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Abstract. This paper studies étale twists of derived categories of schemes and associative
algebras. A general method, based on a new construction called the twisted Brauer space, is
given for classifying étale twists, and a complete classification is carried out for genus 0 curves,
quadrics, and noncommutative projective spaces. A partial classification is given for curves of
higher genus. The techniques build upon my recent work with David Gepner on the Brauer
groups of commutative ring spectra.
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1. Introduction

1.1. An example. The purpose of this paper is to create a formalism for answering
questions of the following kind. Suppose that X is a variety over a field k. How
can one classify the k-linear derived categories D such that Dk ' Db.Xk/? For the
purposes of the following example, please take this problem at face value and believe
that there is a good notion of such “derived categories” D together with a way to
tensor with k. This will all be explained later in the introduction and in the rest of
the paper.

Allow me to begin the paper with a motivating example. Let BrP1

.R/ denote
the set of (derived equivalence classes of) R-linear derived categories D such that
DC ' Db.P1C/. Thus, BrP1

.R/ classifies derived categories that are étale locally
equivalent to the derived category ofP1. Its objects can be viewed as noncommutative
étale twists of the projective line. I call BrP1

.R/ the P1-twisted Brauer set of R. It
is a pointed set, where the point is the category Db.P1R/.

Consider the real path algebra RQ, where Q is the quiver � � �. It is a result
of Beı̆linson [2] that Db.P1R/ and Db.RQ/ are equivalent as R-linear triangulated
categories.
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There are two obvious ways to construct elements in BrP1

.R/. First, one can
tensor any given element with the quaternion algebra H. For instance, H ˝R RQ
gives another R-algebra which becomes Morita equivalent to CQ over C. Indeed,
C ˝R RQ Š CQ, while C ˝R .H˝R RQ/ Š M2.C/ ˝C CQ Š M2.CQ/.
Thus, Db.H˝R RQ/ is an element of BrP1

.R/. This derived category has a more
geometric interpretation: it is the derived category Db.P1R; ˛/ of ˛-twisted coherent
sheaves on P1, where ˛ is the class in Br.P1R/ pulled back from H. Equivalently,
Db.P1R; ˛/ is the derived category of quaternionic vector bundles on P1R. Since
Br.R/ D Z=2 �H, there are no further iterations of the construction.

The algebras RQ and H ˝R RQ represent distinct elements in the pointed set
BrP1

.R/. The easiest way to see this is via algebraic K-theory. The K-theory
of P1 (or equivalently of RQ) is K�.R/ ˚ K�.R/ by Quillen’s computation [31,
Theorem 8.2.1], while the K-theory of H˝R RQ is K�.H/˚ K�.H/. The torsion
part of K1.R/ Š R� is Z=2, while the torsion part of K1.H/ Š H�=ŒH�;H�� is 0,
where ŒH�;H�� is the commutator subgroup of H�. The point is that the reduced
norm K1.H/ ! K1.R/ is injective by the theorem of Wang [42]. But, clearly,
�1 2 R� cannot be the reduced norm of a quaternion. Thus, H˝R RQ and RQ are
not derived Morita equivalent.

The second obvious way to construct elements in BrP1

.R/ is to look at another
variety over SpecR that becomes isomorphic toP1 over SpecC. Up to isomorphism,
there is only one such variety, which is the genus 0 curveC cut out byx2Cy2Cz2 D 0
in P2R. Since this curve does not have an R-point, it is not the projective line, but
it becomes isomorphic to P1 over C. Thus Db.C / represents another point of
BrP1

.R/. Interestingly, in this case, considering ˛-twisted sheaves gives nothing
new. Because C is the Severi–Brauer variety of H, the pullback of H to C has
zero Brauer class. Thus, Db.C; ˛/ ' Db.C /. To see that Db.C / is distinct from
either of the module categories from the previous paragraph, note that itsK-theory is
isomorphic to K�.R/˚K�.H/ by Quillen’s computation of theK-theory of Severi–
Brauer varieties [31, Theorem 8.4.1], and this is different from either of the other
K-theories, by consideration of torsion in degree 1.

Thus, there are at least 3 elements of BrP1

.R/, and there is an action on these
elements by Br.R/, which is described above. The main point of this paper is to
develop methods that will allow a precise formulation of the problems of the type
posed in the example, and to give a computational tool for solving these problems,
which I apply in many cases. In particular, in Section 3.3 this computational tool will
be used to show that there are no other elements in BrP1

.R/ besides those described
already.

Every element of BrP1

.R/ is represented by a category of modules over an
associative algebra. This has already been remarked upon for Db.P1R/ andD

b.P1R; ˛/.
For the genus 0 curve C , there is an equivalence Db.C / ' Db.A/, where A is the
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path algebra of the modulated quiver R W �� � W H. Modulated quivers were used
to classify finite dimensional hereditary algebras of finite representation type. For
details, see Dlab–Ringel [13], where they are called species.

1.2. Overview. The noncommutative algebraic geometry of the title is what Ginz-
burg has called noncommutative algebraic geometry “in the large,” where one
replaces schemes with derived categories of sheaves and isomorphisms with derived
Morita equivalences. This form of noncommutative algebraic geometry, which
began with the work of Beı̆linson [2], has been reinforced by ideas originating in
string theory, where two varieties with equivalent derived categories should describe
the same physical theory. The mathematical theory has been pursued by Bondal,
Ginzburg, Kontsevich, Orlov, Rosenberg, and van den Bergh to name just a few.
See [4–6, 15, 23, 41]. Thus, if A is an associative algebra, the derived category
of A-modules D.A/ is viewed as a geometric object. Noncommutative algebraic
geometry in the large is distinct from both noncommutative algebraic geometry in
the small and derived algebraic geometry. The former is about noncommutative
deformations of commutative rings and is modeled on the coordinate algebras that
arise in quantum mechanics. Derived algebraic geometry on the other hand replaces
ordinary commutative rings with “derived” commutative rings, which are either
simplicial commutative rings, commutative dg algebras, or commutative ring spectra.

This viewpoint is motivic in the sense that many classical motivic invariants, such
as Hochschild homology and K-theory, depend only on the derived category.

To formulate this kind of geometry correctly requires a more flexible framework
than simply triangulated categories. Thus, D.A/ is replaced by ModA, the stable
1-category of right A-modules, and the triangulated category of complexes of
OX -modules is replaced by ModX , a stable 1-categorical model for Dqc.X/.
Another option would be to use dg enhancements or A1-categories. Stable
1-categories include all of these examples, and have the added benefit that, for
instance, one can do geometry over the sphere spectrum.

Since I am interested in developing a theory that works over the sphere, my
commutative rings will be connective commutative (E1-)ring spectra, and my
associative rings will be A1-ring spectra. The reader will lose little in thinking of
ordinary commutative rings and associative dg algebras. But, in any case, a module
over a ring A, even an ordinary associative ring, means an A1-module. So, over an
ordinary associative ring, modules are really complexes of ordinary A-modules.

Recall that a compact object in a stable 1-category M is an object x such that
the mapping space functor mapM.x;�/ commutes with filtered colimits. This is
the appropriate generalization of compactness in triangulated categories having all
coproducts, where a compact object x is one where taking maps out commutes
with coproducts. Compact objects are the cornerstone of noncommutative algebraic
geometry. When X is a quasi-compact and quasi-separated scheme, the compact
objects of ModX are precisely the perfect complexes, which are complexes of
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OX -modules locally quasi-isomorphic to bounded complexes of finitely generated
vector bundles.

The compact objects are fundamental to derived Morita theory. If A and B
are two associative algebras, then to give an equivalence F W ModA Q!ModB is
to give a compact right B-module F.A/ such that F.A/ generates ModB and
EndB.F.A// ' A. Note that I will use derived equivalence for any equivalence
between stable1-categories, and not for a triangulated equivalence D.A/ ' D.B/,
although once a functor F W ModA ! ModB is given, the property of it being an
equivalence can be detected on the homotopy categories.

WhenX is a reasonable scheme (quasi-compact and quasi-separated), Bondal and
van den Bergh [4] showed that there is a single perfect complex E that generates the
entire derived category Dqc.X/. Thus, derived Morita theory says that at the level of
1-categories, there is an equivalenceModX ' ModA, whereA D EndModX

.E/op is
the derived endomorphism algebra spectrum of E. The example of Beı̆linson’s, that
Db.P1/ ' Db.RQ/, from the previous section is an especially nice example of this
phenomenon. In particular, the algebraA is typically truly anA1-algebra, and is not
derived Morita equivalent to any ordinary associative algebra. Bondal and ven den
Bergh’s theorem justifies the term noncommutative algebraic geometry. Almost every
derived category that arises in ordinary algebraic geometry is the module category
for an A1-algebra, or is built from such a category.

Therefore, from the perspective of noncommutative algebraic geometry, derived
categories of algebras are a natural generalization of derived categories of schemes.
Thus, the first question to ask is when two algebras or schemes give rise to the
same noncommutative geometric object. For algebras, the answer, abstractly, is the
subject of derived Morita theory, which goes back to Cline–Parshall–Scott [11],
Happel [19], and Rickard [32], and has been developed by many people for use in
the study of finite-dimensional associative algebras and in block theory for modular
representation theory. In the dg setting, Keller [22] and Toën [38] have worked
out the theory very nicely. For ring spectra, the theory follows from work of
Schwede and Shipley [35]. The problem of when two varieties X and Y are derived
equivalent has been the subject of a great deal of research by Bondal, Bridgeland,
Huybrechts, Kawamata, Orlov, Stellari, van den Bergh, and many, many others. For
a comprehensive introduction to the subject and the literature, see [20].

Now that there is an excellent categorical framework for studying derived
equivalences, and since the work of many authors has provided a clear picture of
when to expect derived equivalences, the follow-up question I want to ask in this
paper is: is it possible to classify when two algebras A and B , say over a field k,
represent the same geometric object over k? In fact, in general, it is better to ask for a
finite separable extension l=k such thatAl andBl are derivedMorita equivalent. The
analogous question for potentially infinite or inseparable extensions is considered in
a special case in Section 4.
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Problem 1.1. Let A be an A1-algebra over k. Classify, up to derived equivalence
over k, all A1-algebras B such that A˝k ksep and B ˝k ksep are derived Morita
equivalent.

WhenModA ' ModX , the algebrasB should be viewed as noncommutative étale
twists of X . The rest of this paper develops a tool, the twisted Brauer space, to solve
the problem. In various concrete examples, the twisted Brauer space will turn out to
encode interesting geometric and arithmetic information aboutX . Perhaps the central
thesis is that while this problem would be intractable using triangulated categories,
by using stable 1-categories one is able to give a precise answer which moreover
accords with our intuition: twists are classified by 1-cocycles in automorphisms.
There is a subtlety, which is that in this setting the automorphisms really form a
topological space, and so twists are classified by 1-cocycles in a sheaf of spaces.
That this can be made precise is a triumph of the work of Lurie, Toën, and others on
1-categories.

One might ask to classify more generally all stable 1-categories M such that
Mksep ' ModA˝kk

sep . An important structural theorem due to Toën [39] in the
simplicial commutative setting and Antieau–Gepner [1] in the E1-setting shows that
these classification problems are the same: any such M is already a module category
for some k-algebra B .

Note that parts of the problem of classifying étale twists have already been studied.
For instance, if two schemes X and Y become isomorphic over ksep, then ModY is
a twisted form of ModX . Thus, the cohomology set H1

Ket.Spec k;AutX /, which
classifies étale twists of X as a scheme, contributes to the answer of the problem. If
two varieties X and Y are derived equivalent, then étale twists of each of ModX and
ModY give different interpretations for the answer.

Besides the case of schemes, another version of this problem is very well known,
although possibly in a different guise. Suppose one attempts to find ordinary
k-algebras A such that A˝k k is Morita equivalent to k. Then, every such algebra A
is Morita equivalent to a central simple division algebra D over k. So, the Brauer
group Br.k/ classifies these algebras. This remains true in the derived world: every
A1-algebra A such that A˝k k is derived Morita equivalent to k is derived Morita
equivalent to a central division algebra over k. This result is due to Toën [39]. The
Brauer group again has a cohomological interpretation: it is H2

Ket.k;Gm/.
Of course, there is no reason to settle for classifying algebras over k. One can also

attempt to classify algebras over a schemeX . So, consider the problem of classifying
sheaves of quasi-coherent A1algebras A over X such that there is an étale cover
p W U ! X where Modp�A ' ModU , where this is an equivalence of U -stacks
of module categories. The derived Brauer group of X is obtained by taking all
such algebras and taking the quotient by derived Morita equivalence of X -stacks. It
turns out that the derived Brauer group is computable with cohomological methods.
WhenX is an ordinary scheme, the derived Brauer group is H2

Ket.X;Gm/�H1Ket.X;Z/.
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If I only cared about ordinary algebras, there would be a problem at this point: for
some quasi-compact and quasi-separated schemes, not every derived Brauer class is
the class of an ordinary algebra (see [1, Section 7.5]).

My point in the previous paragraph is simply that in order to obtain a
cohomological classification, which might be amenable to computation, of Azumaya
algebras, it is important to allow A1-algebras.

The examples of étale twists of schemes and of the Brauer group show that the
solution to Problem 1.1 should be very interesting, and that it should be in some way
cohomological. As in the example of the previous section, it is frequently easy to
construct some examples, but showing that they are exhaustive is muchmore difficult,
and this is why cohomological methods are important. Such methods are already
required to show, for instance, that Br.Z/ D 0 (see [16]).

1.3. The twisted Brauer space. Let me describe the main tool of this paper in a
special case. Let R be a commutative ring (or a connective commutative ring
spectrum), and let A be an R-algebra (hence, an A1-ring).
Theorem 1.2. There is a sheaf of spaces BrA on the étale site of SpecR with
homotopy sheaves

�si BrA Š

‚
0 if i D 0;
AutModA

if i D 1;
HH0R.A/� if i D 2;
HH2�iR .A/ if i � 3;

where HH�R.A/ is the Hochschild cohomology sheaf of A over SpecR. There is a
fringed spectral sequence

Ep;q2 D Hp
Ket.SpecR;�

s
qBrA/) �q�pBrA.R/;

which converges completely (in the sense of fringed spectral sequences) when eitherA
is a smooth and properR-algebra orA andR are ordinary rings. The set BrA.R/ D
�0BrA.R/ solves Problem 1.1. Namely, every R-algebra B such that B is étale
locally derived Morita equivalent to A determines a point of the space BrA.R/
and conversely. Two points B0 and B1 are connected by a path if and only if
ModB0

' ModB1
. Moreover, there is an action of the derived Brauer group Br.R/

on BrA.R/. If Z is a derived Azumaya R-algebra, then ŒZ� � ŒB� D ŒZ ˝R B�.

The twisted Brauer space and the spectral sequence are generalizations of the
Brauer space and spectral sequence developed in Antieau–Gepner [1]. Besides
having a computational tool to compute twists, the twisted Brauer space together
with its action of the (untwisted) Brauer space carries a large amount of arithmetic
information. For instance, the stabilizer of ModC in BrP1

.k/, where C is a smooth
projective genus 0 curve has enough information to determine over which fields C
has rational points.
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When R is a connective ring spectrum, the Brauer space Br.R/ is a 2-fold
delooping of the units spectrum R�. When A is an R-algebra the space BrA.R/
should be viewed as a 2-fold delooping of the spectrum of units in HH�R.A/. Note
that this is exactly the correct amount of delooping. Since A is an A1-algebra,
which is the same as being an E1-algebra, its Hochschild cohomology HH�R.A/ is
an E2-algebra by Deligne’s conjecture, which has been proven by many authors;
see [27, Section 6.1.4]. So, the spectrum of units is a 2-fold loopspace. The
twisted Brauer space construction has the same formal properties of Br.R/. For
example, the group AutModA

is the derived Picard group of A; that is, it is the
group of invertible (complexes of) .A;A/-bimodules. The derived Picard group
was introduced by Rickard [33], and has been studied extensively, by Miyachi–
Yekutieli [29] and Rouquier–Zimmermann [34].

When R is an ordinary commutative ring and A is an ordinary associative
R-algebra, orX is an ordinaryR-scheme, thenHH2�iR .A/ D 0 (resp.HH2�iR .X/ D 0)
for i � 3, since one can create projective (resp. locally free) resolutions.

The spectral sequence is used to show that BrC .R/ does indeed have exactly
three elements, to classify noncommutative étale twists of curves and quadric
hypersurfaces, and to classify twists of a certain path algebra, which corresponds
to noncommutative projective space. These last twists lead to noncommutative
Severi–Brauer varieties.

Let me explain briefly two of these examples.
Given an elliptic curveE=k, there are three interesting groups that act on Db.E/.

The first is the automorphism group of E as a variety, which is an extension of the
automorphism group of E as an elliptic curve (a finite group) by E acting on itself
acting via translation. The twists by this action are homogeneous spaces for twists
ofE as an elliptic curve. The curveE also acts on Db.E/ by viewing it as the moduli
space of line bundles of degree 0 over E. The action is then given by tensoring with
line bundles. Twists by this action lead to the twisted derived categories Db.E; ˛/
for ˛ 2 Br.E/. This makes sense as every such class ˛ is killed by passage to the
algebraic closure of k.

But, there is a final group acting on Db.E/, which is fSL2.Z/, an extension of
SL2.Z/ by Z. It follows that modular representations in SL2.Z/ give rise to twists
of Db.E/. Unlike in the other two cases, this action does not preserve the natural
t -structure on Db.E/, and hence the twists are truly derived. The interesting point is
that every twist of Db.E/ is “built out of” four things: central simple algebras over k,
homogeneous spaces over twists of E as an elliptic curve, the abelian categories
mentioned above, and the derived categories associated to modular representations.

The quiver�n consists of two points a and b and n arrows from a to b. Kontsevich
and Rosenberg showed that the path algebra k�n is derived equivalent to the derived
category of coherent sheaves on noncommutative projective space NPn�1. For
n � 3, NPn�1 and Pn�1 are not derived equivalent, so these spaces are new from
the perspective of noncommutative algebraic geometry above. However, Miyachi and
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Yekutieli [29, Corollary 0.4] computed the automorphisms of the derived category
of k�n, showing that it is an extension of PGLn.k/. Using their calculation, the
work below shows that there is one twist of Db.k�n/ for each classical Severi–Brauer
variety over k. Thus, the twists of k�n are noncommutative Severi–Brauer varieties.

a b

s1

sn

Figure 1. The quiver �n.

By restricting attention to simplicial commutative rings, as for instance used by
Toën [39] and Toën–Vaquié [40], it is possible to use the fppf topology instead of
the étale topology. The theory below carries over without change to the simplicial
setting.

In Section 2, the necessary background is reviewed and the definition and first
properties of the twisted Brauer space are studied. The spectral sequence that
computes the homotopy of the twisted Brauer space is constructed in Section 3.
This is used to give a complete description of BrP1

.R/. In Section 4, the problem of
when it is enough to check derived Morita equivalence over k is considered. Several
examples are studied in Section 5.

Acknowledgements. This paper would not exist without my collaboration with
David Gepner, who I would like to thank for patiently explaining to me many things
about1-categories during the writing of [1]. His perspective on higher algebra is
present everywhere in this work. I also thank Raphaël Rouquier for several useful
conversations.

2. The twisted Brauer space

2.1. Derived Morita theory. Recall from the introduction that if A is an A1-
algebra, then ModA denotes the stable 1-category of right A-modules. This is a
large 1-category: it is complete and cocomplete. The subcategory ModcA is the
small stable1-category of compactA-modules. For a schemeX , ModX denotes the
stable 1-category of complexes of OX -modules with quasi-coherent cohomology
sheaves. In this case, ModcX , the subcategory of compact objects, is the same as
the 1-category of perfect complexes on X , at least when X is quasi-compact and
quasi-separated. See [4].

The 1-categories ModA and ModX , besides being stable, are also presentable
1-categories, which is equivalent to saying that their homotopy categories have
all coproducts, are locally small, and are �-compactly generated for some regular
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cardinal � (see [27, Corollary 1.4.4.2]. This fact follows from Lurie [27] in the case
of ModA, and from [4] when X is quasi-compact and quasi-separated, because in
that case ModX ' ModA for an appropriate choice of A. Presentability ensures that
ModA and ModX have all small limits and colimits and that they can be described
by a set of generators in a reasonable way. For details, see [25, Chapter 5]. If A is an
R-algebra, where R is a commutative ring spectrum, then ModA is enriched over R,
in the sense that the mapping spectra in ModA are naturally R-modules. By an
R-linear category, I will mean a stable presentable categories and whose morphisms
are R-linear functors that have right adjoints.

There are two points of derivedMorita theory to bear in mind for the paper below.
First, if A and B are R-algebras, then any R-linear functor F W ModA ! ModB
in CatR is determined by the Aop ˝ B-module F.A/. Moreover, there are natural
equivalences

FunLR.ModA;ModB/ ' ModAop ˝ModR
ModB ' ModAop˝RB ;

where FunLR.�;�/ denotes the functor1-category of left adjoint R-linear functors.
The second point is that if E is a compact generator of any R-linear stable

1-category M, then the mapping spectrum out of E induces an equivalence

MapM.E;�/ W ModA ! ModEndR.E/op

by Schwede–Shipley [35]. The converse is also true. In particular, the result of
Bondal and van den Bergh says that there is a compact generator of ModX when X
is quasi-compact and quasi-separated, so ModX ' ModA for some A1-algebra A.

These results should be compared in two directions to more familiar facts. First,
they are essentially a translation into the world of stable1-categories of facts that are
true for abelian categories of modules, from which the appellation Morita originated.
Second, for a scheme, functors ModX ! ModY are determined by complexes on
X �Y . For fully faithful functors, Orlov proved this result for functors of the derived
categories Db.X/ ! Db.Y /. A the level of 1-categorical models, it is due to
Ben-Zvi, Francis, and Nadler [3], while Toën proves it for dg models [38].

As a last point in this section of background, if M is an R-linear category,
and if S is a commutative R-algebra, then one can base-change M up to S via
MS D ModS ˝ModR

M.

2.2. The definition. LetR be a connective commutative ring spectrum, and let ShvKetR
be the big étale topos over SpecR. If S is a connective commutative R-algebra, an
S -linear category M is said to satisfy étale hyperdescent if for every connective
commutative S -algebra T and every étale hypercover T ! U � of T , the induced
morphism

MT ! lim
�

MU �
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is an equivalence. There is a stack of large 1-categories Catdesc over SpecR that
classifies linear categories with étale hyperdescent and left adjoint functors between
them [26, Theorem 7.5]. Write Pr for the underlying sheaf of spaces. For details,
see Antieau–Gepner [1, Section 6].

Suppose now that Z is in ShvKetR, and let ˛ W Z ! Pr be a map of sheaves.
The corresponding linear category with descent, or, equivalently, stack of linear
categories, will be denotedMod˛ . The1-category of sections overf W SpecS ! Z

is theS -linear categoryModf ı˛S classified byf ı˛ byYoneda’s lemma. By definition,
the1-category Mod˛X of sections over a sheaf X over Z is

Mod˛X D lim
f WSpecS!X

Modf ı˛S :

For instance, let O W SpecR ! Pr send SpecS to ModS . Then, ModOX is the stable
1-category of quasi-coherent OX -modules. The properties of this construction of
sheaves have been studied extensively in [3, 26], and [1].

For an object f W X ! Z of ShvKetZ D
�
ShvKetR

�
=Z

, there is a pullback stack f �˛.
Say that a stack of linear categories ˇ W X ! Pr over X is étale locally equivalent
to f �˛ if there is an étale cover p W U ! X such that p�ˇ ' p�f �˛ as stacks of
linear categories over U . There is a subspace Br˛.X/ of Pr.X/ of stacks of linear
categories that are étale locally equivalent to f �˛.
Lemma 2.1. The presheaf Br˛ on ShvKetZ is an étale sheaf.

Proof. The presheaf is the same as the sheafification of the point ˛ in PrjZ .

Definition 2.2. The sheaf of spaces Br˛ is called the ˛-twisted Brauer sheaf. For a
sheaf X , Br˛.X/ is the ˛-twisted Brauer space of X . The pointed set �0Br˛.X/ is
the ˛-twisted Brauer set of X , and it will be written Br˛.X/ in the sequel.

To summarize in a fast and loose way in a familiar setting, if X is a k-variety,
where k is a field, and if A is an ordinary associative k-algebra, then the twisted
Brauer set BrA.X/ classifies sheaves quasi-coherent dg algebras B that are étale
locally derived Morita equivalent onX to OX ˝k A. This is fast because it has yet to
be observed that elements of BrA.X/ actually correspond to algebras, although this is
true; see the next section. The only looseness in this description is that the étale-local
Morita equivalence is an equivalence of the stacks of modules. See Remark 2.7 at
the end of the section.

For example, if O classifies the stack of quasi-coherent modules over Z, then
BrO D Br, the Brauer sheaf studied in [1].
Example 2.3. Suppose that A is an associative S -algebra. Then, the stack ModA
is the stack of linear categories whose 1-category of sections over a connective
commutative S -algebra T is ModT˝SA. In this case, the twisted Brauer sheaf is
denoted BrA.
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Example 2.4. Suppose that X is a scheme over SpecS . Then,ModX is the stack of
linear categories over SpecS whose category of sections over T is ModXT

, where
XT D X �SpecS SpecT . Here ModXT

is the stable T -linear 1-category with
homotopy category equivalent to Dqc.XT /, the derived category of complexes of
OXT

-modules with quasi-coherent cohomology. This slightly unusual notation is
meant to emphasize thatModX is viewed not as a stack overX but over SpecS . The
associated twisted Brauer sheaf is BrX . Note that if X is quasi-compact and quasi-
separated, then by the results of [4], this is a special case of the previous example.
When X ! SpecS is smooth, then the elements of BrX may viewed as étale twists
of Db.X/. In general, they should be viewed as either twists of ModX or PerfX .

It is not clear that, in general, Br˛ is a sheaf of small spaces. However, in most
cases of interest, and all cases considered in this paper, it is. To prove this, we need
a lemma first, which will be of use later in the paper for computing twisted Brauer
spaces.

Lemma 2.5. The sheaf Br˛ is equivalent to the classifying sheaf of the sheaf of
autoequivalences of the stack ˛.

Proof. By definition, any two points of Br˛.X/ are étale locally connected. It
follows that the homotopy sheaf �s0Br

˛ is just a point. There is an obvious morphism
Baut.˛/! Br˛ . So, it suffices to compute the homotopy sheaves of the loopspace
�Br˛ at the point ˛. But, these are just the equivalences from the stack ˛ to ˛, as
desired.

We say that˛ W Z ! Pr classifies a stack of compactly generated linear categories
if Mod˛S is compactly generated for every SpecS ! Z and every connective
commutativeR-algebra S . Note that this hypothesis does not imply that, for instance,
Mod˛Z is compactly generated. However, ifZ is a quasi-compact and quasi-separated
derived scheme, then the methods of Lurie [26, Section 6] can be used to show that
Mod˛Z is compactly generated.

Proposition 2.6. Suppose that ˛ classifies a stack of compactly generated linear
categories over a sheaf Z. Then, Br˛ is a sheaf of small spaces.

Proof. By the previous lemma, it is enough check that aut.˛/ is a sheaf of small
spaces, which we can check on affines SpecS ! Z, and by hypothesis Mod˛S is
compactly generated. The space of sections over SpecS ! Z is a subspace of the
1-category of functors Mod˛S ! Mod˛S that preserve the subcategory of compact
objects Mod˛;cS . Thus, it is a subspace of functors Mod˛;cS ! Mod˛;cS , where Mod˛;cS
is the full subcategory of Mod˛S of compact objects. Write �˛ for the opposite linear
category. Then, aut.˛/.S/ is a subspace of Mod�˛;cS ˝ Mod˛;cS , which is a small
idempotent complete stable 1-category. It follows that aut.˛/ is a sheaf of small
spaces.
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Remark 2.7. It is worth noting that there is a subtlety required when defining the
Brauer group via Morita equivalences. If X is a scheme with an automorphism �

such that ��˛ ¤ ˛ for some Brauer class ˛, then it is clear that the categories of
˛-twisted coherent sheaves Mod˛X and Mod��˛X are equivalent. So, the Brauer group
is a finer invariant than this sort of derived equivalence. I learned of this issue from
Căldăraru’s thesis [9, Example 1.3.16]. However, the underlying stacks Mod˛ and
Mod��˛ are not equivalent over X . The Brauer group classifies Azumaya algebras
up to the Morita equivalence classes of the stacks of their modules. This perspective
is implicit in [39] and [1]. The hypothesis Mod˛X ' Mod��˛

X is rather strange from
the perspective of stacks: it is like saying that two coherent sheaves have isomorphic
vector spaces of global sections. The correct definition of stacky Morita equivalence
is built into Br˛.X/.

2.3. Algebras and the twisted Brauer space. If ˛ W Z ! Pr is a stack of linear
categories, and if f W X ! Z is a map of sheaves, then an object x of Mod˛X is
perfect if its restriction to Mod˛T for every SpecT ! X compact. A set of perfect
objects � perfectly generates Mod˛X if its restriction to every affine is a set of compact
generators. It globally generates if it perfectly generates, if the objects are compact,
and if it generates Mod˛X .

Lurie has shown in [26, Theorem 6.1] that if Mod˛S is an S -linear category with
descent that is étale locally compactly generated, then Mod˛S is globally generated.
In [1, Theorem 6.17], Gepner and I showed that if Mod˛S is étale locally compactly
generated by a single compact object, then Mod˛S is globally generated by a single
compact object. Toën proved similar theorems for simplicial commutative rings
in [39], although with somewhat different methods.

Proposition 2.8. Suppose that ˛ W Z ! Pr classifies a stack of linear categories, and
fix amorphismf W X ! Z, whereX is a quasi-compact and quasi-separated derived
scheme. Then, if Mod˛X is globally generated, so is ModˇX for every ˇ 2 Br˛.X/.
Similarly, if Mod˛X is globally generated by a single object, then so is ModˇX for
every ˇ 2 Br˛.X/.

Proof. These statements follow from Lurie [26, Theorem 6.1] and Antieau–
Gepner [1, Theorem 6.17], respectively. For instance, if Mod˛X is globally generated
by a single object, then, using the étale local equivalence of ˛ and ˇ overX , it follows
that ModˇX is étale locally compactly generated by a single compact object. Now,
apply [1, Theorem 6.17].

As a corollary, in the case of generation by a single object, the stacks Modˇ are
stacks of modules for a quasi-coherent algebra. This is a useful thing to know, as it
can make it easier to compute Hochschild cohomology and other invariants of the
categories.
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Corollary 2.9. LetA W Z ! Pr classify the stack ofA-modules for a quasi-coherent
algebra A over Z. If p W X ! Z is a quasi-compact and quasi-separated derived
scheme, then for every ˇ 2 BrA.X/, the stack Modˇ is equivalent to the stack of
modules ModB for a quasi-coherent OX -algebra B.

The corollary is a twisted and derived form of the Br D Br0 question of
Grothendieck, which asks if every cohomological Brauer class comes from an
Azumaya algebra. This turns out to be false if one only considers ordinary Azumaya
algebras over an ordinary scheme. It is necessary in certain cases to allow derived
Azumaya algebras as well. On the other hand, if X has an ample line bundle, then
a theorem of Gabber (see de Jong [12]) showed that Br.X/ D H2

Ket.X;Gm/tors. If
in addition X is regular and noetherian, then the computations of [1, Section 7]
show that every derived Azumaya algebra on X is Morita equivalent to an ordinary
Azumaya algebra.

Question 2.10. Suppose thatR is a regular, noetherian ring, and letA be an ordinary
associativeR-algebra. Is every element ˇ 2 BrA.SpecR/ derived Morita equivalent
to an ordinary R-algebra B?

Although this seems like a difficult question in general, this paper gives a positive
answer for quadric hypersurfaces and noncommutative projective spaces.

2.4. The action of the Brauer group and ˛-twisted sheaves. There is an action
of the Brauer space Br on Br˛ for any ˛. Indeed, if ˇ W X ! Pr is étale locally
equivalent to ˛, and if  W X ! Pr is étale locally equivalent to O W X ! Pr, then
the tensor product  ˝ ˇ is étale locally equivalent to ˛, since, if SpecS ! X is a
map from an affine on which ˇ is equivalent to ˛ and  is equivalent to O, one sees
that

ModS ˝ModS
ModˇS ' ModS ˝ModS

Mod˛S ' Mod˛S :

A special case of this action has already gained a great deal of attention under
a different guise, namely as derived categories of twisted sheaves (see [9] or [24]).
Suppose that X is an ordinary scheme and that ˛ 2 Br0.X/ D H2.X;Gm/tors. One
can represent ˛ as a 2-cocycle .˛ijk/ over some étale cover fUigi2I of X . An
˛-twisted coherent sheaf consists of a coherent OUi

-module Fi for each i and an
isomorphism �ij W Fi jUij

! Fj jUij
such that

�ki ı �jk ı �ij

is multiplication by ˛ijk on Fi jUijk
. The ˛-twisted coherent sheaves form an abelian

category and so one can speak of complexes of ˛-twisted coherent sheaves and obtain
a derived category Db.X; ˛/.

More generally, one can consider the stable1-category Mod˛X of complexes of
˛-twisted OX -modules with quasi-coherent (˛-twisted) cohomology sheaves. The
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subcategory of compact objects may be identified with the category of complexes of
˛-twisted perfect complexes.

If ˛ 2 Br0.X/, write ModX;˛ for the stack (over SpecR) of ˛-twisted sheaves
on X . If X is regular and noetherian, Db.X; ˛/ ' Ho.ModX;˛;perfR /, the homotopy
category of the stable1-category of ˛-twisted perfect complexes on X . These are
the compact objects in ModX;˛ .

Let X be a scheme over an ordinary commutative ring S . For an arbitrary
˛ 2 Br0.X/, it will not be the case that ModX;˛ will be étale locally equivalent
to ModX over SpecS . For instance, if X is a K3 surface over an algebraically
closed field k, then Db.X/ is generically not equivalent to Db.X; ˛/ for any ˛ ¤ 0

in Br0.X/. The stacks of linear categories ModX and ModX;˛ are in general only
étale locally equivalent on X . However, if ˛ 2 Br.S/, we can pull-back via the
structure morphism p W X ! SpecS to obtain p�˛. Then, ModX;p�˛ is étale
locally Morita equivalent toModX over SpecS .

Proposition 2.11. The action of ˛ 2 Br.S/ on BrX .S/ sends ModX to ModX;p�˛ .

Proof. Write � W X ! SpecS . By definition, ˛ �ModX is the stack that sends
f W SpecT ! SpecS to the T -linear category

Mod˛T ˝ModT
ModXT ' Mod˛T ˝ModT

ModXT
:

On the other hand, ModX;p�˛ is the stack that sends f to the T -linear category
Modp

�˛
XT

. There is a natural map from Mod˛T ˝ModT
ModXT

to Modp
�˛
XT

, which is
an equivalence étale locally on SpecT . It follows that it is already an equivalence by
descent. Taking T D S , the proposition follows.

The action will be given a cohomological interpretation at the end of Section 3.2.

Corollary 2.12. If the pullback p�˛ is zero in Br.X/, then ˛ stabilizes ModX .

I conjecture that the converse is true. The conjecture will be verified in various
cases throughout the paper, including for smooth projective varieties X over a field
with !X ample or anti-ample.

Conjecture 2.13 (Stabilizer conjecture). If ˛ 2 Br.S/ stabilizes ModX , then ˛ 2
ker.Br.S/! Br.X//.

To conclude the section, I include a more formal structural remark. If A, B , C ,
and D are S -algebras, and if C is étale locally Morita equivalent to A and D is
étale locally Morita equivalent to B , then C ˝S D is étale locally Morita equivalent
toA˝SD. Thus, there are natural productsBr.�IA/�Br.�IB/! Br.�IA˝SB/
of sheaves of spaces over SpecS . The Brauer sheaf Br is an E1-algebra object
in ShvKetS by [1, Corollary 7.5], which means that it is a sheaf of group-likeE1-spaces.
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Proposition 2.14. If A is an S -algebra, then BrA is a module for the E1-algebra
object Br, and thus can be viewed as an element of ModBr.ShvKetS /. There is a natural
equivalence

BrA ˝Br BrB ' BrA˝SB :

Proof. The claim that BrA is a module for Br follows from the symmetric monoidal
structure on the sheaf Pr. To prove the second claim, it is enough to note that if T
is a connective commutative S -algebra and C is a T -algebra that is étale locally
equivalent to A˝S B ˝S T , then C is étale locally equivalent to the tensor product
of an algebra in BrA.T / and an algebra in BrB.T /.

3. The descent spectral sequence

3.1. Fringed spectral sequences. To consider carefully what happens in the fringed
spectral sequences that appear when doing descent spectral sequences, it is useful to
first consider the long exact sequence of homotopy groups associated to a fibration
p W X ! Y of pointed spaces. Let b 2 Y be the basepoint, and let f 2 F , where
F D p�1fbg. Then, there is a sequence of homotopy groups and pointed homotopy
sets

! � � ��2.Y; b/! �1.F; f /! �1.X; f /! �1.Y; b/

! �0.F; f /! �0.X; f /! �0.Y; b/;

where �0.�; f / is the set of path components pointed by f . This sequence is exact
in the following sense:
� at any place �i .F; f /, �i .X; f /, or �i .Y; b/ where i > 0, it is exact in the usual
sense that ker D im;

� the image of �2.Y; b/ is in the center of �1.F; f /;
� there is an action of �1.Y; b/ on �0.F; f / such that two elements of �0.F; f /
agree in �0.X; f / if and only if they are in the same orbit;

� the map �1.Y; b/ ! �0.F; f / induces a bijection between �1.Y; f /=�1.X; f /
and the orbit of the point f in �0.F; f /;

� a point g 2 �0.X; f / goes to b in �0.Y; b/ if and only if it is in the image of
�0.F; f /! �0.X; f /.

The main information that this sequence does not see is the fact that the fibers of
�0.X; f / ! �0.Y; b/ can vary widely over different points of �0.Y; b/ and can be
empty, so that in particular �0.X; f /! �0.Y; b/ might not be surjective.

Now, let � � � ! Xn ! Xn�1 ! � � �X0 ! � be a sequence of fibrations of pointed
spaces, where Xn is pointed by fn. Let f be the point of X D limXn that is the
inverse limit of the points fn. Write Fn for the homotopy fiber of Xn ! Xn�1
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over fn�1. Bousfield and Kan [7, Section IX.4] created a spectral sequence
that converges conditionally to ��X by rolling up all of the fibration sequences
Fn ! Xn ! Xn�1 into a generalized triple, generalized in the sense that some
terms are not abelian groups. Without going into many details, there is a fringed
spectral sequence

Es;t2 D �t�s.Ft ; ft /) �t�sX;

fringed in the sense that Es;sr is just a pointed set, and Es;sC1r is a possibly non-abelian
group.

The differential dr in the Er -page of this spectral sequence has degree .r; r � 1/.
(Note that Bousfield and Kan index the spectral sequence differently, beginning
instead with Es;t1 D �t�sFs .) When t � s > 0, the Es;trC1 term is computed in the
usual way from Es;tr , as cycles modulo boundaries. When t � s D 0, there is not
only a differential with target Es;tr , but the source Es�r;t�rC1r acts on Es;tr , and Es;trC1
is the orbit space of this action. The meaning of convergence is clear when t � s > 0.
When t � s D 0, there is a filtration of �0X as a pointed set. This means that there
is a sequence of inclusions of pointed sets

� � � � � � FsC1�0X � Fs�0X � � � � � F0�0X D �0X

and the successive quotients Fs�0X=FsC1�0X are bijective to Es;s1 as pointed sets.
The filtration on �iX has the same indexing. Namely, there is a decreasing filtration
Fs�iX and Fs�iX=FsC1�iX Š Es;sCi1 , when the spectral sequence converges.

The reader is warned that the convergence of this spectral sequence is in general
only conditional. However, the spectral sequence will converge completely in all
cases considered in this paper (for t � s > 0). For a discussion of convergence
of these spectral sequence, see [7, Section IX.5]. It makes sense only for the terms
abutting to�iX where i > 0, where it coincides with the usual notion of convergence.
In general, more work is needed to get a handle on �0X , which is the case of greatest
interest in this paper. However, the complete convergence for t � s > 0 will often
give crucial information for understanding what happens for �0X .

The descent spectral sequence, sometimes called the Brown–Gersten spectral
sequence [8], associated to a sheaf of spaces on a topos is a special case of the
spectral sequence associated to a tower of fibrations. Let F be a sheaf of pointed
spaces, which is to say an object of ShvKetR. The construction below works for any
object in any 1-topos. However, convergence is a more delicate question, closely
related to notion of hypercompleteness discussed in [25, Section 6.5]. The Postnikov
tower of F as a sheaf is obtained via the truncations of F

F ! � � � ��nF ! ��n�1 ! � � � ��0F ! �;

and the fiber of ��nF ! ��n�1F is the Eilenberg–MacLane sheaf K.�snF; n/,
which has homotopy sheaves �snF in degree n and 0 (or a point) elsewhere. Let X
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be another sheaf in ShvKetR. Then, the sequence

� � � ! map.X; ��nF /! map.X; ��n�1F /! � � � ;

is a tower of fibrations which, in good cases, and all cases in this paper, has inverse
limit the space map.X; F /. The spectral associated to this tower has the form

Ep;q2 D �q�pmap.X;K.�sqF; q//) �q�pmap.X; F /:

Since K.�sqF; q/ is an infinite loop space (at least for q > 1),

�q�pmap.X;K.�sqF; q// ' �0map.X;K.�sqF; p//:

Suppose for a moment that C is a small category with a Grothendieck topology
and that X is an object of ShvNC and A is a sheaf of abelian groups on C . Then,
Lurie shows [25, Remark 7.2.2.17] that

�0map.X;K.A; n// ' Hn.X;A/;

where Hn.X;A/ denotes the usual cohomology group of X with coefficients in A.
Since the small étale site over a connective commutative R-algebra S is equivalent
to the nerve of the small étale site over �0S , it follows that if X D SpecS , then the
groups

�q�pmap.SpecS;K.�sqF; q// ' �0map.SpecS;K.�sqF; p//
' Hp

Ket.Spec�0S; �
s
qF /:

This has the following generalization to schemes.

Proposition 3.1. Let R be an ordinary commutative ring, and let X be an ordinary
R-scheme, viewed as an object of the 1-topos ShvKetHR. If A is an abelian group
object in the underlying discrete topos, then

�0map.X;K.A; n// Š Hn
Ket.X;A/;

where Hn
Ket.X;A/ denotes the usual étale cohomology group of X with coefficients

in A.

Proof. The Eilenberg–MacLane sheaf is hypercomplete, so one can compute the
group �0map.X;K.A; n// with a suitably nice étale hypercover of X that will also
compute the group Hn

Ket.X;A/. Assuming that this hypercover consists of disjoint
unions of affine schemes, the observation above that the statement is true for affine
schemes shows that the proposition is true by comparing the Čech complexes.
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3.2. The spectral sequence. Here and in the rest of the paper I will abuse notation
and use ModA andModA interchangeably. There is no danger of confusion or error,
since ModA is an R-linear category with descent, so that ModA can be constructed
from ModA, and vice versa.

In this paper, the main objects of interest are BrX , where X is a smooth proper
scheme over an ordinary commutative ringR, which is a special case ofBrA whereA
is a smooth and proper R-algebra. The strategy for actually computing BrX .R/ is to
determine the sheaf of spaces autModX

, use the fact that BrX is the classifying sheaf
of autModX

, and use the descent spectral sequence.

Proposition 3.2. Let A be an R-algebra. Then, the homotopy sheaves of autModA

are

�si autModA
Š

˚
AutModA

if i D 0;
HH0.A/� if i D 1;
HH1�i .A/ if i � 2;

whereAutModA
is the sheaf of groups with sections overS the groupAutModA˝RS

, and
HH�.A/ is the Hochschild cohomology sheaf of A, which sends S to HH�S .A˝R S/.

Proof. The description of �s0autModA
is by definition. Since this is a sheaf of

group-like E1-spaces, the higher homotopy sheaves are independent of the basepoint
chosen. The canonical basepoint is the identity functor id, and it suffices to compute
the homotopy sheaves of the loopsheaf �idautModA

. Thus, one wants to compute
the space of automorphisms of id W ModA ! ModA as a functor. This is nothing
other than the space of automorphisms of A as an Aop ˝R A-module, which is
precisely the space of units in the Hochschild cohomology algebra of A. The
Hochschild cohomology algebraHH�.A/ is a sheaf over SpecR because the category
ModAop˝RA satisfies étale hyperdescent.

This is a sheafy version of [38, Corollary 1.6]. When X is quasi-compact and
quasi-separated, ModX ' ModA for some A, so that the proposition also applies to
the automorphism sheaf of ModX .

WhenX is smooth, proper, and geometrically connected overR,HH0.X/� Š Gm,
since HH0R.X/ Š H0.X;OX / by the Hodge spectral sequence for Hochschild
cohomology [37]. Moreover, if R is an ordinary ring, and if A is an ordinary
R-algebra or X is an ordinary scheme, then the negative Hochschild cohomology
groups vanish, since projective resolutions exist.

The next theorem gives the main computational tool for determining BrA.R/.
Throughout, when writing BrA, it is assumed that ModA is chosen as the global
basepoint of the sheaf.
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Theorem 3.3. There is a fringed spectral sequence

Ep;q2 D

(
Hp
Ket.R; �

s
qBrA/ if q � p � 0;

0 otherwise

) �q�pBrA.R/;

where

�si BrA Š

‚
0 if i D 0;
AutModA

if i D 1;
HH0.A/� if i D 2;
HH2�i .A/ if i � 3;

which converges completely if A is smooth and proper or if R and A are ordinary
rings.

Proof. The spectral sequence is nothing more than the descent spectral sequence of
the previous section. The first statement about convergence follows because if A is
smooth and proper, the Hochschild cohomology of A vanishes in sufficiently high
degrees, so that the spectral sequence collapses after some finite stage. The second
statement follows because, if R and A are ordinary, HH2�i .A/ D 0 for i � 3.

The theorem is especially strongwhenR andA are ordinary rings, or whenR is an
ordinary ring and one considers BrX for a smooth, proper, geometrically connected
R-scheme X . In either of these cases the homotopy sheaves of the twisted Brauer
sheaf are concentrated in two degrees, 1 and 2. For instance,

�si BrX Š

‚
0 if i D 0;
AutModX

if i D 1;
Gm if i D 2;
0 if i � 3:

This means that the sheaf BrX is an extension of Eilenberg–MacLane sheaves

K.Gm; 2/! BrX ! K.AutModX
; 1/:

Since Gm is a sheaf of abelian groups, K.Gm; 2/ is an infinite loop space in ShvKetR.
This implies that the sequence above can be delooped, and BrX can be identified as
the fiber in the sequence

BrX ! K.AutModX
; 1/! K.Gm; 3/:

Then, taking global sections, there is a fiber sequence

BrX .R/! map.SpecR;K.AutModX
; 1//! map.SpecR;K.Gm; 3//:
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We can point the spaces in this sequence by choosing the point ModX of �0BrX .R/.
The spectral sequence degenerates into the long exact sequence of homotopy groups
associated to this fibration. In particular, there is an isomorphism �2BrX .R/ Š
Gm.R/ and an exact sequence

0! H1
Ket.SpecR;Gm/! �1BrX .R/! AutModX

.R/

! H2
Ket.SpecR;Gm/! �0BrX .R/! H1

Ket.SpecR;AutModX
/! H3

Ket.SpecR;Gm/:

The meaning of exact here is just as in the beginning of the previous section. In
particular, there is an action of H2

Ket.SpecR;Gm/ on �0BrX .R/, and the fibers of
�0BrX .R/ ! H1

Ket.SpecR;AutModX
/ are precisely the orbits of this action. The

quotient H2
Ket.SpecR;Gm/=AutModX

.R/ is in bijection with the orbit of ModX in
�0BrX .R/.

The kernel of AutModX
.R/ ! H2

Ket.SpecR;Gm/ consists of those elements that
come from actual autoequivalences of ModX .

An element of H1
Ket.SpecR;AutModX

/maps to 0 in H3
Ket.SpecR;Gm/ if and only if

it can be lifted to�0BrX .R/. The class inH3Ket.SpecR;Gm/ represents the obstruction
to lifting a cohomology class in H1

Ket.SpecR;AutModX
/ to an actual collection of

gluing data to obtain a twisted form of the stack ModX . We will see that these
obstructions frequently vanish. This occurs when the gluing data can be made to act
on an object with less homotopical information, such as a scheme, as opposed to the
stable1-categories appearing in ModX .

3.3. The example of the introduction. Recall that ModP1
R
' ModRQ whereQ is

quiver � � �. Since P1 is Fano, the computation of Bondal and Orlov [5] shows
that AutModP1

Š Z � .Z Ì PGL2/. Thus, by the vanishing of negative Hochschild
cohomology for ordinary schemes, the homotopy sheaves of BrP1

are

�si BrP1

D

‚
0 if i D 0;
Z � .Z � PGL2/ if i D 1;
Gm if i D 2;
0 otherwise;

where the degree 1 term splits because PGL2 acts trivially on Pic.P1/ D Z.
In the descent spectral sequence for BrP1

there is only one possible non-zero
differential, which is d2 W Z � .Z � PGL2.R//! H2

Ket.SpecR;Gm/. But, it is clear
that this is zero, because Z � .Z � PGL2.R// survives to the E1-page to act as
automorphisms of ModP1 . Since H1

Ket.Spec k;Z/ D 0 for any field k, there is an
exact sequence of pointed sets

0! Br.R/! BrP1

.R/! H1
Ket.SpecR;PGL2/! �:
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This sequence is not split, because the action of Br.R/ on the non-trivial point
of H1

Ket.SpecR;PGL2/ is trivial. However, since H1
Ket.SpecR;PGL2/ is the set of

isomorphismclasses of smooth projective genus 0 curves overR, themapBrP1

.R/!

H1
Ket.SpecR;PGL2/ is indeed surjective, and the set BrP1

.R/ consists of categories
of twisted sheaves on genus 0 curves.

We can compute the higher homotopy of BrP1

.R/ at the point ModP1 . From the
spectral sequence,

�iBrP1

.R/ Š

˚
Z � .Z � PGL2.R// if i D 1;
R� if i D 2;
0 if i � 3:

Note that the fundamental group (at the point ModP1
R
is the automorphism group of

ModP1
R
. The first Z is just translation, while the second corresponds to tensoring

with O.1/. The group �2 is the group of invertible natural transformations between
automorphisms.

The reader might be disturbed by an apparent asymmetry in the computation
above. Namely, what would happen if we did the calculation instead at the point
ModC where C is again the curve x2 C y2 C z2 D 0 in P2 over R? In this case,

�si BrC D

‚
0 if i D 0;
Z � .Rp1�Gm;C � AutC / if i D 1;
Gm if i D 2;
0 otherwise:

Here, AutC is a form of PGL2 over R, and p W C ! SpecR is the structure
map, so Rp1�Gm;C is the relative Picard sheaf. Then, by considering the Leray
spectral sequence for the sheaf Gm;C and the map p, it is easy to see that Pic.C /!
�.SpecR;Rp1�Gm;C / has cokernel equal to Z=2. Since we know that the Brauer
group acts trivially, it follows that there is a non-zero differential in the descent
spectral sequence, and we obtain a filtration of pointed sets

0! BrC .R/! H1
Ket.SpecR;AutC /! �:

The difference between this computation and that for P1 is simply because of the
dependence of the fiber on the basepoint for fibrations X ! Y , as discussed in
Section 3.1.

Thus, ModP1 , ModH
P1 , and ModC are the only 3 elements of BrP1 , which gives

a positive answer to Question 2.10.

Theorem 3.4. Suppose that A is an R-algebra such that C ˝R A is derived Morita
equivalent to P1. Then, A is derived Morita equivalent over R to an ordinary
R-algebra, either RQ, HQ, or the modulated quiver algebra associated to C .
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3.4. The stabilizer conjecture in the canonical (anti-)ample case. The next
theorem verifies the stabilizer conjecture in many cases.

Theorem 3.5. Let X be a smooth, projective, and geometrically connected variety
over a field k. Suppose that the canonical line bundle !X is either ample or anti-
ample. Then, the stabilizer conjecture holds for ModX . That is, the kernel of
Br.k/! Br.X/ is the same as the fiber of Br.k/! BrX .k/.

Proof. Consider the split exact sequence of sheaves of groups

0! Z � PicX=k ! AutModX
! AutX ! 0

given by the theorem of Bondal and Orlov [5]. The end of Section 3.2 provides an
exact sequence

�1BrX .k/! AutModX
.k/! H2

Ket.k;Gm/! �0BrX .k/:

Thus, it suffices to show that the image of AutModX
.k/ ! H2

Ket.k;Gm/ is precisely
ker.Br.k/! Br.X//. By examining the exact sequence of sheaves above, it is clear
that the only sections ofAutModX

over Spec k that might not lift to automorphisms of
ModX come from elements of PicX=k.k/ that do not lift to Pic.X/. But, the cokernel
of Pic.X/ ! PicX=k.k/ injects into Br.k/ as the kernel of Br.k/ ! Br.X/ by the
Leray spectral sequence. This completes the proof.

4. Lifting Morita equivalences

Let k be a field, and let A be a k-algebra. Up to this point, only algebras B that
become derived Morita equivalent to A after a finite separable extension l=k have
been considered.

Question 4.1. When is it the case that if A and B are k-algebras that are derived
Morita equivalent over k, then they are derived Morita equivalent over a finite
separable extension of k.

This is a question about the smoothness of the stack of derivedMorita equivalences
between A and B . It is possible to solve it using the techniques of [1] when A is a
smooth finite-dimensional hereditary k-algebra. Recall that A is hereditary if it has
global dimension 1, and that A is smooth if it has finite projective dimension over
Aop ˝R A.

Theorem 4.2. Let A be a smooth finite-dimensional hereditary k-algebra. Then,
if B is derived Morita equivalent to A over k, it is derived Morita equivalent to A
over some finite separable extension l=k.
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Proof. Let MorA!B the sheaf of derived Morita equivalences from A to B . Then,
by hypothesis, MorA!B ! Spec k is surjective on geometric points. Let M be a
Morita equivalence over a field l . I can assume given M that it is in fact a self-
equivalence ModA ! ModA, and even the identity, viewed as a perfect complex of
ModAop˝kA. But then, by [1, Corollary 5.9], the cotangent complex of MorA!B
atM is equivalent to

†�1 EndAop˝kA.A/
_:

The conditions on A ensure that EndAop˝kA.A/ has homology (and hence, in this
case, Tor-amplitude) contained in degrees Œ�1; 0�. Since the base is a field, the dual
EndAop˝kA.A/

_ has Tor-amplitude contained in Œ0; 1�. Thus, the cotangent complex
has Tor-amplitude contained in degrees Œ�1; 0�. Therefore, the sheaf of derived
Morita equivalences is smooth when A is a smooth finite-dimensional hereditary
hereditary k-algebra. By Theorem [1, Theorem 4.47], it follows that there are étale
local sections ofMorA!B ! Spec k, as desired.

The theorem applies in particular to all path algebras. There is also a global
version of the theorem, which has the same proof.
Scholium 4.3. Suppose thatX is a regular noetherian scheme and thatA is a perfect
sheaf of coherent algebras on X such that Ak.x/ is smooth and hereditary for each
point x of X . If B is another perfect sheaf of coherent algebras on X , and if

ModB˝OX
k.x/ ' ModA˝OX

k.x/

for each geometric point x of X , then there is an étale cover U ! X such that
ModB˝OX

OU
' ModA˝OX

OU
.

5. Examples

The purpose of this section is to give a taste of the computational power of the spectral
sequence rather than to give a complete treatment. However, complete computations
are obtained for genus 0 curves, quadric hypersurfaces, and twists of the quiver �n.
For curves of higher genus, only the outline of the theory is exposed, a more detailed
treatment being left to future work.

The spectral sequence makes it possible to describe representatives for all of the
elements of �0BrA.k/ or �0BrX .k/ in many cases. However, it is a much more
difficult question to decide when two representatives determine the same point in
the set of connected components. There are two reasons for this difficulty. First,
it is in general a subtle problem to determine the stabilizer of a point under the
action of the Brauer group. In some good cases, such as genus 0 curves or quadrics,
this is possible. But, for curves of higher genus, for example, it is much harder to
determine the stabilizer. The second problem is that many sequences involve short
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exact sequences in nonabelian cohomology, where exactness is only certain over
basepoints.

Recall that I will abuse notation and write ModA andModA interchangeably.

5.1. Genus 0 curves. The reader can easily use the arguments in the introduction
and Section 3.3 to compute BrP1

.k/ for any field k. There is a sequence

0! Br.k/! BrP1

.k/! H1
Ket.Spec k;PGL2/! �;

which is exact in the following senses. There is an action of Br.k/ on BrP1

.k/,
which is faithful. Moreover, the action of Br.k/ on the point ModP1 is free. The
map BrP1

.k/ ! H1
Ket.Spec k;PGL2/ is surjective, and two elements of BrP1

.k/ lay
over the same genus 0 curve C in H1

Ket.Spec k;PGL2/ if and only they are in the
same Br.k/-orbit. A remark is in order about surjectivity, as the end of Section 3.2
implies that there is in general an obstruction. However, it vanishes in this case as
H1
Ket.Spec k;PGL2/ is the set of isomorphism of smooth projective genus 0 curves

over k. A class of BrP1

.k/ mapping to C 2 H1
Ket.Spec k;PGL2/ can be constructed

explicitly be taking ModC .
The interesting question is to determine the stabilizers of the action of Br.k/

on ModC for a genus 0 curve without any k-points. The curve C is the Severi–
Brauer variety of a unique degree 2 central division algebraD over k. By Amitsur’s
theorem [14, Theorem 5.4.1], the kernel of Br.k/! Br.k.C // is exactly the cyclic
subgroup generated by ŒD�. Since Br.C / ! Br.k.C // is injective, Theorem 3.5
says that the stabilizer is precisely .ŒD�/ � Br.k/. It follows that the orbit of ModC
in BrP1

.k/ is in bijection with Br.k/=.ŒD�/.
In summary, the noncommutative étale twists of P1 are all determined by a

genus 0 curve C and a Brauer class ˛ 2 Br.k/. The 1-category of modules over
this noncommutative twist is Mod˛C , the1-category of ˛-twisted sheaves on C . By
usingmodulated quivers (for which, see [13]), all twists are derivedMorita equivalent
to ordinary k-algebras, which answers Question 2.10 for the path algebra of �� �.

5.2. Genus 1 curves and modular representations. Let E be an elliptic curve
over k. A group isomorphism E �E ! E �E can be given by a matrix

f D

�
f1 f2
f3 f4

�
of group isomorphisms fi W E ! E. By using an isomorphism E Š OE, where OE is
the dual of E, one obtains

Qf D

 
Of4 � Of2

� Of3 Of1

!
:



Étale twists in noncommutative algebraic geometry 185

Let U.E/ be the subgroup of group automorphisms f W E � E ! E � E such that
Qf D f �1. Then, by Orlov [30], there is an exact sequence

0! Z �E � OE ! AutModE
! U.E/! 0:

From this, one can describe the elements of BrE .k/.
I will consider a special case, when U.E/ Š SL2.Z/, which happens for a

non-CM elliptic curve. In this case, the sequence reduces to

0! Z �E � OE ! AutModE
! SL2.Z/! 0: (5.1)

LetfSL2.Z/ be the group generated by x, y, and t with relations .xy/3 D t , y4 D t2,
xt D tx, and yt D ty. Then, the quotient of fSL2.Z/ by the central subgroup .t/
is isomorphic to SL2.Z/. Moreover, there is a homomorphism fSL2.Z/! AutModE

whose composition with AutModE
! SL2.Z/ is the surjection above. The element t

maps to the translation functor. See [20, Section 9.5]. Since Z Š .t/ � fSL.Z/ is a
central subgroup, it follows from [36, Proposition 42] that

H1
Ket.Spec k;fSL2.Z//! H1

Ket.Spec k;SL2.Z//

is a bijection of pointed sets. Combining this fact with the exact sequence (5.1), one
easily proves the following lemma.
Lemma 5.1. The natural map H1

Ket.Spec k;AutModE
/ ! H1

Ket.Spec k;SL2.Z// is
surjective.

Now, the descent spectral sequence for BrE .k/ yields an exact sequence

0! Br.k/! BrE .k/! H1
Ket.Spec k;AutModE

/! H3
Ket.Spec k;Gm/:

(The exactness on the left follows from the stabilizer conjecture for E, which can be
proved by adapting the proof of the canonical (anti-)ample case to the non-CM elliptic
curve E by using the explicit description of the sheaf of derived autoequivalences
of ModE .) Let v W BrE .k/! H1

Ket.Spec k;AutModE
/! H1

Ket.Spec k;SL2.Z//. Since
SL2.Z/ is the constant étale sheaf, there is an equivalence

H1
Ket.Spec k;SL2.Z// Š Homcont.Gal.k/;SL2.Z//;

where Homcont denotes continuous group homomorphisms.
Proposition 5.2. To every twisted form M of ModE there is a canonical modular
representation of Gal.k/.

Now, suppose that the v-invariant of M is trivial. Then, using the exact sequence

H1
Ket.Spec k;E � OE/! H1

Ket.Spec k;AutModE
/! H1

Ket.Spec k;SL2.Z//;

it follows that the Br.k/-orbit of M corresponds to a class of H1
Ket.Spec k;E � E/.

The two copies of E are not equal. One is E acting on itself via translations, the
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other is OE acting on ModE by tensoring with line bundles. The set H1
Ket.Spec k;E/

contributes the categoriesModC for homogeneous spaces ofE, while H1
Ket.Spec k; OE/

contributes the categories Mod˛E , where ˛ 2 Br.E/=Br.k/ � H1
Ket.Spec k; OE/, which

fits into the exact sequence 0 ! Br.k/ ! Br.E/ ! H1
Ket.k;

OE/ ! H3
Ket.k;Gm/

coming from the Leray spectral sequence.
Consider twists M ' ModC where C is a homogeneous space for E. It

is impossible at the moment to give a full treatment of the stabilizer of ModC
in Br.k/. The same arguments used to prove the stabilizer conjecture in the canonical
(anti-)ample case can be used for a non-CM elliptic curve as well, which shows that
the stabilizer is exactly the kernel of Br.k/ ! Br.k.C //. Until recently, very little
was known about this kernel when C is a curve of genus higher than 0. This has
changed with the work of [10, 17, 18]. In [10], the authors study this problem, and
show that for homogeneous spaces of curves over numbers fields or local fields, the
kernel can be computed algorithmically. They describe, for instance, a homogeneous
space C for

y2 C xy C y D x3 D x2 � 10x � 10

over Q where the kernel, and hence stabilizer group, is isomorphic to Z=4 � Z=2.
They also show that for a homogeneous space over a local field or number field, the
stabilizer is finite [10, Proposition 4.11]. Over larger fields, they give an example to
show that the stabilizer need not be finite in general. In the case of genus 0 curves,
the stabilizer is not only finite, but in all cases has order at most 2.

5.3. Genus g � 2 curves. Let C be a smooth projective curve over k having
genus g � 2. Then, !C is ample, so that the automorphism group of ModC can be
computed by Bondal and Orlov:

AutModC
Š Z � .Pic.C / Ì Aut.C //:

Since there are no Z-torsors over Spec k, there is an exact sequence

H1
Ket.Spec k;Pic

0
C=k/! H1

Ket.Spec k;AutModC
/! H1

Ket.Spec k;AutC /! �;

where Pic0C=k is the Jacobian variety of C , and where the map is surjective on the
right since the surjection AutModC

! AutC splits. There is again a sequence

Br.k/! BrC .k/! H1
Ket.Spec k;Pic

0
C=k Ì AutC /! H3

Ket.Spec k;Gm/;

with the same exactness properties as the sequence above for P1. The kernel on the
left is precisely the kernel of Br.k/! Br.C / by Theorem 3.5.

Proposition 5.3. The twists M of ModC are the categories Mod˛D for D a twisted
form of C and ˛ 2 Brsep.D/, where Brsep.D/ D ker .Br.D/! Br.Dksep//.
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Proof. If k is separable, then Brsep.D/ D Br.D/. Since we can change the basepoint
of BrC .k/ to ModD for any twisted form D of C , it is enough to treat the classes in
the fiber of

BrC .k/! H1
Ket.Spec k;AutModC

/! H1
Ket.Spec k;AutC /:

Write F for the set of these points. Then, F can be described by the exact sequence

Br.k/! F ! H1
Ket.Spec k;Pic

0
C=k/! H3

Ket.Spec k;Gm/;

where themapH1
Ket.Spec k;Pic

0
C=k/! H3

Ket.Spec k;Gm/ is induced from the sequence
above. The Leray spectral sequence and the fact that R2p�Gm;C D 0, where
p W C ! Spec k, shows that there is also an exact sequence

Br.k/! Brsep.C /! H1
Ket.Spec k;Pic

0
C=k/! H3

Ket.Spec k;Gm/:

The map Brsep.C /! F given by sending ˛ 2 Brsep.C / to Mod˛C induces a map of
these sequences, from which it follows that Brsep.C / surjects onto F , which proves
the proposition.

The stabilizer of ModC is again the kernel of Br.k/ ! Br.C / D Br.k.C //.
As far as I know, when the genus is g � 2, almost nothing is known about the
stabilizer groups, except for the fact that it vanishes if C has a k-point. In that
case, the map H1

Ket.Spec k;Pic
0
C=k/ ! H3

Ket.Spec k;Gm/ is identically zero, because
H3
Ket.Spec k;Gm/! H3

Ket.C;Gm/ is injective (a k-point defines a section).

5.4. Quadric hypersurfaces. Assume for simplicity that the characteristic of k is
not 2.

Consider the quadratic form q D x20 C � � � C x22n�1 � x
2
2n on k2nC1. Let

X D X.q/ be the quadric hypersurface in P2n cut out by q. I want to study BrX .k/.
As X is Fano and Pic.X/ D Z, the theorem of Bondal and Orlov [5] says that
AutModX

D Z � .Z � Aut.X//. Therefore, every element of BrX .k/ is Mod˛Y for a
twisted form Y of X and a Brauer class ˛ 2 Br.k/. Every such Y is determined by
another nondegenerate quadratic form p on k2nC1. The interesting question is then
what is the stabilizer of ModY for such a twist Y ; in other words, by Theorem 3.5,
what is the kernel of Br.k/ ! Br.k.Y //? This is in fact a classical question.
Let C0.p/ denote the even Clifford algebra of p, which is a central simple algebra.
To compute the kernel of Br.k/ ! Br.Y /, it is enough to compute the kernel of
Br.k/! Br.k.Y //, since Y is smooth. A division algebra D is in the kernel if and
only if the index ofD ˝k k.Y / is 1. But, this index was computed to be

gcdfind.D/; 2n�1ind.D ˝k C0.p//g;

by, for instance, Merkurjev–Panin–Wadsworth [28]. Because C0.p/ has degree a
power of 2, the kernel must be 2-primary. Therefore, if n > 1, the kernel is always 0.
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The case n D 1 was already handled in the case of genus 0 curves. The following
theorem summarizes the situation. Note that the statement about surjectivity follows
for the same reason as for genus 0 curves; namely, concrete models can be constructed
by taking a twist Y 2 H1

Ket.Spec k;PSO.q// and then considering ModY 2 BrX .k/.

Theorem 5.4. Suppose that n > 1 and that X is the quadric hypersurface in P2n

considered above. Then, there is a sequence

0! Br.k/! BrX .k/! H1
Ket.Spec k;PSO.q//! �;

which is exact in the sense that the action ofBr.k/ onBrX .k/ is free, and two elements
of BrX .k/ map to the same element of H1

Ket.Spec k;PSO.q// if and only if they are in
the same Br.k/-orbit.

Now, consider q D x20 C � � � C x22n�2 � x22n�1 on k2n, and let X D X.q/ be the
quadric hypersurface in P2n�1 cut out by q. Again, in this case every class of BrX .k/
is Mod˛Y where Y is a twist of X (an involution variety) and ˛ 2 Br.k/. To consider
the stabilizer of Br.k/ on Y , it suffices to compute the index ofD˝k k.Y / as above.
By [28], this is

ind.D ˝k k.Y // D gcdfind.D/; 2n�2ind.D ˝k C.p/g;

where C.p/ is the full Clifford algebra of p. The Clifford algebra C.p/ has index a
2-power, so that the kernel is once again 2-primary. Therefore, if n > 2, the kernel
vanishes. When n D 2, the stabilizer of the quadric hypersurface Y in BrX .k/ is
generated by the central simple algebra C.p/.

Theorem 5.5. Suppose that n � 1, and let X be the quadric hypersurface in P2n�1

considered above. Then, there is a sequence

0! Br.k/! BrX .k/! H1
Ket.Spec k;PSO.q//! �;

which is exact in the sense that the action of Br.k/ on BrX .k/ is faithful, and two
elements of BrX .k/ map to the same element of H1

Ket.Spec k;PSO.q// if and only if
they are in the same Br.k/-orbit. Moreover, if n > 2, the action is free. If n D 2,
then the stabilizer of the quadric surface Y associated to a nondegenerate quadratic
form p is generated by the Clifford algebra C.p/.

Remark 5.6. Using the work of Merkurjev, Panin, and Wadsworth, the same game
can be played for the twisted flag varieties associated to any classical semisimple
adjoint linear algebraic group.

If X is a quadric hypersurface, then ModX ' ModA for an ordinary associative
algebra A, as follows from a theorem of Kapranov [21]. The classification theorem
says that every object of BrX .k/ is equivalent toModB for some ordinary k-algebraB ,
giving another positive answer to Question 2.10.
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5.5. Noncommutative Severi–Brauer varieties. Kontsevich and Rosenberg [23]
introduced a noncommutative space NPn�1 that represents the functor which takes
an associative algebra A to the set of quotients of An that are locally isomorphic
to A in a flat topology on associative rings. They thus called it the noncommutative
projective space. They identified its derived category with the derived category of
finite representations of the quiver �n. Thus, I consider Modk�n

as the model
for noncommutative projective space. Except when n D 2, this is not the derived
category of Pn�1. Nevertheless, in [29], Miyachi and Yekutieli showed another
similarity between NPn�1 and Pn�1 by computing the group of equivalences
of Modk�n

and showing that it is Z � .Z Ì PGLn.k//. It follows that for every
PGLn-torsor P over k, there is a well-defined twisted form of Modk�n

, which I
will denote MP . But, the PGLn-torsors are in one-to-one correspondence with
Severi–Brauer varieties. So, MP is a noncommutative twist of the Severi–Brauer
variety P .

a b

s1

sn

Figure 2. The quiver �n.

Theorem 5.7. There is a bijection between the Br.k/-sets BrPn

.k/ and BrNPn

.k/.

Once again, these can be described using path algebras for modulated quivers, so
there is a positive answer to Question 2.10.
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