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Abstract. In order to investigate to what extent the calculus of classical (pseudo-)Riemannian
manifolds can be extended to a noncommutative setting, we introduce pseudo-Riemannian
calculi of modules over noncommutative algebras. In this framework, it is possible to prove
an analogue of Levi-Civita’s theorem, which states that there exists at most one torsion-free
and metric connection for a given (metric) module, satisfying the requirements of a real metric
calculus. Furthermore, the corresponding curvature operator has the same symmetry properties
as the classical Riemannian curvature. As our main motivating example, we consider a pseudo-
Riemannian calculus over the noncommutative 3-sphere and explicitly determine the torsion-free
and metric connection, as well as the curvature operator together with its scalar curvature.
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1. Introduction

The topological aspects of noncommutative geometry have been extensively
developed over the last decades, and there is a fine understanding of how geometrical
concepts generalize (or not) to the noncommutative setting. Moreover, via spectral
triples and Dirac operators, metric aspects have also been thoroughly studied [11].
In particular, a noncommutative connection and curvature formalism is worked out
by A. Connes in [10], and now there is also an understanding of scalar curvature in
terms of heat kernel expansions for spectral triples.

In recent years, several authors have made progress in computing the scalar
curvature for noncommutative tori, defined as a particular term in the asymptotic
heat kernel expansion, in analogy with classical Riemannian geometry [8,16–18].
The novelty of this formulation is that it can be used to prove index type theorems,
such as a noncommutative Gauss–Bonnet theorem, which can be shown to hold for
conformal perturbations of the flat metric for the noncommutative torus [12,15].
The computations rely on pseudo-differential calculus and are highly technical and
analytical in nature. These results certainly have a profound impact in the field of
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noncommutative geometry. An interesting question is the existence of a curvature
tensor, whose scalar curvature coincides with the one arising from the heat kernel
expansion.

In an interesting paper by J. Rosenberg [21], an algebraic approach to curvature of
the noncommutative torus is taken, much in the spirit of noncommutative differential
geometry [10]. It turns out that it is possible to construct a Levi-Civita connection for
certain classes of noncommutative tori, whose curvature tensor and scalar curvature
can easily be computed.

In this paper, we try to understand some of the prerequisites for introducing
traditional Riemannian geometry over a noncommutative algebra, and formalize
these ideas in pseudo-Riemannian calculi for which several classical results hold; in
particular, there exists at most one torsion-free and metric connection. Furthermore,
under certain hermiticity assumptions, the curvature tensor has all the symmetries
one finds in the differential geometric setting. Although our framework is admittedly
quite restrictive, and only a few noncommutative manifolds fulfill the requirements,
we believe that our results contribute to the understanding of noncommutative
Riemannian geometry, by studying particular and well known examples: the
noncommutative torus and, foremost, the noncommutative 3-sphere [19]. In these
examples, there are natural choices ofmodules, corresponding to (sections of) tangent
bundles, which presents themselves when considering the manifolds as embedded
in Euclidean space (see [1–4] for similar approaches making use of embeddings in
Euclidean space). Let us also point out that there are several other related approaches
to Riemannian structures in noncommutative geometry; see e.g. [5–7,14].

For our main example, the noncommutative 3-sphere, we find it interesting that
our computations seem to introduce a type of noncommutative local tangent bundle,
in the following sense (as discussed in Section 6.3). In general, the module of vector
fields is not a free module, which impedes to work with directly from a computational
point of view. Therefore, one usually considers the manifold chart by chart and carry
out pointwise calculations. In noncommutative geometry, points are generally not
accessible, but the fact that the tangent bundle is locally free is useful. However,
since the objects we work with are intrinsically global, the restriction of vector fields
to a chart in the noncommutative setting is not immediate. Instead, we extend a local
basis of vector fields to global vector fields and consider the set of vector fields in the
local chart as a free submodule of the tangent bundle, generated by the globalized
vector fields. From a classical point of view, computations may equally well be done
with these vector fields, keeping in mind that results can only be trusted for points
that belong to the given chart. Furthermore, we introduce an Ore localization of the
noncommutative 3-sphere, which is in direct analogy with the algebra of functions
in the chart provided by the classical Hopf coordinates.

The paper is organized as follows: In Section 2 we introduce a few basic concepts
of noncommutative algebra that will be used throughout the paper, in order to fix
our notation. Section 3 introduces pseudo-Riemannian calculi, which provides a
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computational framework for Riemannian geometry over noncommutative algebras.
In Section 4 the symmetry properties of the curvature of a pseudo-Riemannian
calculus is discussed, as well as the possibility of introducing a scalar curvature.
Section 5 presents the noncommutative torus in the framework of pseudo-Riemannian
calculi, and we show that a unique (flat) torsion-free and metric connection
exists. In Section 6 we introduce the main motivating example for this paper,
the noncommutative 3-sphere. A real pseudo-Riemannian calculus is constructed,
including the unique torsion-free and metric connection and, furthermore, the scalar
curvature is computed. Finally, in Section 6.3, we discuss aspects of noncommutative
localization in the context of the noncommutative 3-sphere.

2. Preliminaries

In this section we shall recall the definitions of a few basic algebraic objects, in order
to set the notation for the rest of the paper. In the following, A will denote a unital
�-algebra (over C) with center Z.A/. The set of derivations of A (into A) is denoted
by Der.A/, and for any derivation d 2 Der.A/, there is a hermitian conjugate d�,
given by d�.a/ D

�
d.a�/

��; a derivation is called hermitian if d� D d .
In this paper we shall mainly be concerned with right A-modules. In particular,

the free (right) A-module .A/n has a canonical basis given by fe1; : : : ; eng where

ei D .0; : : : ; 0;1; 0; : : : ; 0/

with the only nonzero element in the i ’th position. An element U 2 .A/n can be
written as U D eiU

i (with an implicit sum over i from 1 to n) for some (uniquely
determined) elements U 1; : : : ; U n 2 A.

Definition 2.1. Let M be a right A-module. A map h W M �M ! A is called a
hermitian form onM if

h.U; V CW / D h.U; V /C h.U;W /

h.U; Va/ D h.U; V /a

h.U; V /� D h.V; U /:

A hermitian form is non-degenerate if h.U; V / D 0 for all V 2 M implies that
U D 0. For brevity, we simply refer to a non-degenerate hermitian form as a metric
on M . The pair .M; h/, where M is a right A-module and h is a hermitian form
onM , is called a (right) hermitian A-module. If h is a metric, we say that .M; h/ is
a (right) metric A-module.
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Let us introduce affine connections on a right A-module, adjusted to fit the particular
setting of this paper.
Definition 2.2. LetM be a rightA-module and let g � Der.A/ be a (real) Lie algebra
of hermitian derivations. An affine connection on .M; g/ is a map r W g �M !M

such that
(1) rd .U C V / D rdU CrdV ,
(2) r�dCd 0U D �rdU Crd 0U ,
(3) rd .Ua/ D

�
rdU

�
aC Ud.a/,

for all U; V 2M , d; d 0 2 g, a 2 A and � 2 R.
Remark 2.3. Note that since we are considering affine connections with respect to a
subset of Der.A/, it does not make sense in general to demand that rcdU D crdU
for (hermitian) c 2 Z.A/, since g may not be closed under the action of Z.A/.
However, in the examples we consider it is true that rcdU D crdU whenever
cd 2 g. (In fact, this is a general statement which follows from Kozul’s formula (3.4)
as soon as ', in Definition 3.1, is linear over Z.A/ in the above sense.)

3. Pseudo-Riemannian calculi

In differential geometry, every derivation of C1.M/ gives rise to a (unique) vector
field on the manifold M . Hence, in the algebraic definition of a connection,
where rdU is defined for d 2 Der.C1.M// and U 2 TM , one may swap the
two arguments due to the fact that there is a one-to-one correspondence between
derivations and vector fields. For instance, this makes the classical definition of
torsion meaningful:

T .U; V / D rUV � rVU � ŒU; V �;

from an algebraic point of view. In a derivation based differential calculus over a
noncommutative algebra (see e.g. [13]), the arguments of a connection is not on equal
footing, partly due to the fact that the set of derivations is in general not a module
over the algebra. Thus, there is no natural way to associate an element of the module
to an arbitrary derivation.

In this paper, we shall investigate the consequences of introducing a correspon-
dence, which assigns a unique element of a module to every derivation in a Lie
algebra g � Der.A/. This idea is formalized in the following definition.
Definition 3.1. Let .M; h/ be a (right) metric A-module, let g � Der.A/ be a (real)
Lie algebra of hermitian derivations and let ' W g ! M be a R-linear map. If we
denote the pair .g; '/ by g' , the triple .M; h; g'/ is called a real metric calculus if
(1) the imageM' D '.g/ generatesM as an A-module,
(2) h.E;E 0/� D h.E;E 0/ for all E;E 0 2M' .
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The condition that the elements in the image of ' have hermitian inner products,
corresponds to the fact that the metric is real, and that the inner product of two real
vector fields, is again a real function. An important consequence of this assumption
is that h is truly symmetric on the image of ', i.e. h.E;E 0/ D h.E 0; E/ for all
E;E 0 2M' ; a fact that will repeatedly be used in the sequel.

In this setting, we shall introduce a connection on a real metric calculus, and
demand that the connection preserve the hermiticity ofM' .
Definition 3.2. Let .M; h; g'/ be a real metric calculus and let r denote an affine
connection on .M; g/. If

h.rdE;E
0/ D h.rdE;E

0/�

for allE;E 0 2M' and d 2 g then .M; h; g' ;r/ is called a real connection calculus.
For a real connection calculus it is straightforward to introduce the concept of a metric
and torsion-free connection.
Definition 3.3. Let .M; h; g' ;r/ be a real connection calculus overM . The calculus
is metric if

d
�
h.U; V /

�
D h

�
rdU; V

�
C h

�
U;rdV

�
for all d 2 g, U; V 2M , and torsion-free if

rd1
'.d2/ � rd2

'.d1/ � '
�
Œd1; d2�

�
D 0

for all d1; d2 2 g. A metric and torsion-free real connection calculus over M is
called a pseudo-Riemannian calculus overM .
Pseudo-Riemannian calculi will be the main objects of interest to us, and they provide
a framework in which one may carry out computations in close analogy with classical
Riemannian geometry.

The Levi-Civita theorem states that there is a unique torsion-free and metric
connection on the tangent bundle of a Riemannian manifold. In the current setting,
one can not guarantee the existence, but given a real metric calculus, there exists at
most one connection which is both metric and torsion-free.
Theorem 3.4. Let .M; h; g'/ be a real metric calculus over M . Then there exists
at most one affine connection r on .M; g/, such that .M; h; g' ;r/ is a pseudo-
Riemannian calculus.

Proof. Assume that there exist two connections r and Qr such that .M; h; g' ;r/ and
.M; h; g' ; Qr/ are pseudo-Riemannian calculi. Let us define

˛.d; U / D QrdU � rdU;

from which it follows that

˛.d; Ua/ D
�
QrdU

�
aC Uda �

�
rdU

�
a � Uda D ˛.d; U /a;
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for a 2 A, as well as

˛.d1 C �d2; U / D ˛.d1; U /C �˛.d2; U /

˛.d; U C V / D ˛.d; U /C ˛.d; V /;

for � 2 R. By subtracting the conditions that r; Qr are metric one obtains

h
�
˛.d; U /; V

�
D �h

�
U; ˛.d; V /

�
; (3.1)

and the torsion-free condition implies

˛
�
d1; '.d2/

�
D ˛

�
d2; '.d1/

�
(3.2)

for d1; d2 2 g. Finally, requiring that h.rd1
'.d2/; '.d3// and h. Qrd1

'.d2/; '.d3//

are hermitian gives

h
�
˛.d1; '.d2//; '.d3/

��
D h

�
˛.d1; '.d2//; '.d3/

�
: (3.3)

Now, let us make use of (3.1) and (3.2) to compute (where Ea D '.da/)

h
�
˛.d1; E2/; E3

�
D h

�
˛.d2; E1/; E3

�
D �h

�
E1; ˛.d2; E3/

�
D �h

�
E1; ˛.d3; E2/

�
D h

�
˛.d3; E1/; E2

�
D h

�
˛.d1; E3/; E2

�
D �h

�
E3; ˛.d1; E2/

�
;

which shows that

h
�
˛.d1; '.d2//; '.d3/

��
D �h

�
˛.d1; '.d2//; '.d3/

�
:

Combining this result with (3.3) yields

h
�
˛.d1; '.d2//; '.d3/

�
D 0;

for all d1; d2; d3 2 g. Since the image of ' generatesM and h is non-degenerate, it
follows that ˛.d; U / D 0 for all U 2M and d 2 g, which shows that

QrdU D rdU

for all d 2 g and U 2M .

The Levi-Civita connection can be explicitly constructed with the help of Kozul’s
formula, which gives the connection as expressed in terms of the metric tensor. For
pseudo-Riemannian calculi, there is a corresponding statement.
Proposition 3.5. Let .M; h; g' ;r/ be a pseudo-Riemannian calculus and assume
that d1; d2; d3 2 g. Then it holds that

2h.rd1
E2; E3/ D d1h.E2; E3/C d2h.E1; E3/ � d3h.E1; E2/

� h
�
E1; '.Œd2; d3�/

�
C h

�
E2; '.Œd3; d1�/

�
C h

�
E3; '.Œd1; d2�/

�
; (3.4)

where Ea D '.da/ for a 2 f1; 2; 3g.
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Proof. Using the fact that r is a metric connection gives

d1h.E2; E3/ D h
�
rd1

E2; E3
�
C h

�
E2;rd1

E3
�

(3.5)
d2h.E3; E1/ D h

�
rd2

E3; E1
�
C h

�
E3;rd2

E1
�

(3.6)
d3h.E1; E2/ D h

�
rd3

E1; E2
�
C h

�
E1;rd3

E2
�
; (3.7)

and since the connection is torsion-free one obtains

h.E3;rd2
E1/ D h.E3;rd1

E2/C h
�
E3; '.Œd2; d1�/

�
h.rd3

E1; E2/ D h.rd1
E3; E2/C h

�
'.Œd3; d1�/; E2

�
h.E1;rd3

E2/ D h.E1;rd2
E3/C h

�
E1; '.Œd3; d2�/

�
:

Moreover, using that the connection is real enables us to rewrite the above equations
in the following form

h.E3;rd2
E1/ D h.rd1

E2; E3/C h
�
E3; '.Œd2; d1�/

�
(3.8)

h.rd3
E1; E2/ D h.E2;rd1

E3/C h
�
'.Œd3; d1�/; E2

�
(3.9)

h.E1;rd3
E2/ D h.rd2

E3; E1/C h
�
E1; '.Œd3; d2�/

�
: (3.10)

Inserting (3.8) in (3.6) and (3.9), (3.10) in (3.7) gives (together with (3.5))

h.rd1
E2; E3/ D d1h.E2; E3/ � h.E2;rd1

E3/

h.rd1
E2; E3/ D d2h.E3; E1/ � h.rd2

E3; E1/ � h
�
E3; '.Œd2; d1�/

�
0 D � d3h.E1; E2/C h.E2;rd1

E3/C h
�
'.Œd3; d1�/; E2

�
C h.rd2

E3; E1/C h
�
E1; '.Œd3; d2�/

�
;

and summing these three equations yields

2h.rd1
E2; E3/ D d1h.E2; E3/C d2h.E3; E1/ � d3h.E1; E2/

� h
�
E3; '.Œd2; d1�/

�
C h

�
'.Œd3; d1�/; E2

�
C h

�
E1; '.Œd3; d2�/

�
;

which proves (3.4).

Remark 3.6. Note that Proposition 3.5 gives an independent proof of the fact that
the connection is unique, since the hermitian form h is assumed to be nondegenerate.

Now, let us show that the converse of Proposition (3.4) is true; i.e. a connection
satisfying (3.4) gives a pseudo-Riemannian calculus.

Proposition 3.7. Let .M; h; g'/ be a real metric calculus, and let r be an affine
connection on .M; g/ such that Kozul’s formula (3.4) holds. Then .M; h; g' ;r/ is a
pseudo-Riemannian calculus.
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Proof. From (3.4) it follows immediately that h.rd1
'.d2/; '.d3// is hermitian since

every term in the right hand side is hermitian, due to the fact that .M; h; g'/ is
assumed to be a real metric calculus, which implies that .M; h; g' ;r/ is a real
connection calculus. Next, let us show that the connection is metric.

Let d1; d2; d3 2 g and set Ea D '.da/. Using eq. (3.4) twice (together with the
fact that .M; h; g'/ is a real metric calculus), gives

h.rd1
E2; E3/C h.E2;rd1

E3/ D d1h.E2; E3/:

Since M' generates M , one may find fEa D '.da/g
N
aD1 such that one can write

U D EaU
a for all U 2M . It then follows that

h.rdU;V /C h.U;rdV /

D h
�
.rdEa/U

a
CEadU

a; EbV
b
�
C h

�
EaU

a; .rdEb/V
b
CEbdV

b
�

D .U a/�
�
h.rdEa; Eb/C h.Ea;rdEb/

�
V b C d.U a/�h.Ea; Eb/V

b

C .U a/�h.Ea; Eb/dV
b

D .U a/�dh.Ea; Eb/V
b
C d.U a/�h.Ea; Eb/V

b
C .U a/�h.Ea; Eb/dV

b

D d
�
.U a/�h.Ea; Eb/V

b
�
D dh.U; V /;

which shows that the affine connection is metric. Finally, let us show that the
connection is torsion-free. For d1; d2; d3 2 g, with Ea D '.da/, let us consider

T D h
�
rd1

E2 � rd2
E1 � '.Œd1; d2�/; E3

�
:

By using formula (3.4) for the first two terms, one obtains

T D h
�
E3; '.Œd1; d2�/

�
� h

�
'.Œd1; d2�/; E3

�
D 0:

Since the image of ' generatesM one can conclude that

h
�
rd1

E2 � rd2
E1 � '.Œd1; d2�/; U

�
D 0

for all U 2M , which implies that

rd1
E2 � rd2

E1 � '.Œd1; d2�/ D 0;

since h is nondegenerate.

In particular examples, it is possible to use Kozul’s formula to construct a metric
and torsion-free connection. One of the cases, which is relevant to our examples, is
whenM is a free module.
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Corollary 3.8. Let .M; h; g'/ be a real metric calculus and let f@1; : : : ; @ng be a
basis of g such that fEa D '.@a/gnaD1 is a basis forM . If there exist Uab 2M such
that

2h.Uab; Ec/ D @ah.Eb; Ec/C @bh.Ea; Ec/ � @ch.Ea; Eb/

� h
�
Ea; '.Œ@b; @c�/

�
C h

�
Eb; '.Œ@c ; @a�/

�
C h

�
Ec ; '.Œ@a; @b�/

�
(3.11)

for a; b; c D 1; : : : ; n, then there exists a connection r, given by r@a
Eb D Uab , such

that .M; h; g' ;r/ is a pseudo-Riemannian calculus.

Proof. Assuming that such elements Uab 2M exist, define

r@a
Eb D Uab

and extendr to g by linearity. Since fEagnaD1 is a basis ofM , every elementU 2M
has a unique expression U D EaU

a, and we extend r to M through linearity and
Leibniz’ rule

rdU D
�
rdEa

�
U a CEad.U

a/;

which then defines an affine connection on .M; g/. From Proposition 3.7 it follows
that .M; h; g' ;r/ is a pseudo-Riemannian calculus.

4. Curvature of pseudo-Riemannian calculi

In this section we will study symmetries of the curvature tensor of a pseudo-
Riemannian calculus, as well as introduce an associated scalar curvature, in case it
exists. It turns out that in order to recover the full symmetry (compared to the classical
setting) of the curvature tensor, one needs an extra assumption of hermiticity. Namely,
although a real connection calculus satisfies the requirement that h.rd1

E1; E2/ is
hermitian, there is no guarantee that h.rd1

rd2
E1; E2/ is hermitian. However, with

this extra assumption, one may prove that all the familiar symmetries of the curvature
tensor hold (cf. Proposition 4.5). Pseudo-Riemannian calculi fulfilling this extra
condition will appear often in what follows, and therefore we make the following
definition.
Definition 4.1. A pseudo-Riemannian calculus .M; h; g' ;r/ is said to be real if
h.rd1

rd2
E1; E2/ is hermitian for all d1; d2 2 g and E1; E2 2M' .

For later convenience, let us provide a slight reformulation of the condition in the
definition above.
Lemma 4.2. Let .M; h; g' ;r/ be a pseudo-Riemannian calculus. Then the following
statements are equivalent
(1) h.rd1

rd2
E1; E2/ is hermitian for all d1; d2 2 g and E1; E2 2M' ,

(2) h.rd1
E1;rd2

E2/ is hermitian for all d1; d2 2 g and E1; E2 2M' .
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Proof. Since the connection is metric, one may write

d2h.rd1
E1; E2/ D h.rd2

rd1
E1; E2/C h.rd1

E1;rd2
E2/:

Now, d2h.rd1
E1; E2/ is hermitian (sincer is real and d2 is hermitian), and it follows

that if one of h.rd2
rd1

E1; E2/ and h.rd1
E1;rd2

E2/ is hermitian, then the other
one is hermitian too (since it is then a sum of two hermitian elements).

In a pseudo-Riemannian calculus .M; h; g' ;r/, one introduces the curvature operator
in a standard way as

R.d1; d2/U D rd1
rd2

U � rd2
rd1

U � rŒd1;d2�U

for d1; d2 2 g and U 2M . The operator R.d1; d2/ has a trivial antisymmetry when
exchanging its arguments d1; d2 and, furthermore, due to the torsion-free condition,
the first Bianchi identity holds.
Proposition 4.3. Let .M; h; g' ;r/ be a pseudo-Riemannian calculus with curvature
operator R. Then
(1) h.U;R.d1; d2/V / D �h.U;R.d2; d1/V /
(2) R.d1; d2/'.d3/CR.d2; d3/'.d1/CR.d3; d1/'.d2/ D 0,

for U; V 2M and d1; d2; d3 2 g.

Proof. Property (1) follows immediately from the definition of the curvature operator.
To prove (2), one uses the torsion free condition twice (set Ea D '.da/):

R.d1; d2/E3 CR.d2; d3/E1 CR.d3; d1/E2

D rd1

�
rd2

E3 � rd3
E2
�
Crd2

�
rd3

E1 � rd1
E3
�
Crd3

�
rd1

E2 � rd2
E1
�

� rŒd1;d2�E3 � rŒd2;d3�E1 � rŒd3;d1�E2

D rd1
'.Œd2; d3�/Crd2

'.Œd3; d1�/Crd3
'.Œd1; d2�/

� rŒd1;d2�E3 � rŒd2;d3�E1 � rŒd3;d1�E2

D '
�
Œd1; Œd2; d3��

�
C '

�
Œd2; Œd3; d1��

�
C '

�
Œd3; Œd1; d2��

�
D 0;

where the last equality follows from the Jacobi identity, and the fact that ' is a linear
map.

As already mentioned, the full symmetry of the curvature operator is recovered in
the case of real pseudo-Riemannian calculi. This is stated in Proposition 4.5, and in
the proof we shall need the following short lemma.
Lemma 4.4. If .M; h; g' ;r/ is a pseudo-Riemannian calculus, then

d
�
h.E;E/

�
D 2h.E;rdE/

for all d 2 g and E 2M' .
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Proof. Since r is a metric connection

d
�
h.E;E/

�
D h

�
rdE;E

�
C h

�
E;rdE

�
;

and, as r is real, it follows that h.E;rdE/ D h.rdE;E/, which implies that

d
�
h.E;E/

�
D 2h.E;rdE/

for all E 2M' and d 2 g.

Note that, for the sake of completeness, the results of Proposition 4.3 are repeated in
the formulation below.
Proposition 4.5. Let .M; h; g' ;r/ be a real pseudo-Riemannian calculus, with
curvature operator R. Then
(a) h.U;R.d1; d2/V / D �h.U;R.d2; d1/V /,
(b) h.E1; R.d1; d2/E2/ D �h.E2; R.d1; d2/E1/,
(c) R.d1; d2/'.d3/CR.d2; d3/'.d1/CR.d3; d1/'.d2/ D 0,
(d) h

�
'.d1/; R.d3; d4/'.d2/

�
D h

�
'.d3/; R.d1; d2/'.d4/

�
,

for all U; V 2M , E1; E2 2M' and d1; d2; d3; d4 2 g.

Proof. Properties (a) and (c) are contained in the statement of Proposition 4.3, which
is valid for an arbitrary pseudo-Riemannian calculus. Let now show that (b) holds,
by proving that h.E;R.d1; d2/E/ D 0 for all E 2 M' . By using the fact that r is
metric, one computes

h
�
E;R.d1; d2/E

�
D h

�
E;rd1

rd2
E � rd2

rd1
E � rŒd1;d2�E

�
D d1h.E;rd2

E/ � d2h.E;rd1
E/ � h.E;rŒd1;d2�E/;

using the result in Lemma 4.2 (and the fact that the pseudo-Riemannian calculus is
assumed to be real). Next, it follows from Lemma 4.4 that

h
�
E;R.d1; d2/E

�
D
1

2
d1d2h.E;E/ �

1

2
d2d1h.E;E/ �

1

2
Œd1; d2�h.E;E/ D 0:

Finally, we prove (d) by using (c) to write (again, Ea D '.da/)

0 D h
�
E1; R.d2; d3/E4 CR.d3; d4/E2 CR.d4; d2/E3

�
C h

�
E2; R.d3; d4/E1 CR.d4; d1/E3 CR.d1; d3/E4

�
C h

�
E3; R.d4; d1/E2 CR.d1; d2/E4 CR.d2; d4/E1

�
C h

�
E4; R.d1; d2/E3 CR.d2; d3/E1 CR.d3; d1/E2

�
D 2h.E1; R.d4; d2/E3/C 2h.E2; R.d1; d3/E4/;

by using (b) and (a). Consequently, by using (a) once more, relation (d) follows.
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4.1. Scalar curvature. Let .M; h; g' ;r/ be a real pseudo-Riemannian calculus,
and let f@1; : : : ; @ng be a basis of g. Setting Ea D '.@a/ one introduces the
components of the metric and the curvature tensor relative to this basis via

hab D h.Ea; Eb/

Rabpq D h
�
Ea; R.@p; @q/Eb

�
;

and we note that .Rabpq/� D Rabpq (using the fact that the pseudo-Riemannian
calculus is real). Proposition 4.5 implies that

Rabpq D �Rabqp; (4.1)
Rabpq D �Rbapq; (4.2)
Rabpq D Rpqab; (4.3)

Rapqr CRaqrp CRarpq D 0: (4.4)

In the traditional definition of scalar curvature S D habhpqRapbq one makes use of
the inverse of the metric to contract indices of the curvature tensor. For an arbitrary
algebra, the metric hab may fail to be invertible; i.e., there does not exist hab such
that habhbc D ıac1. However, one might be in the situation where there existH 2 A

and Ohab such that
Ohabhbc D hcb Oh

ba
D ıacH:

If H is hermitian and regular (i.e. not a zero divisor), then we say that hab has a
pseudo-inverse . Ohab;H/.
Lemma 4.6. If . Ohab;H/ and . Ogab; G/ are pseudo-inverses for hab then
(1) if G D H then Ogab D Ohab ,
(2) Œhab;H � D Œ Ohab;H � D 0,
(3)

�
Ohab
��
D Ohba,

(4) OgabH D G Ohab andH Ogab D OhabG,
(5) if ŒH; Ogab� D 0 then ŒG; Ohab� D ŒH;G� D 0.

Proof. To prove (1), one assumes that . Oh;H/ and . Og;H/ are pseudo-inverses of h.
Then it follows that

�
Ogab � Ohab

�
hbc D 0, which, when multiplying from the right

by Ohcp , yields �
Ogap � Ohap

�
H D 0:

SinceH is a regular element it follows that Ogap D Ohap .
By using the definition of the two pseudo-inverses, onemay rewrite the expression

Ogabhbc Oh
cp in two ways, �

Ogabhbc
�
Ohcp D Gıac

Ohcp D G Ohap

Ogab
�
hbc Oh

cp
�
D OgabHı

p

b
D OgapH
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proving (4) (consider Ohabhbc Ogcp for the second part of the statement). Setting
. Oh;H/ D . Og;G/ in the above result immediately gives ŒH; Ohab� D 0. Together with

habH D hapı
p

b
H D hap Oh

pchcb D Hı
c
ahcb D Hhab

this proves (2).
Let us consider property (5). If ŒH; Ogab� D 0 then (4) implies that

G Ohab D OgabH D H Ogab D OhabG:

Moreover,

OgabH �H Ogab D 0 ) hca Og
abH � hcaH Og

ab
D 0 ) (using (2))

hca Og
abH �Hhca Og

ab
D 0 )

�
GH �HG

�
ıbc D 0 ) ŒG;H� D 0;

which concludes the proof of (5).
Finally, to prove (3) one considers the hermitian conjugates of hab Ohbc D Hıca

and Ohabhbc D Hıac , which gives�
Ohbc
��
hba D Hı

c
a

hcb
�
Ohab
��
D Hıac ;

by using that h�
ab
D hba. The above equations show that if kab D . Ohba/� then

.kab;H/ is a pseudo-inverse for hab . Since . Ohab;H/ and .kab;H/ are pseudo-
inverses for hab , it follows from (1) that Ohab D kab D . Ohba/�.

Definition 4.7. Let .M; h; g' ;r/ be a real pseudo-Riemannian calculus such that hab
has a pseudo-inverse . Ohab;H/ with respect to a basis of g. A scalar curvature of
.M; h; g' ;r/ with respect to . Ohab;H/ is an element S 2 A such that

OhabRapbq Oh
pq
D HSH:

Remark 4.8. Note that it is easy to show that OhabRapbq Ohpq and, hence, the scalar
curvature with respect to . Ohab;H/, is independent of the choice of basis in g.
Proposition 4.9. Let .M; h; g' ;r/ be a real pseudo-Riemannian calculus, and let
. Ohab;H/ be a pseudo-inverse of hab with respect to a basis of g. Then there exists at
most one scalar curvature of .M; h; g' ;r/with respect to . Ohab;H/ and, furthermore,
the scalar curvature is hermitian.

Proof. Uniqueness of the scalar curvature follows immediately from the fact thatH
is regular; namely,

HSH D HS 0H , H.S � S 0/H D 0;

which then implies that S D S 0 by the regularity ofH .
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As noted in the beginning of this section, Rabcd is hermitian. Furthermore,
Lemma 4.6 states that

�
Ohab
��
D Ohba which implies that�

OhabRapbq Oh
pq
��
D OhqpRapbq Oh

ba
D OhqpRqbpa Oh

ba
D OhabRapbq Oh

pq;

by using (4.1)–(4.3). From the definition of scalar curvature, this implies that

HSH D .HSH/� D HS�H , H.S � S�/H D 0:

SinceH is assumed to be regular, it follows that S D S�.

If S is the scalar curvature with respect to a pseudo-inverse . Ohab;H/, in which H
is central, then any scalar curvature (with respect to an arbitrary pseudo-inverse)
coincides with S , giving a unique hermitian scalar curvature of a real pseudo-
Riemannian calculus.

Proposition 4.10. Let .M; h; g' ;r/ be a real pseudo-Riemannian calculus with
scalar curvature S with respect to . Ohab;H/. IfH 2 Z.A/ then the scalar curvature
is unique; i.e. if S 0 is the scalar curvature with respect to . Ogab; G/, then S 0 D S .

Proof. IfH 2 Z.A/ then property (4) of Lemma 4.6 implies that

G.HSH/G D G OhabRapbq Oh
pqG D H OgabRapbq Og

pqH D H.GS 0G/H;

and since ŒH;G� D 0 one obtains

HG.S � S 0/GH D 0 ) S D S 0

since G andH are assumed to be regular.

Remark 4.11. In particular, if the metric hab is invertible, i.e. it has a pseudo-inverse
. Ohab;1/, then Proposition 4.10 implies that there exists a unique scalar curvature of
the corresponding real pseudo-Riemannian calculus.

5. The noncommutative torus

After having developed a general framework for Riemannian curvature of a realmetric
calculus, it is time to consider some examples, in order to motivate our definitions.
As a starter, let us consider the noncommutative torus and construct a pseudo-
Riemannian calculus over it (cf. [4] for a related approach that uses the concrete
embedding of the torus into R4). For the noncommutative torus, our construction of
a Levi-Civita connection, and its corresponding curvature, is similar to the approach
taken in [21].
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As we shall work in close analogy with differential geometry, let us briefly review
the geometry of the Clifford torus. We consider the Clifford torus as embedded in R4

with the flat inducedmetric. Concretely, let us consider the following parametrization

Ex D .x1; x2; x3; x4/ D .cosu; sinu; cos v; sin v/

which implies that the tangent space at a point is spanned by

@u Ex D .� sinu; cosu; 0; 0/ D .�x2; x1; 0; 0/
@v Ex D .0; 0;� sin v; cos v/ D .0; 0;�x4; x3/;

from which the induced metric is obtained as

.hab/ D

�
1 0

0 1

�
:

Setting z D x1 C ix2, w D x3 C ix4 and @1 D @u, @2 D @v yields

@1z D iz @1w D 0

@2z D 0 @2w D iw:

As the noncommutative torus T 2
�
, we consider the unital �-algebra generated by two

unitary operators Z;W satisfying WZ D qZW with q D e2�i� , and we introduce

X1 D
1

2

�
Z CZ�

�
X2 D

1

2i

�
Z �Z�

�
X3 D

1

2

�
W CW �

�
X4 D

1

2i

�
W �W �

�
:

In analogy with the geometrical setting, let M be the (right) submodule of .T 2
�
/4

generated by

E1 D
�
�X2; X1; 0; 0

�
E2 D

�
0; 0;�X4; X3

�
;

and for U; V 2M , with U D EaU a and V D EaV a we set

h.U; V / D

2X
aD1

�
U a
��
V a:

Proposition 5.1. The elements E1; E2 2 M give a basis for M and h is a non-
degenerate hermitian form onM . Thus, .M; h/ is a free metric T 2

�
-module.

Proof. First, let us show that E1; E2 are free generators

E1aCE2b D 0 ) .�X2a;X1a;�X4b;X3b/ D .0; 0; 0; 0/

)

(�
.X1/2 C .X2/2

�
a D 0�

.X3/2 C .X4/2
�
b D 0

,

(
ZZ�a D 0

WW �b D 0
, a D b D 0:
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Next, we prove that h is nondegenerate onM . Let U; V 2M and write U D EaU a.
Assuming that h.U; V /D0 for all V 2M may be equivalently stated as h.U;Ea/D0
for a D 1; 2, which immediately gives U 1 D U 2 D 0.

Next, we let g be the (real) Lie algebra generated by the two hermitian derivations
@1; @2, given by

@1Z D iZ @1W D 0

@2Z D 0 @2W D iW;

from which it follows that Œ@1; @2� D 0. Together with the map ' W g! M , defined
as '.@a/ D Ea and extended by linearity, it is easy to check that .M; h; g'/ is a real
metric calculus over T 2

�
. Furthermore, we note that, with respect to the basis f@1; @2g

of g, the metric

.hab/ D
�
h.Ea; Eb/

�
D

�
1 0

0 1

�
is invertible.

One is now in position to use Corollary 3.8 to find a unique connection r
on M such that .M; h; g' ;r/ is a pseudo-Riemannian calculus. However, since
h.Ea; Eb/ D ıab1 and Œ@a; @b� D 0, the only solution to

2h.Uab; Ec/ D @ah.Eb; Ec/C @bh.Ea; Ec/ � @ch.Ea; Eb/

� h
�
Ea; '.Œ@b; @c�/

�
C h

�
Eb; '.Œ@c ; @a�/

�
C h

�
Ec ; '.Œ@a; @b�/

�
isUab D 0, which givesrdU D 0 for all d 2 g andU 2M . Hence, the curvature of
the corresponding pseudo-Riemannian calculus vanishes identically, and the (unique)
scalar curvature is 0.

As done in [21] one can obtain more interesting results by conformally perturbing
the metric

h˛.U; V / D

2X
aD1

�
U a
��
e˛V a

for some hermitian element ˛ 2 T 2
�
(here, of course, one considers the smooth part

of the C �-algebra generated by Z;W ). One can easily check that .M; h˛; g'/ is a
real metric calculus, and one may find a connection r (using Corollary 3.8) such
that .M; h˛; g' ;r/ is a pseudo-Riemannian calculus. However, unless ˛ is central,
it will in general not be a real pseudo-Riemannian calculus.

6. The noncommutative 3-sphere

As a main motivating example for this paper, we consider the noncommutative
3-sphere. We shall explicitly construct a real pseudo-Riemannian calculus together
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with a basis of g for which the metric hab has a pseudo-inverse . Ohab;H/ with
H 2 Z.A/, giving a unique scalar curvature (via Proposition 4.10). As for the case
of the torus, we shall use the analogy with differential geometry to find an appropriate
metric calculus. Therefore, let us start by recalling the Hopf parametrization of S3.

6.1. Hopf coordinates forS 3. The 3-sphere can be described as embedded inC2 by
two complex coordinates z D x1Cix2 andw D x3Cix4, satisfying jzj2Cjwj2 D 1,
which can be realized by

z D ei�1 sin �

w D ei�2 cos �;

giving

x1 D cos �1 sin � x2 D sin �1 sin �
x3 D cos �2 cos � x4 D sin �2 cos �:

At every point where 0 < �1; �2 < 2� and 0 < � < �=2, the tangent space is spanned
by the three vectors

E1 D @1.x
1; x2; x3; x4/ D .�x2; x1; 0; 0/

E2 D @2.x
1; x2; x3; x4/ D .0; 0;�x4; x3/

E� D @�.x
1; x2; x3; x4/ D .cos �1 cos �; sin �1 cos �;� cos �2 sin �;� sin �2 sin �/;

where @1 D @�1
and @2 D @�2

. Instead of @� , one may introduce the derivation
@3 D jzjjwj@� , which gives

E3 D @3.x
1; x2; x3; x4/ D .x1jwj2; x2jwj2;�x3jzj2;�x4jzj2/;

and one may equally well span the tangent space by E1; E2; E3. The action of
@1; @2; @3 on z and w is given by

@1.z/ D iz @1.w/ D 0 (6.1)
@2.z/ D 0 @2.w/ D iw (6.2)
@3.z/ D zjwj

2 @3.w/ D �wjzj
2: (6.3)

With respect to the basis fE1; E2; E3g of TpS3 the induced metric becomes

.hab/ D

0@jzj2 0 0

0 jwj2 0

0 0 jzj2jwj2

1A : (6.4)
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6.2. A pseudo-Riemannian calculus for S 3
�
. For our purposes, the noncommuta-

tive three sphere S3
�
[19,20] is a unital �-algebra generated byZ;Z�; W;W � subject

to the relations

WZ D qZW W �Z D NqZW � WZ� D NqZ�W W �Z� D qZ�W � (6.5)
Z�Z D ZZ� W �W D WW � WW � D 1 �ZZ�;

where q D e2�i� . It follows from the defining relations that a basis for S3
�
is given

by the monomials
Zi .Z�/jW .k/

for i; j � 0 and k 2 Z, where

W .k/
D

(
W k if k � 0;
.W �/�k if k < 0:

Let us collect a few properties of S3
�
that will be useful to us.

Proposition 6.1. If a 2 S3
�
then

(1) ZZ�a D 0 ) a D 0,

(2) WW �a D 0 ) a D 0.

Moreover, ZZ� and WW � are central elements of S3
�
.

Proof. Let us prove that ZZ� commutes with every element of S3
�
(the proof for

WW � is analogous). From the defining relations of the algebra, it is clear that ZZ�
commutes with Z and Z�. Let us check that ZZ� commutes with W and W �:

WZZ� D qZWZ� D q NqZZ�W D ZZ�W

W �ZZ� D NqZW �Z� D NqqZZ�W � D ZZ�W �:

Next, let us show that neitherZZ� norWW � is a zero divisor. An arbitrary element
a 2 S3

�
may be written as

a D
X

i;j�0; k2Z

aijkZ
i .Z�/jW .k/

for aijk 2 C, and it follows that

ZZ�a D
X

i;j�0; k2Z

aijkZ
iC1.Z�/jC1W .k/
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since ŒZ;Z�� D 0. As Zi .Z�/jW .k/ is a basis for S3
�
, setting ZZ�a D 0 demands

that aijk D 0 for all i; j � 0 and k 2 Z, which implies that a D 0. Analogously,

WW �a D .1 �ZZ�/a D
X

i;j�0; k2Z

�
aijkZ

i .Z�/jW .k/
� aijkZ

iC1.Z�/jC1W .k/
�

D

X
j�0; k2Z

a0jk.Z
�/jW .k/

C

X
i�1; k2Z

ai0kZ
iW .k/

C

X
i;j�1; k2Z

�
aijk � ai�1;j�1;k

�
Zi .Z�/jW .k/;

which can easily be seen to give aijk D 0 upon setting WW �a D 0.

Let us introduce the notation

X1 D
1

2

�
Z CZ�

�
X2 D

1

2i

�
Z �Z�

�
X3 D

1

2

�
W CW �

�
X4 D

1

2i

�
W �W �

�
jZj2 D ZZ� jW j2 D WW �;

and note that jZj2 D .X1/2 C .X2/2 and jW j2 D .X3/2 C .X4/2, as well as

.X1/2 C .X2/2 C .X3/2 C .X4/2 D jZj2 C jW j2 D 1:

In the following, we shall construct a real pseudo-Riemannian calculus for S3
�
. Let

us start by introducing a metric module .M; h/ in close analogy with the Hopf
parametrization in Section 6.1. Therefore, we let E1; E2; E3 be the following
elements of the free (right) module .S3

�
/4:

E1 D .�X
2; X1; 0; 0/

E2 D .0; 0;�X
4; X3/

E3 D .X
1
jW j2; X2jW j2;�X3jZj2;�X4jZj2/;

(6.6)

and letM be the module generated by fE1; E2; E3g.
Proposition 6.2. The module M D fE1a C E2b C E3c W a; b; c 2 S3� g is a free
right S3

�
-module with a basis given by the elements fE1; E2; E3g.

Proof. By construction fE1; E2; E3g are generators ofM . To prove thatM is a free
module, we assume that a; b; c 2 S3

�
is such that

E D E1aCE2b CE3c D 0;

and show that a D b D c D 0. The requirement that E D 0 is equivalent to

�X2aCX1jW j2c D 0 X1aCX2jW j2c D 0

�X4b �X3jZj2c D 0 X3b �X4jZj2c D 0;
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and multiplying the first to equations byX1 andX2, respectively, and summing them
yields (using that ŒX1; X2� D 0)�

.X1/2 C .X2/2
�
jW j2c D 0 , jZj2jW j2c D 0:

It follows from Proposition 6.1 that c D 0, and the system of equations becomes

X2a D 0 X1a D 0

X4b D 0 X3b D 0;

from which it follows that
�
.X1/2 C .X2/2

�
a D 0 and

�
.X3/2 C .X4/2

�
a D 0,

which is equivalent to
jZj2a D 0 jW j2b D 0:

Again, it follows from Proposition 6.1 that a D b D 0. This shows that fE1; E2; E3g
is basis forM .

In the differential geometric setting, the three tangent vectors E1; E2; E3 are
associated to the three derivations @1; @2; @3, as given in (6.1)–(6.3). It turns out
that these derivations have noncommutative analogues.
Proposition 6.3. There exist hermitian derivations @1; @2; @3 2 Der.S3

�
/ such that

@1.Z/ D iZ @1.W / D 0

@2.Z/ D 0 @2.W / D iW

@3.Z/ D ZjW j
2 @3.W / D �W jZj

2;

and Œ@a; @b� D 0 for a; b D 1; 2; 3.

Proof. Let us show that @3 exists; the proof that @1; @2 exist is analogous. If @3 exists,
the fact that it is hermitian, together with @3.Z/ D ZjW j2 and @3.W / D �W jZj2
completely determines @3 via

@3.Z/ D ZjW j
2 @3.W / D �W jZj

2

@3.Z
�/ D Z�jW j2 @3.W

�/ D �W �jZj2;

since the action on an arbitrary element of S3
�
is given by applying Leibniz’ rule

repeatedly. Conversely, one may try to define @3 via the above relations and extend
it to S3

�
through Leibniz’ rule. However, to show that @3 is a derivation on S3

�
, one

one needs to check that it respects all the relations between Z;W (given in (6.5)).
For instance, applying Leibniz’ rule to @3.WZ � qZW / gives

@3.WZ � qZW / D .@3W /Z CW.@3Z/ � q.@3Z/W � qZ.@3W /

D �W jZj2Z CWZjW j2 � qZjW j2W C qZW jZj2

D �.WZ � qZW /jZj2 C .WZ � qZW /jW j2 D 0;
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as required (using that jZj2 and jW j2 are central). In the same way, one may check
that @3 is compatible with all the relations in S3

�
(given in (6.5)), which shows that @3

is indeed a derivation on S3
�
. To prove that Œ@a; @b� D 0 one simply shows that

Œ@a; @b�.Z/ D Œ@a; @b�.Z
�/ D Œ@a; @b�.W / D Œ@a; @b�.W

�/ D 0;

which, by Leibniz’ rule, implies that Œ@a; @b�.a/ D 0 for all a 2 S3� . For instance

Œ@1; @3�.Z/ D @1
�
@3.Z/

�
� @3

�
@1.Z/

�
D @1

�
ZjW j2

�
� @3

�
iZ
�

D @1.Z/jW j
2
CZ@1.jW j

2/ � iZjW j2 D Z@1.W W
�/ D 0:

The remaining computations are carried out in the same manner, all giving 0.

Next, let us construct a real metric calculus over S3
�
. As the metric module we choose

the free moduleM defined in Proposition 6.2, together with the hermitian form

h.U; V / D

3X
a;bD1

.U a/�habV
b

where U D EaU a, V D EaV a and

.hab/ D

0@jZj2 0 0

0 jW j2 0

0 0 jZj2jW j2

1A : (6.7)

(Note that h is induced from the canonical metric on the free module .S3
�
/4;

i.e. hab D
P4
iD1.E

i
a/
�Ei

b
, where Ea D eiE

i
a.) Furthermore, we let g be the

(abelian) Lie algebra generated by the derivations @1; @2; @3 (in Proposition 6.3) and
set '.@a/ D Ea (and extend it as a linear map over R).
Proposition 6.4. .M; h; g'/ is a real metric calculus over S3

�
.

Proof. Let us first prove that .M; h/ is a metric module. From the definition of h, it
is clear that h is a hermitian form, and it remains to show that it is non-degenerate.
Assume that h.U; V / D 0 for all V 2 M . In particular, one may choose V D Ea,
which gives

0 D h.U;E1/ D .U
1/�h11 D .U

1/�jZj2

0 D h.U;E2/ D .U
2/�h22 D .U

2/�jW j2

0 D h.U;E3/ D .U
3/�h33 D .U

3/�jZj2jW j2;

and from Proposition 6.1 it follows that U 1 D U 2 D U 3 D 0. Hence, h is non-
degenerate, which shows that .M; h/ is a metric module.

Moreover, it is clear that '.g/ generatesM since Ea D '.@a/, for a D 1; 2; 3, is
in the image of '. Finally, forE;E 0 2M' , it is easy to see that h.E;E 0/ is hermitian
since hab is central and hermitian (cf. (6.7)).
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SinceM is a freemodule, andEa D '.@a/ is a basis forM , onemay useCorollary 3.8
to construct a metric and torsion-free connection on .M; h; g'/.

Proposition 6.5. There exists a (unique) connection r on .M; h; g'/ such that
.M; h; g' ;r/ is a real pseudo-Riemannian calculus. The connection is given by

r1E1 D �E3 r1E2 D 0 r1E3 D E1jW j
2

r2E1 D 0: r2E2 D E3 r2E3 D �E2jZj
2

r3E1 D E1jW j
2

r3E2 D �E2jZj
2

r3E3 D E3.jW j
2
� jZj2/;

where ra � r@a
.

Proof. It is clear that .M; h; g'/ satisfies the prerequisites of Corollary 3.8.
Furthermore, it is a straightforward exercise to check that Uab D raEb satisfy
equation (3.11), which then implies that there exists a connection r on .M; g/, given
by raEb above, such that .M; h; g'/ is a pseudo-Riemannian calculus.

Let us now show that the pseudo-Riemannian calculus is real; i.e. that the
elements h.rarbEp; Eq/ are hermitian for all a; b; p; q 2 f1; 2; 3g. We introduce
the connection coefficients �c

ab
2 S3

�
through

raEb D Ec�
c
ab;

and note that �c
ab

is central and hermitian for all a; b; c 2 f1; 2; 3g. It follows that

rarbEp D ra
�
Er�

r
bp

�
D
�
raEr

�
�rbp CEr@a�

r
bp

) h.rarbEp; Eq/ D h.raEr ; Eq/�
r
bp C h.Er ; Eq/

�
@a�

r
bp

�
:

Since .M; h; g' ;r/ is a pseudo-Riemannian calculus and �r
bp

is central and
hermitian, it follows that the first term is hermitian. Furthermore, since @a is a
hermitian derivation, and the derivative of a central element is again central, also the
second term is hermitian. This shows that h.rarbEp; Eq/ is hermitian and, hence,
that .M; h; g' ;r/ is a real pseudo-Riemannian calculus.

Let us proceed to compute the curvature of .M; h; g' ;r/. Recall that since the
pseudo-Riemannian calculus is real, Proposition 4.5 implies that the curvature
operator has all the classical symmetries.

Proposition 6.6. The curvature of the pseudo-Riemannian calculus .M; h; g' ;r/
over S3

�
is given by

R.@1; @2/E1 D �E2jZj
2 R.@1; @2/E2 D E1jW j

2 R.@1; @2/E3 D 0

R.@1; @3/E1 D �E3jZj
2 R.@1; @3/E2 D 0 R.@1; @3/E3 D E1jZj

2
jW j2

R.@2; @3/E1 D 0 R.@2; @3/E2 D �E3jW j
2 R.@2; @3/E3 D E2jZj

2
jW j2;
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from which it follows that the nonzero curvature components can be obtained from

R1212 D jZj
2
jW j2 R1313 D

�
jZj2

�2
jW j2 R2323 D jZj

2
�
jW j2

�2
:

Moreover, the (unique) scalar curvature is given by S D 6 � 1.

Proof. First, it is straightforward to compute R.@a; @b/Ec by using the results in
Proposition 6.5. For instance (recall that Œ@a; @b� D 0)

R.@1; @3/E3 D r1r3E3 � r3r1E3 D r1
�
E3.jW j

2
� jZj2/

�
� r3

�
E1jW j

2
�

D
�
r1E3

�
.jW j2 � jZj2/ �

�
r3E1

�
jW j2 �E1@3jW j

2

D E1jW j
2
�
jW j2 � jZj2

�
�E1.jW j

2/2 �E1
�
� 2jW j2jZj2

�
D E1jZj

2
jW j2:

The components are easily computed as well; e.g.

R1212 D h
�
E1; R.d1; d2/E2

�
D h.E1; E1jW j

2/ D h.E1; E1/jW j
2
D jZj2jW j2

and
R1223 D h

�
E1; R.@2; @3/E2

�
D h.E1;�E3jW j

2/ D �h.E1; E3/jW j
2
D 0:

Computing Rabcd for a; b; c; d 2 f1; 2; 3g (using the symmetries in Proposition 4.5
to reduce the number of computations that need to be performed) givesR1212,R1313
and R2323 (together with the ones obtained by symmetry from these) as the only
nonzero components.

Finally, let us show that there is a unique scalar curvature. The metric hab has a
pseudo-inverse . Ohab;H/, given by

. Ohab/ D

0@jW j2 0 0

0 jZj2 0

0 0 1

1A and H D jZj2jW j2:

From the computation

OhabRapbq Oh
pq
D Oh11R1p1q Oh

pq
C Oh22R2p2q Oh

pq
C Oh33R3p3q Oh

pq

D Oh11
�
R1212 Oh

22
CR1313 Oh

33
�
C Oh22

�
R2121 Oh

11
CR2323 Oh

33
�

C Oh33
�
R3131 Oh

11
CR3232 Oh

22
�

D 2jW j2jZj2jW j2jZj2 C 2jW j2.jZj2/2jW j2 C 2jZj2jZj2.jW j2/2

D H.6 � 1/H;

one concludes that the scalar curvature with respect to . Ohab;H/ is given by 6 � 1.
Since H is central, it follows from Proposition 4.10 that this is indeed the unique
scalar curvature of .M; h; g' ;r/.
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6.3. Aspects of localization on S 3
�
. In classical geometry, the projection onto the

normal space of S3 is given by the map

….U /i D …ijU j D xixjU j ;

where x1; : : : ; x4 are the embedding coordinates of S3 into R4, satisfying

.x1/2 C .x2/2 C .x3/2 C .x4/2 D 1:

Hence, (sections of) the tangent bundle may be identified with the projective module

TS3 D P
�
C1.S3/4

�
where P D 1 �…, giving TS3 as a subspace of TR4. It is well known that S3 is
parallelizable, which means that TS3 is a free module, and one may explicitly give
a basis of (global) vector fields as:

v1 D .�x
4; x3;�x2; x1/ v2 D .�x

3;�x4; x1; x2/ v3 D .�x
2; x1; x4;�x3/:

The (global) vector fields E1; E2; E3

E1 D .�x
2; x1; 0; 0/ E2 D .0; 0;�x

4; x3/

E3 D
�
x1jwj2; x2jwj2;�x3jzj2;�x4jzj2

�
as defined in Section 6.1 are linearly independent at every point where jzj2 D
.x1/2 C .x2/2 ¤ 0 and jwj2 D .x3/2 C .x4/2 ¤ 0, which can easily be seen by
computing the determinantˇ̌̌̌

ˇ̌̌̌ �x2 x1 0 0

0 0 �x4 x3

x1jwj2 x2jwj2 �x3jzj2 �x4jzj2

x1 x2 x3 x4

ˇ̌̌̌
ˇ̌̌̌ D �jzj2jwj2;

giving a condition for E1; E2; E3; En D .x1; x2; x3; x4/ to be linearly independent.
Thus, the vector fieldsE1; E2; E3 provide a globalization of the corresponding vector
fields in the local chart defined by the Hopf coordinates, and one may use them for
computations, keeping in mind that they do not span the tangent space at points
.x1; x2; x3; x4/ 2 S3 where x1 D x2 D 0 or x3 D x4 D 0. However, in this case,
the set of points on S3 which are not covered by this chart has measure zero, which
implies that certain results, e.g. results involving integration over the manifold, is not
sensitive to the difference between fE1; E2; E3g and fv1; v2; v3g.

Returning to the noncommutative 3-sphere S3
�
, it is easy to check that since

.X1/2 C .X2/2 C .X3/2 C .X4/2 D ZZ� CWW � D 1
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the above situation allows for a straightforward generalization. Namely, for U D
eiU

i 2
�
S3
�

�4 one defines the map P W .S3
�
/4 ! .S3

�
/4 as

P .U / D

4X
i;jD1

eiP
ijU j

where P ij D ıij1 � X iXj , and it is easy to check that P 2.U / D P .U /. Hence,
TS3

�
D P

�
.S3
�
/4
�
is a projective module in close analogy with the module of vector

fields on S3. Let us now further study the structure of TS3
�
. We start by proving the

following lemma.
Lemma 6.7. In S3

�

X2X4 CX1X3 D q
�
X4X2 CX3X1

�
(6.8)

X2X4 �X1X3 D Nq
�
X4X2 �X3X1

�
(6.9)

X2X3 CX1X4 D Nq
�
X3X2 CX4X1

�
(6.10)

X2X3 �X1X4 D q
�
X3X2 �X4X1

�
: (6.11)

Proof. The proof is done by straightforward computations; e.g.

X2X3 CX1X4 D
1

2i
.Z �Z�/

1

2
.W CW �/C

1

2
.Z CZ�/

1

2i
.W �W �/

D
1

2i

�
ZW �Z�W �

�
D
Nq

2i

�
WZ �W �Z�

�
D
1

2
.W CW �/

1

2i
.Z �Z�/C

1

2i
.W �W �/

1

2
.Z CZ�/

D Nq
�
X3X2 CX4X1

�
;

and the remaining computations are completely analogous.

The next statement corresponds to the fact that S3 is a parallelizable manifold.
Proposition 6.8. The (right) S3

�
-module TS3

�
is a free module with basis

F1 D .�X
4; X3;�qX2; qX1/

F2 D .�X
3;�X4; qX1; qX2/

F3 D .�X
2; X1; X4;�X3/:

Proof. Let us start by showing that….Fa/ D 0, which implies that Fa 2 TS3� . Since
…ij D X iXj , it is enough to show that X iF ia D 0 for a D 1; 2; 3:

X iF i1 D �X
1X4 CX2X3 � qX3X2 C qX4X1 D 0

X iF i2 D �X
1X3 �X2X4 C qX3X1 C qX4X2 D 0

X iF i3 D �X
1X2 CX2X1 CX3X4 �X4X3 D 0;

by using (6.11), (6.8) in Lemma 6.7, and the fact that ŒX1; X2� D ŒX3; X4� D 0.
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Next, we show that F1; F2; F3 generate TS3� ; it is sufficient to show that P .ei /

(where feig4iD1 denotes the canonical basis of .S3
�
/4) can be written as a linear

combination of F1; F2; F3, for i D 1; 2; 3; 4. In fact, one can show that

P .e1/ D
�
1 � .X1/2;�X2X1;�X3X1;�X4X1

�
D �F1X

4
� F2X

3
� F3X

2

P .e2/ D
�
�X1X2;1 � .X2/2;�X3X2;�X4X2

�
D F1X

3
� F2X

4
C F3X

1

P .e3/ D
�
�X1X3;�X2X3;1 � .X3/2; X4X3

�
D �NqF1X

2
C NqF2X

1
C F3X

4

P .e4/ D
�
�X1X4;�X2X4;�X3X4;1 � .X4/2

�
D NqF1X

1
C NqF2X

2
� F3X

3:

For instance,

�F1X
4
� F2X

3
� F3X

2

D
�
.X2/2 C .X3/2 C .X4/2;�X3X4 CX4X3 �X1X2;

qX2X4 � qX1X3 �X4X2;�qX1X4 � qX2X3 CX3X2
�

D
�
1 � .X1/2;�X2X1;�X3X1;�X4X1

�
D P .e1/;

by using (6.9), (6.10) (in the third and fourth component, respectively) and the fact that
ŒX1; X2� D ŒX3; X4� D 0. Finally, let us show that F1; F2; F3 are free generators.
For a; b; c 2 S3

�
, we assume that

F1aC F2b C F3c D 0;

which is equivalent to
†

�X4a �X3b �X2c D 0

X3a �X4b CX1c D 0

�qX2aC qX1b CX4c D 0

qX1aC qX2b �X3c D 0:

Multiplying these equations (from the left) by �X2, X1, X4 and �X3, respectively,
and summing them yields c D 0, by using (6.8) and (6.11). Setting c D 0 in the
above equations gives

X4aCX3b D 0 X3a �X4b D 0

�X2aCX1b D 0 X1aCX2b D 0;

which implies that

.X4/2a D �X4X3b .X3/2a D X3X4b

.X2/2a D X2X1b .X1/2a D �X1X2b:

Summing these equations gives a D 0, which then (via a similar argument) implies
that b D 0. This shows that F1; F2; F3 are linearly independent.
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It is easy to check that the elementsE1; E2; E3, as defined in (6.6), fulfillP .Ea/DEa
for a D 1; 2; 3, implying that they are elements of TS3

�
. Hence, the module M ,

of the pseudo-Riemannian calculus for S3
�
, is a submodule of TS3

�
, providing a

noncommutative analogue of the globalization of the local vector fields in the Hopf
coordinates as described in the beginning of the section.

As is well known, every projective module comes equipped with a canonical
affine connection; namely, the module .S3

�
/4 has an affine connection, given by

NrdV D eid.V
i /

where V D eiV i 2 .S3� /
4 and d 2 Der.S3

�
/, and it follows that

OrdV D P . NrdV /

is an affine connection on TS3
�
. Since we have argued in analogy with differential

geometry, whereM is a sub-module of TS3 and the connection onM is merely the
restriction of the connection on TS3, it is natural to ask if the connection Or (restricted
toM ) coincides with r (as given by the pseudo-Riemannian calculus overM ).

Proposition 6.9. Let .M; h; g' ;r/ be the pseudo-Riemannian calculus over S3
�

introduced in Section 6.2. The affine connection OrdU D P . NrdU/, restricted to
M � TS3

�
, coincides with r; i.e. OrdU D rdU for d 2 g and U 2M .

Proof. The proof is easily done by a straightforward computation, where one
computes OraEb for a; b D 1; 2; 3, and compares it with the result in Proposition 6.5.
For instance,

Or1E1 D P
�
.�@1X

2; @1X
1; 0; 0/

�
D P

�
.�X1;�X2; 0; 0/

�
D .�X1;�X2; 0; 0/ � .X1; X2; X3; X4/

�
� .X1/2 � .X2/2

�
D
�
X1.jZj2 � 1/; X2.jZj2 � 1/; X3jZj2; X4jZj2

�
D
�
�X1jW j2;�X2jW j2; X3jZj2; X4jZj2

�
D �E3;

which coincides with r1E1.

In order to take the analogy with localization one step further, let us introduce
a localized algebra S3

�;loc constructed by formally adjoining the inverses of jZj2

and jW j2 to the algebra S3
�
. More precisely, the multiplicative set S generated

by jZj2, jW j2, 1 trivially satisfies the (right and left) Ore condition (since it
consists of central elements) and the fact that jZj2; jW j2 are regular elements
(cf. Proposition 6.1) implies that the Ore localization at S exists (see e.g. [9]).
If we consider TS3

�
andM as (right) S3

�;loc-modules, they coincide, which we show
by explicitly finding a relation between the two sets of generators.
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Proposition 6.10. Consider the following elements of .S3
�;loc/

4:

F1 D .�X
4; X3;�qX2; qX1/ E1 D .�X

2; X1; 0; 0/

F2 D .�X
3;�X4; qX1; qX2/ E2 D .0; 0;�X

4; X3/

F3 D .�X
2; X1; X4;�X3/ E3 D .X

1
jW j2; X2jW j2;�X3jZj2;�X4jZj2/:

Then it holds that

F1 D E1jZj
�2
�
X1X3 CX2X4

�
CE2jW j

�2
�
X1X3 CX2X4

�
CE3jZj

�2
jW j�2

�
X2X3 �X1X4

�
F2 D E1jZj

�2
�
X2X3 �X1X4

�
CE2jW j

�2
�
X2X3 �X1X4

�
�E3jZj

�2
jW j�2

�
X1X3 CX2X4

�
F3 D E1 �E2:

Proof. Let us show that F1 can be written as a linear combination of E1; E2; E3, as
given in the statement. Namely, introducing W i through

eiW
i
D E1jZj

�2
�
X1X3 CX2X4

�
CE2jW j

�2
�
X1X3 CX2X4

�
CE3jZj

�2
jW j�2

�
X2X3 �X1X4

�
;

gives

W 1
D �X2jZj�2.X1X3 CX2X4/CX1jZj�2.X2X3 �X1X4/

W 2
D X1jZj�2.X1X3 CX2X4/CX2jZj�2.X2X3 �X1X4/

W 3
D �X4jW j�2.X1X3 CX2X4/ �X3jW j�2.X2X3 �X1X4/

W 4
D X3jW j�2.X1X3 CX2X4/ �X4jW j�2.X2X3 �X1X4/:

Using the fact that ŒX1; X2� D 0 (in W 1; W 2), together with (6.8) and (6.11)
(in W 3; W 4), yields

W 1
D �jZj�2

�
.X2/2 C .X1/2

�
X4 D �jZj�2jZj2X4 D �X4

W 2
D jZj�2

�
.X1/2 C .X2/2

�
X3 D jZj�2jZj2X3 D X3

W 3
D �qjW j�2

�
.X4/2 C .X3/2

�
X2 D �qjW j�2jW j2X2 D �qX2

W 4
D qjW j�2

�
.X4/2 C .X3/2

�
X1 D qjW j�2jW j2X1 D qX1;

which shows that eiW i D F1.

Finally, we note that the metric

�
hab

�
D

0@jZj2 0 0

0 jW j2 0

0 0 jZj2jW j2

1A
is invertible in S3

�;loc, giving a local calculus in almost complete analogy with
differential geometry.
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