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Divided differences in noncommutative geometry:
Rearrangement Lemma, functional calculus

and expansional formula

Matthias Lesch�

Abstract.We state a generalization of the Connes–Tretkoff–Moscovici Rearrangement Lemma
and give a surprisingly simple (almost trivial) proof of it. Secondly, we put on a firm ground the
multivariable functional calculus used implicitly in the Rearrangement Lemma and elsewhere
in the recent modular curvature paper by Connes and Moscovici [3]. Furthermore, we show
that the fantastic formulas connecting the one and two variable modular functions of loc. cit.
are just examples of the plenty recursion formulas which can be derived from the calculus of
divided differences. We show that the functions derived from the main integral occurring in
the Rearrangement Lemma can be expressed in terms of divided differences of the Logarithm,
generalizing the “modified Logarithm” of Connes–Tretkoff [4].

Finally, we show that several expansion formulas related to the Magnus expansion [13]
have a conceptual explanation in terms of a multivariable functional calculus applied to divided
differences.
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1. Introduction

This paper is inspired by the recentwork on the spectral geometry of non-commutative
tori [3, 4, 7, 8].

The striking novelty of the paper [3] is the occurrence of universal one and two
variable functions K0.s/;H0.s; t/ in the expression for the second heat coefficient
[3, (1)]1

a2.a;4'/ D Const �'0
�
a
�
K0.r/.�h/C

1

2
H0.r1;r2/.�<.h//

��
: (1.1)
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A rather fantastic aspect is that these functions satisfy relations of the kind [3, (4)]2

H.a; b/ D
K.b/ �K.a/

aC b
C
K.aC b/ �K.b/

a
�
K.aC b/ �K.a/

b
: (1.2)

Eq. (1.2) is proved in loc. cit. by an a priori argument [3, Sec. 4.3].
On the other hand Eq. (1.2) is a sum of divided differences. Namely, noting thatK

in loc. cit. is an even function, we can rewrite Eq. (1.2) as

H.a; b/ D Œ�a; b�K C ŒaC b; b�K � ŒaC b; a�K: (1.3)

So it seems as if divided differences could be the key to a lot of the somewhat
magic formulas occurring in this business. And indeed when thinking about [3] for
a while the author noticed that one stumbles over divided differences everywhere,
notably in the noncommutative Taylor expansion formula of the exponential function
and in concrete functions related to the Rearrangement Lemma, and soon it became
obvious that the role of divided differences in the subject needs to be clarified.

Divided differences are a standard tool in numerical analysis and they can be
calculated quite efficiently. We will recall the main facts about them in Appendix A
below. To the best of our knowledge their appearance in operator theory and functional
calculus is new. In a different context, however, it was also observed in [1] that the
Magnus expansion formula can be interpreted in terms of the Genocchi–Hermite
formula and hence related to divided differences.

We now describe the content of the paper in more detail.

1.1. Rearrangement Lemma and multivariable functional calculus. An impor-
tant technical tool for the calculation of heat coefficients in the noncommutative
setting is the Rearrangement Lemma which informally readsZ 1

0

f0.uk
2/ � b1 � f1.uk

2/ � b2 � � � � � bp � fp.uk
2/ du

D k�2F.�.1/; �.1/�.2/; : : : ; �.1/ � � � � ��.p//.b1 � � � � � bp/; (1.4)

where the function F.s1; : : : ; sp/ is

F.s/ D

Z 1
0

f0.u/ � f1.us1/ � � � � � fp.usp/ du

and �.j / signifies that the modular operator � D k�2 � k2 acts on the j -th factor.
1'0 is the natural trace on the non-commutative torus, 4 is the flat Laplacian, 4' the conformal

Laplacian with respect to the non-tracial weight '.a/ D '0.ae�h/,� D e�h � eh denotes the modular
operator, r D log�. �<.h/ is the Dirichlet quadratic form in ı1h; ı2h, where ı1; ı2 are the natural
derivations associated to the R2–action on the non-commutative torus. Finally, rj signifies that rj acts
on the j -th factor. eh DW k2.

2H andK are modifications ofH0 andK0, for details see loc. cit.
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In [3] it is proved for the concrete integralZ 1
0

.uk2/j˛jCp�1.1Cuk2/�˛0�1 �b1 �.1Cuk
2/�˛1�1 � � � � �bp �.1Cuk

2/�˛p�1 du;

(1.5)
and the function

H .p/
˛ .s;m/ WD

Z 1
0

xj˛jCp�1�m � .1C x/�˛0�1 �

pY
jD1

.1C sjx/
�˛j�1 dx: (1.6)

The Rearrangement Lemma and the function H .p/
˛ .s;m/ are crucial for identifying

the ingredients of Eq. (1.1) from a combinatorially challenging expression for the
resolvent expansion. The one and two variable functions mentioned above are, after a
change of variables, simple linear combinations of basicH .p/

˛ .s;m/ for a few values
of ˛.

The proof of Eq. (1.6) in loc. cit. consists of an intimidating calculation involving
explicit Fourier transforms of the factors of the integrand after a change of variables.
Since the Lemma has appeared in several versions of increasing complexity in the
literature, [4, Lemma 6.2], [3, Lemma 6.2], [7, Lemma 4.2], [2, Prop. 3.4], [8,
Lemma 4.1], we think that a systematic treatment might be in order, also in light
of possible generalizations of the aforementioned papers to other noncommutative
spaces.

One of the purposes of this note is to give a new proof of a fairly general version
of this Lemma. Our proof is not at all shorter than the one in [3, Lemma 6.2]
but, at least the author believes so, conceptually much simpler. We do not need
explicit Fourier transforms, all we use is the Spectral Theorem and the trivial
substitution

R1
0
f .u�/ du D ��1

R1
0
f .u/ du. Namely, the Rearrangement Lemma

is concerned with an integral,Z 1
0

f .uR0; uR1; : : : ; uRn/ du; (1.7)

where R0; : : : ; Rn are commuting selfadjoint operators, and it ultimately boils down
to the justification of the “operator substitution” Qu D uR0; du D R�10 d Qu.

Secondly, we would like to put on a firm ground the functional calculus which
is implicitly used by the statement “�.j / signifies that � acts on the j -th factor”.
The authors hopes that the current modest considerations will serve the community
as he has even heard the statement “that these formulas should be considered as
formal since they are not based on a valid functional calculus”. We will see that one
should not be that pessimistic and that the proper way to make sense of the notation
F.�.1/; : : :/ is the theory of tensor products of Banach and C �-algebras and the
functional calculus for several commuting operators. At the heart of the problem is
the multiplication map

�n W A
˝nC1

3 a0 ˝ � � � ˝ an 7! a0 � � � � � an (1.8)
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and the problem of extending it in a proper way to tensor product completions.
More concretely, �n extends by continuity to the projective Banach algebra tensor
product A ˝nC1 . On the other hand a nice functional calculus for commuting
selfadjoint operators is available in the maximal C �-tensor product A ˝nC1� . We
suspect, however, that �n does not extend by continuity to A ˝nC1� . We circumvent
this problem by establishing, for a selfadjoint element a 2 A , a smooth functional
calculus in A ˝nC1 for the commuting elements a.j / D 1A ˝ � � � ˝ a ˝ � � � (a in
slot j counted from 0).

1.2. Divided differences. Coming back to divided differences and the formulas
Eq. (1.2) and (1.3) we will show below that when dealing with the integrand
of Eq. (1.6), divided difference occur in abundance and the calculus of divided
differences leads to a more or less endless list of variations of Eq. (1.3).

More concretely, we will express the function Eq. (1.6) explicitly in terms of
divided differences of the Logarithm:

H .p/
˛ .s;m/ D .�1/mCj˛jCp�1 � Œ1˛0C1; s

˛1C1
1 ; : : : ; s

˛pC1
p � idm log : (1.9)

Themodified logarithmLm of [4, Lemma3.2] is nothing but the divided difference

Lm.s/ D .�1/m � Œ1mC1; s� log D .�1/m � Œ1m; s�L0; L0.s/ D
log.s/
s � 1

; (1.10)

where Œ1m; s�f is an abbreviation for the divided difference Œ1; : : : ; 1; s�f with m
repetitions of 1, cf. Secs. 5.1.2 and A.2. Note that L0.ex/ is the generating function
for the Bernoulli numbers, which occurs prominently in [3]3.

1.3. Noncommutative Taylor expansion of the exponential function. We show
that the expansion formula for noncommutative variables a and b (cf., e.g. [3,
Sec. 6.1])

eaCb D ea C

1X
nD1

Z
0�sn�����s1�1

e.1�s1/a � b � e.s1�s2/a � b � � � � � b � esna ds (1.11)

can be interpreted nicely as an operator valued version of Newton’s interpolation
formula involving divided differences

eaCb D

1X
nD0

�
Œa.0/; : : : ; a.n/� exp

�
.b � � � � � b/: (1.12)

3To be precise with f .x/ D L0.ex/ we have

1

8
K.s/ D

1X
nD1

B2n

.2n/Š
s2n�2 D

1

s
.f .s/� f .0/� f 0.0/s/ D Œ0; s�f � Œ0; 0�f D sŒ0; 0; s�f:
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This immediately leads to the following generalization

f .aC b/ �b!0

1X
nD0

�
Œa.0/; : : : ; a.n/�f

�
.b � � � � � b/; (1.13)

for selfadjoint elements in aC �–algebra and aSchwartz functionf . The linear term in
this expansion formula is at the heart of the relations Eq. (1.2), (1.3). As an application
we give a conceptually new proof of the corresponding results in [3, Lemma 4.11
and Lemma 4.12].

1.4. Explicit examples. Finally, in Sec. 5 we discuss explicit examples of one and
two variable functions derived from Eq. (1.3) and compare them to the explicit
formulas given at the end of [3]. In the preparation of Sec. 5 we used the open source
computer algebra system Maxima. However, the results as they stand can be checked
(a posteriori) by hand.

1.5. This paper is a byproduct of a recent joint project with Henri Moscovici [12];
it is used in some of the concrete calculations in Sec. 4 of that paper.

Acknowledgements. I thank Alan Carey, Joachim Cuntz, Henri Moscovici, Markus
Pflaum and Adam Rennie for helpful conversations and suggestions.

2. An abstract operator substitution lemma

2.1. Notation. N D f0; 1; 2; : : :g;Z;R;C denotes the natural numbers, integers, real
and complex numbers resp. R�0 denotes

˚
x 2 R

ˇ̌
x � 0

	
, R>0, R<0;Z>0;Z�0

etc. is used accordingly. Instead of the clumsy .R�0/n we write Rn�0.
We will frequently use the multiindex notation for partial derivatives and

factorials. Recall that if ˛ D .˛0; : : : ; ˛n/ 2 NnC1 is a multiindex then one
abbreviates ˛Š WD

Q
j ˛j Š, j˛j WD

P
˛j , and @˛x D

Q
j @

˛j
xj ; x D .x0; : : : ; xn/.

Furthermore, we use the Pochhammer symbol for the rising and falling factorial
powers, see Eq. (B.1), (B.2).

2.2. Let H be a Hilbert space and let R0; : : : ; Rn; n � 1; be commuting pos-
itive selfadjoint operators in H , i.e. all operators Rj are assumed to be � 0 and
invertible. These operators generate a commutative unital C �–subalgebra, A D

C �.I; R0; : : : ; Rn/, of the C �–algebra of bounded linear operators, L .H /, on the
Hilbert space H . By the Gelfand Representation Theorem, there exists a compact
subset X �

Qn
jD0 spec.Rj / � CnC1 and a �–isomorphism

ˆ W C.X/ �! C �.I; R0; : : : ; Rn/ � L .H /
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which sends the constant function 1 to the identity operator I and the functionx 7! xj
onto the operator Rj , j D 0; : : : ; n. ˆ is called the spectral measure of R0; : : : ; Rn,
cf. [16, Chap. 12]. For a continuous function f 2 C.X/ on writes suggestively
f .R0; : : : ; Rn/ WD ˆ.f /. ˆ may also be viewed as an operator valued measure,
cf. [16, 12.17]. We write dE for the associated resolution of the identity in the sense
of loc. cit. Then f .R0; : : : ; Rn/ D

R
X
f .�/ dE.�/.

For each pair of Hilbert space vectors x; y 2H the spectral measure ˆ induces
a complex Radon measure Ex;y on X by the identity˝

f .R0; : : : ; Rn/x; y
˛
D

Z
X

f .�/ dEx;y.�/; f 2 C.X/:

Lemma 2.1. With the previously introduced notation let f W R�0 � X ! C be a
continuous function satisfying the integrability conditionZ 1

0

sup
�2X

jf .u; �/j du <1: (2.1)

Define F W X ! C by the parameter integral

F.�/ WD

Z 1
0

f .u; �/ du:

Then the integral
R1
0
f .u;R0; : : : ; Rn/ du exists in the Bochner sense and equals

F.R0; : : : ; Rn/.
In more suggestive notation this Lemma is a Fubini Theorem for the product

measure dEdu, i.e. the product of the spectral measureˆ and the Lebesgue measure
on the half lineR�0. Namely, using the integral notationwith respect to the resolution
of the identity it meansZ 1

0

Z
X

f .u; �/ dE.�/ du D

Z
X

Z 1
0

f .u; �/ du dE.�/:

Proof. Let us first note that due to the integrability condition Eq. (2.1) and the
Dominated Convergence Theorem the function F is indeed continuous.

To see the claimed Bochner integrability we note that u 7! f .u;R0; : : : ; Rn/

is continuous (cf. [17, Prop. 4.10]). Furthermore, by the Spectral Theorem and the
integrability condition Eq. (2.1) we have for the integral of the normZ 1

0

kf .u;R0; : : : ; Rn/k du D

Z 1
0

sup
�2X

jf .u; �/j du <1:

Thus the integral exists in the Bochner sense. Furthermore, for vectors x; y 2 H
we have by continuity of the Bochner integral˝Z 1

0

f .u;R0; : : : ; Rn/ du x; y
˛
D

Z 1
0

hf .u;R0; : : : ; Rn/ x; yi du

D

Z 1
0

Z
X

f .u; �/ dEx;y.�/ du:

(2.2)
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The latter integral is an ordinary product integral of the Radon measureEx;y and the
Lebesgue measure. Again by the integrability condition Eq. (2.1) we haveZ 1

0

Z
X

jf .u; �/j d jEx;y.�/j du � kxk � kyk �

Z 1
0

sup
�2X

jf .u; �/j du <1;

hence Fubini’s Theorem applies and we continue Eq. (2.2) to obtain

(2.2) D
Z
X

Z 1
0

f .u; �/ du dEx;y.�/

D

Z
X

F.�/ dEx;y.�/ D
˝
F.R0; : : : ; Rn/ x; y

˛
:

This proves that indeed
R1
0
f .u;R0; : : : ; Rn/ du D F.R0; : : : ; Rn/.

Theorem 2.2 (Operator Substitution Lemma). Let R0; : : : ; Rn be commuting
selfadjoint positive operators as in Sec. 2.2. Furthermore, let f W RnC1�0 D

.R�0/nC1 ! C be a continuous function such that for each pair of positive real
numbers 0 < C1 < C2 one hasZ 1

0

sup
C1�sj�C2
0�j�n

jf .us/j du <1: (2.3)

Then for the functions

F W RnC1>0 3 s 7!

Z 1
0

f .u � s/ du

and
G W Rn>0 3 � 7!

Z 1
0

f .u; u�1; : : : ; u�n/ du

we have the identityZ 1
0

f .uR0; uR1; : : : ; uRn/ du D F.R0; : : : ; Rn/

D R�10 G.R�10 R1; : : : ; R
�1
0 Rn/ D R

�1
0

Z 1
0

f .u; uR�10 R1; : : : ; uR
�1
0 Rn/ du:

Both integrals exist in the Bochner sense.
Remark 2.3. We have formulated the Operator Substitution Lemmamultiplicatively.
There is an obvious additive analogue for integrals of the formZ
R
h.xC T0; xC T1; : : : ; xC Tn/ dx D

Z
R
h.x; xC T1 � T0; : : : ; xC Tn � T0/ dx

for commuting selfadjoint operators T0; : : : ; Tn and appropriate functions f 2
C0.RnC1/. We leave the details to the reader.
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Proof. Put g.u; s/ WD f .us/, 0 < u < 1, s 2 RnC1>0 and h.u; �/ WD

f .u; u�1; : : : ; u�n/, � 2 Rn>0. Then by Eq. (2.3) the Lemma 2.1 applies to both
functions g and h. Furthermore,

F.s/ D

Z 1
0

f .us0; us1; : : : ; usn/ du

D

Z 1
0

s�10 f .u; us�10 s1; : : : ; us
�1
0 sn/ du D s

�1
0 G.s�10 s1; : : : ; s

�1
0 sn/;

and the claim follows.

Example 2.4. Let ˛ D .˛0; : : : ; ˛p/ 2 NpC1 be a multiindex. Then put

f .x0; x1; : : : ; xp/ WD x
�
0 �

pY
jD0

.1C xj /
�˛j�1; �1 < � < j˛j C p:

We show that f satisfies the integrability condition Eq. (2.3) of Theorem 2.2. Given
0 < C1 < C2 then for C1 � sj � C2 and 0 � u � 1 we have

jf .us/j � s�0 � u
�
� const � u� ;

while for u � 1 we have

jf .us/j D
ˇ̌̌
.s0u/

�

pY
jD0

.sju/
�˛j�1 �

pY
jD0

� .sju/

1C sju/

�˛jC1 ˇ̌̌
� const � juj��j˛j�p�1;

hence the claim.
Inductively, one easily sees that for any multiindex ˛ the function @˛s f .us/ D

u˛.@˛f /.us/ also satisfies the integrability condition Eq. (2.1).

3. Tensor products and the Rearrangement Lemma

3.1. Projective vs. maximal C �–tensor product, the contraction map.

3.1.1. Tensor product completions. Let A be a unital C �–algebra. Denote by
A ˝nC1 WD A ˝ � � �˝A the .nC 1/–fold algebraic tensor product. For elementary
tensors we use the notations .a0; : : : ; an/ and a0 ˝ � � � ˝ an as synonyms. By

�n W A
˝nC1

! A ; .a0; : : : ; an/ 7! a0 � � � � � an

we denote the multiplication map.
We discuss the issue of extending the multiplication map to tensor product

completions of A ˝nC1. We denote by A ˝nC1 the projective tensor product
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completion of A ˝nC1, cf., e.g. [9]. That is A ˝nC1 is the completion of A ˝nC1

with respect to the norm

kxk D inf
X
i

ka
.i/
0 k � � � � � ka

.i/
n k;

where the infimum is taken over all representations of x 2 A ˝nC1 as a finite sumP
i .a

.i/
0 ; : : : ; a

.i/
n /. A ˝nC1 is a Banach–algebra. Moreover, the adjoint map is

easily seen to be continuous with respect to the norm k � k , hence A ˝nC1 is a
Banach–�–algebra.

Furthermore, let A ˝nC1� be the maximal C �–algebra tensor product completion
of A ˝nC1 [17, Sec. IV.4]. That is A ˝nC1� is the completion of A ˝nC1 with respect
to the norm

kxk� D sup k%.x/k;
where % runs through all �–representations of A ˝nC1. k � k� � k � k and hence
there is a natural continuous �–homomorphism pr� W A ˝nC1 ! A ˝nC1� whose
range is dense.

Each of the two tensor products comes with a benefit and a curse and these are
mutually exclusive. The projective tensor product behaves well in the sense that �n
extends by continuity to a linearmapA ˝nC1 ! A . It behaves badly in the sense that
A ˝nC1 , although being a Banach �–algebra, is a C �–algebra only in trivial cases.
On the other hand the C �–algebra A ˝nC1� behaves well in the sense that it is C �
and hence, e.g. there is a continuous functional calculus for commuting selfadjoint
elements. It behaves badly in the sense that the author does not know whether the
multiplication map�n extends by continuity toA ˝nC1� ; in fact he suspects that there
exist interesting cases where it does not extend. A poll among available experts on
tensor products was inconclusive.

Needless to say, for matrix algebras the algebraic tensor product is already
complete and there is no problem. Even in this seemingly trivial case the results
outlined below do have aspects which, to the best of our knowledge, seem to be new.

3.1.2. The contraction map. We come to a crucial construction. For a 2 A ˝nC1

and elements b1; : : : ; bn 2 A we write, motivated by [3, Lemma 6.2], cf. Eq. (1.4),
suggestively

a.b1 � � � � � bn/ WD �n
�
a � .b1 ˝ � � � ˝ bn ˝ 1A /

�
2 A ; (3.1)

and call the result the contraction of a by b1 ˝ � � � ˝ bn.
Note that if a D .a0; : : : ; an/ is an elementary tensor then

.a0; : : : ; an/.b1 � � � � � bn/ D a0 � b1 � a1 � � � � � an�1 � bn � an: (3.2)

Eq. (3.1) induces a continuous mapA ˝nC1 �A ˝n ! A . The whole discussion
of this section circles around the problem of extending Eq. (3.1) to a reasonable class
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of elements in A ˝nC1� . The discussion would simplify considerably if Eq. (3.1)
would extend to a continuous map A ˝nC1� �A ˝n� ! A . We do not know whether
this is the case as topologies on tensor products can behave notoriously pathologic.

3.2. Smooth functional calculus on A ˝nC1 . For a 2 A put A WD ea and

a.j / D .1A ; : : : ; 1A ; a; 1A ; : : : ; 1A /; 0 � j � n (a is in the j –th slot);

r
.j /
a WD �a

.j�1/
C a.j /; 1 � j � n;

�.j /a WD exp.r.j /a /; 1 � j � n;

D .1A ; : : : ; 1A ; A
�1; A; 1A ; : : : ; 1A /; (A�1 is in slot j � 1):

(3.3)
Note that slots are enumerated starting from 0, so a.0/ D a ˝ 1A ˝ � � � ; a

.1/ D

1A ˝ a˝ 1A ˝ � � � , etc.
The operators a.0/; : : : ; a.n/;r.1/a ; : : : ;r

.n/
a ; �

.1/
a ; : : : ; �

.n/
a commute. If a is

selfadjoint then so are a.j /;r.j /a ; �
.j /
a . Furthermore, if a is selfadjoint then A.j / WD

exp.a.j // is positive.
The following simple identities are at the heart of the Rearrangement Lemma:

A.j / D .1A ; : : : ; 1A ; A; 1A ; : : : ; 1A /

D .AA�1; : : : ; AA�1; A; 1A ; : : :/

D A.0/�.1/ � � � � ��.j /; j � 1; (3.4)

a.j / D a.0/ Cr.1/a C � � � C r
.j /
a ; j � 1: (3.5)

From now on assume that a 2 A is selfadjoint and let ˆ W C.spec a/! A ,
f 7! f .a/ denote the spectral measure of a. The .nC 1/–fold tensor product, ˆ� ,
is a �–isomorphism from C..spec a/nC1/ ' C.spec a/˝nC1� onto the unital
C �–subalgebra C �.I; a.0/; : : : ; a.n// of A ˝nC1� generated by a.0/; : : : ; a.n/. ˆ�
is nothing but the joint spectral measure of the commuting operators a.0/; : : : ; a.n/,
e.g. ˆ�.f / D f .a.0/; : : : ; a.n//. Furthermore, this C �–algebra also contains the
operators r.1/a ; : : : ;r

.n/
a ; and �.1/a ; : : : ; �

.n/
a .

If we view the operators Eq. (3.3) as elements of A ˝nC1 they still admit a joint
analytic functional calculus [18]. We do not make use, however, of this celebrated
and somewhat demanding paper. Instead we exploit the nuclearity of Fréchet spaces
of smooth functions to establish a smooth functional calculus with values inA ˝nC1 .
To this end let U � spec a be an open set. Then the algebra of smooth functions,
C1.U /, on U with the usual Fréchet topology is known to be nuclear [20, Sec. 51].
Thus the injective tensor product C1.U /˝nC1" is isomorphic to the projective tensor
product C1.U /˝nC1 . The map

f0 ˝ � � � ˝ fn 7!
�
x 7! f0.x0/f1.x1/ � � � � � fn.xn/ 2 C

1.U nC1/
�
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is known to extend by continuity to an isomorphism C1.U /˝nC1" ' C1.U nC1/,
hence by nuclearity it also extends to an isomorphism C1.U /˝nC1 ' C1.U nC1/.
The following commutative diagram summarizes these considerations:

C1.U nC1/

jU
��

ˆ // A ˝nC1

pr�
��

C
�
.spec a/nC1

� ˆ� // A ˝nC1� :

The horizontal arrows are continuous �–homomorphisms which on elementary
tensors are given by f0 ˝ � � � ˝ fn 7! f0.a/˝ � � � ˝ fn.a/, the vertical arrows are
jU .f / WD f

ˇ̌
.speca/nC1 2 C..spec a/

nC1/ resp. the natural map from the projective
to the maximal C �–tensor product.
Remark 3.1 (Schwartz functions, entire functions). (1) We note in addition that
a functional calculus for, say, Schwartz functions can be set up in a more elementary
way by the Fourier transform. Namely, observe that for � 2 RnC1 we have

exp
�
i�0a

.0/
C � � � C i�na

.n/
�
D ei�0a ˝ ei�1a ˝ � � � ˝ ei�na;

and therefore, since k � k is a cross-normexp�i�0a.0/ C � � � C i�na.n/�

D
ei�0a � � � � � ei�na � 1:

Thus for functions with integrable Fourier transform, e.g. Schwartz functions, we
have

ˆ .f / WD f .a
.0/; : : : ; a.n// D

Z
RnC1

bf .�/ exp�ih�; a.�/i� dN�; (3.6)

where h�; a.�/i is an abbreviation for �0a.0/C� � �C�na.n/, and this integral converges
in A ˝nC1 in the Bochner sense.

(2) Finally, for an entire function f .z/ D
P
˛ f˛z

˛ in n C 1 variables z D
.z0; : : : ; zn/, of course, ˆ .f / D f .a

.0/; : : : ; a.n// is given by the convergent
series obtained by inserting a.j / for zj .
Theorem 3.2. LetA be a unitalC �–algebra and let a 2 A be a selfadjoint element.
Furthermore, let U � spec a be an open neighborhood of spec a.

(1) There is a unique continuous unital �–homomorphism ˆ W C
1.U nC1/ '

C1.U /˝nC1 ! A ˝nC1 sending f0 ˝ � � � ˝ fn to f0.a/ ˝ � � � ˝ fn.a/.
ˆ is compatible with the spectral measure of a in the sense that pr�.ˆ .f // D
f .a.0/; : : : ; a.n//. We therefore write f .a.0/; : : : ; a.n// for ˆ .f /.

For f 2 C1.U nC1/ the element f .a.0/; : : : ; a.n// D ˆ .f / 2 A ˝nC1

depends only on f in an arbitrarily small open neighborhood of .spec a/nC1.
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In particular, for f one may therefore choose a Schwartz function Qf with Qf � f

in such a neighborhood. Then f .a.0/; : : : ; a.n// D Qf .a
.0/; : : : ; a.n// which can be

calculated by the integral Eq. (3.6).
(2) The map

C1.U nC1/ �A ˝n �! A ;

.f; b1 ˝ � � � ˝ bn/ 7! �n
�
f .a

.0/; : : : ; a.n// � .b1 ˝ � � � ˝ bn ˝ 1A /
�

is the unique continuous linear map sending .f0 ˝ � � � ˝ fn; b1 ˝ � � � ˝ bn/ to
f0.a/ � b1 � f1.a/ � b2 � � � � � bn � fn.a/.

For the last map we therefore use, as defined in Sec. 3.1.2, the shorthand notation
f .a

.0/; : : : ; a.n//.b1 � � � � � bn/.

Proof. This theorem just summarizes what we explained so far in Sec 3.2. The last
claim in (1) follows from a simple partition of unity argument.

Remark 3.3. We note that for a Schwartz function f 2 S .RnC1/ we have as a
Bochner integral

f .a
.0/; : : : ; a.n//.b1 � � � � � bn/ D

Z
RnC1
bf .�/ exp�ih�; a.�/�i�.b1 � � � � � bn/ dN�

D

Z
RnC1
bf .�/ei�0ab1ei�1ab2 � � � � � bnei�na dN�;

resp. for f 2 S .Rn/

f .r
.1/
a ; : : : ;r.n/a /.b1 � � � � � bn/ D

Z
Rn
bf .�/ exp�ih�;r.�/a i�.b1 � � � � � bn/ dN�

D

Z
Rn
bf .�/e�i�1ab1ei.�1��2/ab2 � � � � � bnei�na dN�:

Here we have used

i�1r
.1/
a C � � � C i�nr

.n/
a D �i�1a

.0/
C i.�1 � �2/a

.1/
C � � � C i�na

.n/;

which follows from Eq. (3.3).

3.3. The Rearrangement Lemma. Wewill need versions of Lemma 2.1 and Theo-
rem 2.2 for the smooth functional calculus in the Banach–�–algebra A ˝nC1 . For
this the integrability conditions Eq. (2.1) and (2.3) have to be assumed for all partial
derivatives of the involved function.
Theorem3.4 (SmoothOperator Substitution Lemma). LetA be a unitalC �–algebra
and let a 2 A be a selfadjoint element. Put A WD ea and let U � specA be an open
neighborhood of specA.
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(1) Let f W R�0 � U nC1 ! C be a smooth function satisfying the following
integrability condition: for each compact subset K � U and each multiindex
˛ 2 NnC1 Z 1

0

sup
�2K

j@˛�f .u; �/j du <1: (3.7)

Then F.�/ WD
R1
0
f .u; �/ du defines a smooth function on U nC1, the integralR1

0
f .u; A

.0/; : : : ; A.n// du exists as a Bochner integral with values inA ˝nC1 and
the integral equals F .A.0/; : : : ; A.n//.

(2) Let f W RnC1�0 ! C be a smooth function such that for each pair of positive
real numbers 0 < C1 < C2 and each multiindex ˛ 2 NnC1Z 1

0

sup
C1�sj�C2
0�j�n

juj˛j.@˛f /.us/j du <1: (3.8)

Then for the smooth functions

F.s/ D

Z 1
0

f .u � s/ du and G.�/ D

Z 1
0

f .u; u�1; : : : ; u�n/ du

as in Theorem 2.2 one hasZ 1
0

f .uA
.0/; : : : ; uA.n// du D F .A

.0/; : : : ; A.n//

D A�1G .�
.1/; �.1/ ��.2/; : : : ; �.1/ � � � � ��.n//

D A�1
Z 1
0

f .u; u�
.1/; u�.1/ ��.2/; : : : ; u�.1/ � � � � ��.n// du:

Both integrals exist in the Bochner sense in A ˝nC1 resp. A ˝n .

Proof. (1) The integrability condition guarantees that the integral
R1
0
f .u; �/ du

converges as a Bochner integral with values in the Fréchet space C1.U nC1/. Thus,
F is smooth and integration commutes with continuous linear maps. Denote by ˆ
the A ˝nC1 –valued spectral measure of A.0/; : : : ; A.n/ according to Theorem 3.2.
ThenZ 1

0

f .u; A
.0/; : : : ; A.n// du D

Z 1
0

ˆ .f .u; �// du

D ˆ

�Z 1
0

f .u; �/ du
�
D F .A

.0/; : : : ; A.n//:

(2) Let g.u; s/ WD f .us/, h.u; �/ WD f .u; u�1; : : : ; u�n/ as in the proof of
Theorem 2.2. Then by the integrability condition the proven first part applies to both
functions g and h and, taking into account the relations Eq. (3.4), the claim follows
as in the proof of Theorem 2.2.
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Together with Theorem 3.2 we obtain as an immediate consequence:

Corollary 3.5 (Rearrangement Lemma). Let f0; : : : ; fp W R�0 ! C be smooth
functions such that f .x0; : : : ; xp/ WD

Qp
jD0 fj .xj / satisfies the integrability

condition Eq. (3.8) of the Smooth Operator Substitution Lemma 3.4. Furthermore,
let a be a selfadjoint element of the unital C �–algebra A , put A WD ea. Moreover,
denote by �.�/;r.�/ the operators defined in Eq. (3.3). Then for b1; : : : ; bp 2 AZ 1
0

f0.uA/ � b1 � f1.uA/ � � � � � bp � fp.uA/ du

D A�1
Z 1
0

f .u; u�
.1/; u�.1/�.2/; : : : ; u�.1/ � � � � ��.p// du.b1 � � � � � bp/

D A�1F .�
.1/; �.1/�.2/; : : : ; �.1/ � � � � ��.p//.b1 � � � � � bp/;

(3.9)

where the smooth function F.s1; : : : ; sp/ is

F.s/ D

Z 1
0

f0.u/ � f1.us1/ � � � � � fp.usp/ du:

Example 3.6. We continue Example 2.4 and put

f0.x/ WD x
�.1C x/�˛0�1;

fj .x/ WD .1C x/
�˛j�1:

Then Corollary 3.5 applies and we recover the Rearrangement Lemma of Connes–
Moscovici [3, Lemma 6.2].

3.4. Noncommutative Taylor expansion in terms of divided differences. Given
selfadjoint elementsa; b of the unitalC �–algebraA . We recast the noncommuatative
Taylor expansion formula (cf., e.g. [3, Sec. 6.1]) for exp.aCb/ in light of the functional
calculus summarized in Theorem 3.2 and the Genocchi–Hermite formula Eq. (A.3)
for divided differences. The main facts about divided differences are summarized in
Appendix A below.

The expansional formula for the exponential function reads

eaCb D ea C

1X
nD1

Z
0�sn�����s1�1

e.1�s1/a � b � e.s1�s2/a � b � � � � � b � esna ds: (3.10)

The integrand equals, cf. Remark 3.1 and Remark 3.3,

exp
�
.1 � s1/a

.0/
C .s1 � s2/a

.1/
C � � � C sna

.n/
�
.b � � � � � b/:
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Applying the Genocchi–Hermite formula Eq. (A.3) to the exponential function we
haveZ

0�sn�����s1�1

exp
�
.1 � s1/a

.0/ C .s1 � s2/a
.1/ C � � � C sna

.n/
�
ds1 : : : dsn

D Œa.0/; : : : ; a.n/� exp :

In other words the general term in the expansion formula Eq. (3.10) can be
reinterpreted as follows: take the commuting selfadjoint operators a.0/; : : : ; a.n/
and insert them into the multivariable function x 7! Œx0; : : : ; xn� exp, the nth divided
difference of the exponential function. Then contract with the n-fold tensor product
b ˝ � � � ˝ b.

Therefore, the formula Eq. (3.10) may be rewritten in the very compact way

eaCb D

1X
nD0

�
Œa.0/; : : : ; a.n/� exp

�
.b � � � � � b/ (3.11)

D

1X
nD0

ea
�
Œ0;r.1/a ;r.1/a Cr

.2/
a ; : : : ;r.1/a C � � � C r

.n/
a � exp

�
.b � � � � � b/:

(3.12)

In the second line we have used the functional equation of exp, the homogeneity of the
divided differences (cf. Eq. (A.1)), and the relations Eq. (3.5). In a different context
it was also observed in [1] that the expansion formula Eq. (3.10) can be interpreted in
terms of the Genocchi–Hermite formula. We obtain a straightforward generalization
of Eq. (3.11), (3.12) to arbitrary smooth functions.

Proposition 3.7. Let a 2 A be selfadjoint. Then for a smooth function f in a
neighborhood of spec a the Taylor expansion of f .a C b/ for selfadjoint b � 0 is
given by

f .aC b/ �b!0

1X
nD0

�
Œa.0/; : : : ; a.n/�f

�
.b � � � � � b/:

Remark 3.8. (1) Note that if A D C and hence a; b are real numbers then
A ˝nC1 is canonically isomorphic toC and under this isomorphism

�
Œa.0/; : : : ; a.n/�f

�
� .b � � � � � b/ corresponds to 1

nŠ
f .n/.a/bn, see Eq. (A.5), and the proposition just gives

the ordinary Taylor formula.

(2) The formula in Prop. 3.7 is equivalent to the noncommutative Taylor
expansion formula derived in [15] in the context of formal power series. This
expansion was in fact discovered earlier by Daletskii [5]. We plan to discuss such
expansions and its relations to a noncommutative Newton interpolation formula in
more detail in the near future.
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Proof. W. l. o. g. we may assume that f is a Schwartz function on R, cf. Theo-
rem 3.2(1). Write

f .aC b/ D

Z
R
bf .�/ei�.aCb/ dN�:

Then apply the expansion formula Eq. (3.10) to the exponential term

ei�.aCb/ D ei�a C

1X
nD1

.i�/n
�
Œi�a.0/; : : : ; i�a.n/� exp

�
.b � � � � � b/:

Noting that .i�/nbf .�/ D bf .n/.�/ the n-th term (with the b’s omitted) equalsZ
0�sn�����s1�1

f .n/

�
.1 � s1/a

.0/
C .s1 � s2/a

.1/
C � � � C sna

.n/
�
ds1 : : : dsn

D Œa.0/; : : : ; a.n/�f ;

where Genocchi–Hermite’s formula Eq. (A.3) was used.

Example 3.9. Let a.s; t/ 2 A be a smooth selfadjoint family with a.0; 0/ D a. Put
ı1a WD @s

ˇ̌
sD0

a.s; 0/; ı2a WD @t
ˇ̌
tD0
a.0; t/, and ı1ı2a WD @s@t

ˇ̌
sDtD0

a.s; t/. Then

@s
ˇ̌
sD0

f .a.s; 0// D .Œa.0/; a.1/�f /.ı1a/; (3.13)

@s@t
ˇ̌
sDtD0

f .a.s; t// D .Œa.0/; a.1/�f /.ı1ı2a/

C .Œa.0/; a.1/; a.2/�f /.ı1aı2aC ı2aı1a/:

(3.14)

Taking into account Eq. (3.12) we obtain for the exponential function

e�a@s
ˇ̌
sD0

ea.s;0/ D .Œ0;r.1/a � exp /.ı1a/; (3.15)

e�a@s@t
ˇ̌
sDtD0

ea.s;t/ D .Œ0;r.1/a � exp /.ı1ı2a/

C .Œ0;r.1/a ;r.1/a Cr
.2/
a � exp /.ı1aı2aC ı2aı1a/:

(3.16)

Note that

Œ0; s� exp D
es � 1

s
; (3.17)

Œ0; s; s C t � exp D
esCts C t � es.s C t /

st.s C t /
: (3.18)

One should compare this to [4, (21)], [3, (167)–(169)], and [8, Lemma 5.1].
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3.5. Expansion formulas for ra. Recall from Eq. (3.3) ra WD r.1/a D �a˝1A C

1A ˝ a 2 A ˝A . To expand f .raCb/ we therefore have to apply the expansion
of Proposition 3.7 in the algebra QA WD A ˝ A . Denote for c 2 QA , analogously
to Eq. (3.3),

Qc.j / D .1eA ; : : : ; 1eA ; c; 1eA ; : : : ; 1eA /; 0 � j � n (c is in the j -th slot);
Qr
.j /
a WD

�
ra

�.j /
D .1eA ; : : : ; 1eA ;ra; 1eA ; : : : ; 1eA /; 0 � j � n:

Lemma 3.10. Let f 2 S .RnC1/ be a Schwartz function, let b0j ˝ b00j 2
eA ,

j D 1; : : : ; n, and let x 2 A be given. Note that f . Qr.0/a ; : : : ; Qr
.n/
a / 2 eA ˝nC1 .

After contraction with .b01 ˝ b
00
1/ ˝ � � � ˝ .b

0
n ˝ b

00
n/ one obtains an element of eA

which can be contracted further with x 2 A to an element of A . For this element
we have�
f . Qr

.0/
a ; : : : ; Qr.n/a /.b01 ˝ b

00
1 � � � � � b

0
n ˝ b

00
n/
�
.x/

D f .�a
.0/
C a.nC1/;�a.1/ C a.nC2/; : : : ;�a.n/ C a.2nC1//

.b01 � � � � � b
0
n � x � b

00
1 � � � � � b

00
n/

D f .r
.1/
a C � � � C r

.nC1/
a ;r.2/a C � � � C r

.nC2/
a ; : : : ;r.nC1/a C � � � C r

.2nC1/
a /

.b01 � � � � � b
0
n � x � b

00
1 � � � � � b

00
n/:

Proof. This follows from a straightforward calculation:�
f . Qr

.0/
a ; : : : ; Qr.n/a /.b01 ˝ b

00
1 � � � � � b

0
n ˝ b

00
n/
�
.x/

D

Z
RnC1
bf .�/�e�i�0a ˝ ei�0ab01 ˝ b001 ˝ � � � ˝ b0n ˝ b00ne�i�na ˝ ei�na�.x/ dN�

D

Z
RnC1
bf .�/e�i�0ab01e�i�1ab02 � � � � � b0ne�i�naxei�0ab001 � � � � � b00nei�na dN�

D f .�a
.0/
C a.nC1/;�a.1/ C a.nC2/; : : : ;�a.n/ C a.2nC1//

.b01 � � � � � b
0
n � x � b

00
1 � � � � � b

00
n/:

This Lemma and the expansion 3.7 allow to expand f .raCb/.x/ in principle to
any order, although the combinatorics becomes tedious. We note the expansion up
to order 2, cf. [3, Lemma 4.11 and Lemma 4.12].

Proposition 3.11. Let a; x 2 A be selfadjoint. Then for a Schwartz function
f 2 S .R/ the Taylor expansion up to order 2 of f .raCb/.x/ for selfadjoint b � 0
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is given by

f .raCb/.x/ D f .ra/.x/

� .Œr.1/a Cr
.2/
a ;r.2/a �f /.b � x/C .Œr

.1/
a Cr

.2/
a ;r.1/a �f /.x � b/

C .Œr.1/a Cr
.2/
a Cr

.3/
a ;r.2/a Cr

.3/
a ;r.3/a �f /.b � b � x/

C .Œr.1/a ;r.1/a Cr
.2/
a ;r.1/a Cr

.2/
a Cr

.3/
a �f /.x � b � b/

C .Œr.1/a Cr
.2/
a ;r.1/a Cr

.2/
a Cr

.3/
a ;r.2/a Cr

.3/
a �f /.b � x � b/

C .Œr.1/a Cr
.2/
a ;r.2/a ;r.2/a Cr

.3/
a �f /.b � x � b/:

The two variable functions involved in the linear term are

� Œs C t; t �f D �
f .s C t / � f .t/

s
; Œs C t; s�f D

f .s C t / � f .s/

t
; (3.19)

this should be compared to [3, (134)].

Proof. One just has to apply Prop. 3.7 to f .raCb/ in the algebra eA and apply the
previous Lemma. We do the calculation for the linear term and leave the second
order term to the interested reader.

.Œ Qr.0/a ; Qr.1/a �f /. Qrb/.x/ D .Œ Qr
.0/
a ; Qr.1/a �f /.�b ˝ 1A C 1A ˝ b/.x/

D .Œ�a.0/ C a.2/;�a.1/ C a.3/�f /.�b � x � 1C 1 � x � b/

D � .Œr.1/a Cr
.2/
a ;r.2/a �f /.b � x/

C .Œr.1/a Cr
.2/
a ;r.1/a �f /.x � b/:

Corollary 3.12. Let ' be a tracial state on A . Then, for selfadjoint elements
a; b; x; y 2 A we have

d

d"

ˇ̌
"D0

'
�
f .raC"b/.x/y

�
D �'

�
b.Œr.1/a ;�r.2/a �f /.x � y/

�
C '

�
b.Œ�r.1/a ;r.2/a �f /.y � x/

�
:

Note that

� Œs;�t �f D
f .�t / � f .s/

s C t
; Œ�s; t �f D

f .t/ � f .�s/

s C t
: (3.20)

This should be compared to [3, (131)], where f is assumed to be even and hence
�Œs;�t �f D Œ�s; t �f D f .t/�f .s/

sCt
.
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Proof. Using the previous proposition we calculate

d

d"

ˇ̌
"D0

'
�
f .raC"b/.x/y

�
D� '

�
.Œ�a.0/ C a.2/;�a.1/ C a.2/�f /.b � x/ � y

�
C '

�
.Œ�a.0/ C a.2/;�a.0/ C a.1/�f /.x � b/ � y

�
D� '

�
b.Œ�a.2/ C a.1/;�a.0/ C a.1/�f /.x � y/

�
C '

�
b.Œ�a.1/ C a.0/;�a.1/ C a.2/�f /.y � x/

�
;

and the result follows in view of Eq. (3.3) and the fact that divided differences are
symmetric functions of their arguments.

4. The functions occurring in the Rearrangement Lemma for the modular
curvature

4.1. The Mellin transform of .1 C x/�m�1. By a contour integral argument [19,
3.123] the Mellin transform of x 7! .1C x/�1 is given byZ 1

0

xz�1
1

1C x
dx D

�

sin�z
; 0 < <z < 1;

and integration by parts yieldsZ 1
0

xz�1
1

.1C x/mC1
dx D

.z � 1/m

mŠ

�

sin�z
:

Since 1
sin�z decays exponentially on vertical lines we conclude that the functions

x 7! .1C x/�m�1 are given by the inversion formula

.1C x/�m�1 D

Z
<zD˛

x�z
.z � 1/m

mŠ

�

sin�z
dz

for 0 < <˛ < 1.

4.2. The functions M
.p/
˛ .s; m/ and H

.p/
˛ .s; m/. Given p 2 Z�1, a multiindex

˛ 2 NpC1 and sj > 0; j D 0; : : : ; p; put

M .p/
˛ .s; z/ WD

Z 1
0

xj˛jCp�1�z �

pY
jD0

.1C sjx/
�˛j�1 dx; �1 < <z < j˛j C p;

(4.1)

D

Z 1
0

xz �

pY
jD0

.x C sj /
�˛j�1 dx; (4.2)
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where the second line is obtained by changing variables x 7! x�1. Furthermore,

H .p/
˛ .s0; z/ WDM .p/

˛ ..1; s0/; z/; s0 D .s1; : : : ; sp/:

We are mainly interested in integral values of z. The integrals Eq. (4.1), (4.2)
converge absolutely for �1 < <z < j˛j C p. So z D m 2 Z may take the values
0; 1; : : : ; j˛j C p � 1. The function M .p/

˛ .�; z/ is .�j˛j � p C z/–homogeneous,
that is

M .p/
˛ .�s; z/ D ��j˛j�pCzM .p/

˛ .s; z/; (4.3)
as is seen by changing variables from �x to x. Therefore, scaling s0 gives

M .p/
˛ .s; z/ D s

�j˛j�pCz
0 H .p/

˛ .s0=s0; z/:

M
.p/
˛ .s;m/ and H

.p/
˛ .s;m/ can be expressed in terms of closed formulas

involving divided differences and differentiations:
Proposition 4.1. For a multiindex ˛ D .˛0; : : : ; ˛p/ 2 NpC1 and s D .s0; : : : ; sp/
with sj > 0 let .u0; : : : ; uj˛jCp/ be the tuple with u0 D � � � D u˛0 D s0; u˛0C1 D

� � � D u˛0C˛1C1 D s1; : : : ; uj˛jCp�1�˛p D � � � D uj˛jCp D sp .4 Furthermore, let
˛0 WD .0; ˛1; : : : ; ˛p/. Then for m 2 f0; 1; : : : ; j˛j C p � 1g

M .p/
˛ .s;m/ D .�1/mCj˛jCp�1Œu0; : : : ; uj˛jCp� idm log (4.4)

D
.�1/mCj˛jCp�1

˛Š
@˛s Œs0; : : : ; sp� id

m log : (4.5)

Here, idm stands for the function x 7! xm and Œy0; : : : ; yn�f stands for the divided
difference of the function f with respect to the variables y0; : : : ; yn.

If m 2 f0; 1; : : : ; j˛0j C p � 1g then also

M .p/
˛ .s;m/ D

.�1/j˛
0jCp�1�m

˛Š

� pX
kD1

sk@sk C j˛j C p � 1 �m
�˛0

� @˛
0

s Œs0; : : : ; sp� id
m log : (4.6)

Here, .
Pp

kD1
sk@sk Cj˛jCp�1�m/

˛0 is the differential operator
Pp

kD1
sk@sk C

j˛j C p � 1 �m inserted into the falling factorial polynomial .a/˛0 D a � .a � 1/ �
� � � � .a � nC 1/.

Consequently, for H .p/
˛ and m 2 f0; 1; : : : ; j˛0j C p � 1g we have the following

formula which only involves partial derivatives in the variables s1; : : : ; sp

H .p/
˛ .s0; m/ DM .p/

˛ ..1; s0/;m/; s0 D .s1; : : : ; sp/

D
.�1/j˛

0jCp�1�m

˛Š

� pX
kD1

sk@sk C j˛j C p � 1 �m
�˛0

� @˛
0

s Œ1; s1; : : : ; sp� id
m log :

(4.7)

4In other words, the tuple u consists of ˛0 C 1 copies of s0, ˛1 C 1 copies of s1 etc.
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Recall that divided differences are explained in Appendix A below. For more on
the falling factorials see Sec. B.1 below.

Proof. We start with distinct positive variables t0; : : : ; tqI q WD j˛j C p. Then by
Eq. (4.2)

M
.q/
0 .t; m/ D

Z 1
0

xm
qY
jD0

.x C tj /
�1 dx:

The integrand is a rational function of degree m � q � 1 � �2. Therefore, it has a
partial fraction decomposition

xm
qY
jD0

.x C tj /
�1
D

qX
kD0

Ak .x C tk/
�1;

with
qP
kD0

Ak D 0. The Ak are explicitly given by

Ak D .�tk/
m

qY
jD0;j 6Dk

.tj � tk/
�1
D .�1/mCq tmk

qY
jD0;j 6Dk

.tk � tj /
�1:

Thus we find

M
.q/
0 .t; m/ D �

qX
kD0

Ak log tk

D .�1/mCq�1
qX
kD0

� qY
jD0;j 6Dk

.tk � tj /
�1
�
tmk log tk (4.8)

D .�1/mCq�1Œt0; : : : ; tq� idm log :

In the last equation Eq. (A.2) was used. By continuity this formula also holds for not
necessarily distinct variables t0; : : : ; tq . Hence by Eq. (A.5)

M .p/
˛ .s;m/ D .�1/mCj˛jCp�1Œs

˛0C1
0 ; : : : ; s

˛pC1
p � idm log

D
.�1/mCj˛jCp�1

˛Š
@˛s Œs0; : : : ; sp� id

m log;

thus Eq. (4.4) and Eq. (4.5) are proved.
The proof of the remaining claims about the formulas involving falling factorials

is postponed to the Appendix B.
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Remark 4.2. For general z 62 Z one may calculate M .q/
0 .t; z/ similarly. From the

partial fraction decomposition

qY
jD0

.x C tj /
�1
D

qX
kD0

Ak .x C tk/
�1;

Ak D .�1/
q

qY
jD0;j 6Dk

.tk � tj /
�1;

and Sec. 4.1 we infer

M
.q/
0 .t; z/ D

��

sin�z

qX
kD0

Akt
z
k

D
.�1/q�1�

sin�z

qX
kD0

� qY
jD0;j 6Dk

.tk � tj /
�1
�
tzk

D
.�1/q�1�

sin�z
Œt0; : : : ; tq� idz :

Taking the limit z ! m 2 Z one obtains again Eq. (4.8).

5. Examples

Recall from Eq. (4.1), (4.2) and Proposition 4.1 that for sj > 0 and m 2

f0; 1; : : : ; j˛j C p � 1g

H .p/
˛ .s;m/ WD

Z 1
0

xj˛jCp�1�m � .1C x/�˛0�1 �

pY
jD1

.1C sjx/
�˛j�1 dx; (5.1)

D

Z 1
0

xm � .1C x/�˛0�1 �

pY
jD1

.x C sj /
�˛j�1 dx (5.2)

D .�1/mCj˛jCp�1 � Œ1˛0C1; s
˛1C1
1 ; : : : ; s

˛pC1
p � idm log : (5.3)

The recursion formula Eq. (A.1), the Leibniz rule Eq. (A.6), and the substitution rule
Eq. (A.7) lead to a large variety of recursion formulas for the functions H .p/

˛ . We
will discuss here the case of one and two variable functions and in particular compare
the two variable case to the examples listed at the end of [3].
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5.1. One variable functions.

5.1.1. From Eq. (4.7) we infer

H
.1/
0;0 .s/ WD H

.1/
0;0 .s; 0/ WD Œ1; s� log D

log s
s � 1

DW L0.s/: (5.4)

Note that if we substitute s D exp.u/ this function becomes

u

eu � 1
D

1X
jD0

Bj

j Š
uj ; (5.5)

which is the generating function for the Bernoulli numbers. The fact that by
Proposition 4.1 all the functions H .p/

˛ are ultimately expressed in terms of the
function log s

s�1
is one of the “conceptual explanations” the formidable formulas (3)

and (4) in [3] are “begging” for.
Applying Proposition 4.1 we find if m 2 f0; 1; : : : ; ˛1g

H .1/
˛ .s;m/ D

.�1/j˛1jCm

˛Š
.Ds C j˛j �m/

˛0 @˛1s
sm log s
s � 1

(5.6)

D
.�1/˛1Cm

˛Š
sm�˛1@˛0s s

j˛j�m@˛1s
sm log s
s � 1

(5.7)

D
.�1/˛1Cm

˛Š
@˛1s s

m@˛0s
s˛0 log s
s � 1

; (5.8)

resp. for m D 0

H .1/
˛ .s/ WD H .1/

˛ .s; 0/ D .�1/j˛jŒ1˛0C1; s˛1C1� log (5.9)

D .�1/j˛jŒ1˛0 ; s˛1C1�L0; L0.s/ WD Œ1; s� log (5.10)

D
.�1/˛1

˛Š
s�˛1@˛0s s

j˛j@˛1s
log s
s � 1

(5.11)

D
.�1/˛1

˛Š
@j˛js

s˛0 log s
s � 1

; (5.12)

where the substitution rule Eq. (A.7) was used. For the equalities Eq. (5.8) and (5.12)
cf. Eq. (B.3).

5.1.2. We note the special case

Lm.s/ WD H .1/
0;m.s;m/ D H

.1/
m;0.s; 0/ D .�1/

mŒ1mC1; s� log

D .�1/mŒ1m; s�L0 D
1

mŠ
@ms
sm log s
s � 1

D
.�1/m

.s � 1/mC1

�
log s �

mX
jD1

.�1/j�1

j
.s � 1/j

� (5.13)

which was called “modified Logarithm” in [4, Sec. 3 and 6].



216 Matthias Lesch

We list the first few functions explicitly.

H
.1/
1;0 .s/ D L1.s/ D �Œ1; s�L0 D �

log s � s C 1
.s � 1/2

;

H
.1/
0;1 .s/ D

s log s � s C 1
s.s � 1/2

; (5.14)

H
.1/
1;1 .s/ D Œ1

2; s2� log D �@sH .1/
1;0 .s/ D �

2s log s � s2 C 1
.s � 1/3s

:

5.2. Two variable functions. Instead of the clumsy H .2/
˛ ..a; b/; 0/ we write

H
.2/
˛ .a; b/. By Eq. (4.7) and the substitution rule Eq. (A.7) we have

H .2/
˛ .a; b/ D .�1/j˛jC1Œ1˛0C1; a˛1C1; b˛2C1� log;

D .�1/j˛jC1Œ1˛0 ; a˛1C1; b˛2C1�L0

D .�1/j˛jC1
1

b � a

�
Œ1˛0 ; a˛1 ; b˛2C1�L0 � Œ1˛0 ; a˛1C1; b˛2 �L0

�
D
.�1/j˛jC˛0C1

˛1Š˛2Š
@˛1a @

˛2
b

1

b � a

�
L˛0.b/ � L˛0.a/

�
: (5.15)

Thus in the special case ˛1 D ˛2 D 0 we immediately obtain a simple formula
expressing two variable functions in terms of one variable modified logarithms:

H
.2/
r;0;0.a; b/ D

�1

b � a

�
Lr.b/ � Lr.a/

�
: (5.16)

5.3. Comparison with the explicit formulas in [3]. For two variable functions
H
.2/
˛ .s/ let us compare our results to the explicit formulas given at the end of [3]. We

denote the functionH introduced there byHCM . Then for the two variable functions
we have by definitionHCM

˛0C1;˛1C1;˛2C1
.a; b/ D H

.2/
˛ .a; b/.

In [3] the following formulas are given explicitly. In the resp. first lines we list the
formulas as stated in loc. cit., in the resp. second lines we cancel common factors and
write them as a sum of fractions involving log.a/; log.b/ plus terms which do not
contain logarithms. As a helper the open source computer algebra system Maxima
was used.

HCM
1;1;1.a; b/ D

.�1C b/ log.a/� .�1C a/ log.b/
.�1C a/.�1C b/.�aC b/

D
log.a/

.a � 1/.b � a/
�

log.b/
.b � 1/.b � a/

;

HCM
1;2;1.a; b/ D

.�1C b/
�
.�1C a/.a � b/C a.1� 2aC b/ log.a/

�
C .�1C a/2a log.b/

.�1C a/2a.a � b/2.�1C b/

D
.b � 2aC 1/ log.a/
.a � 1/2.b � a/2

C
log.b/

.b � 1/.b � a/2
�

1

.b � a/.a � 1/a
;
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HCM
2;1;1.a; b/ D

.�1C b/2 log.a/C .�1C a/
�
.a � b/.�1C b/� .�1C a/ log.b/

�
.�1C a/2.a � b/.�1C b/2

D �
log.a/

.b � a/.a � 1/2
C

log.b/
.b � 1/2.b � a/

C
1

.b � 1/.a � 1/
;

HCM
2;2;1.a; b/

D

.�1C b/
�
.�1C a/.a � b/

�
1C a2 � .1C a/b

�
C a.�1C 3a � 2b/.�1C b/ log.a/

�
� .�1C a/3a log.b/

.�1C a/3a.a � b/2.�1C b/2

D �
.2b � 3aC 1/ log.a/
.b � a/2.a � 1/3

�
log.b/

.b � 1/2.b � a/2
C

.aC 1/b � a2 � 1

.b � 1/.b � a/.a � 1/2a
;

HCM
3;1;1.a; b/ D

.�1C a/.5C a.�3C b/� 3b/.a � b/.�1C b/� 2.�1C b/3 log.a/C 2.�1C a/3 log.b/
2.�1C a/3.a � b/.�1C b/3

D
log.a/

.b � a/.a � 1/3
�

log.b/
.b � a/.b � 1/3

C
.a � 3/b � 3aC 5

2.b � 1/2.a � 1/2
:

From the resp. second lines we see immediately thatHCM
1;1;1.a; b/ D �Œ1; a; b� log

and thatHCM
1;2;1.a; b/ D �@aH

CM
1;1;1.a; b/.

ToHCM
2;1;1 andHCM

3;1;1 we can apply Eq. (5.16) and obtain

HCM
2;1;1.a; b/ D

�1

b � a

�
L1.b/ � L1.a/

�
;

HCM
3;1;1.a; b/ D

�1

b � a

�
L2.b/ � L2.a/

�
:

Alternatively, onemay employ the formulas in Proposition 4.1 and indeed one verifies

HCM
2;1;1.a; b/ D @s

ˇ̌
sD1

Œs; a; b� log
D �.a@a C b@b C 2/Œ1; a; b� log
D .a@a C b@b C 2/H

CM
1;1;1.a; b/;

HCM
3;1;1.a; b/ D H

.2/
2;0;0.a; b/ D �

1

2
.a@a C b@b C 3/

2 Œ1; a; b� log

D �
1

2
.a@a C b@b C 3/.a@a C b@b C 2/Œ1; a; b� log

D
1

2
.a@a C b@b C 3/H

CM
2;1;1.a; b/:

Similarly,

HCM
2;2;1.a; b/ D H

.2/
1;1;0.a; b/ D �@aH

.2/
1;0;0.a; b/

D �@aH
CM
2;1;1.a; b/:

5.4. Conclusion. The possibilities to produce such formulas are endless. All these
formulas can be obtained, of course, by performing partial fraction decompositions on
the integrand of Eq. (4.1) resp. Eq. (4.2). However, the calculus of finite differences
with its various rules provides a convenient framework which allows to obtain the
formulas in a mechanical way.
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A. Divided differences

Divided differences have their origin in interpolation theory; they can be traced back
to Newton. Although being standard textbook material in numerical analysis, let us
give a very quick summary here; for a recent survey see [6], a classical reference
is [14]. In the sequel all functions are assumed to be smooth.

A.1. Let f be a smooth function on a real interval I and let x0; x1; : : : a priori
distinct points in I . Then one defines recursively the divided differences

Œx0�f WD f .x0/;

Œx0; : : : ; xn�f WD
1

x0 � xn

�
Œx0; : : : ; xn�1�f � Œx1; : : : ; xn�f

�
:

(A.1)

The first few divided differences are therefore

Œx0; x1�f D
f .x0/

.x0 � x1/
C

f .x1/

.x1 � x0/
;

Œx0; x1; x2�f D
f .x0/

.x0 � x1/.x0 � x2/
C

f .x1/

.x1 � x0/.x1 � x2/
C

f .x2/

.x2 � x0/.x2 � x1/
;

and by induction one shows the explicit formula

Œx0; : : : ; xn�f D

nX
kD0

f .xk/ �

nY
jD0;j 6Dk

.xk � xj /
�1; (A.2)

resp. the Genocchi–Hermite integral formula [14, Sec. 1.6], [6, Sec. 9]5

Œx0; : : : ; xn�f D

Z
nP
jD0

sjD1;sj>0

f .n/
� nX
jD0

sjxj
�
ds1 : : : dsn

D

Z
0�tn�����t1�1

f .n/
�
.1 � t1/x0 C � � � C .tn�1 � tn/xn�1 C tnxn

�
dt1 : : : dtn:

(A.3)

If f is even analytic, e.g. if f is already an interpolation polynomial, and if  is a
closed curve in the domain of f encircling the points x0; : : : ; xn exactly once then
by the Residue Theorem and Eq. (A.2) we have [14, Sec. 1.7]

Œx0; : : : ; xn�f D
1

2�i

I


f .�/

nY
jD0

.� � xj /
�1 d�: (A.4)

5According to the historical remarks in [6, Sec. 9] the formula is due to Genocchi who communicated
it to Hermite in a letter.
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A.2. The confluent case. From the right hand sides of Eq. (A.3) and Eq. (A.4) we
see that Œx0; : : : ; xn�f is a smooth (analytic) function of the variables x0; : : : ; xn.
Therefore, one uses these formulas to extend the divided differences to the confluent
case of repeated arguments. Thus, for any x0; : : : ; xn 2 I , regardless of being
pairwise distinct or not, Œx0; : : : ; xn�f is a smooth (analytic) symmetric function of
its arguments.

The divided differences can be calculated quite efficiently from the recursion
system Eq. (A.1) and with some care this can also be extended to the confluent
case [14, 1.8]. Alternatively, there is a differentiation formula relating a divided
difference with repeated arguments to one with distinct arguments. This is obtained
by differentiating by the parameters under the integral in Eq. (A.4) or in Genocchi–
Hermite’s formula Eq. (A.3).

To explain this consider a multiindex ˛ D .˛0; : : : ; ˛n/ 2 Nn and x0; : : : ; xn 2 I .
We write Œx˛0C10 ; : : : ; x

˛nC1
n �f for the divided difference Œu0; : : : ; uj˛jCn�f where

the tuple .u0; : : : ; uj˛jCn/ contains exactly ˛0 C 1 copies of x0, ˛1 C 1 copies of x1
etc. From Eq. (A.4) we infer [14, Sec. 1.8]

Œx
˛0C1
0 ; : : : ; x˛nC1n �f D

1

2�i

I


f .�/

nY
jD0

.� � xj /
�˛j�1 d�

D
1

˛Š
@˛x Œx0; : : : ; xn�f (A.5)

D

nX
kD0

1

˛kŠ
@˛kxk

�
f .xk/

nY
jD0;j 6Dk

.xk � xj /
�˛j�1

�
:

Recall that we are using the multiindex notation for partial derivatives and factorials,
cf. Sec. 2.1.

A.3. Leibniz rule. TheLeibniz rule for the divided difference of a product [6, Sec. 4]

Œx0; : : : ; xn�.f � g/ D

nX
jD0

Œx0; : : : ; xj �f � Œxj ; : : : ; xn�g; (A.6)

can be used to deduce interesting recursion formulas. Namely, taking g D id or id2
we find

Œx0; : : : ; xn�.idf / D x0 � Œx0; : : : ; xn�f C Œx1; : : : ; xn�f;
Œx0; : : : ; xn�.id2 f / D x20 � Œx0; : : : ; xn�f

C .x0 C x1/ � Œx1; : : : ; xn�f C Œx2; : : : ; xn�f:

Of course, this can be extended to arbitrary powers, cf. [14, Sec. 1.31].
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A.4. Substitution rule. The following generalization of the recursion scheme
Eq. (A.1) can be proved easily by induction (cf. [10, Prop. 11]). Given y0; : : : ; yp
put g.x/ WD Œy0; : : : ; yp; x�f . Then

Œx0; : : : ; xq�g D Œy0; : : : ; yp; x0; : : : ; xq�f: (A.7)

B. Homogeneous functions and totally characteristic differential operators

We muse a little about the totally characteristic derivative x@x , certainly a little more
than is barely necessary to see the formulas Eq. (4.6) and Eq. (4.7).

B.1. Wewill make frequent use of the rising and falling factorials (aka Pochhammer
symbol) for which we adopt D. Knuth’s notation [11, p. 50]6

.a/n WD a � .aC 1/ � � � � � .aC n � 1/; .a/0 WD 1; (B.1)

.a/n WD a � .a � 1/ � � � � � .a � nC 1/; .a/0 WD 1: (B.2)

Furthermorewe denote byDx D x@x the totally characteristic derivative with respect
to the variable x. For a polynomial p 2 CŒt � we write p.@x/ resp. p.Dx/ for @x
resp. Dx inserted into the indeterminate t . In particular, e.g. .Dx C k/n stands
forDx inserted into the polynomial .t C k/n 2 CŒt �.

As an example we note the formula

xa@nxx
b@mx .x

c
�/ D xaCbCc�n�m � .Dx C b C c �m/

n
� .Dx C c/

m

D xaCb�n@mx x
nCm�b@nx.x

bCc�m
�/; n;m 2 N; a; b; c 2 C:

(B.3)

This can be seen in a lot of ways. The obvious way is to expand the l. h. s. via the
Leibniz’ rule and then apply the Binomial Theorem. A much quicker way is to note
that we haveDxxz D z � xz for any complex number z and that for any such z

xa@nxx
b@mx x

cCz
D .z C b C c �m/n � .z C c/m � xzCaCbCc�n�m

D xaCb�n@mx x
nCm�b@nxx

bCc�mCz;

and since the l. h. s. and the r. h. s. of Eq. (B.3) are polynomials inDx , they must be
equal. Eq. (B.3) contains Eq. (5.12) as special case.

An immediate consequence of Eq. (B.3) is the fact that the family of differential
operators xn�k@nx.xk �/, k; n 2 Z, 0 � k � n, is commuting.

We mention another important property of totally characteristic operators which
is useful if one deals with the first integrand Eq. (4.1) which is a function of sjx.
Namely, if p.t/ 2 CŒt � is a complex polynomial and f a differentiable function then

p.Dx/f .xs/ D p.Ds/f .xs/ D
�
p.D/f

�
.xs/: (B.4)

6He actually attributes it to A. Capelli (1893) and L. Toscano (1939).
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B.2. Homogeneous functions. If��Rq is an open conewe denote byPa.�/DPa
the space of smooth functions on � which are a–homogeneous, that is

f .� � �/ D �a � f .�/:

Recall from Eq. (4.3) that the functionM .p/
˛ .�; z/ is .�j˛j � p C z/–homogeneous.

a–Homogeneous functions satisfy Euler’s identity
qX
jD1

Djf D a � f: (B.5)

Consequently, on Pa we may replaceD1 by �
Pq
jD2Dj C a.

B.3. The basic function b.x/ D
1
1Cx

. Using the above mentioned rules the
following formulas for the basic function b.x/ D 1

1Cx
occurring in the integral

Eq. (4.1) can easily be derived7

@bl D �l � blC1;

.D C l/bl D l � blC1;

@nb D .�1/n � nŠ � bnC1;

.D C 1/n b D .D C n/n b D nŠ � bnC1;

xn�k@nxkb.x/ D .Dx C k/
n b.x/ D .�1/n�k � nŠ � xn�k � b.x/nC1:

(B.6)

B.4. Proof of Eq. (4.6) and Eq. (4.7) . Recall from Eq. (4.3) that M .p/
˛ .�; m/ is

.�j˛j � p C z/–homogeneous. Therefore, for ˛ D .˛0; ˛
0/ we infer from Eq. (4.5)

and Eq. (B.3) for m 2 f0; 1; : : : ; j˛0j C p � 1g

s
˛0
0 M

.p/
˛ .s;m/ D

.�1/˛0

˛Š
s
˛0
0 @

˛0
s0
M
.p/
˛0 .s;m/

D
.�1/˛0

˛Š
.Ds0/

˛0 M
.p/
˛0 .s;m/;

(B.7)

and sinceM .p/
˛0 .�; m/ is .�j˛

0j �pCm/–homogeneous we may replace .Ds0/
˛0 by�

�

pX
kD1

Dsj � j˛
0
j � p Cm

�˛0
D .�1/˛0

� pX
kD1

Dsj C j˛
0
j C p �m

�˛0
D .�1/˛0

� pX
kD1

Dsj C j˛j C p � 1 �m
�˛0

:

(B.8)

From Eq. (B.7) and (B.8) the remaining claims of Proposition 4.1 follow.
7Of course, they can also be derived by brute force.
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