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The derived non-commutative Poisson bracket
on Koszul Calabi–Yau algebras
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Abstract. Let A be a Koszul (or more generally, N -Koszul) Calabi–Yau algebra. Inspired by
the works of Kontsevich, Ginzburg and Van den Bergh, we show that there is a derived non-
commutative Poisson structure on A, which induces a graded Lie algebra structure on the cyclic
homology of A; moreover, we show that the Hochschild homology of A is a Lie module over
the cyclic homology and the Connes long exact sequence is in fact a sequence of Lie modules.
Finally, we show that the Leibniz–Loday bracket associated to the derived non-commutative
Poisson structure on A is naturally mapped to the Gerstenhaber bracket on the Hochschild
cohomology of its Koszul dual algebra and hence on that of A itself. Relations with some other
brackets in literature are also discussed and several examples are given in detail.
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1. Introduction

The notion of Calabi–Yau algebras is introduced by Ginzburg [23], and has been
intensively studied in recent years. They are associative algebraswith some additional
properties, and may be viewed as non-commutative generalization of affine Calabi–
Yau varieties. It turns out that they are related to representation theory, non-
commutative symplectic/algebraic geometry, mirror symmetry, and much more. For
more details, see, for example, [7, 8, 13, 23, 32] and references therein.

In this paper, we study the derived non-commutative Poisson structure on Koszul
(or more generally, N -Koszul in the sense of Berger [4]) Calabi–Yau algebras,
continuing the work of Berest, Chen, Eshmatov and Ramadoss [1]. Let us start
with some background.

1.1. Derived non-commutative Poisson structures. Let k be an algebraically clo-
sed field of characteristic zero. In 2005 Crawley-Boevey [12] introduced for
associative algebras the notion of H0-Poisson structure. Suppose A is an associative
algebra over k, then an H0-Poisson structure on A is a Lie bracket on A=ŒA;A� such
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that
Œa;�� W A=ŒA;A�! A=ŒA;A�

is introduced by a derivation da W A ! A, for all Na 2 A=ŒA;A�. Such a notion
perfectly fits a principle raised by Kontsevich and Rosenberg [34] in the study of non-
commutative geometry, that is, any non-commutative geometric structure (such as the
non-commutative symplectic, non-commutative Poisson, etc.) on a non-commutative
space (here wemean an associative algebra) should induce its classical counterpart on
the moduli space of its representations, i.e. on its representation scheme. Recall that
for an associative algebra A, A=ŒA;A� is always considered as the space of functions
on A, and there is the canonical trace map

Tr W A=ŒA;A� �! kŒRepV .A/�
Na 7�! f� 7! trace.�.a//g (1.1)

from the functions on A to the functions on the representation scheme of A in a
k-vector space V . The trace map is GL.V /-invariant, and Crawley-Boevey showed
that if A admits an H0-Poisson structure, then it naturally induces via the trace map
a unique Poisson structure on RepV .A/==GL.V / for all n 2 N such that Tr is a map
of Lie algebras. The notation “H0” means the zero-th homology, since A=ŒA;A� is
the zero-th Hochschild/cyclic homology of A.

In 2012 the H0-Poisson structure was generalized to the higher degree case in [1],
where all cyclic homology groups are taken into account. The starting point is that the
trace map (1.1) is not perfect in the sense that in very rare cases RepV .A/ is a smooth
variety (cf. [14] for further studies), and there are obstructions for RepV .A/ to have
the desired geometric property. The work [3] shows that instead one has to consider
the homotopy category (in the sense of Quillen) of DG associative algebras. Themain
idea is to replace the associative algebra A by its cofibrant resolution QA, and then
consider the DG representations ofQA. It turns out that: (i) there is a surjective map
from the cyclic homology HC�.A/ to the homology of the commutator quotient space
QA=ŒQA;QA�; (ii) the n-dimensional DG representation scheme ofQA, which up
to homotopy is denoted by DRepV .A/, is smooth in the differential graded sense. By
passing to the homotopy category one obtains a natural map (called the derived trace
map)

HC�.A/ �! H�.DRepV .A// (1.2)

from the cyclic homology ofA to the homology of the derived representation scheme
of A. For more details of DRepV .A/, one may refer to [2, 3].

The work [1] may be viewed as an application of the general result of [2,3]. In that
paper, an algebra A is called to admit a derived non-commutative Poisson structure if
there is a DG non-commutative Poisson structure in the sense of Crawley-Boevey on
its cofibrant resolution. It is proved in [1] that ifA admits a derived non-commutative
Poisson structure, then (1.2) induces a unique graded Poisson structure on the derived
representation schemes.
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As an important example, it is shown in [1] that the cobar construction �.C / of
a cyclic coalgebra C (“cyclic” here means the dual space of C is a cyclic associative
algebra) admits a derived non-commutative Poisson structure. Since�.C / is always a
quasi-free (and hence cofibrant)DGalgebra, from the above argument one obtains that
any algebraAwhich is quasi-isomorphic to�.C / admits a derived non-commutative
Poisson structure as well. It is exactly at this point that Koszul Calabi–Yau algebras
come in.

1.2. Koszul Calabi–Yau algebras. According to Ginzburg [23], an associative
algebra A is called Calabi–Yau of dimension d (or d -Calabi–Yau for short) if

– A is homologically smooth, that is, it has a finite resolution of finitely generated
projective A˝ Aop modules;

– there exists an isomorphism

RHomA˝Aop.A;A˝ A/ ' AŒ�d�

in the derived category of A˝ Aop modules.

Ginzburg in loc. cit. also showed that if a Calabi–Yau algebra A is Koszul, then its
Koszul dual algebra, denoted by AŠ, is cyclic. Dually, the Koszul dual coalgebra
of A, denoted by A¡, is a cyclic coalgebra. From Koszul duality theory there is a
quasi-isomorphism

�.A¡/
'

� A;

and since�.A¡/ is cofibrant, by the work [1] sketched above, we thus obtain a derived
non-commutative Poisson structure on A.

In fact, a slightly more general class of Calabi–Yau algebras has the above
property. In [4] Berger introduced the notion of N -Koszul algebras, where 2-Koszul
is Koszul in the usual sense. If a Calabi–Yau algebra A is N -Koszul, then is Koszul
dual coalgebra A¡ is a cyclic A1 coalgebra. Denote the cobar construction of A¡

by �1.A
¡/; we still have A ' �1.A

¡/. There are many examples of N -Koszul
Calabi–Yau algebras, such as the Sklyanin algebras, universal enveloping algebra of
semi-simple Lie algebras, and Yang–Mills algebras, etc. The theorem below studies
the derived non-commutative Poisson structure onN -Koszul Calabi–Yau algebras in
this general setting:

Theorem 1.1. Let A be an N -Koszul d -Calabi–Yau algebra. Then

(1) there is a degree 2 � d derived non-commutative Poisson structure on A, which
induces a degree 2 � d graded Lie algebra structure on the cyclic homology
HC�.A/ of A; and

(2) there is a degree 2�d Lie module structure on the Hochschild homologyHH�.A/
over HC�.A/.
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The first statement in the theorem may be viewed as an application of [1,
Lemma 11] to the Koszul Calabi–Yau case, and it also answers a question raised
in the last paragraph in loc. cit. §5.4; the second statement is new.

1.3. The Connes long exact sequence of Lie modules. The key ingredient in the
above theorem is the structure of a differential graded version of the double Poisson
bracket in the sense of Van den Bergh [45] on �1. QA

¡/, where QA¡ WD k ˚ A¡ is the
co-augmentation of A¡. According to Van den Bergh, a double Poisson bracket on
an associative algebra, say R, is a bilinear map

ff�;�gg W R �R! R˝R

satisfying some additional conditions. IfR admits a double Poisson structure, then the
commutator quotient space R\ D R=ŒR;R� naturally admits a Lie algebra structure
satisfying the criterion of Crawley-Boevey. From the famous result of Feigin and
Tsygan [20], for a Koszul algebra A, the homology of �1. QA

¡/\ is exactly HC�.A/
and Theorem 1.1 part (1) follows.

Moreover, we recall that for an associative algebra A there is a well-known long
exact sequence due to Connes, relating the cyclic and Hochschild homologies:

� � �
B
�! HH�.A/

I
�! HC�.A/

S
�! HC��2.A/

B
�! HH��1.A/

I
�! � � �

By using an elegant interpretation of the Hochschild and cyclic homology of an
algebra in terms of its bar construction, which is due to Quillen [41], and by
Theorem 1.1 part (1), we in fact obtain that HH�.A/ and HC�.A/ are Lie modules
over the Lie algebra HC�.A/, from which Theorem 1.1 part (2) follows, and we now
claim that
Theorem 1.2. The maps B; I and S are morphisms of Lie modules of degree 2� d .

1.4. The Poisson structure on derived representation schemes. The significance
of the above two theorems is that the Lie module morphism naturally induces a Lie
module morphism on the (derived) representation scheme of the Calabi–Yau algebra.
As we mentioned above, there is a derived trace map

Tr W HC�.A/! H�.DRepV .A//:

The images are GL.V /-invariant, and in [3, Theorem 5.2] this map is extended to
Hochschild homology and there is in fact a commutative diagram

HC�.A/
B //

Tr
��

HH�C1.A/

Tr
��

H�.DRepV .A/GL.V //
BV // H�.�1.DRepV .A/GL.V ///;

(1.3)

where B in the upper line is the Connes differential, BV in the bottom line is the
de Rham differential and .�/GL.V / means the GL.V /-invariant space.
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Now recall that in classical Poisson geometry, if a manifold M has a Poisson
structure, then the space of differential forms��.M/ onM is a Lie module over the
space of functions�0.M/, where the Lie action is given as follows: for f 2 �0.M/,
! 2 ��.M/,

Œf; !� WD LXf
!;

where LXf
is the Lie derivative of the vector field Xf associated to f . In derived

non-commutative geometry, we have similar results, and claim that
Theorem 1.3 (to appear in [9]). Let A be a Koszul Calabi–Yau algebra. Then the
diagram (1.3) is a commutative diagram of Lie module morphisms.

To prove this theorem, we shall have to discuss the Lie derivative on the
derived representation schemes, which is very much involved. We decide to give
a complete proof in a separate paper; however, for reader’s convenience we give
enough backgrounds in §7.

1.5. Relations to the Gerstenhaber and the de Völcsey–Van den Bergh brackets.
The construction of the double Poisson bracket on �1. QA

¡/ is also inspired by the
Kontsevich bracket in non-commutative symplectic geometry (see Kontsevich [33]
as well as Ginzburg [22] and Van den Bergh [45] for further discussions). It is direct
to check that if ff�;�gg is a double Poisson bracket on R then

f�;�g D � ı ff�;�gg W R �R! R

defines a Leibniz–Loday bracket on R, where � is the multiplication. For more
details of the Leibniz–Loday bracket, see §3. It has been interesting for a long time
to explore the relationships among the brackets such as the Gerstenhaber bracket, the
Leibniz–Loday bracket and the non-commutative Poisson bracket of Kontsevich and
Van den Bergh, etc. In this paper we also study this problem in the case of Koszul
Calabi–Yau algebras with some detail.

First, we observe that there is a natural quasi-isomorphism (a version of non-
commutative Poincaré duality originally due to Tradler [44])

ˆ W CH�.A¡/ �! CH�.AŠ/

from the Hochschild chain complex of A¡ to the Hochschild cochain complex of AŠ.
Second, we observe that �.A¡/ naturally embeds into CH�.A¡/ as chain complexes.
By combining these two observations, we obtain the following theorem:
Theorem 1.4. LetA be anN -Koszul d -Calabi–Yau algebra. Denote byA¡ its Koszul
dual coalgebra. Denote by f�;�gDNCP the Leibniz–Loday bracket associated to the
derived non-commutative Poisson structure on A and by f�;�gG the Gerstenhaber
bracket on CH�.AŠ/, respectively. Then we have

ˆ ı Bfu; vgDNCP D fˆ ı B.u/;ˆ ı B.v/gG;

for any u; v 2 �1.A
¡/, where B is the Connes cyclic operator.
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A classical result of Keller [31, Theorem 3.5] says that if A is Koszul, then the
Hochschild cohomology of A and of AŠ are isomorphic as Gerstenhaber algebras.
His theorem holds for N -Koszul algebras, too. Therefore, Theorem 1.4 implies that
ˆ ı B , composed with the isomorphism of Keller, maps the Leibniz–Loday bracket
of A to the Gerstenhaber bracket on the Hochschild cohomology of A itself.

The above result allows us to give an explicit formula for the Lie bracket on the
cyclic homology and the Lie module structure on the Hochschild homology. First,
we recall that .HH�.A/;[/ is a graded commutative algebra and .HH�.A/;\/ is a
graded module

\ W HHm.A/˝ HHn.A/! HHm�n.A/ ; ˛ ˝ f 7! ˛ \ f

and we denote �f .˛/ WD ˛ \ f . Now if A is d -Calabi–Yau, then there in fact exists
an element ! 2 HHd .A/ such that the cap product with !:

‰ W HH�.A/ �! HHd��.A/
f 7�! �f !

is an isomorphism, which is called the non-commutative Van den Bergh–Poincaré
duality for A. We can show
Corollary 1.5. The Lie bracket of Theorem 1.1 on HC�.A/ is given by

f˛; ˇgDNCP D .�1/
.d�j˛j�1/�‰�1.B.˛//B.ˇ/ (1.4)

for ˛; ˇ 2 HC�.A/, where B W HC�.A/ ! HH�C1.A/ is the Connes operator. The
Lie module structure on HH�.A/ is also given by the bracket (1.4) for ˇ 2 HH�.A/.

Another consequence of Theorem 1.4 is that it relates the Lie bracket f�;�gDNCP
of Theorem 1.1 on HC�.A/ with the Lie bracket f�;�gdVV of de Völcsey–Van
den Bergh on the negative cyclic homology HC�� .A/ introduced in [17]. Let us
briefly recall their construction. Let CC�� .A/ be the negative cyclic complex and
let � W CC�� .A/ ! CH�.A/ be the natural projection in to the last two columns
(see e.g. [35, Section 5.1.4.1]). Next, let [ be the cup product on HH�.A/. Then

f�;�gdVV W HC�n .A/ � HC�m.A/ �! HC�nCm�dC1.A/

.�1; �2/ 7�! .�1/j�1jCdB ı‰
�
‰�1.�.�1// [‰

�1.�.�2//
�
(1.5)

where B W HHq.A/ ! HC�qC1.A/ is the map induced from the Connes operator
and ‰ is the non-commutative Poincaré duality. From the following commutative
diagram (see [35, Proposition 5.1.5])

HC�.A/
B //

id

��

HC��C1.A/

�

��
HC�.A/

B // HH�C1.A/;

(1.6)
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we have
Theorem 1.6. Let A be an N -Koszul d -Calabi–Yau algebra. Then

Bf˛; ˇgDNCP D fB.˛/; B.ˇ/gdVV

for any ˛; ˇ 2 HC�.A/.
The rest of the paper is devoted to the proof of the above theorems. It is organized

as follows: in §2 we recollect several basic notions such as the Hochschild and
cyclic homology of algebras and coalgebras; in §3 we recall the definition of double
Poisson algebras in the sense of Van den Bergh and their bimodules; in §4 we
show that for a class of coalgebras there is a double Poisson bracket on their cobar
construction; in §5we continue to show that, for the cobar construction, when viewing
it as a DG algebra, its non-commutative differential 1-forms admit a double Poisson
bimodule structure; in §6 we show N -Koszul Calabi–Yau algebras have a derived
non-commutative Poisson structure; in §7 we give a brief introduction to derived
representation schemes and derived non-commutative Poisson structures; in §8 we
prove the main theorems listed in §1; and in §9 we give by explicit formulas several
brackets on the space of polynomials of several variables.

Acknowledgements. Wewould like to thankYuri Berest for helpful communications
and NSFC (No. 11271269) for partial support.

2. Hochschild and cyclic homologies of coalgebras

2.1. Bar and cobar constructions. Let k be a field of characteristic zero. An
associative k-algebraA is said to be augmented if there is an algebra homomorphism
� W A! k, called the augmentation map. In particular, A is canonically isomorphic,
as a vector space, to k ˚ NA, where NA D Ker.�/.

The bar construction of an augmented algebra A, denoted by B.A/, is a DG
coalgebra defined as follows. First, recall that the suspension of a graded vector
space V is the graded vector space sV such that .sV /i D Vi�1. Similarly, the
desuspension is s�1V such that .s�1V /i D ViC1. As a coalgebra B.A/ is the tensor
coalgebra T .s NA/ of the underlying vector space of NA located in degree one. The
coproduct is

4.a1; : : : ; an/ D

nX
iD0

.a1; : : : ; ai /˝ .aiC1; : : : ; an/

while the differential is

b0.a1; : : : ; an/ D

n�1X
iD1

.�1/i�1.a1; : : : ; ai � aiC1; : : : ; an/ :
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The counit � W B.A/ ! k is the projection onto A˝0 D k and we will denote by
NB.A/ the Ker.�/.

A coassociative coalgebra .C;4/ is a coaugmented coalgebra if there is coalgebra
homomorphism u W k ! C . Then C can be identified as a vector space to k ˚ NC ,
where NC is the Coker.u/. Define the reduced coproduct N4 W NC ! NC ˝ NC as the
composite

NC
i
�! C

4
�! C ˝ C

�˝�
�! NC ˝ NC

where i and � are canonical inclusion and projection. Then cobar construction of C
is a DG algebra �.C / 1 defined as follows. As an algebra it is the tensor algebra
T .s�1 NC/ and the differential is

b0.c1; : : : ; cn/ D

nX
iD1

X
.ci /

.�1/i�1.c1; : : : ; c
0
i ; c
00
i ; : : : ; cn/

where N4.ci / D
P
.ci /
.c0i ; c

00
i /. The unit map � W k ! �.C / is the inclusion

into NC˝0 D k, and we will write �.C / for Coker.�/, which is the reduced cobar
construction of C .

2.2. The cyclic bicomplex. Let C be a coalgebra over k. We write 4.c/ DP
.c/ c

0˝c00 for the coproduct inC . Then we consider the following double complex
which is obtained by reversing the arrows in the standard (Tsygan) double complex
of an algebra:

N // C˝3
1�T //

b

OO

C˝3

b0

OO

N // C˝3
b

OO

1�T //

N // C˝2
1�T //

b

OO

C˝2

b0

OO

N // C˝2

b

OO

1�T //

N // C

b

OO

1�T // C

b0

OO

N // C

b

OO

1�T //

0

OO

0

OO

0

OO

1In this paper the cobar construction is denoted by the bold face � while the standard � means the
non-commutative differential forms.
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This double complex is 2-periodic in horizontal direction, with operators b0; b; T;N
given by

b0.c1; : : : ; cn/ WD

nX
iD1

X
.ci /

.�1/i�1.c1; : : : ; c
0
i ; c
00
i ; : : : ; cn/;

b.c1; : : : ; cn/ WD b
0.c1; : : : ; cn/C

X
.�1/n.c001 ; c2; : : : ; cn; c

0
1/ ;

T .c1; : : : ; cn/ WD .�1/
n�1.c2; : : : ; cn; c1/;

N WD

n�1X
iD0

T i :

The b-column is called the Hochschild chain complex CH�.C / of C : it defines the
Hochschild homology HH�.C /. The b0-column is the reduced cobar construction
of co-augmented coalgebra QC D k ˚ C shifted by degree one; here QC is the co-
augmentation of C , which, as a vector space, is k˚C , with k being the co-unit. The
kernel of 1 � T from the b-complex to the b0-complex is called the cyclic complex
CC�.C /: by definition, its homology is the cyclic homology HC� of C .

In practice, to compute the Hochschild and cyclic homologies, one usually
considers the normalized Hochschild complex. For a co-augmented coalgebraC , the
normalized Hochschild complex

CHn.C / WD C ˝ . NC/˝n

with the differential induced from b. Similarly to the algebra case, CH�.C / and
CH�.C / are quasi-isomorphic; however, CH�.C /may be viewed as a tensor product
C ˝�.C / with a twisted differential given by id ˝ b0 C �L C �R, where b0 is the
differential in the cobar construction, and �L and �R are given by

�L.c0; c1; : : : ; cn/ WD
X
.c0/

.c00; c
00
0 ; c1; : : : ; cn/;

�R.c0; c1; : : : ; cn/ WD
X
.c0/

.�1/n.c000 ; c1; : : : ; cn; c
0
0/:

Under this identification, one sees that the cobar construction embeds into the
Hochschild complex as complexes

�.C / �! CH�.C /
.c1; : : : ; cn/ 7�! 1˝ .c1; : : : ; cn/:

(2.1)

We now recall some facts about the cyclic bicomplex from Quillen [41,
Section 1:3]. Let A be an associative algebra. The commutator subspace of A
is ŒA;A� which is the image of � � �� W A˝ A ! A where � is the product in A
and � is the switching operator, and the commutator quotient space is

A\ WD A=ŒA;A� D Coker.� � ��/:
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Dually, for a coassociative coalgebra C the cocommutator subspace of C is

C \ WD Kerf4 � �4 W C ! C ˝ C g:

Let QA D k ˚ A be the augmentation of A (recall that the augmentation of a
not-necessarily unital algebra A is the algebra QA D k ˚ A where k plays the role
of the unit). Let NB be the reduced bar construction of QA. The following lemma
is [41, Lemma 1.2]:

Lemma 2.1. The space NB\n is the kernel of 1 � T acting on A˝n. Hence, we have
the isomorphism of complexes CC��1.A/ Š NB\:

Remark 2.2. For the convenience of later discussions, from now on we shall shift
the degrees of CC�.A/ up by one, and just write the above identity and alike as
CC�.A/ Š NB\.

Dually, the space .�. QC/\/n is the cokernel of 1 � T acting on C˝n. Thus, by
the isomorphisms

CC�.A/ D Coker.1 � T / Š Ker.1 � T / ;
CC�.C / D Ker.1 � T / Š Coker.1 � T /;

(2.2)

we have the following lemma

Lemma 2.3. As complexes of k-vector spaces �. QC/\ Š CC�.C /. Hence,

HC�.C / Š H�Œ�. QC/\�:

There is an efficient way to compute the cyclic homology. Let us recall that
(cf. [35]) for a unital and augmented algebra A D k ˚ NA, its reduced cyclic chain
complex

CC�.A/ WD Cokerf1 � T W NC˝n ! NC˝ng:

The associated homology is the reduced cyclic homology of A, and is denoted by
HC�.A/, and there is in fact a decomposition

HC�.A/ Š HC�.k/˚ HC�.A/:

The following is originally due to Feigin and Tsygan, and is now well-known (see
e.g. [3, Proposition 4.2]):

Proposition 2.4. Let R
'

� A be a quasi-free resolution of an algebra A. Then
there is quasi-isomorphism CC�.A/ ! NR\ inducing isomorphism of homologies
HC�.A/ ' H�. NR\/, whereCC�.�/ andHC�.�/ are the reduced cyclic chain complex
and reduced cyclic homology respectively.
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Thus, combining the above two results, one obtains

Corollary 2.5. Let C be a coaugmented coalgebra such that �.C /
'

� A is a quasi-
free resolution of an algebra A. Then HC�.A/ Š HC�.C /. Moreover, if A is an
augmented algebra then HC�.A/ Š HC�.C /.

Proof. First, by Proposition 2.4, HC�.A/ ' H�Œ�.C /\�. The later by definition is
isomorphic to HC�. NC/. Since C is coaugmented, using arguments similar to that
in [35, Proposition 2.2.16], we obtain HC�. NC/ Š HC�.C /.

The second part follows from the first one, since in this case HC�.A/ D HC�.k/˚
HC�.A/ and HC�.C / D HC�.k/˚ HC�.C /.

2.3. Non-commutative differential forms on algebras and coalgebras. The most
of the material in this section is either taken from [15, 41] or merely stating the dual
version of those results.

For a DG algebra R, we denote by �1R the kernel of the multiplication map
R˝R! R. It is a DG bimodule induced from outer bimodule structure on R˝R
and it represents Der.R;�/, the complex of k-linear graded derivations. Thus, for
any R-bimoduleM , we have

Der.R;M/ Š HomRe .�
1
R;M/ :

If M D �1R, the derivation @ W R ! �1R then corresponding to the identity map
under this isomorphism, is a universal derivation.

Let V be a k-linear vector space and R be the free algebra ˚n�0V ˝n. Then �1R
can be identified withR˝V ˝R. Indeed, there is a bijection I W R˝V ˝R! �1R
(see [41, Example 3:10])

If.v1 � � � vp�1/˝ vp ˝ .vpC1 � � � vm/g
D .v1 � � � vp/˝ .vpC1 � � � vm/ � .v1 � � � vp�1/˝ .vp � � � vm/ (2.3)

and the universal derivation @ W R! �1R is given by

@.v1v2 � � � vm/ D

mX
iD1

.v1 � � � vi�1/˝ vi ˝ .viC1 � � � vm/ :

A simple computation shows

I.@.v1v2 � � � vm// D .v1v2 � � � vm/˝ 1 � 1˝ .v1v2 � � � vm/: (2.4)

Next, for an R-bimodule M , we define M\ WD M=ŒR;M�. Then �1
R;\

is
isomorphic to R˝ V and the map N@ W R! �1

R;\
induced by @ is defined as

N@.v1v2 � � � vm/ D

mX
iD1

.�1/.jv1jC���Cjvi j/.jviC1jC���Cjvmj/.viC1 � � � vmv1 � � � vi�1/˝ vi :

(2.5)
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One can also define a graded map ˇ W �1.R/\ ! R given by

ˇ
�
.v1 � � � vm/˝ vmC1

�
D .v1 � � � vmvmC1/ � .�1/

jvmC1j.jv1jC���Cjvmj/.vmC1v1 � � � vm/ : (2.6)

It is easy to check that ˇ N@ D N@ˇ D 0 (see [41, Proposition 3.8]).
The above maps give a commutative diagram

�1R
� � //

\

��

R˝R

�ı�

��
�1
R;\

ˇ // R

(2.7)

where � W R˝R! R˝R; r ˝ q 7! .�1/jrjjqjq˝ r the graded switching operator.
Now let .C;4/ be a coalgebra. ThenM is a bicomodule over C is a vector space

equipped with left and right coproducts 4l W M ! C ˝M; 4r W M ! M ˝ C

defining left and right comodule structures which commute: .4l ˝ 1/ ı 4r D

.1˝4r/ ı 4l . The cocommutator subspace ofM is

M \
WD Kerf4l � �4r WM ! C ˝M g :

We let�C , the non-commutative differentials one-forms onC , be the bicomodule
Coker.4/. The cocommutator subspace we denote by �C;\. We can introduce the
maps ˇ W C ! �C;\ and N@ W �C;\ ! C .

Recall that B is the bar construction of QA. The following is proved in [41,
Theorem 4]:
Theorem 2.6. The complex �B;\ is canonically isomorphic to CH�.A/, the
Hochschild complex of A. Under this identification ˇ D 1 � T and N@ D N .

Dually we can show
Theorem 2.7. Let C be a coalgebra and let R D �. QC/, where QC WD k ˚ C . Then
the complex �1

R;\
is isomorphic to CH�.C /. Under this identification ˇ D 1 � T

and N@ D N .
It has been pointed out in [41, Remark 5.14] that the cyclic bicomplex for the

algebra A can be identified with the periodic sequence of complexes

N@ // NB �ˇ // �B;\ N@ // NB �ˇ // (2.8)

Similarly, in view of Lemma 2.3 and Theorem 2.7 one has
Proposition 2.8. The cyclic bicomplex for the coalgebra C can be identified with

N@ // �1
R;\

�ˇ // �. QC/
N@ // �1

R;\

�ˇ // (2.9)
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The following result is essentially established in [30] (see also [10]):

Lemma 2.9. LetC be a coaugmented coalgebra such that�.C /
'

� A is a quasi-free
resolution of an algebra A. Then HH�.A/ Š HH�.C /.

Combining the above lemma with Theorem 2.7 one obtains

Corollary 2.10. If �.C /
'

� A is a quasi-free resolution of A and R D �. QC/ then

HH�.A/ Š H�.�1R;\/: (2.10)

2.4. The A1 algebra and coalgebra case. The advantage of rephrasing the Hoch-
schild and cyclic homology groups in the proceeding subsections is that they can be
easily generalized to the A1 algebra and coalgebra case.

Definition 2.11 (A1 algebra). Let A be a graded vector space. An A1 algebra
structure on A is a sequence of linear operators

mn W A
˝n
�! A; n D 1; 2; : : : (2.11)

of degree n � 2 such thatX
rCsCtDn

.�1/rCstmrC1Ct .id˝r ˝ms ˝ id˝t / D 0: (2.12)

An A1 algebra A is called unital, if there exists a map k ! A which maps 1 to 1,
such that

�1.1/ D 0; �2.a; 1/ D �2.1; a/ D a;
and �n.a1; : : : ; ai�1; 1; aiC1; an/ D 0; for all n � 3;

where �1; �2; : : : are the A1 operators. It is called unital and augmented if
furthermore there is a map A! k such that the composition

k ! A! k

is the identity. In this case,A is decomposed into direct sum k �1˚A ofA1 algebras.

Definition 2.12 (A1 coalgebras). LetC be a graded vector space. AnA1 coalgebra
structure on C is a sequence of linear operators

4n W C �! C˝n; n D 1; 2; : : : (2.13)

of degree n � 2 such thatX
rCsCtDn

.�1/rCst .id˝r ˝4s ˝ id˝t /4rC1Ct D 0: (2.14)
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An A1 coalgebra C is said to be co-unital if there is a map � W C ! k such that for
all c 2 C ,

� ı 41.c/ D 0;

.�˝ idC id˝�/ ı 42.c/ D 1˝ c C c ˝ 1;

and
� X
jCkC1Dn

id˝j ˝�˝ id˝k
�
ı 4n.c/ D 0; for all n � 3:

It is called co-unital and co-augmented if furthermore there is a map k ! C such
that the composition k ! C ! k is the identity.

Assumption 2.13. From now on we shall assume2 that for an A1-coalgebra C ,
in each grading Ci is finite dimensional (in literature C is called locally finite
dimensional), and that all but finitely many 4n.v/ vanish, for each v 2 C . In
particular, the Koszul dual A1 coalgebra A¡ of an N -Koszul algebra (to be studied
later), which only has42 and4N , satisfies this assumption.

Definition 2.14 (Bar and cobar constructions). Suppose A is a unital and augmented
A1 algebra, and C is a co-unital and co-augmented A1 coalgebra (satisfying
Assumption 2.13 above). The bar construction ofA, denoted byB1.A/, is the quasi-
free graded coalgebra T .sA/ generated by sA, with differential d D d1 C d2 C � � � ,
where dn is defined on the co-generators by

dn W .sA/
˝n

�! sA � T .sA/

.sa1; : : : ; san/ 7�! .�1/.n�1/ja1jC.n�2/ja1jC���Cjan�1js ı � ı �n.a1; : : : ; an/

and is extended to T .sA/ by derivation, where � W A! A is the projection.
Similarly, the cobar construction of C , denoted by �1.C /, is the quasi-free

graded algebra T .s�1C/ generated by s�1C with differential d defined on the
generators by

s�1C �! T .s�1C/

s�1c 7�! .s�1 ı � ı 41 C .s
�1/˝2 ı .�˝2/ ı 42 C � � � /.c/;

which extends to T .s�1.A// by derivation, where in the above expression, � WC!C

is the projection.

Definition 2.15 (Hochschild and cyclic homology of A1 algebras and coalgebras).

(1) For an A1 algebra A, define its Hochschild homology HH�.A/ to be
H�.�B1. QA/;\/ as in Theorem 2.6, and its cyclic homologyHC�.A/ to be H�. NB1. QA/\/
as in Lemma 2.1.

2This assumption is also used by Prouté in his definition of A1 coalgebras; see [39, Définition 3.2].
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(2) For an A1 coalgebra C , define its Hochschild homology HH�.C / to
be H�.�1

�1. QC/;\
/ as in Theorem 2.7, and its cyclic homology HC�.C / to be

H�.�1. QC/\/ as in Lemma 2.3.
In the above definition, QA and QC are the augmentation of A and the co-

augmentation of C , respectively, which are defined to be the same as for algebras and
coalgebras.
Remark 2.16. As has been shown above, for DG algebras and coalgebras, the
definitions given above coincide with the standard ones (cf. Loday [35]).
Proposition 2.17. Throughout Lemma 2.1–Corollary 2.10, the statements remain
true when the algebra A is replaced by an A1 algebra A and respectively the
coalgebra C is replaced by an A1 coalgebra C .

Proof. In the proofs of these statements, the only fact that is used is that B. QA/ is a
quasi-free DG coalgebra and �. QC/ is a quasi-free DG algebra, which is also true for
B1. QA/ and �1. QC/ respectively.

Finally, we show that for unital and augmentedA1 algebras and coalgebras, their
Hochschild chain complex is quasi-isomorphic to their normalized Hochschild chain
complex.
Proposition 2.18. Suppose A is a unital and augmented A1 algebra and C is a
co-unital and co-augmented A1 coalgebra. The the following are quasi-isomorphic

CH�.A/ ' CH�.A/; CH�.C / ' CH�.C /:

Proof. The same argument for algebras (see Loday [35, Proposition 1.6.5]) remains
to hold for the A1 case.

As an application, we see that

CH�.A/ ' A˝ B1.A/; CH�.C / ' C ˝�1.C /;

with the differential properly defined. In particular, there is an embedding

�1.C / �! CH�.C /
.a1; : : : ; an/ 7�! .1; a1; : : : ; an/

(2.15)

of chain complexes similar to the coalgebra case (compare with (2.1)).

3. Double Poisson algebras and bimodules

In this section we remind the definition of a double Poisson algebra A, and introduce
the notion of a double Poisson bimoduleM . After that, we discuss the construction
of n-Poisson structures.
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3.1. Double Poisson algebras.
Definition 3.1. Suppose A is a unital, associative algebra over a field k. A double
bracket on A is a bilinear map ff�;�gg W A � A! A˝ A which satisfies

ffa; bgg D �ffb; aggı; (3.1)
ffa; bcgg D bffa; cgg C ffa; bggc ; (3.2)

where .u ˝ v/ı D v ˝ u. Here the action of b and c is given via outer bimodule
structure on A ˝ A, that is, b.a1 ˝ a2/c WD ba1 ˝ a2c. We recall that the inner
bimodule structure on A˝ A is given by

b � .a1 ˝ a2/ � c WD a1c ˝ ba2: (3.3)

The formulas (3.1) and (3.2) imply that ff�;�gg is a derivation on its first argument
for the inner bimodule structure

ffab; cgg D a � ffb; cgg C ffa; cgg � b: (3.4)

Suppose that ff�;�gg is a double bracket on A. For a; b1; : : : ; bn 2 A, let

ffa; b1 ˝ � � � ˝ bnggL WD ffa; b1gg ˝ b2 ˝ � � � ˝ bn;

and let
�s.b1 ˝ � � � ˝ bn/ WD bs�1.1/ ˝ � � � ˝ bs�1.n/;

where s is a permutation of f1; 2; : : : ; ng. If furthermore A satisfies the following
double Jacobi identity˚̊

a; ffb; cgg
		
L
C �.123/

˚̊
b; ffc; agg

		
L
C �.132/

˚̊
c; ffa; bgg

		
L
D 0; (3.5)

then A is called a double Poisson algebra.
Let� W A˝A! A denote themultiplication onA, and let f�;�g WD �ıff�;�gg W

A˝A! A. Then f�;�g induces well-definedmapsA\�A! A andA\�A\ ! A\
(see [45, Lemma 2.4.1]). Futhermore, the latter bracket is anti-symmetric.
Definition 3.2. A left Leibniz–Loday algebra3 is a vector space L with a bilinear
operation Œ�;�� such that it satisfies

Œa; Œb; c�� D ŒŒa; b�; c�C Œb; Œa; c�� :

From the definition one immediately sees that
Lemma 3.3. .A; f�;�g/ is a left Leibniz–Loday algebra.

As a consequence of Lemma 3.3 and (3.1), we have
Corollary 3.4. If A is a double Poisson algebra, then f�;�g makes A\ D A=ŒA;A�
into a Lie algebra and A into a Lie module over A\.

Proof. See Van den Bergh [45, Lemmas 2.4.2 and 2.6.2].
3This algebraic structure is introduced by Loday, which he calls Leibniz algebra, while some other

authors, for example, Van den Bergh [45], call it Loday algebra; we here combine these two terminologies
together.
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3.2. Double Poisson bimodules.
Definition 3.5. Let A be a double Poisson algebra with the double bracket ff�;�gg
and let M be an A-bimodule. Then a double Poisson bracket on M is a bilinear
product ff�;�ggM W A�M ! .A˝M/˚ .M ˝A/ such that the following axioms
hold for all a; b 2 A and all m; n 2M :

(i) ffa; bmggM D ffa; bggmC bffa;mggM ,
ffa;mbggM D ffa;mggMb Cmffa; bggM ;

(ii) ffab;mggM D a � ffb;mggM C ffa;mggM � b.
Remark 3.6. Expressions ffa; bggm andm ffa; bggM should be understood as follows.
If ffa; bgg D ffa; bgg0˝ffa; bgg00, then ffa; bggm 2 A˝M via the left action of ffa; bgg00

on m and m ffa; bgg 2 M ˝ A via the right action of ffa; bgg0 on m. Also, � in
a � ffb;mggM and ffa;mggM � b is the action of A on A˝M andM ˝ A as inner
bimodules (compare to (3.3)).

Our next is to introduce the Jacobi identity for the double bracket ff�;�ggM . For
thiswe need to define the following expressions:

˚̊
a; ffb;mggM

		
L
;
˚̊
b; ffm; aggM

		
L
,˚̊

m; ffb; agg
		
L
. First, we define

ffm; bggM WD �.ffb;mggM /
ı ; (3.6)

that is, if ffb;mggM D .b1 ˝ m1/˚ .m2 ˝ b2/, then ffm; bggM D �.b2 ˝ m2/˚
.m1 ˝ b1/. Then˚̊

a; ffb;mggM
		
L
WD
�˚̊
a; b1

		
˝m1

�
˚
�˚̊
a;m2

		
M
˝ b2

�
; (3.7)

which is in .A˝ A˝M/˚ .A˝M ˝ A/. Using (3.6) and (3.7) , we can define˚̊
b; ffm; aggM

		
L
. Finally, if ffa; bgg D ffa; bgg0 ˝ ffa; bgg00, then˚̊

m; ffa; bgg
		
L
WD
˚̊
m; ffa; bgg0

		
M
˝ ffa; bgg00 2 .A˝M ˝A/˚ .M ˝A˝A/ :

Definition 3.7. Let A be a double Poisson algebra with the double bracket ff�;�gg
and letM be an A-bimodule with a double bracket ff�;�ggM . Then we say thatM
is a double Poisson A-bimodule if
(iii)

˚̊
a; ffb;mggM

		
L
C �.123/

˚̊
b; ffm; aggM

		
L
C �.132/

˚̊
m; ffa; bgg

		
L
D 0 ;

(3.8)
for all a; b 2 A and m; n 2M .
Remark 3.8. It is clear that A itself a double Poisson A-bimodule.

Let .M; ff�;�ggM / be a double Poisson A-bimodule. Then we define

f�;�gM D �M ı ff�;�ggM W A �M !M ;

where �M W .A˝M/˚ .M ˝ A/!M is the bimodule action map. And one can
prove the following.
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Proposition 3.9. f�;�gM induceswell-definedmapsA\�M!M andA\�M\!M\.

Proof. (1) Let a; b 2 A and m 2M . Then

fab � ba;mgM D �M ffab;mggM � �M ffba;mggM

D �M .a � ffb;mggM C ffa;mggM � b/

� �M .b � ffa;mggM C ffb;mggM � a/

D ffb;mgg0Maffb;mgg
00

M C ffa;mgg
0

Mbffa;mgg
00

M

� ffa;mgg0Mbffa; mgg
00

M � ffb;mgg
0

Maffb;mgg
00

M D 0 :

(2) We let
f�;�gM;\ WD \ ı f�;�gM W A �M !M\; (3.9)

where \ WM !M\ is the projection map. Then

fa; cm �mcgM;\ D \
�
fa; cgm �mfa; cg

�
C \

�
cfa;mgM � fa;mgM c

�
D 0 ;

and hence by .1/ we have f�;�gM;\ W A\ �M\ !M\.

Next, we establish the following statement
Proposition 3.10. The brackets f�;�gM and f�;�gM;\ define on M and M\

respectively Lie module structures over the Lie algebra A\.

Proof. We need to show that

ffa; bg; mgM D fa; fb;mgM gM � fb; fa;mgM gM : (3.10)

Indeed, we have

ffa; bg; mgM D �M
�˚̊
ffa; bgg0 � ffa; bgg00; m

		
M

�
D �M

�
ffa; bgg0 �

˚̊
ffa; bgg00; m

		
M
C
˚̊
ffa; bgg0; m

		
M
� ffa; bgg00

�
D �M

�
.1˝ �M / ı �.132/

˚̊
m; ffb; agg

		
L

� .�M ˝ 1/ ı �.132/
˚̊
m; ffa; bgg

		
L

�
;

fa; fb;mgM gM D �M
�˚̊
a; ffb;mgg0M � ffb;mgg

00

M

		
M

�
D �M

�˚̊
a; ffb;mgg0M

		
� ffb;mgg00M C ffb;mgg

0

M �
˚̊
a; ffb;mgg00M

		�
D �M

�
.�M ˝ 1/

˚̊
a; ffb;mggM

		
L

� .1˝ �M / ı �.123/
˚̊
a; ffm; bggM

		
L

�
;

fb; fa;mgM gM D �M
�˚̊
b; ffa;mgg0M � ffa;mgg

00

M

		
M

�
D �M

�˚̊
b; ffa;mgg0M

		
� ffa;mgg00M C ffa;mgg

0

M �
˚̊
b; ffa;mgg00M

		�
D �M

�
.1˝ �M /

˚̊
b; ffa;mggM

		
L

� .�M ˝ 1/ ı �.123/
˚̊
b; ffm; aggM

		
L

�
:

Using these identities and (3.8) we obtain (3.10).



Koszul Calabi–Yau algebras 129

3.3. Double n-Poisson structures. One can easily generalize the above notions to
the n-graded case. Indeed, let A D ˚i2ZAi be a Z-graded vector space. We denote
byAŒn� the graded vector space with degree shifted by n, explicitly,AŒn� D ˚.AŒn�/i
with .AŒn�/i D Ai�n. Then a double bracket of degree n on A is a bilinear map
ff�;�gg W A � A! .A˝ A/Œ�n� satisfying

ffa; bgg D �.�1/.jajCn/.jbjCn/ffb; aggı; (3.11)

ffa; b � cgg D ffa; bgg � c C .�1/jbj.jajCn/b � ffa; cgg : (3.12)

The pair .A; ff�;�gg/ is a double n-Poisson algebra if in addition it satisfies the
n-graded version of the Jacobi identity˚̊

a; ffb; cgg
		
L
C .�1/.jajCn/.jbjCjcj/�.123/

˚̊
b; ffc; agg

		
L

C .�1/.jcjCn/.jajCjbj/�.132/
˚̊
c; ffa; bgg

		
L
D 0:

Similarly, we can define the notion of a double n-Poisson bimodule and n-graded
version of results of previous two sections can be summarized in the following
proposition.
Proposition 3.11. LetA be a double n-Poisson algebra andM be a double n-Poisson
A-bimodule. Then

(i) the bracket f�;�g makes A\ into an n-Lie algebra and A into n-Lie module;
(ii) the brackets f�;�gM and f�;�gM;\ makeM andM\ respectively into n-Lie

module over A\.

4. Double Poisson structure on the cobar construction

In this section, we will define a natural double bracket on the DG algebra R which is
the cobar construction of a cyclic A1 coalgebra.

4.1. Cyclic algebras and coalgebras. The notion of cyclic A1 algebras is first
introduced by Kontsevich [33]. Recall that a symmetric bilinear form of degree �d
on a graded vector space V is a bilinear pairing h�; �i W V ˝ V ! kŒd � such that

hv;wi D .�1/jvjjwjhw; vi for all v;w 2 V : (4.1)

A cyclic A1 algebra A is an A1 algebra with a non-degenerate symmetric bilinear
form of degree �d

h�;�i W A˝ A! kŒd �

such that

h�n.a1; a2; : : : ; an/; anC1i

D .�1/nCjanC1j.ja1jC���Cjanj/h�n.anC1; a1; : : : ; an�1/; ani (4.2)

for all n 2 N and all a0; a1; : : : ; an 2 A.



130 X. Chen, A. Eshmatov, F. Eshmatov and S. Yang

Similarly, one can define cyclic A1 coalgebras:
Definition 4.1 (Cyclic A1 coalgebra). Suppose .C; f4kg/ is an A1 coalgebra. C
is called cyclic of degree �d if there is a non-degenerate symmetric bilinear form of
degree �d

h�;�i W C ˝ C ! kŒd �

such that for any a; b 2 C ,

ha; b1i � b2 � � � br D .�1/rCjb
1j.jajCr/

hb; ari � a1 � � � ar�1 2 C˝.r�1/; (4.3)

where we write4r.a/ D a1a2 � � � ar and4r.b/ D b1b2 � � � br .
The notion of cyclic A1 coalgebras will be useful for our next discussion. We

have the following lemma:
Lemma 4.2. Suppose C is of finite dimension. Then C is a cyclic A1 coalgebra if
and only if A WD C � D Homk.C; k/ is a cyclic A1 algebra.

Proof. Denote the A1 operators of C and A by 41;42; : : : and �1; �2; : : :,
respectively. Under the isomorphism of k-vector spaces

C
Š
�! A

a 7�! a� WD h�; ai;

consider the evaluation of both sides of (4.3) on any .x1; x2; : : : ; xr�1/ 2 A˝.r�1/.
We have:

.x1; x2; : : : ; xr�1/
�
hb; ari.a1 � � � ar�1/

�
D hb; ari � .x1; x2; : : : ; xr�1/.a

1
� � � ar�1/

D .x1; x2; : : : xr�1; b
�/.a1a2 � � � ar/

D .x1; x2; : : : ; xr�1; b
�/4r.a/

D .�r.x1; x2; : : : ; xr�1; b
�/.a/

D h�r.x1; x2; : : : ; xr�1; b
�/; a�i: (4.4)

Similarly, the evaluation

.x1; x2; : : : ; xr�1/
�
ha; b1i.b2 � � � br/

�
D .a�; x1; x2; : : : ; xr�1/.b

1
� � � br/

D .a�; x1; x2; : : : ; xr�1/4r.b/

D �r.a
�; x1; x2; : : : ; xr�1/.b/

D h�r.a
�; x1; x2; : : : ; xr�1/; b

�
i: (4.5)

The most right hand side of (4.4) equals the most right hand side of (4.5) with sign
counted if and only if (4.2) holds, and thus the lemma follows.

Remark 4.3. By repeatedly applying (4.2) to (4.4) or to (4.5) one gets more identities
like

ham; bi � amC1 � � � ara1 � � � ar�1 D ˙ha; b`i � b1 � � � b`�1b`C1 � � � br : (4.6)

We leave the check to the interested reader.
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4.2. Double bracket on the cobar construction. The following result has already
appeared in [1, Theorem 15] when C is a cyclic coalgebra (not A1).
Lemma 4.4. Let C be a cyclic A1 coalgebra of degree �d and let R D �1. QC/.
Then we define ff�;�gg W NR � NR! NR˝ NR by

ffr; qgg WD
X

. iD1;:::;k
jD1;:::;m/

.�1/jvi jC�hvi ; wj i � .s
�1w1 � � � s

�1wj�1s
�1viC1 � � � s

�1vk/

˝ .s�1v1 � � � s
�1vi�1s

�1wjC1 � � � s
�1wm/ ; (4.7)

for r D .s�1v1s�1v2 � � � s�1vk/ and q D .s�1w1s�1w2 � � � s�1wm/, where � is

.jr j C d/.js�1w1j C � � � C js
�1wj�1j/

C .js�1v1j C � � � C js
�1vi�1j C js

�1wj j C d/.js
�1viC1j C � � � C js

�1vkj/:

Then the bracket (4.7) gives a DG double n-Poisson structure onR, where n D 2�d .

Proof. The proof is essentially the same as in [1, Theorem 15]. We only need to show
that the bracket commutes with the differential, which involves the A1 operators.

From the definition of the double bracket,

ffd.a1a2 � � � am/; b1b2 � � � bngg C .�1/
jaj
ffa1a2 � � � am; d.b1b2 � � � bn/gg

� d .ffa1a2 � � � am; b1b2 � � � bngg/

contains summands whose coefficient are pairings of components of4.a/ with b, or
pairings of a with components of4.b/, namely,X

i;j

X
k

haki ; bj ib1b2 � � � bj�1a
kC1
i � � � ari aiC1 � � � am

˝ a1a2 � � � ai�1a
1
i � � � a

k�1
i bjC1 � � � bn

�

X
i;j

X
`

hai ; b
`
j ib1b2 � � � bj�1b

1
j � � � b

l�1
j aiC1 � � � am

˝ a1a2 � � � ai�1b
`C1
j � � � bsj bjC1 � � � bn;

if we write 4k.ai / D a1i a
2
i � � � a

k
i and 4`.bj / D b1j b

2
j � � � b

`
j . However, from the

cyclicity of the pairing (see (4.3) or its general form (4.6)), these two types of
terms exactly cancel with each other. Thus the double bracket commutes with the
differential.

Remark 4.5. One can easily extend ff�;�gg to R by taking ffr; 1gg D 0.

5. Brackets on the bimodule of one-forms

Let C be a cyclic A1 coalgebra and let R WD �1. QC/. Using the double bracket
on R defined in Lemma 4.4, we introduce a double bracket on �1R and the induced
bracket on�1

R;\
. Then we consider the corresponding Lie brackets on�1R and�1

R;\
.
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5.1. Double bracket on �1
R
. First we define a double bracket

ff�;�ggR˝R W R � .R˝R/! R˝ .R˝R/˚ .R˝R/˝R

as follows

ffr; p ˝ qggR˝R WD ffr; pgg ˝ q C .�1/
jpj.jrjCn/p ˝ ffr; qgg; (5.1)

where ff�;�gg is a double bracket on R defined in Lemma 4.4, and in the right-
hand side of (5.1), the first summand lies in R ˝ .R ˝ R/ and the second lies in
.R˝R/˝R. Then one can show
Lemma 5.1. .R˝R; ff�;�ggR˝R/ is a DG double n-Poisson R-bimodule.

Proof. We need to verify axioms (i)–(iii) for the double bimodule. We first verify
(i) ffr; q � .p1 ˝ p2/ggR˝R D ffr; qgg.p1 ˝ p2/

C .�1/jqj.jrjCn/qffr; p1 ˝ p2ggR˝R :

By definition the left hand side (LHS) is
ffr; q � p1 ˝ p2ggR˝R D ffr; qgg � .p1 ˝ p2/C .�1/

jqj.jrjCn/q � ffr; p1gg ˝ p2

C .�1/.jqjCjp1j/.jrjCn/q � p1 ˝ ffr; p2gg

which is identically equal to the right hand side (RHS). Next we verify
(ii) ffr � q; p1 ˝ p2ggR˝R D r � ffq; p1 ˝ p2ggR˝R

C .�1/jqj.jp1jCjp2jCn/ffr; p1 ˝ p2ggR˝R � q :

Indeed, the LHS is equal to
ffr � q; p1gg ˝ p2 C .�1/

jp1j.jrjCjqjCn/p1 ˝ ffr � q; p2gg

D r � ffq; p1gg ˝ p2 C .�1/
jqj.jp1jCn/ffr; p1gg � q ˝ p2

C .�1/jp1j.jrjCjqjCn/p1 ˝
�
r � ffq; p2gg C .�1/

jqj.jp2jCn/ffr; p2gg � q
�

and the RHS is
r � ffq; p1gg ˝ p2 C .�1/

jp1j.jrjCjqjCn/p1 ˝ r � ffq; p2gg

C .�1/jqj.jp1jCjp2jCn/Cjqjjp2jffr; p1gg � q ˝ p2

C .�1/jqj.jp1jCjp2jCn/Cjp1j.jrjCn/p1 ˝ ffr; p2gg � q

and hence they are equal. Similarly, we can prove the Jacobi identity (iii).
Next we show that ff�;�ggR˝R commutes with the differential. Recall that

dR˝R D dR ˝ 1C 1˝ dR. So we need to prove

dRffr; p ˝ qggR˝R D ffdR.r/; p ˝ qggR˝R C .�1/
jrjCn
ffr; dR.p ˝ q/ggR˝R:
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Indeed, using (5.1) one has
dRffr; p ˝ qggR˝R D dRffr; pgg ˝ q C .�1/

jrjCjpjCn
ffr; pgg ˝ dR.q/

C .�1/jpj.jrjCn/dR.p/˝ ffr; qgg C .�1/
jpj.jrjCnC1/p ˝ dRffr; qgg I

ffdR.r/; p ˝ qggR˝R D ffdR.r/; pgg ˝ q C .�1/
jpj.jrjCnC1/p ˝ ffdR.r/; qgg I

ffr; dR.p ˝ q/ggR˝R D ffr; dR.p/˝ qgg C .�1/
jpj
ffr; p ˝ dR.q/gg

D ffr; dR.p/gg ˝ q C .�1/
.jpjC1/.jrjCn/dR.p/˝ ffr; qgg

C .�1/jpjffr; pgg ˝ dR.q/C .�1/
jpj.jrjCnC1/p ˝ ffr; dR.q/gg:

Combining the RHS of these identities we get�
dRffr; pgg � ffdR.r/; pgg � .�1/

jrjCn
ffr; dR.p/gg

�
˝ q

C .�1/jpj.jrjCnC1/p ˝
�
dRffr; qgg � ffdR.r/; qgg � .�1/

jrjCn
ffr; dR.q/gg

�
(5.2)

and this expression is equal to 0, since by Lemma 4.4 ff�;�gg commutes with dR.
This finishes our proof.

We claim that the bracket in (5.1) can be restricted to �1R. Recall that �1R Š
R ˝ s�1C ˝ R and �1

R;\
Š s�1C ˝ R, where identifications are given by map I

defined in (2.3). Indeed, let

! D .s�1v1 � � �
�1 vp�1/˝ s

�1vp ˝ .s
�1vpC1 � � � s

�1vm/ 2 �
1
R :

Then I.!/ D b � s�1vp ˝ c � b ˝ s
�1vp � c, where b D .s�1v1 � � � s

�1vp�1/ and
c D .s�1vpC1 � � � s

�1vm/ and one has

ffa; I.!/ggR˝R D ffa; b � s�1vpgg ˝ c C .�1/.jbjCjs
�1vp/.jajCn/b � s�1vp ˝ ffa; cgg

� ffa; bgg ˝ s�1vp � c � .�1/
jbj.jajCn/b ˝ ffa; s�1vp � cgg

D ffa; bgg.1/ ˝ ffa; bgg.2/ � s�1vp ˝ c (5.3)

C .�1/jbj.jajCn/b � ffa; s�1vpgg
.1/
˝ ffa; s�1vpgg

.2/
˝ c (5.4)

C .�1/.jbjCjs
�1vp j/.jajCn/b � s�1vp ˝ ffa; cgg

.1/
˝ ffa; cgg.2/ (5.5)

� ffa; bgg.1/ ˝ ffa; bgg.2/ ˝ s�1vp � c (5.6)

� .�1/jbj.jajCn/ b ˝ ffa; s�1vpgg
.1/
˝ ffa; s�1vpgg

.2/
� c (5.7)

� .�1/.jbjCjs
�1vp j/.jajCn/ b ˝ s�1vp � ffa; cgg

.1/
˝ ffa; cgg.2/:

(5.8)
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Now (5.3)C (5.6) 2 R˝�1R and (5.5)C (5.8) 2 �1R ˝R. On the other hand

(5.4) � .�1/jbj.jajCn/b ˝ ffa; s�1vpgg.1/ � ffa; s�1vpgg.2/ ˝ c 2 �1R ˝R; (5.9)

(5.7)C .�1/jbj.jajCn/b ˝ ffa; s�1vpgg.1/ � ffa; s�1vpgg.2/ ˝ c 2 R˝�1R: (5.10)

These two formulas hold since, for example in (5.9), by taking out the third common
component c in the tensor, the first two components exactly lie in �1R. Thus, we
define ff�;�gg�1

R
W R ��1R ! .R˝�1R/˚ .�

1
R ˝R/ as

ffa; !gg�1
R
WD ffa; I.!/ggR˝R (5.11)

and we have proved
Corollary 5.2. .�1R; ff�;�gg�1

R
/ is a DG double n-Poisson sub-bimodule ofR˝R.

5.2. Lie brackets on �1
R
and �1

R;\
. Let us recall some notations from the previous

section. First, f�;�g WD �R ı ff�;�gg, where �R is the multiplication map on R.
Second,

f�;�g�1
R
WD ��1

R
ı ff�;�gg�1

R
; f�;�g�1

R;\
WD \ ı f�;�g�1

R
;

where ��1
R
is the bimodule action map.

Theorem 5.3. Let C be a cyclic A1 coalgebra of degree �d and let R D �1. QC/.
Let n WD 2 � d . Then
(a) f�;�g induces a DG n-Lie algebra structure on R\ and a DG n-Lie module

on R.
(b) f�;�g�1

R
and f�;�g�1

R;\
make �1R and �1

R;\
into DG n-Lie modules over R\.

In particular, H�.R\/ is a graded n-Lie algebra and H�.R/, H�.�1R/ and H�.�1R;\/
are n-Lie modules.

Proof. Follows from Proposition 3.11 for the double bracket on R defined in
Lemma 4.4 and the double bracket on �1R defined in Corollary 5.2.

Now we turn our attention to the 2-periodic sequence of complexes

N@ // �1
R;\

�ˇ // R
N@ // �1

R;\

�ˇ //

which by Proposition 2.8 is identical to the cyclic bicomplex of C . Our claim is
Theorem 5.4. N@ and ˇ are morphisms of Lie modules, that is,

I.N@fr; qg/ D fr; N@.q/g�1
R;\
; ˇfr; !g\ D fr; ˇ.!/g: (5.12)
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We need the following auxiliary statement.

Lemma 5.5. Let r 2 R and ! D q ˝ s�1v 2 �1
R;\

. Then

fr; !g�1
R;\
D \ ı

h
fr; qgs�1v ˝ 1 � fr; qg ˝ s�1v

C .�1/jqj.jrjCn/
�
q � fr; s�1vg ˝ 1 � q ˝ fr; s�1vg

�i
: (5.13)

Proof. It follows directly from the definition of the double bracket on �1R. Indeed,
we have

fr; !g�1
R

D � ı ffr; I.!/ggR˝R
D ��1

R
ı
�
ffr; q � s�1v ˝ 1ggR˝R � ffr; q ˝ s

�1vggR˝R
�

D ��1
R
ı
�
ffr; qgg � s�1v ˝ 1 � ffr; qgg ˝ s�1v

�
C .�1/jqj.jrjCn/��1

R
ı
�
q � ffr; s�1vgg ˝ 1 � q ˝ ffr; s�1vgg

�
D fr; qgs�1v ˝ 1 � fr; qg ˝ s�1v

C .�1/jqj.jrjCn/��1
R
ı
�
q � ffr; s�1vgg.1/ ˝ ffr; s�1vgg.2/ ˝ 1 � q ˝ fr; s�1vg ˝ 1

�
C .�1/jqj.jrjCn/��1

R
ı
�
q ˝ fr; s�1vg ˝ 1 � q ˝ ffr; s�1vgg.1/ ˝ ffr; s�1vgg.2/

�
D fr; qgs�1v ˝ 1 � fr; qg ˝ s�1v

C .�1/jqj.jrjCn/
�
q � ffr; s�1vgg.1/ ˝ ffr; s�1vgg.2/ � q ˝ fr; s�1vg

�
C .�1/jqj.jrjCn/

�
q � fr; s�1vg ˝ 1 � q � ffr; s�1vgg.1/ ˝ ffr; s�1vgg.2/

�
D fr; qg � s�1v ˝ 1 � fr; qg ˝ s�1v

C .�1/jqj.jrjCn/
�
q � fr; s�1vg ˝ 1 � q ˝ fr; s�1vg

�
:

Proof of Theorem 5.4. To prove the first identity of (5.12), it suffices to show

I.@fr; qg/ D fr; @.q/g�1
R
:

By (2.4), we have I.@fr; qg/ D fr; qg ˝ 1 � 1˝ fr; qg. On the other hand

fr; @.q/g�1
R
D ��1

R
ffr; I.@.q//ggR˝R D ��1

R
ffr; q ˝ 1 � 1˝ qggR˝R

D ��1
R

�
ffr; qgg ˝ 1 � 1˝ ffr; qgg

�
D fr; qg ˝ 1 � 1˝ fr; qg:

Let ! D q ˝ s�1v for some q 2 R and v 2 C . Then

ˇ.!/ D q � s�1v � .�1/js
�1vjjqjs�1v � q ; I.!/ D q � s�1v ˝ 1 � q ˝ s�1v ;
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and

fr; ˇ.!/g D fr; q � s�1vg � .�1/js
�1vjjqj

fr; s�1v � qg

D fr; qg � s�1v C .�1/jqj.jrjCn/q � fr; s�1vg

� .�1/js
�1vjjqj

fr; s�1vg � q � .�1/js
�1vj.jqjCjrjCn/s�1v � fr; qg :

(5.14)

On the other hand, by the commutative diagram (2.7) for R, we have

ˇ.fr; !g\/ D � ı �.I fr; !g�1
R
/ : (5.15)

Using (5.13), one has

ˇ.fr; !g\/ D fr; qg � s
�1v � .�1/js

�1vj.jrjCjqjCn/s�1v � fr; qg

C .�1/jqj.jrjCn/q � fr; s�1vg � .�1/js
�1vjjqj

fr; s�1vg � q: (5.16)

We finish our proof by comparing (5.14) and (5.16).

6. N -Koszul Calabi–Yau algebras

Definition 6.1 (Ginzburg [23]). An associative algebra A is said to be a Calabi–Yau
algebra of dimension d ifA is homologically smooth and there exists an isomorphism

� W RHomA˝Aop.A;A˝ A/! AŒ�d�

in the derived category of A˝ Aop-modules.
In the above definition, an algebra A is said to be homologically smooth if A is a

perfect A˝Aop-module, i.e. it has a finitely-generated projective resolution of finite
length.

Ever since they are first introduced by Ginzburg, Calabi–Yau algebras have been
widely studied by mathematicians from various fields.

So far, most ofCalabi–Yau algebras appeared in literature areKoszul orN -Koszul,
(the most general case is due to Van den Bergh [46]), and hence they are all of the
form

�1.A
¡/
'

� A;

where A¡ is the Koszul dual A1 coalgebra of A, which is a cyclic A1 coalgebra.
We now recall the definition ofN -Koszul algebras. Let V be a finite dimensional

vector space over k, and S be a subspace of V ˝N , whereN � 2 is an integer. Let T V
be the tensor algebra of V , and hSi be the two-sided ideal of T V generated by S .
The quotient algebra A WD T V=hSi is called an N -homogeneous algebra, and is
denoted by A D A.V; S/. The N -homogenous algebra A_ WD T V �=hS?i is called
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N -homogeneous dual algebra, where V � is the dual space of V and S? � .V �/˝N
is the orthogonal complement of S in .V �/˝N . The N -Koszul dual algebra AŠ of
the N -homogenous algebra A is defined as follows: set

N.i/ D

(
Nj; if i D 2j ;
Nj C 1; if i D 2j C 1;

and define AŠ WD
L
i A
_
N.i/

. We also denote A¡ WD .AŠ/� � T V , which is called
N -Koszul dual coalgebra of A. Here we use the convention that the dual of a graded
space with finite-dimensional component is the direct sum of component-wise duals.
Definition 6.2 (Berger [4], N -Koszul algebra). An N -homogeneous algebra A is
(left) N -Koszul if the trivial left A-module Ak admits a linear projective resolution

� � � // Pi
b // Pi�1

b // � � � // P1
b // P0

b //
Ak

with Pi D A ˝k A
¡
i , and if we choose a basis feig for V and let fe�g be the dual

basis, then the differential b D
PdimV
i ei ˝ e

�
i .

One can define the right N -Koszul algebra similarly. In [4], it is proved that
an N -homogeneous algebra is left N -Koszul if and only if it is right N -Koszul.
Note that 2-Koszul algebras are Koszul algebras in the usual sense. For a 2-Koszul
algebra A, it is known that the Yoneda algebra Ext�A.k; k/ is an associative algebra.
The A1 algebra structure on Ext�A.k; k/ is started by Lu, Palmieri, Wu and Zhang in
papers [37, 38].
Proposition 6.3 (Berger–Marconnet; He–Lu). Let A be an N -Koszul algebra. Then
its Yoneda algebra Ext�A.k; k/ is isomorphic to its N -Koszul dual algebra AŠ as
unital, augmented A1 algebras.

Proof. See Berger–Marconnet [5, Proposition 3.1], or He–Lu [25, Theorem 6.5].

More precisely, the authors cited above showed that for N -Koszul algebras, all
the A1 operators but m2; mN vanish. Now if A is an N -Koszul algebra, then A¡ is
a co-unital, co-augmented A1 coalgebra.
Theorem 6.4 (Dotsenko–Vallette). Let A be an N -Koszul algebra, and A¡ be its
N -Koszul dual A1 coalgebra. Then the morphism of DG algebras �1.A

¡/
'

� A

is a quasi-isomorphism.

Proof. The N D 2 case is standard, see, for example, Loday–Vallette [36, Theo-
rem 3.4.6]. For the N -Koszul case, see Dotsenko–Vallette [18, Theorem 5.1].

Proposition 6.5 (He–Van Oystaeyen–Zhang; Wu–Zhu). Let A be an N -Koszul
algebra (N � 3). Then the following conditions are equivalent:
(1) A is a d -Calabi–Yau algebra;
(2) Ext�A.k; k/ is a unital and augmented cyclic A1 algebra of degree �d .
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Proof. See Wu–Zhu [48, Corollary 4.11] and He–Van Oystaeyen–Zhang [27,
Proposition 3.3].

In view of Lemma 4.2, we can summarize the above three results in terms of A1
coalgebras in the following form (due to the works of Berger, Dotsenko–Vallette,
He–Lu, He–Van Oystaeyen–Zhang, Van den Bergh and Wu–Zhu cited above):

Theorem 6.6. Let A be an N -Koszul algebra. Then A is d -Calabi–Yau if and only
if the Koszul dual A1 coalgebra A¡ is cyclic of degree �d . Moreover, in this case
�1.A

¡/ is a cofibrant resolution of A.

The most general form of this theorem is due to Van den Bergh given in [46,
cf. Theorem 11.1]. Van den Bergh does not use the terminology “N -Koszul”, but it
is clear that all N -Koszul algebras are Koszul in the sense of [46], where the latter is
the linear dual of the bar construction. Since the finite dimensionality Ext�A.k; k/ is
essentially used in the following construction, we focus only on the N -Koszul case.

6.1. Examples. In this subsection, we list several known examples of N -Koszul
Calabi–Yau algebras, and therefore they all admit a derived non-commutative Poisson
structure. Note that by the above theorem, we only need to describe the cyclic A1
algebra structure on their Koszul dual.

First let us remind that all graded 2- and 3-Calabi–Yau algebras are N -Koszul.
This fact is proved by Berger–Marconnet in [5, Proposition 5.2]. Being graded is
important here, since from Davison’s result there exist 3-Calabi–Yau algebras which
are not superpotential algebras and hence not N -Koszul [16].

6.1.1. Three dimensional Sklyanin algebras. Let a; b; c 2 k. The three dimen-
sional Sklyanin algebraA D A.a; b; c/ is the graded k-algebrawith generators x; y; z
of degree one, and relations

f1 D cx
2
C bzy C ayz D 0;

f2 D azx C cy
2
C bxz D 0;

f3 D byx C axy C cz
2
D 0:

This Sklyanin algebra is one of the important examples of Ginzburg’s Calabi–Yau
algebras (see [23, Example 1.3.8]).

Smith showed in [42, Example 10.1] that A is Koszul, whose dual algebra AŠ is
generated by �1; �2; �3 with relations

c�2�3 � b�3�2; b�21 � a�2�3;

c�3�1 � b�1�3; b�22 � a�3�1;

c�1�2 � b�2�1; b�23 � a�1�2:
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To describe the non-degenerate pairing, choose a basis for AŠ:

AŠ0 W 1

AŠ1 W �1; �2; �3

AŠ2 W �
2
1 ; �

2
2 ; �

2
3

AŠ3 W �1�2�3

The pairing hu; vi for homogeneous u; v 2 AŠ is given by the scalar of uv with
respect to �1�2�3. This pairing is cyclically invariant, and therefore we obtain a
derived non-commutative Poisson structure on A.

6.1.2. Four dimensional Sklyanin algebras. Let ˛; ˇ; 
 2 k such that

˛ C ˇ C 
 C ˛ˇ
 D 0; f˛; ˇ; 
g \ f0;˙1g D ;:

The four dimensional Sklyanin algebra A D A.˛; ˇ; 
/ is the graded k-algebra with
generators x0; x1; x2; x3 of degree one, and relations fi D 0, where

f1 D x0x1 � x1x0 � ˛.x2x3 C x3x2/; f2 D x0x1 C x1x0 � .x2x3 � x3x2/;

f3 D x0x2 � x2x0 � ˇ.x3x1 C x1x3/; f4 D x0x2 C x2x0 � .x3x1 � x1x3/;

f5 D x0x3 � x3x0 � 
.x1x2 C x2x1/; f6 D x0x3 C x3x0 � .x1x2 � x2x1/:

As proved by Smith and Stafford [43, Propositions 4.3–4.9], A is Koszul, whose
Koszul dual algebra AŠ is generated by �0; �1; �2; �3 with the following relations:

�20 D �
2
1 D �

2
2 D �

2
3 D 0;

2�2�3 C .˛ C 1/�0�1 � .˛ � 1/�1�0 D 0;

2�3�2 C .˛ � 1/�0�1 � .˛ C 1/�1�0 D 0;

2�3�1 C .ˇ C 1/�0�2 � .ˇ � 1/�2�0 D 0;

2�1�3 C .ˇ � 1/�0�2 � .ˇ C 1/�2�0 D 0;

2�1�2 C .
 C 1/�0�3 � .
 � 1/�3�0 D 0;

2�2�1 C .
 � 1/�0�3 � .
 C 1/�3�0 D 0:

Smith and Stafford also showed that AŠ admits a non-degenerate symmetric pairing.
To see this, AŠ is spanned by the following elements:

AŠ0 W 1

AŠ1 W �0; �1; �2; �3

AŠ2 W �0�1; �0�2; �0�3; �1�0; �2�0; �3�0

AŠ3 W �0�1�0; �0�2�0; �0�3�0; �1�0�1

AŠ4 W �0�1�0�1
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and all other degree components are zero. Also, in degree 4, we have the following
identities

�0�j �0�j D ��j �0�j �0 for 1 � j � 3; �0�i�0�j D 0 for i ¤ j ;

�0�3�0�3 D
1C ˛

1 � 

�0�1�0�1;

�0�2�0�2 D
1C 


1 � ˇ

1C ˛

1 � 

�0�1�0�1:

The pairing ha; bi for homogeneous a; b 2 AŠ is defined to be the scalar of ab with
respect to �0�1�0�1. One easily sees the pairing such defined is graded symmetric
and is cyclic. Therefore A.˛; ˇ; 
/ is Koszul Calabi–Yau of dimension 4, and there
is derived non-commutative Poisson structure on it.

6.1.3. Universal enveloping algebras. Let us first say a bit about linear-quadratic
Koszul algebras. Suppose V is a finite dimensional vector space. A linear quadratic
relation is a subspace S � V ˚V ˝2. And we may define the linear quadratic algebra
A.V; S/ as before.

In this subsection, we assume S satisfies the following two conditions:

S \ V D 0; (6.1)
fS ˝ V C V ˝ Sg \ V ˝2 D S \ V ˝2: (6.2)

Let qS W S ! V ˝2 be the projection.
Definition 6.7 (Linear quadratic Koszul algebra). A linear quadratic algebra A D
A.V; S/ is said to beKoszul if it satisfies conditions (6.1) and (6.2) and if the quadratic
algebra A.V; qS/ is Koszul.

Since qS is the image of the projection of S to V ˝2, we in fact have a map

� W qS ! V

such that S D fX � �.X/jX 2 qSg. Denote by .qA/¡ the quadratic dual coalgebra
of T .V /=.qS/, then this � gives a map

d� W .qA/
¡ � qS ! V;

which extends to a coderivation d� W .qA/¡ ! T .V /.
Now if

fS ˝ V C V ˝ Sg \ S˝2 � qS;

then the images of d� lie in .qA/¡. We in fact get a co-derivation

d� W .qA/
¡
! .qA/¡:
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And if furthermore,

fS ˝ V C V ˝ Sg \ S˝2 � S ˝ V ˝2; (6.3)

then .d�/2 D 0, and we obtain a differential graded coalgebra ..qA/¡; d�/, which is
the Koszul dual coalgebra of A.V; S/, and is denoted by .A.V; S/¡; d /. Its linear
dual is a differential graded algebra, and is denoted by A.V; S/Š. For more details,
see [36, §3.6].
Lemma 6.8. Suppose A.V; qS/ is a Calabi–Yau algebra of dimension n. Then
A.V; S/ is a Calabi–Yau algebra of the same dimension if and only if any nonzero
element in A.V; S/¡n is a cycle.

Proof. As underlying spaces, A.V; S/Š is isomorphic to A.V; qS/Š. Since A.V; qS/
is Calabi–Yau, there is a cyclically invariant non-degenerate pairing on A.V; qS/Š,
which then gives the same pairing on A.V; S/Š. Thus to show A.V; S/ is Calabi–
Yau, it is equivalent to show such pairing respects the differential, which is again
equivalent to show the fundamental chain (the top chain in A.V; S/¡) is a cycle. This
completes the proof.

Suppose g is a Lie algebra, then the universal enveloping algebra U.g/ has
Koszul dual differential graded coalgebra which is exactly the Chevalley–Eilenberg
complex .CE�.g/; d/. It is also known (cf. [24, Chapter V]) that the top chain of the
Chevalley–Eilenberg complex is a cycle if and only if Tr.ad.g// D 0 for all g 2 g.
A Lie algebra satisfying this property is called unimodular. Examples of unimodular
Lie algebras are abelian Lie algebras, semi-simple Lie algebras, Heisenberg Lie
algebras, and the Lie algebra of compact groups. Thus as a corollary to Lemma 6.8,
we have the following statement, which is due to He, Van Oystaeyen, and Zhang [26,
Theorem 5.3].
Theorem 6.9 (He, VanOystaeyen, and Zhang). Let g be a Lie algebra of dimension n.
Then the universal enveloping algebra U.g/ is n-Calabi–Yau if and only if g is
unimodular.

The derived non-commutative Poisson structure onU.g/ is highly nontrivial, even
in the polynomial case (i.e. the case where g is abelian); for more details see §9.

6.1.4. Yang–Mills algebras. Yang–Mills algebras are introduced by Connes and
Dubois-Violette [11]. An algebra A is called a Yang–Mills algebra if A is generated
by the elements xi (i 2 f1; : : : ; ng) with the following relations:

gij Œxi ; Œxj ; xl �� D 0; l 2 f1; 2; : : : ; ng;

where .gij / is a symmetric invertible n � n-matrix. Equivalently, A D A.V; S/ is a
3-homogenous algebra, with V WD

L
i kxi , and S � V ˝3 spanned by

gij .xi ˝ xj ˝ xl C xl ˝ xi ˝ xi � 2xi ˝ xl ˝ xj /:

In literature, the above A is also denoted by YM.n/.
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Yang–Mills algebras are 3-Koszul 3-Calabi–Yau. In fact Connes and Dubois-
Violette [11, Theorem 1] proved that Yang–Mills algebras are 3-Koszul, and Berger–
Taillefer [6, Proposition 4.5] proved they are 3-Calabi–Yau.

We give a brief description of the A1 operators and the pairing on YM.n/Š. For
simplicity, we take .gij / to be the identitymatrix. DenoteV D Spankfx1; x2; : : : ; xng,
and

S D Spank
� nX
iD1

�
xi ; Œxi ; xj �

�
W 1 � j � n

�
� V ˝3:

Then
YM.n/ D T V=hSi:

And the homogeneous dual algebra of YM.n/ is given as follows (see Connes
and Dubois-Violette [11, Proposition 1] and also Herscovich and Solotar [29,
Proposition 2.3]):

YM.n/_0 D k1; YM.n/_1 D V
�; YM.n/_2 D

nM
i;jD1

kx�i x
�
j ;

YM.n/_3 D
nM
iD1

kx�i z; YM.n/_4 D kz
2; YM.n/_i D 0 .i > 4/;

where z D
Pn
iD1.x

�
i /
2. The Koszul dual algebra of YM.n/ is thus given taking

YM.n/Š0 D YM.n/_0 ; YM.n/Š1 D YM.n/_1 ;

YM.n/Š2 D YM.n/_3 ; YM.n/Š3 D YM.n/_4 ;

and the A1 operators (recall that we only have two nontrivial operators �2 and �3
in this case) are given as follows: denoting the above identification by

� W YM.n/Ši
Š
! YM.n/_j ;

then for f1; f2; f3 2 YM.n/Š,

�2.f1; f2/ D

(
��1.�.f1/ � �.f2//; if �.f1/ � �.f2/ … YM.n/_2 ;
0; otherwise;

(6.4)

and

�3.f1; f2; f3/ D

(
��1.�.f1/ � �.f2/ � �.f3//; if �.f1/ � �.f2/ � �.f3/ … YM.n/_2 ;
0; otherwise:

(6.5)

There is a pairing on YM.n/_, which is again the scaler of the corresponding product
with respect to z2, and hence induces the pairing on YM.n/Š via �.
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7. Derived representation schemes

As we mentioned in §1, according to the Kontsevich–Rosenberg Principle, any
meaningful non-commutative geometric structure on an associative algebraA should
naturally induce its classical counterpart on the representative scheme RepV .A/, for
all k-vector space V . Cuntz and Quillen in [14] first studied the smoothness problem
for associative algebras, and introduced the notion of smooth algebras. If an algebra
is smooth (e.g. cofibrant), then its representation scheme is smooth, too. However,
in practice, an algebra is rarely smooth, and therefore it is really difficult to study the
geometry on the representation scheme.

In the following, we first briefly recall the derived representation scheme of a DG
algebra, and then discuss its relations to cyclic homology; most materials are taken
from [2,3]. After that, we recall several results on derived non-commutative Poisson
structures from [1].

7.1. Derived representation scheme and cyclic homology. We start with the
representation scheme of associative algebras. Suppose A is an associative algebra,
and V is a k-vector space. Consider the following functor

RepV .A/ W CommAlgk ! Sets; B 7! HomAlgk
.A;End.V /˝ B/;

where CommAlgk is the category of commutative, unital k-algebras and Algk is the
category of unital k-algebras. This functor is representable, which means there exists
a commutative algebra, which we denote by kŒRepV .A/�, such that

HomAlgk
.A;End.V /˝ B/ Š HomCommAlgk

.kŒRepV .A/�; B/:

Keeping V fixed, we in fact get a functor

.�/V W Algk ! CommAlgk; A 7! kŒRepV .A/�

which we call the representation functor in V , and the corresponding scheme is
called the representation scheme. The representation functor can be extended to
the category of DG algebras, DGAk , which has a model structure in the sense of
Quillen [40]. In [3] the authors showed that .�/V defines a left Quillen functor
on DGAk and therefore it has a total derived functor

L.�/V W Ho.DGAk/! Ho.CDGAk/

from the homotopy category ofDGalgebras to the homotopy category of commutative
DG algebras. When applied to A, L.A/V is called the derived representation
scheme of A, and is represented by a commutative DG algebra, which we denote by
DRepV .A/. The homology of DRepV .A/, namely H�.DRepV .A//, only depends
on A and V , and is called the representation homology of A. We have that
H0.DRepV .A// is exactly kŒRepV .A/�.
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Now let us remind some results in model category theory (we recommend the
excellent survey of Dwyer and Spalinski [19] for an introduction tomodel categories).
Suppose A is a model category, then the homotopy category Ho.A/ is a category
where the objects remain the same as A, and the morphisms for two objects, say A
and B , are given by

HomHo.A/.A;B/ WD HomA.QA;QB/=quasi-equivalences;

where QA and QB are the cofibrant resolutions of A and B respectively (for more
details see [19, §5]). In the category of non-negatively (or non-positively) graded
DG algebras, any quasi-free resolution is a cofibrant resolution.

Now suppose A is a DG algebra, and R is its cofibrant resolution. Then by
definition L.A/V can be represented by R 7! DRepV .A/. A key result in [3] is the
construction of the higher trace map

Tr W H�.R\/! H�.DRepV .A//:

Via Feigin–Tsygan’s result H�. NR\/ Š HC�.A/ (see [20] and also §2, Proposition 2.4)
and by the fact there is a surjective map HC�.A/! HC�.A/, we in fact get a map

Tr W HC�.A/! H�.DRepV .A//; (7.1)

called the derived trace map, which, when restricting to degree zero, is exactly the
usual trace map A\ D A=ŒA;A�! kŒRepV .A/�.

For an associative algebra A, RepV .A/ has a natural GL.V / action, and the
covariant space RepV .A/GL.V / classifies the isomorphism classes of representations
of A on V . In the derived representation case, there is an analogous result, and
moreover, the authors of [3] showed that there is an isomorphism

H�.DRepV .A/GL.V // Š H�.DRepV .A//GL.V /

and the derived trace map (7.1) is GL.V / invariant, and hence is a map

Tr W HC�.A/! H�.DRepV .A//GL.V /:

7.2. Derived non-commutative Poisson structures. The above general setting is
successfully applied to the study of the derived non-commutative Poisson struc-
tures [1].

Suppose A is an associative algebra, or more generally a DG algebra. A derived
non-commutative Poisson structure on A, following the Kontsevich–Rosenberg
Principle in a naive way, is such a structure on its cofibrant resolution QA that
naturally induces a DG Poisson structure on its derived representation scheme
DRepV .A/ (or more precisely on DRepV .A/GL.V /), for all V . In [1], the authors
proposed the following:
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Definition 7.1 (Derived non-commutative Poisson structure; [1]). Let A be a DG
algebra. A derived non-commutative Poisson bracket of degree n on A is a DG
non-commutative Poisson bracket of degree n in the sense of Crawley-Boevey on its
cofibrant resolution QA, namely, it is a differential graded Lie bracket of degree n
on .QA/\ such that

Œ Na;�� W .QA/\ ! .QA/\

is induced by a derivation da W QA! QA, which commutes with the differential.
The derived non-commutative Poisson bracket does not depend on the choice of

resolutionsQA up to homotopy, and hence is well defined on the homotopy category
of DG algebras. The following is the main result proved in [1]:
Theorem 7.2 ([1, Theorem 9]). Suppose A is an associative (DG) algebra equipped
with a derived n-Poisson structure. Then there exists a unique graded n-Poisson
algebra structure on H�.DRepV .A//GL.V / for all V such that the derived trace map
is a map of graded Lie algebras.

8. Proof of main theorems

8.1. Proof of Theorems 1.1 and 1.2. LetA be anN -Koszul d -Calabi–Yau algebra.
Then by Theorem 6.6 there is a cofibrant resolution p W QA

'
� A, where QA D

�1.A
¡/ and A¡ is a cyclic A1 coalgebra of degree �d . Next, by Lemma 2.3 and

Corollary 2.5, we get

HC�.A/ Š HC�.A¡/ Š H�Œ NR\�;

where R D �1. QA
¡/. And by Corollary 2.10, one has

HH�.A/ Š H�Œ�1R;\� :

Proof of Theorem 1.1. By Theorem 5.3, there is a bracket f�;�g making H�Œ NR\� a
.2�d/-Lie algebra and a bracket f�;�g�1

R;\
making H�Œ�1R;\� a Lie module over it.

Since, the first one can be identified with HC�.A/ and the second one with HH�.A/,
we have proved this theorem.

Proof of Theorem 1.2. We recall (see (2.2)) that

CC�.C / D Ker.1 � T / Š Coker.1 � T / :

Hence from the 2-periodic complex (2.9) one obtains the following exact sequence
of complexes

0 // CC�.C /
i // �1

R;\

�ˇ // NR
� // CC�.C / // 0; (8.1)
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since�ˇ D 1�T . Note we can identify CC�.C /with NR\ which is a Lie module and
the inclusion i is a DG Lie module homorphism. ˇ is a DG Lie module homorphism
by Theorem 5.4 and so is the projection � .

From (8.1) we get the Connes long exact sequence for the coalgebra C

// HH�.C / // HC�.C / // HC��2.C / // HH��1.C / //

By the above discussion the maps between homologies are Lie module homomor-
phisms. Finally, by Corollary 2.5 and Lemma 2.9, this sequence can be identified
with the Connes long sequence for the algebra A.

8.2. Proof of Theorem 1.4. Let us first remind the definition of Hochschild cohom-
ology groups.
Definition 8.1 (Hochschild cohomology). Let A be an associative algebra, and M
be an A-bimodule. The Hochschild cochain complex CH�.AIM/ of A with value
inM is the complex whose underlying space isM

n�0

Hom.A˝n;M/

with coboundary ı W Hom.A˝n;M/! Hom.A˝nC1;M/ defined by

.ıf /.a0; a1; a2; : : : ; an/ D a0f .a1; : : : ; an/

C

n�1X
iD0

.�1/iC1f .a0; : : : ; aiaiC1; : : : ; an/C .�1/
nf .a0; : : : ; an�1/an: (8.2)

The associated cohomology is called the Hochschild cohomology of A with value
in M , and is denoted by HH�.AIM/. In particular, if M D A, then HH�.AIA/ is
called the Hochschild cohomology of A.
Definition 8.2. Let A be an associative algebra and let CH�.AIA/ be its Hochschild
cochain complex.
(1) The Gerstenhaber cup product on CH�.AIA/ is defined as follows:

for any f 2 CHn.AIA/, g 2 CHm.AIA/, and a1; : : : ; anCm 2 A,

f [ g.a1; : : : ; anCm/ WD .�1/
nmf .a1; : : : ; an/g.anC1; : : : ; anCm/:

(2) For any f 2 CHn.AIA/, g 2 CHm.AIA/, and a1; : : : ; anCm�1 2 A, let

f ı g.a1; : : : ; anCm�1/ WD

n�1X
iD1

.�1/.m�1/.i�1/

� f .a1; : : : ; ai�1; g.ai ; : : : ; aiCm�1/; aiCm; : : : ; anCm�1/:
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The Gerstenhaber bracket on CH�.AIA/ is defined to be

ff; ggG WD f ı g � .�1/
.n�1/.m�1/g ı f:

(3) For any homogeneous elements f 2 CHn.AIA/ and ˛ D .a0; a1; : : : ; am/ 2

CHm.A;A/, define the cap product

\ W CHm.AIA/ � CHn.AIA/! CHm�n.AIA/

by
˛ \ f WD .a0f .a1; : : : ; an/; anC1; : : : ; am/;

for m � n, and zero otherwise.

Both theGerstenhaber product and theGerstenhaber bracket induce awell-defined
product and bracket onHochschild cohomologyHH�.AIA/, whichmakesHH�.AIA/
into a Gerstenhaber algebra, and the cap product makes HH�.A/ into an .HH�.A/;[/
module. Recall that aGerstenhaber algebra is a graded commutative algebra together
with a degree �1 Lie bracket f�;�g such that

a 7! fa; bg

are derivations with respect to the product.

Theorem 8.3 (Gerstenhaber). LetA be an algebra. Then the Hochschild cohomology
HH�.AIA/ of A equipped with the Gerstenhaber cup product and the Gerstenhaber
bracket forms a Gerstenhaber algebra.

Proof. For a proof, see Gerstenhaber [21, Theorems 3–5].

The Gerstenhaber algebra structure is even more interesting in the case of cyclic
A1 algebra case. Tradler, in his paper [44], showed that for A1 algebras, one may
similarly define the Gerstenhaber product and bracket on the Hochschild cochain
complex, where the Gerstenhaber product is associative up to homotopy, and hence
is well-defined on the cohomology level. Moreover he showed the following (see [44,
Theorem 2]):

Lemma 8.4 (Tradler). SupposeC is a cyclicA1 coalgebra of degree�d , and denote
by A its dual A1 algebra. Then there is an isomorphism of graded vector spaces

ˆ W HH�.C / Š HHd��.A/:

Proof. Since C and hence A are locally finite dimensional, we have an isomorphism

� W C �! AŒd�

c 7�! hc;�i
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of A-bimodules, from which we obtain an isomorphism of chain complexes

ˆ W CH�.C / �! CH�.A/
.c1; c1; : : : ; cnC1/ 7�! f.a1; : : : ; an/ 7! .c1; a1/ � � � .cn; an/ � �.cnC1/g:

In other words the isomorphism is given by

ˆ W .c1; c2; : : : ; cnC1/ 7�! .c1; c2; : : : ; cn/˝ �.cn/

where the right hand side is viewed as an element in CHn.A/ via the isomorphism

Hom.A˝n; A/ D
�
A˝n

��
˝ A D

�
A�
�˝n
˝ A D C˝n ˝ A:

Proof of Theorem 1.4. Since A¡ is finite dimensional, from the above lemma any
homogeneous element f 2 CH�.AŠ/ is a linear combination of elements in the form

.u1; u2; : : : ; un/˝ Nu; where ui 2 A¡, Nu 2 AŠ:

For two elements, say f D .u1; u2; : : : ; un/˝ Nu, g D .v1; v2; : : : ; vm/˝ Nv,

ff; ggG.x1; x2; : : : ; xnCm�1/

D

X
i

.�1/�if .x1; : : : ; xi�1; g.xi ; : : : ; xiCm�1/; xiCm; : : : ; xnCm�1/

�

X
j

.�1/.jf j�1/�.jgj�1/C�j g.x1; : : : ; xj�1; f .xj ; : : : ; xjCn�1/;

xjCn; : : : ; xnCm�1/

D

X
i

.�1/�iu1.x1/ � � �ui�1.xi�1/v1.xi / � � � vm.xiCm�1/ui . Nv/uiC1.xiCm/ � � �

� � �un.xnCm�1/ Nu

�

X
j

.�1/�C�j v1.x1/ � � � vj�1.xj�1/u1.xj / � � �un.xjCn�1/vj . Nu/vjC1.xjCn/ � � �

� � � vm.xnCm�1/ Nv;

for any homogeneous element .x1; x2; : : : ; xnCm�1/ 2 .AŠ/˝nCm�1, where �i D
jgj.jx1j C � � � C jxi�1j/, �j D jf j.jx1j C � � � C jxj�1j/ and � D .jf j � 1/.jgj � 1/.
In other words,

ff; ggG D
X
i

.�1/�iui . Nv/.u1; : : : ; ui�1; v1; : : : ; vm; uiC1; : : : ; un/˝ Nu

�

X
j

.�1/�C�j vj . Nu/.v1; : : : ; vj�1; u1; : : : ; un; vjC1; : : : ; vm/˝ Nv: (8.3)

Now let u D Œu1ju2j � � � jun�, v D Œv1jv2j � � � jvm� 2 �1.A
¡/ be two homo-

geneous elements where ui ’s and vj ’s are generically different from each other.
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Viewing them as elements in CH�.A¡/ via the embedding (2.1) or (2.15), we have

B.u/ D

nX
iD1

.�1/"i .uiC1; : : : ; un; u1; : : : ; ui /;

B.v/ D

mX
jD1

.�1/"j .vjC1; : : : ; vm; v1; : : : ; vj /;

where "i D .ju1jC� � �Cjui j/.juiC1jC� � �Cjunj/ and "j D .jv1jC� � �Cjvj j/.jvjC1jC
� � � C jvmj/. Applying the above lemma to A¡, we have

ˆ ı B.u/ D

nX
iD1

.�1/"i .uiC1; : : : ; un; u1; : : : ; ui�1/˝ Nui ; (8.4)

ˆ ı B.v/ D

mX
jD1

.�1/"j .vjC1; : : : ; vm; v1; : : : ; vj�1/˝ Nvj ; (8.5)

where Nui D �.ui / and Nvj D �.vj /. Thus for two summands in ˆ ı B.u/ and
ˆ ı B.v/ respectively, say

.u1; : : : ; un�1/˝ Nun; .v1; : : : ; vm�1/˝ Nvm;

by (8.3) we have

f.u1; : : : ; un�1/˝ Nun; .v1; : : : ; vm�1/˝ NvmgG (8.6)

D

X
i

.�1/�i hsvm; sui i.u1; : : : ; ui�1; v1; : : : ; vm�1; uiC1; : : : ; un�1/˝ Nun

�

X
j

.�1/�j hsun; svj i.v1; : : : ; vj�1; u1; : : : ; un�1; vjC1; : : : ; vm�1/˝ Nvm;

where�i D jvmjC .jvjCd/.juiC1jC � � �CjunjCd/, �j D junjC .jujCd/.jv1jC
� � � C jvj�1j/, and h�;�i is the graded symmetric pairing on C .

On the other hand, by (4.7) we have

ˆ ı Bf.u1; : : : un/; .v1; : : : ; vm/gDNCP D ˆ ı B

�X
i;j

.�1/jui jC�hsui ; svj i

� .v1; : : : ; vj�1; uiC1; : : : ; un; u1; : : : ; ui�1; vjC1; : : : ; vm/

�
(8.7)

where � is given as in (4.7). From this one sees that (8.6) are summands in (8.7). For
other summands inˆıB.u/ andˆıB.v/, by the same argument, their Gerstenhaber
brackets also lie in (8.7) as summands.
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Also, from (8.6) one sees that in the expression

fˆ ı B.u/;ˆ ı B.v/gG

none of the summands literally cancels with any other, and therefore to show

fˆ ı B.u/;ˆ ı B.v/gG D ˆ ı Bfu; vgDNCP;

it is enough to show both sides have the same number of summands.
In fact, on one hand, from (8.4) and (8.5) we see that ˆ ı B.u/ and ˆ ı B.v/

have n and m summands respectively, and therefore

fˆ ı B.u/;ˆ ı B.v/gG

hasmn.mCn�2/ summands. On the other hand, from (8.7) we know that fu; vgDNCP
hasmn summands, and each summand containsmCn�2 components, and therefore
ˆ ı Bfu; vgDNCP has mn.m C n � 2/ summands. The numbers of summands are
equal, which proves the theorem.

Let us now recall a theorem of Keller [31] (see also Herscovich [28]):

Theorem 8.5 (Keller). Let A be an N -Koszul algebra, and denote by AŠ its Koszul
dual algebra. Then we have isomorphism

„ W HH�.AŠ/! HH�.A/

of Gerstenhaber algebras.

Proof. For N D 2, this is proved in Keller [31, Theorem 3.5]. For the general case,
it is proved by Herscovich in [28].

Corollary 8.6. Let A be an N -Koszul Calabi–Yau algebra. Then „ ı ˆ ı B maps
the Leibniz–Loday bracket f�;�gDNCP on QR D �1. QA

¡/ to the Gerstenhaber bracket
f�;�gG on HH�.A/.

Proof. The claim follows from a combination of Theorem 1.4 and Theorem 8.5 of
Keller above.

Roughly speaking, the above corollary says that the derived non-commutative
Poisson bracket of a Koszul Calabi–Yau algebra is naturally mapped to the
Gerstenhaber bracket on its Hochschild cohomology.
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8.3. Proof of Theorem 1.6. Before we proceed to the proof of Theorem 1.6,
let us recall a Batalin–Vilkovisky algebra structure on the Hochshcild cohomology
HH�.A/. In order to do that, let us first observe that, for an associative algebra A, we
have the following two structures:

– there is the Connes cyclic operator B W HH�.A/ ! HH�C1.A/ whose square is
zero; and

– there is a Gerstenhaber algebra structure on .HH�.A/;[/, and HH�.A/ is a module
over HH�.A/. Denote the action by \.

For a d -Calabi–Yau algebra A, these two structures are perfectly matched. Note that
there is an element ! 2 HHd .A/ such that the following map

‰ W HH�.A/
'
�! HHd��.A/

f 7�! �f !
(8.8)

is an isomorphism, called the non-commutative Van den Bergh–Poincaré duality; for
a proof of this result see [17, Proposition 5.5].

Definition 8.7 (Batalin–Vilkovisky algebra). Let .V; r/ be a graded commutative
algebra. A Batalin–Vilkovisky operator on V is a degree �1 differential operator

� W Vi ! Vi�1; for all i

such that the deviation from being a derivation

fa; bg WD .�1/jaj.�.a rb/ ��.a/ rb � .�1/jaja r�.b//; for all a; b 2 V (8.9)

is a derivation for each component, i.e.

fa; b rcg D fa; bg rc C .�1/jbj.jaj�1/b rfa; cg; for all a; b; c 2 V :

The triple .V; r; �/ is called a Batalin–Vilkoviksy algebra.

If .V; r; �/ is a Batalin–Vilkoviksy algebra, then by definition .V; r; f�;�g/,
where f�;�g is given by (8.9), is a Gerstenhaber algebra. In other words, a Batalin–
Vilkovisky algebra is a special class of Gerstenhaber algebras.

Let A be a d -Calabi–Yau algebra and let

� WD ‰�1 ı B ı‰ W HH�.A/! HH��1.A/ ;

we have

Theorem 8.8 (Ginzburg [23, Theorem 3.4.3]). Suppose that A is an d -Calabi–Yau
algebra. Then .HH�.AIA/;[; �/ is a Batalin–Vilkovisky algebra. Moreover, the
bracket (8.9) for this triple is exactly the classical Gerstenhaber bracket f�;�gG.
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Recently the first author with the fourth author and G. D. Zhou proved in [10,
Theorem A] that for Koszul (and more generally, N -Koszul) Calabi–Yau algebras,
the isomorphism in Theorem 8.5 is in fact an isomorphism of Batalin–Vilkovisky
algebras. The key point in the proof is that there is a canonical complex (the Koszul
complex equipped with an appropriate differential) which computes both HH�.A/
and HH�.A¡/, and we have the following commutative diagram

HH�.AŠ/ „ // HH�.A/

‰

��
HHd��.A¡/

ˆ

OO

HHd��.A/:

(8.10)

Proof of Theorem 1.6. Let ˛; ˇ 2 HC�.A/. Then˚
B.˛/; B.ˇ/

	
dVV D .�1/

j˛jCdC1B ı‰
�
‰�1.�.B.˛// [‰�1.�.B.ˇ//

�
(8.11)

D .�1/j˛jCdC1‰ ı�
�
‰�1.�.B.˛// [‰�1.�.B.ˇ//

�
D .�1/j˛jCdC1‰ ı�

�
�.‰�1.˛// [�.‰�1.ˇ//

�
D .�1/j˛jCdC1Cd�j˛j�1‰

˚
�.‰�1.˛//;�.‰�1.ˇ//

	
G

D ‰
˚
‰�1.B.˛//; ‰�1.B.ˇ//

	
G

D ‰„
˚
„�1.‰�1.B.˛///;„�1.‰�1.B.ˇ///

	
G

D ˆ�1
˚
ˆ ı B.˛/;ˆ ı B.ˇ/

	
G

D B
˚
˛; ˇ

	
DNCP;

where the first two equalities follow definitions of f�;�gdVV and � respectively, the
third one follows from (1.6) and the definition of�, the fourth equality follows from
applying (8.9), the fifth equality follows again from the definition of �, the sixth
equality holds due to Theorem 8.5, the seventh equality follows from (8.10), and
finally the eighth equality follows from Theorem 1.4.

Proof of Corollary 1.5. It follows from (8.11) that

Bf˛; ˇgDNCP D .�1/
j˛jCdC1B ı‰

�
‰�1.B.˛// [‰�1.B.ˇ//

�
:

Since A is a graded algebra the Connes operator B is injective (see e.g. [47,
Theorem 9.9.1]) and hence

f˛; ˇgDNCP D .�1/
j˛jCdC1‰

�
‰�1.B.˛// [‰�1.B.ˇ//

�
:

Note that by (8.8) the RHS of the above identity

‰
�
‰�1.B.˛// [‰�1.B.ˇ//

�
D �‰�1.B.˛//[‰�1.B.ˇ//!

D �‰�1.B.˛//�‰�1.B.ˇ//!

D �‰�1.B.˛//B.ˇ/;

and the result follows.
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9. Example: the polynomial algebra

Let A be the symmetric algebra Sym.V / where V is a vector space of dimension
m � 1 concentrated in homological degree 0. This is a quadratic Koszul, Calabi–
Yau algebra of dimension m. By the well-known result of Hochschild–Kostant–
Rosenberg, we can identify HH�.A/ Š ��.V / andHH�.A/ Š ‚�.V /, where��.V /
is the vector spaces of differential forms and‚�.V / is that of polyvector fields on V .
Moreover, HC�.A/ can be identified with ˚n�n.V /=d.�n�1.V //, where d is the
de Rham differential. Using Corollary 8.6 we will give an geometric description of
f�;�gDNCP (to simplify the notation in the following we write f�;�gDNCP as f�;�g).

9.1. Koszul dual coalgebra. We recall that A is a quadratic Koszul algebra defined
by the quadratic data .V; S/ with S � V ˝ V spanned by the vectors of the form
v ˝ u � u ˝ v, which has a minimal semi-free resolution R WD �.C / given by
the cobar construction of the Koszul dual coalgebra C WD A¡ D C.sV; s2S/. The
coalgebra C is an exterior coalgebra whose degree n elements we denote by

�.v1; v2; : : : ; vn/ WD .sv1 ^ sv2 ^ � � � ^ svn/ :

We can always assume that v1; : : : ; vn are linearly independent. The coproduct
4 W C ! C ˝ C is given by

4.�.v1; v2; : : : ; vn//

WD

nX
pD0

X
�2Shp;n�p

sgn.�/ �.v�.1/; : : : ; v�.p//˝ �.v�.pC1/; : : : ; v�.n//;

where Shp;n�p � Sn is the subset of .p; n � p/ shuffles. We denote counit in C
by e. For example, we have

4.�.v1; v2// D e˝�.v1; v2/C�.v1; v2/˝ eC�.v1/˝�.v2/��.v2/˝�.v1/ :

We recall that a symmetric bilinear form of degree �d on C is a pairing h ; i W
C ˝ C ! kŒd � such that

ha; bi D .�1/jajjbjhb; ai; for all a; b 2 C : (9.1)

It is cyclic if
ha; b2i � b1 D ha1; bi � a2; for all a; b 2 C ; (9.2)

where4.a/ D
P
a1 ˝ a2 and4.b/ D

P
b1 ˝ b2 using Sweedler’s notation.
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9.2. Cyclic forms on C . First we show

Proposition 9.1. Let h�;�i be a cyclic form on C . Then

(1) he; �.v1; v2; : : : ; vn/i D 0 for n � m � 1.

(2) h�.v1; v2; : : : ; vn/; �.w1; : : : ; wl/i D 0 for l � m � 1,
if each vi 2 Spanfw1; : : : ; wlg.

Proof. (1) Since n � m � 1 we can choose v 2 V such that v is not in
Spanfv1; : : : ; vng. Let a D �.v/ and b D �.v1; v2; : : : ; vk/. Then

4.a/ D e ˝ �.v/C �.v/˝ e ;

4.b/ D e ˝ �.v1; : : : ; vn/C �.v1; : : : ; vn/˝ e C � � � :

Using (9.2) we get

h�.v/; �.v1; : : : ; vn/i � e C h�.v/; ei � �.v1; : : : ; vn/ C � � �

D h�.v/; �.v1; : : : ; vn/i � e C he; �.v1; : : : ; vn/i � �.v/:

Since the left hand side does not contain the term with �.v/ we can conclude this
statement.

(2) Due to linearity of the form it suffices to show it in the case when each vi is
of one wj ’s and after reordering we can also assume that v1 D w1; : : : ; vn D wn.
So we only need to show

h�.w1; w2; : : : ; wn/; �.w1; : : : ; wl/i D 0 :

First, we choose v 2 V such that v … Spanfw1; : : : ; wlg. Second, let a D
�.w1; : : : ; wn/ and b D �.w1; : : : ; wl ; v/. Then

4.a/ D e ˝ �.w1; : : : ; wn/C �.w1; : : : ; wn/˝ e C � � � ;

4.b/ D � � � C �.w1; : : : ; wl/˝ �.v/C .�1/
l�.v/˝ �.w1; : : : ; wl/C � � � :

Now using (9.2) we get

.�1/lh�.w1; : : : ; wn/; �.v/i � �.w1; : : : ; wl/

C h�.w1; : : : ; wn/; �.w1; : : : ; wl/i � �.v/C � � �

D he; �.w1; : : : ; wl ; v/i � �.w1; : : : ; wn/

C h�.w1; : : : ; wn/; �.w1; : : : ; wl ; v/i � e C � � �

Left side has no term with �.v/ while right side has only one term with �.v/ and
therefore coefficient in front of this term must vanish.
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Next, we prove the following statement.

Proposition 9.2. If v … Spanfv1; : : : ; vn; w1; : : : ; wlg then

h�.v1; v2; : : : ; vn; v/; �.w1; : : : ; wl/i D h�.v1; v2; : : : ; vn/; �.v;w1; : : : ; wl/i :

Proof. For a D �.v1; v2; : : : ; vn; v/ and b D �.v;w1; : : : ; wl/:

4.a/ D �.v1; : : : ; vn/˝ �.v/C .�1/
n�.v/˝ �.v1; : : : ; vn/C � � �

4.b/ D �.v/˝ �.w1; : : : ; wl/C .�1/
l�.w1; : : : ; wl/˝ �.v/C � � �

Since v … Spanfv1; : : : ; vn; w1; : : : ; wlg, the above terms in coproducts of a and b
are the only terms containing �.v/. By (9.2) we have

h�.v1; v2; : : : ; vn; v/; �.w1; : : : ; wl/i�.v/C � � �

D h�.v1; v2; : : : ; vn/; �.v;w1; : : : ; wl/i�.v/C � � �

This finishes our proof.

The next corollary follows immediately from Propositions 9.1 and 9.2.

Corollary 9.3. We have

h�.v1; v2; : : : ; vn/; �.w1; : : : ; wl/i D 0

unless W WD Spanfv1; v2; : : : ; vn; w1; : : : ; wlg D V .

Proof. LetW ¤ V . First, we consider the case when none of vi ’s inW . Then using
Proposition 9.2 we obtain

h�.v1; v2; : : : ; vn/; �.w1; : : : ; wl/i D he; �.v1; v2; : : : ; vn; w1; : : : ; wl/i :

The RHS is 0 by Proposition 9.1 part .1/.
Second, we can assume that vi 2 W for all i D 1; : : : ; n. Otherwise, we can

repeatedly use Proposition 9.2 to move those vi ’s which are not in W to the right.
Finally, by Proposition 9.1 part .2/, we have vanishing of the bilinear form in this
case.

The above results can be summarized into the following statement

Proposition 9.4. Let V be an m-dimensional vector space and let A WD Sym.V /.
Then the Koszul dual coalgebra C has a unique cyclic form and it is of degree �m.
This form is completely determined by its value he; �.v1; v2; : : : ; vm/i, where
fv1; v2; : : : ; vmg is a basis for V .
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9.3. Lie bracket onHC�.A/. Wehave an isomorphism‰ W ‚k.V / ! �m�k.V /

such that ‰.�/ D ��!. The space ‚�.V / equipped with BV operator � W ‚�.V /!
‚��1.V / such that the following diagram commutes:

‚k.V /

‰
��

� // ‚k�1.V /

‰
��

�n�k.V /
d // �m�kC1.V /

By Corollary 8.6, the bracket f�;�g on ��.V / is given by

df˛; ˇg D ‰ f‰�1.d˛/;‰�1.dˇ/gG

where ˛; ˇ 2 ��.V / and f�;�gG is the Gerstenbaher bracket of poly-vector fields.
Lemma 9.5. For given forms ˛ and ˇ, their bracket is given by

d f˛; ˇg D .�1/m�j˛j�1d ��dˇ D .�1/
.m�j˛j�1/.m�jˇ j/d ��d˛

where ‰�1.d˛/ D � and ‰�1.dˇ/ D �.

Proof. Recall for a; b 2 ‚�.V / their Gerstenbaher bracket can expressed in terms
of �

fa; bgG D .�1/jaj
�
�.a ^ b/ ��.a/ ^ b � .�1/jaja ^�.b/

�
:

Hence using commutativity above diagram we have

f‰�1.d˛/;‰�1.dˇ/gG D .�1/m�j˛j�1�.‰�1.d˛/ ^‰�1.dˇ//;

and applying ‰ we have

‰f‰�1.d˛/;‰�1.dˇ/gG D .�1/
m�j˛j�1‰�

�
‰�1.d˛/ ^‰�1.dˇ/

�
D .�1/m�j˛j�1d ı‰

�
‰�1.d˛/ ^‰�1.dˇ/

�
:

Now using the well-known formula

��^�! D �� .��!/ D .�1/
j�jj�j��^�!

we obtain

‰
�
‰�1.d˛/ ^‰�1.dˇ/

�
D �‰�1.d˛/^‰�1.dˇ/ !

D �‰�1.d˛/ .�‰�1.dˇ/ !/ D �‰�1.d˛/ dˇ;

from which the result immediately follows.
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Since HH�.A/ Š ��.V / and HC�.A/ Š ˚n�n.V /=d.�n�1.V //, we have
established
Corollary 9.6. The Lie bracket on HC�.A/ and the Lie module structure on HH�.A/
in Theorem 1.1 for A D Sym.V / is given as follows. For ˛; ˇ 2 HC�.A/ or
ˇ 2 HH�.A/, we have

f˛; ˇg D .�1/.m�j˛j�1/.m�jˇ j/��d˛;

where � D ‰�1.dˇ/.
Remark 9.7. One can directly check that f�;�g is not a Lie bracket on��.V /, since
the Jacobi identity fails. Thus f�;�g defines only a Lie module structure on HH�.A/
not Lie algebra.

More precisely, let

˛ D x2yzdx; ˇ D xyzdy; 
 D xzdz;

and ! D dx ^ dy ^ dz, then

‰�1.d˛/ D �x2z
@

@z
C x2y

@

@y
; ‰�1.dˇ/ D yz

@

@z
� xy

@

@x
;

‰�1.d
/ D �z
@

@y
;

and we have

ff˛; ˇg; 
g D x2yz2dx � x3yzdz;

f˛; fˇ; 
gg D �x3z2dy � x3yzdz;

fˇ; f˛; 
gg D 2x2yz2dx C 2x3yzdz:

Thus we have

ff˛; ˇg; 
g � f˛; fˇ; 
gg C fˇ; f˛; 
gg D 3x2yz2dx C x3z2dy C 2x3yzdz

D d.x3yz2/ ;

which is not zero, and therefore HH�.A/ with f�;�g above does not form a Lie
algebra.
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