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Functoriality of equivariant eta forms
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Abstract. In this paper, we define the equivariant eta form of Bismut–Cheeger for a compact
Lie group and establish a formula about the functoriality of equivariant eta forms with respect
to the composition of two submersions, which is motivated by constructing the geometric model
of equivariant differential K-theory.
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1. Introduction

In order to find a well-defined index for a first order elliptic differential operator over
a compact manifold with nonempty boundary, Atiyah–Patodi–Singer [2] introduced a
boundary condition which is particularly significant for applications. In this situation,
an invariant of a first order self-adjoint operator called the eta invariant, �, enters
into the index formula. Formally, the eta invariant is equal to the number of positive
eigenvalues of the self-adjoint operator minus the number of negative eigenvalues.

Extending the work of Bismut–Freed [13], which is a rigorous proof of Witten’s
holonomy theorem [34], Bismut and Cheeger [9] studied the adiabatic limit for a
fibration of closed Spin manifolds and found that under the invertible assumption
of the Dirac family along the fibers, the adiabatic limit of the eta invariant of a
Dirac operator on the total space is expressible in terms of a canonically constructed
differential form, Q�, on the base space. Later, Dai [20] extended this result to the case
when the kernel of the Dirac family forms a vector bundle over the base manifold.

This eta form of Bismut–Cheeger, Q�, is the higher degree version of the eta
invariant �, i.e. it is exactly the boundary correction term in the family index theorem
for manifolds with boundary [10,11,29]. When the base space is a point, the eta form
of Bismut–Cheeger is just the eta invariant of Atiyah–Patodi–Singer. On the other
hand, by [4, 9, 20], when the dimension of the fibers are even, the eta form serves
as a canonically constructed transgression between the Chern character of the family
index and Bismut’s explicit local index representative [6] of it. We can also see it
later by taking g D 1 in (1.3).
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Recently, in the study of differential K-theory, the Bismut–Cheeger eta form
naturally appears in the geometric model constructed by Bunke and Schick [18] as a
key ingredient. Moreover, the results in [18] are highly dependent on the properties
of the eta form. In particular, the well-definedness of the push-forward map is based
on a formula about the functoriality of eta forms proved by Bunke andMa [16], which
is a family version of [9]. In [17], Bunke and Schick extend their geometric model
to the orbifold case. It can also be regarded as a geometric model for the equivariant
differential K-theory for a finite group. Thus the equivariant eta form appears
naturally here and this motivates us to understand systematically the equivariant eta
form.

In this paper, we define first the equivariant eta form when the fibration admits a
fiberwise compact Lie group action and establish a formula about the functoriality
of equivariant eta forms which extends [16, Theorem 5.11] and [9] to our case. Note
that Bunke–Ma in [16] worked for the eta form associated to flat vector bundles,
and many analytic arguments are only sketched. Here we work on the equivariant
situation, thus we need to combine the equivariant local index technique to the
different functional analysis technique in analytic localization developed by Bismut
and his collaborators [5, 7, 8, 14, 15, 26, 27]. We take this opportunity to give also
the details of the analytic arguments omitted in Bunke–Ma [16]. Note that similar
problems for holomorphic (or real) analytic torsion (forms) was considered by Ma
in [25, 27], and the equivariant holomorphic analytic torsion was considered also by
Ma in [26, Theorem 3.1] where the equivariant torsion forms on the fixed point set
appear, as in Theorem 1.3 of this paper for the equivariant eta forms. We inspired a
lot by [25, 26] with necessary modifications.

Let � W W ! S be a smooth submersion of smooth manifolds with closed
oriented fiber Z, with dimZ D n. Let TZ D T W=S be the relative tangent bundle
to the fibers Z with Riemannian metric gTZ and THW be a horizontal subbundle
of T W , such that T W D THW ˚ TZ. Let rTZ be the Euclidean connection
on TZ defined in (2.15). We assume that TZ has a Spinc structure. Let LZ be
the complex line bundle associated to the Spinc structure of TZ with a Hermitian
metric hLZ and a Hermitian connection rLZ (see [22, Appendix D]).

Let G be a compact Lie group which acts fiberwisely on W and as identity
on S . We assume that the action of G preserves the Spinc structure of TZ and all
metrics and connections are G-invariant. Let .E; hE / be a G-equivariant Hermitian
vector bundle over W with a G-invariant Hermitian connection rE . Let DZ be
the fiberwise Dirac operator defined in (2.21) and Bt be the Bismut superconnection
defined in (2.32). For ˛ 2 �i .S/, the differential form on S with degree i , set

 S .˛/ D

��
1

2�
p
�1

� i
2

� ˛; if i is evenI
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�

�
1

2�
p
�1

� i�1
2

� ˛; if i is odd:
(1.1)
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We define now the equivariant eta form (cf. (2.64) and Definition 2.3).

Definition 1.1. Assume that dim kerDZ is locally constant on S . For any g 2 G,
the equivariant eta form of Bismut–Cheeger is defined by

Q�g.T
HW;gTZ ; hLZ ; hE ;rLZ ;rE /

WD

†Z 1
0

1

2
p
�1
p
�
 S Trs

�
g
@Bt

@t
exp.�B2t /

�
dt 2 �odd.S/; if n is evenI

Z 1
0

1
p
�
 S Treven

�
g
@Bt

@t
exp.�B2t /

�
dt 2 �even.S/; if n is odd:

(1.2)

The convergence of the integral in the right hand side of (1.2) are proved in
Section 2.4. Let W g be the fixed point set of g on W . Then W g is a submanifold
of W and the restriction of � on W g gives a fibration � W W g ! S with fiber Zg .
From Proposition 2.1, the fiberZg is naturally oriented. Furthermore, the equivariant
eta form verifies the following transgression.

dS Q�g.T
HW;gTZ ; hLZ ; hE ;rLZ ;rE /

D

† Z
Zg

bAg.TZ;rTZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /

� chg.kerDZ ;rkerDZ /; if n is evenIZ
Zg

bAg.TZ;rTZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /; if n is odd:

(1.3)

For the definition of characteristic forms in (1.3), see (2.44), (2.45) and (2.57).
By (1.2), the equivariant eta form depends on the geometric data

.THW;gTZ ; hLZ ; hE ;rLZ ;rE /:

When the geometric data vary, we have the anomaly formula for the equivariant eta
forms.

Theorem 1.2. Assume that there exists a smooth path connecting

.THW;gTZ ; hLZ ; hE ;rLZ ;rE / and .T
0HW;g

0TZ ; h
0LZ ; h

0E ;r
0LZ ;r

0E /

such that the dimension of the kernel of the Dirac family is locally constant (see
Assumption 2.6).
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(i) When n is odd, modulo exact forms on S , we have

Q�g.T
0HW;g

0TZ ; h
0LZ ; h

0E ;r
0LZ ;r

0E / � Q�g.T
HW;gTZ ; hLZ ; hE ;rLZ ;rE /

D

Z
Zg

ebAg.TZ;rTZ ;r 0TZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /

C

Z
Zg

bAg.TZ;r 0TZ/ ^ echg.L1=2Z ;rL
1=2
Z ;r

0L
1=2
Z / ^ chg.E;rE /

C

Z
Zg

bAg.TZ;r 0TZ/ ^ chg.L1=2Z ;r
0L
1=2
Z / ^ echg.E;rE ;r 0E /:

(1.4)

(ii) When n is even, modulo exact forms on S , we have

Q�g.T
0HW;g

0TZ ; h
0LZ ; h

0E ;r
0LZ ;r

0E / � Q�g.T
HW;gTZ ; hLZ ; hE ;rLZ ;rE /

D

Z
Zg

ebAg.TZ;rTZ ;r 0TZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /

C

Z
Zg

bAg.TZ;r 0TZ/ ^ echg.L1=2Z ;rL
1=2
Z ;r

0L
1=2
Z / ^ chg.E;rE /

C

Z
Zg

bAg.TZ;r 0TZ/ ^ chg.L1=2Z ;r
0L
1=2
Z / ^ echg.E;rE ;r 0E /

� echg.kerDZ ;rkerDZ ;r
0 kerDZ /:

(1.5)

For the definitions of the Chern–Simons formsebAg.TZ;rTZ ;r 0TZ/;echg.L1=2Z ;rL
1=2
Z ;r

0L
1=2
Z / and echg.kerDZ ;rkerDZ ;r

0 kerDZ /

used here, see (2.86).
For the reminder of this introduction, we shall consider the composition of two

submersions.
Let W , V , S be smooth manifolds. Let �1 W W ! V , �2 W V ! S be smooth

submersions with closed oriented fiber X , Y . Then �3 D �2 ı �1 W W ! S is a
smooth submersion with closed oriented fiber Z. We have the diagram of fibrations:

X Z W

Y V S:

�1 �1
�2

�3

Let TX , T Y , TZ be the relative tangent bundles. We assume that TX and T Y
have the Spinc structures with complex line bundles LX and LY respectively.
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Then TZ have a Spinc structure with a complex line bundle LZ . We take
the geometric data (TH1 W;gTX ; hLX ;rLX ), (TH2 V; gTY ; hLY ;rLY ) and (TH3 W ,
gTZ , hLZ ,rLZ ) with respect to submersions�1, �2 and�3 respectively. Let 0rTZ ,
0rLZ be the connections on TZ, LZ defined in (3.4), (3.5).

Let G be a compact Lie group which acts on W such that for any g 2 G,
g � �1 D �1 � g and �3 � g D �3. We assume that the action of G preserves the
Spinc structures of TX , T Y , TZ and all metrics and connections are G-invariant.
Let .E; hE / be an equivariant Hermitian vector bundle over W with equivariant
Hermitian connectionrE . For any g 2 G, let TH1 .W jV g / D TH1 W jV g \T .W jV g /
be the horizontal subbundle of T .W jV g /.

The purpose of this paper is to establish the following result, which we state as
Theorem 3.4.
Theorem 1.3. If Assumption 3.1 and 3.3 hold, for any g 2 G, we have the following
identity in ��.S/=dS��.S/,

Q�g.T
H
3 W;g

TZ ; hLZ ; hE ;rLZ ;rE /

D Q�g.T
H
2 V; g

TY ; hLY ; hkerD
X

;rLY ;rkerDX /

C

Z
Y g

bAg.T Y;rTY / ^ chg.L1=2Y ;rL
1=2
Y /

^ Q�g.T
H
1 .W jV g /; g

TX ; hLX ; hE ;rLX ;rE /

�

Z
Zg

ebAg.TZ;rTZ ; 0rTZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /

�

Z
Zg

bAg.TZ; 0rTZ/ ^ echg.L1=2Z ;rL
1=2
Z ; 0rL

1=2
Z / ^ chg.E;rE /:

(1.6)

Note that if kerDZ is not locally constant, we can also construct an equivariant
eta formwhen ind.DZ/ D 0 2 K�G.S/ using the spectral section technique [29]. The
functoriality of equivariant eta forms in this case is almost the same as Theorem 1.3.
We will construct the equivariant differentialK-theory and the push-forward map by
equivariant eta forms with equivariant spectral section in a companion paper [23] as
applications of the results in this paper.

This paper is organized as follows.
In Section 2, we define the equivariant eta form and prove the anomaly formula

Theorem 1.2. In Section 3, we state our main result Theorem 1.3. In Section 4,
we use some intermediate results, whose proofs are delayed to Section 5–9, to prove
Theorem 1.3. Section 5–9 are devoted to the proofs of the intermediate results stated
in Section 4.

To simplify the notations, we use the Einstein summation convention in this paper.
In the whole paper, we use the superconnection formalism of Quillen [30]. IfA is

a Z2-graded algebra, and if a; b 2 A, then we will note Œa; b� as the supercommutator
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of a, b. If B is another Z2-graded algebra, we will note Ab̋B as the Z2-graded
tensor product. If A, B are not Z2-graded, sometimes, we also denote Ab̋B by
considering the whole algebra as the even part.

For a trace class operatorP acting on a spaceE, ifE D EC˚E� is a Z2-graded
space, we denote by

TrsŒP � D Tr jEC ŒP � � Tr jE� ŒP �: (1.7)

If TrŒP � takes value in differential forms, we denote by Trodd=evenŒP � the part of TrŒP �
which takes value in odd or even forms. We denote by

eTrŒP � D (TrsŒP �; if E is Z2-gradedI
TroddŒP �; if E is not Z2-graded:

(1.8)

For a fiber bundle � W W ! S , we will often use the integration of the differential
forms along the fiber Z in this paper. Since the fibers may be odd dimensional, we
must make precise our sign conventions. If ˛ is a differential form on W which in
local coordinates is given by

˛ D dyp1 ^ � � � ^ dypq ^ ˇ.x; y/dx1 ^ � � � ^ dxn; (1.9)

we set Z
Z

˛ D dyp1 ^ � � � ^ dypq
Z
Z

ˇ.x; y/dx1 ^ � � � ^ dxn: (1.10)

2. Equivariant eta form

The purpose of this section is to define the equivariant eta form and prove the
anomaly formula. In Section 2.1, we recall elementary results on Clifford algebras
of arbitrary dimension. In Section 2.2, we describe the geometry of fibration and
introduce the Bismut superconnection and Bismut’s Lichnerowicz formula (cf. [4,6]).
In Section 2.3, we explain the equivariant family local index theorem. In Section 2.4,
we define the equivariant eta formwhen the dimension of the kernel ofDirac operators
is locally constant. In Section 2.5, we prove the anomaly formula. In this section, we
follow mainly from [9].

2.1. Clifford algebras. Let C.V n/ denote the complex Clifford algebra of the real
inner product space, V n. Related to an orthonormal basis, feig, C.V n/ is defined by
the relations

eiej C ej ei D �2ıij : (2.1)

To avoid ambiguity, we denote by c.ei / the element ofC.V n/ corresponding to ei . We
consider the group Spincn as a multiplicative subgroup of the group of units ofC.V n/.
For the definition and the properties of the group Spincn, see [22, Appendix D].
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As a vector space,
C.V n/ ' ƒ.V n/: (2.2)

The Clifford multiplication on ƒ.V n/ is exterior multiplication minus interior
multiplication. The elements c.eI / D c.ei1/ � � � c.eij /, I D fi1; : : : ; ij g �
f1; : : : ; ng, i1 < � � � < ij , form a basis for C.V n/. Put jI j D j . The subspace
C0.V

n/, C1.V n/ spanned by those c.eI / with jI j even (resp. odd) give C.V n/ the
structure of a Z2-graded algebra.

Forn D 2k, even, up to isomorphism,C.V n/ has a unique irreduciblemodule,Sn,
which has dimension 2k and is Z2-graded. In fact, C.V 2k/ ' End.S2k/. If V is
oriented, the element

� D .
p
�1/kc.e1/ � � � c.e2k/ (2.3)

is independent of the choice feig and satisfies

�2 D 1: (2.4)

Set S˙;n D fs 2 Sn W �s D ˙sg. We write TrsŒ � � for the supertrace of C.V 2k/
on Sn defined as (1.7).

If n D 2k � 1 is odd, C.V n/ has two inequivalent irreducible modules, each of
dimension 2k�1. For arbitrary n,

c.ej /! c.ej /c.enC1/ (2.5)

defines an isomorphism, C.V n/ ' C0.V
n ˚ R/. Thus, for n odd, we can regard

S˙;nC1 for V n ˚ R as (inequivalent) modules over C.V n/. However, they are
equivalent when restricted to Spincn. For V 2k�1 oriented, the notation TrŒ � � refers to
the representation SC;2k .

By [10, Lemma 1.22], if n D 2k is even, then

TrsŒc.eI /� D

(
.�
p
�1/k2k; if I D f1; : : : ; 2kgI

0; if I ¤ f1; : : : ; 2kg:
(2.6)

If n D 2k � 1 is odd and jI j � 1,

TrŒc.eI /� D

(
.�
p
�1/k2k�1; if I D f1; : : : ; 2k � 1g;

0; if I ¤ f1; : : : ; 2k � 1g.
(2.7)

By (2.6) and (2.7), for n odd, the trace Tr behaves on the odd elements of C.V n/
in exactly the same way as the supertrace Trs on the even elements of C.V n/ for n
even, i.e. we must saturate all the elements c.e1/; : : : ; c.en/ to get a non-zero trace
or supertrace. It will be of utmost importance in the computations of the local index
in Section 7. We set

ecV n D (TrsŒc.e1/ � � � c.en/�; if n is evenI
TrŒc.e1/ � � � c.en/�; if n is odd:

(2.8)
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Let W m be another real inner product space with orthonormal basis ffpg. Then
as Clifford algebras,

C.V n ˚W m/ ' C.V n/b̋C.W m/: (2.9)

By (2.6), (2.7) and (2.8), we have

ecV n˚Wm D

(
2
p
�1ecV n �ecWm ; if n, m are both oddIecV n �ecWm ; otherwise:

(2.10)

Finally, we note the effect of scaling the inner product h�; �i on V . Fix any inner
product, h�; �i and let Ct .V / be the Clifford algebra associated to t�1h�; �i. Then the
map t1=2V ! V provides a natural isomorphism Ct .V / ' C.V /. It also provides a
natural isomorphism between the orthonormal frames ft1=2eig for t�1h�; �i and feig
for h�; �i. Thus, the spinor S for h�; �i is also an irreducible module for Ct .V / via the
above isomorphism. In the sequel, if Z is a Riemannian Spinc manifold, we will
always assume that the space of spinors has been chosen independent of the scaling
parameter of the metric.

2.2. Bismut superconnection and Lichnerowicz formula. Let � W W ! S be
a smooth submersion of smooth manifolds with closed oriented fiber Z, with
dimZ D n. Let TZ D T W=S be the relative tangent bundle to the fibers Z.

Let THW be a horizontal subbundle of T W such that

T W D THW ˚ TZ: (2.11)

The splitting (2.11) gives an identification

THW Š ��TS: (2.12)

Let P TZ be the projection

P TZ W T W D THW ˚ TZ ! TZ: (2.13)

LetgTZ , gTS beRiemannianmetrics onTZ, TS . We equipT W D THW˚TZ
with the Riemannian metric

gTW D ��gTS ˚ gTZ : (2.14)

Let rTW , rTS be the Levi-Civita connections on .W; gTW /, .S; gTS /. Set

r
TZ
D P TZrTWP TZ : (2.15)

Then rTZ is a Euclidean connection on TZ. Let 0rTW be the connection on
T W D THW ˚ TZ defined by

0
r
TW
D ��rTS ˚rTZ : (2.16)
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Then 0rTW preserves the metric gTW in (2.14). Set

S D rTW � 0
r
TW : (2.17)

Then S is a 1-form on W with values in antisymmetric elements of End.T W /.
Let T be the torsion of 0rTW . By [6, Theorem 1.9], we know that rTZ , the
torsion tensor T and the .3; 0/ tensor hS.�/�; �i only depend on .THW;gTZ/, where
h�; �i D gTW .�; �/.

Let C.TZ/ be the Clifford algebra bundle of .TZ; gTZ/, whose fiber at x 2 W
is the Clifford algebra C.TxZ/ of the Euclidean space .TxZ; gTxZ/. We make
the assumption that TZ has a Spinc structure. Then there exists a complex line
bundle LZ over W such that !2.TZ/ D c1.LZ/ mod .2/. Let S.TZ;LZ/ be the
fundamental complex spinor bundle for .TZ;LZ/, which has a smooth action of
C.TZ/ (cf. [22, Appendix D.9]). Locally, the spinor S.TZ;LZ/ may be written as

S.TZ;LZ/ D S.TZ/˝ L1=2Z ; (2.18)

where S.TZ/ is the fundamental spinor bundle for the (possibly non-existent) spin
structure on TZ, and L1=2Z is the (possibly non-existent) square root of LZ . Let hLZ
be the Hermitian metric onLZ andrLZ be the Hermitian connection on .LZ ; hLZ /.
LethSZ be theHermitianmetric onS.TZ;LZ/ induced bygTZ andhLZ andrSZ be
the connection on S.TZ;LZ/ induced by rTZ and rLZ . Then rSZ is a Hermitian
connection on (S.TZ;LZ/; hSZ ). Moreover, it is a Clifford connection associated
to rTZ , i.e. for any U 2 T W , V 2 C1.W; TZ/,h

r
SZ
U ; c.V /

i
D c

�
r
TZ
U V

�
: (2.19)

If n D dimZ is even, the spinor S.TZ;LZ/ is Z2-graded and the action of TZ
exchanges theZ2-grading. Let .E; hE / be aHermitian vector bundle overW , andrE
a Hermitian connection on .E; hE /. Set

r
SZ˝E D rSZ ˝ 1C 1˝rE : (2.20)

Then rSZ˝E is a Hermitian connection on .S.TZ;LZ/˝E; hSZ ˝ hE /.
Let feig, ffpg be local orthonormal frames of TZ, TS and feig, ff pg be the

dual. LetDZ be the fiberwise Dirac operator

DZ
D c.ei /r

SZ˝E
ei

: (2.21)

For b 2 S , let EZ;b be the set of smooth sections over Zb of S.TZ;LZ/˝ E.
As in [6], we will regard EZ as an infinite dimensional fiber bundle over S .

Let dvZ be the Riemannian volume element in the fiber Z. For any b 2 S ,
s1; s2 2 EZ;b , we can define the scalar product

hs1; s2i0 D

Z
Zb

hs1.x/; s2.x/idvZ : (2.22)
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This scalar product could be naturally extended on ƒ.T �S/b̋EZ . We still denote it
by h�; �i0.

If U 2 TS , let UH 2 THW be its horizontal lift in THW so that ��UH D U .
For any U 2 TS , s 2 C1.S;EZ/ D C1.W;S.TZ;LZ/˝E/, we set

r
EZ
U s D r

SZ˝E
UH

s: (2.23)

Then rEZ is a connection on EZ , but need not preserve the scalar product h�; �i0
in (2.22). By [12, Proposition 1.4], for U 2 TS , the connection

r
EZ ;u
U WD r

EZ
U �

1

2
hS.ei /ei ; U

H
i (2.24)

preserves the scalar product h�; �i0.
If U1; U2 2 C1.S; TS/, by [6, (1.30)], we have

T .UH1 ; U
H
2 / D �P

TZ ŒUH1 ; U
H
2 �: (2.25)

We denote by

c.T / D
1

2
c
�
T .f Hp ; f Hq /

�
f p ^ f q ^ : (2.26)

By [6, (3.18)], the Bismut superconnection

B W C1.S;ƒ.T �S/b̋EZ/! C1.S;ƒ.T �S/b̋EZ/ (2.27)

is defined by

B D DZ
Cr

EZ ;u �
1

4
c.T /: (2.28)

In fact, the Bismut superconnection only depends on the quadruple

.THW;gTZ ;rLZ ;rE /:

In the sequel, if A.U / is any 0-order operator depending linearly on U 2 T W ,
we define the operator �

r
SZ˝E
ei

C A.ei /
�2 (2.29)

as follows: if fei .x/gniD1 is any (locally defined) smooth orthonormal frame of TZ,
then�
r

SZ˝E
ei

C A.ei /
�2

WD

nX
iD1

�
r

SZ˝E
ei .x/

C A.ei .x//
�2
� r

SZ˝EPn
iD1 r

TZ
ei

ei
� A

� nX
iD1

r
TZ
ei
ei

�
: (2.30)
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Let RTZ , RLZ , RE and RSZ˝E be the curvatures of rTZ , rLZ , rE and
rSZ˝E respectively. By (2.18), we have

RSZ˝E D
1

4
hRTZei ; ej ic.ei /c.ej /C

1

2
RLZ CRE : (2.31)

For t > 0, we denote ıt the operator onƒi .T �S/b̋EZ by multiplying differential
forms by t�i=2. Set

Bt WD
p
t ıt ı B ı ı

�1
t : (2.32)

Then from (2.28) and (2.32), we get

Bt D
p
tDX

Cr
EZ ;u �

1

4
p
t
c.T /: (2.33)

Let KZ be the scalar curvature of the fibers .TZ; gTZ/. We have the Bismut’s
Lichnerowicz formula (see [4, Theorem 10.17], [6, Theorem 3.5]),

B2t D �
�p

trSZ˝E
ei

C
1

2
hS.ei /ej ; f

H
p ic.ej /f

p
^

C
1

4
p
t
hS.ei /f

H
p ; f Hq if

p
^ f q ^

�2
C
t

4
KZ C

t

2

�1
2
RLZ CRE

�
.ei ; ej /c.ei /c.ej /

C
p
t
�1
2
RLZ CRE

�
.ei ; f

H
p /c.ei /f

p
^

C
1

2

�1
2
RLZ CRE

�
.f Hp ; f Hq /f p ^ f q ^ :

(2.34)

In particular, B2t is a 2-order elliptic differential operator along the fiber Z. Let
exp.�B2t / be the family of heat operators associated to the fiberwise elliptic
operator B2t in (2.34). From [4, Theorem 9.50], we know that exp.�B2t / is a
smooth family of smoothing operators.

2.3. Compact Lie group action and equivariant family local index theorem. Let
G be a compact Lie group which acts onW such that for any g 2 G, � ı g D � . So
it acts trivially on S . We assume that the action of G preserves the splitting (2.11),
the Spinc structure of TZ and gTZ , hLZ , rLZ are G-invariant. We assume that E
is aG-equivariant complex vector bundle and hE , rE areG-invariant. So the action
of G commutes with the Bismut superconnection B in (2.28).

Take g 2 G and set
W g
D fx 2 W W gx D xg: (2.35)

Then W g is a submanifold of W and � W W g ! S is a fiber bundle with closed
fiber Zg . Let N denote the normal bundle of W g in W , then N D TZ=TZg .
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Since g preserves the Spinc structure, it preserves the orientation of TZ. So the
normal bundle N is even dimensional. We denote the differential of g by dg which
gives a bundle isometry dg W N ! N . Since g lies in a compact abelian Lie group,
we know that there is an orthonormal decomposition of smooth vector bundles onW g

N D N.�/˚˚0<�<�N.�/; (2.36)

where dgjN.�/ D �id and for each � , 0 < � < � , N.�/ is a complex vector bundle
onwhich dg acts bymultiplication by e

p
�1� , and dimN.�/ is even. By the following

proposition, Zg and N are all naturally oriented. This proposition is a modification
of [4, Theorem 6.14].

Proposition 2.1. LetZ be a closed oriented manifold andG be a compact Lie group.
If TZ has a G-equivariant Spinc structure, then for each g 2 G, Zg is naturally
oriented.

Proof. We fix a connected component of Zg and assume that the dimension of the
normal bundle N of this connected component is 2k. By (2.36), on N , the matrix
of g has diagonal blocks�

cos.�j / � sin.�j /
sin.�j / cos.�j /

�
; j D 1; 2; : : : ; k; 0 < �j � �: (2.37)

By the definition of the Spinc group, the action of g on the spinor is given by

g D ˛ �

kY
jD1

.cos.�j =2/C sin.�j =2/c.e2j�1/c.e2j //; (2.38)

where ˛ 2 C, j˛j D 1. Let � W C.N/ ! ƒ.N/ be the isomorphism in (2.2). For
ˇ 2 ƒ.N/, let Œˇ�2k denote the degree 2k part of ˇ. Since ˛ and �j are locally
constant on Zg , the term

˛�1Œ�.g/�2k D

� kY
jD1

sin.�j =2/
�
e1 ^ � � � ^ e2k (2.39)

gives a non-zero section ofƒ2k.N /. Then it gives a canonical orientation ofN . The
canonical orientation of Zg can be obtained by the orientations of Z and N .

The proof of Proposition 2.1 is complete.

Since gTZ is G-invariant, the connection rTZ preserves the decomposition of
smooth vector bundles on W g

TZjW g D TZg ˚˚0<���N.�/: (2.40)
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Let rTZg , rN and rN.�/ be the corresponding induced connections on TZg , N
and N.�/, and let RTZg , RN and RN.�/ be the corresponding curvatures. Here we
consider N.�/ as a real vector bundle. We have the decompositions on W g :

r
TZ
jW g D r

TZg
˚r

N ; rN D ˚0<���r
N.�/; (2.41)

and

RTZjW g D RTZ
g

˚RN ; RN D ˚0<���R
N.�/: (2.42)

For 0 < � � � , we write

bA��N.�/;rN.�/� D �.p�1/ 12 dimRN.�/det
1
2

�
1 � g exp

�p
�1

2�
RN.�/

����1
:

(2.43)
Set

bA�TZg ;rTZg� D det
1
2

 p
�1
4�

RTZ
g

sinh
�p
�1
4�

RTZ
g
�!;

bAg�TZ;rTZ� D bA�TZg ;rTZg� � Y
0<���

bA��N.�/;rN.�/� 2 �4�.W g ;C/:

(2.44)

Note that for any Euclidean connection r on .TZ; gTZ/, we can also define the
characteristic form bAg.TZ;r/ as in (2.44). Let bAg.TZ/ 2 H 4�.W g ;C/ denote
the cohomology class ofbAg.TZ;r/. IfE isZ2-graded, we assume that theG-action
and rE preserve the Z2-grading. Set

chg.E;rE / D

†
Tr
�
g exp

�
p
�1
2�

RE jW g

��
; if E is not Z2-gradedI

Trs
�
g exp

�
p
�1
2�

RE jW g

��
; if E is Z2-graded:

(2.45)

Let chg.E/ 2 H 2�.W g ;C/ denote the cohomology class of chg.E;rE /. By
Chern–Weil theory [35], the classes bAg.TZ/ and chg.E/ are independent of r and
rE . Furthermore, ifS is compact, the equivariant Chern character in (2.45) descends
to a ring homomorphism

chg W K0G.W
g/! H 2�.W g ;C/; (2.46)

where K0G.W
g/ is the equivariant K0 group of W g .
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Assume that n is even. If S is compact, the index bundle ind.DZ/ is an element
of K0G.S/. Under the equivariant Chern character map (2.46), for any g 2 G, we
have

chg.ind.DZ// 2 H 2�.S;C/: (2.47)

Since the fiber is even-dimensional, the spinor S.TZ;LZ/ is Z2-graded, i.e.,
S.TZ;LZ/ D SC.TZ;LZ/ ˚ S�.TZ;LZ/. Note that if dim kerDZ is locally
constant,

ind.DZ/ D kerDZ
C � kerDZ

� 2 K
0
G.S/; (2.48)

whereDZ
˙
is the restriction ofDZ on S˙.TZ;LZ/˝E.

Let EZ;˙ be the set of smooth sections of S˙.TZ;LZ/ ˝ E over W . Then
EZ D EZ;C ˚ EZ;� is a Z2-graded infinite dimensional vector bundle over S
and ƒ.T �S/b̋ End.EZ/ is also Z2-graded. We extend Tr, Trs to the trace class
element A 2 ƒ.T �S/b̋ End.EZ/, which take values in ƒ.T �S/. We use the
convention that if ! 2 ƒ.T �S/,

TrŒ!A� D ! TrŒA�; TrsŒ!A� D ! TrsŒA�: (2.49)

Let i W S ! S1 � S be a G-equivariant inclusion map. It is well known that if
the G-action on S1 is trivial,

K1G.S/ ' ker
�
i� W K0G.S

1
� S/! K0G.S/

�
: (2.50)

By (2.50), for x 2 K1G.S/, we can regard x as an element x0 in K0G.S
1 � S/. The

odd equivariant Chern character map

chg W K1G.S/! H odd.S;C/ (2.51)

is defined by

chg.x/ D
�Z
S1

chg.x0/
�
2 H odd.S;C/: (2.52)

Here we use the sign convention (1.10) in this integration.
If n is odd, the fibrewise Dirac operatorDZ is a family of equivariant self-adjoint

Fredholm operators. Set

DZ
� D

(
I cos � C

p
�1DZ sin �; if 0 � � � � I

.cos � C
p
�1 sin �/I; if � � � � 2�

(2.53)

(see [3, (3.3)]). If S is compact, then ind.fDZ
�
g/ 2 K0G.S

1�S/. Since the restriction
ofDZ

�
to f0g � S is trivial, so it can be regarded as an element of K1G.S/. From [3]

and [31], the definition of the index ofDZ is

ind.DZ/ WD ind.fDZ
� g/ 2 K

1
G.S/: (2.54)
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When the fiber is odd dimensional, the spinorS.TZ;LZ/ is notZ2-graded. For a
trace class elementA 2 ƒ.T �S/˝End.EZ/, we also use the convention as in (2.49)
that if ! 2 ƒ.T �S/,

TrŒ!A� D ! TrŒA�: (2.55)

It is compatible with the sign convention in (1.10).
For ˛ 2 �i .S/, set

 S .˛/ D

��
1

2�
p
�1

� i
2

� ˛; if i is evenI

1p
�

�
1

2�
p
�1

� i�1
2

� ˛; if i is odd:
(2.56)

Comparing with (2.45), for the locally defined line bundle L1=2Z , we write

chg.L1=2Z ;rL
1=2
Z / WD g � exp

�p
�1

4�
RLZ jW g

�
2 �2�.W g ;C/ (2.57)

and chg.L1=2Z / 2 H 2�.W g ;C/ as the corresponding cohomology class. Denote by
�� W H

�.W g ;C/ ! H�.S;C/ the integration along the fiber Zg with the sign
convention (1.10). Recall that the trace operator eTr is defined in (1.8). We give the
equivariant family local index theorem as follows.
Theorem 2.2. For any t > 0 and g 2 G, the differential form  SeTrŒg exp.�B2t /� 2
��.S/ is closed and its cohomology class is independent of t . As t ! 0,

lim
t!0

 SeTrŒg exp.�B2t /� D Z
Zg

bAg.TZ;rTZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /:

(2.58)
If S is compact, the differential form  SeTrŒg exp.�B2t /� represents chg.ind.DZ//

in (2.47) or (2.52). InH�.S;C/,

chg.ind.DZ// D ��

nbAg.TZ/ chg.L1=2Z / chg.E/
o
: (2.59)

Proof. If n is even, the proof is the same as that of [24, Theorem 1.1]. If n is odd,
the proof follows from [13, Theorem 2.10] and the even case.

2.4. Equivariant eta form. In this subsection, we define the equivariant eta form
when dim kerDZ is locally constant. We will proceed as in the proof of [4,
Theorem 10.32], as follows.

Let bS D RC � S and pr W bS ! S be the projection. We consider the bundleb� W bW WD RC �W ! bS together with the canonical projection Pr W bW ! W . Set
TH bW D T .RC/ ˚ Pr�.THW /. Then TH bW is a horizontal subbundle of T bW
as in (2.11). We fix the vertical metric bgTZ which restricts to t�1gTZ over
ftg � W . Let bC.TZ/ be the Clifford algebra bundle associated to bgTZ . Then
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bS.TZ;Pr�LZ/ WD Pr�S.TZ;LZ/ is the spinor of bC.TZ/ by the assumption in the
end of Section 2.1. Let hbLZ D Pr�hLZ and rbLZ D Pr�rLZ . Let bE D Pr�E,
hbE D Pr�hE and rbE D Pr�rE . We naturally extend the G-actions to this case
such that the G-action is identity on RC � S . We will mark the objects associated
to (TH bW ;bgTZ ; hbLZ ; hbE ;rbLZ ;rbE ) byb.

For t 2 RC, the fiberwise Dirac operator DbZ on ftg � Z is t1=2DZ . By (2.24),
r
cEZ ;u D rEZ ;u �

n
4t
dt . Since Bt in (2.33) is just the Bismut superconnection

associated to (THW; t�1gTZ ;rLZ ;rE ), from (2.28) and (2.33), the Bismut
superconnection associated to (TH bW ;bgTZ ;rbLZ ;rbE ) is

bBj.t;b/ D Bt C dt ^ @

@t
�
n

4t
dt; (2.60)

for .t; b/ 2 bS . Then bB2j.t;b/ D B2t C dt ^
@Bt
@t

. Note that the extended G-action
commutes with the Bismut superconnection bB .

If ˛ 2 ƒ.T �.RC � S//, we can expand ˛ in the form

˛ D dt ^ ˛0 C ˛1; ˛0; ˛1 2 ƒ.T
�S/: (2.61)

Set
Œ˛�dt D ˛0: (2.62)

For any g 2 G, set

 SeTrŒg exp.�bB2/� D dt ^ .t/C r.t/: (2.63)

Then from Duhamel’s principle, (2.56) and (2.60), we have

.t/ D
n
 SeTrŒg exp.�bB2/�odt

D

†
�

1

2
p
�1
p
�
 S Trs

�
g
@Bt

@t
exp.�B2t /

�
; if n is evenI

�
1
p
�
 S Treven

�
g
@Bt

@t
exp.�B2t /

�
; if n is odd

(2.64)

and
r.t/ D  SeTrŒg exp.�B2t /�: (2.65)

For u 2 .0;C1/, set bBu D puıubBı�1u . Similarly as in (2.63), we decompose

 SeTrŒg exp.�bB2u/� D dt ^ .u; t/C r.u; t/: (2.66)

Take t D 1. Then
@But

@t

ˇ̌̌̌
tD1

D u
@Bu

@u
: (2.67)
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So from (2.64), (2.65) and (2.67), we have

.u; 1/ D u.u/; r.u; 1/ D r.u/: (2.68)

From the asymptotic expansion of the heat kernel, when u ! 0, there exist
ai .t/ 2 ƒ.T

�.RC � S//, i 2 N, such that

 SeTrŒg exp.�bB2u/� � C1X
iD0

ai .t/u
i=2: (2.69)

By Theorem 2.2, r.0; t/ exists and a0.t/ D r.0; t/. Take t D 1 in (2.69). By
Theorem 2.2, (2.65) and (2.68), we have

r.0/ D

Z
Zg

bAg.TZ;rTZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /: (2.70)

From (2.66) and (2.68), we have

dt ^ u.u/C r.u/ � r.0/ �

C1X
iD1

ai .1/u
i=2; (2.71)

that is, when u! 0,
.u/ D O.u�1=2/: (2.72)

Assume that dim kerDZ is locally constant, then kerDZ forms a vector bundle
over S . Let P kerDZ W EZ ! kerDZ be the orthogonal projection with respect to
the scalar product in (2.22). Let

r
kerDZ

D P kerDZ
r

E;uP kerDZ (2.73)

be a connection on the vector bundle kerDZ . For b 2 S , t 2 .0;C1/,
ker.t1=2DZ

b
/ D kerDZ

b
. So kerDbZ forms a vector bundle over RC � S . As

in (2.73), we can define the connection rkerDbZ on the vector bundle kerDbZ . If n
is even, kerDZ and kerDbZ are Z2-graded. Since the curvature of rbE;u is trivial

alongRC, the equivariant Chern character chg.kerDbZ ;rkerDbZ / does not involve dt .
From [4, Theorem 9.19], which is also valid in odd dimensional fiber case, we

know that when u!C1,

 SeTrŒg exp.�bB2u/� D (chg.kerDbZ ;rkerDbZ /CO.u�1=2/; if n is evenI
O.u�1=2/; if n is odd;

(2.74)

and

r.1/ WD lim
u!1

r.u; 1/ D

(
chg.kerDZ ;rkerDZ /; if n is evenI
0; if n is odd:

(2.75)
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Take t D 1 in (2.74). From (2.66), (2.68) and (2.75) we have

dt ^ u.u/C r.u/ � r.1/ D O.u�1=2/: (2.76)

By (2.65), (2.74) and (2.76), when u!C1,

.u/ D O.u�3=2/: (2.77)

Definition 2.3. Assume that dim kerDZ is locally constant on S . For any g 2 G,
the equivariant eta form of Bismut–Cheeger Q�g.THW;gTZ ; hLZ ; hE ;rLZ ;rE / 2
��.S/ is defined by

Q�g.T
HW;gTZ ; hLZ ; hE ;rL;rE / WD �

Z 1
0

.t/dt: (2.78)

Note that by (2.72) and (2.77), the integral on the right hand side of (2.78) is
convergent.

When g D 1, TZ is Spin, this equivariant eta form is just the usual eta form of
Bismut–Cheeger defined in [9] and [20]. Note that the equivariant eta form here was
also defined in [33] when TZ is Spin and n is odd.

From [6], we know that eTrŒg exp.�B2/� is a closed differential form. So�
dt ^

@

@t
C dS

�
 SeTrŒg exp.�bB2/� D 0; dS SeTrŒg exp.�B2t /� D 0: (2.79)

By (2.65), (2.63) and (2.79), we have

dS.t/ D
@r.t/

@t
: (2.80)

Then from (2.65), (2.70), (2.80) and Definition 2.3, we have

dS Q�g.T
HW;gTZ ; hLZ ; hE ;rLZ ;rE /

D �

Z C1
0

@r.t/

@t
dt D r.0/ � r.1/

D

˚Z
Zg

bAg.TZ;rTZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /

� chg.kerDZ ;rkerDZ /; if n is evenIZ
Zg

bAg.TZ;rTZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /; if n is odd:

(2.81)

Remark 2.4. If we fix the vertical metricbgTZ which restricts to t�2gTZ over ftg�W
in the beginning of this subsection, as in (2.60), we have

bB 0j.t;b/ D Bt2 C dt ^ @

@t
�
n

2t
dt; (2.82)
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and

 0.t/ D
˚
 SeTrŒg exp.�bB 02/�	dt

D

†
�

1

2
p
�1
p
�
 S Trs

�
g
@Bt2

@t
exp.�B2

t2
/

�
; n is even;

�
1
p
�
 S Treven

�
g
@Bt2

@t
exp.�B2

t2
/

�
; n is odd.

(2.83)

After changing the variable, we still have

Q�g.T
HW;gTZ ; hL; hE ;rL;rE / WD �

Z 1
0

 0.t/dt: (2.84)

Remark 2.5. The Spinc condition used here is just to get an explicit local index
representative in Theorem 2.2. In fact, Definition 2.3 can be extended to equivariant
Clifford module case.

2.5. Anomaly formula. From the construction in Section 2.4, the equivariant eta
form only depends on the sextuple (THW;gTZ ; hLZ ; hE ;rLZ ;rE ). We now
describe how Q�g.THW;gTZ ; hLZ ; hE ;rLZ ;rE / depends on its arguments. Let
(THW;gTZ ; hLZ ; hE ;rLZ ,rE ) and (T 0HW;g0TZ ; h0LZ ; h0E ;r 0LZ ;r 0E ) be two
sextuples of geometric data. We will mark the objects associated to the second
sextuple by 0.

First, a horizontal subbundle on W is simply a splitting of the exact sequence

0! TZ ! T W ! ��TS ! 0: (2.85)

As the space of the splitting map is affine andG is compact, it follows that any pair of
equivariant horizontal subbundles can be connected by a smooth path of equivariant
horizontal distributions. Let s 2 Œ0; 1� parametrize a smooth path fTHs W gs2Œ0;1�
such that TH0 W D THW and TH1 W D T

0HW . Similarly, let gTZs , hLZs and hEs be
the G-invariant metrics on TZ, LZ and E, depending smoothly on s 2 Œ0; 1�, which
coincide with gTZ , hLZ and hE at s D 0 and with g0TZ , h0LZ and h0E at s D 1.
Let r and r 0 be equivariant Euclidean connections on .TZ; gTZ/ and .TZ; g0TZ/.
By the same reason, we can chooseG-invariant connectionsrs ,rLZs andrEs onTZ,
LZ andE preserving gTZs , hLZs and hEs such that r0 D r, r1 D r

0 , rLZ0 D rLZ ,
r
LZ
1 D r

0LZ , rE0 D rE , rE1 D r
0E .

Let eS D Œ0; 1� � S , eW WD Œ0; 1� �W . From the construction above, we can get
a family of equivariant geometric data .TH eW ;gTeZ ;er; heE ;reE ; heLZ ;reLZ / with
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respect to e� W eW ! eS . Let DeZ be the fiberwise Dirac operator associated to
(TH eW ;gTeZ ;reLZ ;reE ).
Assumption 2.6. We assume that there exists such a smooth path such that kerDeZ
is locally constant.

Under Assumption 2.6, from (2.73), we can define the connection rkerDeZ on
kerDeZ . From [28, Theorem B.5.4], modulo exact forms, the Chern–Simons forms

ebAg.TZ;r;r 0/ WD � Z 1

0

ŒbAg.TZ;er/�dsds;
echg.L1=2Z ;rL

1=2
Z ;r

0L
1=2
Z / WD �

Z 1

0

Œchg.eL1=2Z ;reL1=2Z /�dsds;

echg.E;rE ;r 0E / WD � Z 1

0

Œchg.eE;reE /�dsds;
echg.kerDZ ;rkerDZ ;r

0 kerDZ / WD �

Z 1

0

Œchg.kerDeZ ;rkerDeZ /�dsds
(2.86)

do not depend on the choices of the objects withe. Moreover,

d
ebAg.TZ;r;r 0/ D bAg.TZ;r 0/ �bAg.TZ;r/;
dechg.L1=2Z ;rL

1=2
Z ;r

0L
1=2
Z / D chg.L1=2Z ;r

0L
1=2
Z / � chg.L1=2Z ;rL

1=2
Z /;

dechg.E;rE ;r 0E / D chg.E;r
0E / � chg.E;rE /;

dechg.kerDZ ;rkerDZ ;r
0 kerDZ / D chg.kerDZ ;r

0 kerDZ /

� chg.kerDZ ;rkerDZ /:

(2.87)

Now we can obtain the anomaly formula for the equivariant eta forms.

Theorem 2.7. Assume that Assumption 2.6 holds.

(i) When n is odd, modulo exact forms on S , we have

Q�g.T
0HW;g

0TZ ; h
0LZ ; h

0E ;r
0LZ ;r

0E / � Q�g.T
HW;gTZ ; hLZ ; hE ;rLZ ;rE /

D

Z
Zg

ebAg.TZ;rTZ ;r 0TZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /

C

Z
Zg

bAg.TZ;r 0TZ/ ^ echg.L1=2Z ;rL
1=2
Z ;r

0L
1=2
Z / ^ chg.E;rE /

C

Z
Zg

bAg.TZ;r 0TZ/ ^ chg.L1=2Z ;r
0L
1=2
Z / ^ echg.E;rE ;r 0E /:

(2.88)
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(ii) When n is even, modulo exact forms on S , we have

Q�g.T
0HW;g

0TZ ; h
0LZ ; h

0E ;r
0LZ ;r

0E / � Q�g.T
HW;gTZ ; hLZ ; hE ;rLZ ;rE /

D

Z
Zg

ebAg.TZ;rTZ ;r 0TZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /

C

Z
Zg

bAg.TZ;r 0TZ/ ^ echg.L1=2Z ;rL
1=2
Z ;r

0L
1=2
Z / ^ chg.E;rE /

C

Z
Zg

bAg.TZ;r 0TZ/ ^ chg.L1=2Z ;r
0L
1=2
Z / ^ echg.E;rE ;r 0E /

� echg.kerDZ ;rkerDZ ;r
0 kerDZ /:

(2.89)

Proof. Let eB be the Bismut superconnection associated to (TH eW ;egTZ ; hfLZ ;rfLZ ,
r
eE ). From (2.60),

beB D eB t C dt ^ @

@t
�
n

4t
dt (2.90)

is the Bismut superconnection associated to the fibration .0;C1/ � Œ0; 1� �W !
.0;C1/ � Œ0; 1� � S . We decompose

 SeTrŒg exp.�beB 2/� D dt ^  C ds ^ r1 C dt ^ ds ^ r2 C r3; (2.91)

where ; r1; r2; r3 do not contain dt neither ds and by (2.65),

r1.t; s/ D
˚
 SeTrŒg exp.�eB2t /�	ds ˇ̌̌

.t;s/
: (2.92)

From (2.91) and Definition 2.3, we have

Q�g.T
H
s W;g

TZ
s ; hLZs ; hEs ;r

L
s ;r

E
s / WD �

Z 1
0

.t; s/dt: (2.93)

Since .dt ^ @
@t
C ds ^ @

@s
C dS / SeTrŒg exp.�beB 2/� D 0, we have

@

@s
D
@r1

@t
C dSr2: (2.94)
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From (2.93), we have

Q�g.T
HW;gTZ ; hLZ ; hE ;rLZ ;rE / � Q�g.T

0HW;g
0TZ ; h

0LZ ; h
0E ;r

0LZ ;r
0E /

D

Z C1
0

..t; 1/ � .t; 0//dt D

Z C1
0

Z 1

0

@

@s
.t; s/dsdt

D

Z 1

0

Z C1
0

@

@s
.t; s/dtds

D

Z 1

0

Z C1
0

@

@t
r1.t; s/dtds C d

S

Z 1

0

Z C1
0

r2.t; s/dtds

D �

Z 1

0

.r1.0; s/ � r1.1; s//ds C d
S

Z 1

0

Z C1
0

r2.t; s/dtds:

(2.95)

The commutative property of the integrals in the above formula is granted by the
uniformness of (2.72) and (2.77) for s 2 Œ0; 1�.

Let rTeZ be the Euclidean connection associated to .TH eW ;gTeZ/ as in (2.15).
By (2.70), (2.75) and (2.92), we have

r1.0; s/ D

� Z
Zg

bAg.TZ;rTeZ/ ^ chg.eL1=2Z ;reL1=2Z / ^ chg.eE;reE /�ds ˇ̌̌̌ˇ
fsg�S

(2.96)
and

r1.1; s/ D

(
fchg.kerDeZ ;rkerDeZ /gdsjfsg�S ; if n is evenI
0; if n is odd:

(2.97)

Then Theorem 2.7 follows from (2.86), (2.95), (2.96) and (2.97).
The proof of Theorem 2.7 is complete.

3. Functoriality of equivariant eta forms

In this section, we state our main result.

3.1. Functoriality of equivariant eta forms. Let W , V , S be smooth manifolds.
Let�1 W W ! V ,�2 W V ! S be smooth fibrationswith closed oriented fibersX , Y ,
with dimX D n � m, dimY D m. Then �3 D �2 ı �1 W W ! S is a smooth
fibration with closed oriented fiber Z with dimZ D n. Then we have the diagram
of smooth fibrations:

X Z W

Y V S:

�1

�2

�3
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Let TX , T Y , TZ be the relative tangent bundles. We assume that TX and T Y
have the Spinc structures with complex line bundles LX and LY respectively. Let

LZ D �
�
1 .LY /˝ LX : (3.1)

Then TZ have a Spinc structure with complex line bundle LZ . Recall the notations
in Section 2, we take quadruples (TH1 W;gTX ; hLX ;rLX ), (TH2 V; gTY ; hLY ;rLY )
and (TH3 W , gTZ , hLZ , rLZ ) with respect to fibrations �1, �2 and �3 respectively.
Then we can define connectionsrTX , rTY , rTZ , fundamental spinors S.TX;LX /,
S.T Y;LY /, S.TZ;LZ/, metrics hSX , hSY , hSZ and connections rSX , rSY , rSZ

as in Section 2.2. If U 2 TS , U 0 2 T V , let U 0H1 2 TH1 W , UH2 2 TH2 V ,
UH3 2 T

H
3 W be the horizontal lifts of U 0, U , U , so that �1;�.U

0H
1 / D U 0,

�2;�.U
H
2 / D U , �3;�.UH3 / D U .

Set THZ WD TH1 W \ TZ. Then we have the splitting of smooth vector bundles
over W ,

TZ D THZ ˚ TX; (3.2)

and
THZ Š ��1T Y: (3.3)

Let 0rTZ be the connection on TZ D THZ ˚ TX defined by

0
r
TZ
D ��rTY ˚rTX (3.4)

as in (2.16). Set
0
r
LZ D ��1r

LY ˝ 1C 1˝rLX : (3.5)

Let .E;rE / be a Hermitian vector bundle with Hermitian connection rE . For
v 2 V , let EX;v be the set of smooth sections over Xv of S.TX;LX / ˝ E. We
still regard EX as an infinite dimensional fiber bundle over V . For any v 2 V ,
s1; s2 2 EX;v , as in (2.22), we define the scalar product

hs1; s2iEX;v D

Z
Xv

hs1.x/; s2.x/iX dvX ; (3.6)

where h�; �iX D hSX˝E .�; �/. Let feig be a local orthonormal frame of .TX; gTX /.
As in (2.23) and (2.24), for U 2 T V , we set

r
EX ;u
U WD r

SX˝E
UH
1

�
1

2
hS1.ei /ei ; U

H
1 i: (3.7)

Then rEX ;u preserves the scalar product h�; �iEX .
Let DX and DZ be the fiberwise Dirac operators associated to (TH1 W , gTX ,

rLX , hE , rE ) and (TH3 W , gTZ , rLZ , hE , rE ). We assume that kerDX is locally
constant. Then kerDX forms a vector bundle over V . Let P kerDX W EX ! kerDX
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be the orthonomal projection with respect to the scalar product (3.6). Let hkerDX be
the L2 metric induced by hSX˝E and

r
kerDX

WD P kerDX
r

EX ;uP kerDX : (3.8)

Then rkerDX preserves the metric hkerDX . LetDY be the Dirac operator associated
to (TH2 V; gTY ;rSY˝kerDX ).
Assumption 3.1. We assume that the geometric data

.TH1 W;g
TX ; hLX ;rLX ; hE ;rE / and .TH2 V; g

TY ; hLY ;rLY /

satisfy the conditions that kerDX is locally constant and kerDY D 0.
Let G be a compact Lie group which acts on W such that for any g 2 G,

g � �1 D �1 � g and �3 � g D �3. Then we know that G acts as identity on S . We
assume that the action of G preserves the Spinc structures of TX , T Y , TZ and the
quadruples

.TH1 W;g
TX ; hLX ;rLX /; .TH2 V; g

TY ; hLY ;rLY /;

.TH3 W;g
TZ ; hLZ ;rLZ / and .E; hE ;rE /

are G-invariant.
On the other hand, we take another equivariant horizontal subbundle T 0H3 W �

T W , which is complement of TZ, such that

T
0H
3 W � TH1 W: (3.9)

Let g0TZ be another metric on TZ such that

g
0TZ
D ��1g

TY
˚ gTX : (3.10)

Let r 0TZ be the connection associated to .T 0H3 W;g
0TZ/ as in (2.15).

Let S 0.TZ;LZ/ be the fundamental spinor associated to .g0TZ ; LZ/. Then

S 0.TZ;LZ/ ' ��1S.T Y;LY /˝ S.TX;LX /: (3.11)

Set
h
0LZ WD ��1 h

LY ˝ hLX : (3.12)

Let
g
0TZ
T D ��1g

TY
˚ T �2gTX : (3.13)

We denote the Clifford algebra bundle of TZ with respect to g0TZT by CT .TZ/.
Let ffpg be a local orthonormal frame of .T Y; gTY /. Then fTeig [ ff Hp;1g is a local
orthonormal frame of .TZ; g0TZT /. We define a Clifford algebra isomorphism

GT W CT .TZ/! C.TZ/ (3.14)
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by

GT .c.f Hp;1// D c.f Hp;1/; GT .cT .Tei // D c.ei /: (3.15)

Under this isomorphism, we can also consider S 0.TZ;LZ/ in (3.11) as a spinor
associated to (TZ; g0TZT ). Let DZ

T be the fiberwise Dirac operator associated to
(T 0H3 W;g

0TZ
T ; 0rLZ , hE , rE ).

Comparing with [20, Theorem 1.5], we can get the following lemma.

Lemma 3.2. If Assumption 3.1 holds, there exists T0 � 1, such that when T � T0,
kerDZ

T D 0.

We will give another proof of this lemma in Section 5.3.
Now we state an analogue of Assumption 2.6 as follows.

Assumption 3.3. We assume that there exist an equivariant horizontal subbundle
T
0H
3 W � T W satisfying (3.9) and a smooth path constructed as the argument before

Assumption 2.6, connecting the quadruples

.TH3 W;g
TZ ; hLZ ;rLZ / and .T

0H
3 W;g

0TZ
T0

; h
0LZ ; 0rLZ /;

such that ker.DeZ/ D 0.
For any g 2 G, let TH1 .W jV g / D TH1 W jV g \ T .W jV g / be the equivariant

horizontal subbundle of T .W jV g /. We state our main result as follows.

Theorem 3.4. If Assumption 3.1 and 3.3 hold, for any g 2 G, we have the following
identity in ��.S/=dS��.S/,

Q�g.T
H
3 W;g

TZ ; hLZ ;rLZ ; hE ;rE /

D Q�g.T
H
2 V; g

TY ; hLY ; hkerD
X

;rLY ;rkerDX /

C

Z
Y g

bAg.T Y;rTY / ^ chg.L1=2Y ;rL
1=2
Y /

^ Q�g.T
H
1 .W jV g /; g

TX ; hLX ;rLX ; hE ;rE /

�

Z
Zg

ebAg.TZ;rTZ ; 0rTZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /

�

Z
Zg

bAg.TZ; 0rTZ/ ^ echg.L1=2Z ;rL
1=2
Z ; 0rL

1=2
Z / ^ chg.E;rE /:

(3.16)

Note that since one restricts to the fixed point set V g , the equivariant eta form
Q�g.T

H
1 .W jV g /; g

TX ; hLX ;rLX ; hE ;rE / is well defined.
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3.2. Simplifying assumptions. By anomaly formula Theorem 2.7, we only need
to prove Theorem 3.4 when (TH3 W , gTZ , hLZ , rLZ )=.TH 03 W;g

0TZ
T0

; h
0LZ ;r

0LZ /.
Therefore, in the following sections, we assume that

TH3 W � T
H
1 W; gTZ D gTX ˚ ��1g

TY ; hLZ D ��1 h
LY ˝ hLX ;

r
LZ D ��1r

LY ˝ 1C 1˝rLX :
(3.17)

Let
gTZT D ��1g

TY
˚

1

T 2
gTX (3.18)

and DZ
T be the fiberwise Dirac operator associated to (TH3 W;gTZT ;rLZ , hE , rE ).

We assume that kerDX is locally constant, kerDY D 0 and for any T � 1,
kerDZ

T D 0.

4. Proof of Theorem 3.4

In this section, we use the assumptions and the notations in Section 3.2.
This Section is organized as follows. In Section 4.1, we introduce a 1-form on

RC �RC. In Section 4.2, we state some intermediate results which we need for the
proof of Theorem 3.4, whose proofs are delayed to Section 5–9. In Section 4.3, we
prove Theorem 3.4. For the convenience to compare the results in this paper with
those in [16], the intermediate results and the proof of Theorem 3.4 in this section are
formulated almost the same as in [16, Theorem 5.11]. We leave the main difficulties
in the proofs of intermediate results to later.

4.1. A fundamental1-form. LetrTZT be the connection associated to .TH3 W;gTZT /

as in (2.15). Let S1;T be the tensor associated to (TH1 W;T �2gTX ) as in (2.17).
Comparing with [6, (3.10)] and [27, Theorem 5.1], we have

r
TZ
T D

0
r
TZ
C P TZS1;TP

TZ

D
0
r
TZ
C P TXS1P

THZ
C

1

T 2
P T

HZS1P
TZ :

(4.1)

Let rSZ ;T be the connection on S.TZ;LZ/ induced by rTZT and rLZ . Set

0
r

SZ WD ��1r
SY ˝ 1C 1˝rSX : (4.2)

Then by (4.1),

r
SZ ;T D 0

r
SZ C

1

2T
hS1.�/ei ; f

H
p;1ic.ei /c.f

H
p;1/

C
1

4T 2
hS1.�/f

H
p;1; f

H
q;1ic.f

H
p;1/c.f

H
q;1/: (4.3)
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As the construction in Section 2.4, We consider the spacebS WD RC;T �RC;u�S .
Let prS W bS ! S denote the projection and consider the fibration b�3 W bW WD

RC;T � RC;u � W ! bS . Let PrW W bW ! W be the canonical projection. Set
TH bW D T .RC�RC/˚Pr�W .TH1 W /. ThenTH bW is a horizontal subbundle ofT bW
as in (2.11). Wedefine themetricbgTZ such that it restricts tou�2gTZT over .T; u/�W .
Let hbLZ D Pr�W hLZ , r

bLZ D Pr�WrLZ , h
bE D Pr�W hE and rbE D Pr�WrE . We

naturally extend the G-actions to this case such that the G-action is identity on bS .
We denote byB3;u2;T theBismut superconnection associated to .TH3 W , u�2gTZT ,

hLZ , rLZ , hE , rE ). We know that the G-action commutes with this Bismut
superconnection.

Let bB be the Bismut superconnection for the fibration bW ! bS , by the arguments
above (2.82), we can get

bB.T;u;b/ D B3;u2;T C dT ^ @

@T
C du ^

@

@u
�
n

2u
du �

n �m

2T
dT: (4.4)

Definition 4.1. We define ˇg D du ^ ˇug C dT ^ ˇTg to be the part of
 SeTrŒg exp.�bB2/� of degree one with respect to the coordinates .T; u/, with
functions ˇug , ˇTg W RC;T �RC;u ! ��.S/.

From (2.64) and (4.4), we have

ˇug.T; u/ D

†
�

1

2
p
�1
p
�
 S Trs

�
g
@B3;u2;T

@u
exp.�B2

3;u2;T
/

�
; if n is evenI

�
1
p
�
 S Treven

�
g
@B3;u2;T

@u
exp.�B2

3;u2;T
/

�
; if n is odd;

ˇTg .T; u/ D

†
�

1

2
p
�1
p
�
 S Trs

�
g
@B3;u2;T

@T
exp.�B2

3;u2;T
/

�
; if n is evenI

�
1
p
�
 S Treven

�
g
@B3;u2;T

@T
exp.�B2

3;u2;T
/

�
; if n is odd:

(4.5)

By Definition 2.3 and Remark 2.4, we know that

e�g.TH1 W;gTZT ; hLZ ;rLZ ; hE ;rE / D �

Z C1
0

ˇug.T; u/du: (4.6)

Proposition 4.2. There exists a smooth family ˛g W RC;T � RC;u ! ��.S/ such
that �

du ^
@

@u
C dT ^

@

@T

�
ˇg D dT ^ du ^ d

S˛g : (4.7)
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Proof. Wedenote by˛g the coefficient of du^dT component of SeTrŒg exp.�bB2/�.
Then

 SeTrŒg exp.�bB2/� D  SeTrŒg exp.�B23;u2;T /�C ˇg C du ^ dT ^ ˛g : (4.8)

Since  SeTrŒg exp.�bB2/� and  SeTrŒg exp.�B23;u2;T /� are closed forms, we have�
du ^

@

@u
C dT ^

@

@T

�
 SeTrŒg exp.�B23;u2;T /�

� dT ^ du ^ dS˛g C d
Sˇg C

�
du ^

@

@u
C dT ^

@

@T

�
ˇg D 0: (4.9)

Then Proposition 4.2 follows from comparing the coefficient of dT ^du in (4.9).

Take "; A; T0, 0 < " � 1 � A < 1, 1 � T0 < 1. Let � D �";A;T0 be the
oriented contour in RC;T �RC;u.

0

U

u

T

"

A

1 T0

�1

�4

�2

�3

�

The contour � is made of four oriented pieces �1; : : : ; �4 indicated in the
above picture. For 1 � k � 4, set I 0

k
D
R
�k
ˇg . Then by Stocks’ formula and

Proposition 4.2,

4X
kD1

I 0k D

Z
@U
ˇg D

Z
U

�
du ^

@

@u
C dT ^

@

@T

�
ˇg D d

S

�Z
U
˛gdT ^ du

�
:

(4.10)

4.2. Intermediate results. Now we state without proof some intermediate results,
which will play an essential role in the proof of Theorem 3.4. The proofs of these
results are deferred to Sections 5–9.

In the sequence, we will assume for simplicity that S is compact. If S is non-
compact, the various constants C > 0 depend explicitly on the compact subset of S
on which the given estimate is valid.

As in the arguments at the beginning of Section 2.4, let PrV W bV D RC�V ! V

be the projection. For the fibration bV ! bS D RC � S , let (TH2 bV ;bgTY ; hbLY ;rbLY )
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be the quadruple such that TH2 bV D T .RC/ ˚ Pr�V .TH2 V /, bgTY.t;v/ D t�2gTYv for

t 2 RC, v 2 V , bLY D Pr�VLY , h
bLY D Pr�V hLY and rbLY D Pr�VrLY . Let

hkerD
bX and rkerDbX be the induced metric and connection on the vector bundle

kerDbX . Let hbSY and rbSY be the induced metric and connection on Pr�V S.T Y;LY /.
We naturally extend the G-action to this case such that the G-action is identity on
RC � S .

Let B2, bB2 and B2;u2 be the Bismut superconnections associated to

.TH2 V; g
TY ; hLY ; hkerD

X

;rLY ;rkerDX /;

.TH2
bV ;bgTY ; hbLY ; hkerDbX ;rbLY ;rkerDbX /

and

.TH2 V; u
�2gTY ; hLY ; hkerD

X

;rLY ;rkerDX /;

respectively. For any g 2 G, let us decompose

 SeTrŒg exp.�bB22/� D dt ^ 2.t/C r2.t/; (4.11)

where 2.t/; r2.t/ 2 ��.S/. By Definition 2.3 and Remark 2.4,Z C1
0

2.t/dt D �e�g.TH2 V; gTY ; hLY ; hkerDX ;rLY ;rkerDX /: (4.12)

Theorem 4.3. (i) For any u > 0, we have

lim
T!1

ˇug.T; u/ D 2.u/: (4.13)

(ii) For 0 < u1 < u2 fixed, there exists C > 0 such that, for u 2 Œu1; u2�, T � 1,
we have

jˇug.T; u/j � C: (4.14)

(iii) We have the following identity:

lim
T!C1

Z 1
1

ˇug.T; u/du D

Z 1
1

2.u/du: (4.15)

Theorem 4.4. We have the following identity:

lim
u!C1

Z 1
1

ˇTg .T; u/dT D 0: (4.16)
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Let PrW jV g W bW jV g D RC � W jV g ! W jV g be the projection. For the
fibration bW jV g ! bV g D RC � V g , let (TH1 .bW jV g /;bgTX ; hbLX ;rbLX ; hbE ;rbE ) be
the quadruple such that

TH1 .
bW jV g / D T .RC/˚ .PrW jV g /�TH1 .W jV g /; bgTX.t;w/ D t�2gTXw

for t 2 RC, w 2 W jV g ,

bLX D .PrW jV g /�LX ; bE D .PrW jV g /�E; hbLX D .PrW jV g /�hLX ;
hbE D .PrW jV g /�hE ; rbLX D .PrW jV g /�rLX and r

bE
D .PrW jV g /�rE :

We naturally extend the G-actions to this case such that g acts trivially on bV g .
LetbB1 be theBismut superconnection associated to (TH1 .bW jV g /;bgTX ;rbLX ; hbE ,

r
bE ). For any g 2 G, let us decompose

 V geTrŒg exp.�bB21/� D dt ^ 1.t/C r1.t/; (4.17)

where 1.t/; r1.t/ 2 ��.S/. By Definition 2.3 and Remark 2.4,Z C1
0

1.t/dt D �e�g.TH1 .W jV g /; gTX ; hLX ;rLX /: (4.18)

By (2.44), bAg.TZ;rTZ/ only depends on g 2 G and RTZ . So we can denote
it by bAg.RTZ/. Let RTZT be the curvature of rTZT . Set

A.T / D �
@

@b

ˇ̌̌̌
bD0

bAg�RTZT C b
@rTZT
@T

�
: (4.19)

By a standard argument in Chern–Weil theory (see [28, Appendix B] and [35]), we
know that

@

@T

ebAg.TZ;rTZ ;rTZT / D �A.T /: (4.20)

Proposition 4.5. When T ! C1, we have A.T / D O.T �2/. Moreover, modulo
exact forms on W g , we have

ebAg.TZ;rTZ ; 0rTZ/ D � Z C1
1

A.T /dT: (4.21)

Theorem 4.6. (i) For any u > 0, there exist C > 0 and ı > 0 such that,
for T � 1, we have

jˇTg .T; u/j �
C

T 1Cı
: (4.22)
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(ii) For any T > 0, we have

lim
"!0

"�1ˇTg .T "
�1; "/ D

Z
Y g

bAg.T Y;rTY / ^ chg.L1=2Y ;rL
1=2
Y / ^ 1.T /:

(4.23)

(iii) There exists C > 0 such that for " 2 .0; 1�, " � T � 1,

"�1
ˇ̌̌̌
ˇTg .T "

�1; "/C

Z
Zg
A.T "

�1/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /

ˇ̌̌̌
� C:

(4.24)

(iv) There exist ı 2 .0; 1�, C > 0 such that, for " 2 .0; 1�, T � 1,

"�1jˇTg .T "
�1; "/j �

C

T 1Cı
: (4.25)

4.3. Proof of Theorem 3.4. We now finish the proof of Theorem 3.4 under the
simplifying assumptions in Section 3.2. By (4.10), we know thatZ A

"

ˇug.T0; u/du �

Z T0

1

ˇTg .T; A/dT �

Z A

"

ˇug.1; u/duC

Z T0

1

ˇTg .T; "/dT

D I1 C I2 C I3 C I4 (4.26)

is an exact form. We take the limits A ! 1, T ! 1 and then " ! 0 in the
indicated order. Let I kj , j D 1; 2; 3; 4, k D 1; 2; 3 denote the value of the part Ij
after the kth limit. By [21, §22, Theorem 17], d�.S/ is closed under uniformly
convergence on compact sets of S . Thus,

4X
jD1

I 3j � 0 mod d��.S/: (4.27)

From (4.6), we obtain that

I 33 D Q�g.T
H
3 W;g

TZ ; hLZ ;rLZ ; hE ;rE /: (4.28)

Furthermore, by Theorem 4.4, we get

I 22 D I
3
2 D 0: (4.29)

From (4.12) and Theorem 4.3, we conclude that

I 31 D �Q�g.T
H
2 V; g

TY ; hLY ; hkerD
X

;rLY ;rkerDX /: (4.30)
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Finally we show, by using Theorem 4.6, that

I 34 D �

Z
Y g

bAg.T Y;rTY / ^ chg.L1=2Y ;rL
1=2
Y /

^ Q�g.T
H
1 .W jV g /; g

TX ; hLX ;rLX ; hE ;rE /

C

Z
Zg

ebAg.TZ;rTZ ; 0rTZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE / (4.31)

as follows: We writeZ C1
1

ˇTg .T; "/dT D

Z C1
"

"�1ˇTg .T "
�1; "/dT: (4.32)

Convergence of the integrals above is granted by (4.22). Using (4.23), (4.25) and
Proposition 4.5, we get

lim
"!0

Z C1
1

"�1ˇTg .T "
�1; "/dT

D

Z
Y g

bAg.T Y;rTY / ^ chg.L1=2Y ;rL
1=2
Y / ^

Z C1
1

1.T /dT (4.33)

and

lim
"!0

Z 1

"

"�1
�
ˇTg .T "

�1; "/dT

C

Z
Zg
A.T "

�1/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /

�
dT

D

Z
Y g

bAg.T Y;rTY / ^ chg.L1=2Y ;rL
1=2
Y / ^

Z 1

0

1.T /dT: (4.34)

The remaining part of the integral yields by (4.24)

lim
"!0

Z 1

"

"�1
Z
Zg
A.T "

�1/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /dT

D

Z
Zg

Z C1
1

A.T / ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /dT

D �

Z
Zg

ebAg.TZ;rTZ ; 0rTZ/ ^ chg.L1=2Z ;rL
1=2
Z / ^ chg.E;rE /:

(4.35)

These four equations for I 3
k
, k D 1; 2; 3; 4, imply Theorem 3.4.

5. Proof of Theorem 4.3

In this section, we use the assumptions and the notations of Section 3.2 except thatDZ
T

is invertible for any T � 1.
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This Section is organized as follows. In Section 5.1, we derive some estimates of
the fibrewise Dirac operatorDZ

T . In Section 5.2, we write the operatorBT in a matrix
form. In Section 5.3, we state two intermediate results, from which Theorem 4.3
follows easily. We prove one of them in Section 5.3 and leave the proof of the other
one to Section 5.4. As a by-product of the first intermediate result in Section 5.3,
we get a new proof of Lemma 3.2. In Section 5.5, we prove a technical result
Proposition 4.5.

5.1. Estimates ofDZ;2

T
.

Definition 5.1. For v 2 V , b 2 S , let Ev , E0;b (resp. E1;b) be the vector
spaces of the smooth sections of ��3ƒ.T �S/b̋S.TZ;LZ/ ˝ E on Xv , Zb
(resp. ��2ƒ.T �S/b̋S.T Y;LY / ˝ kerDX on Yb). For � 2 R, let E�v , E�

0;b
, E�

1;b

be the Sobolev spaces of the order � of sections of ��3ƒ.T �S/b̋S.TZ;LZ/˝ E,
��3ƒ.T

�S/b̋S.TZ;LZ/˝ E, ��2ƒ.T �S/b̋S.T Y;LY /˝ kerDX on Xv , Zb , Yb
with Sobolev norms k � kX;�, k � k�, k � kY;�.

For v 2 V , in this section, we simply denote by Pb the projection from E0
0;b

to E0
1;b

and let P? D 1 � P . Let E0;?1 be the orthogonal bundle to E01 in E00. Let
E�;?1 D E0;?1 \ E�0 .

Let feig, ffpg, fg˛g be the local orthonormal frames of TX , T Y , TS respectively
and feig, ff pg, fg˛g be their dual. Recall that rEX ;u is the connection in (3.7). Set

r
SY˝EX ;u D r

SY ˝ 1C 1˝rEX ;u: (5.1)

Let
DH
D c.f Hp;1/r

SY˝EX ;u

fH
p;1

: (5.2)

By (3.8), we have
PDHP D DY : (5.3)

Let S2 and S3 be the tensor associated to (TH2 V; gTY ) and (TH3 W;gTZ) as in (2.17).
Let T1 T2, T3, be the torsion tensors defined before (2.25) associated to .TH1 W;gTX /,
.TH2 V; g

TY /, .TH3 W;gTZ/. By (2.25), we have

hT3.g
H
˛;3; g

H
ˇ;3/; f

H
p;1i D hT2.g

H
˛;2; g

H
ˇ;2/; fpi: (5.4)

From (2.17), (4.3) and (5.2) (see also [4, Theorem 10.19]), the Dirac operator DZ

associated to .TH3 W;gTZ ;rLZ ;rE / can be written by

DZ
D DX

CDH
�
1

8
hT1.f

H
p;1; f

H
q;1/; ei ic.ei /c.f

H
p;1/c.f

H
q;1/: (5.5)

If we replace the metric gTZ by gTZT , by (2.25), we have

DZ
T D TD

X
CDH

C
1

8T
hŒf Hp;1; f

H
q;1�; ei ic.ei /c.f

H
p;1/c.f

H
q;1/: (5.6)
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Definition 5.2. For s; s0 2 E0, T � 1, we set

jsj2T;0 WD ksk
2
0; (5.7)

jsj2T;1 WD kPsk
2
0 C T

2
kP?sk20

C

X
p

k
0
r

SZ˝E
fH
p;1

sk20 C T
2
X
i

k
0
r

SZ˝E
ei

P?sk20;

(5.8)

where 0rSZ˝E D 0rSZ ˝ 1C 1˝rE . Set

jsjT;�1 D sup
0¤s02E1

0

jhs; s0i0j

js0jT;1
: (5.9)

Then (5.8) and (5.9) define Sobolev norms on E10 and E�10 . Since 0r
SZ˝E
ei P is

an operator along the fiberX with smooth kernel, we know that j � jT;1 (resp. j � jT;�1)
is equivalent to k � k1 (resp. k � k�1) on E10 (resp. E�10 ).

Lemma 5.3. There exist C1; C2; C3 > 0; T0 � 1, such that for any T � T0,
s; s0 2 E0,

hD
Z;2
T s; si0 � C1jsj

2
T;1 � C2jsj

2
T;0;

jhD
Z;2
T s; s0i0j � C3jsjT;1js

0
jT;1:

(5.10)

Proof. The proof is almost the same as that of [5, Theorem 5.19]. For the
completeness of this paper, we present the proof here.

Easy to check that DZ
T is a fiberwisely self-adjoint operator associated to h�; �i0

in (2.22). Set

DH
T D D

H
C

1

8T
hŒf Hp;1; f

H
q;1�; ei ic.ei /c.f

H
p;1/c.f

H
q;1/: (5.11)

Then by (5.6),
D
Z;2
T D T 2DX;2

CD
H;2
T C T ŒDX ;DH

T �: (5.12)

The family of operators (DX ;DH
T ) is uniformly elliptic. So there exists C 01; C 02 > 0,

such that for T 2 Œ1;C1�, s 2 E0,

kDXsk20 C kD
H
T sk

2
0 � C

0
1ksk

2
1 � C

0
2ksk

2
0: (5.13)

Since kerDX is a vector bundle, there exists C 03 > 0,

kDXP?sk20 � C
0
3kP

?sk20: (5.14)
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Using (5.13) and (5.14), we get for T 2 Œ1;C1/,

T 2kDXP?sk20 C kD
H
T P

?sk20

� C 01kP
?sk21 C

T 2 � 1

2
kDXP?sk20 C

�
C 03.T

2 � 1/

2
� C 02

�
kP?sk20: (5.15)

By elliptic estimate associated to the norm k � kX;� and (5.14), there exists C 04 > 0,
such that

kDXP?sk20 � C
0
4

X
i

k
0
r

SZ˝E
ei

P?sk20: (5.16)

Let 0R be the curvature of 0rSZ˝E � 1
2
hS1.ei /ei ; �i. Then from a easy computation

given by [6, Theorem 2.5], we have

ŒDX ;DH � D c.ei /c.f
H
p;1/

�
0R.ei ; f

H
p;1/ �

0
r

SZ˝E
T1.ei ;f

H
p;1
/

�
: (5.17)

Since T1.ei ; f Hp;1/ 2 TX , ŒDX ;DH � is a fiberwise first order elliptic operator along
the fibers X . By (5.11), (5.14), (5.16) and (5.17), there exists C 05; C 06 > 0, such that
for T � 1, s 2 E0,

jhT ŒDX ;DH
T �s; si0j � T jhŒD

X ;DH �P?s; P?si0j C C
0
5kP

?sk20

� C 06T kD
XP?sk20:

(5.18)

From (5.8), (5.12), (5.15), (5.16) and (5.18), there exist C 001 ; C 002 > 0, T0 � 1 such
that for any T � T0, s 2 E0

hD
Z;2
T P?s; P?si0 � C

00
1 jP

?sj2T;1 C C
0
1kP

?sk21 � C
00
2 ksk

2
0: (5.19)

From (5.12) and (5.13), we have

hD
Z;2
T Ps; P si0 � C

0
1kPsk

2
1 � C

0
2ksk

2
0: (5.20)

Since

hD
H;2
T P?s; P si0 D hP

?s;D
H;2
T Psi0

D 2hP?s; ŒDH
T ; P �D

H
T si0 C hP

?s; ŒDH
T ; ŒD

H
T ; P ��si0

(5.21)

and ŒDH
T ; P �, ŒD

H
T ; ŒD

H
T ; P �� are operators with smooth kernels along the fiber X ,

there exists C 003 > 0, such that

jhD
H;2
T P?s; P si0j � C

00
3 kP

?sk1kPsk0: (5.22)

As in (5.18), there exists C 004 > 0, such that

jhT ŒDX ;DH
T �P

?s; P si0j � C
00
4 jP

?sjT;1kPsk0: (5.23)
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So by (5.12),
jhD

Z;2
T P?s; P si0j � .C

00
3 C C

00
4 /jsjT;1jsjT;0: (5.24)

Since Œ0rSZ˝E ; P � and Œ0rSZ˝E ; P?� are bounded operators, there exists
C > 0, such that

kP?sk1 C kPsk1 �
X
p

k
0
r

SZ˝E
fH
p;1

sk20 C
X
i

k
0
r

SZ˝E
ei

P?sk20 � Cksk
2
0: (5.25)

So from (5.19), (5.20), (5.24) and (5.25), we get the first inequality of (5.10). The
second inequality follows directly from (5.12) and (5.18).

The proof of Lemma 5.3 is complete.

0

1

�1

�1

�

Let � be the oriented contour in the above picture.
If A 2 L.E00/ (resp. L.E�10 ;E

1
0/), we note kAk (resp. jAj�1;1T ) the norm of A

with respect to the norm k � k0 (resp. the norms j � jT;�1 and j � jT;1). Comparing
with [14, Theorem 11.27], we have the following lemma.
Lemma 5.4. There exist T0 � 1; C > 0, such that for T � T0, � 2 �, the resolvent
.��D

Z;2
T /�1 exists, and extends to a continuous linear operator from E�10 into E10.

Moreover

k.� �D
Z;2
T /�1k � C;

j.� �D
Z;2
T /�1j�1:1T � C.1C j�j/2:

(5.26)

Proof. SinceDZ
T is fiberwisely self-adjoint, for � 2 CnRC, .� �DZ;2

T /�1 exists.
For � D a˙ i 2 C, s 2 E20,

jh.D
Z;2
T � �/s; si0j � ksk

2
0: (5.27)

So there exists C > 0, such that for any � 2 �,

k.� �D
Z;2
T /�1sk0 � Cksk0: (5.28)

So we get the first inequality of (5.26).
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Take C2 the constant in Lemma 5.3. For �0 2 R, �0 � �2C2, by (5.10), we have

jh.�0 �D
Z;2
T /s; si0j � C1jsj

2
T;1: (5.29)

Then by (5.9) and (5.29),

j.�0 �D
Z;2
T /sjT;�1 D sup

0¤s02E1
0

jh.�0 �D
Z;2
T /s; s0i0j

js0jT;1
� C1jsjT;1: (5.30)

For � 2 �,

.��D
Z;2
T /�1 D .�0 �D

Z;2
T /�1 C .�� �0/.��D

Z;2
T /�1.�0 �D

Z;2
T /�1: (5.31)

From (5.28), (5.30) and (5.31), we deduce that .��DZ;2
T /�1 extends to a linear map

from E�10 into E00 and

j.� �D
Z;2
T /�1sjT;0

� j.�0 �D
Z;2
T /�1sjT;0 C j�0 � �jj.� �D

Z;2
T /�1.�0 �D

Z;2
T /�1sjT;0

� C�11 jsjT;�1 C C j�0 � �jj.�0 �D
Z;2
T /�1sjT;0

� .C�11 C CC
�1
1 j�0 � �j/jsjT;�1:

(5.32)

On the other hand,

.��D
Z;2
T /�1 D .�0 �D

Z;2
T /�1 C .�� �0/.�0 �D

Z;2
T /�1.��D

Z;2
T /�1: (5.33)

So from (5.30), (5.32) and (5.33), we deduce that .� �DZ;2
T /�1 extends to a linear

map from E�10 into E10 and

j.� �D
Z;2
T /�1sjT;1

� j.�0 �D
Z;2
T /�1sjT;1 C j�0 � �jj.�0 �D

Z;2
T /�1.� �D

Z;2
T /�1sjT;1

� C�11 jsjT;�1 C C
�1
1 j�0 � �jj.� �D

Z;2
T /�1sjT;0

� .C�11 C C
�1
1 j�0 � �j.C

�1
1 C CC

�1
1 j�0 � �j//jsjT;�1:

(5.34)

Then we get the second inequality of (5.26).
The proof of Lemma 5.4 is complete.

5.2. The matrix structure. In what follows, if ˛T .T 2 Œ1;C1�/ is a family of
tensors (resp. differential operators), we write that as T !C1,

˛T D ˛1 CO
� 1
T k

�
; (5.35)

if for any p 2 N, there exists C > 0, such that for T � 1, the sup of the norms of the
coefficients of ˛T � ˛1 and their derivatives of order � p is dominated by C=T k .
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Recall that EZ is the infinite dimensional fiber bundle over S , whose fibers are the
set of smooth sections over Z of S.TZ;LZ/. Comparing with (2.24), for U 2 TS ,
we define the connections on EZ

0
r

EZ ;u
U D

0
r

SZ˝E
UH
3

�
1

2
hS3.ei /ei ; U

H
3 i �

1

2
hS3.f

H
p;1; f

H
p;1/; U

H
3 i;

r
EZ ;T;u
U D r

SZ ;T
UH
3

˝ 1C 1˝rE �
1

2
hS3.ei /ei ; U

H
3 i �

1

2
hS3.f

H
p;1; f

H
p;1/; U

H
3 i:

(5.36)

By (4.3) and (5.36), we have

r
EZ ;T;u
U D

0
r

EZ ;u
U C

1

2T
hS1.U

H
3 /ei ; f

H
p;1ic.ei /c.f

H
p;1/: (5.37)

Recall thatB3;u2;T is the Bismut superconnection associated to .TH3 W , u�2gTZT ,
hLZ , rLZ ; hE ;rE /. Denote by B3;T D B3;1;T . From (2.28), (2.33), (3.14), (5.4),
(5.6), (5.36) and (5.37), we can calculate B3;T and B3;u2;T exactly.
Proposition 5.5. For T > 0 and u > 0,

B3;T D TD
X
C

0
r

EZ ;u CDH
�
c.T2/

4

�
1

8T
hT1.f

H
p;1; f

H
q;1/; ei ic.ei /c.f

H
p;1/c.f

H
q;1/

C
1

2T
hS1.g

H
˛ /ei ; f

H
p;1ic.ei /c.f

H
p;1/g

˛
^

�
1

8T
hT3.g

H
˛;3; g

H
ˇ;3/; ei ic.ei /g

˛
^ gˇ^;

(5.38)

and

B3;u2;T D uTD
X
C uDH

�
u

8T
hT1.f

H
p;1; f

H
q;1/; ei ic.ei /c.f

H
p;1/c.f

H
q;1/

C
0
r

EZ ;u C
1

2T
hS1.g

H
˛ /ei ; f

H
p;1ic.ei /c.f

H
p;1/g

˛
^

�
c.T2/

4u
�

1

8uT
hT3.g

H
˛;3; g

H
ˇ;3/; ei ic.ei /g

˛
^ gˇ ^ :

(5.39)

Let EY be the infinite dimensional fiber bundle over S , whose fibers are the set of
smooth sections over Y of S.T Y;LY /˝ kerDX . By (2.24), for U 2 TS , we define
the connections on EY

r
EY ;u
U D r

SY˝kerDX

UH
2

�
1

2
hS2.fp/fp; U

H
2 i: (5.40)

From [27, Theorem 5.2], we have

hS3.f
H
p;1; f

H
q;1/; U

H
3 i D hS2.fp/fp; U

H
2 i: (5.41)
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So by (3.7), (3.8), (5.36), (5.40) and (5.41), we have

r
EY ;u D P 0

r
EZ ;uP: (5.42)

Recall that B2 is the Bismut superconnection associated to (TH2 V , gTY ,hLY ,
hkerD

X
;rLY , rkerDX ) and B2;u2 D u2ıu2B2ı�1u2 . Then by (2.28),

B2 D D
Y
Cr

EY ;u � c.T2/=4: (5.43)

Lemma 5.6. For any T 2 Œ1;C1�, the operator PB3;TP is a superconnection
on E1. When T !C1,

PB3;TP D B2 CO
� 1
T

�
: (5.44)

Proof. Set

C D 0
r

EZ ;u CDH
�
c.T2/

4
: (5.45)

By (5.38), we have

PB3;TP D PCP CO
� 1
T

�
: (5.46)

From (5.3), (5.42) and (5.43), we get

PCP D B2: (5.47)

So Lemma 5.6 follows from (5.46) and (5.47).

Set
BT D B23;T C du ^ ı�1u2

@B3;u2;T

@u
ıu2 : (5.48)

Then BT is a differential operator along the fiber Z with values in ƒ.T �.RC � S//.
Set

Bu;T D B23;u2;T C du ^
@B3;u2;T

@u
: (5.49)

Then by (4.5), we have

ˇug D
˚
 SeTrŒg exp.�Bu;T /�	du D ˚u�2 Sıu2eTrŒg exp.�u2BT /�	du : (5.50)

From Proposition 5.5,

ı�1
u2

@B3;u2;T

@u
ıu2 D TD

X
CDH

C
c.T2/

4
CO

� 1
T

�
: (5.51)

Set
B2 D B22 C du ^ ı�1u2

@B2;u2

@u
ıu2 : (5.52)
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By (4.11), we have

2.u/ D
˚
u�2 Sıu2eTrŒg exp.�u2B2/�	du : (5.53)

From (5.43), (5.51) and Lemma 5.6, we have

PBTP D B2 CO
� 1
T

�
: (5.54)

Put
ET D PBTP; FT D PBTP?;
GT D P

?BTP; HT D P
?BTP?:

(5.55)

Then we write BT in matrix form with respect to the splitting E0 D E01 ˚ E0;?1 ,

BT D
�
ET FT
GT HT

�
(5.56)

Similarly as in [27, Theorem 5.5], we have
Proposition 5.7. There exist operators E;F;G;H such that, as T !C1,

ET D E CO.1=T /; FT D TF CO.1/;

GT D TG CO.1/; HT D T
2H CO.T /:

(5.57)

Let
Q D ŒDX ; C�: (5.58)

ThenQ.E01/ � E0;?1 , andQ is a smooth family of first order elliptic operators acting
along the fibers X . Moreover,

E D P.C2 C du ^ .DY
� c.T2/=4//P; F D PQP?;

G D P?QP; H D P?DX;2P?;
(5.59)

and
B2 D E � FH�1G: (5.60)

Proof. By (5.38) and (5.45), we have

B3;T D TD
X
C C CO

� 1
T

�
: (5.61)

From (5.48) and (5.55), we get (5.59).
Let 0RZ be the curvature of 0rSZ˝E � 1

2
hS3.ei /ei ; �i �

1
2
hS3.f

H
p;1/f

H
p;1; �i. As

in (5.17), we have

ŒDX ; 0rEZ ;u� D c.ei /g
˛;H
3 ^

�
0RZ.ei ; g

H
˛;3/ �

0
r

SZ˝E
T3.ei ;g

H
˛;3
/

�
;

. 0rEZ ;u/2 D g
˛;H
3 ^ g

ˇ;H
3 ^

�
0RZ.g

H
˛;3; g

H
˛;3/ �

0
r

SZ˝E
T3.g

H
˛;3
;gH
˛;3
/

� (5.62)
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and T3.ei ; gH˛;3/ 2 TX , T3.gH˛;3; gH˛;3/ 2 TZ. By (5.17), (5.45) and (5.62), we know
thatQ D ŒDX ; C� is a smooth family of first order elliptic operators acting along the
fibers X andQ.E01/ � E0;?1 .

By (5.43), (5.52) and (5.59), we know that

E � FH�1G

D P.C2 C u�2du ^ .DY
� c.T2/=4//P � PCDXP?.DX;2/�2P?DXCP

D .PCP /2 C u�2du ^ .DY
� c.T2/=4/ D B2

(5.63)

The proof of Proposition 5.7 is complete.

5.3. Proof of Theorem 4.3. If C is an operator, let Sp.C / be the spectrum of C .
The following lemma is an analogue of [8, Proposition 9.2].
Lemma 5.8. For any u > 0; T � 1,

Sp.B2/ D Sp.DY;2/;

Sp.Bu;T / D Sp.u2DZ;2
T / D Sp.u2BT /:

(5.64)

Proof. We only prove the first formula. The proof of the second one is the same.
By (5.43) and (5.52), set

R WD B2 �DY;2
D

�
r

EY ;u �
1

4
c.T2/

�2
C

�
DY ;rEY ;u �

1

4
c.T2/

�
C

1

u2
du ^

�
DY
�
c.T2/

4

�
: (5.65)

Take � … Sp.DY;2/. Then

.� � B2/�1 � .� �DY;2/�1 D .� �DY;2/�1R.� � B2/�1: (5.66)

Inductively,

.� � B2/�1 D .� �DY;2/�1 C .� �DY;2/�1R.� �DY;2/�1

C .� �DY;2/�1R.� �DY;2/�1R.� �DY;2/�1 C � � � : (5.67)

SinceR has positive degree inƒ.T �.R� S//, the expansion above has finite terms.
By elliptic estimate, there exist c1; c2 > 0, such that for any s 2 E1,

k.� �DY;2/skY;0 � c1kskY;2 � c2kskY;0: (5.68)

Then there exists c > 0 such that

k.� �DY;2/�1skY;2 �
1

c1
kskY;0 C

c2

c1
k.� �DY;2/�1skY;0 � ckskY;0: (5.69)
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From (5.62) and (5.65), there exists c > 0 such that

kRskY;0 � ckskY;1: (5.70)

By (5.67), (5.69) and (5.70), there exists c > 0, such that

k.� � B2/�1skY;0 � ckskY;0: (5.71)

So � … Sp.B2/.
Exchange B2 andDY;2, we get the first formula of (5.64).

By Lemma 5.8, we have

exp.�u2BT / D
1

2�
p
�1

Z
�

exp.�u2�/
� � BT

d�;

exp.�u2B2/ D
1

2�
p
�1

Z
�

exp.�u2�/
� � B2

d�:

(5.72)

Lemma 5.9. There exist T0 � 1; C > 0; k 2 N, such that for T � T0, � 2 �,
the resolvent .� � BT /�1 exists, extends to a continuous linear operator from E�10
into E10, and moreover

k.� � BT /�1k � C.1C j�j/k;
j.� � BT /�1j�1:1T � C.1C j�j/k :

(5.73)

Proof. Set
RT WD BT �DZ;2

T : (5.74)
By (5.17), (5.38), (5.48) and (5.62), we know that RT is a first order fiberwise
differential operator along the fiber Z. Moreover, from (5.8), for i D �1; 0, there
exists Ci > 0, such that for any s 2 Ei0,

jRT sjT;i � Ci jsjT;iC1: (5.75)

Take � 2 �. Then

.� � BT /�1 D .� �DZ;2
T /�1 C .� �D

Z;2
T /�1RT .� �D

Z;2
T /�1

C .� �D
Z;2
T /�1RT .� �D

Z;2
T /�1RT .� �D

Z;2
T /�1 C � � � : (5.76)

SinceRT has positive degree inƒ.T �.R�S//, the expansion above has finite terms.
From (5.75), and (5.76) and Lemma 5.4, there exist T0 � 1; C > 0; k 2 N, such

that for T � T0, � 2 �, the resolvent .� � BT /�1 exists, extends to a continuous
linear operator from E�10 into E10, and moreover

k.� � BT /�1k � C.1C j�j/k;
j.� � BT /�1j�1;1T � C.1C j�j/k :

(5.77)

The proof of Lemma 5.9 is complete.
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Similarly, there existC > 0; k 2 N, such that for � 2 �, the resolvent .��B2/�1
exists, and for any s 2 E01, s0 2 E�11 , we have

k.� � B2/�1skY;0 � C.1C j�j/kkskY;0;
k.� � B2/�1s0kY;1 � C.1C j�j/kks0kY;�1:

(5.78)

Replacing BT by HT and DZ;2
T by P?DZ;2

T P? in the proof of Lemma 5.9, we
can get the following lemma.
Lemma 5.10. There exist T0 � 1; C > 0; k 2 N, such that for T � T0; � 2 �, the
resolvent .� �HT /�1 exists, and for any s 2 E2;?0 , we have

k.� �HT /
�1sk0 � C.1C j�j/

k
ksk0;

j.� �HT /
�1sjT;1 � C.1C j�j/

k
jsjT;�1:

(5.79)

Choose s; s0 2 E0 such that s D .� � BT /�1s0, � 2 �. Then by (5.55), we have

Ps0 D .� �ET /P s � FTP
?s;

P?s0 D �GTPs C .� �HT /P
?s:

(5.80)

Let
ET .�/ D � �ET � FT .� �HT /�1GT : (5.81)

Then
P.� � BT /�1P D ET .�/�1: (5.82)

By (5.82) and Lemma 5.9, there exist T0 � 1; C > 0; k 2 N, such that for T � T0,
� 2 �, s 2 E0,

kET .�/�1sk0 � C.1C j�j/kksk0;
jET .�/�1sjT;1 � C.1C j�j/kjsjT;�1:

(5.83)

Lemma 5.11. There exist C > 0, T0 � 1, k 2 N, such that for T � T0, � 2 �,
s 2 E0,

k.ET .�/�1 � P.� � B2/�1P /sk0 �
C.1C j�j/k

T
ksk0: (5.84)

Proof. We know that

ET .�/�1 � P.� � B2/�1P D PET .�/�1.� � B2 � ET .�//.� � B2/�1P: (5.85)

By (5.60) and (5.81),

� � B2 � ET .�/ D ET C FT .� �HT /�1GT �E C FH�1G
D .ET �E/C .FT � TF /.� �HT /

�1GT
C �TF.� �HT /

�1.T 2H/�1GT

� TF.� �HT /
�1.HT � T

2H/.T 2H/�1GT

C TF.T 2H/�1.GT � TG/:

(5.86)
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By (5.21) and (5.38), the 2-order term of the differential operator BT is

T 2P?DX;2P? C PDH;2P C P?DH;2P? (5.87)

and the coefficient of T in the expansion ofBT is a 1-order differential operator along
the fiber X .

From (5.87) and Proposition 5.7, there exist C > 0, T0 � 1, such that for any
s; s0 2 E0, T � T0,

jh.ET �E/P s; P s
0
i0j �

C

T
kPsk0kPs

0
k1: (5.88)

So we have
j.ET �E/P sjT;�1 �

C

T
kPsk0: (5.89)

Also from (5.87) and Proposition 5.7, there exist C > 0, T0 � 1, such that for any
s 2 E0, T � T0,

kFTP
?sk0 � kTQP

?sk0 C CkPsk1 � C jP
?sjT;1: (5.90)

Similarly, we have
jGTPsjT;�1 � CkPsk0: (5.91)

From (5.90), (5.91) and Lemma 5.10, there exist C > 0, T0 � 1, k 2 N such that
for any s 2 E0, T � T0,

kFT .� �HT /
�1GTPsk0 � C.1C j�j/

k
kPsk0: (5.92)

From Proposition 5.7, there exists C > 0, such that

kFH�1GPsk0 � CkPsk0: (5.93)

By (5.78), (5.83), (5.86), (5.89), (5.92), (5.93) and Lemma 5.10, we can get

k.ET .�/�1 � P.� � B2/�1P /sk0 � C.1C j�j/kkPsk0: (5.94)

Comparing with (5.90) and (5.91), from (5.87) and Proposition 5.7, there exist
C > 0, T0 � 1, such that for any s 2 E0, T � T0,

j.FT � TF /P
?sjT;�1 � CkP

?sk0; jTFP
?sjT;�1 � C jP

?sjT;1;

k.GT � TG/P sk�1 � CkPsk0:
(5.95)

From (5.14) and (5.16), there exists C > 0, such that for any s 2 E0,

hHs; si0 � kP
?sk2X;1: (5.96)

So by Proposition 5.7, there exists C > 0, such that

jQH�1sjT;�1 � CkP
?sk�1: (5.97)
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Thus, by (5.14), (5.91), (5.95), (5.97) and Lemma 5.10, we can get

j.FT � TF /.� �HT /
�1GTPsjT;�1

� CkP?.� �HT /
�1GTPsk0 �

C

T
j.� �HT /

�1GTPsjT;1

�
C

T
.1C j�j/kjGTPsjT;�1 �

C

T
.1C j�j/kkPsk0;

(5.98)

jTF.� �HT /
�1.T 2H/�1GTPsjT;�1

� C j.� �HT /
�1.T 2H/�1GTPsjT;1

� C.1C j�j/kj.T 2H/�1GTPsjT;�1

�
C

T 2
.1C j�j/kjGTPsjT;�1 �

C

T 2
.1C j�j/kkPsk0

(5.99)
and

jTF.T 2H/�1.GT � TG/P sjT;�1 D
1

T
jQH�1.GT � TG/P sjT;�1

�
C

T
k.GT � TG/P sk�1 �

C

T
kPsk0:

(5.100)

So from (5.78), (5.83), (5.85), (5.86), (5.89), (5.94), (5.98), (5.99), (5.100) and
Lemma 5.10, we have

k.ET .�/�1TF.� �HT /�1.HT � T 2H/.T 2H/�1GT .� � B2/�1Psk0
� C.1C j�j/kkPsk0: (5.101)

On the other hand, from (5.87), we have

j.HT � T
2H/P?sjT;�1 � CkP

?sk1: (5.102)

So from (5.83), (5.95), (5.102) and Lemma 5.10, we have

k.ET .�/�1TF.� �HT /�1.HT � T 2H/.T 2H/�1GT .� � B2/�1Psk0
� C.1C j�j/kjTF.� �HT /

�1.HT � T
2H/.T 2H/�1GT .� � B2/�1PsjT;�1

� C.1C j�j/kj.� �HT /
�1.HT � T

2H/.T 2H/�1GT .� � B2/�1PsjT;1
� C.1C j�j/kj.HT � T

2H/.T 2H/�1GT .� � B2/�1PsjT;�1

�
C

T 2
.1C j�j/kkH�1GT .� � B2/�1Psk1:

(5.103)
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SinceH�1GT .� � B2/�1 D O.T /, by (5.101) and (5.103), we have

k.ET .�/�1TF.� �HT /�1.HT � T 2H/.T 2H/�1GT .� � B2/�1Psk0

�
C

T
.1C j�j/kkPsk0: (5.104)

Then from (5.85), (5.86), (5.89), (5.98), (5.99), (5.100), (5.104) and Lemma 5.10,
we can obtain the lemma.

Lemma 5.12. There exist C > 0, T0 � 1, k 2 N, such that for T � T0, � 2 �,

k.� � BT /�1 � P.� � B2/�1P k �
C

T
.1C j�j/k : (5.105)

Proof. From (5.82) and Lemma 5.11, we have

kP.� � BT /�1P � P.� � B2/�1P k �
C

T
.1C j�j/k : (5.106)

By (5.80), we find that

P.� � BT /�1P? D ET .�/�1FT .� �HT /�1;
P?.� � BT /�1P D .� �HT /�1GT ET .�/�1;
P?.� � BT /�1P? D .� �HT /�1.1CGTP.� � BT /�1P?/:

(5.107)

From (5.83), (5.90) and Lemma 5.10, there exists C > 0, such that for s 2 E0,

kP.� � BT /�1P?sk0 D kET .�/�1FT .� �HT /�1P?sk0
� CkFT .� �HT /

�1P?sk0 � C j.� �HT /
�1P?sjT;1

� C.1C j�j/kjP?sjT;�1 �
C

T
.1C j�j/kksk0:

(5.108)
From (5.83), (5.91) and Lemma 5.10, there exists C > 0, such that for s 2 E0,

kP?.� � BT /�1Psk0 D k.� �HT /�1GT ET .�/�1Psk0

�
1

T
j.� �HT /

�1GT ET .�/�1PsjT;1

�
C

T
.1C j�j/kjGT ET .�/�1PsjT;�1

�
C

T
.1C j�j/kkET .�/�1Psk1

�
C

T
.1C j�j/2kksk0:

(5.109)
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From (5.108) and (5.109), there exists C > 0, such that for s 2 E0,

k.� �HT /
�1GT ET .�/�1FT .� �HT /�1P?sk0

�
C

T
.1C j�j/kkFT .� �HT /

�1P?sk0 �
C

T 2
.1C j�j/2kksk0: (5.110)

From Lemma 5.10, we have

k.� �HT /
�1sk0 �

1

T
j.� �HT /

�1sjT;1

�
C

T
.1C j�j/kjP?sjT;�1 �

C

T 2
.1C j�j/kksk0:

(5.111)

By (5.110) and (5.111), we get

kP?.� � BT /�1P?k �
C

T 2
.1C j�j/k : (5.112)

The proof of Lemma 5.12 is complete.

We assume that kerDY D 0. There exists c1 > 0, such that Sp.B2/ D
Sp.DY;2/ � Œ2c1;C1/. By Lemma 5.8 and Proposition 5.12, we know that when T
is sufficiently large,

Sp.DZ;2
T / D Sp.BT / � Œc1;C1/: (5.113)

Note that in this section, we need not assume that kerDZ
T D 0. Therefore, we get

another proof of Lemma 3.2.

c1

�0

O

Let�0 be the oriented contour in the above picture. Then all the estimates in this
section hold for any � 2 �0. From (5.113), there exists T0 � 1, for u > 0, T � T0,

exp.�u2BT / D
1

2�
p
�1

Z
�0

e�u
2�

� � BT
d�: (5.114)

From (5.72) and Lemma 5.12, we get the following theorem.
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Theorem 5.13. For u0 > 0 fixed, there exist C;C 0 > 0 and T0 � 1 such that for
T � T0, u � u0,

k exp.�u2BT / � P exp.�u2B2/P k �
C

T
exp.�C 0u2/: (5.115)

Let exp.�u2BT /.z; z0/, P exp.�u2B2/P.z; z0/ .z; z0 2 Zb; b 2 S/ be the
smooth kernels of the operators exp.�u2BT /, P exp.�u2B2/P calculated with
respect to dvZ.z0/.

By using the proof of [25, Theorems 5.22] and the fact that kerDY D 0, we have
Proposition 5.14. (i) For u0 > 0 fixed, form 2 N, b 2 S , there exist C;C 0 > 0,

T0 � 1, such that for z; z0 2 Zb , u � u0, T � T0,

sup
j˛j;j˛0j�m

ˇ̌̌̌
ˇ @j˛jCj˛0j@z˛@z

0˛0
exp.�u2BT /.z; z0/

ˇ̌̌̌
ˇ � C exp.�C 0u2/: (5.116)

(ii) For u0 > 0 fixed, for m 2 N, b 2 S , there exist C;C 0 > 0, T0 � 1, such that
for z; z0 2 Zb , u � u0, T � T0,

sup
j˛j;j˛0j�m

ˇ̌̌̌
ˇ @j˛jCj˛0j@z˛@z

0˛0
P exp.�u2B2/P.z; z0/

ˇ̌̌̌
ˇ � C exp.�C 0u2/: (5.117)

The complete proof of Proposition 5.14 is left to the next subsection.
From Proposition 5.14(i), we obtain Theorem 4.3(ii).
Let injZ be the injectivity radius of (Zb; gTZb ). For .g�1z; z/ 2 Zb � Zb , we

will identify BTg�1zZb .0; "/ � BTzZb .0; "/ with BZb .g�1z; "/ � BZb .z; "/ by the
canonical exponential map when " < injZ .

Let � W Rn ! Œ0; 1� be a smooth function with compact support in B.0; injZ=2/,
equal 1 near 0 such that

R
Rn �.W /dv.W / D 1. Take v 2 .0; 1�. By Taylor expansion

and Proposition 5.14, there exists c > 0, such that

j.exp.�u2BT / � P exp.�u2B2/P /.vW; vW 0/
� .exp.�u2BT / � P exp.�u2B2/P /.0; 0/j � cv exp.�C 0u2/ (5.118)

for jW j; jW 0j are sufficiently small. Then for U;U 0 2 E0,

jh.exp.�u2BT / � P exp.�u2B2/P /.0; 0/U;U 0i0

�

Z
Rn�Rn

h.exp.�u2BT / � P exp.�u2B2/P /.vW; vW 0/U; U 0i0

� �.W /�.W 0/dv.W /dv.W 0/j � cvkU k0kU
0
k0 exp.�C 0u2/: (5.119)
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On the other hand, By Theorem 5.13,ˇ̌̌̌ Z
Rn�Rn

h.exp.�u2BT / � P exp.�u2B2/P /.vW; vW 0/U; U 0i0

� �.W /�.W 0/dv.W /dv.W 0/

ˇ̌̌̌
�

c

T vn
kU k0kU

0
k0 exp.�C 0u2/: (5.120)

Take v D T �
1
nC1 . From (5.146) and (5.120), we get

j.exp.�u2BT / � P exp.�u2B2/P /.0; 0/j � c T �
1
nC1 exp.�C 0u2/: (5.121)

Therefore, we can get the following theorem.
Theorem 5.15. For u0 > 0 fixed, there exist C;C 0 > 0, T0 � 1, ı > 0, such that for
u � u0, T � T0,ˇ̌

 Sıu2eTrŒg exp.�u2BT /� �  Sıu2eTrŒg exp.�u2B2/�ˇ̌ � C

T ı
exp.�C 0u2/:

(5.122)
By (5.50) and (5.53), we can get Theorem 4.3(i) by taking the coefficients of du

in (6.5). From the dominated convergence theorem, we get Theorem 4.3(iii) from
Theorem 4.3(i) and (6.5).

The proof of Theorem 4.3 is complete.

5.4. Proof of Theorem 5.14. Recall that we assume that S is compact for simplicity
in Section 4.2. There exists a family of C1 sections of T Y (resp. TX ), U1; : : : ; Ur
(resp. U 01; : : : ; U 0r 0), such that for any y 2 V (resp. x 2 W ), U1.y/; : : : ; Ur.y/
(resp. U 01.x/; : : : ; Ur 0.x/) span TyY (resp. TxX ).
Definition 5.16. Let D be a family of operators on E0,

D D
n
P 0
r

SZ˝E
UH
p;1

P C P? 0r
SZ˝E
UH
p;1

P?; P? 0r
SZ˝E
U 0
i

P?
o
: (5.123)

Note that in [25, (5.60)], the corresponding set of operators is stated asn
pT

0
r
ƒ.T �.0;1/Z/˝�

UH
l;1

pT ; p
?
T
0
r
ƒ.T �.0;1/Z/˝�

UH
l;1

p?T ; p
?
T
0
r
ƒ.T �.0;1/Z/˝�

U 0
i

p?T

o
:

We need to read [25, (5.60)] as

DT D
n
pT

0
r
ƒ.T �.0;1/Z/˝�

UH
l;1

pTCp
?
T
0
r
ƒ.T �.0;1/Z/˝�

UH
l;1

p?T ; p
?
T
0
r
ƒ.T �.0;1/Z/˝�

U 0
i

p?T

o
:

In this way, the corresponding commutator ŒQ1; ŒQ2; : : : ŒQk; A2T �; : : :�� has the same
structure as A2T (see the following proof of Lemma 5.17).
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Lemma 5.17. For any k 2 N fixed, there exists Ck > 0, T0 � 1 such that for
T � T0,Q1; : : : ;Qk 2 D and s; s0 2 E20, we have

jhŒQ1; ŒQ2; : : : ŒQk;BT �; : : :��s; s0i0j � CkjsjT;1js0jT;1: (5.124)

Proof. LetS be the set of uniformly bounded operators along the fiberX with smooth
kernel. Set

‚1 D
n
aij

0
r

SZ˝E
U 0
i

0
r

SZ˝E
U 0
j

C b W aij 2 C1.W;C.TZ//; b 2 S
o
;

‚2 D
n
ai
0
r

SZ˝E
U 0
i

C b W ai 2 C1.W;C.TZ//; b 2 S
o
;

‚3 D
n
bpq

0
r

SZ˝E
Up

0
r

SZ˝E
Uq

C bp
0
r

SZ˝E
Up

C ai
0
r

SZ˝E
U 0
i

C b W

ai 2 C1.W;C.TZ//; bpq; bp; b 2 S
o
:

(5.125)

By (5.17), (5.38), (5.48), (5.51) and (5.62), we can split the operator BT such that

BT D T 2P?A1P? C T .P?A2P? C PA02P? C P?A02P /C A3; (5.126)

where A1 2 ‚1, A2; A02 2 ‚2, A3 2 ‚3.
First, we consider the case when k D 1.

(a) The case whereQ D P 0r
SZ˝E
UH
p;1

P C P? 0r
SZ˝E
UH
p;1

P?.

We observe that if b 2 S , so are
�
0r

SZ˝E
UH
p;1

; b

�
, 0rSZ˝E

U 0
i

b and b 0r
SZ˝E
U 0
i

.

Then we have

ŒQ; P?A1P
?� D P?

�h
0
r

SZ˝E
UH
p;1

; A1

i
�

h
0
r

SZ˝E
UH
p;1

; P
i
A1 � A1

h
0
r

SZ˝E
UH
p;1

; P
i�
P?;

ŒQ; P?A2P
?� D P?

�h
0
r

SZ˝E
UH
p;1

; A2

i
�

h
0
r

SZ˝E
UH
p;1

; P
i
A2 � A2

h
0
r

SZ˝E
UH
p;1

; P
i�
P?;

ŒQ; PA02P
?� D P

�h
0
r

SZ˝E
UH
p;1

; A02

i
C

h
0
r

SZ˝E
UH
p;1

; P
i
A02 � A

0
2

h
0
r

SZ˝E
UH
p;1

; P
i�
P?;

ŒQ; P?A02P � D P
?

�h
0
r

SZ˝E
UH
p;1

; A02

i
�

h
0
r

SZ˝E
UH
p;1

; P
i
A02 C A

0
2

h
0
r

SZ˝E
UH
p;1

; P
i�
P;

(5.127)

and h
0
r

SZ˝E
UH
p;1

; Ai

i
2 ‚i ; Ai

h
0
r

SZ˝E
UH
p;1

; P
i
2 ‚i ;h

0
r

SZ˝E
UH
p;1

; A02

i
2 ‚2; A02

h
0
r

SZ˝E
UH
p;1

; P
i
2 ‚2
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for i D 1; 2; 3. For the element in ‚3, since the principal symbol of Q is identity,
we have ŒQ;A3� 2 ‚3.

So ŒQ;BT � has the same structure as BT in (5.126). Thus there exists C > 0,
T0 � 1 such that for T � T0, s; s0 2 E20, we have

jhŒQ;BT �s; s0i0j � C jsjT;1js0jT;1: (5.128)

(b) The case whereQ D P? 0rSZ˝E
U 0
i

P?.

As in (5.127), we have

ŒQ; P?A1P
?� D P?

�h
0
r

SZ˝E
U 0
i

; A1

i
�

�
0
r

SZ˝E
U 0
i

P
�
A1 C A1

�
P 0
r

SZ˝E
U 0
i

��
P?;

ŒQ; P?A2P
?� D P?

�h
0
r

SZ˝E
U 0
i

; A2

i
�

�
0
r

SZ˝E
U 0
i

P
�
A2 C A2

�
P 0
r

SZ˝E
U 0
i

��
P?;

ŒQ; PA02P
?� D P

�
�

h
0
r

SZ˝E
U 0
i

; A02

i
C

�
P 0
r

SZ˝E
U 0
i

�
A02 � A

0
2

�
P 0
r

SZ˝E
U 0
i

��
P?;

ŒQ; P?A02P � D P
?

�h
0
r

SZ˝E
U 0
i

; A02

i
C A02

�
0
r

SZ˝E
U 0
i

P
�
�

�
0
r

SZ˝E
U 0
i

P
�
A02

�
P:

(5.129)

Since ŒQ;A3� 2 ‚3, we know that ŒQ;BT � has the same structure as BT in (5.126).
Thus there exists C > 0, T0 � 1 such that for T � T0, s; s0 2 E20, we have

jhŒQ;BT �s; s0i0j � C jsjT;1js0jT;1: (5.130)

(c) Higher order commutators.
The estimate of higher order commutators are obtained inductively from (a)

and (b).
The proof of Lemma 5.17 is complete.

For k 2 N, let Dk be the family of operatorsQ which can be written in the form

Q D Q1 � � �Qk; Qi 2 D: (5.131)

If k 2 N, we define the Hilbert norm k � k0
k
by

ksk
02
k D

kX
`D0

X
Q2D`

kQsk20: (5.132)

Since Œ 0rSZ˝E
fH
p;1

; P �, P 0r
SZ˝E
ei and 0r

SZ˝E
ei P are operators along the fiberX

with smooth kernels, the Sobolev norm k � k0
k
is equivalent to the canonical Sobolev

norm k � kk .
Thus, we also denote the Sobolev space with respect to k � k0

k
by Ek0 .
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Lemma 5.18. For any m 2 N, there exist pm 2 N, Cm > 0 and T0 � 1 such that
for T � T0, � 2 �0, s 2 Em0 ,

k.� � BT /�1sk0mC1 � Cm.1C j�j/pmksk0m: (5.133)

Proof. Clearly for T � 1,
ksk01 � C jsjT;1: (5.134)

When m D 0, we obtain the lemma from (5.134) and Lemma 5.9.
For the general case, let RT be the family of operators

RT D fŒQi1 ; ŒQi2 ; : : : ŒQip ;BT �; : : :��g (5.135)

whereQi1 ; : : : ;Qip 2 D. We can express

Q1 � � �QkC1.� � BT /�1 (5.136)

as a linear combination of operators of the type

.� � BT /�1R1.� � BT /�1R2 � � �Rk0.� � BT /�1Qk0C1 � � �QkC1; k0 � k;

(5.137)
with R1; : : : ;Rk0 2 RT . By Lemma 5.17, we have

jRisjT;�1 � jsjT;1: (5.138)

From (5.134), (5.138) and Lemma 5.9, we have

k.� � BT /�1sk0kC1 � C
X
kQ2 � � �QkC1.� � BT /�1sk01

� C
X
k.� � BT /�1R2.� � BT /�1R3 � � �Rk0.� � BT /�1Qk0C1 � � �QkC1sk01

� Ck.1C j�j/
pk
X
kQk0C1 � � �QkC1sk0

� Ck.1C j�j/
pkksk0k :

(5.139)

The proof of Lemma 5.18 is complete.

Now we can complete the proof of Theorem 5.14. From (5.114), for any k 2 N�,

exp.�u2BT / D
1

2�
p
�1

Z
�0

e�u
2�

.� � BT /
d�

D
.�1/k�1.k � 1/Š

2�
p
�1uk�1

Z
�0

e�u
2�

.� � BT /k
d�:

(5.140)

By Lemma 5.18, there exist C > 0, r 2 N�, such that for any m0-order (resp. m00)
fiberwise differential operator R (resp. R0) along Z, m0; m00 � n=2, choosing
k � m0 Cm00,

kR.� � BT /�kR0sk0 � Ck.� � BT /�kR0sk0m0 � C.1C j�j/rksk0: (5.141)
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From (5.140) and (5.141), there exist C;C 0 > 0, such that

kR exp.�u2BT /R0sk0 � C exp.�C 0u2/ksk0: (5.142)

Now applying Sobolev embedding theorem, for R00 a fiberwise differential
operator of order m0 � n=2 along Z, there exists C > 0, such that for any s 2 E0,

jR00 exp.�u2BT /R0sjC0 � C exp.�C 0u2/ksk0; (5.143)

and

.R00 exp.�u2BT /R0s/.z/ D
Z
Z

.R0z0R
00
z exp.�u

2BT /.z; z0//s.z0/dvZ.z0/; (5.144)

here R0z0 acts on .S.TZ;LZ/ � E/� by identifying .S.TZ;LZ/ � E/� to
S.TZ;LZ/˝E by hSZ˝E . Thus, we have

kR0�R
00
z exp.�u

2BT /.z; �/k0 � C exp.�C 0u2/: (5.145)

Applying the Sobolev embedding theorem to the z0-variable, from (5.145), we can
get (5.116).

From (5.78), for any m 2 N, there exist pm 2 N, Cm > 0 and T0 � 1 such that
for T � T0, � 2 �0, s 2 Em0 ,

kP.� � B2/�1Psk0mC1 � Cm.1C j�j/pmkPsk0m: (5.146)

Following the same process, we get (5.117).

5.5. Proof of Proposition 4.5. Let NX be the number operator acting on TZ such
that for s 2 TZ,

NXP
TXs D P TXs; NXP

THZs D 0: (5.147)
Let

0
r
TZ
T D T �NXrTZT T NX : (5.148)

Let 0RTZT be the curvature of 0rTZT . By (4.1), we have

0
r
TZ
T D

0
r
TZ
C
1

T
.P TXS1P

THZ
C P T

HZS1P
TX /C

1

T 2
P T

HZS1P
THZ :

(5.149)
Then by (4.19), we have

A.T / D
@

@b

ˇ̌̌̌
bD0

bAg�0RTZT C b
@0rTZT
@T

�
: (5.150)

From (5.149), we have

@0rTZT
@T

D O
� 1
T 2

�
and 0RTZT D O.1/: (5.151)

Then Proposition 4.5 follows from 0rTZ1 D 0rTZ .
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6. Proof of Theorem 4.4 and Theorem 4.6(i)

In this section, we use the notations in Section 5 and assumptions in Section 3.2.
Set

B0T D B23;T C dT ^
@B3;T

@T
: (6.1)

By (5.38), we have

@B3;T

@T
D DX

�
1

8T 2

�
hŒf Hp;1; f

H
q;1�; ei ic.ei /c.f

H
p;1/c.f

H
q;1/

C hŒgH˛;3; g
H
ˇ;3�; ei ic.ei /g

˛
^ gˇ ^C4hS1.g

H
˛;3/ei ; f

H
p;1ic.ei /c.f

H
p;1/g

˛
^

�
:

(6.2)

By Definition 4.1, we have

ˇTg .T; u/ D
˚
 Sıu2eTrŒg exp.�u2B0T /�	dT : (6.3)

Recall that B2 is the Bismut superconnection in (5.43). Comparing with (5.54),
by Lemma 5.6, we have

PB0TP D B2 CO
� 1
T

�
: (6.4)

By (6.4), if we replace BT to B0T and B2 to B2, then everything in Section 5
works well. As an analogue of Theorem 5.15, we can get the following theorem.
Theorem 6.1. For u0 > 0 fixed, there exist C;C 0 > 0, T0 � 1, ı > 0, such that for
u � u0, T � T0,ˇ̌
 Sıu2eTrŒg exp.�u2B0T /� �  Sıu2eTrŒg exp.�u2B2/�ˇ̌ � C

T ı
exp.�C 0u2/: (6.5)

Take s > 0. By replacing T to sT in Theorem 6.1 and taking the coefficient
of ds, for sT � T0, we haveˇ̌̌˚

 Sıu2eTrŒg exp.�u2B0sT /�	ds ˇ̌̌ � C

.sT /ı
exp.�C 0u2/: (6.6)

By (6.3), for T � T0, we have

ˇTg .T; u/ D
n
 Sıu2eTrŒg exp.�u2B0sT /�od.sT / ˇ̌̌

sD1

D T �1 �
n
 Sıu2eTrŒg exp.�u2B0sT /�ods ˇ̌̌

sD1
:

(6.7)

From (6.6) and (6.7), for u0 > 0 fixed, there exist C;C 0 > 0, T0 � 1, ı > 0, such
that for u � u0, T � T0, we haveˇ̌

ˇTg .T; u/
ˇ̌
�

C

T 1Cı
exp.�C 0u2/: (6.8)

Then we get Theorem 4.4 and Theorem 4.6(i).
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7. Proof of Theorem 4.6(ii)

In this section, we use the notations in Sections 3.2, 5, 6, and assumptions in
Section 3.2.

In the first three subsections, we prove Theorem 4.6(ii) when dimY and dimZ
are all even. In Section 7.4, we discuss the other cases. In Section 7.5, we prove the
technical result Theorem 7.5.

7.1. The proof is local on ��1
1
.V g/. Recall thatB0T is the operator defined in (6.1).

As in (5.49), we set

B0";T=" D "
2ı"2B0T="ı

�1
"2
D B2

3;"2;T="
C "�1dT ^

@B3;"2;T 0

@T 0

ˇ̌̌̌
T 0DT"�1

: (7.1)

By Definition 4.1, we have

"�1ˇTg .T="; "/ D
˚
 SeTrŒg exp.�B0";T="/�	dT : (7.2)

Precisely, by (5.39), we have

B3;"2;T=" D TD
X
C "DH

C
"2

8T
hŒf Hp;1; f

H
q;1�; ei ic.ei /c.f

H
p;1/c.f

H
q;1/

C
0
r

EZ ;u �
c.T2/

4"

C
"

2T
hS1.g

H
˛;3/ei ; f

H
p;1ic.ei /c.f

H
p;1/g

˛
3^

C
1

8T
hŒgH˛;3; g

H
ˇ;3�; ei ic.ei /g

˛
^ gˇ^;

(7.3)

and

"�1
@B3;"2;T 0

@T 0

ˇ̌̌̌
T 0DT"�1

D DX
�

1

8T 2
.h"2Œf Hp;1; f

H
q;1�; ei ic.ei /c.f

H
p;1/c.f

H
q;1/

C 4"hS1.g
H
˛;3/ei ; f

H
p;1ic.ei /c.f

H
p;1/g

˛
3^

C hŒgH˛;3; g
H
ˇ;3�; ei ic.ei /g

˛
^ gˇ^/:

(7.4)

Set B1jV g be the Bismut superconnection associated to (TH1 .W jV g /; gTX ; hLX ;
rLX ; hE ;rE ). For t > 0, we denote ıVt the operator on ƒi .T �V g/ by multiplying
by t�i=2. As in (2.32), set

B1;T 2 jV g D T ı
V
T 2
ı B1jV g ı .ı

V
T 2
/�1: (7.5)

As in (5.49), we set

B00
T 2
jV g D .B1;T 2 jV g /

2
C dT ^

@B1;T 2

@T

ˇ̌̌̌
V g
: (7.6)



280 B. Liu

Then by (4.17), we have

1.T / D
˚
 V geTrŒg exp.�B00T 2 jV g /�	dT : (7.7)

In the first three subsections we assume that dimY D m and dimZ D n are all
even.

Let dV , dW be the distance functions onV ,W associated to gTV , gTW . Let InjV ,
InjW be the injective radius of V , W . In the sequel, we assume that given 0 < ˛ <

˛0 < inffInjV ; InjW g are chosen small enough so that if y 2 V , dV .g�1y; y/ � ˛,
then dV .y; V g/ � 1

4
˛0, and if z 2 W , dW .g�1z; z/ � ˛, then dW .z;W g/ � 1

4
˛0.

Let f be a smooth even function defined on R with values in Œ0; 1�, such that

f .t/ D

(
1; jt j � ˛=2I

0; jt j � ˛:
(7.8)

For t 2 .0; 1�, a 2 C, set
†
Ft .a/ D

Z C1
�1

cos.
p
2va/e�

v2

2 f .
p
tv/

dv
p
2�
;

Gt .a/ D
Z C1
�1

cos.
p
2va/e�

v2

2 .1 � f .
p
tv//

dv
p
2�
:

(7.9)

Clearly,
Ft .a/CGt .a/ D exp.�a2/: (7.10)

The functionsFt .a/ andGt .a/ are even holomorphic functions and the restrictions
of Ft .a/,Gt .a/ to R lie in the Schwartz space. So there exist holomorphic functionseFt .a/ and eGt .a/ on C such that

Ft .a/ DeFt .a2/; Gt .a/ D eGt .a2/: (7.11)

From (7.10), we deduce that

exp.�B0";T="/ DeF"2.B0";T="/C eG"2.B0";T="/: (7.12)

Fix b 2 S . For z; z0 2 Zb , let eF"2.B0";T="/.z; z0/ and eG"2.B0";T="/.z; z0/ be the
smooth kernels associated toeF"2.B0";T="/ andeG"2.B0";T="/with respect to the volume
form dvZ.z

0/.
Lemma 7.1. For ı > 0 fixed , there exist C1; C2 > 0, such that for any z; z0 2 Zb ,
0 < " � ı, T � 1, ˇ̌̌̌eG "2

T2

.B0"
T ;T

/.z; z0/

ˇ̌̌̌
� C1 exp

�
�
C2T

2

"2

�
: (7.13)
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In particular, ˇ̌̌
 S Trs

h
geG "2

T2

.B0"
T ;T

/
iˇ̌̌
� C1 exp

�
�
C2T

2

"2

�
: (7.14)

Proof. By (5.38), (6.1) and the elliptic estimate, there exists C > 0 such that for any
T � 1,

ksk2 � CkB0T sk0 C CT 2ksk0: (7.15)

Then for a m-order fiberwise differential operator Q along Z with scalar principal
symbol, by (7.15), we have

kQsk2 � CkB0TQsk0 C CT 2kQsk0
� CkQB0T sk0 C CT 2kQsk0 C CkŒB0T ;Q�sk0:

(7.16)

By (5.38) and (6.1), we have

kŒB0T ;Q�sk0 � CT 2kskmC1: (7.17)

Thus we get the estimate

kskmC2 � CkB0T skm C CT 2kskmC1 � CT 2.kB0T skmC1 C kskmC1/: (7.18)

By induction, there exist ck > 0 for 0 � k � m, such that

kskm � T
2m

mX
kD0

ckk.B0T /ksk0: (7.19)

Let B0�T be the adjoint of B0T . Similarly, we have

kskm � T
2m

mX
kD0

ckk.B0�T /ksk0: (7.20)

For m-order fiberwise differential operator Q, for m0 2 N, by (7.19) and (7.20), we
haveˇ̌̌D

.B0T /m
0eG "2

T2

� "2
T 2

B0T
�
Qs; s0

Eˇ̌̌
D

ˇ̌̌D
s;Q�eG "2

T2

� "2
T 2

B0�T
�
.B0�T /m

0

s0
Eˇ̌̌

�

eG "2

T2

� "2
T 2

B0�T
�
.B0�T /m

0

s0

m
ksk0

�

�
Tm

mX
kD0

ck

.B0�T /keG "2

T2

� "2
T 2

B0�T
�
.B0�T /m

0

s0

0

�
ksk0:

(7.21)
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By [8, (11.18)], form 2 N, there exist c0m > 0 and c > 0, such that for any 0 < " � ı,
T � 1,

sup
�2�

j�jm
ˇ̌̌eG "2

T2

� "2
T 2
�
�ˇ̌̌
� c0m exp

�
�
cT 2

"2

�
: (7.22)

From (7.21) and (7.22), there exists cm;m0 > 0, such that.B0T /m0eG "2

T2

� "2
T 2

B0T
�
Q

0
� cm;m0 exp

�
�
cT 2

2"2

�
: (7.23)

Let P be a fiberwise differential operators along Z of order m0. Then by (7.19)
and (7.23), there exists c0m;m0 > 0, such that for any 0 < " � ı, T � 1,PeG "2

T2

� "2
T 2

B0T
�
Q

0
�

eG "2

T2

� "2
T 2

B0T
�
Q

m0
� c0m;m0 exp

�
�
cT 2

2"2

�
: (7.24)

Following the same process in (5.143)–(5.145), there exist C1; C2 > 0, such that
for any z; z0 2 Zb , 0 < " � ı, T � 1,ˇ̌̌eG "2

T2

� "2
T 2

B0T
�
.z; z0/

ˇ̌̌
� C1 exp

�
�
C2T

2

"2

�
: (7.25)

Since B0"
T ;T
D

"2

T 2
ı "2
T2

B0T ı�1"2
T2

, we get the proof of Lemma 7.1.

Using Lemma 7.1 with " D T and T replace by T=", for T � 1 fixed, we findˇ̌̌eG"2.B0";T="/.z; z0/ˇ̌̌ � C1 exp � � C2"2 �;ˇ̌̌
 S Trs

h
geG"2.B0";T="/iˇ̌̌ � C1 exp � � C2"2 �: (7.26)

From (7.12) and (7.26), by the finite propagation speed for the solution of the
hyperbolic equations for cos

�
s
q
B0
";T="

�
(cf. [19, §7.8] and [32, §4.4]), it is clear that

for 0 < " � 1, T � 1, z; z0 2 Zb , if dV .�1z; �1z0/ � ˛, theneF"2.B0";T="/.z; z0/ D 0; (7.27)

and moreover, given z 2 Zb , eF"2.B0";T="/.z; �/ only depends on the restriction
of B0

";T="
to ��11 .BY .�1z; ˛//.

Let U˛0.Y
g

b
/ be the set of y 2 Yb such that dY .y; Y g

b
/ < ˛0=4. We identify

U˛0.Y
g

b
/ to f.y; U W y 2 Y

g

b
; U 2 NY g=Y ; jU j < ˛0=4g by using geodesic

coordinates normal to Y g in Y , where NY g=Y is the real normal bundle associated
to g 2 G in Y . Let dvY g and dvNY be the corresponding volume forms on T Y g
and NY induced by gTY . Then there exists the function kY on U˛0.Y

g

b
/, such that

dvZ.z/ D kY .y; U /dvY g .y/dvNY .U /dvX .x/: (7.28)



Functoriality of equivariant eta forms 283

Thus, from (7.27),

Trs
�
geF"2.B0";T="/�
D

Z
Z

Trs
�
geF"2.B0";T="/.g�1z; z/�dvZ.z/

D

Z
Y g

Z
U2N;
jU j<˛0=4

Z
X

Trs
�
geF"2.B0";T="/.g�1.y; U; x/; .y; U; x//�
� kY .y; U /dvY g .y/dvNY .U /dvX .x/:

(7.29)

Therefore, from (7.2), (7.26) and (7.29), we see that the proof of Theorem 4.6(ii) is
local near ��11 .V g/.

7.2. Rescaling of the variable U and of the Clifford variables. Let S3;T be the
tensor defined in (2.17) associated to (TH3 W;gTZT ). We can calculate that

hS3;T .Tei /Tej ; g
H
˛;3i D hS3.ei /ej ; g

H
˛;3i;

hS3;T .Tei /f
H
p;1; g

H
˛;3i D

1

T
hS3.ei /f

H
p;1; g

H
˛;3i;

hS3;T .Tei /g
H
˛;3; g

H
ˇ;3i D

1

T
hS3.ei /g

H
˛;3; g

H
ˇ;3i;

hS3;T .f
H
p;1/f

H
q;1; g

H
˛;3i D hS3.f

H
p;1/f

H
q;1; g

H
˛;3i;

hS3;T .f
H
p;1/g

H
˛;3; g

H
ˇ;3i D hS3.f

H
p;1/g

H
˛;3; g

H
ˇ;3i:

(7.30)

By (2.34), (4.3), (5.41), (7.1) and (7.30), after a careful calculation, we have

B0";T=" D

�

�
T 0
r

SZ˝E
ei

C
"

2
hS1.ei /ej ; f

H
p;1ic.ej /c.f

H
p;1/

C
"2

4T
hS1.ei /f

H
p;1; f

H
q;1ic.f

H
p;1/c.f

H
q;1/C

1

2
hS3.ei /ej ; g

H
˛;3ic.ej /g

˛
^

C
"

2T
hS3.ei /f

H
p;1; g

H
˛;3ic.f

H
p;1/g

˛
^C

1

4T
hS3.ei /g

H
˛;3; g

H
ˇ;3ig

˛
^ gˇ ^

�2
C dT ^

�
c.ei /

0
r

SZ˝E
ei

�
1

8T 2

�
"2hŒf Hp;1; f

H
q;1�; ei ic.ei /c.f

H
p;1/c.f

H
q;1/

C 4"hS1.g
H
˛;3/ei ; f

H
p;1ic.ei /c.f

H
p;1/g

˛
3 ^ChŒg

H
˛;3; g

H
ˇ;3�; ei ic.ei /g

˛
^ gˇ ^

��
� "2

�
0
r

SZ˝E
fH
p;1

C
"

2T
hS1.f

H
p;1/ei ; f

H
q;1ic.ei /c.f

H
q;1/

C
1

2T
hS3.f

H
p;1/ei ; g

H
˛;3ic.ei /g

˛
^C

1

2"
hS2.fp/fq; g

H
˛;2ic.f

H
q;1/g

˛
^

C
1

4"2
hS2.fp/g

H
˛;2; g

H
ˇ;2ig

˛
^ gˇ ^

�2
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C
"2

4
KZT=" C

T 2

2
.RLZ=2CRE /.ei ; ej /c.ei /c.ej /

C T".RLZ=2CRE /.ei ; f
H
p;1/c.ei /c.f

H
p;1/

C
"2

2
.RLZ=2CRE /.f Hp;1; f

H
q;1/c.f

H
p;1/c.f

H
q;1/

C
1

2
.RLZ=2CRE /.gH˛;3; g

H
ˇ;3/g

˛
^ gˇ^

C ".RLZ=2CRE /.f Hp;1; g
H
˛;3/c.f

H
p;1/g

˛
^

C T .RLZ=2CRE /.ei ; g
H
˛;3/c.ei /g

˛;H
3 ^ :

(7.31)

Set

r
0

fH
p;1

D
0
r

SZ˝E
fH
p;1

�
1

2
hS1.ei /ei ; f

H
p;1i C

1

2"
hS2.fp/fq; g

H
˛;2ic.f

H
q;1/g

˛
^

C
1

4"2
hS2.fp/g

H
˛;2; g

H
ˇ;2ig

˛
^ gˇ ^ : (7.32)

Recall that EX;y0 D C1.Xy0 ;S.TX;LX /˝ E/, which is naturally equipped with
a Hermitian product attached to gTX and hSX˝E as in (2.22). By (2.24), the
connection r 0 preserves the scalar product (3.6) on EX .

Take y0 2 V g and �2.y0/ D b. We identify BYb .y0; ˛0/ with B.0; ˛0/ �
Ty0Y D Rm by using normal coordinates. Take a vector U 2 Rm. We identify
T Y jU to T Y jf0g by parallel transport along the curve t 7! tU with respect to
the connection rTY . We lift horizontally the paths t 2 R�C 7! tU into paths
t 2 R�C 7! xt 2 Zb with xt 2 XtU , dxt=dt 2 THZb . If x0 2 Xy0 , we identify
TxtX , S.TZ;LZ/˝ Ext to Tx0X , S.TZ;LZ/˝ Ex0 by parallel transport along
the curve t 7! xt with respect to the connection rTX , r 0. Then we can define the
operator B0

";T="
to a neighborhood of f0g �Xy0 in Ty0Y �Xy0 .

Let � W Ty0Y ! Œ0; 1� be a smooth function such that

�.U / D

(
1; jU j � ˛0=4I

0; jU j � ˛0=2:
(7.33)

Let �TY be the ordinary Laplacian operator on Ty0Y .
Recall that kerDX jBY .y0;˛0=2/ is a smooth vector subbundle of EX;y0 on

BY .y0; ˛0=2/. If ˛0 > 0 is small enough, there is a vector bundle K � EX;y0 over
Ty0Y , which coincides with kerDX onB.0; ˛0=2/, with kerDX

y0
on Ty0Y nB.0; ˛0/,

such that if K? is the orthogonal bundle to K in EX;y0 , then

K? \ kerDX
y0
D f0g: (7.34)
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For U 2 Ty0Y , in the following sections, let PKU be the orthogonal projection
operator from EX;y0 to KU . Set P

K;?
U D 1 � PKU .

Set

L1";T D .1 � �
2.U //.�"2�TY C T 2P

K;?
U DX;2

y0
P
K;?
U /C �2.U /.B0";T="/: (7.35)

Comparing with (7.26), for any m 2 N and T � 1 fixed, there exist C1; C2 > 0,
such that for jU j, jU 0j < ˛0=4, 0 < " � 1,

jeG"2.L1";T /..U; x/; .U 0; x0//j � C1 exp��C2"2
�
: (7.36)

For .U; x/ 2 NY g=Y;y0 �Xy0 , jU j < ˛0=4, " > 0, set

.S"s/.U; x/ D s .U="; x/ : (7.37)

Put

L2";T WD S
�1
" L1";TS" D .1 � �

2."U //.�S�1" "2�TY S" C T
2P

K;?
"U DX;2

y0
P
K;?
"U /

C �2."U /S�1" B0";T="S": (7.38)

Let dimTy0Y g D l 0 and dimNY g=Y;y0 D 2l 00. Then l 0 C 2l 00 D m. Let
ff1; : : : ; fl 0g be an orthonormal basis of Ty0Y g and let ffl 0C1; : : : ; fl 0C2l 00g be an
orthonormal basis of NY g=Y;y0 . For ˛ 2 C.f p ^ ifp /1�p�l 0 , let Œ˛�max 2 C be the
coefficient of f 1 ^ � � � ^ f l 0 in the expansion of ˛. Let R" be a rescaling such that

R".c.ei // D c.ei /;

R".c.f
H
p;1// D

f
p;H
1 ^

"
� " ifH

p;1
; for 1 � p � l 0;

R".c.f
H
p;1// D c.f

H
p;1/; for l 0 C 1 � p � l 0 C 2l 00:

(7.39)

Then R" is a Clifford algebra homomorphism. Set

L3";T D R".L
2
";T /: (7.40)

Let exp.�Li";T /..U; x/; .U
0; x0//,eF"2.Li";T /..U; x/; .U 0; x0// (.U; x/; .U 0; x0/ 2

Ty0Y � Xy0 , i D 1; 2; 3) be the smooth kernels of exp.�Li";T /, eF"2.Li";T / with
respect to the volume form dvTy0Y .U

0/dvXy0 .x
0/. Using finite propagation speed

as in (7.27), we see that if .U; x/ 2 NY g=Y;y0 �Xy0 , jU j < ˛0=4, theneF"2.B0";T="/.g�1.y0; U; x/; .y0; U; x//kY .y0; U / DeF"2.L1";T /.g�1.U; x/; .U; x//:
(7.41)
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By (7.12), (7.26), (7.36) and (7.41), there existC1; C2 > 0, such that for jU j < ˛0=4,
x 2 Xy0 ,

j exp.�B0";T="/.g
�1.y0; U; x/; .y0; U; x//kY .y0; U /

� exp.�L1";T /.g
�1.U; x/; .U; x//j � C1 exp

�
�
C2

"2

�
: (7.42)

Since Ty0Yb is an Euclidean space, on Ty0Yb ,

S.T Y;LY /y0 D S.T Y g/b̋S.NY g=Y /˝ L1=2Y ; (7.43)

where S.�/ is the spinor space. From (7.39), we know thatL3";T ..U; x/; .U
0; x0// lies

in

��2ƒ.T
�
b S/b̋.End.ƒ.T �Y g//b̋C.NY g=Y /

˝ End.L1=2Y //y0 b̋ End.S.TX;LX /˝E/ (7.44)

and acts on

��2ƒ.T
�
b S/b̋.ƒ.T �Y g/b̋S.NY g=Y /˝ L1=2Y /y0 b̋S.TX;LX /˝E: (7.45)

Recall thatecTY g is the trace element defined in (2.8).
Lemma 7.2. For t > 0, .U; x/ 2 NY g=Y;y0 �Xy0 and g 2 G, we haveZ

Y g

Z
U2NYg=Y ;

jU j�˛0=4

Z
X

Trs
�
g exp.�L1";T /.g

�1.U; x/; .U; x//
�

� dvY g .y/dvNY .U /dvX .x/

D

Z
Y g

Z
U2NYg=Y ;

jU j�˛0=4"

Z
X

ecTY g Trs �g exp.�L3";T /�g�1.U; x/; .U; x/��max

� dvY g .y/dvNY .U /dvX .x/: (7.46)

Proof. From (7.38) and the uniqueness of the heat kernel, we have

exp.�L2";T / D S
�1
" exp.�L1";T /S": (7.47)

For U 2 Ty0Y , x 2 Xy0 , supp� � B.0; ˛0=2/ �Xy0 , we haveZ
Ty0Y

Z
X

exp.�L2";T /..U; x/; .U
0; x0//�.U 0; x0/dvTY .U

0/dvX .x
0/

D .exp.�L2";T /�/.U; x/
D .S�1" exp.�L1";T /S"�/.U; x/ D .exp.�L

1
";T /S"�/."U; x/

D

Z
Ty0Y

Z
X

exp.�L1";T /.."U; x/; .U
0; x0//.S"�/.U

0; x0/dvTY .U
0/dvX .x

0/

D "dimY �

Z
Ty0Y

Z
X

exp.�L1";T /.."U; x/; ."U
0; x0//�.U 0; x0/dvTY .U

0/dvX .x
0/:

(7.48)
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Thus,

exp.�L1";T /.g
�1.U; x/; .U; x// D "� dimY exp.�L2";T /

�
g�1.U="; x/; .U="; x/

�
:

(7.49)
By (2.8), (2.10), (7.44), (7.49) and the definition of L3";T , we have

Trs
�
g exp.�L3";T /

�
g�1.U="; x/; .U="; x/

��max

D

X
j

ec �1TY g "� dimY g Trs
�
g exp.�L2";T /

�
g�1.U="; x/; .U="; x/

��
Dec �1TY g "dimRN Trs

�
g exp.�L1";T /.g

�1.U; x/; .U; x//
�
:

(7.50)

The proof of Lemma 7.2 is complete.

7.3. Proof of Theorem 4.6(ii). Let KX be the scalar curvature of the fibers
.TX; gTX /. Comparing with [6, (3.15)–(3.17)], for T � 1, we can compute that

lim
"!0

"2KZT=" D T
2KX : (7.51)

Let � 0 be the connection form of r 0, which is defined in (7.32). By using [1,
Proposition 3.7], we see that for U 2 T Y D Rm,

�
0

U D
1

2
.r 0/2.U; �/CO

�
jU j2

�
: (7.52)

Lemma 7.3. For U; V 2 T Y , the following identity holds.

.r 0/2.UH1 ; V
H
1 / D

1

4
hRTX .UH1 ; V

H
1 /ei ; ej ic.ei /c.ej /C

�1
2
RLZCRE

�
.UH1 ; V

H
1 /

C
1

4
hRTY .fp; fq/U; V ic.f

H
p;1/c.f

H
q;1/C

1

4"2
hRTY .gH˛;2; g

H
ˇ;2/U; V ig

˛
^ gˇ^

�
1

2
d.hS1.ei /ei ; �i/.U

H
1 ; V

H
1 /C

1

2"
hRTY .fp; g

H
˛;2/U; V ic.f

H
p;1/g

˛
^ :

(7.53)

Proof. By the fundamental identity of [6, Theorem 4.14] (see also [27, (7.15)]),
for Z;W 2 T V ,

hRTY .U; V /P TYZ;P TYW i C h.S2P
TY S2/.U; V /Z;W i

C h.rTY S2/.U; V /Z;W i D hR
TY .Z;W /U; V i: (7.54)

Since S2 maps T Y to TH2 V , we have

.S2P
TY S2/.U; V /fp D 0; h.r

TY S2/.U; V /fp; fqi D 0: (7.55)

Then Lemma 7.3 follows from (7.32), (7.54) and (7.55).
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Lemma 7.4. When "! 0, the limit L30;T D lim"!0L3";T exists and

L30;T jV g D �

�
@p C

1

4
hRTY jV gU; f

H
p;1i

�2
C
1

2
RLY jV g C B00

T 2
jV g : (7.56)

Proof. By (7.52) and Lemma 7.3, we have

lim
"!0

R"2 Œ"S
�1
"2
r
0
fp
jUS"2 � D @p C lim

"!0
R"2 Œ"

2.S�1" .r 0/2S"/.U; fp/�

D@p C
1

4

X
1�q; r�l 0

hRTY .fq; fr/U; fpif
q
^ f r^

C
1

4
hRTY .gH˛;2; g

H
ˇ;2/U; fpig

˛
^ gˇ^

C
1

2

X
1�q�l 0

hRTY .fq; g
H
˛;2/U; fpif

q
^ g˛ ^ :

(7.57)
Then by (7.31), (7.51) and the definition of L3";T , we have

lim
"!0

L3";T D�

�
T 0
r

SZ˝E
ei

C
1

2

X
1�p�l 0

hS1.ei /ej ; f
H
p;1ic.ej /f

p
^

C
1

4T

X
1�p; q�l 0

hS1.ei /f
H
p;1; f

H
q;1if

p
^ f q ^C

1

2
hS3.ei /ej ; g

H
˛;3ic.ej /g

˛
^

C
1

2T

X
1�p�l 0

hS3.ei /f
H
p;1; g

H
˛;3if

p
^ g˛ ^C

1

4T
hS3.ei /g

H
˛;3; g

H
ˇ;3ig

˛
^ gˇ ^

�2
C dT ^

�
DX
�

1

8T 2

� X
1�p; q�l 0

hŒf Hp;1; f
H
q;1�; ei ic.ei /f

p
^ f q^

C 4
X

1�p�l 0

hS1.g
H
˛;3/ei ; f

H
p;1ic.ei /f

p
^ g˛^

C hŒgH˛;3; g
H
ˇ;3�; ei ic.ei /g

˛
^ gˇ ^

��
�

�
@p C

1

4

X
1�q;r�l 0

hRTY .U; fp/fq; frif
q
^ f r^

C
1

4
hRTY .U; fp/g

H
˛;2; g

H
ˇ;2ig

˛
^ gˇ^

C
1

2

X
1�q�l 0

hRTY .U; fp/fq; g
H
˛;2if

q
^ g˛ ^

�2
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C
T 2

4
KX C

T 2

2
.RLZ=2CRE /.ei ; ej /c.ei /c.ej /

C T
X

1�p�l 0

.RLZ=2CRE /.ei ; f
H
p;1/c.ei /f

p
^

C
1

2

X
1�p;q�l 0

.RLZ=2CRE /.f Hp;1; f
H
q;1/f

p
^ f q^

C
1

2
.RLZ=2CRE /.gH˛;3; g

H
ˇ;3/g

˛
^ gˇ^

C

X
1�p�l 0

.RLZ=2CRE /.f Hp;1; g
H
˛;3/f

p
^ g˛^

C T .RLZ=2CRE /.ei ; g
H
˛;3/c.ei /g

˛;H
3 ^ :

(7.58)

By (2.34) and (7.5), we have

.B1;T 2 jV g /
2
D�

�
T 0
r

SZ˝E
ei

C
1

2

X
1�p�l 0

hS1.ei /ej ; f
H
p;1ic.ej /f

p
^

C
1

4T

X
1�p;q�l 0

hS1.ei /f
H
p;1; f

H
q;1if

p
^ f q ^C

1

2
hS3.ei /ej ; g

H
˛;3ic.ej /g

˛
^

C
1

2T

X
1�p�l 0

hS3.ei /f
H
p;1; g

H
˛;3if

p
^ g˛ ^C

1

4T
hS3.ei /g

H
˛;3; g

H
ˇ;3ig

˛
^ gˇ ^

�2
C
T 2

4
KX C

T 2

2
.RLZ=2CRE /.ei ; ej /c.ei /c.ej /

C T
X

1�p�l 0

.RLZ=2CRE /.ei ; f
H
p;1/c.ei /f

p
^

C
1

2

X
1�p; q�l 0

.RLZ=2CRE /.f Hp;1; f
H
q;1/f

p
^ f q^

C
1

2
.RLZ=2CRE /.gH˛;3; g

H
ˇ;3/g

˛
^ gˇ^

C

X
1�p�l 0

.RLZ=2CRE /.f Hp;1; g
H
˛;3/f

p
^ g˛^

C T .RLZ=2CRE /.ei ; g
H
˛;3/c.ei /g

˛;H
3 ^ :
(7.59)

So

lim
"!0

L3";T D �

�
@p C

1

4
hRTY jV gU; f

H
p;1i

�2
C
1

2
RLY jV g C B00

T 2
jV g : (7.60)

The proof of Lemma 7.4 is complete.
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Theorem 7.5. (i) For T � 1 fixed and k 2 N, there exist c > 0; C > 0; r 2 N
such that for any .U; x/; .U 0; x0/ 2 Ty0Y �Xy0 , " 2 .0; 1�,

sup
j˛j;j˛0j�k

ˇ̌̌̌
@j˛jCj˛

0j

@U ˛@U 0˛
0 exp.�L3";T /..U; x/; .U

0; x0//

ˇ̌̌̌
� c.1C jU j C jU 0j/r exp.�C jU � U 0j2/: (7.61)

(ii) For T � 1 fixed, there exist c > 0; C > 0; r 2 N,  > 0, such that for any
.U; x/; .U 0; x0/ 2 Ty0Y �Xy0 , " 2 .0; 1�,

j.exp.�L3";T / � exp.�L30;T //..U; x/; .U
0; x0//j

� c" .1C jU j C jU 0j/r exp.�C jU � U 0j2/: (7.62)

The proof of Theorem 7.5 is left to the next subsection.
On the vector spaceNY g=Y;y0 , there exists c > 0, such that for anyU 2 NY g=Y;y0 ,

jg�1U � U j � cjU j: (7.63)

Then by (7.42), Lemma 7.2, 7.4, Theorem 7.5 and the dominated convergence
theorem, we have

lim
"!0

 S TrsŒg exp.�B0";T="/�

D

Z
Y g

Z
NYg=Y

Z
X

ecTY g  S Trs �g exp.�L30;T /.g�1.U; x/; .U; x//�
� dvN .U /dvX .x/: (7.64)

By Mehler’s formula (cf. [24, (1.33)]) and (2.47),Z
X

Trs
�
g exp.�L30;T /.g

�1.U; x/; .U; x//
�
dvX .x/

D .4�/�
1
2 dimY det

1
2

�
RTY =2

sinh.RTY =2/

�
exp

�
�
1

4

�
RTY =2

tanh.RTY =2/
U;U

�
�
1

4

�
RTY =2

tanh.RTY =2/
g�1U; g�1U

�
C
1

2

�
RTY =2

sinh.RTY =2/
exp.RTY =2/U; g�1U

��
� Trs

�
gjS.N/

�
^ Tr

�
g exp

�
�
1

2
RLY jV g

��
^ TrsŒg exp.B00T 2 jV g /�: (7.65)
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Following the same computations in [24, (1.33)–(1.38)], by (2.43), (2.44), (2.57)
and (7.64), we have

lim
"!0

 S Trs
�
g exp.�B0";T="/

�
D  S

Z
Y g
ecTY g .4�/� dimYg

2  �1V g

�bAg.T Y;rTY / ^ chg.L1=2Y ;rL
1=2
Y /

^  V g Trs
�
g exp.B00

T 2
/jV g

��
: (7.66)

Using (2.56), (7.2) and (7.7), we get Theorem 4.6(ii) when dimZ and dimY are
all even.

7.4. General case. When dimY is odd and dimZ is even, by (2.10), following the
same process in this section, we can get an analogue of (7.66):

lim
"!0

 S Trodd
�
g exp.�B0";T="/

�
D  S

Z
Y g
ecTY g .4�/� dimYg

2  �1V g

�bAg.T Y;rTY / ^ chg.L1=2Y ;rL
1=2
Y /

^  V g Trs
�
g exp.B00

T 2
/jV g

��
: (7.67)

Then Theorem 4.6(ii) in this case follows from (2.56), (7.2), (7.7) and (7.67).
When dimY is even and dimZ is odd, it is the same as the case above. When

dimY and dimZ are all odd, by (2.10), as in (7.67), we have

lim
"!0

 S Trs
�
g exp.�B0";T="/

�
D 2
p
�1 S

Z
Y g
ecTY g .4�/� dimYg

2

�  �1V g

�bAg.T Y;rTY / ^ chg.L1=2Y ;rL
1=2
Y / ^  V g Tr

�
g exp.B00

T 2
jV g /

��
: (7.68)

Since the left hand side of (7.68) takes value in even forms and dimY g is odd, by
(2.7) and (2.56), we have

lim
"!0

 S Trs
�
g exp.�B0";T="/

�
D

Z
Y g

bAg.T Y;rTY / ^ chg.L1=2Y ;rL
1=2
Y / ^  V g TroddŒg exp.B00T 2 jV g /�: (7.69)

The proof of Theorem 4.6(ii) is complete.

7.5. Proof of Theorem 7.5. We prove Theorem 7.5 by following the process of [14,
Section 11] and [7, Section 11].

Let I 0 be the vector space of square integrable sections of��2ƒ.T �S/b̋ƒ.T Y g/b̋
S.NY g=Y / ˝ L1=2Y b̋S.TX;LX / ˝ E over Ty0Yb � Xy0 . For 0 � q � dimY g ,
let I 0q be the vector space of square integrable sections of ��2ƒ.T �S/b̋ƒq.T Y g/b̋
S.NY g=Y /˝L1=2Y b̋S.TX;LX /˝E. Then I 0 D ˚l 0qD0I 0q . Similarly, if p 2 R, Ip

and Ipq denote the corresponding p-th Sobolev spaces.
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For U 2 Ty0Y g , set

g".U / D 1C .1C jU j
2/
1
2 �

�
"U

2

�
: (7.70)

If s 2 I 0q , set

jsj2";0 D

Z
Ty0Yb�Xy0

js.U; x/j2g".U /
2.l 0�q/dvTY .U /dvX .x/: (7.71)

Let h�; �i";0 be the Hermitian product attached to j � j";0.
So, for 1 � p � l 0, s 2 Ip , we can get

j1"jU j�˛0=2jU j.f
p
^ �"2ifp /sj

2
";0

D j1"jU j�˛0=2jU jf
p
^ sj2";0 C j1"jU j�˛0=2jU j"

2ifpsj
2
";0

D

Z
jU j�

˛0
2"

jsj2jU j2.1C .1C jU j2/
1
2 /2.l�p�1/dvTY .U /

C

Z
jU j�

˛0
2"

"4jsj2jU j2.1C .1C jU j2/
1
2 /2.l�pC1/dvTY .U /:

(7.72)

Since there exists C > 0, such that

jU j

1C .1C jU j2/
1
2

� 1; "4jU j2.1C .1C jU j2/
1
2 /2 � C; (7.73)

we have the following lemma.
Lemma 7.6. The operators

1"jU j�˛0=2.f
p
^ �"2ifp / and 1"jU j�˛0=2jU j.f

p
^ �"2ifp /

are uniformly bounded with respect to the norm j � j";0.

Set DH D f@p;rSX˝E
ei g. Set

jsj2";k D

kX
lD0

X
Qi2DH

jQ1 � � �Qlsj
2
";0: (7.74)

Lemma 7.7 (cf. [14, Theorem 11.26]). For T � 1 fixed, there exist c1; c2; c3; c4 > 0,
such that for any " 2 .0; 1�, s 2 I 1,

RehL3";T s; si";0 � c1jsj
2
";1 � c2jsj

2
";0;

jImhL3";T s; si";0j � c3jsj";1jsj";0;
jhL3";T s; s

0
i";0j � c4jsj";1js

0
j";1:

(7.75)
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Proof. let r denote the gradient in the variable U . Since � has compact support,
there exists C > 0, such that

jr .g".U //j � C: (7.76)

From Lemma 7.6 and the definition of L3";T , we can get Lemma 7.7.

As in (5.9), set

jsj";�1 WD sup
0¤s02I1

hs; s0i";0

js0j";1
: (7.77)

Lemma 7.8. There exist c; C > 0 such that if

� 2 U D

�
� 2 C W Re.�/ �

Im.�/2

4c2
� c2

�
; (7.78)

the resolvent .� � L3";T /
�1 exists, and moreover for any " 2 .0; 1�, s 2 I 1,

j.� � L3";T /
�1sj";0 � C jsj";0;

j.� � L3";T /
�1sj";1 � C.1C j�j/

2
jsj";�1:

(7.79)

Proof. Take c2 in Lemma 7.7. If � 2 R, � � �2c2, for s 2 I 1, we have

Reh.L3";T � �/s; si";0 � c1jsj
2
";0: (7.80)

So
jsj";0 � c

�1
1 j.L

3
";T � �/sj";0: (7.81)

Since jsj";0 � c."/jsj0 for c."/ > 0,

jsj0 � jsj";0 � c
�1
1 j.L

3
";T � �/sj";0 � c."/c

�1
1 j.L

3
";T � �/sj0: (7.82)

So .L3";T � �/
�1 exists for � 2 R, � � �2c2.

Set � D aC ib 2 C. Then by Lemma 7.7,

jh.L3";T � �/s; si";0j � maxfRehL3";T s; si";0 � ajsj
2
";0; jImhL

3
";T s; si";0 � bjsj

2
";0jg

� maxfc1jsj2";1 � .c2 C a/jsj
2
";0;�c3jsj";1jsj";0 C jbjjsj

2
";0g:

(7.83)

Set
C.�/ D inf

t2R;
t�1

maxfc1t2 � .c2 C a/;�c3t C jbjg: (7.84)

If c > 0 is small enough, we can get

c0 D inf
�2U

C.�/ > 0: (7.85)
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Since jsj";0 � jsj";1, if the resolvent .� � L3";T /
�1 exists, then

j.� � L3";T /
�1sj";0 � c

�1
0 jsj";0: (7.86)

From (7.86), if �0 2 U , j�0 � �j � c0=2, then the resolvent .�0 �L3";T /
�1 exists. By

(7.82), we get the first inequality of (7.79).
For �0 2 R, �0 � �2c2 and s 2 I 1, by Lemma 7.7, we have

jh.�0 � L
3
";T /s; si";0j � c1jsj

2
";1: (7.87)

Following the same process in (5.30)–(5.34), we get the second estimate of (7.79).
The proof of Lemma 7.8 is complete.

As in Lemma 5.17, since ŒQ;L3";T � has the same structure as L3";T forQ 2 DH ,
for any k 2 N fixed, there exists Ck > 0 such that for " 2 .0; 1�,Q1; : : : ;Qk 2 DH
and s; s0 2 I 2, we have

jhŒQ1; ŒQ2; : : : ŒQk; L
3
";T �; : : :��s; s

0
i";0j � Ckjsj";1js

0
j";1: (7.88)

Then using the proof of Lemma 5.18, we can get the Lemma as follows.
Lemma 7.9. For any " 2 .0; 1�, � satisfies (7.78) and m 2 N, there exist Cm > 0

and pm 2 N, such that

j.� � L3";T /
�1sj";mC1 � Cm.1C j�j/

pm jsj";m: (7.89)

Set
� D @U D

�
� 2 C W Re.�/ D

Im.�/2

4c2
� c2

�
; (7.90)

and
� 0 D f� 2 C W jIm�j � cg: (7.91)

Then the map � 7! �2 sends � 0 to � . Let� D ��TY CDX;2
y0 . For � 2 � , k;m 2 N

and k � m, from Lemma 7.9, there exist Ck > 0 and p0m > 0 such that

j�k.� � L3";T /
�msj";0 � j.� � L

3
";T /
�msj";k

� Ck.1C j�j/
p0m j.� � L3";T /

�mCksj";0

� Ck.1C j�j/
p0m jsj";0:

(7.92)

Denote by L3;�";T the formal adjoint of L3";T with respect to the usual Hermitian
product in I 0. Then L3;�";T has the same structure as L3";T except that we replace the
operators f p^, ifp by ifp and f p^. For s 2 I 0q , set

jsj02";0 D

Z
Ty0Yb�Xy0

js.U; x/j2g".U /
2.q�l 0/dvTY .U /dvX .x/: (7.93)
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From the above analysis associated to j � j0";0, we obtain (7.92) for L3;�";T and j � j0";0.
Taking adjoint with respect to the usual Hermitian product in I 0, we have

j.� � L3";T /
�m�ksj";0 � Ck.1C j�j/

p0m jsj";0: (7.94)

So for k; k0; m 2 N and m � k C k0, there exists Ck;k0 > 0, such that

j�k exp.�L3";T /�
k0sj";0 D

ˇ̌̌̌
.�1/m�1.m � 1/Š

2�i

Z
�

e���k.� � L3";T /
�m�k

0

s

ˇ̌̌̌
";0

� Ck;k0

�Z
�

e��.1C j�j/p
0
md�

�
jsj";0

D Ck;k0

�Z
�0
e��

2

.1C j�2j/p
0
md�

�
jsj";0 � C jsj";0:

(7.95)

Take p 2 N. Let J 0p;y0 be the set of square integrable sections of
ƒ.T V g/b̋S.NY g=Y /˝ L1=2Y b̋S.TX;LX / over�

.U; x/ 2 Ty0Y �Xy0 I x 2 Xy0 ; jU j � p C
1

2

�
: (7.96)

We equip J 0p;y0 with the Hermitian product for s 2 J 0p;y0 ,

jsj2.p/;0 D

Z
jU j�pC 12

Z
Xy0

js.U; x/j2dvTy0Y dvX : (7.97)

Obviously, there exists C > 0 such that for any p 2 N, s 2 J 0p;y0 ,

jsj.p/;0 � jsj";0 � C.1C p/
l 0
jsj.p/;0: (7.98)

By (7.95) and (7.98), we find for any k � m, k0 � m0, there exists C 0 > 0 such
that for " 2 .0; 1�, p 2 N, s 2 J 0p;y0 ,

j�k exp.�L3";T /�
k0sj.p/;0 �

ˇ̌̌
�k exp.�L3";T /�

k0s
ˇ̌̌
";0
� C 0.1C p/l

0

jsj.p/;0:

(7.99)
Thus, following the same process in (5.143)–(5.145), for k; k0 2 N there exists
C > 0, r > 0 such that for " 2 .0; 1�, p 2 N,

sup
jU j;jU 0j�pC1=4

j�k.U;x/�
k0

.U 0;x0/ exp.�L
3
";T /..U; x/; .U

0; x0//j � C.1C p/r :

(7.100)
So we get the bounds in (7.61) with C D 0.
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By (7.9) and (7.11), we write

eGu.L3";T /..U; x/; .U 0; x0//
D

Z C1
�1

cos
�
p
2v
q
L3";T

�
..U; x/; .U 0; x0//e�

v2

2 .1 � f .
p
uv//

dv
p
2�
: (7.101)

Lemma 7.10. There exist C1; C2 > 0, r > 0, such that for " 2 .0; 1�, m;m0 2 N,

sup
jˇ j�m;jˇ 0j�m0

j@
ˇ
U @

ˇ 0

U 0
eGu.L3";T /..U 0; x0/; .U; x//j

� C1.1C jU j C jU
0
j/r exp

�
�
C2

u

�
: (7.102)

Proof. After replacing exp.�L3";T / to eGu.L3";T / in (7.95)–(7.100) and using (7.22),
we get Lemma 7.10.

If j
p
uvj � ˛=2, then f .

p
uv/ D 0. Using finite propagation speed of the

hyperbolic equation for the solution of hyperbolic equations for cos.s
q
L3";T / (cf. [19,

§7.8], [32, §4.4]), there exists a constant C 00 > 0, such thateGu.L3";T /..U; x/; .U 0; x0// D exp.L3";T /..U; x/; .U
0; x0//; (7.103)

if jU � U 0j � C 00=
p
u.

Then by (7.103) and Lemma 7.10, Form;m0 2 N, there existsC1; C2 > 0, r > 0,
such that for " 2 .0; 1�,

sup
jˇ j�m;jˇ 0j�m0

ˇ̌̌
@
ˇ
U @

ˇ 0

U 0 exp.�L
3
";T /..U; x/; .U

0; x0//
ˇ̌̌

� C1.1C jU j C jU
0
j/r exp

�
�
C2jU � U

0j2

C 020

�
: (7.104)

So we get the bounds in (7.61).
For U 2 Ty0Y , set U D Upfp . Let j � j0;k be the limit norm of j � j";k as "! 0

for k 2 f�1; 0; 1g. Note that all the estimates in this subsection work for " D 0. For
k 2 f�1; 0; 1g and k0 2 N, set

I
k;k0

0 D
˚
s 2 I k W U ˛s 2 I k for j˛j � k0

	
:

For s 2 I k;k
0

0 , set
jsj20;.k;k0/ D

X
j˛j6k0

ˇ̌
U ˛s

ˇ̌2
0;k
: (7.105)

Lemma 7.11. There exist C > 0, k; k0 2 N such that for s 2 I ,ˇ̌̌h�
� � L3";T

��1
�
�
� � L30;T

��1i
s
ˇ̌̌
";0

6 C"
�
1C j�j

�k
jsj0;.0;k0/: (7.106)
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Proof. Clearly,�
��L3";T

��1
�
�
��L30;T

��1
D
�
��L3";T /

�1
�
L3";T �L

3
0;T

��
��L30;T

��1
: (7.107)

Since j � j";0 6 j � j0;0, then by (7.52),ˇ̌̌D�
L3";T � L

3
0;T

�
s; s0

E
";0

ˇ̌̌
6 C"jsj0;.1;4/js

0
j";1; (7.108)

which implies that ˇ̌̌�
L3";T � L

3
0;T

�
s
ˇ̌̌
";�1

6 C"jsj0;.1;4/: (7.109)

On the other hand, we haveˇ̌̌Dh
Ui1 ; Œ� � � ŒUip ; L

3
0;T � � � � �s; s

0
Eiˇ̌̌

0;0
6 Cpjsj0;1js

0
j0;1: (7.110)

From (7.110) and the argument as in the proof of Theorem 5.18, we obtainˇ̌�
� � L30;T

��1
s
ˇ̌
0;.1;k/

6 C
�
1C j�j

�k
jsj0;.0;k/: (7.111)

This completes the proof of Lemma 7.11.

By (7.98) and Lemma 7.11, there exists r 2 N for s 2 J 0p;y0 ,ˇ̌��
� � L3";T

��1
�
�
� � L30;T

��1�
s
ˇ̌
.p/;0
� c"

�
1C j�j

�2
.1C p/r jsj.p/;0: (7.112)

So there exists C > 0, r 2 N, such that for " 2 .0; 1�, p 2 N,ˇ̌�
exp

�
� L3";T

�
� exp

�
� L30;T

��
s
ˇ̌
.p/;0
� C".1C p/r jsj.p/;0: (7.113)

By the same process in (5.118)–(5.121), there exist c > 0; C > 0; r 2 N, such
that for any .U; x/; .U 0; x0/ 2 Ty0Y �Xy0 , " 2 .0; 1�,ˇ̌�

exp
�
� L3";T

�
� exp

�
� L30;T

���
.U; x/; .U 0; x0/

�ˇ̌
� c".dimYC1/

�1�
1C jU j C jU 0j

�r exp � � C jU � U 0j2�: (7.114)

Then the proof of Theorem 7.5 is complete.
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8. Proof of Theorem 4.6(iii)

In this section, we use the notations and assumptions in Section 3.2 and 7.

8.1. Localization of the problem near ��1
1
.V g/. We replace T by u and T="

by T 0.
By Lemma 7.1, there existC1; C2 > 0, such that for any z; z0 2 Zb and u 2 .0; 1�,

T 0 � 1, ˇ̌̌̌eGu2=T 02� u2
T 02

B0T 0
�
.z; z0/

ˇ̌̌̌
� C1 exp

�
�
C2T

02

u2

�
; (8.1)

and ˇ̌̌̌
 SeTrhgeGu2=T 02�B0u=T 0;T 0�iˇ̌̌̌ � C1 exp� � C2T 02u2

�
: (8.2)

We trivialize the bundle ��3ƒ.T �S/b̋S.TZ;LZ/ as in Section 7.2. By (7.35),
we can get

L1u=T 0;u D u
2ıu2L

1
1=T 0;1ı

�1
u2
: (8.3)

Comparing with (7.42), there exists C > 0, such that for jU j < ˛0=4,ˇ̌̌
exp

�
� u2B021=T 0

��
g�1.U; x/; .U; x/

�
kY .y0; U /

� exp
�
� u2L11=T 0;1

��
g�1.U; x/; .U; x/

�ˇ̌̌
� C exp

�
�
C2T

02

u2

�
: (8.4)

Then we can replace the fiber Z by Ty0Y �Xy0 for y0 2 V g .

8.2. Proof of Theorem 4.6(iii). We will use the notation of Section 7.2 with "
replaced by 1=T 0, and T by 1. By Lemma 7.4, we see that as T 0 !C1

L31=T 0;1 ! L30;1: (8.5)

Let exp.�u2Li";T /..U; x/; .U
0; x0// ..U; x/; .U 0x0/ 2 Ty0Y �Xy0/ .i D 1; 2; 3/

be the smooth kernel associated to the operator exp.�u2Li";T / with respect to
dvTy0Y .U

0/dvXy0 .x
0/. Then by (7.46),

 S

Z
Y g

Z
U2N;
jU j�˛0=4

Z
X

ıu2eTrhg exp � � u2L11=T 0;1��g�1.U; x/; .U; x/ �i
� dvY gdvN .U /dvX .x/

D  S

Z
Y g

Z
U2N;

jU j�T 0˛0=4

Z
X

QcTY gıu2eTrhg exp ��u2L31=T 0;1��g�1.U; x/; .U; x/�imax

� dvY gdvN .U /dvX .x/: (8.6)
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By (8.6) and the argument of Section 7.2, to calculate the asymptotic of the left hand
side of (8.6) as u! 0 uniformly in T � 1, we have to find the asymptotic as u! 0

of

 S

Z
U2N

Z
X

QcTY gıu2eTrhg exp.�u2L31=T;1/�g�1.U; x/; .U; x/�imax

� dvN .U /dvX .x/: (8.7)

The following lemma is a modification of Lemma 7.5.

Lemma 8.1. There exist C1; C2 > 0; p; r 2 N such that for any .U; x/; .U 0; x0/ 2
Ty0Y �Xy0 , " 2 Œ0; 1�, u 2 .0; 1�,ˇ̌
up exp

�
� u2L3";1

��
.U; x/; .U 0; x0/

�ˇ̌
� C1.1C jU j C jU

0
j/r � exp

�
� C2

jU � U 0j2 C dX .x; x0/2

u2

�
: (8.8)

Proof. By (7.95),ˇ̌
�k exp

�
� u2L3";1

�
�k
0

s
ˇ̌
";0
� C

�Z
�

e�u
2�
�
1C j�j

�pm
d�

�
jsj";0

� Cu�2pm�2
�Z

u2�

e��
�
1C j�j

�p0md��jsj";0
� Cu�2pm�2jsj";0:

(8.9)
So, there exists p 2 N, such thatˇ̌

up�k exp
�
� u2L3";1

�
�k
0

s
ˇ̌
";0
� C jsj";0: (8.10)

Following the process in (7.96)–(7.100), we have

jup exp.�u2L3";1/..U; x/; .U
0; x0//j � C.1C jU j C jU 0j/r : (8.11)

Following the process in (7.101)–(7.104), We get Lemma 8.1.

Let NXg=X be the normal bundle to Xg in X . We identify NXg=X to the
orthogonal bundle to TXg in TX . Let gNX be the metric on NXg=X induced
by gTX . Let dvNX be the Riemannian volume form on .NXg=X ; gNX /.

For U 2 Ty0Y , x 2 Xg , V 2 NXg=X , jU j; jV j � ˛0=4, let kX .U; x; V / be
defined by

dvX .U; x; V / D kX .U; x; V /dvNXg=X .V /dvXg .x/: (8.12)
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Set n0 D dimZg . By standard results on heat kernel (cf. [4, Theorem 6.11]), there
exist smooth functions a0T;�n0.x/; : : : ; a

0
T;0.x/.x 2 W

g/ such that as u ! 0, for
x 2 X

g
y0 ,Z

V 2NX ; U2NY ;
jU j;jV j�˛0=4

ıu2eTrhg exp � � u2L31=T 0;1��g�1.U; x; V /; .U; x; V /�imax

� kX .U; x; V /dvNXdvNY D

0X
jD�n0

a0T 0;j .x/u
j
CO.u/; (8.13)

where the a0T 0;j .x/ only depend on the operator L3
1=T 0;1

and its higher derivatives
on x. By (8.5), a0T 0;j .x/ is continuous on T

0 2 Œ1;C1�.
By (7.29), (8.5)–(8.8) and (8.13), there exist aT 0;j depending continuously on

T 0 2 Œ1;C1� such that for any u 2 .0; 1�, T 0 2 Œ1;C1�,ˇ̌̌
 SeTrhg exp � � B0u=T 0;T 0

�i
�

0X
jD�n0

aT 0;ju
j
ˇ̌̌
� Cu: (8.14)

Since " D u=T 0, (8.14) is reformulated byˇ̌̌
 SeTrhg exp � � B0";T 0

�i
�

0X
jD�n0

aT 0;j ."T
0/j
ˇ̌̌
� C"T 0: (8.15)

Following the process in (6.6)–(6.8), we haveˇ̌̌n
 SeTrhg exp � � B0";T 0

�iodT 0
�

0X
jD�n0

ŒaT 0;j �
dT 0."T 0/j

ˇ̌̌
� C": (8.16)

For T 0 � 1 fixed, by Theorem 2.2 and (4.20), we have

lim
"!0

n
 SeTrhg exp � � B0";T 0

�iodT 0
D �

Z
Zg
A.T

0/ ^ chg
�
L
1=2
Z ;rL

1=2
Z

�
^ chg

�
E;rE

�
: (8.17)

From (8.15) and (8.17),

ŒaT 0;j �
dT 0
D 0 if j < �1;

ŒaT 0;0�
dT 0
D �

Z
Zg
A.T

0/ ^ chg
�
L
1=2
Z ;rL

1=2
Z

�
^ chg

�
E;rE

�
:

(8.18)

Since T 0 D "T ,
ŒaT 0;j �

dT
D "�1ŒaT 0;j �

dT 0 : (8.19)
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From (8.18) and (8.19), comparing the coefficients of dT in (8.15), we haveˇ̌̌̌n
 SeTrhg exp � � B0";T="

�iodT
C "�1

Z
Zg
A.T="/ ^ chg

�
L
1=2
Z ;rL

1=2
Z

�
^ chg

�
E;rE

�ˇ̌̌̌
� C: (8.20)

By (7.2) and (8.20), we get Theorem 4.6(iii).

9. Proof of Theorem 4.6(iv)

In this section, we prove Theorem 4.6(iv) by following the process of [5, Section IX]
and [26, Section 9]. In Section 9.1, as in Section 7.1, we reduce the problem to a
local problem near ��11 .V g/. In Section 9.2, we study the matrix structure of L3";T
as in Section 5.2. In Section 9.3, we prove Theorem 4.6(iv).

We use the same notation as in Sections 5, 7 and the assumptions in Section 3.2.

9.1. Finite propagation speed and localization.
Proposition 9.1. There exist C > 0, C 0 > 0, ı > 0, T0 � 1, such that for 0 < " � 1,
T � T0, ˇ̌̌n

 SeTrhgeG"2�B0";T="�iodT ˇ̌̌ � C

T 1Cı
: (9.1)

Proof. As we noted in Section 6, if we replace BT by B0
T="

and B2 to B2, everything
in Section 5 works well. So there existC > 0, ı > 0, T0 � 1, such that for 0 < " � 1,
T � T0, ˇ̌̌

 SeTrhgeG"2�"2B0T="�i �  SeTrhgeG"2�"2B2�iˇ̌̌ � C

T ı
: (9.2)

Since the second term above does not involve dT part, by (7.1) and following the
argument in (6.5)–(6.8), we get Proposition 9.1.

By Proposition 9.1, to establish Theorem 4.6(iv), we only need to prove the
following result.
Theorem9.2. There existC > 0,C 0 > 0, ı > 0, andT0 � 1 such that for 0 < " � 1,
T � T0 ˇ̌̌n

 SeTrhgeF"2�B0";T="�iodT ˇ̌̌ � C

T 1Cı
: (9.3)

By the finite propagation speed as in (7.27), if x 2 W , eF"2.B0";T="/.x; �/ only
depends on the restriction of B0

";T="
to ��1.BY .�1x; ˛//.

Now we can use the same argument as discussed in (7.27)–(7.29) to know the
proof of Theorem 9.2 is local near ��11 .V g/.
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9.2. The matrix structure of the operator L3
";T

as T ! C1. We use the same
trivialization and notations as in Section 7.1.

By (7.46),Z
Y g

Z
U2NY ;
jU j�˛0=4

eTrhgeF"2�L1";T ��g�1.U; x/; .U; x/�i dvNY dvY g
D

Z
Y g

Z
U2NY ;
jU j�˛0=4"

QcTY geTrhgeF"2�L3";T ��g�1.U; x/; .U; x/�i dvNY : (9.4)

Recall that the vector bundleK was defined in the argument before (7.34) and the
operator S" was defined in (7.37). Let F0" be the vector space of square integrable
sections ofƒ.T �V g/b̋S.NY g=Y /b̋S�1�" K˝L

1=2
Y over Ty0Y . Then F0" is a Hilbert

subspace of I 0. Let F0;?" be its orthogonal complement in I 0. Let p" be the
orthogonal projection operator from I 0 on F0" . Set p?" D 1 � p". Then if s 2 I 0,

p"s.U / D P
K
"U s.U; �/ U 2 Ty0Y: (9.5)

Put
E";T D p"L

3
";Tp"; F";T D p"L

3
";Tp

?
" ;

G";T D p
?
" L

3
";Tp"; H";T D p

?
" L

3
";Tp

?
" :

(9.6)

Then we write L3";T in matrix form with respect to the splitting I 0 D F0" ˚ F0;?" ,

L3";T D

�
E";T F";T
G";T H";T

�
(9.7)

The following lemma is an analogue of Proposition 5.7.

Lemma 9.3. There exist operators E", F", G",H" such that as T !1,

E";T D E" CO.1=T /; F";T D TF" CO.1/;

G";T D TG" CO.1/; H";T D T
2H" CO.T /:

(9.8)

Set
Q" WD �

2."U /R"S
�1
"

h
DX ; "DH

C
0
r

EZ ;u
i
S": (9.9)

ThenQ" maps F0" into F0;?" . Moreover,

F" D p"Q"p
?
" ;

G" D p
?
" Q"p";

H" D p
?
" .�

2."jU j/D
X;2
"U C .1 � �

2."U //DX;2
y0
/p?" :

(9.10)
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Proof. From (7.1), (7.3), (7.38) and (7.40), we find the coefficient of T 2 in the
expansion of L3";T is given by

H" D .1 � �
2."jU j//P

K;?
"U DX;2

y0
P
K;?
"U C �2."jU j/D

X;2
"U : (9.11)

When �."jU j/ ¤ 0, K"U D kerDX;2
"U . So

H" D P
K;?
"U

�
.1 � �2."jU j//DX;2

y0
C �2."jU j/D

X;2
"U

�
P
K;?
"U : (9.12)

Using (9.5), we see that (9.12) fits with the last formula in (9.10).
By (7.1), (7.3), (7.38) and (7.40), we find that the coefficient of T in the expansion

of L3";T is the operatorQ".
Using (9.9), it is clear thatQ" maps F0" into F0;?" . Also (9.8) and the remaining

equations in (9.10) follow.
The proof of Theorem 9.3 is complete.

Clearly, for U 2 Ty0Y , H"U , the operator H" at U , is an elliptic operator acting
along Xy0 .
Proposition 9.4. For any " > 0,

kerH"U D ƒ.T �V g/b̋S.NY g=Y /b̋K"U ˝ L1=2Y : (9.13)

Proof. By (9.10), if s 2 ƒ.T �V g/b̋S.NY g=Y /b̋K"U ˝ L1=2Y , then

H"s D 0: (9.14)

The operatorH"U is self-adjoint and nonnegative. Therefore ifH"s D 0, then

P
K;?
"U �2."jU j/D

X;2
"U P

K;?
"U s D 0;

P
K;?
"U .1 � �2."U //DX;2

y0
P
K;?
"U s D 0:

(9.15)

If �2."jU j/ ¤ 0, we deduce from the first identity in (9.15) that PK;?"U s D 0,
i.e. s 2 ƒ.T �V g/b̋S.NY g=Y /b̋K"U ˝ L1=2Y . If �2."jU j/ D 0, by the second
identity in (9.15), PK;?"U s 2 kerDX

y0
. Using (7.34), we deduce that PK;?"U s D 0,

i.e. s 2 ƒ.T �V g/b̋S.NY g=Y /b̋K"U ˝ L1=2Y .
The proof of proposition 9.4 is complete.

9.3. Proof of Theorem 9.2. For s 2 I , put

jsj2";T;1 WD jP
K
"U sj

2
";0 C T

2
jP

K;?
"U sj2";0

C

X
p

jrfpsj
2
";0 C T

2
X
i

j
0
r

SZ˝E
ei

P
K;?
"U sj2";0: (9.16)
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Lemma 9.5. There exist c1; c2; c3; c4 > 0, T0 � 1, such that for any s; s0 2 I with
compact support, " 2 .0; 1�, T � T0, we have

RehL3";T s; si";0 � c1jsj
2
";T;1 � c2jsj

2
";0;

jImhL3";T s; si";0j � c3jsj";T;1jsj";0;
jhL3";T s; s

0
i";0j � c4jsj";T;1js

0
j";T;1:

(9.17)

Proof. By (7.1), (7.3), (7.38) and (7.40), the 2-order term of the differential operator
L3";T is a fiberwise elliptic operator

T 2H" C�
TY : (9.18)

From (9.9), since K is a vector bundle over Ty0Y � S , for s 2 I with compact
support, there exists C1 > 0, such that

hH"P
K;?
"U s; P

K;?
"U si";0 � C1jP

K;?
"U sj2";0: (9.19)

Since H" is a fiberwise selfadjoint elliptic operator along the fibers X , from the
elliptic estimates, there exist C2; C3 > 0, such that

hH"P
K;?
"U s; P

K;?
"U si";0 � C2

X
i

j
0
r

SZ˝E
ei

P
K;?
"U sj2";0 � C3jP

K;?
"U sj2";0: (9.20)

From (9.19) and (9.20), there exists C4 > 0, such that

hH"P
K;?
"U s; P

K;?
"U si";0 � C4

�X
i

j
0
r

SZ˝E
ei

P
K;?
"U sj2";0 C jP

K;?
"U sj2";0

�
: (9.21)

By (7.76), there exist C5; C6 > 0, such that

h�TY s; si";0 � C5
X
p

jrfpsj
2
";0 � C6jsj

2
";0: (9.22)

Then there exist C 01; C 02 > 0, such that

h.T 2H" C�
TY /s; si";0 � C

0
1jsj

2
";T;1 � C

0
2jsj

2
";0: (9.23)

By Lemma 7.6 and (9.9), there exist C > 0, such that

jhTQ"s; si";0j � C jsj";T;1jsj";0: (9.24)

Then Lemma 9.5 follows from (7.76), (9.23) and (9.24).

Set D" D fPK"U @pPK"U C P
K;?
"U @pP

K;?
"U ; P

K;?
"U r

SX˝E
ei P

K;?
"U g. Let „" be the

operator from F" to itself,

„" D E" � F"H
�1
" G": (9.25)

Following the same argument in (5.72)–(5.133), we can get an analogue of
Theorem 5.15.
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Theorem 9.6. There exist C > 0, ı > 0, and T0 � 1 such that for 0 < " � 1,
T � T0, ˇ̌

 SeTr�geF"2.L3";T /� �  SeTr�geF"2.„"/�ˇ̌ � C

T ı
: (9.26)

Since there is no dT part in the second term above, as in (6.5)–(6.8), we get
Theorem 9.2.
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