S; S/End.S/. In order to describe this bimodule more precisely, we derive
from [57] some general facts about Serre duality.

We call a k-bilinear map h�j�iWV �W ! k a perfect pairing, if for each non-
zero x 2 V there exists y 2 W with hxjyi ¤ 0, and if for each non-zero y 2 W
there is x 2 V with hxjyi ¤ 0. LetH be a noncommutative regular projective curve
over the field k. For each indecomposable object X 2 H we fix an almost split
sequence �X W 0! �X ! E ! X ! 0 and a k-linear map �X WExt1.X; �X/! k

with �X .�X / ¤ 0. Similarly, for Y 2 H indecomposable and an almost split
sequence ���Y W 0 ! Y ! F ! ��Y ! 0 we fix ���Y WExt1.��Y; Y / ! k with
���Y .���Y / ¤ 0. Then

h�j�iWExt1.X; Y / � Hom.��Y;X/! k; .�; f / 7! ���Y .� � f /

is a perfect pairing, and similarly so is

h�j�iWHom.Y; �X/ � Ext1.X; Y /! k; .g; �/ 7! �X .g � �/:

From these perfect pairings we obtain Serre duality

Hom.Y; �X/
 XY
�! DExt1.X; Y /

�XY
 � Hom.��Y;X/; (4.1)

where  XY Wf 7! hf j�i and �XY Wg 7! h�jgi are isomorphisms, natural in X
and Y .

Proposition 4.1. Let X 2 H be indecomposable such that End.X/ is a skew field.
Denote by �W 0! �X

u
! E

v
! X ! 0 the almost split sequence ending in X . For

all f 2 End.X/ we have
�.f / � � D � � f:

Proof. The isomorphism XY from (4.1) is natural inX andY and thus, in particular,
an isomorphism of End.X/�End.Y /-bimodules. Then we have the following rules:

hf jg�i D hfgj�i; hf �jgi D hf j�gi;

h�jfgi D h�f jgi; hf j�gi D h�.g/f j�i



Weighted noncommutative regular projective curves 1483

(compare [57, (3.2)]). The last equality is just End.X/-linearity. Moreover, by
definition of the End.X/ � End.Y /-bimodule structure on DExt1.X; Y / we have
hgj�f i D f � hgj�i for all f 2 End.X/. Let now Y D �X and � 2 Ext1.X; �X/
be the almost split sequence. Since D D End.X/ ' End.�X/ is a skew field,M D
Ext1.X; �X/ is a onedimensionalD �D-bimodule, in particularD� DM D �D.
Thus for each f 2 D D End.X/ there is a unique f 0 2 D D End.�X/ such that
f 0� D �f . We have to show that f 0 D �.f /. Let � 2 Ext1.X; �X/. Then there is
an h 2 End.X/ such that � D � � h. First we have

hf 0j�i D h1jf 0�i D h1j�f i D h�jf i D h�.f /j�i;

and then

hf 0j�i D hf 0j� � hi D h � hf 0j�i D h � h�.f /j�i D h�.f /j� � hi D h�.f /j�i:

Since h�j�i is a perfect pairing we conclude f 0 D �.f /, finishing the proof.

Corollary 4.2. Let End.X/ be a skew field. Let f 2 End.X/ such that there is a
commutative diagram

�W 0 // �X
u //

f 0

��

E
v //

g

��

X //

f

��

0

�W 0 // �X
u // E

v // X // 0:

Then f 0 D �.f / holds.

Proof. We show that from the assumptions f 0 �� D � �f follows. By the preceding
proposition then f 0 � � D �.f / � �, thus .f 0 � �.f // � � D 0; since � ¤ 0 and
End.�X/ is a skew field, this yields f 0 D �.f /.

If f ¤ 0, then f is an isomorphism, and since � does not split, f 0 ¤ 0 follows
easily. Dually, if f D 0, then also f 0 D 0 holds. Thus we may assume that f , and
then also f 0 and g are isomorphisms. One computes that

f 0 � �W 0! �X
u
�! E

f �1v
�! X ! 0

and

� � f W 0! �X
uf 0�1

�! E
v
�! X ! 0:

Then we have the commutative exact diagram:

f 0 � �W 0 // �X
u // E

f �1v
//

g�1

��

X // 0

� � f W 0 // �X
uf 0�1

// E
v // X // 0;

thus f 0 � � D � � f as claimed.
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As a special case we get the following description of the bimodule of a
homogeneous tube.
Corollary 4.3. LetU be a homogeneous tube inHwith simple objectS D �S , almost
split sequence �W 0 ! S ! SŒ2� ! S ! 0 and division algebra D D End.S/.
Then the bimodule of U , that is, the D-D-bimodule E D Ext1.S; S/, is given by
E D D � � D � � D with relations � � d D �.d/ � � (for all d 2 D), where
� 2 Aut.D=k/ is induced by the Auslander–Reiten translation.

5. Tubes and their complete local rings

Let k be a field. If D is a division algebra over k and � 2 Aut.D=k/, then we
denote by DŒŒT; ��� the ring of formal power series

P
n�0 anT

n over D, subject to
the relation Ta D �.a/T for all a 2 D. Such rings occur naturally in the study of
generalized uniserial algebras over a perfect field, cf. [42].

Let .R;m/ be a (not necessarily commutative) local ring with Jacobson radicalm.
We write gr.R/ D

L
n�0m

n=mnC1. This is a graded local ring, with graded
Jacobson radical given by grC.R/ D

L
n�1m

n=mnC1. Its grC.R/-adic completion
is given by bgr.R/ D Q

n�0m
n=mnC1, with multiplication given by the Cauchy

product.
Proposition 5.1. Let k be a field. Let U be a (homogeneous) tube over a
noncommutative regular projective curve over k with simple object S and D D
End.S/ the endomorphism skew field. Let � 2 Gal.D=k/ be the automorphism
(modulo inner) induced by the Auslander–Reiten translation � . Let SŒ1� be the
corresponding Prüfer sheaf and R D End.SŒ1�/ its endomorphism ring.

ThenR is a complete local domain with maximal idealm D R� D �R, where �
is a surjective endomorphism of SŒ1� having kernel S . Each one-sided ideal
is two-sided, and if non-zero then of the form mn D R�n D �nR. Moreover,
U ' mod0.R/, and there are isomorphisms

gr.R/ ' DŒT; ��� (of graded rings) and bgr.R/ ' DŒŒT; ����:
Proof. (1) With the notations from 2.3, the Prüfer object SŒ1� is the direct limit
of the direct system .SŒn�; �n/. The direct limit closure EU of U in EH is a hereditary
locally finite Grothendieck category in which SŒ1� is an indecomposable injective
cogenerator. Its endomorphism ring R is the inverse limit of the inverse system of
rings .End.SŒn�; pn/, where the pn are the surjective restriction maps.

It is well known (we refer to [5, 30, 71, 73], and [84, Prop. 4.10]) that R is a
complete local domain with U ' mod0.R/, having the properties stated in the
proposition. The two isomorphisms of rings remain to show. Since U is hereditary,bgr.R/ is, by [30, 8.5], isomorphic to the complete tensor algebra [30, 7.5] � of the
species of U , which is given by theD-D-bimodule E D Ext1.S; S/.
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(2) We now determine the complete tensor algebra of the bimodule E. Let
� 2 E denote the almost split sequence 0 ! S ! SŒ2� ! S ! 0. We have
E D D� D �D, and from Proposition 4.1 we get � � d D �.d/ �� for each d 2 D.
For each natural number n there is a canonical isomorphism DD

n
D ˝ DED '

.DDD ˝ DED/
n ' DE

n
D , where En as left D-module is isomorphic to Dn,

and the right D-module structure on En is given by � -twist: .x1; : : : ; xn/ � d D
.x1�.d/; : : : ; xn�.d//.

We denote by U 0 the category of small representations [30] of the species given
by the division ring D and one loop labelled by the D-D-bimodule E. The
indecomposable of lengthn is given byS 0Œn�, which is the representationDn

g
�! En,

with g nilpotent rightD-linear and given by the indecomposable Jordan matrix

Jn D Jn.0/ D

0BBBBB@
0 1 0 : : : 0

0 0 1 : : : 0
:::

:::
: : :

:::

0 0 0 : : : 1

0 0 0 : : : 0

1CCCCCA
to the eigenvalue 0. That is, we have

g.

0B@x1:::
xn

1CA/ D Jn �
0B@�.x1/:::
�.xn/

1CA :
If

Dn

f

��

g
// En

f 0

��

Dn g
// En

is an endomorphism of S 0Œn�, where f and f 0 are right D-linear maps given by the
same n�n-matrixA D .aij /with entries inD, then for the matricesA �Jn D Jn �A�
holds, whereA� D .�.aij //. Similar relations hold formorphisms of representations.
This yields that we can A write as

A D a0 � In C a1 � Jn C a2 � .Jn/
2
C � � � C an�1 � .Jn/

n�1 (5.1)

with unique a0; : : : ; an�1 2 D, and where a � .Jn/` is given by replacing the side-
diagonal given by 1; 1; : : : ; 1 by the elements a; ��.a/; : : : ; ��.n�`�1/.a/. Clearly
.a � In/ � .b � In/ D .ab/ � In holds, and D � In forms a subalgebra of End.S 0Œn�/
isomorphic toD. Moreover,

.Jn/
`
� .a � In/ D �

�`.a/ � .Jn/
` (5.2)
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holds, and the Jacobson radical of End.S 0Œn�/ is generated, as a left ideal and as a
right ideal, by the map with matrix Jn.

We denote by �0nWS 0Œn� ! S 0ŒnC 1� and � 0nWS 0ŒnC 1� ! S 0Œn� the morphisms
given by the matrices �

In
0

�
and .0 j In/;

respectively. This yields that �0n ı � 0n is given by multiplication with JnC1, and
� 0n ı �

0
n by Jn. If f 0 is the restriction of the endomorphism f to S 0Œn � 1�, that is,

�0n�1 ı f
0 D f ı �0n�1 holds, and if A0 denotes the corresponding .n � 1/ � .n � 1/-

matrix, then equation (5.1) yields

A0 D a0 � In�1 C a1 � Jn�1 C a2 � .Jn�1/
2
C � � � C an�2 � .Jn�1/

n�2:

Thus, sending f to its restriction f 0, gives a, clearly surjective, homomorphism
p0nWEnd.S 0Œn�/! End.S 0Œn � 1�/ of k-algebras.

Starting with the almost split sequence �01 with end term S 0 D S 0Œ1� we have the
following direct system of short exact sequences

�01W 0 // S 0
�0
1 // S 0Œ2�

� 0
1 //

�0
2

��

S 0 //

�0
1

��

0

�02W 0 // S 0 // S 0Œ3�
� 0
2 //

�0
3

��

S 0Œ2� //

�0
2

��

0

�03W 0 // S 0 // S 0Œ4�
� 0
3 //

�0
4
��

S 0Œ3� //

�0
3
��

0

:::
:::

:::
:::

and its direct limit

�01W 0! S 0 ! S 0Œ1�
� 0

�! S 0Œ1�! 0:

The ringR0 D End.S 0Œ1�/ is isomorphic to the inverse limit of the End.S 0Œn�/ (with
respect to the inverse system given by the p0n). As in (1), R0 is a complete local ring
with maximal ideal m0 D R0� 0 D � 0R0, and with mod0.R0/ ' U 0. Thus there is an
automorphism � 2 Aut.R0=k/ with � 0f D �.f /� 0 for all f 2 R0.

Each f 2 End.S 0Œ1�/ has a unique expression f D .f1; f2; f3; : : : / with
fn 2 End.S 0Œn�/ and fn D fjS 0Œn� the restriction of f to S 0Œn� for each n. The
restriction of � 0 to S 0Œn� is given by �0n�1 ı � 0n�1, hence by the matrix Jn. We
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conclude that f has a unique expression as formal power series

f D

1X
nD0

an�
0n:

From (5.2) we deduce
� 0a D ��.a/� 0

for all a 2 D. Thus R0 D DŒŒ� 0; ���� ' DŒŒT; ����. On the other hand, by [30,
7.5] the complete tensor algebra � of E is a complete local ring also satisfying
U 0 ' mod0.�/. It follows, by [31, IV. Prop. 13], that R0 ' � ' bgrR. Finally this
yields gr.R/ ' DŒT; ��� as graded rings.

In the separable (perfect) case, we can apply theWedderburn–Malcev theorem [66,
Thm. 11.6] in order to get the following.
Proposition 5.2. With the notations of the preceding proposition, assume that D=k
is separable (that is, Z.D/=k is a separable field extension). Then R ' bgr.R/.

In different words, R is obtained as the complete tensor algebra of the species
of the tube U , so that U can be recovered from its species. Without the separability
assumption the statement is wrong in general, cf. Example 10.13.

Proof. The proof is based on [30, 8.4]. For n � 1 let Bn be the finite dimensional
k-algebra End.SŒn�/ ' R=mn, where R is the endomorphism ring of SŒ1� with
maximal ideal m. The Wedderburn–Malcev theorem implies that the projection
Bn ! Bn= rad.Bn/ ' D splits. Thus Bn D Dn ˚ rad.Bn/, with a subalgebra Dn
of Bn isomorphic to D. Then Bn becomes a D-D-bimodule, and rad.Bn/ contains
a subbimodule which is isomorphic to Vn D rad.Bn/= rad2.Bn/. Thus there is a
surjective homomorphism from the tensor algebra of Vn, and then also from the
complete tensor algebra � of the species of U , onto Bn. We get an isomorphism
�= radn.�/ ' Bn. A more detailed analysis shows that this can be done inductively
in such a way that we obtain an isomorphism of inverse systems of rings. Taking
inverse limits we get � ' R. This finishes the proof.

If U D Ux satisfies this separability condition, we call x (resp. U ) a separable
point (tube). If k is a perfect field, then all points are separable.
Theorem 5.3. Let k be a field. Let U be a separable tube over a noncommutative
regular projective curve over k with simple object S and D D End.S/ the
endomorphism skew field. Let � 2 Gal.D=k/ be the automorphism induced by
the Auslander–Reiten translation � . Let SŒ1� be the corresponding Prüfer sheaf.
Then

End.SŒ1�/ ' DŒŒT; ����:

In particular, U ' mod0
�
DŒŒT; ����

�
.
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We set

Aut� .D=k/ D f� 2 Aut.D=k/ j �� D ��g;
Inn� .D=k/ D f�u 2 Inn.D=k/ j u 2 Fix.�/g;

and finally Gal� .D=k/ D Aut� .D=k/= Inn� .D=k/. Clearly Inn� .D=k/ D
Inn.D=k/ \ Aut� .D=k/, so that Gal� .D=k/ can be regarded as a subgroup of
Gal.D=k/. Trivially � 2 Aut� .D=k/ holds, so that the order of � in Gal.D=k/ is
the same as the order of � in Gal� .D=k/.
Corollary 5.4. Let x be a separable point, U D Ux and D D End.Sx/. Then
Aut.U=k/ ' Gal� .D=k/.

Proof. We have gr.R/ ' DŒT; ��� and U ' modZ
0 .gr.R//=sZ, the orbit category

with respect to the degree shift s; in different words, this is the category of finite
dimensional gr.R/-modules which are annihilated by some power of T . A graded
automorphism of gr.R/ is uniquely determined by its action on degrees zero and one,
and is thus of the form X

aiT
i
7!

X
f .ai /Ni .b/T

i ;

with f 2 Aut.D=k/ and b 2 D�, satisfying f ��.a/ � b D b � ��f .a/ for all a 2 D.
HereNi .b/ is defined as b ���.b/ : : : ��.i�1/.b/. We define the group of graded inner
automorphisms of gr.R/, denoted by Inn.gr.R//, generated by automorphisms of the
form �u, r 7! u�1ru (u 2 D�/, and by automorphisms induced by T n 7! Nn.b/T

n

(with b 2 Z.D/�). Each graded automorphism � D .f; b/ of gr.R/ induces
an autoequivalence F � on U , and F � ' 1U if and only if � is a graded inner
automorphism. We refer to [47, Prop. 3.2.3] for a similar statement. On the
other hand, each automorphism of U is uniquely determined by its action on the
bimodule Ext1.S; S/, and thus on R=m D D and m=m2, and thus induces a graded
automorphism of gr.R/ D Dhm=m2i.

Considering the skeleton of U and requiring that automorphisms are the identity
on objects (e.g. equality �S D S ), the automorphism F � on S commutes with �
on S , which follows from the diagram in Corollary 4.2. We thus can assume that f 2
Aut� .D=k/. Then also b 2 Z.D/�. We write Aut� .gr.R// for the subgroup of the
automorphisms with these properties, and Inn� .gr.R// D Inn.gr.R//\Aut� .gr.R//.
We conclude Aut.U=k/ ' Aut� .gr.R//= Inn� .gr.R// ' Gal� .D=k/, finishing the
proof.

Corollary 5.5. Let x be a point.
(1) The functors �� and �x , restricted to the simple Sx , yield the same elements

in Gal.End.Sx/=k/.
(2) Let x be separable. Then the functors �� and �x , restricted to Ux , are

isomorphic.
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The separability assumption in (2) is essential, cf. Example 10.13.

Proof. (1) We write S D Sx andD D End.S/. By [47, 0.4.2] there is a natural
isomorphism uW �xS

�
! Ext1.S; S/˝D S , and for f 2 D the endomorphism �x.f /

corresponds to �˝s 7! f �˝s. Let � 2 Ext1.S; S/. There is d 2 D with � D � �d ,
where � is the almost split sequence starting and ending in S . For f 2 Z.D/ we
have f �˝ s D ���.f /d ˝ s D �d ˝ ��.f /.s/ D �˝ ��.f /.s/. We conclude
�x.f / D u�1��.f /u D ��.f / for all f 2 Z.D/. Thus the restrictions of �x
and �� to Z.D/ yield the same element in Gal.Z.D/=k/. By the Skolem–Noether
theorem the restrictions of �x and �� toD yield the same element in Gal.D=k/.

(2) This follows from (1) together with the preceding corollary.

Definition 5.6. Let X be a noncommutative regular projective curve over a field. We
call a point x 2 X a separation point, if it is separable and e� .x/ > 1 holds.
Corollary 5.7. Let U � X be a subset such that Pic.H/ is generated by �x (x 2 U ).
Then U contains all separation points.

6. Local-global principle of skewness

For a point x of a noncommutative regular projective curve over an arbitrary field we
write e��.x/ for the PI-degree of End.SxŒ1�/.
Theorem 6.1 (General skewness principle). Let H be a noncommutative regular
projective curve over an arbitrary field k. For all points x 2 X the following hold:
(1) e.x/ � e��.x/ D s.H/.
(2) e�.x/ divides e��.x/.

Proof. (1) By Proposition 3.16 the PI-degree of bRx is e.x/ � e��.x/. By [17,
Thm.13] the ring Rx and its completion bRx have the same PI-degree. The PI-degree
ofRx coincides with the PI-degree of its quotient division ring k.H/, which is s.H/.
Thus we get the equation.

(2) By a theorem of Bergman–Small (see [74, Thm. 1.10.70]), applied to the
surjective ring homomorphism Rx ! Rx= rad.Rx/ ' Me.x/.Dx/, the PI-degree of
the factor, which is e.x/ �e�.x/, divides the PI-degree ofRx , which is s.H/. Together
with (1) we get that e�.x/ divides e��.x/.

Lemma 6.2. Let x be a point with associated skew fieldDx D End.Sx/. Denote bybDx D Dx..T; �
�// (6.1)

the skew Laurent power series ring over Dx in the variable T . It is a skew field of
dimension e�.x/2 � e� .x/2 over its centre. Moreover, it is vx-complete, where the
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valuation vx is given by vx.
P1
m aiT

i / D .1=2/`, with ` the infimum of indices i
with ai ¤ 0.

Proof. Let r D e� .x/ and ��r.d/ D u�1du for some u 2 Fix.�/�. By [66, 19.7],
the centre ofDx..T; ��// is given bybKx D Kx..uT r// with Kx D Z.Dx/ \ Fix.��/: (6.2)

From this the assertion about the centre follows. Completeness is shown in [66,
19.7].

Proposition 6.3. Let x be a separable point.

(1) We have e��.x/ D e�.x/ � e� .x/.

(2) e� .x/ coincides with

(i) the order of � 2 Aut.Ux=k/, the group of (isomorphism classes of)
autoequivalences on the tube Ux;

(ii) the order of the cyclic group Gal.Z.Dx/=Kx/, generated by � .

(3) If � 2 Aut.H/, and �.Sx/ D Sy , then e� .x/ D e� .y/.

Proof. (1) We have End.SxŒ1�/ ' DxŒŒT; �
���. By Posner’s theorem (see [6,

Thm. 7]) the PI-degree of DxŒŒT; ���� coincides with the PI-degree of its quotient
division ring, which isDx..T; ��//. The assertion follows from the preceding lemma.

(2) (i) follows from Corollary 5.4, (ii) from the preceding lemma.
(3) It follows that y is also separable, and the equality of � -multiplicites is

obtained from (2) (i).

We will see in the next section, that (ii) just means that e� .x/ coincides with the
ramification index of x with respect to the maximal order A associated withH.
Example 6.4. If k D R and the tube U is either of the form mod0 CŒŒT ��, or
mod0CŒŒT; ����with �� of order two, then in both casesAut.U=k/'Gal.C=R/DC2,
generated by complex conjugation. In the first case � acts trivially onU , in the second
it generates Aut.U=k/.

The following local-global principle is the main result on skewness.
Theorem 6.5 (Local-global principle of skewness). Let H be a noncommutative
regular projective curve over a field. Then for each separable point x 2 X the
formula

e.x/ � e�.x/ � e� .x/ D s.H/

holds.

For a perfect field, we obtain Theorem 1.5.
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Proof. Follows from Theorem 6.1 (1) and Proposition 6.3 (1).

The preceding theorems give answers to [47, Probl. 2.3.11 + 4.3.10]. It follows,
by the way, that for each separable point the multiplicity e.x/ does not depend on the
line bundle L used in its definition, since e.x/ D s.H/

e�.x/e� .x/
.

7. Maximal orders and ramifications

Following [68, 69], we will use in this section an alternative description of
noncommutative curves in terms of hereditary and maximal orders. Here our main
result is that the � -multiplicities e� .x/ coincide with the ramification indices of the
underlying maximal order A. We will temporarily, in Theorem 7.11, also permit
weighted curves. This will allow to characterize the non-weighted situation in
terms of orders. Namely, the weights p.x/ correspond to the local types of the,
in general, hereditary order A, which measure the deviation of Ax from being
maximal. For excellent expositions on orders we refer to [11, 18, 19, 37, 67, 75], and
the unpublished [7].

7.1. By a (commutative) curve we mean a one-dimensional scheme over k, which
we always assume to be integral, separated and of finite type over k. A curve X is
regular (or non-singular) if all local rings OX;x are regular, equivalently, discrete
valuation domains; in particular they are hereditary. We remark that if k is a perfect
field, regularity is equivalent to smoothness; cf. [27, I.5.3.2].

7.2 (The centre curve). Let .H; L/ be a noncommutative regular projective curve
over the field k with point set X and function fieldD D k.H/. LetK D Z.k.H// be
the centre of D. There is a unique (commutative) regular complete curve X D CK
with function field k.X/ D K and whose points are in bijective correspondence with
the discrete valuations of K=k; we refer to [35, Prop. (7.4.18)], also [27, I.5.3.7].
By Chow’s lemma (we refer to [38, Ex. II.4.10] and [35, 5.6]) there is a (irreducible)
projective curve X 0 and a surjective, birational morphism � WX 0 ! X over k (in
particular: X 0 D Proj.S 0/ where the commutative graded ring S 0 is generated in
degrees 0 and 1). By [36, Cor. (4.4.9)] we have that � is even an isomorphism. In
particular, X itself is projective over k. We call X the centre curve of H (or X). If
O D OX is the structure sheaf of X , we denote by .Ox;mx/ the local rings (x 2 X )
and by k.x/ D Ox=mx the residue class fields.

Example 7.3. Let k D R be the field of real numbers and R D CŒX IY; ��
the twisted polynomial algebra, graded by total degree, where X is central and
Yz D �.z/Y for each z 2 C, with �.z/ D Nz the complex conjugation. Then
H D modZ.R/=modZ

0 .R/ is a noncommutative regular projective curve (we refer
to [47] for more details). The function field is C.T; �/, its centre given by R.T 2/.
The centre of R is S D RŒX; Y 2�, and Proj.S/ is the centre curve of H. It is
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isomorphic to the projective spectrum of S 0 D RŒX; Y �, graded by total degree,
having function field R.T /, which as R-algebra is isomorphic to R.T 2/. Thus the
centre curve ofH is isomorphic to the projective line P1.R/.
7.4 (The categorical centre). We also have the centre of H in the categorical sense,
namely Z.H/ D End.1H/, the ring of natural endotransformations of the identity
functor 1H.
Lemma 7.5. The categorical centre Z.H/ is a field, of finite dimension over k. For
each line bundle L0, the assignment ˛ 7! ˛L0 yields a k-monomorphism from Z.H/
into End.L0/.

Therefore we can usually assume without loss of generality that k is the centre
ofH.

Proof. We proceed as in [55, (S 19)]. If ˛ is a non-zero element in the centre,
then ˛L0 is non-zero for each line bundle L0: if otherwise ˛L0 D 0, then it follows
that also ˛L0.nx/ D 0 for all x 2 X and n 2 Z. Using ampleness (cf. Lemma 3.5 and
Remark 3.8) we the get easily ˛ D 0, contradiction. Since End.L0/ is a skew field,
˛L0 is an isomorphism. Using line bundle filtrations and the fact that each simple
object is the cokernel of a monomorphism between line bundles, we obtain that ˛F
is an isomorphism for each object F 2 H. Thus ˛ is invertible. Finally, for all
˛; ˇ 2 Z.H/ we clearly have ˛L0ˇL0 D ˇL0˛L0 , and hence Z.H/ is commutative.

Proposition 7.6. Let .H; L/ be a noncommutative regular projective curve.

(1) For each x 2 X the graded ring….L; �x/ is finitely generated as module over
its centre.

(2) If s.H/ D 1, then….L; �x/ is commutative.

Proof. Like in [47, Prop. 4.3.3] we have a graded inclusion ….L; �x/ � k.H/ŒT �,
where T is a central variable. From this, (2) follows immediately, and (1) follows
with [50] and [8, Thm. 0.1(ii)].

Corollary 7.7. Let .H; L/ be a noncommutative regular projective curve over k with
s.H/ D 1. Then there is a (commutative) regular projective curve X over k such
thatH'coh.X/, and the points of X are in bijective correspondence with the closed
points of X .

Proof. Let S be the commutative graded ring ….L; �x/ for some x 2 X and
X D Proj.S/.

Corollary 7.8. Let k be an algebraically closed field. Then H is a noncommutative
regular projective curve over k if and only ifH is equivalent to the category coh.X/
of coherent sheaves over a (commutative) regular (=smooth) projective curve X .
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Proof. By Tsen’s theorem [82] we have s.H/ D 1.

7.9 (The centre curve in the weighted case). We assume that H satisfies (NC 1)
to (NC 5). By Remark 3.8 also (NC 7) holds. Thus the centre of the function
field k.H/ is of the form k.X/, for a unique regular projective curve X , which we
also call the centre curve of H in this weighted case. Similarly, R D ….L; �/,
with � a suitable product of Picard-shifts, is module-finite over its centre, by the
same arguments given in Proposition 7.6. Part (2) of the next theorem below will
show that also (NC 6) is satisfied.
7.10 (Orders over the centre curve). Let X be the centre curve with function field
K D k.X/. LetA be a finite dimensional central simpleK-algebra. As in [7] we call
a torsionfree, coherent OX -algebra A an OX -order in A, if the generic fibre of A is
isomorphic to A, or equivalently, if A˝OXK ' A. An order A is called maximal
if it is not contained properly in another order. Then all stalks Ax D A ˝ Ox
are maximal Ox-orders in A. An order A is called hereditary, if all stalks Ax are
hereditary Ox-orders in A. Each maximal order is hereditary. The OX -order A
is called an Azumaya algebra of degree n, if A is locally-free of rank n2, and if
for each x 2 X the geometric fibre A.x/ D Ax ˝Ox k.x/ D Ax= rad.Ax/ is a
full matrix algebra with centre k.x/. Equivalently (by [7, Prop. 1.9.2]): For each x
we have ŒA.x/ W k.x/� D n2. Azumaya algebras over OX are maximal orders
(by [7, Prop. 1.8.2]).

We now have the following fundamental description of noncommutative regular
projective curves, essentially due to Reiten–van den Bergh [68, Prop. III.2.3].
Theorem 7.11. Let k be a field.
(1) For a k-categoryH the following two conditions are equivalent:

(a) H is a weighted noncommutative regular projective curve over k.
(b) There is a (commutative) regular projective curve X over k, a (finite

dimensional) central simple k.X/-algebra A and a torsionfree coherent
sheaf A of hereditary O D OX -orders in A such that H ' coh.A/, the
category of coherent A-modules.

(2) If the equivalent conditions in (1) hold, thenX is the centre curve. Accordingly,
the points of X correspond bijectively to the closed points of X , and for each
x 2 X its weight p.x/ is the local type (in the sense of [67, p. 369]) of the
hereditary O-order A at x. Accordingly, p.x/ > 1 if and only if Ax is not
maximal, and there is only a finite number of such points x.

(3) In (1) we have that H is non-weighted if and only if A is a maximal O-order
in A.

Proof. (1) This is shown like in [68, Prop. III.2.3]. For the fact that the centre
of a hereditary order is a Dedekind domain, we refer to [37, Thm. 2.6]. By [83]
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the category coh.A/ has Serre duality. We recall the construction of A and A if H
is given. Let X be the underlying centre curve. Let R be a positively Z-graded
coordinate algebra of H, module-finite over its centre S . Let x1; : : : ; xt be a set of
homogeneous generators of S over the field S0. Let n be the least common multiple
of their degrees. Then

T D

0BBB@
R R.1/ : : : R.n � 1/

R.�1/ R : : : R.n � 2/
:::

:::
: : :

:::

R.�nC 1/ R.�nC 2/ : : : R

1CCCA
is graded Morita-equivalent toR and strongly Z-graded; thus modZ.T / ' mod.T0/.
Let T be the corresponding sheaf of graded rings. We set A D Mn.k.H//, which
is of finite dimension over its centre k.X/, and A D T0 � A, equipped canonically
with the structure of an OX -module.

(2) The assertion is clear from the structure of hereditary orders [18, 19], we
refer also to [67, Ch. 9], and the Auslander–Goldman criterion [11, Thm. 2.3] for
maximality. (This in particular shows that (NC 6) follows from (NC 1) to (NC 5).)

(3) This follows from (2), since by [67, (40.8)] the order A is maximal if and
only if all Ax are maximal.

We switch back to the non-weighted case. The next theorem extends [35,
Prop. (7.4.18)] to this noncommutative setting, and it gives a positive answer to [47,
Probl. 4.3.9], even in this much more general context. It is an easy consequence
of well known results in the theory of maximal orders. It was also shown recently
in [20, Thm. 6.7].
Theorem 7.12. Two noncommutative regular projective curves H and H0 over a
field k are isomorphic (that is, they are equivalent as k-categories) if and only if their
function fields k.H/ and k.H0/ are isomorphic.

Proof. If H ' H0, then H0 ' H00 and H=H0 ' H0=H00, and consequently
k.H/ and k.H0/ are isomorphic. Assume conversely, that the function fields k.H/
and k.H0/ are isomorphic and have the common centre K D k.X/. By parts (1)
and (3) of the preceding theorem, there are maximal orders A and A0 in Morita-
equivalent central simple K-algebras A and A0, respectively, such that H ' coh.A/
and H0 ' coh.A0/. Since X is a normal curve, by [7, Prop. 1.9.1 (ii)] (for an
affine version we refer to [67, Cor. (21.7)]; for a similar result on hereditary orders
over a smooth curve we refer to [23, Thm. 7.6]) it follows, that A and A0 are
Morita-equivalent, that is (by definition), Qcoh.A/ ' Qcoh.A0/. Then clearly
coh.A/ ' coh.A0/, and thusH ' H0 follows.

Since maximal OX -orders over a regular projective curve X in a central simple
k.X/-algebra always exist, by [7, Prop. 1.8.2], we have even more:
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Corollary 7.13. The assignments

H 7! k.H/ and A 7! coh.A/;

whereA is a maximal order inA (whose centre is of the form k.X/), induce mutually
inverse bijections between the sets of

� noncommutative regular projective curves over k, up to equivalence of
categories; and

� algebraic function skew fields of one variable over k, up to isomorphism.
Let H D coh.A/ be a noncommutative regular projective curve with a maximal

order A in A D Mn.k.H// as above. Let K D k.X/ be the centre, as above. Let
x 2 X be separable. We write Dx D End.Sx/ and denote by bEx D End.SxŒ1�/
the endomorphism ring of the corresponding Prüfer sheaf, which is a complete
local domain, the maximal ideal generated by �x . By Proposition 3.16 we havebRx ' Me.x/.bEx/. If bKx denotes the quotient field of the mx-adic completion bOx

of Ox , then
A˝K bKx ' Mn

�
k.H/˝K bKx� ' Mn�e.x/.bDx/; (7.1)

with bDx a skew field (unique up to isomorphism) with centre bKx; compare
Proposition 7.16 below. Analogously to the global situation we make the following
local definition.
Definition 7.14. We call the number

s.x/ D ŒbDx W bKx�1=2 (7.2)

the local skewness at x.
By (7.1) we get the following relationship between global and local skewness

s.H/ D e.x/ � s.x/; (7.3)

and with the skewness principle we have

s.x/ D e�.x/ � e� .x/: (7.4)

The following results make the situation quite explicit.
Lemma 7.15. (1) Ox is the centre of Rx .
(2) Let Sx be the multiplicative setOx n f0g. The central localization S �1

x Rx is
equal to the function field k.H/.

Proof. (1) We have mod.Ax/ ' Hx ' mod.Rx/. HenceAx andRx have same
centres. So it is sufficient to show that Ox is the centre of Ax D A ˝O Ox . Let
U � X be an affine open subset with x 2 U . ThenO.U / is a Dedekind domain with
quotient fieldK, andA.U / is a maximalO.U /-order in A, whose centreA.U /\K
is O.U /, since O.U / is integrally closed. Now, localization at x is compatible with
the centres [74, Prop. 1.7.4] and yields the result.
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(2) k.H/ is the quotient division ring ofRx . By [74, Thm. 1.7.9] the ringS �1
x Rx

is a skew field with centre K. From Rx � S �1
x Rx � k.H/ the result follows.

Proposition 7.16. Let x be separable. The skew field bDx and its centre bKx from (7.1)
agree with the (skew) Laurent power series rings in (6.1) and (6.2), respectively.
Moreover, k.x/ D Kx WD Z.Dx/ \ Fix.�/.

Proof. Write r D e� .x/. Using the preceding lemma, we apply S �1
x (that is,

central localization) to the isomorphism Rx ˝Ox
bOx ' Me.x/.bEx/. By Hom-

tensor properties of the localization [16, II.§2.7], we obtain the isomorphism
Q.Rx/ ˝K S �1

x
bOx ' Me.x/.S

�1
x
bEx/, where Q.�/ stands for quotient division

ring. Moreover, since bOx and bEx are (skew) power series rings in one variable by
Theorem 5.3, clearly S �1

x
bOx D Q.bOx/ and S �1

x
bEx D Q.bEx/ hold, since in each

case the uniformizer becomes invertible, so that we get the corresponding (skew)
Laurent series rings. We conclude bDx ' Q.bEx/ ' Dx..T; �

�//. Moreover, for
the centre we deduce k.x/..T // ' bKx ' Kx..uT r//, from which also Kx D k.x/
follows.

We can now derive well-known identities for well-studied local invariants, and
also their relationship with the � -multiplicity. As usual, define the

inertial degree fin.x/ D ŒbDx= rad.bDx/ W k.x/� D ŒDx W k.x/� (7.5)
and the

ramification index era.x/ D Œ �bDx W �bKx � (7.6)

(the index of the discrete value group �bKx in �bDx ) of the skew field part of the
completion of A in x. If era.x/ > 1, then x is called a ramification point of A.
By Proposition 7.16 it is easy to see that the ramification index coincides with the
number e such that mxbEx D rad.bEx/e , and also with the number

e0.x/ D ŒZ.Dx/ W k.x/�: (7.7)

Corollary 7.17. Let x be a separable point. Then

e� .x/ D era.x/:

The assumption is essential, cf. Example 10.13, and Theorem 7.21.

Proof. Follows from Propositions 6.3 and 7.16.

Corollary 7.18. Let H D coh.A/ be a noncommutative regular projective curve
over the perfect field k. The separation points of H are just the ramification points
of A, and there are only finitely many of them.
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Proof. It is well known in the theory of maximal orders that the number of
ramification points is finite, see e.g. [67, p. 372]. In Proposition 8.8 below a standard
argument for this will be given.

We also conclude
Corollary 7.19. If x is a separable point, then

era.x/ � fin.x/ D s.x/
2:

Proof. Use

fin.x/ D ŒDx W k.x/� D ŒDx W Z.Dx/� � ŒZ.Dx/ W k.x/� D e
�.x/2 � era.x/:

We call X (orH) unramified (resp. � -unramified) if era.x/ D 1 (resp. e� .x/ D 1)
for all x 2 X; if k is perfect both notions agree. We call itmultiplicity free if e.x/ D 1
for all x 2 X.
Corollary 7.20. Let k be a perfect field.
(1) We have

� D
Y
x2X

�x
e� .x/�1 onH0:

(2) X is unramified if and only if �jH0 ' 1H0 .

Proof. (1) follows fromCorollary 5.5. (2) is then clear by the definition of e� .x/.

The following general result expresses era.x/ as the local order of a certain functor,
namely of �x on Ux .
Theorem 7.21. Let H be a noncommutative regular projective curve over a field k.
Let U D Ux be a tube and V D .V; �; �/ be the associated complete discrete
valuation domain [5] with U D mod0.V / from Proposition 5.1, where V� D �V is
the maximal ideal and � WV ! V the automorphism given by �r D �.r/� . Then
the Picard-shift functor �x , restricted to U , is induced by � . Its order in Aut.U=k/
equals the order of � in Aut.V=k/ modulo inner automorphisms, and equals the
ramification index era.x/.

Proof. Given x, we form the orbit algebra ….L; �x/, which has a central prime
element �x of degree one. By [47, Thm. 3.1.2] multiplication with �x yields
the natural transformation 1H

x
! �x . Extending �x to the direct limit closure

of U (so working in the category Qcoh.A/ of quasicoherent A-modules), we see
that the natural sequence in [47, 0.4.2(5)] for the injective object SŒ1� becomes
0 ! S ! SŒ1�

�
�! SŒ1� ! 0. We conclude that �x on U is induced by

the automorphism � . The statement about the orders follows from the observation
that �n is central up to a unit if and only if �n is inner.
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8. Dualizing sheaf and the Picard-shift group

8.1 (Structure sheaf). Let H D coh.A/ with A a maximal order in k.H/, and with
centre curve X and O D OX . We will now specify our structure sheaf L 2 H,
namely

LA D AA: (8.1)

Hence A ' EndA.L/ holds. From now on we will always assume this. We remark
that L is locally-free of finite rank, both over A and over O.

8.2. We denote by Pic.A/ the group of all isomorphism classes of invertible A-A-
bimodules in coh.A/, with multiplication given by the tensor product over A. The
neutral element is the class of A. Each invertible bimodule AMA gives rise to the
(exact) autoequivalence tM D �˝AM of H, and tM ' 1H if and only if M ' A
as bimodules.

8.3 (Divisors). Let ı D
P
x2X ıx � x 2 Z.X/ be a (Weil) divisor. In (2.4) we defined

the line bundleL.x/ D �x.L/, which extends canonically toL.ı/ D
Q
x2X �x

ıx .L/.
This definition of the line bundle L.ı/ is clearly dual to the definition in [85, p. 34].
Moreover, A.x/A D L.x/ defines an A-A-bimodule, with left action induced by
left multiplication in A.

For x 2 X let tx W coh.A/ ! coh.A/ denote the functor �˝AA.x/, that is,
tx D tA.x/.

Lemma 8.4. For all x the functors �x and tx WH! H are isomorphic.

Proof. We proceed as in the proof of the theorem of Eilenberg–Watts, [14,
Thm. II.(2.3)]. We have, as right A-modules, tx.L/ ' L˝AA.x/ ' A.x/ D
L.x/ D �x.L/. Both functors are autoequivalences, and exact (A is a locally-free
O-module). �x.L/ is a right A-module; it can be made into a bimodule in the
canonical way, and this bimodule agrees with A.x/. For each E 2 coh.A/ we have
a natural morphism fE WE ' HomA.A; E/ ! HomA.A.x/; �x.E// induced
by �x; for this we remark, that this can be indeed defined locally, since �x fixes
all tubes, and is therefore compatible with localizations in the sense of 3.11; then
one can imitate the (more general) proof of [40, Thm. 19.5.4]. Under the natural
isomorphisms HomA.E;HomA.A.x/; �x.E/// ' HomA.E ˝A A.x/; �x.E// it
corresponds to a natural morphism gE W tx.E/ ! �x.E/, thus we have a natural
transformation gW tx ! �x . This is an isomorphism on LA, which is locally a
progenerator for coh.A/. Since both functors also preserve finite coproducts, it
follows that gE is an isomorphism for every object E 2 coh.A/.

We recall from Theorem 7.11 (2) that there is a bijection between the closed
points of the centre curve X and the points of X. By abuse of notation we use the
same symbol x for x 2 X and the corresponding point x 2 X.
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Theorem 8.5. LetH be a noncommutative regular projective curve over the field k.
Let X be the centre curve. Then there is an exact sequence

1! Pic.coh.X//
�
�! Pic.H/

�
�!

Y
x

Z=era.x/Z! 1 (8.2)

of abelian groups. Here, �.�/ D �jH0 and � sends a Picard-shift sx of coh.X/,
for a point x 2 X , to �xera.x/, for the corresponding point x 2 X. Moreover,
Pic.coh.X// ' Pic.X/, the Picard group of isomorphism classes of line bundles in
coh.X/ with the tensor product.

Proof. Since �x on Ux has order era.x/, it is clear that � induces a surjective
homomorphism as indicated, and its kernel is given by h�xera.x/ j x 2 Xi. We
have to show that sx 7! �x

era.x/ yields an isomorphism between Pic.coh.X// and
this kernel. Surjectivity is clear. For well-definedness and injectivity we have to show
that a word in the sx is trivial if and only if the corresponding word in the �xera.x/ is
trivial. Let x 2 X and Ax D A˝O Ox . It follows from Corollary 3.15 (its proof)
and Lemma 7.15 that mxAx D rad.Ax/e for some natural number e. Forming
completions we see that e D era.x/. From this we deduce that

O.x/˝OA ' A.era.x/ � x/

as A-A-bimodules. For ı D
P
x2X ıx � x define ı D

P
x2X era.x/ıx � x. Thus

O.ı/˝OA ' A.ı/. We hence have that O.ı/ ' O implies A.ı/ ' A. Moreover,
sx ' �˝OO.x/ and �x ' �˝AA.x/, by the lemma. So sx 7! �x

era.x/ gives
a well-defined homomorphism. For an A-A-bimodule M we define, as in [67,
(37.28)], the O-O-subbimodule MA of M , locally, by consisting of all x 2 M
such that ˛x D x˛ holds for all ˛ 2 A. By Lemma 7.15 (1), we have AA D O.
Then .O.ı/ ˝O A/A D O.ı/. If now A.ı/ ' A as bimodules, then we obtain
O.ı/ D .O.ı/˝O A/A ' AA D O. Thus our map is also injective.

The last statement about Pic.X/ is, since X is commutative, easy to show.

8.6 (The O-dual). For E 2 H let E_ DHomO.E;O/ denote the O-dual of E.

The different. By [83] and well known Hom-tensor relations

!A WDHomO.A;!X / ' !X˝OA_ ' '�!X˝AA.�/ (8.3)

is the dualizing sheaf for coh.A/, with '�W coh.X/ ! coh.A/ the functor �˝OA
and � a divisor, which is called the different.

The “difference” between �jH0 and � D !A˝�, globally on H, is given
by the Auslander–Reiten translation on the centre coh.X/. Moreover, it follows
from Theorem 8.5, that on H0 the functor '�!X ˝A � is the identity. We
have !X D OX ./, where  is the canonical divisor on X (we refer to [4,
VIII. Prop. 1.13]). We then get !A D A

�
 C �

�
. Formulated in terms of Picard-

shifts we obtain the following.
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Theorem 8.7. Let H be a noncommutative regular projective curve over a field k.
Then
(1) � 2 Pic.H/.
(2) Each e� .x/ divides era.x/.

It is shown in Example 10.13 that in general e� .x/ ¤ era.x/.

Proof. (1) Follows from the preceding discussions. (2) follows from (1) and
Theorem 7.21. More precisely we have that the order of � in Gal.End.Sx/=k/ divides
the order of � in Aut.Ux=k/, which divides the order of �x in Aut.Ux=k/.

In order to have “good” ramifications, we assume now that either k is perfect, or
that the characteristic of k does not divide the skewness s.H/ (cf. [7, 1.3.9], [75, Ch. 5,
Sec. 6]). The divisor � D

P
x.era.x/ � 1/ � x is called the different of H. It is,

locally in x, induced by the exact sequence

0! L
�x
era.x/�1

�������! L..era.x/ � 1/x/ �! SxŒera.x/ � 1�
e.x/
! 0 (8.4)

from Lemma 3.2. It follows then that the cokernel C of the injective (reduced) trace
map A! A_ locally in x has k-dimension

dimk Cx D era.x/.era.x/�1/e.x/2e�.x/2Œk.x/ W k�
.�/
D s.H/2

�
1�

1

e� .x/

�
Œk.x/ W k�;

(8.5)
with equation .�/ holding in the separable case. From this we immediately get:
Proposition 8.8. There are only finitely many separation points.
Theorem 8.9. Let H be a noncommutative regular projective curve over a field k
which is perfect or of characteristic prime to s.H/. Let  D

P
x x � x be the

canonical divisor of the centre curve X . For  D
P
x2X xera.x/ � x we write � j j

for the corresponding Picard-shift. Then

� D � j j �
Y
x

�x
era.x/�1 D

Y
x

�x
era.x/.xC1/�1: (8.6)

9. The genus and the Euler characteristic

We recall that if k is algebraically closed, e.g. k D C, then there is the well-known
relation �.X/ D 2.1 � g.X// between the Euler characteristic �.X/ and the genus
g.X/ D dimk Ext1.O;O/ of the regular projective curve (or compact Riemann
surface) X . Let .H; L/ be a noncommutative regular projective curve over the
field k. We set � D dimk End.L/. The Euler form is defined by

hE;F i D dimk Hom.E; F / � dimk Ext1.E; F /
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for objects E; F 2 H. We call

g.H/ D dimEnd.L/ Ext1.L;L/

the genus ofH and

�0.H/ D 1

s.H/2
� hL;Li D

�

s.H/2
� .1 � g.H// (9.1)

the normalized Euler characteristic of H (over k). Note that this definition depends
on the base-field k, which can be by-passed by assuming that k is the centre of H.
If A is Azumaya of degree s over O, for instance, a maximal order in Ms.O/,
then �.A/ D s2 � �.O/; compare [7, 4.1.1 + 4.1.5], with �.A/ WD hA;Ai. Thus
one can regard the normalized Euler characteristic �0 to be invariant under Morita-
equivalence. Note that in case k is algebraically closed, we have �.H/ D 2�0.H/. In
case k D R and s.H/ D 1 the definition of �0 agrees with the topological definition
of the Euler characteristic for the underlying manifold; we refer to further discussion
in 11.17. With this we have

g.H/ D 0 , �0.H/ > 0 and g.H/ D 1 , �0.H/ D 0:

For F 2 H we define

deg.F / D
1

�"
� hL;F i �

1

�"
� hL;Li � rk.F /; (9.2)

where " � 1 is the natural number such that the resulting linear formdegWK0.H/! Z
becomes surjective. We obtain
Proposition 9.1 (Riemann–Roch formula). Let .H; L/ be a noncommutative regular
projective curve over a field. For all E; F 2 H we have

1

�
� hE;F i D .1 � g.H// � rk.E/ � rk.F /C " �

ˇ̌̌̌
rk.E/ rk.F /
deg.E/ deg.F /

ˇ̌̌̌
:

Proof. First we remark that deg is additive on short exact sequences, and that h�;�i
and the right hand side of the formula induce bilinear maps K0.H/ � K0.H/ ! Z.
If E D L, then the formula is just the definition of the degree. If E; F 2 H0,
then both sides are zero, by the structure of H0 and the � -invariance of each object
in H0. This yields, if L0 is a line bundle and S is simple, then hL0; Si D hL; Si
(considering ŒL� � ŒL0�). Then, if one of E or F belongs to H0, it is easy to see
that the formula holds, by using line bundle filtrations. If � 2 Aut.H/ is point-
fixing, then both sides remain equal, if replacing the pair .E; F / by .�E; �F / (for
all E; F 2 H). If L0 is a line bundle, by Lemma 3.4 we have an exact sequence
0 ! L.�nx/ ! L0 ! C ! 0 (x any point, n � 0, C 2 Ux). From this the
formula holds for E D L0 and F 2 H. Using line bundle filtrations, the formula
holds for every E 2 HC and F 2 H, and then generally.
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In particular, if ! D !A D �L denotes the dualizing sheaf inH, then

deg.!/ D �
2

�"
� hL;Li D

2

"
� .g.H/ � 1/: (9.3)

Moreover, if ı D
P
x ıx � x 2 Z.X/ is a divisor, and if we define `.ı/ D

ŒHom.L;L.ı// W End.L/�, then (by specializing to E D L, F D L.ı/)

`.ı/ D 1 � g.H/C deg ı C `.! � ı/;

with L.!/ D !, which is the Riemann–Roch in more classical form. Here, deg ı WD
" deg.L.ı// D 1

�

P
x ıx � ŒAx= rad.Ax/ W k�.

Lemma 9.2. Let H be a noncommutative regular projective curve over the perfect
field k. For each x 2 X we have

deg.Sx/ D
s.H/
�"
� e�.x/ � Œk.x/ W k�: (9.4)

Proof. Follows easily from the skewness principle.

For a Picard-shift � 2 Pic.H/ we call deg.�.L// the degree of � , and we denote
by Pic0.H/ the subgroup of degree zero Picard-shifts; similarly for coh.X/ and O,
where we use the symbols degX , �X and "X . From the lemma we easily get the
following.
Proposition 9.3. For the injective homomorphism �WPic.coh.X//! Pic.H/ in (8.2)
we have in the perfect case

deg.�.s// D s.H/2 � �X"X
�"
� degX .s/:

In particular, Pic0.X/ can be regarded as a subgroup of Pic0.H/.
Let H D coh.A/ be a noncommutative regular projective curve with centre

curve X and with A a maximal OX -order in a central simple k.X/-algebra.
Following [7] we call e D .e1; : : : ; en/ the ramification vector of A if e1; : : : ; en
are all ramification indices > 1, and moreover, for each ramification point x ofA its
ramification index era.x/ appears precisely Œk.x/ W k� times in e. If for all ramification
points x1; : : : ; xt (pairwise different) the numbers fi D Œk.xi / W k� are given, then
we will also write more precisely e D .e1

f1 ; : : : ; et
ft / and call it the ramification

sequence.
Proposition 9.4 (Artin–de Jong [7, Lemma 4.1.5]). Let H D coh.A/ be a
noncommutative regular projective curve over a perfect field k with centre curve X .
Let A be a maximal OX -order in k.H/ and e D .e1

f1 ; : : : ; en
fn/ its ramification

sequence. Then we have for the normalized Euler characteristic

�0.H/ D �0.X/ � 1
2

nX
iD1

fi �
�
1 �

1

ei

�
: (9.5)
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Proof. Write s D s.H/. We consider the exact sequence 0! A! A_ ! C ! 0

in coh.A/. It is also exact in coh.O/. With the degree degX overX we obtain, using
degX .A/ D � degX .A_/, that

degX .A/ D �
1

2
degX .C / D �

s2

2�X"X

X
x

.1 � 1=e� .x//Œk.x/ W k�;

by (8.5). We have rkX .A/ D s2. By the Riemann–Roch, over X , we get

hO;AiX D s2�0.X/ �
s2

2

X
x

.1 � 1=e� .x//Œk.x/ W k�:

Finally, by flatness hA;Ai D hO;AiX , and division by s2 gives the claim.

Proposition 9.5. LetH be a noncommutative regular projective curve. If g.H/ > 1,
then all Auslander–Reiten components of HC D vect.X/ have as underlying
graph ZA1, and the categoryH is wild.

Proof. This follows from [56, Prop. 4.7].

Noncommutative elliptic curves.
Definition 9.6. We call a (non-weighted) noncommutative regular projective curve
of genus one a (noncommutative) elliptic curve.

For elliptic curves there is the following analogue of Atiyah’s classification of
vector bundles over an elliptic curve over an algebraically closed field [10]:
Theorem 9.7. Let H D coh.X/ be a noncommutative elliptic curve. Then the
following holds:
(1) Each indecomposable object E in H is semistable of slope �.E/ D deg.E/

rk.E/ inbQ WD Q [ f1g and satisfies Ext1.E;E/ ¤ 0.
(2) For each ˛ the subcategory t˛ of semistable objects of slope ˛ is non-trivial

and forms a tubular family, again parametrized by a noncommutative elliptic
curve X˛ , so thatH0 D coh.X˛/ is derived-equivalent toH.

We remark that one major difference to Atiyah’s result is, that in generalH0 may
be not isomorphic toH. We will give an example later.

Proof. (1) Semistability follows like in [32, Prop. 5.5]. The condition
Ext1.E;E/ ¤ 0 is a direct consequence of the Riemann–Roch formula.

(2) The proof of [47, Prop. 8.1.6] works also in this situation, with a slight
modification: Let ˛ 2 bQ. It is sufficient to show that t˛ ¤ 0. In the bounded
derived category Db.H/ we form the interval category H0 D Hh˛i, the additive
closure of

S
>˛ t Œ�1� [

S
ˇ�˛ tˇ . Let H00 be its subcategory of objects of finite
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length. By [56, 4.9 + 5.2], H0 is again noetherian with Serre duality. Since H0 ¤ 0
is noetherian, there are simple objects. Let S 2 H0 be simple. If t˛ D 0, then S has
a slope ˇ < ˛. The Riemann–Roch formula in this elliptic case implies

�.E/ < �.F / ) Hom.E; F / ¤ 0

for all indecomposable objectsE and F . We conclude, that another simple object S 0
has the same slope ˇ, and then H00 D tˇ . Then there is no indecomposable object
inH0 of slope  > ˇ. But we find such an object by Picard-shifting a line bundle L0
inH0 sufficiently far to the left, and then applying suspension Œ1�. This contradiction
shows, that t˛ ¤ 0.

9.8 (Fourier–Mukai partners). Let H and H0 be noncommutative regular projective
curves over k. We call H0 a Fourier–Mukai partner of H, if there is an exact
equivalence Db.H/! Db.H0/. We are mainly interested in this notion when at the
same time the categoriesH andH0 are not equivalent.

We recall that, sinceH is hereditary, Db.H/ is the repetitive category ofH, that
is, Db.H/ D

W
n2Z HŒn�, and for E; F 2 H we have HomDb.H/.EŒm�; F Œn�/ D

Extn�mH .E; F /. In the elliptic case, H D coh.X/ D
W
ˇ2bQ tˇ , and X parametrizes

the tubular family t1. If ˛ 2 bQ, we have seen that Hh˛i ' coh.X˛/, where X˛ is
the elliptic curve parametrizing the tubular family t˛ . From the explicit description
in Theorem 9.7 we readily obtain Db.H/ D Db.Hh˛i/.

From this it follows easily, that if H is elliptic and Db.H/ ! Db.H0/ an exact
equivalence, thenH0 is equivalent toHh˛i for some ˛.
Examples 9.9. (1) Each (commutative) regular projective curve of genus one is
elliptic in our sense; we do not require the existence of a k-rational base-point. In
particular, the Klein bottle 12.1 is a real elliptic curve without R-rational (= real)
points (it is a Klein surface without boundary).

(2) Let X be a regular projective curve over its perfect centre k, let K D k.X/

its function field and D a finite dimensional central division K-algebra. Let A be a
maximal OX -order inD and e its ramification vector. LetH D coh.A/.

(a) We have �0.H/ > 0 if and only if X has genus zero and e D .e/, .e1; e2/,
.2; 2; e/, .2; 3; 3/, .2; 3; 4/ or .2; 3; 5/.

(b) H is elliptic, if either X has genus one andA is Azumaya, or X has genus zero
and A has ramification vector e D .2; 3; 6/, .2; 4; 4/, .3; 3; 3/ or .2; 2; 2; 2/.
This follows directly from (9.5). Moreover, if g.X/ D 0, then we conclude
from (8.6) that the order of � in Aut.H/ is given by the least common multiple
(= maximum) n of the � -multiplicities, and n D 2; 3; 4, or 6. If, on the other
hand, g.X/ D 1, then !X D O.!/ has degree zero, and from the Riemann–
Roch formula we get `.!/ D g.X/ D 1, and thus !X D O. Moreover, A is
unramified (that is, Azumaya), thus we obtain !A D !X ˝O A D A. Thus
� D 1.
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Theorem 9.10. LetH be elliptic over a perfect field. Then the order of � is 1; 2; 3; 4,
or 6, given by themaximumof the � -multiplicities. The ramification vector is a derived
invariant of an elliptic curve.

Proof. The order of � is a derived invariant, and the maximum of the ramification
indices determines the ramification vector, which is one of . /, .2; 3; 6/, .2; 4; 4/,
.3; 3; 3/ or .2; 2; 2; 2/.

10. Genus zero: ghosts and ramifications

Noncommutative projective curves of genus zero are important in the representation
theory of finite dimensional algebras, in particular (but not only) for the tame
algebras. For details we refer to [47] and [46]. We recall that genus zero means
that Ext1.L;L/ D 0, or equivalently, the existence of a tilting bundle T 2 H.
The noncommutative regular genus zero curves H over a field k correspond to the
so-called tame bimodules FMG , where F and G are finite dimensional division
algebras over k, and M is an F -G-bimodule on which k is acting centrally and
dim FM � dimMG D 4. The corresponding bimodule algebra ƒ D

�
G 0
M F

�
is

a finite dimensional tame hereditary k-algebra, whose category mod.ƒ/ of finite
dimensional right modules is derived equivalent to H. The function field k.H/ is
isomorphic to the endomorphism ring of the unique generic ƒ-module. We refer
to [13, 26, 29, 72] as references for the representation theory of tame bimodules
and tame hereditary algebras. We define the numerical type " of X by " D 1, if
.dimF M; dimMG/ D .2; 2/, and " D 2, if this dimension pair is given by .1; 4/
or .4; 1/. (" coincides with the previously defined normalizing factor of the degree.)
We further set

f .x/ D
1

"
� ŒExt1.Sx; L/ W End.L/� D deg.Sx/: (10.1)

A point x 2 X is called rational, if f .x/ D 1. In the genus zero case, rational
points always exist, [55, Prop. 4.1]. It is shown in [47] that there is a so-called
efficient automorphism � 2 Aut.H/. The orbit algebra R D ….L; �/ serves
as a homogeneous coordinate algebra for H. We recall the definition from [47,
Def. 1.1.3]: an automorphism � WH! H is called efficient if it is point-fixing (that
is, �.Ux/ D Ux for all x), if the degree of �L is positive, and if there is no point-fixing
automorphism such that the degree of the image of L is positive and smaller. As a
consequence….L; �/ is shown to be graded factorial (a graded version of the notion
of a unique factorization ring in [24]), the points x 2 X in correspondence with the
homogeneous height one prime ideals, each generated by a normal element (called
prime) �x .
Example 10.1 (Commutative case). Let H D coh.X/ be a commutative regular
projective curve of genus zero with centre k. If the characteristic is different
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from 2, then either k.H/ D k.T /, the rational function field over k in one variable
(case " D 1), or k.H/ D k.U; V /=.�aU 2 � bV 2 C ab/, with a; b 2 k� such
that �aY 2 � bZ2 C abX2 is anisotropic over k (case " D 2). (If k is additionally
perfect, this also holds in characteristic 2, where in case " D 2 the quadratic equation
is slightly different; we refer to [46, Thm. 6.2].) For this classical result we refer
to [46, Thm. 6.1]; there also the characteristic 2 case is treated. In all cases (also in
characteristic 2), we have End.L/ D k (for all line bundles) and �0.X/ D 1.

Lemma 10.2. Let H have centre curve X with g.X/ D 0. Let � 2 Pic.H/ be of
degree zero and with �jH0 D 1H0 . Then � D 1H.

Proof. By the assumptions it follows with Theorem 8.5 that � lies in Pic.coh.X//,
and is there of degree zero. Since g.X/ D 0, this means �.O/ ' O. Since X is
commutative, we get � ' 1coh.X/ from [46, Cor. 3.3], and then also � ' 1H with
Theorem 8.5.

Theorem 8.9 yields

Proposition 10.3. Let k be a perfect field. Let H be a noncommutative regular
projective curve over k. We assume that its centre curve X is of genus zero, of
numerical type ". Then

� D �x0
�2="
�

Y
x

�x
e� .x/�1

for any point x0 2 X which is rational in X and not ramification.

The following result follows from Example 9.9 (2)(a). We state it here explicitly
because of its influence to representation theory of finite dimensional algebras.

Theorem 10.4. Let H be a noncommutative regular projective curve of genus zero
over a perfect field. There are at most three separation points.

Ghosts and ramifications. We recall from [47], that the ghost group G D G.H/ is
defined as the subgroup of the automorphism (class) group Aut.H/ defined by those
elements, called ghosts, which fix (up to isomorphism) the structure sheaf L and all
simple sheaves Sx (x 2 X); it follows then, in this genus zero case, that all objects
in H are fixed. In [46, Cor. 3.3] we have shown that commutativity (= multiplicity
freeness) implies that the ghost group is trivial. As we shall see now, this last
property follows already when X is unramified, but there are further cases with one
ramification point. We remark that Proposition 10.3 is in particular applicable in
caseH is of genus zero. We will not use it in the following (since it will not simplify
our proofs). Instead, we will recover its validity in the examples treated below.

Proposition 10.5. Let H be a noncommutative regular projective curve of genus
zero over the perfect field k, which is (without loss of generality) the centre of H.



Weighted noncommutative regular projective curves 1507

We assume additionally that the characteristic of k is different from 2. Let X be the
centre curve. The following are equivalent:

(i) OnH0 the functor � is isomorphic to the identity functor.
(ii) There is a skew field D with centre k and ŒD W k� D s.H/2 such that

k.H/ ' D ˝k k.X/, a constant extension.
(iii) There is a skew field D with centre k and ŒD W k� D s.H/2 such that k.H/

is either isomorphic to D.T /, with T central, or to a skew field of the form
D.U; V /=.�aU 2 � bV 2 C ab/ with central variables U; V and non-zero
elements a; b 2 k such that the quadratic form �aY 2 � bZ2 C abX2 is
anisotropic over k.

(iv) There is a rational point x with e.x/ D 1, e� .x/ D 1 and Pic.H/ D h�xi.
When this holds, then the ghost group is trivial, G.H/ D 1, and we have � D �x�2=".

Proof. Condition (i) is equivalent to say thatH is unramified, by Corollary 7.20. By
a result of van den Bergh and van Geel [85, Prop. 2.2] this is equivalent to (ii); we also
refer to [88]. By [46, Thm. 6.2] condition (iii) is just a more explicit reformulation
of (ii).

(iii))(iv) We can rewrite (iii) (or (ii)) in terms of coordinate algebras. There is
a rational and multiplicity free point x such that R D ….L; �x/ is either isomorphic
to DŒX; Y � or to DŒX; Y;Z�=.�aY 2 � bZ2 C abX2/ with central variables X , Y
andZ of degree one, and x corresponds to the variableX . The centreZ.R/ is given
by kŒX; Y � and kŒX; Y;Z�=.�aY 2�bZ2CabX2/, respectively. From this we infer
e� .x/ D era.x/ D 1. If  is a graded automorphism of R fixing all prime elements,
then it is easy to see that its restriction to the centre has the form .s/ D ajsj � s for
some a 2 k� (independent from s), where jsj denotes the degree of the homogeneous
element s. From this we easily deduce G D 1 with [46, Thm. 3.1]. We also have
Pic.H/ D h�xi and �� D �x2=".

(iv))(i) The conditions e.x/ D 1 D f .x/ imply that �x is an efficient
automorphism, and we get �� D �x

2=". Since Pic.H/ D h�xi, all points different
from x are � -unramified. Since also e� .x/ D 1 by assumption, (i) follows.

Condition (iv) allows us to relate the preceding proposition to the next theorem
and, in particular, to its corollary.
Theorem 10.6. Let .H; L/ be a noncommutative regular projective curve of genus
zero over the perfect field k. Assume that there is an efficient tubular shift �x , and let
R D ….L; �x/. For a normal homogeneous element r ¤ 0 in R define the graded
algebra automorphism r by rs D r.s/r for all s 2 R, and denote by �r the induced
element in Aut.H/.
(1) Each ghost  is induced by a graded algebra automorphism of the form r

where r is homogeneous normal:  ' �r .
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(2) For each point y ¤ x the automorphism

��y D �x
�d.y/

ı �y

is a ghost of order e� .y/. Moreover, �ye� .y/ is central inR up to multiplication
with a unit in R0.

(3) We have that the ghost group G.H/ D h��y j y ¤ x; e� .y/ > 1i is finite
abelian and coincides with the subgroup Pic0.H/ � Pic.H/ of Picard-shifts
of degree zero. Moreover, Pic.H/ ' h�xi�G.H/ is finitely generated abelian
of rank one, and we have � 2 Pic.H/.

Proof. (1) By [46, Thm. 3.1] we have  D ˇ� for a graded, prime fixing algebra
automorphism ˇ of R; there are units uy 2 R0 with ˇ.�y/ D uy�y for all y 2 X.
Since �x is central, and since each central element is a product of prime elements,
we get ˇ.s/ D ujsj � s for all s 2 S D Z.R/, with u D ux central. Thus, the
automorphism ˇ0 D ˇ ı 'u

�1 of R is the identity on S . Since ˇ� ' ˇ0�, we can
assume that ˇ gives the identity on S . The induced automorphism ˇ of k.H/ is
the identity on its centre k.X/, thus ˇ is inner by the Skolem–Noether theorem.
Since k.H/ is obtained from R by central localization, there is r 2 R homogeneous
with ˇ.s/ D rsr�1 for all s 2 R. The relation ˇ.s/r D rs shows that r is normal,
and ˇ D r .

(2), (3) Moreover, by [47, Thm. 3.2.8] we have ��y D �x
�d.y/ ı �y 2 Pic.H/.

We also obtain that ��y 2 G.H/ acts on Uy like �y , and thus the order of ��y
is� e� .x/. Let n be the least common multiple of e� .y/ and e� .x/=h, where h is the
greatest common divisor of e� .x/ and d.y/. Then n is the smallest natural number
such that ˇ� D

�
�x
�d.y/�y

�n is the identity functor onH0. We have ˇ.s/ D asa�1
for a normal element a, say of degree m. We can assume that a does not have a
central divisor of degree � 1. Assume that there is a point p such that the prime �p
is a divisor of a. The element a�x�m lies in the radical of the localization Rp . It
is then easy to see that ˇ� cannot be isomorphic to the identity functor on the factor
module Rp=.�p�x�d.p// ' Sp

e.p/, giving a contradiction. It follows, that a does
not have any prime divisor, and so a 2 R0 is a unit. Thus ˇ is an inner automorphism
of R, and thus ˇ� ' 1H.

Since each normal element is a product of prime elements, we obtain G.H/ D
h��y j y ¤ xi � Pic.H/. Since �x is efficient, � ı �x2="` is a ghost and thus an
element of Pic.H/. If e� .x/ D 1, then we obtain G.H/ D h��y j e� .y/ > 1i is finite.
Assume now e� .x/ > 1, and let y ¤ x be another point. Calculations using (9.4)
show

e� .y/ � d.y/ D
Œk.y/ W k�

Œk.x/ W k�
� e� .x/:

Since �x is of degree one in the centre, it is clear that the fraction is an integer. We
obtain ��y has order e� .y/. In particular, ��y ' 1H unless y is a ramification point.
Thus, again G.H/ D h��y j y ¤ x; e� .y/ > 1i is finite.
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Corollary 10.7. Let H be a noncommutative regular projective curve of genus zero
over the perfect field k.

(1) Assume that G.H/ D 1. Then there is a point x 2 X with Pic.H/ D h�xi.
Moreover, either

(a) X is unramified and e.x/ D 1 D f .x/ holds; or

(b) x is the unique ramification point.

(2) Assume that there is an efficient tubular shift �x with Pic.H/ D h�xi. Then
the ghost group is trivial, G.H/ D 1.

Proof. (1) Let � be an efficient automorphism. Since GD1, we have �xD�d.x/,
and �x D �y if and only if x D y. If X is unramified, then there exists x with
e.x/ D 1 D f .x/ and Pic.H/ D h�xi by the preceding proposition. Assume that x
is such that e� .x/ > 1. Since �x does not lie in the subgroup of Pic.H/ generated by
all �y , with y ¤ x, by Corollary 5.7, we have that all d.y/ are multiples of d.x/, that
is, d.y/ D a.y/ � d.x/ with a.y/ � 1. Since �y , for y ¤ x, is the identity on Ux ,
we see that e� .x/ divides a.y/. We conclude that �x generates Pic.H/, and x is the
only ramification point.

(2) This follows directly as a special case from the preceding theorem.

Examples. We illustrate the theory in some genus zero examples over a perfect field.
Example 10.8 (Finite fields). Let k be a finite field andH over k of genus zero. Then
there is an efficient tubular shift � D �x . Then ��2=" is a ghost. Moreover, for all
points p we have Œk.p/ W k� D �"

s.H/ � f .p/, by (9.4). Without loss of generality we
can assume that k is the centre of H. There are two possible cases, which describe
all genus zero cases over a finite field:

(1) " D 1. [46, Prop. 4.1]. Then M D M.K; ˛/ D K ˚ K where K acts
canonically from the left and by .x; y/ � z D .xz; y˛.z// from the right, and
˛WK ! K is a k-automorphism. Since k is the centre ofM , it is the fixed field of ˛,
so that Gal.K=k/ is cyclic, generated by ˛. Let n D ŒK W k�. Then s.H/ D n. The
case n D 1 is the Kronecker/projective line over k. So assume n � 2. We have that
R D ….L; �x/ is isomorphic toKŒX IY; ˛�. The two points x and y (corresponding
to X and Y ) are the only rational points of multiplicity 1, and the only rational
points p such that e� .p/ > 1; moreover, e� .p/ D s.H/; compare [47, Cor. 5.4.2].
Since also � D �x

�1�y
�1, these are the only separation points. The ramification

sequence is e D .n1; n1/. The ghost group is cyclic of order n, generated by �x�1�y .
Moreover, � D �x�1�y�1.

(2) " D 2. Then M D kKK , where ŒK W k� D 4. Indeed, a priori we have
M D F ˛KK with F=k a finite field extension and MK D KK , with ŒK W F � D 4,
and ˛ 2 Gal.K=k/; the left F -structure is given by f � x D ˛.f /x. It is easy
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to see that for all ˛ we obtain isomorphic bimodules (in the sense that the induced
hereditary bimodule k-algebras are isomorphic, compare [47, 5.1.3]). Thus we
can assume thatM D FKK is equipped with the canonical structure induced by the
subringF � K. ThenF is the centre (in the sense of [47, 0.5.5]) of the bimoduleM ;
thus, we can assume F D k.

There is a unique intermediate field F of degree two over k, which is of the form
F D k.˛/. This defines, by [46, Lem. 2.6], the simple regular representation

Sx D . k
2
˝K

.1;˛/
�! K /

with f .x/ D 1 and End.Sx/ D F , hence e.x/ D 1. By uniqueness of F , we have
that x is the only rational point p with e.p/ D 1. Hence e� .x/ D 2 and e� .p/ D 1

for all other rational points. Since Œk.p/ W k� D f .p/ for all p and End.L/ D k is
the field of constants, we deduce then from (9.5) (since g.H/ D 0) that besides x
there is precisely one additional ramification point p, and this must satisfy f .p/ D 2
and e.p/ D 1. Thus the ramification sequence is e D .21; 22/. The ghost group G is
cyclic of order 2, generated by �x�2�p . We obtain � D �x�p�1. The automorphism
group Aut.X/ is cyclic of order 4.

We now additionally assume char.k/ ¤ 2. By [46, Thm. 5.1],

….L; �x/ ' khX; Y;Zi=

�
XY � YX; XZ �ZX;

YZ CZY C a1X
2; Z2 C c0Y

2 � a0X
2

�
for certain a0; a1; c0 2 k. The point x corresponds to the prime element given by the
class ofX inR. The second ramification point p corresponds to a prime element �p
in R of degree 2, and which is also irreducible, that is, not a product of two elements
of degree 1. It follows that (up to multiplication with a non-zero element from k)
there is precisely one such prime.

Example 10.9 (Non-simple tame bimodule). Let k be perfect andM a non-simple
tame bimodule with centre k. It follows from [66, Prop. 11.5] and [39, Thm. 1.1.21]
that M is of the form F ˚ F with canonical F -action from the left, and the right
F -action given by .a; b/f D .af; b˛.f // for some k-automorphism ˛ of F , and F
is a skew field over k of finite dimension. Let n be the order of ˛ considered as
element in Gal.F=k/. There is a rational point x with e.x/ D 1, and hence �x
is efficient. We have ….L; �x/ ' F ŒX IY; ˛�, the twisted polynomial ring graded
by total degree. The prime elements are given by �x D X , �y D Y , and some
further polynomials lying in the centre, thus in the variables Xn and Y n. It follows
that the points x and y are the only ramification points. The ramification sequence
is e D .n1; n1/. The ghost group G is cyclic of order n, generated by �x�1�y .
Moreover, we obtain � D �x�1�y�1.
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Example 10.10. LetM D QQ.
p
2;
p
3/Q.

p
2;
p
3/.

….L; �x/ ' khX; Y;Zi=

�
XY � YX; XZ �ZX;

YZ CZY; Z2 C 2Y 2 � 3X2

�
:

Here, the three rational points x; y; z (corresponding to the variables X; Y; Z,
respectively) satisfy e.p/ D 1, and thus e� .p/ D 2 D s.H/. Moreover, by [46,
Prop. 7.1] we have

� D �x �y
�1�z

�1;

bywhich it follows again, that x; y; z are the only separation points. The ramification
sequence is e D .21; 21; 21/. The ghost group is the Klein four group generated
by �x�1�y and �x�1�z . Moreover, � D �x�y�1�z�1.
Example 10.11. We consider the simple .2; 2/-bimodule from [47, Ex. 5.7.3] with
skewness s.H/ D 4: Let k D Q and F D

�
�1;�1

Q

�
be the skew field of quaternions

over Q on generators i, j with relations i2 D �1 D j2, ij D �ji, K D Q.
p
�3;
p
2/

and M be the bimodule K.K ˚ K/F with the canonical K-action, and where the
F -action onM is defined by

.x; y/ � i D
1
p
�3
.
p
2x C y; x �

p
2y/; .x; y/ � j D .y;�x/

for all x, y 2 K. By [47, Prop. 5.7.5], each rational point x satisfies e.x/ D 2

or e.x/ D 4 (and both cases occur), and moreover e�.x/ D 1; those with e.x/ D 2

are separation with e.x/ � e�.x/ D 2 and e� .x/ D 2. Actually, since the tame
bimoduleM is linked to the tame bimodule in the preceding example via a derived
equivalence in the tubular case [47, Prop. 8.3.1] we will deduce from Example 13.25
below that the ramification sequence is given by e D .21; 21; 21/. Accordingly, the
ghost group is the Klein four group (but not trivial, [47, Prop. 5.7.4]).
Remark 10.12. All the preceding examples are ruled (e D .n; n/) or half-ruled
(e D .2; 2; 2/), in the terminology of [7], see also [7, Prop. 4.2.4].

An inseparable example. We conclude this section with a detailed analysis of an
inseparable example which nicely illustrates that (and why) for many of the preceding
results the separability assumption was indispensable.
Example 10.13. Let F2 be any field of characteristic 2 and k D F2.t/ the rational
function field in one variable over F2. Let K D k.u/=.u2 � t / and the k-derivation
ıWK ! K be given by ı.u/ D 1, and ıjk D 0. We have ı2 D 0 and Gal.K=k/ D 1.
Let M be the tame K-K-bimodule M D M.1; ı/ D K ˚ K with canonical left
K-action and right K-action given by .a; b/f D .af C bı.f /; bf /. Since M is
a non-simple bimodule, the corresponding curve H of genus zero admits a point x
with e.x/ D 1 D f .x/, and the orbit algebra ….L; �x/ is isomorphic, as graded
ring, to the differential polynomial ring R D KŒX IY; 1; ı�. Here Y and the central
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variable X have degree 1, and we have the relations Yf D ı.f /X C f Y (f 2 K).
The point x above is associated with the prime element X , cf. [47, Prop. 1.7.3]. It is
easily shown that the centre is given by kŒX; Y 2�. We conclude that s.H/ D 2.

(1) We consider the tube U D Ux associated with x. For the simple S D Sx we
have End.S/ ' K, in particular e�.x/ D 1. We have V WD bRx ' End.SŒ1�/, the
complete local ring with U ' mod0.V /. From Theorem 6.1 we conclude that V has
PI-degree e��.x/ D 2. By [72, 7.4] the K-K-bimodule Ext1.S; S/ is isomorphic
to M=N ' KKK , the canonical one-dimensional K-K-bimodule, where N is the
subbimoduleK˚0 ofM . From this we get bgr.V / ' KŒŒT ��, which is commutative,
and thus bgr.V / 6' V . Since Gal.End.S/=k/ D 1, for the � -multiplicity (2.2) we
have e� .x/ D 1. We thus see that for the inseparable point x the conclusions of
Propositions 6.3 and 5.2, and Theorems 6.5 and 5.3 do not hold.

(2) We shall determine the algebra V D bRx explicitly. Since K is a subalgebra
of Rx , it is also a subalgebra of the completion V . Let � 2 V be the generator
of the Jacobson radical which is given by the element XY �1 (cf. the proof of [47,
Thm. 2.2.10]). Since V=.�/ ' K and Gal.K=k/ D 1, we get a decomposition
V D K ˚ .�/ of K-K-bimodules. Using ı.a/ 2 k the relations in R induce the
relations

�a D a� C ı.a/�2 .a 2 K/:

The decomposition above also yields the decomposition V� D K� ˚ .�2/ of left
K-modules, but K� is not a K-K-bimodule. By the universal property of power
series rings, we get a k-algebra homomorphism �WKŒŒt�1; ı��! V sending t�1 to� ,
whereKŒŒt�1; ı�� denotes the (pseudo-) differential power series ring defined in [39,
Thm. 1.11.8]; it is a local domain with Jacobson radical J D .t�1/ and\n�1J n D 0.
By the above decompositions � is surjective. It is also injective, since the kernel is a
completely prime ideal. Thus � is an isomorphism. We hence write

V D KŒŒ�; ı��:

Moreover, since �2a D a�2 for all a 2 K, the power series ring KŒŒT �� ' bgr.V / is
isomorphic to the subring KŒŒ�2�� of V . The centre of V is the subring kŒŒ�2��. For
the ramification index (of the exponential valuations [67, (13.1)]) we have era.x/ D 2.

(3) There is an automorphism � of V given by�r D �.r/� (for r 2 R). We have
�.�/ D � and �.f / D f Cı.f /� (f 2 K), and we see that � has order 2, and since
the centre is kŒŒ�2�� it is easily seen to be not inner. (The property �.K/ 6� K makes
the difference to the separable case.) By [47, Thm. 3.1.2] multiplication with X
yields the natural transformation 1H

x
! �x . Extending �x to the direct limit closure

of Ux , we see that the natural sequence in [47, 0.4.2(5)] for the injective object SŒ1�
becomes 0 ! S ! SŒ1�

�
�! SŒ1� ! 0. We conclude that �x on U is induced

by the automorphism � and is thus of order 2; it acts non-trivially e.g. on End.SŒn�/
for n � 2.



Weighted noncommutative regular projective curves 1513

(4) Since ��.L/ ' �x2.L/, the composition � ı �x2, onH, is an element of the
ghost group. Using [46, Thm. 3.1], computing the graded automorphisms ˛ of R
which are prime fixing (and hence preserve kX and elements of the centre kŒX; Y 2�),
it is easy to see that G.H/ D 1. (Indeed, since ˛.X/ 2 kX , we can assume
˛.X/ D X . Exploiting ˛.Y 2/ 2 kY 2 and ˛.Y b/ D ˛.Y /b for all b 2 K, we obtain
˛.Y / D Y CaX with a 2 K satisfying a2 D ı.a/. If a ¤ 0, then a�1Ya D Y CaX ,
so that ˛ is inner.) We conclude that globally �� D �x

2 holds. (We remark that
here � is not given by formula (8.6).) This shows that �� acts, unlike �x , as the
identity functor on Ux . Thus we see that Corollary 5.5 (2) and Corollary 7.17 do not
extend to inseparable points. Moreover, Theorem 6.5 does not hold for such a point
even if e� .x/ is replaced by the order of � in Aut.Ux=k/. We also infer that H is
� -unramified but not unramified.

11. The real case: Witt curves

11.1 (Real smooth projective curves and Klein surfaces). If k is algebraically closed,
then by Corollary 7.8 each noncommutative regular projective curve over k is actually
commutative. For k D C the field of complex numbers it is well-known that the three
concepts regular (=smooth) projective curves X over C, algebraic function fields K
in one variable over C, and compact Riemann surfaces S are equivalent/dual to each
other; hereK is the field of meromorphic functions on S (which are the holomorphic
functions ˛WS ! S2 to the Riemann sphere) and also the function field k.X/.
Over the field k D R of real numbers there are similar correspondences, where the
Riemann surfaces are replaced by the Klein surfacesK, [3,65]. Each (compact) Klein
surfaceK is of the form S=� , where S is a compact Riemann surface and � WS ! S

an antiholomorphic involution, [65, Thm. 1.1]; the Riemann surface S is also called
the complex double ofK. It should be noted that in such a case �top.S/ D 2 ��top.K/
holds [3, 1.6.9]; since k D R, we also have �0.Y / D 2 � 2g D �top.S/ and,
by [1, Thm. 1.1], �0.X/ D 1 � g D �top.K/, where Y and X are the corresponding
real regular projective curves, respectively, and g D g.S/ D g.K/; here, �0 is
the normalized Euler characteristic as defined in (9.1), and �top the usual Euler
characteristic for surfaces defined topologically via triangulations. The real points
onK (if any) form the boundary @K. By Harnack’s theorem @K has at most g.K/C1
components, called ovals, since they are homeomorphic to a circle S1. The ovals are
given by the setS� of fixed points of � . By a theorem ofWeichold [65, p. 56], everyK
is, topologically, uniquely determined by a triple .g; t; s/, where g D g.K/ D g.S/
is the genus of the Riemann surface S , t is the number of ovals, and s D 0 if S nS� is
connected, and s D 1 otherwise. Moreover, precisely the triples .g; t; s/ with s D 0
and t � g, or s D 1, t � g C 1 .mod 2/ and 1 � t � g C 1 occur.
11.2 (Noncommutative function fields and configurations on Klein surfaces). The
field k.K/ of meromorphic functions ˛WK! S2 on a Klein surfaceK is an algebraic
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function field in one variable over R, and each such real function field is of this form.
(For the precise definition of a meromorphic function on a Klein surface we refer
to [3, Ch. 1, §3].) Finite dimensional central skew fields over the meromorphic
function field K D k.K/ of a Klein surface K are, if non-trivial, quaternion skew
fields of the form

�
˛;�1
K

�
, where 0 ¤ ˛WK ! S2 is a meromorphic function.

This follows easily from Tsen’s theorem, [87]. We recall that such an algebra is of
dimension four over K on generators i; j and relation i2 D �1, j2 D ˛ and ji D �ij.
Such a function ˛ is real-valued on the boundary ıK, that is, on each oval. On each
of the ovals ˛ might have an even number (or zero) sign-changes, that is, zeros or
poles of odd order. Thus ˛ determines on K what we call a ˙-configuration, which
is given by
� an even number (� 0) of points on each oval, called segmentation points;
� each open segment between segmentation points, and each oval without
segmentation points, labelled by either the sign C or the sign �, in an alternating
way (changing the sign at each segmentation point).

We call it clean if there are no segmentation points at all. The ˙-configuration is
induced by the function ˛, if the˙-configuration reflects the sign-behaviour of ˛ on
the ovals; a segment then has a C, if ˛ is non-negative on this segment (we write
˛.x/ > 0, locally), and has a �, if ˛ is non-positive on this segment (˛.x/ < 0). We
recall from [87] that ˛ ¤ 0 is called positive definite if it never becomes negative on
any oval. ( [87, I.] says that then ˛ is of the form ˛ D ˇ2 C 2.) Moreover, ˛ is
definite, if there is no sign-change on any oval. So,

�
˛;�1
K

�
does not split (it is a skew

field) if and only if ˛ is not positive definite.
Example 11.3. Let D be the compact unit disc. We have K D k.D/ D R.t/,
the rational function field over R in one variable. We consider three different
˙-configurations on D.

(a) Let ˛ D �1WD ! S2 be the function with constant value �1. This gives the
clean ˙-configuration as shown in Figure 1. The associated quaternion skew field�
�1;�1
K

�
is the function field H.t/ in one (central) variable t over H.

(b) Let ˛WD ! S2, z 7! z be the canonical identification of D with the
“northern” half ball, the “equator” defining R [ f1g. On the unique oval ˛ has
sign-changes in z D 0 (zero of order 1) and z D 1 (pole of order 1). These two
segmentation points yield the two segments of the oval, the negative real numbers
marked by�, the positive real points marked byC. The quaternion skew field

�
˛;�1
K

�
is isomorphic to C.u; �/, the skew function field (uz D �.z/u for all z 2 C, with �
the complex conjugation), in the variable u D t1=2.

(c) Let similarly ˛ be a meromorphic function associated with the element
t .t � 1/.t C 1/ in R.t/ (cf. [3, Thm. 1.4.6]). This gives rise to four segmentation
points z D 0; 1; �1; 1, and the skew function field C.u; t/=.u2 � t .t � 1/.t C 1/,
uiC iu/.
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0

Figure 1. The disc D with different˙-configurations. Left: (a), middle: (b), right: (c)

Witt’s theorem [87], here formulated in our language, shows that all noncommu-
tative real algebraic function fields in one variable are obtained by Klein surfaces
with˙-configurations.
Theorem 11.4 (Witt; cf. [3, Thm. 2.4.5]). LetK be a Klein surface whose boundary
is given by t ovals. We assume t � 1. Let K be the field of meromorphic functions
on K.
(1) Every (clean) ˙-configuration on K is induced by a (definite) meromorphic

function ˛WK! S2. [87, II. + III.]

(2) The resulting quaternion algebra A D
�
˛;�1
K

�
is uniquely determined already

by the˙-configuration. It is a skew field if and only if ˛ is not positive definite.
It is unramified if and only if ˛ is definite. Otherwise its ramification points
are just the segmentation points. [87, p. 10]

(3) Each finite dimensional central skew field extension of K is obtained in this
way. [87, III.0]

11.5 (Local data). Witt [87, p. 10] described (function-theoretically) also the local
data. We assume that ˛ ¤ 0 onK is not positive definite. That is, there is an oval on
which ˛ becomes negative. For convenience we already use the notions Sx and e.x/
in each concluding statement (“Thus. . . ”), which will get a proper meaning only
below when we define the notion of a Witt curve.
� If x is inner then

�
˛;�1
K

�
x
splits. Thus End.Sx/ D C and e.x/ D 2.

If x is a boundary point (x D x� ), then
� If ˛.x/ > 0 (that is, ˛ does not change its positive sign in a neighbourhood of x)
then

�
˛;�1
K

�
x
splits. Thus End.Sx/ D R and e.x/ D 2.

� If ˛.x/ < 0 (that is, ˛ does not change its negative sign) then
�
˛;�1
K

�
x
does not

split, and x is inert in
�
˛;�1
K

�
. Thus End.Sx/ D H and e.x/ D 1.

� Otherwise (if ˛ changes the sign in x, that is, x is segmentation)
�
˛;�1
K

�
x
does not

split. Thus End.Sx/ D C and e.x/ D 1.
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Thus the interior of a connected closed segment of an oval, whose endpoints are
segmentation points, is “coloured” real, in case ˛ is nonnegative on this segment,
and quaternion, in case ˛ is negative on this segment. From now on we will use these
colourings of segments by R and H, instead of C and �, respectively, cf. Figure 2
below. (Inner points and segmentation points are always complex.) If ˛ ¤ 0

is not positive definite then we call ˛WK ! S2 a Witt function (and K with the
induced ˙-configuration, formally, a Witt surface); we will give .K; ˛/ a canonical
structure of a noncommutative regular projective curve below. Some of the following
considerations are reformulations of results of Section 7.

Let K be a Klein surface with function field K D k.K/ and ˛ a Witt function.
Let A D

�
˛;�1
K

�
be the corresponding quaternion skew field. Let A.x/ D Ax ˝Ox

k.x/ D Ax=mxAx with k.x/ D Ox=mx be the geometric fibre. If ˛ > 0, then
A.x/ ' M2.R/ is split on an oval O , if ˛ < 0, then A.x/ ' H on O . The
segmentation points are just the ramification points of A. There is the injective
homomorphism

ˇWBr.K/! Br.K/ (11.1)

of Brauer groups. Here, Br.K/ consists of (classes of) Azumaya algebras A. The
homomorphism ˇ sends the class of A to the class of A� , where � is the generic
point. In the image of ˇ are precisely those A D

�
˛;�1
K

�
, which are unramified onK.

(We refer to [28].) In other words, if A is unramified on K, then it can be equipped
with the structure of a unique Azumaya algebra A. In [21, Thm. 1.3.7] (also [22]) it
is shown that the category H D coh.A/ of coherent A-modules is equivalent to the
category coh.K; ˛/ of ˛-twisted coherent sheaves on K.

Proposition 11.6. Assume the Witt function ˛ is definite. LetA be the corresponding
Azumaya algebra. The category H D coh.A/ of coherent A-modules is a
noncommutative regular projective curve with s.H/ D 2.

Proof. Since ˛ is not positive definite, by Witt’s theorem [87] the quaternion algebra
A D

�
˛;�1
K

�
does not split. Since ˛ is definite,A is unramified. The assertion follows

from Theorem 7.11.

We now treat the general (ramified) situation. Denote by U D K n fx1; : : : ; xng
the Zariski-open unramified locus. The given quaternion algebraA D

�
˛;�1
K

�
defines

an Azumaya algebra AU in Br.U /.

Theorem 11.7. Each Witt function ˛WK ! S2 gives rise to a noncommutative
regular projective curveH of skewness s.H/ D 2, and with the following properties:
(1) The centre curve is K.

(2) The function field is k.H/ D
�
˛;�1
k.K/

�
.

(3) Up to an equivalence of categories, H is uniquely determined by K and the
coloured segments of the ovals.
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Proof. Let K and ˛ be given. Denote by O D OK the structure sheaf of K. With
K D k.K/ let A be the quaternion skew field

�
˛;�1
K

�
over K. Let U � K be the

unramified locus and j WU ! K the inclusion. The function field of U is K. By [7,
Cor. 1.9.6] there exists an AzumayaOU -algebraA0 in A. By [7, Prop. 1.8.1] there is
anO-orderB inAwith j �B D A0. By [7, Prop. 1.8.2] there is a maximalO-orderA
inA containingB. Then, byTheorem7.11,H D coh.A/ is a noncommutative regular
projective curve over R. Moreover, conditions (1) and (2) are clearly satisfied.

(3) This follows from part (3) of Witt’s theorem above, and Theorem 7.12.

Definition 11.8. Let .K; ˛/ be a Klein surface with a Witt function ˛WK ! S2.
(Recall that this means that ˛ is not positive definite.) We call the noncommutative
regular projective curve constructed in the preceding theoremWitt curve (associated
with .K; ˛/).

Theorem 11.9. Each noncommutative regular projective curve H over k D R with
s.H/ > 1 is a Witt curve.

Proof. The centre curve ofH is a real regular projective curve, thus aKlein surfaceK.
The function field k.H/ is a skew field of quaternions over K D k.K/, thus of the
form

�
˛;�1
K

�
. By the uniqueness part of Theorem 11.7 then H is the Witt curve

associated with .K; ˛/.

We will call commutative real regular projective curves with centre R (thus
corresponding to the Klein surfaces) also Klein curves, and will use the letter X
instead of K.

The main result for the � -multiplicities for Witt curves is the following.

Theorem 11.10. Let H be a Witt curve. Then e� .x/ D 2 if and only if x is a
segmentation point. In other words: precisely for the segmentation points � is acting
non-trivially — by complex conjugation — on the corresponding tubes.

Proof. This follows from Corollary 7.18.

11.11. LetH be a Witt curve. Table 2 summarizes some local data.

point x e.x/ e�.x/ e� .x/ k.x/ Z.Dx/ Dx bDx

inner 2 1 1 C C C C..T //
real 2 1 1 R R R R.T //
quaternion 1 2 1 R R H H..T //
segmentation 1 1 2 R C C C..T; �//

Table 2. Local data of a Witt curve
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A Klein surface has the constants field R. We will now determine the field
of constants End.L/ of a Witt curve .H; L/. This terminology is justified since it
follows from properties of maximal orders that the endomorphism ring of any line
bundle can be embedded into the endomorphism ring of L.

Lemma 11.12 (Field of constants). Let .H; L/ be a Witt curve. Let r be the number
of completely real coloured ovals, and n D 2m the total number of segmentation
points. Then

End.L/ '

(
C if m > 0 or r > 0;
H if m D 0 and r D 0:

For the normalization factor " from (9.2) we have " D 1.

Proof. Let K D k.X/ be the function field of the centre curve, so k.H/ D
�
˛;�1
K

�
.

Scalar extension by C, denoted by the overline symbol, then givesA˝K D M2.K/.
Assume first thatm D 0. ThenA is Azumaya, and by [7, Cor. 1.7.6] there is a locally-
freeO-module E of rank 2 such thatA ' EndO.E/. Then End.L/ D End.A/ D R

is not possible, since otherwise EndA.A/ ' C, which is not the case by the sentence
before. This also holds in casem > 0: thenA is not Azumaya, instead it is weighted
by an even number of the weight 2, and the endomorphism ring of the structure sheaf
is not changed by insertion of weights. So in any case End.L/ D C or H.

Thus � D dimk End.L/ � 2, and we have �" D 2 in cases m > 0 or r > 0 and
�" D 4 in the casesm D 0; r D 0: this follows from the existence of a simple object
of degree 1 (by the definition of ") and the formula (9.4).

Thus it remains to show that in casem D 0; r D 0 we have � D 4. In this caseA
is Azumaya with each of its ovals coloured quaternion. Then k.H/ D k.X/ ˝ H
and A D O ˝H, hence End.A/ D H follows.

Proposition 11.13 (Hurwitz genus formula for Witt curves). Let H be a Witt curve
with n D 2m segmentation points and underlying Klein curve X , and let r be the
number of completely real coloured ovals. Then

g.H/ D
(
2g.X/ � 1Cm if m > 0 or r > 0;
g.X/ if m D 0 and r D 0:

(11.2)

Proof. By formula (9.5) we have for the normalized Euler characteristics �0.H/ D
�0.X/ � n=4. With � D dimk End.L/ we obtain �.1 � g.H// D 4�0.H/ D
4�0.X/ � n D 4.1 � g.X// � n, thus

g.H/ D 4

�
g.X/ �

4

�
C 1C

2m

�
: (11.3)

Now the assertion follows with Lemma 11.12.



Weighted noncommutative regular projective curves 1519

Remark 11.14. (1) Our definition of the genus differs from the definition of the
genus of function skew fields in [86], since we always have g.H/ � 0. The analogues
formula obtained in [60] is 4g.X/ � 3 C n, which we would get for � D 1. For
example, the function fields H.T / and C.T; �/ have genus 0 by our definition, but
genus�3 by the other definitions. But the conditions g � 0 and g D 1 are equivalent
for both definitions.

(2) Let K be a Klein surface with a ˙-configuration induced by ˛. We form
a double cover � WK0 ! K of Klein surfaces as in the proof of Witt’s theorem
in [3, Thm. 2.4.5]: K0 is obtained by gluing two copies of K together at the closures
of the segments, or complete ovals, where ˛.x/ < 0. The boundary of K0 is then
given by two copies of the segments (or ovals), where ˛.x/ > 0, and each pair of these
segments (if not an entire oval) is bounded by two segmentation points of K. The
connected components are then ovals, each of which contains precisely zero or two
of the segmentation points from K. Setting ˛0 D ��.˛/ D ˛ ı � , then ˛0 is positive
on the segments. Thus the former segmentation points are not longer segmentation
points on K0. By construction k.K0/ D k.K/.

p
˛/. Since K0 is a Riemann surface

only in case m D 0 and r D 0, formula (11.2) (for H) coincides with the Hurwitz
equation for the covering � WK0 ! K in [61, Thm. 2].

Corollary 11.15. Let n > 0 be the number of segmentation points. Then:
� g.H/ D 0 if and only if g.X/ D 0 (hence K is the compact disc) and n D 2.
� g.H/ D 1 if and only if g.X/ D 0 and n D 4.

Example 11.16 (Genus zero). There are two Witt curves of genus zero; we describe
the corresponding Witt surfaces, Figure 2.

(1) The compact disc DH, the boundary coloured quaternion. This is the
projective spectrum of the graded polynomial ring HŒX; Y �with central variablesX ,
Y of degree 1. The function field is given by H.T /.

(2) The compact disc D2;2 with two segmentation points on its boundary.
This is the projective spectrum of the graded skew-polynomial algebra CŒX IY; ��.
Accordingly, the function field is C.T; �/.

H

H R

Figure 2. The Witt curves with g.H/ D 0: DH and D2;2
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11.17 (Euler characteristic of a Witt curve). We now come back to the question how
to normalize the Euler characteristic “correctly”.

If K is a Klein surface and S the corresponding complex double then, since K
is a Z2-quotient of S , we have �.S/ D 2 � �.K/. This can also be expressed in the
following way: ifH is a real regular projective curve, then

�.H/ D �.H˝C/=2: (11.4)

We assume that this should also hold for the Euler characteristic of Witt curves H.
Here, H˝ C (tensor product over k D R) is the karoubian closure of the category
with the same objects as in H, and where Hom-spaces are tensored with C and
then considered “modulo Morita-equivalence” �M . Two examples: (1) DH. At
the boundary, H becomes H ˝ C D M2.C/ �M C. In the inner, C becomes
C˝C D C�C, two copies ofC. We hence get two discs, all points complex, and the
boundaries identified. This gives the Riemann sphere. Alternatively: HŒX; Y �˝C D
M2.C/ŒX; Y � �M CŒX; Y �. (2) D2;2. Here we get, modulo �M two copies of discs
with all points complex, the boundaries identified; the two ramification points (their
simples having endomorphism ring C) are “doubled”, and become weighted by 2.
So we have the weighted projective line over C with weight sequence .2; 2/. The
examples suggest thatH is somehow a Z2-quotient ofH˝C (justifying (11.4)), but
this is yet not well understood. In general, if H has 2n ramification points, and if K
is the underlying Klein surface, S the complex double, then H ˝ C is S weighted
with the 2n-sequence .2; 2; : : : ; 2/. Thus,

�.H˝C/ D �.S/ �
2nX
iD1

.1 � 1=2/ D �.S/ � n:

Moreover, if �.H/ WD hL;Li, then by (9.5),

�.H/ D s.H/2
�
�.K/ � 1=2

2nX
iD1

.1 � 1=2/
�
D s.H/2=2 � �.H˝C/:

Therefore, if (11.4) should hold, we have to replace �.H/ by the normalized �0.H/.
Because of these considerations we regard �0 as the correct Euler characteristic

for a Witt curve.

12. Real elliptic curves

In the following examples we treat all real elliptic curves, that is, the Klein and
Witt surfaces with g.H/ D 1. Here, we classify them only topologically, not up to
isomorphism, where one has to add a real parameter to each topological case.
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Example 12.1 (Commutative real elliptic curves). There are (up to parameters) three
real elliptic curves with s.H/ D 1, with corresponding Klein surfaces given by the
annulus A, the Klein bottle K and the Möbius band M. We refer to the book [2].
Example 12.2 (Elliptic Witt curves). As only real elliptic curves with s.H/ > 1 we
have (up to parameters) the correspondingWitt surfaces: the annuli AR;H and AH;H,
where one and both ovals, respectively, are coloured quaternion, the Möbius
band MH, with quaternion coloured boundary, and the compact disc D2;2;2;2 with
four segmentation points on the boundary, Figure 3; there is amoduli parameter� > 0
involved, so the general case is not as symmetric as in the figure.

H R

H
R

H

R

H

H

H

Figure 3. The elliptic Witt curves: D2;2;2;2, AR;H, AH;H, MH

Lemma12.3. For the real elliptic curves .H; L/ Table 3 describes the endomorphism
ring of the structure sheafL, the endomorphism ring of a certain simple sheafS D Sx
of degree 1, the multiplicity e.x/, the number ", and the number of orbits in bQ of the
action of Aut.Db.H// on the slopes.

A M K AR;H AH;H MH D2;2;2;2

End.L/ R R R C H H C
End.S/ R R C R H H C
e.x/ 1 1 1 2 1 1 1

" 1 1 2 1 1 1 1

# orbits 1 1 2 2 1 1 1

Table 3. Data of real elliptic curves
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For K the two orbits are given by those fractions a=b (with a; b coprime) with b
even or odd, respectively, in case AR;H with a even or odd, respectively; in both
cases the slopes 0 and1 belong to different orbits.

Proof. We get End.L/ and the value of " from Lemma 11.12. For K we have " D 2
since there is no boundary. There exists a simple S as claimed. The objects L and S
define tubular mutations �L; �S WDb.H/ ! Db.H/, respectively, which on K0.H/
act as follows (with a WD ŒL�, s WD ŒS� and � D dimR End.L/):

�L.y/ D y˙
ha; yi
�

a; �S .y/ D y˙
hs; yi
jEnd.S/j

s: (12.1)

With deg.y/ D 1
�"
ha; yi and rk.y/ D 1

�" deg.S/hy; si we obtain the induced actions on
the slopes

q 7!
q

1˙ "q
and q 7! q ˙ deg.S/e.x/ D q ˙ e.x/ (resp.):

The claimed numbers and shapes of orbits follow from [45, Lem. 6.1].

It was already observed in [54] that the Klein bottle must have a Fourier–Mukai
partner different from a Klein bottle. The first part of the following statement is a
non-weighted analogue of [44].
Theorem 12.4. (1) The Klein bottle K (with any parameter) has as a Fourier–

Mukai partner a Witt curve given by the annulus AR;H with two differently
coloured ovals (with a suitable parameter).

(2) If H is a noncommutative real elliptic curve, which is neither a Klein bottle,
nor an annulus AR;H, then each Fourier–Mukai partner of H is isomorphic
toH itself.

Proof. (1) A Klein bottle K has no boundary. Thus all simple sheaves have
endomorphism ring C, the complex numbers. On the other hand, the structure
sheaf OK (which is stable and of slope 0) has endomorphism ring R. Thus by
Theorem 9.7 the subcategory of semistable bundles of slope 0 is parametrized by a
noncommutative projective curve H of g.H/ D 1 with H 6' K, and H is derived-
equivalent to K. There must be a simple sheaf S inH with End.S/ ' R. By Table 3
the only possibility is thenH D AR;H (with a suitable parameter).

(2) This follows from Table 3.

Corollary 12.5. The skewness, and thus the function field, of a noncommutative
regular projective curve is in general not a derived invariant.
Proposition 12.6. LetH be an elliptic Witt curve.
(1) IfH is unramified, then � D 1H. Moreover, Pic0.H/ is not finitely generated.
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(2) Otherwise, that is, if H is given by D2;2;2;2 (with some parameter), then � D
.�x1 ı �y1

�1/ ı .�x2 ı �y2
�1/ (where x1; y1; x2; y2 are the four ramification

points) is of order 2. Moreover, in this case the Picard-shift group Pic.H/ is
finitely generated abelian of rank one, and Pic0.H/ is finite.

Proof. In all cases, the result on the order of � is given by Theorem 9.10. For the
Picard-shift group we get in the Azumaya cases Pic.H/ ' Pic.X/ by Theorem 8.5,
with X the underlying Klein curve, which is elliptic. It is well-known that Pic0.X/
is not finitely generated in this case (we refer to [1, Thm. 5.7]). In the ramified
case D2;2;2;2 the centre curve is X D P1.R/, of genus zero, and Pic.P1.R// ' Z,
and the last claim follows from Theorem 8.5. Actually, Pic0.H/ ' Z2 � Z2 � Z2,
generated by �x1 ı �y1�1, �y1 ı �x2�1 and �x2 ı �y2�1.

Remark 12.7 (Calabi–Yau). Let T be a triangulated k-category with finite
dimensional Hom-spaces and with Serre duality HomT .X; Y / D DHomT .Y; SX/,
where S is an exact autoequivalence of T , the (triangulated) Serre functor.
If Sm ' Œn�, the n-th suspension functor (with m � 1 minimal), then T is
called triangulated Calabi–Yau of (fractional) dimension n

m
(we refer to [41]).

If T D Db.H/, withH a noncommutative regular projective curve with Auslander–
Reiten translation � , then S D � ı Œ1� is the Serre functor of T . If g.H/ D 1, then
the functor � is of finite order p, and then Sp ' Œp�, that is, T is Calabi–Yau of
dimension p

p
.

The preceding discussion shows that the derived category of the elliptic Witt
curve D2;2;2;2 has Calabi–Yau dimension 2

2
; all the others have dimension 1

1
.

Proposition 12.8. Let .H; L/ D coh.X/ be the Witt curve X D D2;2;2;2 for some
parameter. The stable bundles of degree 0 are parametrized by X. The line bundles
of degree 0 are in bijection with the non-quaternion boundary points; the structure
sheaf L corresponds to one of the ramification points.

Proof. The composition of tubular mutations � D �S ı �L acts on slopes � D
� deg

rk

�
like the matrix

�
0 �1
1 �1

�
, sends1 to 0 and preserves endomorphism rings. IfE 2 H0,

then rk.�.E// D deg.E/. Thus the degree 0 line bundles correspond to the simples
sheaves of degree 1. Moreover, L is one of them with End.L/ D C.

13. Weighted curves, and noncommutative 2-orbifolds

We conclude the article by treating the weighted case. We will first show that
each weighted noncommutative regular projective curve H arises from a non-
weighted one, Hnw , by insertion of weights p.x/ > 1 in a finite number of
points x. This insertion of weights is described, in abstract terms, by the p-cycle
construction [53]; the inverse technique, reducing weights, is the perpendicular
calculus [33], cf. Proposition 1.1. Data like the function field k.H/, the
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skewness s.H/, the multiplicities e.x/, the endomorphism rings End.Sx/ of simples,
and the ghost group G.H/ remain unchanged by these processes. The change of the
Picard-shift group Pic.H/ is easy to describe: one adjoints the p.x/-th root of the
tubular shift �x , for each weight point x. We refer to [47, Ch. 6]. We also remark
that there is an analogues result to Lemma 8.4.

13.1 (p-cycle construction). LetH D coh.A/ be a weighted noncommutative regular
projective curve of a field k, with A a hereditary order in a full matrix algebra A
over k.H/. Let x be a point such that the tubeUx is homogeneous. Let �x WH! H be
the Picard-shift with respect to x, with natural transformation 1H

x
�! �x . Let p > 1

be a “weight”. Following [53] the category H. px / of p-cycles in x has objects
E D .Ei ; ei /i2Z, whereEi 2 H and ei 2 Hom.Ei ; EiC1/ such thatEiCp D �x.Ei /
and the composition eiCp�1 ı � � � ı eiC1 ı ei is the natural map xEi WEi ! Ei .x/ for
each i . IfF D .Fi ; fi /i2Z is anotherp-cycle in x, then amorphism betweenE andF
is a tuple .hi /i2Z with morphisms hi 2 Hom.Ei ; Fi / satisfying hiC1ei D fihi
and hiCp D �x.hi / for all i . The category of p-cycles in x over H is, like H
itself, abelian, noetherian, hereditary and does not contain non-zero projectives or
injectives, [53, Thm. 4.3].

Let A.p; x/ be the (hereditary) order in Mp.A/ given by0BBB@
A A : : : A

A.�x/ A : : : A
:::

: : :
:::

A.�x/ A.�x/ : : : A

1CCCA :
There is an equivalence [58, Prop. 6.1]

coh
�
A.p; x/

�
' H

�
p

x

�
;

and we have then p.x/ D p. This can be iterated:

Proposition 13.2. (1) Let Hnw D coh.A/ be a (non-weighted) noncommutative
regular projective curve over k. Let x1; : : : ; xt be distinct points, and let
p1; : : : ; pt > 1. Then

H D coh
� tO
iD1

A.pi ; xi /
�
' Hnw

�
p1; : : : ; pt
x1; : : : ; xt

�
is a weighted noncommutative regular projective curve with weight points
x1; : : : ; xt , having weights p.xi / D pi .

(2) Each weighted noncommutative regular projective curveH is obtained in this
way from its underlying non-weighted curveHnw (cf. Proposition 1.1).
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Proof. (1) As in [58, Prop. 6.1 + 6.5]. (2) ClearlyH andHnw

�
p1;:::;pt
x1;:::;xt

�
have the same

underlying non-weighted curve, namelyHnw . In particular they have the same centre
curve and the same function field, and also the same weight function pWX ! N.
The statement then follows from [20, Thm. 6.7].

Concerning the � -multiplicities the following observation is fundamental.
Proposition 13.3. Let H be a noncommutative regular projective curve over a
field k and x a separable point. Let p > 1 be a weight and let H be a weighted
noncommutative curve arising fromH by insertion of the weight p into x. Let Ux be
the corresponding tube of rank p. Then the order of �H in Aut.Ux=k/ is e� .x/ � p.

Proof. Working with p-cycles in x one sees easily that .�H/p acts on End.Sx/
like ��1x and hence like �H.

Proposition 13.4 (The complete local rings). Let x be a point of weight p D p.x/.
Then Ux ' mod0.Hp.bRx//, with bRx the complete local ring as in Proposition 5.1
(and for separable x the skew power series ring as in Theorem 5.3), and

Hp.bRx/ D
0BBB@
bRx bRx : : : bRx
Px bRx : : : bRx
:::

: : :
:::

Px Px : : : bRx

1CCCA
of size p � p and with Px D rad.bRx/, generated by �x . The ring Hp.bRx/ is a
semiperfect bounded hereditary noetherian prime ring, whose radical is generated
as left and right ideal by the element

�x D

0BBBBB@
0 1 0 : : : 0

0 0 1 : : : 0
:::

: : :
:::

0 1

�x 0 : : : 0

1CCCCCA ;
which satisfies �xp D �x .

Proof. This follows as in [73, 4.4].

Let A be a hereditary O-order with H D coh.A/, by Theorem 7.11. By Np we
will always denote the least common multiple of the weights. We can assume thatA
is a hereditary O-order in M Np.k.H//. (By [20, Rem. 6.8] even the maximum of the
weights can be chosen as the matrix size.) Moreover, we can and will always assume
that the structure sheaf L is a special line bundle, corresponding to the structure
sheaf (8.1) of Hnw via Proposition 1.1. For a point x we denote by Sx the (up to
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isomorphism) unique simple sheaf concentrated in x with Hom.L; Sx/ ¤ 0. For a
point x 2 X let �x.L/ D L.x/, and then the bimodule A.x/ is defined as in the
unweighted case. One also shows that the functors �x and�˝AA.x/ are isomorphic.
From the preceding results we get mxHp.x/.bRx/ D .�x/p.x/era.x/ and

O.x/˝O A ' A.p.x/era.x/ � x/: (13.1)

With this one obtains the more general, weighted version of Theorem 8.5. We note
that there is a formal similarity to [67, (40.9)].
Theorem 13.5. Let H be a weighted noncommutative regular projective curve over
a field k. Let X be the (non-weighted) centre curve. Then there is an exact sequence

1! Pic.X/
�
�! Pic.H/

�
�!

Y
x

Z=p.x/era.x/Z! 1 (13.2)

of abelian groups. Here, �.�/ D �jH0 and � sends a (class of a) line bundleO.x/ of
coh.X/, for a point x 2 X , to �xp.x/era.x/, for the corresponding point x 2 X.
Theorem 13.6. Let .H; L/ be a weighted noncommutative regular projective curve
over a perfect field k. Let  D

P
x2X x � x be the canonical divisor of the (non-

weighted) centre curve X . For  D
P
x2X xp.x/e� .x/ � x we write � j j for the

corresponding Picard-shift. Then

� D � j j �
Y
x

�x
p.x/era.x/�1 D

Y
x

�x
p.x/era.x/.xC1/�1 2 Pic.H/: (13.3)

Proof. We just remark that here the different is given by� D
P
x.p.x/era.x/�1/ �x,

which can be seen as in the unweighted case, and that the dualizing sheaf !A also
here is given by HomO.A;!X /, see [68, III.2], and (8.3) also holds here.

Let .H; L/ be a weighted noncommutative regular projective curve over k of
skewness s D s.H/. Let � D dimk End.L/ and " as defined before (for the under-
lying non-weighted curveHnw ). We define the average Euler form and the (orbifold)
degree

hhE;F ii D

Np�1X
jD0

h�jE;F i; deg.F / D
1

�"
� hhL;F ii �

1

�"
� hhL;Lii � rk.F /

and the normalized orbifold Euler characteristic �0orb.H/ and the orbifold genus
gorb.H/ by the equations

�0orb.H/ WD
1

Np2s2
� hhL;Lii

.�/
D �

�"

2 Nps2
� deg.�L/ DW

�

Nps2
� .1 � gorb.H//:

The equality .�/ is given by the following.
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Lemma 13.7. We have �L D L˝A !A and deg �L D � 2
Np�"
hhL;Lii.

Proof. The first equality is clear. For the second we show like in [56, Prop. 3.2] that
the difference deg �nL � deg �n�1L does not depend on n, and as in [51, Lem. 9.1]
the claim then follows.

Like in the unweighted case we obtain (compare [51, Thm. 9.2]):
Theorem 13.8 (Riemann–Roch formula). Let H be a weighted noncommutative
regular projective curve over the field k. Then

1

� Np
� hhE;F ii D .1 � gorb.H// � rk.E/ � rk.F /C

"

Np
�

ˇ̌̌̌
rk.E/ rk.F /
deg.E/ deg.F /

ˇ̌̌̌
holds for all E; F 2 H.
Lemma 13.9. Let .H; L/ be a weighted noncommutative regular projective curve
over the perfect field k. For each x 2 X we have

deg.Sx/ D
Np � s.H/

p.x/ � � � "
� e�.x/ � Œk.x/ W k�:

Proof. In general (H regular over any field) we have (with e0.x/ as in (7.7))

deg.Sx/ D
Np

p.x/�"
dimk Hom.L; Sx/ D

Np

p.x/�"
e.x/e�.x/2e0.x/Œk.x/ W k�:

(13.4)
In the perfect case we know e0.x/ D e� .x/ and e.x/e�.x/e� .x/ D s.H/.

Theorem 13.10 (Noncommutative Riemann–Hurwitz formulae). Let k be a perfect
field andH a weighted noncommutative regular projective curve over k. LetX be the
centre curve, Hnw the underlying non-weighted curve. For the normalized orbifold
Euler characteristic �0orb.H/ we have

�0orb.H/ D �0.X/ �
1

2

X
x

�
1 �

1

p.x/e� .x/

�
Œk.x/ W k� (13.5)

D �0.Hnw/ �
1

2

X
x

1

e� .x/

�
1 �

1

p.x/

�
Œk.x/ W k�: (13.6)

If we assume k to be the centre ofH, then �0orb.H/ is an invariant ofH.

Proof. We set s D s.H/ and denote by a D ŒL� and sx D ŒSx� the classes in the
Grothendieck group. We denote the Coxeter transformation on K0.H/ also by � . We
further set wx D

Pp.x/�1
jD0 �j sx. By (13.3) we have

�a D aC
X
x

xp.x/e� .x/e.x/sx C
X
x

.p.x/e� .x/ � 1/e.x/sx:
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Then

� Npa � a D
X
x

Np

p.x/
xp.x/e� .x/e.x/wx C

X
x

Np

p.x/
.p.x/e� .x/ � 1/e.x/wx:

By Riemann–Roch and the preceding lemma,

ha;wxi D ha; sxi D
p.x/

Np
hha; sxii D

p.x/�"

Np
deg sx D se�.x/Œk.x/ W k�:

We obtain

ha; � Npa � ai D s2 Np
X
x

xŒk.x/ W k�C s
2
Np
X
x

�
1 �

1

p.x/e� .x/

�
Œk.x/ W k�:

Similarly we compute h�j a; � Npa � ai. With this we get, as in [51, Lem. 9.1],

hha; aii D �
1

2
Np2s2

X
x

xŒk.x/ W k� �
1

2
Np2s2

X
x

�
1 �

1

p.x/e� .x/

�
Œk.x/ W k�:

Since
P
x xŒk.x/ W k� D ŒEnd.O/ W k�"X degX .!X / D �2�0.X/ we obtain

hha; aii D Np2s2�0.X/ �
1

2
Np2s2

X
x

�
1 �

1

p.x/e� .x/

�
Œk.x/ W k�:

Division by Np2s2 yields the first equation.
Then, the second follows with (9.5), (9.4) and using the equation 1 � 1

pe
D

.1 � 1
e
/C 1

e
.1 � 1

p
/.

Remark 13.11. (1) Letk be algebraically closed. As in the unweighted cases, the
orbifold Euler characteristic �orb.H/ satisfies �orb.H/ D 2�0orb.H/. Since moreover
s.H/ D 1 andHnw D coh.X/, equations (13.5) and (13.6) yield

�orb.H/ D �.X/ �
X
x

�
1 �

1

p.x/

�
:

In case k D C and H a weighted complex regular projective curve, or a complex
2-orbifold, then �orb.H/ D �0orb.H/, if the values are computed over the field R of
real numbers.

(2) The factor Œk.x/ W k� (a datum of the centre curve) equals ��"�deg.Sx/
e�.x/�s.H/ , with the

degree of Sx inHnw (a datum of the underlying non-weighted curve).
(3) In the preceding theorem, we made the assumption that k is perfect since we

used the skewness equation, Theorem 6.5. Of course, we only need that the involved
points are separable. But also in full generality we may have a “nice” formula.
In (13.8) below we have a still compact formula, in a special case, but over any field.
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Weighted Klein and Witt curves. The following formula, obtained from (13.6),
can be regarded as the extension of the Riemann–Hurwitz formula [81, Thm. 13.3.4]
in Thurston’s book (we also refer to [76]) to noncommutative real 2-orbifolds.

Corollary 13.12. LetH be a weighted noncommutative regular projective curve over
k D R. Then

�0orb.H/ D �0.Hnw/�
1

4
�

X
x

�
1�

1

p.x/

�
�
1

2
�

X
y

�
1�

1

p.y/

�
�

X
z

�
1�

1

p.z/

�
;

where x runs over the ramification points, y over the other boundary points, and z
over the inner points.

We remark that in case s.H/ D 1 we have �0.Hnw/ D �top.S/, where S is the
underlying Klein or Riemann surface.

Multiplicity freeness and line bundles. The following fact on line bundles may
be of general interest. In case of genus zero it was first shown in [43], compare [25,
Prop. 7.3.5].

Proposition 13.13. Let .H; L/ be a weighted noncommutative regular projective
curve over a field k. If H is multiplicity free, then each line bundle is a Picard-shift
of the structure sheaf L. That is, Pic.H/ acts transitively on the set of isomorphism
classes of line bundles.

Proof. Let L0 be a line bundle. Let x 2 X be any point. For n� 0 we have a short
exact sequence 0 ! L ! L0.nx/ ! E ! 0 with E of finite length; this follows
by a weighted version of Lemma 3.4. Applying (a weighted version of) Lemma 3.2
(with e D 1) to each indecomposable summand of E gives the result.

The statement is not true in general, if H has multiplicities. In [47] examples of
genus zero (even non-weighted) are given, where there are two line bundles having
non-isomorphic endomorphism rings.

Tilting objects. The following well-known (see [55]) fact shows why genus zero
(in the non-orbifold sense) curves are important in the representation theory of finite
dimensional algebras.

Theorem 13.14. Let H be a weighted noncommutative regular projective over the
field k, with underlying non-weighted curveHnw . The following are equivalent:

(1) g.Hnw/ D 0.

(2) H admits a tilting object T .

If this is the case, then there is even a tilting bundle T inH such that its endomorphism
ring is a canonical algebra in the sense of Ringel–Crawley-Boevey [70].
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These curves were called exceptional curves in [47, 53], and noncommutative
curves of genus zero in [47]. Special cases are theweighted projective lines introduced
by Geigle–Lenzing [32]. If k is algebraically closed, these notions coincide.

IfHnw is of genus zero, then so is the centre curve.
Corollary 13.15 (of (13.3)). Let k be a perfect field. We assume that the centre
curve X is of genus zero, of numerical type ". Then

� D �x0
�2="
�

Y
x

�x
p.x/e� .x/�1 (13.7)

for any point x0 2 X which is rational inX and neither ramification nor weight.
In the following special case, the formulae for orbifold Euler characteristic and

genus are the well-known ones. These can be simply obtained as special cases
from (13.6), or they can be proved directly (compare [51, Thm. 9.2]), even over any
field.
Corollary 13.16. LetH be a weighted noncommutative regular projective curve over
a field k. Assume that the non-weighted curveHnw is of genus zero. Then

�0orb.H/ D
�

s.H/2
�

�"

2s.H/2
X
x

e.x/f .x/
�
1 �

1

p.x/

�
(13.8)

and

gorb.H/ D 1C
" Np

2

�X
x

e.x/f .x/
�
1 �

1

p.x/

�
�
2

"

�
:

Proof. In case x is separable, then (invoking (9.1) and (10.1))

e.x/f .x/ D
s.H/2

�"

1

e� .x/
� Œk.x/ W k�; (13.9)

and the result follows from (13.6).

Negative orbifoldEuler characteristic. The orbifold Euler characteristic is strongly
linked to the Gorenstein parameter in singularity theory; we refer to [48]. In that
more general context, the case of negative orbifold Euler characteristic is also called
the anti-Fano case, or of general type. This situation is the most complicated, in
terms of complexity of the categoryH.
Proposition 13.17 ( [56, Prop. 4.7]). Let H be a weighted noncommutative regular
projective curve over a field. If �0orb.H/ < 0, then each Auslander–Reiten component
inHC D vect.X/ is of type ZA1, andH is of wild representation type.

Theweighted noncommutative regular projective curves of nonnegative (orbifold)
Euler characteristic are the (non-weighted) elliptic curves, the domestic and the
tubular curves, which we will consider now.
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Domestic curves. This case is also called the Fano case.

Definition 13.18. We call a weighted noncommutative regular projective curve
domestic, if �0orb.H/ > 0 (equivalently: gorb.H/ < 1).

Theorem 13.19. (1) LetH be domestic. ThenH admits a tilting bundle, and each
indecomposable vector bundle is stable and exceptional. The endomorphism
rings of tilting bundles (sheaves) are just the (almost) concealed canonical
algebras of tame-domestic type.

(2) Let k be perfect. A weighted noncommutative regular projective curve with
centre k is domestic if and only if the centre curve X is of genus zero and
the weight-ramification vector of all numbers p.x/e� .x/ > 1, each counted
Œk.x/ W k�-times, is . /, .p/, .p; q/, .2; 2; n/, .2; 3; 3/, .2; 3; 4/ or .2; 3; 5/.

Proof. (1) follows from [56, Thm. 6.1 + 6.6]. (2) follows easily from Theorem 13.10.

Corollary 13.20 (The real domestic zoo). Let k D R be the field of real numbers.
There are the following 38 (families of) weighted noncommutative regular projective
curves of positive orbifold Euler characteristic:

� Non-weighted ( Np D 1). With centre R: the Klein curves D and S2=˙ (sometimes
called the real projective plane), the Witt curves DH and D2;2. With centre C:
the Riemann sphere S2.

� Weighted ( Np > 1). With centre R: the 27 (families of) curves shown in the
tables [47, Appendix A]. With centre C: the weighted projective lines of weight
types .p/, .p; q/, .2; 2; n/, .2; 3; 3/, .2; 3; 4/ and .2; 3; 5/.

There are no parameters [47, Prop. A.1.1]. The commutative cases are just the
elliptic and bad 2-orbifolds listed in [81, Thm. 13.3.6].

Tubular curves. Theweighted noncommutative regular projective curves of orbifold
Euler characteristic zero (also called the Calabi–Yau case) are the noncommutative
elliptic curves (non-weighted, Np D 1) and the tubular curves ( Np > 1).

Definition 13.21. We call a weighted noncommutative regular projective curve
tubular, if Np > 1 and �0orb.H/ D 0 (equivalently: gorb.H/ D 1).

Theorem 13.22. (1) If H D coh.X/ is tubular, then H admits a tilting bundle,
and each indecomposable coherent sheaf is semistable. The endomorphism
rings of tilting sheaves are just the tubular algebras. Moreover, for each ˛ 2 bQ
the full category of semistable sheaves of slope ˛ is a tubular family, again
parametrized by a tubular curve X0, with H0 D coh.X0/ derived equivalent
toH.
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(2) Let k be perfect. A weighted noncommutative regular projective curve with
Np > 1 and centre k is tubular if and only if the centre curve X is of genus
zero and the weight-ramification vector of all numbers p.x/e� .x/ > 1, each
counted Œk.x/ W k�-times, is .2; 3; 6/, .2; 4; 4/, .3; 3; 3/ or .2; 2; 2; 2/.

(3) If H is tubular over a perfect field, then the order of � in Aut.H/ is the
maximum of the numbers p.x/e� .x/.

(4) Let k be perfect. The weight sequence and the weight-ramification vector of a
tubular curve, with centre k, are derived invariants. The ramification vector
is not a derived invariant.

Proof. (1) is well known. We refer to [47, Ch. 8], also [56, Thm. 5.3].

(2) follows easily from Theorem 13.10, and

(3) from Proposition 13.3 and (13.3).

(4) It is well known that the weight sequence is even a K-theoretic invariant
(this follows from [51, Prop. 7.8], also [45]). Clearly the fractional Calabi–Yau
dimension by its very definition is a derived invariant, and thus so is the maximum
of the numbers p.x/e� .x/. Since for all possible weight-ramification vectors,
.2; 3; 6/, .2; 4; 4/, .3; 3; 3/ or .2; 2; 2; 2/, this maximum is different, it follows that
the weight-ramification vector is uniquely determined, in its derived class, by the
weight sequence. That the ramification vector is not a derived invariant follows from
the real example in [44], see Example 13.24 (c) below.

Corollary 13.23 (The real tubular zoo). Let k D R be the field of real numbers.
There are (up to parameters) 39 real weighted noncommutative regular projective
curves of orbifold Euler characteristic zero:
� Non-weighted ( Np D 1). 8 elliptic curves. With centre R: the Klein bottle K, the
Möbius band M (the oval coloured real or quaternion), the annulus A (there are
three possibilities to colour the two ovals). The discD2;2;2;2 with four segmentation
points. With centre C: the torus T .

� Weighted ( Np > 1). 31 tubular curves. Those 27 with centre R are shown in the
tables [47, Appendix A]; with centre C there are the tubular weighted projective
lines of the 4 weight types .2; 4; 4/, .2; 3; 6/, .3; 3; 3/ and .2; 2; 2; 2/.

17 of these have s.H/ D 1 (these are the parabolic (or flat, that is, of curvature zero)
2-orbifolds shown in [81, Thm. 13.3.6], and they correspond to the 17 wallpaper
patterns [64, App. A]), and 22 have s.H/ D 2. Moreover, all these cases are
fractional Calabi–Yau of dimension n=n with n the maximum of the numbers
p.x/e� .x/, and thus n D 1; 2; 3; 4 or 6.

The preceding discussion can be regarded as a classification of noncommutative
2-orbifolds of nonnegative Euler characteristic.
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Example 13.24. We exhibit two tubular examples, (a) and (b) below, over the field
k D R of real numbers. In both cases the underlying non-weighted curveHnw is the
Witt curve D2;2 in Figure 2. The weight-points z are drawn as large grey spots, their
weights p.z/ are indicated besides. In both cases, one of the weight-points z is also
a segmentation point, the other weighted point is not.

(a) Weight sequence .3; 3/. (See Figure 4.) The least common multiple is
Np D 3. The second weight-point is real. (The case when the second weight-point is
quaternion is similar.) The weight-ramification vector is .2; 3; 6/. It follows, that the
Calabi–Yau dimension is 6

6
(and not Np

Np
D

3
3
).

(b) Same situation, but with weight sequence .2; 4/. (See Figure 4.) Here,
Np D 4. The weight-ramification vector is .2; 4; 4/. Therefore the Calabi–Yau
dimension is Np

Np
D

4
4
.

(c) In a third real example we have a situation of two derived-equivalent
tubular curves. The weighted real projective plane H, given by S2=˙ with weight
sequence .2; 2/ (for certain weight points x1; x2), is derived-equivalent toH0, given
by the disc D2;2 with two weights 2, one on the real coloured boundary, the other on
the quaternion coloured boundary. (See Figure 4.) In both cases, the weight sequence
is .2; 2/ and the weight-ramification vector .2; 2; 2; 2/; in caseH each weight appears
twice, since Œk.xi / W k� D 2; in caseH0 the weight sequence .2; 2/ is complemented
“disjointly” by the ramification indices. The Calabi–Yau dimension is 2

2
. InH0 there

are precisely 2 tubes, on which � has order 2, inH00 there are precisely 4 such tubes.
For further, similar examples we refer to [47, Table A.5].

H R

3

3 H R

2

4 H R2 2

Figure 4. Some tubular cases. Left: (a), middle: (b), right: (c)

Example 13.25. (1) In [47, Prop. 8.3.1] we discussed an example of a triple
of tubular curves over the field k D Q of rational numbers, each with weight
sequence .2/, which are Fourier–Mukai partners. One derives from Theorem 13.22,
or computes directly using (13.9), that in each case the weight-ramification vector is
given by .2; 2; 2; 2/. Since one of these three tubular curves arises by insertion of
weights from the curve in Example 10.11, that curve has three ramification points.

(2) In [47, Prop. 8.4.1] we discussed an example of a tubular curve over the
field Q.i/, where i D

p
�1, also with weight sequence .2/. Its Grothendieck group
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is isometric-isomorphic to the Grothendieck group of the curves from part (1). By
invoking Example 10.9 we see that here the weight-ramification vector is given by
.2; 4; 4/, in contrast to part (1).
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