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Functoriality of equivariant eta forms

Bo Liu

Abstract. In this paper, we define the equivariant eta form of Bismut—Cheeger for a compact
Lie group and establish a formula about the functoriality of equivariant eta forms with respect
to the composition of two submersions, which is motivated by constructing the geometric model
of equivariant differential K-theory.
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1. Introduction

In order to find a well-defined index for a first order elliptic differential operator over
a compact manifold with nonempty boundary, Atiyah—Patodi—Singer [2] introduced a
boundary condition which is particularly significant for applications. In this situation,
an invariant of a first order self-adjoint operator called the eta invariant, 1, enters
into the index formula. Formally, the eta invariant is equal to the number of positive
eigenvalues of the self-adjoint operator minus the number of negative eigenvalues.

Extending the work of Bismut-Freed [13], which is a rigorous proof of Witten’s
holonomy theorem [34], Bismut and Cheeger [9] studied the adiabatic limit for a
fibration of closed Spin manifolds and found that under the invertible assumption
of the Dirac family along the fibers, the adiabatic limit of the eta invariant of a
Dirac operator on the total space is expressible in terms of a canonically constructed
differential form, 7, on the base space. Later, Dai [20] extended this result to the case
when the kernel of the Dirac family forms a vector bundle over the base manifold.

This eta form of Bismut—Cheeger, 7, is the higher degree version of the eta
invariant 7, i.e. it is exactly the boundary correction term in the family index theorem
for manifolds with boundary [10,11,29]. When the base space is a point, the eta form
of Bismut—Cheeger is just the eta invariant of Atiyah—Patodi—Singer. On the other
hand, by [4,9,20], when the dimension of the fibers are even, the eta form serves
as a canonically constructed transgression between the Chern character of the family
index and Bismut’s explicit local index representative [6] of it. We can also see it
later by taking g = 1in (1.3).
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Recently, in the study of differential K-theory, the Bismut—Cheeger eta form
naturally appears in the geometric model constructed by Bunke and Schick [18] as a
key ingredient. Moreover, the results in [18] are highly dependent on the properties
of the eta form. In particular, the well-definedness of the push-forward map is based
on a formula about the functoriality of eta forms proved by Bunke and Ma [16], which
is a family version of [9]. In [17], Bunke and Schick extend their geometric model
to the orbifold case. It can also be regarded as a geometric model for the equivariant
differential K-theory for a finite group. Thus the equivariant eta form appears
naturally here and this motivates us to understand systematically the equivariant eta
form.

In this paper, we define first the equivariant eta form when the fibration admits a
fiberwise compact Lie group action and establish a formula about the functoriality
of equivariant eta forms which extends [16, Theorem 5.11] and [9] to our case. Note
that Bunke-Ma in [16] worked for the eta form associated to flat vector bundles,
and many analytic arguments are only sketched. Here we work on the equivariant
situation, thus we need to combine the equivariant local index technique to the
different functional analysis technique in analytic localization developed by Bismut
and his collaborators [5,7, 8, 14, 15,26,27]. We take this opportunity to give also
the details of the analytic arguments omitted in Bunke—Ma [16]. Note that similar
problems for holomorphic (or real) analytic torsion (forms) was considered by Ma
in [25,27], and the equivariant holomorphic analytic torsion was considered also by
Ma in [26, Theorem 3.1] where the equivariant torsion forms on the fixed point set
appear, as in Theorem 1.3 of this paper for the equivariant eta forms. We inspired a
lot by [25,26] with necessary modifications.

Let # : W — § be a smooth submersion of smooth manifolds with closed
oriented fiber Z, withdimZ = n. Let TZ = T W/S be the relative tangent bundle
to the fibers Z with Riemannian metric g74 and TH W be a horizontal subbundle
of TW, such that TW = THW & TZ. Let VT2 be the Euclidean connection
on TZ defined in (2.15). We assume that TZ has a Spin® structure. Let Lz be
the complex line bundle associated to the Spin® structure of 7Z with a Hermitian
metric 777 and a Hermitian connection V£Z (see [22, Appendix D]).

Let G be a compact Lie group which acts fiberwisely on W and as identity
on S. We assume that the action of G preserves the Spin® structure of T'Z and all
metrics and connections are G-invariant. Let (E, h) be a G-equivariant Hermitian
vector bundle over W with a G-invariant Hermitian connection VZ. Let DZ be
the fiberwise Dirac operator defined in (2.21) and B; be the Bismut superconnection
defined in (2.32). For o € Q'(S), the differential form on S with degree i, set

1 2 PR
-, if i is even;
¥s(a) = <2”ﬁ) i (1.1)
ﬁ(mlﬁ) 7 ., ifiisodd.
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We define now the equivariant eta form (cf. (2.64) and Definition 2.3).

Definition 1.1. Assume that dimker DZ is locally constant on S. For any g € G,
the equivariant eta form of Bismut—Cheeger is defined by

ﬁg(THW, gTZ’ hLZ, ]’ZE, VLZ, VE)
o0 1 0B; 2 odd e )
; mws Trg g? exp(—B;) [ dt € Q°C(S), ifniseven;

© ] OB
/O ﬁ‘”s Treven |:g8—tt exp(-B})] dt € Q(S), if n is odd.
(1.2)

The convergence of the integral in the right hand side of (1.2) are proved in
Section 2.4. Let W& be the fixed point set of g on W. Then W¥# is a submanifold
of W and the restriction of v on W& gives a fibration 7 : W& — § with fiber Z%.
From Proposition 2.1, the fiber Z¢ is naturally oriented. Furthermore, the equivariant
eta form verifies the following transgression.

dsﬁg(THW, gTZ’ ]’lLZ, hE, VLZ, VE)
/ Ag(TZ,VTZ) A chg(LY? VEZ") A chg(E,VE)
= - — chg (ker DZ, VkerDz), if n is even;
/ Ag(TZ.VTZ) Achg (LY? VEZ") Achg(E.VE),  ifnis odd.
~ (1.3)

For the definition of characteristic forms in (1.3), see (2.44), (2.45) and (2.57).
By (1.2), the equivariant eta form depends on the geometric data

(THwW, gT% nltz hE vtz vE),

When the geometric data vary, we have the anomaly formula for the equivariant eta
forms.

Theorem 1.2. Assume that there exists a smooth path connecting
(THwW.g"% ntz nE vtz VE) and (T'Hw,gT% n'tz n'E vtz V'E)

such that the dimension of the kernel of the Dirac family is locally constant (see
Assumption 2.6).
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(i) When n is odd, modulo exact forms on S, we have
ﬁg(T/HW,g/TZ,h/LZ,h/E,V/LZ,V/E) _ f]g(THW, gTZ,hLZ,hE,VLZ,VE)
- /Zg A(TZ.VTZ V'T2) A chg (LY2 VEL?) A chg (E. VE)

+ | Rg(TZ.VTZ) Achg(LY? VEZ” V'LZ) A chg(E.VE)

N—

VA

+/ Ag(TZ,V'T7) Achg(LIZ/Z,v’L%/z) Achg(E,VE V'E).
VA3

(1.4)

(ii) When n is even, modulo exact forms on S, we have

f]g(T/HW,g/TZ,h/LZ,h/E,V/LZ,V/E)—ﬁg(THW,gTZ,hLZ,]’lE,VLZ,VE)
- / Ag(TZ.VTZ N'TZ) N chg (LY? VEZ) A chg (E. VE)
VA4

~ ’ ~ / rr 1/
+/ Ag(TZ.V'TZ) A Ghg(LY2 VEZ V'EZ7) A chy (E, VE)

A

—~ ’ rrl/ ~ ’

+/ Ag(TZ,V'TZ) A chg(LY2 V'EZ7) A Chg (E,VE V'E)

yAS
— é\ﬁg(kerl)z’ VkerDz’ V/kerDZ).

(1.5)

For the definitions of the Chern—Simons forms
Ag(TZ. V"2 V%),
~ / ry 1/ ~ ,
Che (LY2 VEZ” V'EZ%) and  chg(ker DZ, VirD? y'kerD?)

used here, see (2.86).

For the reminder of this introduction, we shall consider the composition of two
submersions.

Let W, V, S be smooth manifolds. Let 7y : W — V, 75 : V — § be smooth
submersions with closed oriented fiber X, Y. Then 73 = np oy : W — Sisa
smooth submersion with closed oriented fiber Z. We have the diagram of fibrations:

X—7Z — W

AN

Y — ¥V —8.

Let TX, TY, T Z be the relative tangent bundles. We assume that 7X and TY
have the Spin® structures with complex line bundles Ly and Ly respectively.
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Then TZ have a Spin® structure with a complex line bundle Lz. We take
the geometric data (TlH w, gTX, hix vix), (TZH V, gTY, hEty VLYY and (T3HW,
gTZ, htz VLz)with respect to submersions 11, 772 and 3 respectively. Let oyTZ,
OVLZ be the connections on TZ, Lz defined in (3.4), (3.5).

Let G be a compact Lie group which acts on W such that for any g € G,
g-m = m - g and w3 - g = m3. We assume that the action of G preserves the
Spin® structures of 7X, TY, T Z and all metrics and connections are G-invariant.
Let (E,h%) be an equivariant Hermitian vector bundle over W with equivariant
Hermitian connection VE. Forany g € G,let TH (W |ys) = TEW |y« NT(W |y«<)
be the horizontal subbundle of T (W |y s).

The purpose of this paper is to establish the following result, which we state as
Theorem 3.4.

Theorem 1.3. If Assumption 3.1 and 3.3 hold, for any g € G, we have the following
identity in Q*(S)/dSQ*(S),

ﬁg(T3HW,gTZ,hLZ,hE, VLZ,VE)
— ﬁg(TZHV’gTY’hLy’hkerDX’ VLy’VkerDX)
+/ Ag(TY,VTY) A chg (L2 VEY)
Ye /\f]g(TlH(W|Vg),gTX7hLX7hEvVvavE)
— /Zg Ap(TZ.VTZ OVTZ) pchy(LY2 VEZ?) A chy (E, VF)

2

~ ~ / /
—/ Ag(TZ, °VTZ) A chg (LY? VEZ® OVLE™) A chg(E,VE).
VA

(1.6)

Note that if ker DZ is not locally constant, we can also construct an equivariant
eta form whenind(D%) = 0 € K ¢ (S) using the spectral section technique [29]. The
functoriality of equivariant eta forms in this case is almost the same as Theorem 1.3.
We will construct the equivariant differential K-theory and the push-forward map by
equivariant eta forms with equivariant spectral section in a companion paper [23] as
applications of the results in this paper.

This paper is organized as follows.

In Section 2, we define the equivariant eta form and prove the anomaly formula
Theorem 1.2. In Section 3, we state our main result Theorem 1.3. In Section 4,
we use some intermediate results, whose proofs are delayed to Section 5-9, to prove
Theorem 1.3. Section 5-9 are devoted to the proofs of the intermediate results stated
in Section 4.

To simplify the notations, we use the Einstein summation convention in this paper.

In the whole paper, we use the superconnection formalism of Quillen [30]. If A is
a Z,-graded algebra, and if a, b € A, then we will note [, b] as the supercommutator
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of a, b. If B is another Z,-graded algebra, we will note AQB as the Z,-graded
tensor product. If A, B are not Z,-graded, sometimes, we also denote AR B by
considering the whole algebra as the even part.

For a trace class operator P actingonaspace E,if E = E4 @ E_isa Z,-graded
space, we denote by

Trs[P] = Tr|g, [P] —Tr|g_[P]. (1.7)

If Tr[ P] takes value in differential forms, we denote by Tr*4/¢¥"[ P] the part of Tr[P]
which takes value in odd or even forms. We denote by

Trs[P], if E is Z,-graded;

Te[P] =
[P] Tr°Y[P], if E is not Z,-graded.

(1.8)

For a fiber bundle w : W — S, we will often use the integration of the differential
forms along the fiber Z in this paper. Since the fibers may be odd dimensional, we
must make precise our sign conventions. If « is a differential form on W which in
local coordinates is given by

o =dyPt Ao AdyPe A B(x, y)dxt Ao Adx™, (1.9)

we set

/a:dyp‘ /\---/\dypq/ B(x, y)dx' A Adx". (1.10)
z z

2. Equivariant eta form

The purpose of this section is to define the equivariant eta form and prove the
anomaly formula. In Section 2.1, we recall elementary results on Clifford algebras
of arbitrary dimension. In Section 2.2, we describe the geometry of fibration and
introduce the Bismut superconnection and Bismut’s Lichnerowicz formula (cf. [4,6]).
In Section 2.3, we explain the equivariant family local index theorem. In Section 2.4,
we define the equivariant eta form when the dimension of the kernel of Dirac operators
is locally constant. In Section 2.5, we prove the anomaly formula. In this section, we
follow mainly from [9].

2.1. Clifford algebras. Let C(V'") denote the complex Clifford algebra of the real
inner product space, V". Related to an orthonormal basis, {e; }, C (V") is defined by
the relations

eje;j +eje; = —28ij. 2.1

To avoid ambiguity, we denote by ¢ (e; ) the element of C (V") corresponding to e;. We
consider the group Spin¢, as a multiplicative subgroup of the group of units of C(V'").
For the definition and the properties of the group Spiny, see [22, Appendix D].
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As a vector space,

C(V") ~ A(V"). (2.2)
The Clifford multiplication on A(V") is exterior multiplication minus interior
multiplication. ~ The elements c(ey) = c(e;)---clei;), I = {i1,...,ij} C

{1,....n}, iy < --- < ij, form a basis for C(V"). Put [I| = j. The subspace
Co(V™), C1 (V") spanned by those c(e;) with |I| even (resp. odd) give C (V") the
structure of a Z,-graded algebra.

Forn = 2k, even, up to isomorphism, C (V") has a unique irreducible module, S;,,
which has dimension 2% and is Z,-graded. In fact, C(V3¥) ~ End(Sy). If V is
oriented, the element

T = (V=D¥c(er) - clexw) (2.3)

is independent of the choice {e; } and satisfies
2 =1. (2.4)

Set Sy, = {s € S, : ts = +s}. We write Tr,[-] for the supertrace of C(V2¥)
on S, defined as (1.7).

If n = 2k — 1 is odd, C(V") has two inequivalent irreducible modules, each of
dimension 25—1, For arbitrary n,

c(ej) = c(ej)c(entr) (2.5)

defines an isomorphism, C(V") ~ Co(V" & R). Thus, for n odd, we can regard
S+t 41 for V" @ R as (inequivalent) modules over C(V"). However, they are
equivalent when restricted to Spin¢. For V2~ oriented, the notation Tr{ -] refers to
the representation Sy 5.

By [10, Lemma 1.22], if n = 2k is even, then

B (—/=D)k2k if 1 ={1,...,2k};
Trs[c(er)] = {0, if I #{1,...,2k}. 20

Ifn =2k —1isoddand |/| > 1,

(—/—=DF2k=1 0 if T ={1,..., 2k — 1};

Q2.7)
0, if 1 #{1,...,2k— 1}

Tr[c(er)] = g

By (2.6) and (2.7), for n odd, the trace Tr behaves on the odd elements of C (V")
in exactly the same way as the supertrace Trg on the even elements of C (V") for n
even, i.e. we must saturate all the elements c(e;), ..., c(e,) to get a non-zero trace
or supertrace. It will be of utmost importance in the computations of the local index
in Section 7. We set

Cyn = (28)

- Trs[c(e1)---c(en)], if niseven;
Tr[c(e1)---c(en)], ifnisodd.
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Let W™ be another real inner product space with orthonormal basis { f),}. Then
as Clifford algebras,

CV"@ W™ ~C(VHRC(W™). (2.9)
By (2.6), (2.7) and (2.8), we have

- 2/ —=1¢Cyn - Cwm, if n, m are both odd;
Cyvngwm = 4 ) (2.10)
Cyn -Cwm, otherwise.

Finally, we note the effect of scaling the inner product (-, -) on V. Fix any inner
product, {-,-) and let C;(V) be the Clifford algebra associated to =1 (-,-). Then the
map ¢t'/2V — V provides a natural isomorphism C; (V) ~ C (V). It also provides a
natural isomorphism between the orthonormal frames {r'/2¢;} for t='(-,-) and {e; }
for (-, -). Thus, the spinor S for (-, -) is also an irreducible module for C;(V) via the
above isomorphism. In the sequel, if Z is a Riemannian Spin® manifold, we will
always assume that the space of spinors has been chosen independent of the scaling
parameter of the metric.

2.2. Bismut superconnection and Lichnerowicz formula. Let 7 : W — S be
a smooth submersion of smooth manifolds with closed oriented fiber Z, with
dimZ =n. Let TZ = T W/S be the relative tangent bundle to the fibers Z.

Let TH W be a horizontal subbundle of 7 W such that

TW=THiW & TZ. (2.11)
The splitting (2.11) gives an identification
THW =~ n*TS. (2.12)
Let PTZ be the projection
PT2.Tw=TiWwWeaeTZ>TZ. (2.13)

Letg7Z, ¢TS be Riemannian metricson 7 Z, TS. WeequipTW = THWaTZ
with the Riemannian metric

Let VIW VTS be the Levi-Civita connections on (W, g7 %), (S, g7%). Set
vlz = pTzyTWprz, (2.15)

Then VTZ is a Euclidean connection on TZ. Let °VIW be the connection on
TW =THW @ T Z defined by

OyTW — 7*vTS g yTZ, (2.16)
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Then °VTW preserves the metric g7% in (2.14). Set
§=vIW_oyTw, (2.17)

Then S is a 1-form on W with values in antisymmetric elements of End(T W).
Let T be the torsion of VIV, By [6, Theorem 1.9], we know that VTZ the
torsion tensor 7 and the (3, 0) tensor (S(-)-, ) only depend on (TH W, gT%), where
() ="

Let C(T Z) be the Clifford algebra bundle of (7 Z, g7%), whose fiber at x € W
is the Clifford algebra C(TZ) of the Euclidean space (TxZ,g7*%). We make
the assumption that 7Z has a Spin¢ structure. Then there exists a complex line
bundle Lz over W such that w,(TZ) = ¢1(Lz) mod (2). Let S(TZ, Lz) be the
fundamental complex spinor bundle for (T'Z, Lz), which has a smooth action of
C(T Z) (cf. [22, Appendix D.9]). Locally, the spinor S(T'Z, Lz) may be written as

S(TZ,Lz)=S8(TZ)® LY?, (2.18)

where S(T Z) is the fundamental spinor bundle for the (possibly non-existent) spin
structure on T Z, and LIZ/ 2 is the (possibly non-existent) square root of L 7. Let hlz
be the Hermitian metric on L z and VZZ be the Hermitian connection on (Lz, hLZ).
Let 757 be the Hermitian metric on S(T Z, L z) induced by g7 4 and 1% and V57 be
the connection on S(T'Z, Lz) induced by V7 and V£Z. Then V7 is a Hermitian
connection on (S(TZ, Lz), h%Z). Moreover, it is a Clifford connection associated
to VIZ je.foranyU e TW,V € €*(W,TZ),

[V2.cn] = (V5#V). (2.19)

If n = dim Z is even, the spinor S(T'Z, Lz) is Z,-graded and the action of TZ
exchanges the Z,-grading. Let (E, h¥) be a Hermitian vector bundle over W, and V£
a Hermitian connection on (E, h%). Set

VSz®E — Sz @14+ 1@ VE. (2.20)

Then VSZ®E 5 a Hermitian connection on (S(TZ,Lz) ® E,hSZ ® hE).
Let {e;}, {f»} be local orthonormal frames of TZ, T'S and {e'}, { f?} be the
dual. Let DZ be the fiberwise Dirac operator

D? = c(e) V7%, (2.21)

For b € S, let £z be the set of smooth sections over Zp of S(TZ,Lz) ® E.
As in [6], we will regard &z as an infinite dimensional fiber bundle over S.

Let dvz be the Riemannian volume element in the fiber Z. For any b € S,
51,82 € 8z, we can define the scalar product

(s1,82)0 =[Z (s1(x), s2(x))dvz. (2.22)
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This scalar product could be naturally extended on A(T*S)®E . We still denote it
by (-, -)o.

IfU € TS,let U¥ € THW be its horizontal lift in T# W so that 7, U® = U.
Forany U € TS,s € €°(S5,62) = €*°(W,S8(TZ,Lz) ® E), we set

Viis = Vi PEs. (2.23)

Then V&Z is a connection on &z, but need not preserve the scalar product (-, -)o
in (2.22). By [12, Proposition 1.4], for U € T'S, the connection

1
VEZ = V7 - 5 (Stenei. UH) (2.24)
preserves the scalar product (-, -)o.
If Uy, Us € €°(S, TS), by [6, (1.30)], we have

TWE, Uy = -PT2[UE, U). (2.25)
We denote by
e(T) = %c (T L) fPA A (2.26)
By [6, (3.18)], the Bismut superconnection
B €®(S,A(T*S)RE2) — €X(S,A(T*S)RE2) (2.27)
is defined by
B = D% 4+ Véz¥ _ %C(T). (2.28)

In fact, the Bismut superconnection only depends on the quadruple
(THwW,gT% viz vE)

In the sequel, if A(U) is any 0-order operator depending linearly on U € TW,
we define the operator

(VSZ®F 4 A(er))® (2.29)

as follows: if {e; (x)}_, is any (locally defined) smooth orthonormal frame of T'Z,
then

(VE2®F + A(ey))’
n

n
E 2 E
=Y (VOASE + Alei(x))” - V;?f] V7 " A(Z VZ;Zei). (2.30)
i=1 i=1
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Let RTZ, RLz, RE and RSZ®E be the curvatures of VT4, VLz VE and
VSz®E respectively. By (2.18), we have

1 1
R5Z®E = Z(RTZei,ej)c(ei)c(ej) + ERLZ + RE. 2.31)

Fort > 0, we denote §; the operator on A’ (T*S)®E&z by multiplying differential
forms by 17%/2. Set

B; :=~/t§, 0Bos (2.32)
Then from (2.28) and (2.32), we get
1
B; = V1DX 4+ VEZ¥ _ _—_(T). (2.33)

Vi

Let KZ be the scalar curvature of the fibers (7Z,g7%). We have the Bismut’s
Lichnerowicz formula (see [4, Theorem 10.17], [6, Theorem 3.5]),

B? = — (VIVEZOE 4 (S(ees. [ eles) £7n
A S@ LI A )
1
L(GREZ + RE (e epetenete))

VI(SRE 4 RE)Ger, ff)cten 2 (2.34)

t
_K%
+4 +

1/1
+ 5 (SR + RE)SS SIS A LA
In particular, B? is a 2-order elliptic differential operator along the fiber Z. Let
exp(—B?) be the family of heat operators associated to the fiberwise elliptic
operator Bt2 in (2.34). From [4, Theorem 9.50], we know that exp(—Btz) is a
smooth family of smoothing operators.

2.3. Compact Lie group action and equivariant family local index theorem. Let
G be a compact Lie group which acts on W such that forany g € G, mog = 7. So
it acts trivially on S. We assume that the action of G preserves the splitting (2.11),
the Spin® structure of 7Z and g74, h'z VLZ are G-invariant. We assume that E
is a G -equivariant complex vector bundle and h €, VE are G-invariant. So the action
of G commutes with the Bismut superconnection B in (2.28).
Take g € G and set
Wé ={xeW:gx=x} (2.35)

Then W¥ is a submanifold of W and = : W8 — § is a fiber bundle with closed
fiber Z8. Let N denote the normal bundle of W& in W, then N = TZ/TZS.
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Since g preserves the Spin® structure, it preserves the orientation of TZ. So the
normal bundle N is even dimensional. We denote the differential of g by dg which
gives a bundle isometry dg : N — N. Since g lies in a compact abelian Lie group,
we know that there is an orthonormal decomposition of smooth vector bundles on W&

N = N(T[) (&) EBO<0<71N(9)’ (236)

where dg|n(») = —id and for each 6, 0 < 6 < 7, N(0) is a complex vector bundle
on which dg acts by multiplication by e V=10 anddim N () iseven. By the following

proposition, Z& and N are all naturally oriented. This proposition is a modification
of [4, Theorem 6.14].

Proposition 2.1. Let Z be a closed oriented manifold and G be a compact Lie group.
If TZ has a G-equivariant Spin® structure, then for each g € G, Z8 is naturally
oriented.

Proof. We fix a connected component of Z€ and assume that the dimension of the
normal bundle N of this connected component is 2k. By (2.36), on N, the matrix
of g has diagonal blocks

cos(fj) —sin(6;) . '
(sin(Gj) cos(6;) )’ J=12,....k, 0<6; <m. (2.37)

By the definition of the Spin® group, the action of g on the spinor is given by

k
g =a- [[(cos(8;/2) + sin(6; /2)c(e2j-1)c(e2))). (2.38)

Jj=1

where @ € C, |a| = 1. Leto : C(N) — A(N) be the isomorphism in (2.2). For
B € A(N), let [B]ok denote the degree 2k part of B. Since o and 6; are locally
constant on Z¥, the term

k
a Yo ()] = ( 1_[ sin(@_,-/Z))e1 AN ek (2.39)
j=1

gives a non-zero section of A2¥(N). Then it gives a canonical orientation of N. The
canonical orientation of Z¢ can be obtained by the orientations of Z and N.
The proof of Proposition 2.1 is complete. O

VTZ

Since g4 is G-invariant, the connection preserves the decomposition of

smooth vector bundles on W&

TZ|\ws =TZ% ® Bo<p< N(0). (2.40)
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Let VTZ2% VN and VN®) pe the corresponding induced connections on TZ8, N
and N(0), and let RT2%, RN and RV® be the corresponding curvatures. Here we
consider N(6) as a real vector bundle. We have the decompositions on W&

VIZ|ye = VIZ5 g VN VN = @op,, VNV, (2.41)
and

R™|we = RT?* @ RN, RM = ®ggRV®. (2.42)

For 0 < 6 < m, we write

~ . =1
Ag (N(Q), VN(@)) — (( /_1)%d1mR N(@)det% (1 —gexp (2_RN(9)
v/

(2.43)
Set
V=1 prZ*
A(TZ8, V%) = det? ( 4 )
sinh (‘{‘—J_?RTZg)
Ag(TZ.VT%) = A(TZ8 VT2%) . T] As(N(O).VVN®) e @**(w,C).

0<f<m

(2.44)

Note that for any Euclidean connection V on (7'Z, gT%), we can also define the
characteristic form Ag(TZ, V) as in (2.44). Let A,(TZ) € H*(W#,C) denote

the cohomology class of Kg (TZ,V). If E is Z,-graded, we assume that the G-action
and VE preserve the Z,-grading. Set

Tr |:g exp (‘é—J_?RE |Wg)], if E is not Z,-graded;
che (E,VE) = (2.45)
Tr [g exp (‘é—?RE |Wg)i|, if E is Z,-graded.

Let chg(E) € H?*(W#,C) denote the cohomology class of chg(E,VE). By
Chern—Weil theory [35], the classes Kg (T Z) and chg (E) are independent of V and
VE . Furthermore, if S is compact, the equivariant Chern character in (2.45) descends
to a ring homomorphism

chg : KQ(W$) — H?*(W#,C), (2.46)

where K g (W) is the equivariant K° group of W&,
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Assume that 7 is even. If S is compact, the index bundle ind(D %) is an element
of K g (S). Under the equivariant Chern character map (2.46), for any g € G, we
have

chg (ind(D%)) € H**(S,C). (2.47)

Since the fiber is even-dimensional, the spinor S(T'Z, Lz) is Z,-graded, i.e.,
S(TZ,Lz) = Se(TZ,Lz) ® S_(TZ,Lz). Note that if dimker DZ is locally
constant,

ind(D?) = ker DZ — ker DZ € K2(S), (2.48)

where DjZ: is the restriction of DZ on S+.(TZ,Lz) ® E.

Let &z, 4+ be the set of smooth sections of S+(TZ,Lz) ® E over W. Then
&z = &z.4+ @ &z, is a Zy-graded infinite dimensional vector bundle over S
and A(T*S)® End(E7) is also Z,-graded. We extend Tr, Tr, to the trace class
element A € A(T*S)® End(§7), which take values in A(T*S). We use the
convention that if w € A(T*S),

TrlwA] = 0 Tr[A], Trg[wA] = o Trs[A]. (2.49)

Leti : S — S! x S be a G-equivariant inclusion map. It is well known that if
the G-action on S is trivial,

KG(S) ~ker (i* : KG(S' x §) > Kg(S)). (2.50)

By (2.50), for x € Ké (S), we can regard x as an element x’ in Kg (S' x S). The
odd equivariant Chern character map

chg : K&(S) — H*(S,C) (2.51)
is defined by
chg (x) = [ / chg(x’):| e H(S, ). (2.52)
S1

Here we use the sign convention (1.10) in this integration.
If n is odd, the fibrewise Dirac operator DZ is a family of equivariant self-adjoint
Fredholm operators. Set

DZ _ IcosO + ~/—1D%sin6, if0<6 <mx; (2.53)
o= (cos@ + +/—1sinb)I, ifr <0 <2n ’
(see [3,(3.3)]). If S is compact, then ind({ D }) € K2 (S'xS). Since the restriction
of DGZ to {0} x S is trivial, so it can be regarded as an element of K, (S). From [3]

and [31], the definition of the index of DZ is

ind(D%) := ind({DZ}) € K§(S). (2.54)
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When the fiber is odd dimensional, the spinor S(T'Z, L z) is not Z,-graded. For a
trace class element A € A(T*S) ® End(&E2), we also use the convention as in (2.49)
thatif w € A(T*S),

TriwA] = o Tr[A]. (2.55)

It is compatible with the sign convention in (1.10).
For a € Q/(S), set

N o
-, if i is even;
¥s(a) = (z”ﬁ ) A (2.56)
\/LE (2n\1/jl> 2 -o, ifi is odd.
1/2

Comparing with (2.45), for the locally defined line bundle L, ~, we write
/ V-1
che (LY2 VEZ’) i= g -exp (4—RLZ|Wg) € Q2 (WE,C) (2.57)
54

and chg (le/z) € H?**(W#,C) as the corresponding cohomology class. Denote by
s+ H*(WE&,C) — H*(S,C) the integration along the fiber Z¢ with the sign
convention (1.10). Recall that the trace operator Tr is defined in (1.8). We give the
equivariant family local index theorem as follows.

Theorem 2.2. Foranyt > 0 and g € G, the differential form wsﬁ[g exp(—B?)] €
Q*(S) is closed and its cohomology class is independent of t. Ast — 0,

~ ~ /
lim v Trlg exp(— B7)] = / Ag(TZ,VTZ) A chg (LY? VEZ) A chy(E,VE).
t— VA3

(2.58)
If S is compact, the differential form Vs Tt[g exp(—B2)] represents chg (ind(D%))
in(2.47) or (2.52). In H*(S, C),

chy (ind(D%)) = 7, {Kg(TZ) che (LY?) chg(E)} . (2.59)

Proof. If n is even, the proof is the same as that of [24, Theorem 1.1]. If n is odd,
the proof follows from [13, Theorem 2.10] and the even case. ]

2.4. Equivariant eta form. In this subsection, we define the equivariant eta form
when dimker DZ is locally constant. We will proceed as in the proof of [4,
Theorem 10.32], as follows.

Let S = R4+ x S and pr : S — S be the projection. We consider the bundle
ToW = Ry xW — S together with the canonical projection Pr : W — W. Set
THW = T(Ry) ® Pr*(THW). Then THW is a horizontal subbundle of 7W
as in (2.11). We fix the vertical metric g74 which restricts to 1~ 'g7% over

1Y x W. Let C(TZ) be the Clifford algebra bundle associated to 7Z. Then
{t} g g
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S(TZ,Pr*Lyz) := Pr*S(TAZ, L) is the spinor of C (T Z) by the assumption in the
end of Section 2.1. Let htz = Pr*hlz and VZZ = Pr*VLz, Let E = Pr*E,
hE = Pr*hE and VE = Pr*VE. We naturally extend the G-actions to this case
such that the G- action is 1dent1ty on R4+ x §. We will mark the objects associated

to (THW 372, hlz pE ylz VE) by ™
For t € R, the fiberwise Dirac operator DZ on {t} x Z is t'/2DZ. By (2.24),

Vézu = yézu _ ” dl Since B; in (2.33) is just the Bismut superconnection
associated to (THW t_lgTZ viz vE), from (2 28) and (2.33), the Bismut

superconnection associated to (7 # W, glZ, VLZ VE ) is

~ 0 n
Bl¢.p) = Be +dt A Fri Edt, (2.60)

for (1,b) € S. Then B2 l¢py = B} +dt A aB’ . Note that the extended G-action

commutes with the Bismut superconnection B.
Ifa € A(T*(R4+ x S)), we can expand « in the form

a=dt Nag+ay, ag,a1 € AT*S). (2.61)

Set
[@]? = . (2.62)

For any g € G, set
VsTi[gexp(—B2)] = dt A y(1) + r(0). (2.63)
Then from Duhamel’s principle, (2.56) and (2.60), we have

~ ~5 dt
y(t) = {ysTrg exp(~ B2}
1 OB, 2 } o
—— s It —exp(—B;7) |, ifniseven;
1 0B
= s TrEen [ga_zt exp(—Btz)], if n is odd
and "
r(t) = ¥sTr[g exp(—B7)]. (2.65)
For u € (0, +00), set B, = ﬁ8u§8;1. Similarly as in (2.63), we decompose
YsTrigexp(=B2)] = dt A y(u.t) + r(u.1). (2.66)
Take t = 1. Then
0By By,
=u . (2.67)

ot |,—1 du
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So from (2.64), (2.65) and (2.67), we have

y(u,l) =uywm), ru,l1)=r(). (2.68)

From the asymptotic expansion of the heat kernel, when u — 0, there exist
a;(t) € A(T*(Ry4 x S)),i € N, such that

400
wsﬁ[g exp(—ﬁi)] ~ Zai (0)u'’?. (2.69)
i=0

By Theorem 2.2, r(0,¢) exists and ao(¢t) = r(0,¢). Take t = 1 in (2.69). By
Theorem 2.2, (2.65) and (2.68), we have

r(0) :/ Ae(TZ.VT7) Achg (LY2 VEL ) Achg (E.VE).  (2.70)
ze

From (2.66) and (2.68), we have
+o0 .
dit Auy() +r@) —r(0) ~ Y a;(Du'l?, (2.71)
i=1

that is, when u — 0,
yu) = Ow="?). (2.72)
Assume that dimker DZ is locally constant, then ker DZ forms a vector bundle

over S. Let PkrD? . g 7z — ker DZ be the orthogonal projection with respect to
the scalar product in (2.22). Let

VkerDZ — PkerDZVg,quel'DZ (2.73)

be a connection on the vector bundle ker DZ. For b € S, t € (0, +00),
ker(t'/2D#) = ker DZ. So ker DZ forms a vector bundle over Ry x S. As

. ) > ~
in (2.73), we can define the connection V*'?“ on the vector bundle ker DZ. If n
is even, ker DZ and ker DZ are Z.,-graded. Since the curvature of V&M ig trivial

along R, the equivariant Chern character chg (ker DZ, Vker D Z) does not involve dt.
From [4, Theorem 9.19], which is also valid in odd dimensional fiber case, we
know that when u — +o0,

A z _ e
ysTig exp(-B3)] = oD (ker DEVEET) + 0GR, ifnisevens (5 9,
! Ow=1?), if n is odd,
and
h. (k DZ VkerDZ ifni .
r(00) = lim r(u, 1) = {eker D% ). ifnis even; (2.75)
U—>00 0, if n is odd.
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Take ¢t = 1 in (2.74). From (2.66), (2.68) and (2.75) we have

dt Auy(u) + r(u) —r(oo) = O™ ?). (2.76)
By (2.65), (2.74) and (2.76), when u — 400,
y(u) = 0w™3?). (2.77)

Definition 2.3. Assume that dimker DZ is locally constant on S. For any g € G,
the equivariant eta form of Bismut—Cheeger 7, (TH W, gTZ, htz hE viz, VE) €
Q*(S) is defined by

o0
g (THW,gT% htz hE VE VE) = —[ y(t)dt. (2.78)
0

Note that by (2.72) and (2.77), the integral on the right hand side of (2.78) is
convergent.

When g = 1, T Z is Spin, this equivariant eta form is just the usual eta form of
Bismut—Cheeger defined in [9] and [20]. Note that the equivariant eta form here was
also defined in [33] when 7 Z is Spin and # is odd.

From [6], we know that 'ff[g exp(—B?)] is a closed differential form. So

(dt A a% +dS )wsﬁ[g exp(—B2)] =0, dSysTrlgexp(—=B)] =0. (2.79)

By (2.65), (2.63) and (2.79), we have
ar(t)
or
Then from (2.65), (2.70), (2.80) and Definition 2.3, we have

dSy(t) =

(2.80)

dsﬁg(THW, gTZ,]’lLZ,hE,VLZ, vE)
+o00
— —f I ® 4t = 1 (0) - r(co)
0

o1
/ Ag(TZ,VTZ) A chg(LY? VEZ") A chg(E,VE)
zZe

z .
— chg (ker D%, ykerD ), ifniseven;

/ Ag(TZ.VTZ) Achg (LY? VEZ) Achg (E.VE), i nis odd.
VA
2.81)

Remark 2.4. If we fix the vertical metric g7 ¢ which restricts tot ~2g 7% over {t} x W
in the beginning of this subsection, as in (2.60), we have

~ ad n
B/|(t,b) = B + dt A 5 - Zdl, (2.82)
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and

V(1) = {¥sTrlg exp(— B>}
1 /2

T 0B
YsTrs | g 9t

exp(—Btzz):|, n is even;

2417 (2.83)
1 B
_ﬁws Treven [g 8;2 exp(—Btz2 ] n is odd.
After changing the variable, we still have
o
e (THW, gTZ nt hE vL vE) .= —/ y'(1)dt. (2.84)
0

Remark 2.5. The Spin® condition used here is just to get an explicit local index
representative in Theorem 2.2. In fact, Definition 2.3 can be extended to equivariant
Clifford module case.

2.5. Anomaly formula. From the construction in Section 2.4, the equivariant eta
form only depends on the sextuple (THW,gTZ,hLZ,hE,VLZ, VE). We now
describe how 7, (THW, g7%, htz hE V©Ez VE) depends on its arguments. Let
(THW,gTZ plz hE vLz VEyand(T'HW,g'TZ h'lz W'E V'lz V'E)betwo
sextuples of geometric data. We will mark the objects associated to the second
sextuple by ’.

First, a horizontal subbundle on W is simply a splitting of the exact sequence
0—>TZ—>TW —a*TS — 0. (2.85)

As the space of the splitting map is affine and G is compact, it follows that any pair of
equivariant horizontal subbundles can be connected by a smooth path of equivariant
horizontal distributions. Let s € [0, 1] parametrize a smooth path {T.H W'} s€[0,1]
such that THW = THW and THW = T'HW. Similarly, let g7%, h¥% and hE be
the G-invariant metrics on T Z, Lz and E, depending smoothly on s € [0, 1], which
coincide with g7%, htZ and hE at s = 0 and with g 7%, 'Lz and h'E at s = 1.
Let V and V' be equivariant Euclidean connections on (TZ, g7%) and (T Z, g'T%).
By the same reason, we can choose G-invariant connections Vg, VSL Z and VSE onTZ,
Lz and E preserving gsTZ, hSLZ and hf suchthat Vo = V., V; =V, VOLZ =viz,
V7 =V1lz VE =VE VE=VE

Let S = [0,1] x S, W= [0, 1] x W. From the construction above, we can get
a family of equivariant geometric data (THI/IN/, gTZ, FVV, hE VE plz, VLZ) with
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respect to 7 : w —>~ASJ. Let DZ be the fiberwise Dirac operator associated to

~

(THW,gTZ vlz VE),

Assumption 2.6. We assume that there exists such a smooth path such that ker D%

is locally constant.

Under Assumption 2.6, from (2.73), we can define the connection

Vker DZ

on

ker DZ. From [28, Theorem B.5.4], modulo exact forms, the Chern—Simons forms

~ 1
A (TZ,V, V)= —/ [Ag(TZ, V)] ¥ ds,
0

1
~ /2 1/ ~ =1/
Che(LY2 VLY V'LZ7) = —/ [chy (LY2, VEZ7) 45 4,
0

1 ~
chg (E,VE,V'E) = —/ [che (E, VE)]¥ ds,
0
1 — ~
che (ker DZ, VkerD” y'kerD?) / [chg (ker DZ, V¥ D7) ds
0

do not depend on the choices of the objects with ™. Moreover,

dA(TZ. V. V') =A,(TZ, V') —Ag(TZ.V),
~ / ry 1/ rr 1/ /
dchg (LY? VEZ™ V'EZT) = chg (LY? V'E27) — chg (LY2. VEZ),
dchg (E,VE V'E) = ch, (E,V'E) —ch, (E,VF),
dchg (ker DZ,VkrD? y'kerD%y — o (ker DZ, V' ke D7)
— chg (ker DZ, VkerDZ).
Now we can obtain the anomaly formula for the equivariant eta forms.

Theorem 2.7. Assume that Assumption 2.6 holds.

(i) When n is odd, modulo exact forms on S, we have

(2.86)

(2.87)

f]g(T/HW,g/TZ,h/LZ,h/E,V/LZ,V,E) _ ﬁg(THW, gTZ,hLZ,hE,VLZ,VE)

1/2

:[ A(TZ,VTZ N'TZ) A chy (LY, VEZ7) Achg (E, VE)
Zg

/E).

+/ Ae(TZ,V'TZ) A chg (LY VEZ V') A chy (E, VE)
VA
-~ ’ ’ / ~
+/ Ae(TZ,V'TZ) pchg (LY V'EZ") A Chg (B, VE.V
VA

(2.88)
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(ii) When n is even, modulo exact forms on S, we have

f]g(T/HW, g/TZ,h/LZ,]’l/E, V/LZ, V/E) _ ﬁg(THW, gTZ,hLZ,hE, VLZ, vE)

~

=< ’ /
- / Ag(TZ,VTZ V'TZ) A chg (LY? VEZ") A chg (E, VE)
VA

+/ Ag(TZ.V'TZ) A chg (LY VEZ" VL) A chy (E, VE)

VA

+/ Ag(TZ.V'TZ) A chg(LY2 V'EZ") A chyg (E.VE V'E)
VA

_ CTlg(kerDZ, VkerDZ’ V’kerDZ)'

(2.89)

Proof. Let B be the Bismut superconnection associated to (77 I/I~/,'§/TZ, htz viz,

VE). From (2.60),

=~ ~ 3 n
B =8B dt N — — —dt 2.90
R PR 2.90)

is the Bismut superconnection associated to the fibration (0, +00) x [0, 1] x W —
(0, +00) x [0, 1] x S. We decompose

wgﬁ[g exp(—§ D =dt Ay +dsari+dt nds Ary+ 13, 2.91)

where y, r1, r2, r3 do not contain dt neither ds and by (2.65),

~ ~5.119

ri(t.5) = {vsTrlg exp(=BDI™| . (2.92)

From (2.91) and Definition 2.3, we have

[e.e]
g (THW, gT2 ptz pE vi vE) .= —/ y(t,s)dt. (2.93)
0
Since (dt A % +ds A a% +dS)ysTrlg exp(—§ 2)] = 0, we have

0 ad

W aSy,. (2.94)

ds ot
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From (2.93), we have
ﬁg(THW,gTZ,hLZ,hE, VLZ,VE) _ ﬁg(T/HW,g/TZ,h/LZ,h/E, V/LZ, V/E)

+oo +o00 1 P
- /0 (e 1) — y(t.0))di = /0 [o Lyt sydsar

1 p+4oo 9
= / / —y(t,s)dtds
0 0 8s

1 +o00 0 1 +o00
=/ / —ri(t,s)dtds +dS/ / ra(t, s)dtds
o Jo ot o Jo

1 1 ptoo
= —/0 (r1(0,5) — ri(o0, 5))ds + dS/O /0 ro(t,s)dtds.

The commutative property of the integrals in the above formula is granted by the
uniformness of (2.72) and (2.77) for s € [0, 1]. _

Let VT2 be the Euclidean connection associated to (77 W, gT%) asin (2.15).
By (2.70), (2.75) and (2.92), we have

(2.95)

~ —~ —\ds
(0, 5) = { / A (TZ VTZ) A chg (LY VEZ") A chg (E, VE)}
zs {s}xS
(2.96)
and
Z kerD; ds . : .
r1(00.s) = {chy(ker D*,V )% lisyxs, if nis even; (2.97)
0, if n is odd.
Then Theorem 2.7 follows from (2.86), (2.95), (2.96) and (2.97).
The proof of Theorem 2.7 is complete. 0

3. Functoriality of equivariant eta forms

In this section, we state our main result.

3.1. Functoriality of equivariant eta forms. Let W, V| S be smooth manifolds.
Letny : W — V, 7, : V — S be smooth fibrations with closed oriented fibers X, Y,
with dimX = n —m, dimY = m. Then n3 = n, oy : W — § is a smooth
fibration with closed oriented fiber Z with dim Z = n. Then we have the diagram
of smooth fibrations:

X—7Z — W

LN

Y — ¥V —8.
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Let TX, TY, T Z be the relative tangent bundles. We assume that 77X and TY
have the Spin® structures with complex line bundles Ly and Ly respectively. Let

Lz =n{(Ly)® Lx. 3.1

Then T Z have a Spin® structure with complex line bundle L z. Recall the notations
in Section 2, we take quadruples (TlH w, gTX, hix vLix), (T2H V, gTY, iy vir)
and (T3H W, gTZ L hiz viz ) with respect to fibrations 71, 7, and 73 respectively.
Then we can define connections VX, VTY VTZ fundamental spinors S(T'X, Ly),
S(TY,Ly),S(TZ, Lz), metrics h°X, h®Y | h®Z and connections VX | VY VSZ
as in Section 2.2. If U € TS, U' € TV, let U;H e THW, UF ¢ THV,
U3H € T3HW be the horizontal lifts of U’, U, U, so that nl,*(U{H) = U/,
(U = U, 3, (UfT) = U.
SetTHZ = TIH W N TZ. Then we have the splitting of smooth vector bundles
over W,
TZ=THZ o TX, (3.2)

and
THZ ~7}TY. (3.3)
Let °V7Z be the connection on TZ = TH Z @ TX defined by

OvTZ — n*vTY @ VTX (34)

as in (2.16). Set
OVLlz = g¥vivr @ 1 +1@ VExX, (3.5)

Let (E, VE) be a Hermitian vector bundle with Hermitian connection V. For
v eV, let Ex,, be the set of smooth sections over X, of S(TX,Ly) ® E. We
still regard &y as an infinite dimensional fiber bundle over V. For any v € V,
51,82 € Ex.y, as in (2.22), we define the scalar product

(s1.52)6x, = /X (51(6). 52(0)) x dvy. (3.6)

where (-,-)x = hSX®E(..). Let {e;} be a local orthonormal frame of (TX, g7%).
Asin (2.23) and (2.24), for U € TV, we set

1
VEX" = vgj,gw — 5 (Si(ener. UT). 3.7)
Then VEX ¥ preserves the scalar product (-, -)g Y
Let DX and DZ be the fiberwise Dirac operators associated to (T{HW, gTX,
Vix hE VE)and (T3H w, gTZ, VLiz hE VE). We assume that ker DX is locally
constant. Then ker DX forms a vector bundle over V. Let PXrP” : g x — ker DX
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be the orthonomal projection with respect to the scalar product (3.6). Let h*er P * be
the L? metric induced by 75X ®E and

VkerDX - Pkeerv8x,querDX (3 8)
Then Vker DX preserves the metric % P ¥ Let DY be the Dirac operator associated
to (TZH v, gTY’ VSY ®ker DX).
Assumption 3.1. We assume that the geometric data
(THW, g™ ntx vEX hE VE) and (TJ1V, g™ hEy VEY)

satisfy the conditions that ker D¥ is locally constant and ker DY = 0.

Let G be a compact Lie group which acts on W such that for any g € G,
g-m = m - gand w3 - g = mw3. Then we know that G acts as identity on S. We
assume that the action of G preserves the Spin€ structures of TX, TY, TZ and the
quadruples

(TIHW,gTX,]’lLX,VLX), (TZHV,gTY,]’lLY,VLY),
(Tflw,gT% nltz vtz) and (E,hE, VE)

are G-invariant.
On the other hand, we take another equivariant horizontal subbundle T3/H W C
T W, which is complement of 7' Z, such that

TAw c THwW. (3.9)
Let g/TZ be another metric on 7'Z such that
g/TZ — nikgTY @gTX. (3.10)

Let V'7Z be the connection associated to (T;H W, g'TZ) asin (2.15).
Let /(T Z, Lz) be the fundamental spinor associated to (g 74, Lz). Then

S(TZ.Lz) ~nfS(TY.Ly) ® S(TX, Ly). (3.11)
Set
Wtz .= gty @ plx, (3.12)
Let
gr 2 =nig™ @ T2g™X. (3.13)

We denote the Clifford algebra bundle of 7'Z with respect to g/TTZ by Cr(T Z).
Let { f,} be alocal orthonormal frame of (TY, g7Y). Then {Te;} U { pfll} is a local

orthonormal frame of (7' Z, g/TTZ ). We define a Clifford algebra isomorphism

Gr: Cr(TZ) — C(TZ) (3.14)
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by

Grc(ff)) =c(ff). Gricr(Te)) = c(e). (3.15)

Under this isomorphism, we can also consider S’(T'Z, Lz) in (3.11) as a spinor
associated to (T Z, g/TTZ ). Let D% be the fiberwise Dirac operator associated to
(TS'H W, g’TTZ’ oyLz pE VE),

Comparing with [20, Theorem 1.5], we can get the following lemma.

Lemma 3.2. If Assumption 3.1 holds, there exists To > 1, such that when T > Ty,
ker DZ = 0.

We will give another proof of this lemma in Section 5.3.
Now we state an analogue of Assumption 2.6 as follows.

Assumption 3.3. We assume that there exist an equivariant horizontal subbundle
T;H W C T W satisfying (3.9) and a smooth path constructed as the argument before
Assumption 2.6, connecting the quadruples

(T3HW,gTZ,hLZ, VLZ) and (T:,:HW, g/T](;Z,h/LZ7OVLZ)’

such that ker(DE) = 0.

Forany g € G, let TH(W|ys) = TEW|ys N T(W|y«) be the equivariant
horizontal subbundle of T'(W |y <). We state our main result as follows.

Theorem 3.4. If Assumption 3.1 and 3.3 hold, for any g € G, we have the following
identity in Q*(S)/dS Q*(S),
ﬁg(T?,HW’ gTZ’ l’lLZ, VLZ, hE, VE)
_ ﬁg(TzH V. gTY’ hLY,hkerDX’ VLy’ VkerDX)
+ / Ag(TY,VTY) A chg (L2 VEY)
Ye
N 7’,“]g(’I-VIFI(VV|Vg)v gTX? hLX’ VLXa hE’ VE)

= /
. /Zg Ag(TZ,VTZ OVTZ) p cho(LY? VEZ") A chg(E.VE)

_/ Kg(TZv ovTZy /\alg(LIZ/Z, VLIZ/Z, OVLIZ/Z) /\chg(E,VE),
ze
(3.16)

Note that since one restricts to the fixed point set V¢, the equivariant eta form
e (TEW|ve), g7, hEx VEX hE VE)is well defined.
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3.2. Simplifying assumptions. By anomaly formula Theorem 2.7, we only need
to prove Theorem 3.4 when (T3H w, gTZ, hiz, VLZ)=(T3H/W, g/Tzz, h/LZ, V/LZ).
Therefore, in the following sections, we assume that

W cTiw, ¢ =g enie™, W7 =aihtr @htx,

ViZ = i vly @ 1 + 1@ VEX, G1D

Let .
g’ =mig’ & e (3.18)

and D% be the fiberwise Dirac operator associated to (T3H W, g%z ,VLiz pE VE),
We assume that ker DX is locally constant, ker DY = 0 and for any T > 1,
ker DZ = 0.

4. Proof of Theorem 3.4

In this section, we use the assumptions and the notations in Section 3.2.

This Section is organized as follows. In Section 4.1, we introduce a 1-form on
R4+ x R4. In Section 4.2, we state some intermediate results which we need for the
proof of Theorem 3.4, whose proofs are delayed to Section 5-9. In Section 4.3, we
prove Theorem 3.4. For the convenience to compare the results in this paper with
those in [16], the intermediate results and the proof of Theorem 3.4 in this section are
formulated almost the same as in [16, Theorem 5.11]. We leave the main difficulties
in the proofs of intermediate results to later.

4.1. A fundamental 1-form. Let V% Z be the connection associated to (T3H w, g%z )
as in (2.15). Let S;,7 be the tensor associated to (TIH w, T‘ngX) as in (2.17).
Comparing with [6, (3.10)] and [27, Theorem 5.1], we have

V7T~Z —0yTZ | pTZg . pTZ
0ogTZ TX THZ 1 rog TZ @D
="V 4+ P75 P + EP Si1P*~.
Let VS2:T be the connection on S(T Z, Lz) induced by V%Z and VLZ | Set
VS .= 7V @ 14+ 1® VSx, (4.2)

Then by (4.1),

1
VIRl = 0VSZ 4 (S1(ei. f)e(ene ()

1

+ m(sl()fpf,llv fq},Il)C(pr:Il)c(fq{Il) (4.3)
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As the construction in Section 2.4, We consider the space S = =Ry xRy, u X S.
Let prg : S — S denote the prOJectlon and consider the fibration 73 : W :=
Ry, T X RyyxW — S. Let Pry : W — W be the canonical projection. Set
THW = =T[R+ XR+)€BPrW(TH W). Then TH W is ahorizontal subbundle of T W
asin (2 11). We define the metric g7 £ such that it restricts to u 2 g% Z over (T, u)xW.
Let hlz — Prj, htz, viz — Pry, VEz, hE — Prj, hE and VE — Pry, VE. We
naturally extend the G-actions to this case such that the G-action is identity on s.

We denote by Bj 2 r the Bismut superconnection associated to (TEW ,u=2 g%z ,
htz, viz pE VE) We know that the G-action commutes with this Bismut
superconnection.

Let B be the Bismut superconnection for the fibration W -8, by the arguments
above (2.82), we can get

n n—

= ad 0 m
B(rup)y = By2or +dT A a7 T du A Fvi Zdu -7 drT. (4.4)

Definition 4.1. We define g = du A By + dT A /3; to be the part of

1//S"Fr[g exp(—ﬁz)] of degree one with respect to the coordinates (7,u), with
functions B, ,6; Ry xRy — Q%(S).

From (2.64) and (4.4), we have

1 oB o
_mx/fs Tr [gz—u exp(— B3 .2 T)j| if n is even;
Be(T.u) =
1 oB
VAR [gg’—ZZ’T exp(—Biuz’T)], if 1 is odd,
1 aB 2T . .
_mws Tr [gg—; exp(— B3 2 T):| if n is even;
Ba(T.u) =
1 even 8B3,u2,T 2 . .
—ﬁ\ﬁs T g — - exp(=B5 2 ) | if n is odd.
4.5)
By Definition 2.3 and Remark 2.4, we know that
+o00
Ne(THW, gb% htz viz pE vE) = —/ BUT, wydu.  (4.6)
0

Proposition 4.2. There exists a smooth family og : Ry 7 x Ry, — Q*(S) such
that

d d
(du/\a—+dT/\a ),Bg—dT/\du/\dSag (4.7)
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Proof. We denote by o the coefficient of du Ad T component of /g "ﬁ[g exp(—E 2)].
Then

Vs Trlg exp(—B?)] = ysTr[g exp(—Biuz’T)] + B +dundT Nag.  (4.8)

Since wsﬁ[g exp(—/B\Z)] and Wsﬁ[g exp(—B32 .2.7)] are closed forms, we have

0 0 ~
(du Aot dT A a—T)wsTr[g eXp(—Biuz,T)]

d d
—dT ndundSag +d5Bg + (du/\ - +dT/\ﬁ)ﬂg =0. (4.9

Then Proposition 4.2 follows from comparing the coeflicientof d T’ Adu in (4.9). O

Take ¢, 4,7y, 0 <e <1 <A <o00,1 =Ty <oo. LetI' = I'g 4,7, be the
oriented contour in Ry 7 x Ry ,,.

AY r
2 r
Ar---- <
1—‘3 \ Ll 4 l-‘1
frT T
| |
Il 4 Il > T
0 1 To
The contour I' is made of four oriented pieces I'j,...,I"s indicated in the

above picture. For 1 < k < 4, set ]? = fl"k Bg. Then by Stocks” formula and
Proposition 4.2,

4
0 0
0 _ — _ gs
kgzllk —/au,Bg—/u(du/\au—l-dT/\aT)ﬂg—d (/uang/\du).

(4.10)

4.2. Intermediate results. Now we state without proof some intermediate results,
which will play an essential role in the proof of Theorem 3.4. The proofs of these
results are deferred to Sections 5-9.

In the sequence, we will assume for simplicity that S is compact. If S is non-
compact, the various constants C > 0 depend explicitly on the compact subset of S
on which the given estimate is valid.

As in the arguments at the beginning of Section 2.4, let Pry : V= RyixV -V

be the projection. For the fibration VoS= Ry xS, let (TZH/I},fg\TY, hly VLy)
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be the quadruple such that TZH/I} =TMRy) Pr’f,(TzH V), fg\(th]) = t_ngY for

~

t € Ry, v eV, Ly = PriLy, h'Y = Prihly and VLY = PriVEy. Let

Jpker D i and V*erD x be_the induced metric and connection on the vector bundle
ker DX. Let hSY and VSY be the induced metric and connection on Prj,S(TY, Ly).
We naturally extend the G-action to this case such that the G-action is identity on
]R+ x S.

Let By, B, and B, ,,2 be the Bismut superconnections associated to

(TZH V’gTY’hLY’hkerDX’ VLY’VkerDX)’
(TZH’I} gTY h/L\y hkerDjX\ V/L\y VkerD;(\)
and

(TZH V., u—ngY’ pLy ’ hkerDX , VLY’ VkerDX)’
respectively. For any g € G, let us decompose
¥sTrlg exp(=B3)] = di A y2(1) + r2(0), (4.11)

where y5(¢), r2(t) € Q*(S). By Definition 2.3 and Remark 2.4,
+o00 x x
/ Va()dt = i (THV, gTY pby perD? yly gDy (4.12)
0
Theorem 4.3. (i) For any u > 0, we have

Jim B(T.u) = ya(w). (4.13)

(i) For 0 < u;y < u, fixed, there exists C > 0 such that, for u € [uy,uz], T > 1,
we have
1Bz (T, u)| < C. (4.14)

(iii) We have the following identity:
o0 o0
lim / Be (T, u)du = / va(u)du. (4.15)
T—+o0 1 1
Theorem 4.4. We have the following identity:

lim /oo BI(T.w)dT = 0. (4.16)
1

Uu—>+00
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Let Priy|ys : W|Vg = Ry x W|ys — W]yps be the e projection. For the
fibration W|Vg —VE = Ry x V&, let (TH(W|Vg) gTX, hLX VLX hE VE) be
the quadruple such that

THWlye) = TR ® Prwlve) T (Wlve), gk, =12gh¥

fort € Ry, w € Wlypse,

ZX = (Prw|Vg)*Lx, E = (Prw|Vg)*E, ]’ZLX = (Prw|Vg)*hLX,

= (Prw|ye)*hE, VX = Prw|pe)*VEX and VE = (Pry|ye)*VE.

We naturally extend the G-actions to this case such that g acts trivially on ve.
Let B be the Bismut superconnection associated to (7,7 ( w lye).gTX VLX hE

VE ). For any g € G, let us decompose

YyeTr[gexp(—=BY)] = dt A y1(1) + r1(0). (4.17)

where y1(¢), r1(t) € Q*(S). By Definition 2.3 and Remark 2.4,
+o00
/ yi(t)dt = —Tg(TH (Wlye), g™*, hEx VEx), (4.18)
0

By (2.44), Kg(TZ, VTZ) only depends on g € G and RT%. So we can denote
itby Ag(RT?). Let R;Z be the curvature of V7T~Z. Set

ya(T) = —

avTZ
). 4.19)

aT

9
— A REZ +p—L—
b p=0 g( "

By a standard argument in Chern—Weil theory (see [28, Appendix B] and [35]), we
know that

d =
aTA (TZ,VTZ2 VIZ)y = —y (T). (4.20)

Proposition 4.5. When T — 400, we have y4(T) = O(T~2). Moreover, modulo
exact forms on W&, we have

~ +o00
A (TZ, VT2 0vTZ) = —/ ya(T)dT. (4.21)
1

Theorem 4.6. (i) For any u > 0, there exist C > 0 and § > 0 such that,
for T > 1, we have

C
1Bg (T < —5- (4.22)
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(ii) Forany T > 0, we have
- 1/2
lim e By (Te ™! 6) = /Y Ag(TY,VTY) Achg (Ly/?, VEY ") Ayi(T).

(4.23)

(iii) There exists C > 0 such that fore € (0,1],e < T <1,

eV BT (T e) +/ ya(Te™") Achg (LY VEZY) /\Chg(E,VE)‘ <c.
VA
(4.24)
(iv) There exist § € (0,1], C > 0 such that, fore € (0,1], T > 1,
e B (T )| < (4.25)

- T1+8°

4.3. Proof of Theorem 3.4. We now finish the proof of Theorem 3.4 under the
simplifying assumptions in Section 3.2. By (4.10), we know that

A To A To
[ Bi(To, u)du — BL(T. A)dT —/ Bu (1 u)du + BI(T.e)dT
e 1 & 1
=L +DL+13+ 14 (426)

is an exact form. We take the limits A — oo, T — oo and then ¢ — 0 in the
indicated order. Let I]].‘, J =1,2,3,4,k =1,2,3 denote the value of the part /;
after the kth limit. By [21, §22, Theorem 17], d 2(S) is closed under uniformly
convergence on compact sets of .S. Thus,

24: I} = 0mod dQ*(S). (4.27)
i=1
From (4.6), we obtain that
13 = fg(THEW, gT% htz viz hE vE), (4.28)
Furthermore, by Theorem 4.4, we get
I}=1}=0. (4.29)

From (4.12) and Theorem 4.3, we conclude that

113 — _ﬁg(TZH V, gTY’ ]’ZLY, hkerDX’ VLY, VkerDX)‘ (430)
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Finally we show, by using Theorem 4.6, that
2= - / Ag(TY.VTY) A chg (L2 VEY)
Ye
N F]g(TlH(W|Vg)9 gTX7 hLX’ VLX3 hE7 VE)
+ / Ag(TZ,VTZ OVTZ) A chy(LY? VEZ") A chg (E.VE) (431)
VA
as follows: We write
+o0 +o0
/ BI(T.e)dT = / e 'BI(Te™ " e)dT. (4.32)
1 &

Convergence of the integrals above is granted by (4.22). Using (4.23), (4.25) and
Proposition 4.5, we get

+o00
lim e 'BL(Te " e)dT

e—>0 Jq

+o00
=/ Ag(TY,vTY)Achg(L;/z,vL‘Y/z)A/ yi(TYdT (433)
Ys 1

and
! 1 T 1
sh_r)r(l)/s e [ﬂg(Ts ,e)dT
+/ ya(Te™") Achg (LY VEZY) /\chg(E,VE)]dT
VA

1
:/ Ag(TY,vTY)Achg(Lly/z,le/z)A/ yi(TYdT. (434)
Y& 0

The remaining part of the integral yields by (4.24)

1
lim/ 8—1/ ya(Te™) Achg (LY? VEZ") A chg (E.VE)AT
5 z8

e—>0

oo 1/2 gLY/? E
=/Zg/1 ya(T) Achg (LY2 VEZ") A chg (B, VE)dT
N 4.35)
- —/ Ag(TZ,VTZ OVTZ) A chy (LY? VEZ") A chy(E.VE).
ze

These four equations for / 3 k=1,2,3,4, imply Theorem 3.4.

5. Proof of Theorem 4.3

In this section, we use the assumptions and the notations of Section 3.2 except that D%
is invertible for any 7" > 1.
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This Section is organized as follows. In Section 5.1, we derive some estimates of
the fibrewise Dirac operator D% . In Section 5.2, we write the operator B in a matrix
form. In Section 5.3, we state two intermediate results, from which Theorem 4.3
follows easily. We prove one of them in Section 5.3 and leave the proof of the other
one to Section 5.4. As a by-product of the first intermediate result in Section 5.3,
we get a new proof of Lemma 3.2. In Section 5.5, we prove a technical result
Proposition 4.5.

5.1. Estimates of Df’z.

Definition 5.1. For v € V, b € §, let E,, Eq (resp. E;j) be the vector
spaces of the smooth sections of 73 A(T*S)®S(TZ,Lz) ® E on Xy, Zp
(resp. 7} A(T*S)®S(TY, Ly) ® ker DX on Yp). For u € R, let E}, Egp EY,
be the Sobolev spaces of the order u of sections of ngkA(T*S)@)S(TZ, Lz)®E,
TINT*S)RS(TZ,Lz) ® E, n3 A(T*S)RS(TY, Ly) ® ker DX on X,, Z, Y
with Sobolev norms || - [|x, . || - s | - lv,u-

For v € V, in this section, we simply denote by P, the projection from Eg b
to E9, and let PL = 1 — P. Let E"" be the orthogonal bundle to E¢ in EJ. Let

L 0,L
E"" =E] NEY.

Let{e;},{fp}, {gqa} be the local orthonormal frames of 7X, TY, T'S respectively
and {e'}, { f 7}, {g®} be their dual. Recall that VEX-¥ is the connection in (3.7). Set

vSy®Ex.u _ ySy ®1+1®V8X’”. 5.1
Let e
DI = c(fy) V=", (52)
D,
By (3.8), we have
ppfp =Dp". (5.3)

Let S, and S5 be the tensor associated to (T2H V, gTY) and (T3H w, gTZ) asin (2.17).
Let T T, T3, be the torsion tensors defined before (2.25) associated to (TlH w, gTX ),
(THV, gTY), (THEW, gT%). By (2.25), we have

(Ts(gl5. g8 ). fR) = (Ta(el, 8. 1) (5.4)
From (2.17), (4.3) and (5.2) (see also [4, Theorem 10.19]), the Dirac operator D%

associated to (T3H W,gT%,VEz VE) can be written by

1
D = D¥ + DT — Ti(f, fyh)- ei)e(ene(fDe(fi)- - (59

If we replace the metric g7 by g;Z , by (2.25), we have

1
D =TD¥ + D™ + o ([fph fih) ei)e(ee(f0e (i) (5:6)
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Definition 5.2. Fors,s’ € Eo, T > 1, we set

15170 := lsll5- (5.7)
5171 = IIPsI§ + T*I1PEs|3 (5.8)
E
+>1 OV%‘? sl + T2 [1°VEZ®E PLs 3,
P 2 i

where 0VSz®E — 0ySz @ 1 + 1 ® VE. Set

s, s
Is|7,—1 = sup u- (5.9

0#s'€E} |S/|T,1

Then (5.8) and (5.9) define Sobolev norms on E} and E;*. Since OVZZ@’E P is
an operator along the fiber X with smooth kernel, we know that |- |71 (resp. |-|1,—1)
is equivalent to || - ||y (resp. | - [|=1) on E{ (resp. Eg1).

Lemma 5.3. There exist C1,Cy,C3 > 0, Ty > 1, such that for any T > T,
5,8’ € Eo,

zZ2
(D77%s.s)0 = Cils|7., — Cals|F,.

(5.10)
|(D¥’25, S,>0| < C3|S|T,1|S/|T,1.

Proof. The proof is almost the same as that of [5, Theorem 5.19]. For the
completeness of this paper, we present the proof here.

Easy to check that D% is a fiberwisely self-adjoint operator associated to (-, -)o
in (2.22). Set

1
Dft = D™ + = [fph Syl eddeee(fyDe(f)- (5.11)

Then by (5.6),
DF? =T12D%2 4 DI + T[D¥, Df]. (5.12)

The family of operators (DX, DTI! ) is uniformly elliptic. So there exists C{, C; > 0,
such that for T € [1, +o¢], s € Eo,

ID*s|i§ + 1075013 = CilisI} = Cals - (5.13)
Since ker DX is a vector bundle, there exists Cé > 0,

IDX P[5 = CAlIPs]3. (5.14)
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Using (5.13) and (5.14), we get for T € [1, +00),

T?| DX PLs|§ + | D P*s|3

T2 -1 Cj(T*—1
= C{IPEsI} + —— DT Pslg + (3(#) - CQ)HPLsH%. (5.15)
By elliptic estimate associated to the norm || - || x,,, and (5.14), there exists C; > 0,
such that
IDX PLs|§ = Ci Y |0V Z®E PLs| 3. (5.16)

4

Let °R be the curvature of *VSZ®E —1(S,(¢;)e;, ). Then from a easy computation
given by [6, Theorem 2.5], we have

(D%, D) = clene ) (Rew 1 = 055, ) G
1 el?fp!])

Since T (e;, p1,11) € TX,[DX, DH] is a fiberwise first order elliptic operator along
the fibers X. By (5.11), (5.14), (5.16) and (5.17), there exists C, C; > 0, such that
forT > 1,s € Ey,

(TIDX, DH]s,s)o| < TI{[DX, DH1PLs, PLs)o| + CLl|PLs|?

(5.18)
< C/T||DX P+s|3.

From (5.8), (5.12), (5.15), (5.16) and (5.18), there exist C{’,Cy’ > 0, Tp > 1 such
that forany 7' > Ty, s € Ep

(DF2PLs. PLs)o = C|PLshy + Cl| PLs|3 = € |53 (5.19)
From (5.12) and (5.13), we have
(DF2Ps. Ps)o = C{||Ps|} = C3Isl3. (5.20)
Since

(D2 pLs, Ps)o = (PLs, D2 Ps),

5.21
= 2(P*s,[Df, PIDf s)o + (P, [DF, [DF , Plls)o 2D

and [DH, P], [DH [DH | P]] are operators with smooth kernels along the fiber X,
there exists C4' > 0, such that
(D2 PLs, Ps)ol < C5IPLs| | Psllo. (5.22)

As in (5.18), there exists C, > 0, such that

(T[DX, DHEPLs, Ps)ol < CJ|PLs|r1]|Pslo. (5.23)
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So by (5.12),
(D72 PLs, Ps)o| < (C) 4 CsIrals|T0- (5.24)
Since [°VSz®E P and [°VSZ®E PL] are bounded operators, there exists
C > 0, such that

SzQE
1P sl +1Pslh = D NVEZEEsIE + D 1°Va7®F PEsls = Clisla: (5.5
D D, i

So from (5.19), (5.20), (5.24) and (5.25), we get the first inequality of (5.10). The
second inequality follows directly from (5.12) and (5.18).

The proof of Lemma 5.3 is complete. O
A
A
1 l
-1/ 0 -
1 o

Let A be the oriented contour in the above picture.

If A € L(EY) (resp. £(Ey!, E})), we note ||A]| (resp. |A|;1’1) the norm of A
with respect to the norm || - || (resp. the norms | - |7,—; and | - |7,;). Comparing
with [14, Theorem 11.27], we have the following lemma.

Lemma 5.4. There exist Tg > 1,C > 0, such that for T > Ty, A € A, the resolvent
A - D? Y=L exists, and extends to a continuous linear operator from IEo_l into E.
Moreover

IA —DZH7Y < C,

(5.26)
(A = DZH~FM < C(1 4 A2

Proof. Since DZ is fiberwisely self-adjoint, for A € C\R™, (A — D% 2)~1 exists.
ForA=a+ti e(C,seIE%,
((DF? — M), s)ol = IIs|2. (5.27)
So there exists C > 0, such that forany A € A,
I = D7) "sllo < Cllsllo. (5.28)

So we get the first inequality of (5.26).
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Take C, the constant in Lemma 5.3. For A¢g € R, Ag < —2C53, by (5.10), we have
(Ao — DZ)s.5)0 = Cils|3;. (5.29)
Then by (5.9) and (5.29),

Ao — DZ?)s.s'
|(ho — DF?)s|r,—1 = sup (%o = Dy7)s: £ )o

0#s'€E} |S/|T71

> Cyls|T,1. (5.30)

For A € A,
(A =DZH ™ = (Lo = DZ2) 7V + (A= Lo)(A — DZ?) Y (Ao — DZ)7L. (5.31)

From (5.28), (5.30) and (5.31), we deduce that (A — D% ’2)_1 extends to a linear map
from E;! into EJ and

(A = DZ*) 5|
< |(ho = DE*) Us|z0 + [Ao — AlJ(A = DE*) Y (Ao — DF?) 5|10

< C7Ys|r—1 + Clho — Al|(Ao — DZ) 7 s|r0 (5.32)
<(C7'+CCitro = ADIsIT -1
On the other hand,

(A= DZH™ = (M= DZ2) ' 4+ (A= Lo)(ho — DEH I (A = DEA)7L. (5.33)

So from (5.30), (5.32) and (5.33), we deduce that (A — D%’z)_1 extends to a linear
map from E; ! into E§ and
(A= DF) sl
< (o= D7) st + 2o — Ml(to — DFH T (A = DE*) sz,
< CrYs|r—1 + €7 Ao — Al = DZ2)Us|ro (5.34)
< (Cr' + Cr Ao = A(CTH + CCT Ao = AD)Is|T-1-

Then we get the second inequality of (5.26).
The proof of Lemma 5.4 is complete. O

5.2. The matrix structure. In what follows, if a7 (T € [1, +00]) is a family of
tensors (resp. differential operators), we write that as T — 400,

1
or = too + O(F), (5.35)
if for any p € N, there exists C > 0, such that for T > 1, the sup of the norms of the
coeflicients of @7 — @ and their derivatives of order < p is dominated by C/ Tk,
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Recall that &7 is the infinite dimensional fiber bundle over S, whose fibers are the
set of smooth sections over Z of S(T'Z, Lz). Comparing with (2.24), for U € TS,
we define the connections on &7

1
2
1 1
ez Tu _ vg?T R1+1@VE - §(S3(e,-)e,-, vy — E<S3(f,jf11, . uff).
(5.36)

1
€z, E
V= OV = S (Saenen UsT) = S(S3(fphs fp)- UsT),

By (4.3) and (5.36), we have

1
vz Tu — ogbzu ﬁ(sl(U{’)ei, FHyeene(fF). (5.37)

Recall that B; > r is the Bismut superconnection associated to (T3H W,u=? g;Z ,

Wtz vtz hE VE). Denote by B3 = B3 r. From (2.28), (2.33), (3.14), (5.4),
(5.6), (5.36) and (5.37), we can calculate B3 7 and B; 2 1 exactly.

Proposition 5.5. For T > 0 andu > 0,
c(T)
4
1
- ﬁ(Tl(f,fp T, enelee(fDe (/)
1
2T

Bsr = TDX + °véz¥ 4 pH _

(5.38)

+ ——(S18Dei. f ) e(e)e(fF)g*A

1

— 57 (T3 8f5)- e)een)g® A g,

and

u

8T

1

+ Ovézu 4 ﬁwl(gi’ Jei, f)e(ene(fFDg A (5.39)

C(Tz) 1

4u SMT<T3(g£3’gg{3),€i)6(€i)ga/\gﬂ AL

Let &y be the infinite dimensional fiber bundle over S, whose fibers are the set of
smooth sections over Y of S(T'Y, Ly) ® ker DX. By (2.24), for U € TS, we define
the connections on &y

Byy2,r = uTDX +uD™ — —(Ti(f,, £, eide(ene(fDe(fD)

.pXx 1
Vl“.‘}”y,u — V5§1®ke 2 E(SZ(fp)fp’ U2H> (5.40)

From [27, Theorem 5.2], we have

(Ss(f7. f2D. UL = (S2(fp) £ UsY). (5.41)
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So by (3.7), (3.8), (5.36), (5.40) and (5.41), we have

véru — pOyézup, (5.42)
Recall that B, is the Bismut superconnection associated to (TZH V, gTY,hLY,
pkerP¥ gLy VRrD¥) and B, 2 = u?8,2 B25) . Then by (2.28),

B, = DY + V&V ¥ _ ¢(T3) /4. (5.43)

Lemma 5.6. For any T € [1,+4o00], the operator PB3 TP is a superconnection
onlE{. When T — +o0,

1
PBssP = By + 0(7). (5.44)
Proof. Set
T
C=O0vézu 4 pH _ —C(42). (5.45)
By (5.38), we have
1
PBsrP = PCP + 0(7). (5.46)
From (5.3), (5.42) and (5.43), we get
PCP = B,. (5.47)
So Lemma 5.6 follows from (5.46) and (5.47). L]
Set 9B
Br = B2, + du A 5;213—””8,,2. (5.48)
’ U

Then Br is a differential operator along the fiber Z with values in A(T* (R4 x 5)).
Set

0B
Bu,T:Bz +du/\3’—u2’T.

2o » (5.49)

Then by (4.5), we have

Bl = {WsTilg exp(~Bu )} = {u2ys6,2Trlg exp(—u?Br)}™ . (5.50)

From Proposition 5.5,

0B, ¢(T») 1
-1 3,u=,T _ X H 2 2
54 —2Ls,, = TDX + DM+ 2 4 0( 7). (5.51)
Set 9B
By = B2 +du A} =225, (5.52)

ou
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By (4.11), we have

_ ~ d
y2(u) = {u=ys8,2Trlg exp(—u?Ba)]} " . (5.53)
From (5.43), (5.51) and Lemma 5.6, we have

1
PBrP =B, + 0(7). (5.54)

Put
Er = PBrP, Fr= PBrP™, (5.:55)
Gr = P*BrP, Hr = P+BrPt. '

Then we write By in matrix form with respect to the splitting Eg = ]E(l) &) ]E(l)’l,
Br = (g; IZ) (5.56)
Similarly as in [27, Theorem 5.5], we have
Proposition 5.7. There exist operators E, F, G, H such that, as T — +00,
Er=FE+0(/T), Fr=TF+ 0(Q),
Gr=TG + 0(l), Hr=T?H + O(T). ©->7)

Let
0 =[D%.C]. (5.58)

Then Q(E9) C ]E(l)’J‘, and Q is a smooth family of first order elliptic operators acting
along the fibers X. Moreover,

E = P(C* +dun (DY —c(T»)/4)P, F = PQPt,

(5.59)
G = P1OP, H = P+tp%2pt
and
B,=E—FH™'G. (5.60)
Proof. By (5.38) and (5.45), we have
1
_ X _
Bsr =TD +c+0(T). (5.61)

From (5.48) and (5.55), we get (5.59).
Let ®Rz be the curvature of *VSZ®E — 1(S3(e;)e;.-) — 5(Sa(fF) [, ). As
in (5.17), we have
(DX, 0924 = cteng & (Reterslly = "5 ).
3¢ aga~3)
(5.62)
(OVEZ)? = g3 7 A gl A (ORz(g£{3,g§{3) S )

T3(g£3,g£3)
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and T3(e;. gi1y) € TX, Ts(gll,. gll3) € TZ. By (5.17), (5.45) and (5.62), we know
that 0 = [DX, (] is a smooth family of first order elliptic operators acting along the
fibers X and Q(EY) C ]E(l)’J‘.
By (5.43), (5.52) and (5.59), we know that
E—-FH™'G
= P(C* +u"?du A (DY —¢(T2)/4) P — PCD¥ PH(D¥*) "> P D¥CP
= (PCP)?> +u2du n (DY —c(T»)/4) = B,
(5.63)

The proof of Proposition 5.7 is complete. O

5.3. Proof of Theorem 4.3. If C is an operator, let Sp(C) be the spectrum of C.
The following lemma is an analogue of [8, Proposition 9.2].

Lemma 5.8. Foranyu >0, T > 1,
Sp(Bz) = Sp(D?), 560
Sp(Bu,r) = Sp(u?DZ*) = Sp(u*Br).

Proof. We only prove the first formula. The proof of the second one is the same.
By (5.43) and (5.52), set

1 2
R:=B,—D"? = (vgw — ZC(TZ))

+ | DY, ver¥ _ 1c(T2) + Laun (DY - ¢(T2) . (5.65)
4 u? 4
Take A ¢ Sp(DY*2). Then
A=B)'=A =DV 1 =QA-DV)"'R(A - By~ L. (5.66)
Inductively,
A=B)™' =@ -D")' + A -D")T'RA - D!
+A=DYH'RA-=DV>)T'RA =DV 4.... (5.67)

Since R has positive degree in A(7T*(R x §)), the expansion above has finite terms.
By elliptic estimate, there exist ¢y, ¢, > 0, such that for any s € Eq,

I = D¥2)s]ly0 > erllslly, — callslvo. (5.68)

Then there exists ¢ > 0 such that

- 1 ¢ -
| = DY) sllya < ~lislvo + I = D)7 sy < cllslivo.  (5.69)
1 1
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From (5.62) and (5.65), there exists ¢ > 0 such that
IRslly,0 < cllslly1- (5.70)
By (5.67), (5.69) and (5.70), there exists ¢ > 0, such that
(A = B2) Ls|lyo < cllsly.o- (5.71)

So A ¢ Sp(By).
Exchange B, and DY2 we get the first formula of (5.64). ]

By Lemma 5.8, we have

1 exp(—u?1)
exp(—u’Br) = dA,
xp( 7) 2n/—1Ja A—=DBr (5.72)
1 exp(—u?1) '
exp(—u?BB,) = dA.
RN Ve Ny

Lemma 5.9. There exist Ty > 1,C > 0,k € N, such that for T > Ty, A € A,
the resolvent (A — Br)™! exists, extends to a continuous linear operator from IEO_I
into E(l), and moreover

I = Br)~' < €1 + A),

(5.73)
(A= Br) 7" = c + AD*.
Proof. Set
Rr = Br — DF>. (5.74)
By (5.17), (5.38), (5.48) and (5.62), we know that Rt is a first order fiberwise
differential operator along the fiber Z Moreover, from (5.8), fori = —1, 0, there
exists C; > 0, such that for any s € E},
|Rrslri < Cils|r,i+1. (5.75)
Take A € A. Then
(A =Br)"' = (= Dr*) 7+ A =Dy ' Rr(A - D)
+ A=DE) ' Rr(A = DEH ' Rr(A = DEH T 4. (576)

Since Rr has positive degree in A(T*(R x §)), the expansion above has finite terms.

From (5.75), and (5.76) and Lemma 5.4, there exist 7o > 1,C > 0,k € N, such
that for T > Ty, A € A, the resolvent (A — Br)~! exists, extends to a continuous
linear operator from E; ! into E{, and moreover

I =B~ < 1+ A)F,
(A =Br) 7 < c+ k.
The proof of Lemma 5.9 is complete. 0

(5.77)
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Similarly, there exist C > 0,k € N, such that for A € A, the resolvent (A —B;) ™!
exists, and for any s € E9, s’ € E]', we have
Ik = B2)Lslly,o < C(1+ [AD¥ [Is]ly,o,

o o (5.78)
(A =B2)" s[lyq < C(A+ [ADTNs [ly,—1.

Replacing By by Hr and D%’z by PLD%’ZPL in the proof of Lemma 5.9, we
can get the following lemma.

Lemma 5.10. There exist To > 1,C > 0,k € N, such that for T > Ty, A € A, the
resolvent (A — Hr)~! exists, and for any s € E%’J‘, we have

Ik — Hr)sllo < C(1 + [ADFIs]lo.
(& = Hr)"slrn < C(1+ [AD Is|7,-1.

(5.79)

Choose s, s’ € Eq such that s = (A — Br)~!s’, A € A. Then by (5.55), we have
Ps' = (A — Er)Ps — FrP's,

5.80
Pls' = —GrPs+ (A—Hr)Pls. ©-50)
Let
Er(\) =A—Er — Fr(A— Hr)"'Gr. (5.81)
Then
PA—Bp) ‘P =&)L (5.82)

By (5.82) and Lemma 5.9, there exist 7o > 1,C > 0,k € N, such that for T > Ty,
Ae A, s eEy,

IE7(M)sllo < (A + [AD*|s]lo,
1Er ()7 sl < €+ |ADKIs|r—1.

Lemma 5.11. There exist C > 0, Ty > 1, k € N, such that for T > Ty, A € A,
NS E(),

(5.83)

C(1 + |AD*
1oy = Po =By Paslo = g s

Proof. We know that
ErM) T =—PA=By) 'P=PErAN) T A =By —Er(V)(A = By) ' P. (5.85)
By (5.60) and (5.81),
A—By,—&r(A) =Er + Fr(A— Hr)"'Gr — E + FH™'G

= (Er —E)+ (Fr —TF)(A— Hr)"'Gr
+ATF(A— Hr) "(T?H)"'Gr (5.86)

—TF(A—Hr) Y(Hr —T*H)(T*H)"'Gr
+ TF(T*H) Y (Gr — TG).
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By (5.21) and (5.38), the 2-order term of the differential operator By is
r?ptpX2pt 4 ppH2p 4 pipH2pt (5.87)

and the coefficient of T in the expansion of B is a 1-order differential operator along
the fiber X.

From (5.87) and Proposition 5.7, there exist C > 0, Ty > 1, such that for any
s,s’ € Eo, T > Ty,

C
(Er — E)Ps. Ps')ol < | Psllo]l 5"l (5.88)

So we have
C
< —

- T
Also from (5.87) and Proposition 5.7, there exist C > 0, Top > 1, such that for any
s €Eo, T > To,

(Er — E)Ps|T,—1 [ Pslo- (5.89)

| Fr PLsllo < ITQPLs|o + C||Ps|y < C|PLs|r,. (5.90)

Similarly, we have
|G Ps|r,—1 < C|Ps]lo. (5.91)

From (5.90), (5.91) and Lemma 5.10, there exist C > 0, Ty > 1, k € N such that
forany s € Eg, T > Ty,

IFr(A — Hr)"'Gr Psllo < C(1 + [AD¥ || Ps|lo. (5.92)
From Proposition 5.7, there exists C > 0, such that
IFH™'GPs|lo < C||Pslo. (5.93)
By (5.78), (5.83), (5.86), (5.89), (5.92), (5.93) and Lemma 5.10, we can get
€)™ = PG =B Psllo = CA+ [AD¥|Psllo.  (5.94)

Comparing with (5.90) and (5.91), from (5.87) and Proposition 5.7, there exist
C >0, Ty > 1,such that forany s € Eo, T > Ty,

|(Fr = TF)P~*s|7,—1 < C||P*sllo, |TFP 5|71 < C|P*s T,

(5.95)
[(Gr —TG)Ps|-1 < C||Ps]lo-
From (5.14) and (5.16), there exists C > 0, such that for any s € E,,
(Hs,s)o = [ PFs]1% 1 (5.96)

So by Proposition 5.7, there exists C > 0, such that

|OH 's|7.—1 = C||Ps]|—y. (5.97)
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Thus, by (5.14), (5.91), (5.95), (5.97) and Lemma 5.10, we can get
|(Fr — TF)(A — Hr)~' G Ps|r,— (5.98)
<C|P*(A—Hp) 'GrPs|o < %(x — Hr) 'Gr Ps|r,
< SO I Ptz = S0+ IADHIPs o,

|TF(A— Hr)""(T*H)™'Gr Ps|r,
< C|(A—Hr)"W(T?*H)"'Gr Ps|r.
< C(+ [AD*(T?H) ' Gr Ps|r,—

C C
< L+ ADFIGT Psir1 = (L4 [ADFI1Ps]lo

- T
(5.99)
and
1
\ITF(T?H) " (Gr — TG)Ps|r—1 = 7|QH_1(GT —TG)Ps|r,—1
C C
= ?H(GT —TG)Ps|-1 = ?”PS”o-
(5.100)

So from (5.78), (5.83), (5.85), (5.86), (5.89), (5.94), (5.98), (5.99), (5.100) and
Lemma 5.10, we have

I ETMN)ITF(A — Hr) Y(Hr — T*H)(T*H) 'Gr (A — B2) "' Ps|lo
< C( + |AD¥|Psllo. (5.101)

On the other hand, from (5.87), we have

|(Hr — T*H)P*s|7—; > C||Pts];. (5.102)

So from (5.83), (5.95), (5.102) and Lemma 5.10, we have

I(Er M) TITFA — Hr) ™ (Hr — T*H)(T?H)"'Gr (A — B2) "' Ps|o
< C(1 + [ADFITFA — Hr) Y (Hy — T2 H)(T?H) " 'Gr(A — B2) "' Ps|r.—1
< C(1+ [AD¥|(X = Hr) Y (Hr — T2H)(T?H)"'Gr(A — B2) "' Ps|r,

< C(1 + |AD*|(Hr = T*H)(T?H)'Gr (A — B2) " Ps|r—
C

< S+ IHT Gr( =By~ Ps|h.

(5.103)
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Since H'Gr(A — B2)™! = O(T), by (5.101) and (5.103), we have

IEr W) ' TF(A — Hr) ™ (Hr — T*H)(T*H) ™' Gr(A — B2) ™' Psllo
C
< ?(1 +AD® I Psllo. (5.104)

Then from (5.85), (5.86), (5.89), (5.98), (5.99), (5.100), (5.104) and Lemma 5.10,
we can obtain the lemma. L]

Lemma 5.12. There exist C > 0, To > 1, k € N, such that for T > Ty, A € A,
I(A=Br)™' = PA=By)~'P|| < %(1 + [AD*. (5.105)
Proof. From (5.82) and Lemma 5.11, we have
IPO~Br) P PGB Pl < SIS 65.100

By (5.80), we find that

P(A=Br) 'Pt =& Q) "Fr(A— Hr)™ ',
P*A=Bp)'P =M —Hp) 'GrEr(W) 7L, (5.107)
PrA—=Bpr)'Pt =M —-Hp) '+ GrP(A—Br)"'Ph.

From (5.83), (5.90) and Lemma 5.10, there exists C > 0, such that for s € E,

1P —Br) ' PLsllo = |Er (W) Fr(A — Hr) "' PLs |l
< C||Fr(A — Hp) 'PLs|lo < C|(A — Hp) ' PLs|r,
C
< —

= CO A+ RD P sl <

(1 + 1AD lIslo-
(5.108)
From (5.83), (5.91) and Lemma 5.10, there exists C > 0, such that for s € E,

IPE(A = Br) ' Psllo = [|(A — Hr) 'GrEr (W)™ Ps|lo

1
?|(/\ — Hr) 'Gr&rN) 7P|

IA

C _
1+ IAD¥IGTEF (W) Ps|r—1 (5.109)

IA

C
=+ D IEr Q) Pl

C
=+ 12D [isllo-

IA
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From (5.108) and (5.109), there exists C > 0, such that for s € E,
I(A — Hr) "' GrEr(A) ™' Fr(A — Hr) ™' PLs]lo
C _ C
< —(+ D IFr( = Hp) ™' PEslo <
From Lemma 5.10, we have
_ 1 _
(A — Hr) 'sllo < 7|()L — Hr) 's|ra
C C
< =+ AP Es|r—r < 5 (L [AD 15 ]o-
T T
By (5.110) and (5.111), we get
1 pry . € k
[P=(A = Br)” P~ < ﬁ(l + [AD".

The proof of Lemma 5.12 is complete.

(1 + [AD?*|s]lo-
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(5.110)

(5.111)

(5.112)

O

We assume that ker DY = 0. There exists ¢; > 0, such that Sp(3,) =
Sp(DY?) C [2¢;, +00). By Lemma 5.8 and Proposition 5.12, we know that when T

is sufficiently large,

Sp(D7%) = Sp(Br) C [c1, +0).

(5.113)

Note that in this section, we need not assume that ker D% = 0. Therefore, we get

another proof of Lemma 3.2.

A
A/

v

Let A’ be the oriented contour in the above picture. Then all the estimates in this
section hold for any A € A’. From (5.113), there exists To > 1, foru > 0, T > Ty,

a2
eu)t

1
27/—1Jar A—=Br

From (5.72) and Lemma 5.12, we get the following theorem.

exp(—uBr) = dX.

(5.114)
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Theorem 5.13. For ug > 0 fixed, there exist C,C’ > 0 and To > 1 such that for
T > To, u > uy,

| exp(—u?Br) — P exp(—u’B,) P|| < %exp(—C/uz). (5.115)

Let exp(—u?Br)(z.z'), Pexp(—u?By)P(z.z') (z,.z' € Zp,b € S) be the
smooth kernels of the operators exp(—u?Br), P exp(—u?B,)P calculated with
respect to dvz(z').

By using the proof of [25, Theorems 5.22] and the fact that ker DY = 0, we have

Proposition 5.14. (i) Forug > 0 fixed, form € N, b € S, there exist C,C’ > 0,
To > 1, such that for z,z' € Zp, u > ug, T > Ty,

glel+le’]

- 2,2 /
azaaz/a/ exp( u BT)(Z’Z)

sup < C exp(—C'u?). (5.116)

lee], e’ |<m

(ii) Forug > O fixed, form € N, b € S, there exist C,C’' > 0, To > 1, such that
forz,z' € Zp, u > ug, T > Ty,

glel+le’|

W P exp(—usz)P(z, Z,)

sup < Cexp(—C'u?). (5.117)

loel, e’ | <m

The complete proof of Proposition 5.14 is left to the next subsection.

From Proposition 5.14(i), we obtain Theorem 4.3(ii).

Let injZ be the injectivity radius of (Z, g7 %?). For (g7 'z,z) € Zp x Zp, we
will identify BTe—1:%p (0,) x BTz%5(0, &) with B4?»(g~ 'z, &) x B%»(z,¢) by the
canonical exponential map when & < injZ.

Let ¢ : R” — [0, 1] be a smooth function with compact support in B(0, injZ /2),
equal 1 near O such that fR" ¢(W)dv(W) = 1. Take v € (0, 1]. By Taylor expansion
and Proposition 5.14, there exists ¢ > 0, such that

1

|(exp(—u®Br) — P exp(—uB,) P)(vW,vW')
— (exp(—u?Br) — P exp(—u’B,) P)(0,0)| < cvexp(—C'u?) (5.118)

for |W |, |W’| are sufficiently small. Then for U, U’ € Ey,
|((exp(—u?Br) — P exp(—u”Ba) P)(0,0)U,U')o
[ (expuBr) - Pexp By YW oW U U
R7 xR”

X p(W)p(W"dv(W)dv(W')| < cvl|U]lol|U’[lo exp(—C'u?). (5.119)
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On the other hand, By Theorem 5.13,

/ ((exp(—u?Br) — P exp(—u’B,) P)(vW,vW')U,U")
R72XxR"™

c
Tv"

X p(W)pW"dv(W)dv(W')| < 1U0U’lo exp(—C'u?).  (5.120)

Take v = T~ #FT. From (5.146) and (5.120), we get

|(exp(—u*Br) — P exp(—u’B,) P)(0,0)| < ¢ T exp(—C'u?).  (5.121)

Therefore, we can get the following theorem.

Theorem 5.15. For ug > 0 fixed, there exist C,C’' > 0, Tg > 1, § > 0, such that for
u>ug, I =Ty,

C
75 exp(—C'u?).
(5.122)
By (5.50) and (5.53), we can get Theorem 4.3(i) by taking the coefficients of du
in (6.5). From the dominated convergence theorem, we get Theorem 4.3(iii) from

Theorem 4.3(i) and (6.5).
The proof of Theorem 4.3 is complete.

|V58,2Trlg exp(—u>Br)] — ¥58,2Trlg exp(—u>By)] |

A

5.4. Proof of Theorem 5.14. Recall that we assume that S is compact for simplicity
in Section 4.2. There exists a family of € sections of TY (resp. TX), Uy, ..., Uy
(resp. U{,...,U),), such that for any y € V (resp. x € W), Ui(y),...,Ur(y)
(resp. U{(x), ..., Um(x))span T, Y (resp. T X).

Definition 5.16. Let D be a family of operators on E,,
D= {P Ovii,?EP + pt Ovl‘j%,;@EPl, pt ng_%@EPl}. (5.123)
p. D, i

Note that in [25, (5.60)], the corresponding set of operators is stated as

A T*(O,I)Z ® A T*(O.I)Z ® A T*(O,l)Z ®
{p OVUI% 8, %OVU}{ 8¢ L p%OVU;( ) SP%}-

We need to read [25, (5.60)] as

AT*O0.D 7 ® A(T*O.D 7 R A(T*O.D 7 ®
Dr = {PTOVUEI " pr+ p%OVU};l "5 pF. pF OVUI_/( ) gl?%}-

In this way, the corresponding commutator [Q1, [Q>, ...[Qk, A%]. .. .]] has the same
structure as A% (see the following proof of Lemma 5.17).
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Lemma 5.17. For any k € N fixed, there exists Cy > 0, To > 1 such that for
T >To Q1....,0r € Dands,s' € E2, we have

([Q1.1Q2. ... [Qk. Brl... ]Is.s)o| = Ckls|z.alsIT1. (5.124)

Proof. Let & be the set of uniformly bounded operators along the fiber X with smooth
kernel. Set

0, = {a,-j ng,zw OVSZOE L p 1 4y € €X(W,C(TZ)).b € 5},
J
®, = {a, ViFOE b a e €O(W.C(TZ)).b € 5},
(5.125)
©; = {b OVSZ®E OVSZ®E +b, ost®E +alost®E b

ai € €°°(W,C(TZ)),bpq,bp,b = 5}.
By (5.17), (5.38), (5.48), (5.51) and (5.62), we can split the operator Br such that
Br = T?P1 4, P+ + T(PL A, PL + PAL P + PLALP) 4+ A3, (5.126)

where A; € 04, Az,A’z € 0,, A3 € B3.
First, we consider the case when k = 1.

(a) The case where Q = P OVSZ®EP + pLOVEZRE pL.

H
v, pl

We observe that if b € §, so are [va]%,@’f,b} OV(‘??@E b and b OV(‘%@E.
p.1 i i
Then we have

Il
~
'_

[0. P4, P ( P

[Q. P-4, P4 = Pl( P

[OVSZ®E,A/2:| [ovngeaE, ]A/ — A OVSZ®E’ )

[0.PLA,P] =P ([OVSZ®E,A’2]—[°VSZ®E P4, + 5] "VSZ@E P]
(5.127

[OVSz®E7 i] c 0, A,-[OV%,@E,P] €O,

p.1

[°V§§,®E,A;] €O, A;[vaji,@E, P] c O,
p.1 p.1
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fori = 1,2,3. For the element in ®3, since the principal symbol of Q is identity,

we have [Q, A3] € O3.

So [Q, Br] has the same structure as By in (5.126). Thus there exists C > 0,
To > 1 such that for T > To, 5,5 € E3, we have

19, Brls,s")ol < Cls

rals' |71 (5.128)

(b) The case where Q = PJ-OVI‘?,Z‘@EPJ-.

As in (5.127), we have

Since [Q, A3] € O3, we know that [Q, Br] has the same structure as Br in (5.126).
Thus there exists C > 0, Ty > 1 such thatfor T > Ty, s, s’ € E%, we have

(O, Brls,s")ol < Cls|rals|T,1. (5.130)

(c) Higher order commutators.

The estimate of higher order commutators are obtained inductively from (a)
and (b).

The proof of Lemma 5.17 is complete. O

For k € N, let D¥ be the family of operators Q which can be written in the form

Q=010 QicD. (5.131)
If k € N, we define the Hilbert norm | - ||} by

k
sz =>" > ll0slls. (5.132)
{=0 gept
Since [OVf,{,‘lgE, P), POV ®F and Oyo? ®E p are operators along the fiber X
p.
with smooth kernels, the Sobolev norm || - ||} is equivalent to the canonical Sobolev
norm || - ||x.
Thus, we also denote the Sobolev space with respect to || - ||}, by E’g .
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Lemma 5.18. For any m € N, there exist p, € N, Cy, > 0 and Ty > 1 such that
forT =Ty, A e A, s e EF,

IA = Br) "sllugy < Con (1 + [ADP7|Is]],- (5.133)

Proof. Clearly for T > 1,
Islly < Cls|z.1. (5.134)

When m = 0, we obtain the lemma from (5.134) and Lemma 5.9.
For the general case, let R be the family of operators

Rr ={[0i,.10i,....1Qi,. Brl... ]I} (5.135)
where Q;,...,Q;, € D. We can express
Q1+ Qr41(d —Br)~! (5.136)

as a linear combination of operators of the type

A =Br)'Ri(A = Br) 'Ry Rw(A = Br) ' Qurgr -+ Qrg1. k' <k,
(5.137)
with R1,..., R € Rr. By Lemma 5.17, we have

|Ris|T—1 < |s|T1. (5.138)
From (5.134), (5.138) and Lemma 5.9, we have

IA = Br) sl <C Y 11Qa2++ QA = Br) sy
<CY N =Br) "\ Ro(h = Br) ' Ry -+ Rir (A = Br) " Qurr -+ Qs

< Ce(1+ [ADP% Y Qg1+ Qrrasllo

< Ge(1+ [ADPlIs -
(5.139)

The proof of Lemma 5.18 is complete. O

Now we can complete the proof of Theorem 5.14. From (5.114), for any k € N*,

1 e—uzk
By — dA
exp(—u”Br) 21 Ja (A= Br) (5.140)
=Dk = 1) |

e—u2/{
= / cdA.
2 +/—1uk=1  Ja (A = Br)
By Lemma 5.18, there exist C > 0, r € N*, such that for any m’-order (resp. m”)

fiberwise differential operator R (resp. R’) along Z, m’,m” > n/2, choosing
k> m' + m//,

IR = Br) ™ R'sllo < C|(A = Br) ™ R's|,,, < C(L+ A [Isllo.  (5.141)



Functoriality of equivariant eta forms 277

From (5.140) and (5.141), there exist C, C’ > 0, such that
IR exp(—uBr)R'slo < C exp(=C'u?)]s]lo- (5.142)

Now applying Sobolev embedding theorem, for R” a fiberwise differential
operator of order m’ — n/2 along Z, there exists C > 0, such that for any s € Eo,

|R" exp(—u?Br)R's|eo < C exp(—C'u?)|s]lo. (5.143)
and
(R" exp(—u2Br)R's)(z) = / (RL, R exp(—u?Br)(z.2))s (2 )dvz (2)), (5.144)
z
here R/, acts on (S(TZ,Lz) x E)* by identifying (S(TZ,Lz) x E)* to
S(TZ,Lz) ® E by h52®E  Thus, we have
|R/ R’ exp(—u?Br)(z,)|lo < C exp(—C'u?). (5.145)

Applying the Sobolev embedding theorem to the z’-variable, from (5.145), we can
get (5.116).

From (5.78), for any m € N, there exist p,, € N, C,, > 0 and Ty > 1 such that
for T > Ty, A e A',s e Ef,

IP(A—B2)~" Psllps1 < Cu(1 + [ADP" || Ps]ly,. (5.146)
Following the same process, we get (5.117).
5.5. Proof of Proposition 4.5. Let Ny be the number operator acting on 7 Z such

that fors € TZ, Y
Ny PTXs = pTXs, NyPT7Z5=0. (5.147)

Let
'ViZ =T NxvETNY, (5.148)

Let /R;Z be the curvature of /V%Z. By (4.1), we have

,ng = oyTZ 4 %(PTXSIPTHZ + PTHZSIPTX) + %PTHZSIPTHZ.

Then by (4.19), we have G149
ya(T) = % szKg (’R?Z + ba’g#). (5.150)
From (5.149), we have
a/avfz - 0(%) and 'RTZ = 0(1). (5.151)

Then Proposition 4.5 follows from 'VIZ = 0vTZ,
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6. Proof of Theorem 4.4 and Theorem 4.6(i)

In this section, we use the notations in Section 5 and assumptions in Section 3.2.
Set
0B3,1

T=Bir+dT A o7

. (6.1)
By (5.38), we have

d
DT = DX (U AR eeeetEeC)

+ ([gd5. gl ) ei)c(enNg® A gP A +4(Si(glei. f ) c(ee(f e A ).
(6.2)

By Definition 4.1, we have

BT (T u) = {¥s6,2Trlg exp(—Bp)]} " (6.3)

Recall that B, is the Bismut superconnection in (5.43). Comparing with (5.54),

by Lemma 5.6, we have
1
PByP = By + 0(7). 6.4)

By (6.4), if we replace Br to B7. and B, to B,, then everything in Section 5
works well. As an analogue of Theorem 5.15, we can get the following theorem.
Theorem 6.1. For uy > 0 fixed, there exist C,C' > 0, To > 1, § > 0, such that for
u>ug, T =Ty,

~ ~ C
|¥s8,2Tr[g exp(—u*By)] — ¥s68,2Tr[g exp(—u’By)]| < -5 exp(—C'u?). (6.5)

Take s > 0. By replacing T to sT in Theorem 6.1 and taking the coefficient
of ds, for sT > Ty, we have

| (w8, Trlg exp(—u?Bip)}"| = G P (6.6)
By (6.3), for T > Ty, we have
T T 212/ d(sT)
BT (Tw) = s, Telgexp(—u?Bi)l} |
= (6.7)

= 1 s g expaBil) |

From (6.6) and (6.7), for ug > 0 fixed, there exist C,C’ > 0, To > 1, § > 0, such
that for u > ug, T > Ty, we have

C
|BE(T u)| < o exp(—C'u?). (6.8)

Then we get Theorem 4.4 and Theorem 4.6(i).
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7. Proof of Theorem 4.6(ii)

In this section, we use the notations in Sections 3.2, 5, 6, and assumptions in
Section 3.2.

In the first three subsections, we prove Theorem 4.6(ii) when dim Y and dim Z
are all even. In Section 7.4, we discuss the other cases. In Section 7.5, we prove the
technical result Theorem 7.5.

7.1. The proofislocal on L(V#). Recall that B is the operator defined in (6.1).
As in (5.49), we set

0B .2 7/
-1 — 3,62, T
By /e = €282B7,85" = B o )+ 1dT A # (7.1)
T/=Te~1
By Definition 4.1, we have
_ ~ dT
e B2 (T/e.e) = {YsTilg exp(=B, 1/,)]} (7.2)
Precisely, by (5.39), we have
2
e
Bs.o1e = TDX +eD™ 4+ (£, 1A} ee(ee(fe(£f)
+ ngzju . C(TZ)
. 4e (7.3)
+ 5 (S1(gga)en fyetene(frh)gs A
1
+ S—T([gifa,g§f3],ei)c(ei)g“ ngPA,
and
_ 8B3 2 T 1
! 8—;’ = DX - 372 <82[fpf,11’ fql,il]’ ei)c(ei)c(fpﬁ)c(fqu)
T/=Te!

+4e(S1(gfyer. fH ) e(ene(fH)gin

+ (g5, gl ) ei)c(eng® A gP A).
(7.4)

Set B1|y < be the Bismut superconnection associated to (TlH (Wlye),gTX, hlx,
VEix hE VE). Fort > 0, we denote 8 the operator on A’ (T*V€) by multiplying
by t7/2. As in (2.32), set

By 2lye = T8 0 Bilys 0 (872) 7" (7.5)
As in (5.49), we set

OB
Blolve = (Bygalve)® +dT A —222| (7.6)
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Then by (4.17), we have

yi(T) = {yysTrlg exp(— Bl lve)]} . (7.7)

In the first three subsections we assume that dimY = m and dim Z = n are all
even.

Letd ", d" be the distance functions on V, W associatedto g7, gT% . LetInj",
Ian be the injective radius of V', W. In the sequel, we assume that given 0 < o <
oo < inf{Inj”", Inj"” } are chosen small enough so thatif y € V, dV(g"'y,y) < a,
then dV(y, Veé) < %ao, andifz € W, dW(g_lz, z) < a, then dW(Z, we) < %0{0.

Let f be a smooth even function defined on R with values in [0, 1], such that

)Lt =a/2;
f0) = go, ] > o (7.8)
Fort € (0,1],a € C, set
+o0 >
F:(a) = / cos(\/iva)e_v7 F(V/1v) j2v_
—00 T
(7.9)
+o00 >
G;(a) = / cos(v2va)e™ % (1 — f(«/?v))jzv_.
—00 T
Clearly,
F;(a) + G;(a) = exp(—a?). (7.10)

The functions F; (a) and G; (@) are even holomorphic functions and the restrictions
of F¢(a), G¢(a) to R lie in the Schwartz space. So there exist holomorphic functions
F;(a) and G;(a) on C such that

F,(a) = F,(a?), Gi(a) = G,(a?). (7.11)
From (7.10), we deduce that
exp(—B, 7,.) = F2 (B, 7/,) + G2 (B, 1) (7.12)

Fixb € S. For z,z' € Zp, let fsz (B, T/e)(z, z') and Gez(Bg T/s)(z, z’) be the
smooth kernels associated to fgz B, /8) and 682 B, / o) with respect to the volume

form dvz(z').

Lemma 7.1. For § > 0 fixed , there exist C1, Cy > 0, such that for any z,z’ € Zy,
0<e<$T=>1,

~ / / CZT2
G2 (B: p)(z,2)| = Crexp| — . (7.13)
7z T &2
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In particular,

2
G ) (7.14)

‘st Trs [ga%(B/%,T)]‘ <(C; exp(— >

Proof. By (5.38), (6.1) and the elliptic estimate, there exists C > 0 such that for any
T=>1,
Isl2 < ClIBrslo + CT?|s]lo. (7.15)

Then for a m-order fiberwise differential operator O along Z with scalar principal
symbol, by (7.15), we have

10512 = CIB7Qsllo + CT?(|Qsllo
< ClIQBzsllo + CT?| Qsllo + C By, Qlsllo-

By (5.38) and (6.1), we have

(7.16)

I[B7. Qlsllo < CT?||sllm+1- (7.17)
Thus we get the estimate
Isllm+2 < CUBEsllm + CT?lIslms1 < CT*IBEslmsr + Islm+1).  (7.18)

By induction, there exist ¢ > 0 for 0 < k < m, such that

Isllm < T2 > ckll(Br)*s]lo. (7.19)

k=0

Let B be the adjoint of B7.. Similarly, we have

m
Isllm < T2 cx (B slo- (7.20)
k=0

For m-order fiberwise differential operator Q, for m’ € N, by (7.19) and (7.20), we
have

2

B, (e)ons

- -0 (G )

< [6 2 (G

isllo (7.21)

Slo-
sl

< (1~ i | (B&f)k’éﬁ(;—ztga’f)w?)mk’
k=0
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By [8, (11.18)], form € N, there exist c;n > 0andc > 0, such thatforany 0 < ¢ < 4,
T>1,

~ 82 , CT2
::E Mlm‘G% (ﬁk)‘ < ¢, exp ( — 8—2) (7.22)
From (7.21) and (7.22), there exists ¢y, > 0, such that
2 2
—— &, i cT
| G (7287)2], = emmexn (= 5,7)- (7.23)

Let P be a fiberwise differential operators along Z of order m’. Then by (7.19)
and (7.23), there exists c;n v > 0, such that forany 0 < & < 8, T >1,

T2
< Cpym €XP ( — C2—2) (7.24)

|78 (7mr)el, = 18 (7am)e 8

Following the same process in (5.143)—(5.145), there exist Cy, C, > 0, such that
forany z,z' € Zp,0<e <4, T > 1,

m’

~ 2 C,T?
‘G% (%B/T)(z,z/)| <q exp(— = ) (7.25)
T
Since B/% r = ;—iSi B’T(S;il, we get the proof of Lemma 7.1. O

T2 72

Using Lemma 7.1 with e = T and T replace by T /e, for T > 1 fixed, we find
Pal / ’ G
G (BLry) 20| = e (- 33).

(7.26)
‘WS Tr, [gagz (B;,T/e)]’ < Ciexp ( - %)

From (7.12) and (7.26), by the finite propagation speed for the solution of the
hyperbolic equations for cos (s /B; T/s) (cf. [19, §7.8] and [32, §4.4]), it is clear that

forO0<e<1,T>1,z,2/ € Zb,ide(nlz,mz/) > «, then
F (B, r/,)(z.2) =0, (7.27)

and moreover, given z € Zp, Fez (B’S T /6)(2,-) only depends on the restriction

of B;,T/E to 77 Y(BY (12, @)).

Let Z/lao(ng) be the set of y € Y}, such that d¥ (y, ng) < /4. We identify
Z/lao(ng) to {(y,U : y € Y, U € Nyz/y,|U| < ap/4} by using geodesic
coordinates normal to Y in Y, where Ny, y is the real normal bundle associated
tog € GinY. Let dvye and dvy, be the corresponding volume forms on 7Y ¢

and Ny induced by g7Y . Then there exists the function ky on Mao(ng ), such that

dvz(z) = ky(y,U)dvys(y)dvny, (U)dvx (x). (7.28)
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Thus, from (7.27),

Trg [gisz (B;,T/e)]

:/ZTrs [gfﬁsz(B;’T/e)(g_lz,Z)]dvz(z)

:/ /UGN /Trs [gfsz(B;,T/g)(g_l(y,U,x),(y,U,x))] (7.29)
ve ) YN Jx
-ky (y,U)dvys (y)dvn, (U)dvx (x).

Therefore, from (7.2), (7.26) and (7.29), we see that the proof of Theorem 4.6(ii) is
local near 771 (V¥).

7.2. Rescaling of the variable U and of the Clifford variables. Let S3 7 be the
tensor defined in (2.17) associated to (T3H w, gTTwz ). We can calculate that
(S.7(Tei)Tej. glls) = (Sa(ei)e;. glls).
1
(Sa.r(Tei) [, gly) = T (Sa(er) [ glLs).

1
(S3,7(Ten)gq,3: 853) = — (S3(e)2els: 813)- (7.30)

(Sa.r(fED A 8s) = (Ss(fF) AL g 2).
(Ssr(fDgds. gh's) = (Ss(f el g5)-

By (2.34), (4.3), (5.41), (7.1) and (7.30), after a careful calculation, we have

/ f—
eT/e —

— (T°VEZ®E + S(Si(ene;. fih)elee(fh)
2

1
S S LU + 5 (Saees gils)e(egn

£ 1 2
+ 57 (S3(e) flt 8aa)e (f)8" A+ (S3(e0)8ars 8513)8" A g? A)

1
5 (U AL eeene(fhe s
+ 4s(S1(eder, i) e(eNe(fy)gs A +lgdls. gflal eneleng® Agh )

(VO 4 (e S cenc ()

p.1

1 1
+ ﬁ(53(fplﬂ)ei,gg3)c(ei)g“ A +2_8<52(fp)fq’ g;’z)C(fqﬁ)ga/\

+dT A (c(ei) OVfiZ@E —

1 2
+ 15 (S20neds gfl)e  AgP )
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+ ?K%/s + T;(RLZ/Z + RE) (e ej)clei)c(e)

+ Te(RYZ /2 4+ RE)(ei, fF)c(ene(fF)
+ é(RLZ/z + RO 1D (e

+ S (RM /2 4 RE) (gl gfly)s* A 6P
+e(REZ )24+ REY(f A g e(fF)g A

+ T(REZ )2+ RE)(ei, gHy)c(engd™ A
(7.31)

Set

1 1
o = VIR = S(Suenen ) + 5 (82(fp) for gda)e (g A

H
Son

+ é(sz(fp)g.i{z,gg’,z)g“ ngfn. (132)
Recall that Ex, ,, = €*°(X,,.S(TX, Lx) ® E), which is naturally equipped with
a Hermitian product attached to g7X and hSx®F a5 in (2.22). By (2.24), the
connection V' preserves the scalar product (3.6) on .

Take yo € V& and m2(yo) = b. We identify BY>(yg,a9) with B(0, ) C
T,,Y = R™ by using normal coordinates. Take a vector U € R™. We identify
TY|y to TY | by parallel transport along the curve ¢ + tU with respect to
the connection VIY. We lift horizontally the paths ¢ € R% + tU into paths
t € R > x; € Zp with x; € X;u, dx;/dt € THZy. 1f xo € Xy, we identify
Ty, X,S(TZ,Lz)® Ex, to Tx, X, S(TZ,Lz) ® Ex, by parallel transport along
the curve ¢ — x; with respect to the connection VTX V' Then we can define the
operator B;’T/e to a neighborhood of {0} x X, in T, Y x X,,.

Letp: T),,Y — [0, 1] be a smooth function such that

1, Ul < 4;
p(vy = 1 1Vl =eo/ (7.33)
0, |U|> a2

Let ATY be the ordinary Laplacian operator on T}, Y .

Recall that ker DX | BY (yo,x0/2) 18 @ smooth vector subbundle of Ex,y, on
BY (yo,0/2). If g > 0 is small enough, there is a vector bundle K C &x_,, over
Ty, Y , which coincides with ker DX on B(0, ag/2), with ker D;‘O on Ty, Y\B(0, o),
such that if K= is the orthogonal bundle to K in €x,y,, then

K+ Nker DX = {0}. (7.34)
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For U € Ty,Y, in the following sections, let P{f be the orthogonal projection
operator from €y ), to Ky. Set Pg’l =1-PK.
Set

Lly == p*U)(~e*ATY + T2P+DEX2pfYy + p2(U)(B, 1)) (135)

Comparing with (7.26), for any m € N and T > 1 fixed, there exist C;,C; > 0,
such that for |U|, |U’| < ap/4,0 <& <1,

- C
Ge2(LL ) (U, x), (U, x))| < Crexp (—8—22) . (7.36)

For (U, x) € Nyzs;y,y, X Xy, |U| < ag/4, & > 0, set
(Ses)(U,x) =5 (U/e, x). (7.37)
Put
L7 = S7'LL7Se = (1= p?(eU)) (=S 2 ATV S, + T2 P D2 P+
+ p*(eU)S' B, 1/ Se. (71.38)

Let dimT),Y® = [’ and dim Ny<,y,,, = 2/”. Then I’ + 2/" = m. Let
{f1...., fir} be an orthonormal basis of 7),Y ¥ and let { fy'1..... f4+217} be an
orthonormal basis of Nyz,y,,,. Fora € C(f? A if,)1<p<r, let [a] ™™ € C be the

coefficient of f' A--- A f! "in the expansion of «. Let R, be a rescaling such that

Re(c(ei)) = c(ei),

p,H/\
Re(e(ffi) = = —eipn. for1=p=l. (7.39)
Reo(c(f[)) = c(f ). forl’ +1<p<l +2".

Then R, is a Clifford algebra homomorphism. Set
L} = Re(LZ 7). (7.40)

Letexp(=LL 7)((U, x), (U, x')), Fea (LL 1) (U, x), (U', X)) (U, x), (U, ') €
T),Y x Xy,, i = 1,2,3) be the smooth kernels of exp(—Li,T), ﬁgz (LQ’T) with
respect to the volume form dvr, y (U "dv Xy, (x"). Using finite propagation speed
as in (7.27), we see that if (U, x) € Nyz/y,), X Xy, |[U| < ao/4, then

Fo2 (B, 7,08 (0. U.x), (vo. U. x)ky (y0. U) = F2(LL 1) (g7 (U x). (U, x)).
(7.41)
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By (7.12), (7.26), (7.36) and (7.41), there exist C;, C > 0, such that for |U| < ag/4,
x € Xy,

| exp(_B;,T/g)(g_l(y()? Uv x)’ (y()v U, x))ky (y07 U)
2

_ C
—exp(- L) U0, ) = Cresp (<3 ). 042
Since T),,Y} is an Euclidean space, on Ty, Y,
S(TY.Ly)y, = S(TY®)®S(Nye,;y) ® LY/, (7.43)

where S(-) is the spinor space. From (7.39), we know that LiT (U, x), (U, x")) lies
in

F A(T;S)®(End(A(T*Y£))®C(Nys,y)
® End(L}/?)),,® End(S(TX, Lx) ® E) (7.44)
and acts on
TEATFS)RAT*YE)RS(Nye y) ® LY?),,®S(TX, Lx) ® E.  (7.45)

Recall that ¢y« is the trace element defined in (2.8).
Lemma 7.2. Fort > 0, (U, x) € Nye,y,y, X Xy, and g € G, we have

/ ﬁeNyg/Y’/Trs [geXp(_L;’T)(g_l(U’x)’(U’x))]
YT U a0/ 7K
~dvye(y)dvn, (U)dvy (x)

_ ~ 3 -1 max
— /Yg ﬁ]GNyg/y, /X crye Trg [gexp(—L) 1) (¢ 7' (U. x). (U.x))]
IUlzeo/4e - dvye (y)dvy, (U)dvx (x). (7.46)
Proof. From (7.38) and the uniqueness of the heat kernel, we have
exp(—Lg,T) = Ss_1 exp(—L;,T)Ss. (7.47)
ForU € T,,Y,x € X,,,,supp¢ C B(0,09/2) x Xy,, we have

| [ e L2, g X vy @y ()
Ty, ¥ J X

= (exp(—L2 7)$) (U, x)
= (S; " exp(—LL ) Se¢)(U. x) = (exp(—L} ) Se¢) (U, x)

— [ [ b L (U0 W NSV X vy U)oy ()
Ty, Y JX

et [ (L) (U0 (U XN vy (U)o ().
Ty, ¥ JX
(7.48)
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Thus,
exp(—L; ) (g7 (U, x), (U,x)) = &~ "™ exp(—L2 ) (¢~ (U/e, x), (U/e,x)) .
(7.49)
By (2.8), (2.10), (7.44), (7.49) and the definition of LS,T, we have
Trs [gexp(—L3 1) (g7 (U/e.x). (U/e. x)) |
= ZE"}} g~ MY Ty [gexp( L T)(g_l(U/e x), (U/s, x))]
' (7.50)
=Trye e N Try [gexp(—Ly ) (¢~ (U, x), (U, x))].
The proof of Lemma 7.2 is complete. O

7.3. Proof of Theorem 4.6(ii). Let KX be the scalar curvature of the fibers
(TX, gTX ). Comparing with [6, (3.15)—(3.17)], for T > 1, we can compute that

lim ¢ ’K7,, = T?K*. (7.51)

Let T be the connection form of V’, which is defined in (7.32). By using [1,
Proposition 3.7], we see that for U € TY = R™,

1
Iy = E(V’)Z(U, )+ O(|UP). (7.52)
Lemma 7.3. For U,V € TY, the following identity holds.
(VPO v = LR ,V1H>el,e,>c(e,>c(e,)+( REZ 4+ REY(WH v
+ —(R™Y (fp. f)U. V)c(fp 1)C(fq 1) + (RTY(ga 2: 88, U V)" AgPn

d((Si(ei)ei, (U ,VIH)+ <R”(fp,ga DU V)e(fFDg% A

(7.53)

Proof. By the fundamental identity of [6, Theorem 4.14] (see also [27, (7.15)]),
forZ, W eTV,

(RTY WU, v)PTY 7, PTY W) + (S PTY o) (U, V) Z, W)
+ (VY S) (U, V)Z, W) = (RTY (Z, W)U, V). (7.54)
Since S, maps TY to T2H V', we have
(S2PTY S)(U V) f, =0, (VT S)(U, V) f, fq) = 0. (7.55)
Then Lemma 7.3 follows from (7.32), (7.54) and (7.55). O
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Lemma 7.4. When ¢ — 0, the limit Ly 7 = limg—q L] ;. exists and

1 |
Ly rlye =— (a,, + Z<1RTY|Vg U, f,,f’l)) + ERLY lve + Bjolys.  (71.56)

Proof. By (7.52) and Lemma 7.3, we have

lim R, [eS! Vi luSe] =8, + lim R, [€2(S;7 1 (V)2 Se) (U, f)]

=0, + 5 2 AR (o U SO A

1<q,r<l’
(RTY(gf,'z, gé{z)Uv fp)8% A gﬂ/\

S (RT (fu. 820U o) fI A g5 A
l=q=<l’
(7.57)
Then by (7.31), (7.51) and the definition of Lg”T, we have

1
tim 12 = - (TOVg_z@E £ Y (Sitenes. fh)eten fon
1<p=<l’
1 1
Fom 2 ASUD SISV AT A S (Ss(ee s glla)ele)g A

4T
1<p,q=<l’

1 1 2
+ o7 > (Sale) SR ) 1P A g A + 7 (S3(en)gas. g55)8" A g? /\)

1<p=l’
1
+dT A (DX - W( S AU R L e)elen £2 A fOn
1<p,q<l’
4 Y (Sil)es, f)clen f7 A A
1<p=l’

(L. g2 er)elens® A gP A ))

_(a,,+}1 3" (RTVW, fo) fo SV ST A

1=<q,r<l’

+ S (RTV(U. f)88,. g 2)8* A gP A

+

o= A=

2
S RTYW, fp) furglh) £9 A g° A)

1=<g<l
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T2 T2
LU gx 7(RLZ/z + RE)(ei.ej)c(ei)c(e;)

4
+T Y (R /24 RF)(ei, fF)e(en) [P
1<p<l’

bs X RM 2 REYI A7 A f0A

1<p.g<l’
1
+ 5 (RE2 /2 + RF) (g5, 513)8" A 8P A

+ D (REZ2 4 REY(fh gl f7 A A
1<p<l’
+ T(REZ )2+ RE)(es, gf)e(en) g2 A .
(7.58)

By (2.34) and (7.5), we have

1
(Bygalye? == (TO9579F 4+ 3 3 (Siteies. ffh)ete) s 7
1<p=<l’
1 1
+or 2o (S Sh SIS A SN+ (S5 (ees gala)e(en)g A

4T
1<p,g<l’

1 1 2
o 3 ASae) [ gl 17 A g At (Ss(esll. gfls)s" A g A)
I<p<l’

T2 T2
+ KT+ (R /24 RE)(eiej)e(ei)ele))

+T > (RE2/2+ RE)(ei., fH)e(en) fPA
l<p<l’

1
+5 2 REZ24 REYSN LA SN

1=p,q=<l’
1

+ 5 (RE /2 + RF) (g5, 813)8" A gP A

+ Y R 24 RESF gD [P A gA

1<p<l’
+ T(REZ )2+ RE)(es, gl)c(en g A
(7.59)
So

1 2
lim L2 = _(a,, + Z(RTY|VgU, p’j’l)) + ERLY lve + Bolye.  (7.60)

e—0

The proof of Lemma 7.4 is complete. O
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Theorem 7.5. (i) For T > 1 fixed and k € N, there exist c > 0,C > 0,r € N
such that for any (U, x), (U’,x") € Ty, Y x X,,, € € (0,1],

glal+e|

sup exp(—L3 r)((U, x), (U, x"))

ol lo'|<k |0UXU™
<c(l+1|U|+ |U’|)" exp(—C|U — U/|2). (7.61)

(ii) For T > 1 fixed, there exist c > 0,C > 0,r € N, y > 0, such that for any
(U,x), (U, x") € Ty,Y x Xy, € € (0,1],

|(exp(—L] 1) — exp(—Lg 1) (U, x), (U, x"))]
<ce?(A+|U|+ U exp(=C|U = U']?). (7.62)

The proof of Theorem 7.5 is left to the next subsection.
On the vector space Nyzy,y,, there exists ¢ > 0, such thatforany U € Nye,y,y,,

lg7'U —U| > c|U]|. (7.63)

Then by (7.42), Lemma 7.2, 7.4, Theorem 7.5 and the dominated convergence
theorem, we have

. /
lim s Trs[g exp(—B; 7/,)]

= /g/ /?Tyg Ys Trg [geXp(_Lg,T)(g_l(U,x),(U,x))]
Y& JNyg,y /X ~doy (U)dvx(x). (7.64)

By Mehler’s formula (cf. [24, (1.33)]) and (2.47),

/X Tr, [g exp(—L3 7)(g ™ (U. x). (U, x))]dvy (x)

1y 1 RTY /2 1/ RTY)2
_ 5 dimY > _ _
= (4m) det (sinh(RTY/Z))eXp% 4<tanh(RTY/2)U’ U>
1< RTY /2

2\sinh(RTY /2)

1/ RTY)2
B Z<tanh(RTY/2)

g U, g_1U> + exp(RTY /2)U, g_lU>}

1 /!
o felson] AT [gexp (= 389 v ) | A Telg @byl (765
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Following the same computations in [24, (1.33)—(1.38)], by (2.43), (2.44), (2.57)
and (7.64), we have

slgf(l) ¥ Trg [g exp(_B;,T/e)]

dimY §

=V¥s f Cry«(d4m)™ 2 w;é(ﬁg(TY,v”)Achg(LIY/Z,vL‘/Z)
Ye
Ayye Trg [g exp(8;2)|yg]>. (7.66)

Using (2.56), (7.2) and (7.7), we get Theorem 4.6(ii) when dim Z and dim Y are
all even.

7.4. General case. When dim Y is odd and dim Z is even, by (2.10), following the
same process in this section, we can get an analogue of (7.66):
lim ys Ti* [g exp(=B, 7,)]

dim Y’

= s [ Trve G gt (R0 v v nehe (132, 95
AYrye Trg [g exp(B’;z)Wg]). (7.67)

Then Theorem 4.6(ii) in this case follows from (2.56), (7.2), (7.7) and (7.67).
When dim Y is even and dim Z is odd, it is the same as the case above. When
dim Y and dim Z are all odd, by (2.10), as in (7.67), we have

dimY &

lim s T [g xp(- B )] = 23/ T0s [ Ty~
— ve

— -~ 1/2
7 (R (TY,VTY) A chg (L2, V") A gy Te[gexp(Bfaly)] ). (7.68)

Since the left hand side of (7.68) takes value in even forms and dim Y ¢ is odd, by
(2.7) and (2.56), we have

lim y's Try [g exp(—B,,7,,)]
- / A (TY, VTV) A chg (LY VEY") A yrye T g exp(Blalye)]. (7.69)
Ye
The proof of Theorem 4.6(ii) is complete. O

7.5. Proof of Theorem 7.5. We prove Theorem 7.5 by following the process of [14,
Section 11] and [7, Section 11].

Let 7° be the vector space of square integrable sections of 73 A(T*S)RA(TY §)®
S(Nys/y) ® L;/2<§>S(TX,L)() ® E over Ty,Yp x X,,. For0 < g < dimY¢,
let 1 ‘? be the vector space of square integrable sections of 7; A(T*S YQAY(TYE)®
S(Nys/y)® Ly>®S(TX,Lx)® E. Then I° = @ _y10. Similarly, if p € R, 17
and 12 denote the corresponding p-th Sobolev spaces.
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For U € T),Y %, set

U
geU)=1+(1+ IUIZ)%;O (87) . (7.70)
Ifs € Iqo, set
5|29 = / 15(U, x)2g:(U)*Y =D dvry (U)dvx (x). (7.71)
Tonbeyo

Let (-, -)¢,0 be the Hermitian product attached to | - | 0.
So,for1 < p <1I’,s € I,, we can get

L <ao/2l UI(fP A —€%is,)s]2

2 2. 2
= [1gU|<a0/2|U 1 f /\s|g,() + [Leju|<ao/21Ul€ lfps|8,0

“Ja

1 —p—
o SPIUP A+ (14 U222V dvry (U)

<% (7.72)
b [ EBPIURA 1+ U D dury W),
Ul<52
Since there exists C > 0, such that
U
UL <1 fupa+a+upirsc, @)
1+ (14 |UJ?)2
we have the following lemma.
Lemma 7.6. The operators
levizao/2(f? A=€%i5,) and lgui<ae/2|UI(fP A —€%iy,)
are uniformly bounded with respect to the norm | - 0.
Set Dy = {d,, VoX®F 1. Set
k
sk =" > 101+ QuslZ, (7.74)

=0 Q;eDy

Lemma 7.7 (cf. [14, Theorem 11.26]). For T > 1 fixed, there exist c¢1, c2, c3,c4 > 0,
such that for any ¢ € (0,1], s € I,

RC(L;:’,TS,S)S,O = Cl|5|§,1 - 02|S|§,0,
5le.0 (7.75)

S/|E,1.

<cals

|Im<Lg,Ts7s>s,0 &1

< cals

|(L5’TS,S/>S,0 &1
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Proof. let V denote the gradient in the variable U. Since p has compact support,
there exists C > 0, such that

IV (ge(U))| = C. (7.76)

From Lemma 7.6 and the definition of Lg’T, we can get Lemma 7.7. O
Asin (5.9), set /

|sle,~1 :=0¢s;}£l % (7.77)

Lemma 7.8. There exist ¢, C > 0 such that if

Im(1)?
AeU=1)1eC:Re() < H;(z) — 2l (7.78)
c
the resolvent (A — LS’T)_1 exists, and moreover for any ¢ € (0,1], s € I,
|()" - Lg,T)_lsle,O =< C|S £,0» (7.79)
(A — Lg,T)_lsle,l <C(1+ |A|)2|s|e,—1' .
Proof. Take ¢, in Lemma 7.7. If A € R, A < —2¢5, fors € I, we have
Re((LZ’,T —A)S, 8)e0 = clls|§’0. (7.80)
So
Isle.0 < 1 I(L2 7 — A)sls0. (7.81)
Since |s|¢,0 < c(¢)|s]o for c(e) > 0,
Islo < sle0 < 7 (L2 7 = Msleo < c(e)er (L2 — Vslo. (7.82)

So (LS”T — M) lexistsfor A € R, A < —2¢5.
SetA =a +ib € C. Then by Lemma 7.7,

|((L2,T —A)S$,8)e,0

z max{Re(Lg’,Ts, $)e,0 — a|s|§,0, |Im(L2,TS’ 5)e0 — b|S|§,0|}

Sleo + 1DlIs5 0}
(7.83)

> max{cy|s|2, — (c2 + a)ls

2
£,0° —C3|S &1

Set
CcCA) = inﬂg max{ct> — (ca + a), —cat + |b|}. (7.84)
1€R,
1>1

If ¢ > 0is small enough, we can get

co = inf C(A) > 0. (7.85)
AeU
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Since [se,0 < [s]e,1. if the resolvent (A — L} )" exists, then
|(A = L3 1) sleo < 5 ' Isle,0- (7.86)

From (7.86), if A’ € U, |A’ — A| < ¢o/2, then the resolvent (A’ — L3 ;)" exists. By
(7.82), we get the first inequality of (7.79).
For g € R, A9 < —2cp and s € I, by Lemma 7.7, we have

{(ho = L 7)s.8)e0l = cals|Z;. (7.87)

Following the same process in (5.30)—(5.34), we get the second estimate of (7.79).
The proof of Lemma 7.8 is complete. O

As in Lemma 5.17, since [Q, L3 -7 has the same structure as L3 for O € Dy,
for any k € N fixed, there exists C; > 0 such that for ¢ € (0, 1], Ql, ...,0r €Dy
and s, s’ € T2, we have

([Q1.[Q2. - [Qk. LI 7). .. NIs. 8 )eol < Cilsleals'|er- (7.88)

Then using the proof of Lemma 5.18, we can get the Lemma as follows.

Lemma 7.9. For any ¢ € (0, 1], A satisfies (7.78) and m € N, there exist Cy, > 0
and py € N, such that

(A — L] T) Sls,m-H <Cn(l+ M|)pmls|s,m' (7.89)
Set e
I
['=9U = JA € C:Re(}) = m(z) — 2 (7.90)
4c
and
I'={1eC:|Imi| <c}. (7.91)

Thenthe map A +—> A2 sends IV to . Let A = —ATY +D§0’2. ForAeTl,k,meN
and k < m, from Lemma 7.9, there exist C; > 0 and p;n > 0 such that

AR = L) sle0 < 1O = L3 7)ok
< Cr(1+ [ADPm|(h — L2 7)™ s, (7.92)
< Cie(L+ [A)?[s]:0.
Denote by La’; the formal adjoint of L3 oT with respect to the usual Hermitian

product in 7°. Then L oT ~ has the same structure as L3 7 except that we replace the
operators fPA,if, byiyr, and fPA. Fors € 10, se

15120 = / Is(U, x)g:(U)2 9"V dvry (U)dvy (x). (7.93)
Yo bX Yo
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From the above analysis associated to | - || o, we obtain (7.92) for LS; and | - [{ o-
Taking adjoint with respect to the usual Hermitian product in 7°, we have

(A= L2 )™ AKs|eo < Ce(1+ [ADP7 s 0. (7.94)

So fork,k’,m € N and m > k + k', there exists Ci x > 0, such that

, )" tm—1) [ _ o
|A"exp(—L;Z’,T>A’°s|s,o=‘ s [ ak G- L2k

&,0

< ck,k/( / (1 + |A|>Pf’ndx)|s|e,o
r

= C"""(/rf (1 + |A2|)P’mdx)|s|s,0 < Clsle0-
(7.95)

Take p € N. Let J g’yo be the set of square integrable sections of

ATVERS(Nyey) ® LY*®S(TX, Lx) over

1
{(U’x)GTonXXyo;xeXyo’|U|EP—I-E%- (7.96)
We equip J 1(7), y, With the Hermitian product for s € J 1(9), o>
|S|%p),0 = / . f Is(U, X)|2dvaOydvx. (7.97)
|U|§P+§ XyO

Obviously, there exists C > 0 such that forany p e N, s € J g,yo’

Is|(py,0 < I8]eo < C(1 + P)l/|s|(p),0~ (7.98)

By (7.95) and (7.98), we find for any k < m, k' < m’, there exists C’ > 0 such

that fore € (0,1], p e N, s € ng,yo’

|Ak exp(—Lg,T)Ak Slipyo < Ak exp(—Lg,T)Ak S o <C'(1+ p)l Is](p),0-

’ (7.99)
Thus, following the same process in (5.143)—(5.145), for k,k’ € N there exists
C > 0,r > Osuch that fore € (0,1], p € N,

sup Al Al ey exp(—L2 ) (U, x), (U, x)| < C(1 + p)".
[ULIU |<p+1/4 (7.100)
7.1

So we get the bounds in (7.61) with C = 0.
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By (7.9) and (7.11), we write
Gu(L3 ) (U, x). (U x))

+o0 ., 02 dv
=/_oo cos (ﬁv,/Lg”T)((U,x),(U,x))e 2(1—f(ﬁv))m. (7.101)

Lemma 7.10. There exist C1,Cy > 0, r > 0, such that for ¢ € (0,1], m,m’ € N,

sup 19508, Gu(L2 1) (U, X), (U, x))]

|Bl<m,|B"|<m’

C
<Ci(1+|U|+|U'))" exp (——2) . (7.102)
u

Proof. After replacing exp(—LS’T) to Gy (Lg,T) in (7.95)—(7.100) and using (7.22),
we get Lemma 7.10. 0

If |/uv| < «a/2, then f(4/uv) = 0. Using finite propagation speed of the
hyperbolic equation for the solution of hyperbolic equations for cos(s ,/ Lg ) (cf.[19,
§7.8], [32, §4.4]), there exists a constant C6 > 0, such that

Gu(L3 1) ((U.x), (U'.x")) = exp(L3 1)((U.x). (U, ")), (7.103)

if [U-U'| > C/u.
Then by (7.103) and Lemma 7.10, For m, m’ € N, there exists C1, C, > 0,7 > 0,
such that for ¢ € (0, 1],

sup (03, exp(—L2 ) (U, x), (U,
|Bl<m,|B'|<m’

C|U - U'?

sc1(1+|U|+|U/|)rexp(— o7
0

). (7.104)

So we get the bounds in (7.61).

ForU € Ty,Y,setU = U, fp. Let | - |ox be the limit norm of | - [, x as & — 0
for k € {—1,0, 1}. Note that all the estimates in this subsection work for ¢ = 0. For
k €{—1,0,1}and k" € N, set

I = (s e IF U e I* for || < k).

Fors € Iéc’k/, set
2
I315.ceiey = D 1Uslo s (7.105)

la| <k’

Lemma 7.11. There exist C > 0, k, k' € N such that fors € I,

[a—L20)" = (=137 ]| < ce(t+ AN sloowr.  (7.106)
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Proof. Clearly,
(A=L27) " =(=Lyp) " = (A =L2p) T (Lip =L ) (A=L3 7)™ (7.107)
Since | - |¢,0 < | - |o,0, then by (7.52),

((L2r = L37)ss) | < Colsloals'ler. (7.108)

which implies that

‘(LS,T - Lg,T)sL_1 < Celslora)- (7.109)
On the other hand, we have
‘([U,-l, [ [Us, . LS,T]---]S,S/>]‘OJO < Cplsloals'lo.r. (7.110)
From (7.110) and the argument as in the proof of Theorem 5.18, we obtain

(A= L3 7)™ s|o 0 < COU+1A) Islo.00- (7.111)

This completes the proof of Lemma 7.11. 0

By (7.98) and Lemma 7.11, there exists r € N for s € Jz(a),yo’

(A= L27) ™ = (A= L3 7) 7 )s] (0 = ca(1+ 1A) (A + ) Isl (0. (7-112)
So there exists C > 0, r € N, such that fore € (0, 1], p € N,
[(exp (= Li7) —exp (= L3 7)) )0 = Ce(l + p)Isl(p).0- (7.113)

By the same process in (5.118)—(5.121), there exist ¢ > 0,C > 0,7 € N, such
that for any (U, x), (U, x") € Ty, Y x X,,, € € (0,1],

(exp (= L27) —exp (= L3 7)) ((U.x). (U". x"))]
< ce@mYHEDTH L LU 4 U'|) exp (= CIU = U'P). (7.114)

Then the proof of Theorem 7.5 is complete. 0
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8. Proof of Theorem 4.6(iii)
In this section, we use the notations and assumptions in Section 3.2 and 7.

8.1. Localization of the problem near w L(V&). We replace T by u and T/e

by T".
By Lemma 7.1, there exist Cy, C> > 0, such that forany z, z’ € Z, andu € (0, 1],
T >1,
- uZ C T/2
‘GuZ/T/Z (ﬁB/T/)(Z,Z,) < Ciexp ( - 12 ), 8.1
and
~ ~ C T/2
V5T ¢Gyoyra (B, /T,,T/)]‘ < Crexp ( -3 ) (8.2)

We trivialize the bundle JT;‘A(T*S)@)S(TZ, Lz) as in Section 7.2. By (7.35),
we can get
L;/T’,u == u28u2Li/T/,18_1. (83)

u2

Comparing with (7.42), there exists C > 0, such that for |U| < «p/4,

|exp (= u2BR7,) (7 (U, ), (U.)ky (0. U)

3 C T/Z
— exp ( — uzLi/T/,l)(g LU, x), U, x))‘ < Cexp ( — zuz ) (8.4)
Then we can replace the fiber Z by 7)Y x X, for yo € V&.

8.2. Proof of Theorem 4.6(iii). We will use the notation of Section 7.2 with ¢
replaced by 1/7’, and T by 1. By Lemma 7.4, we see that as 7/ — +00

L?/T’,l - L(3),1' (8.5)

Letexp(—u®L’ 1)((U,x), (U',x) (U, x), (U'x) € Ty, Y x Xy) (i =1,2,3)
be the smooth kernel associated to the operator exp(—uzLi,T) with respect to
dvr, vy (U')dvx, (x'). Then by (7.46),

Vs /yg / UeN, /X5uzﬁ[g exp (— “2L1/T/,1)(g_1(U’x)’ U, x) )]
|U|<ap/4
74} -dvygva(U)de(x)

=Yg /Yg/ Uen, /XETyg(Suz'Fr[gexp(—uzLi’/T,,l)(g_l(U,x),(U,x))]
U|<T"ao/4
0 - dvysduy (U)dvx (x). (8.6)
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By (8.6) and the argument of Section 7.2, to calculate the asymptotic of the left hand

side of (8.6) as u — O uniformly in 7" > 1, we have to find the asymptotic as u — 0

of

~ 7 273 -1 max
vs [ [ ervesaTifgexnciLy (e W0, 0.0)
UeN Jx
-doy(U)dvyx(x). (8.7)
The following lemma is a modification of Lemma 7.5.

Lemma 8.1. There exist C1,Cy > 0, p,r € N such that for any (U, x), (U, x’) €
T),Y x Xy, €€[0,1], u € (0,1],

|u? exp (— ung”l)((U,x), U'.x")|

U—U/2+dXx,X/2
§C1(1+|U|+|U/|)r-exp(—C2| | (x, ) ) (8.3)

u2

Proof. By (7.95),
|Ak exp (— ung”l)Ak/s|8’0 < C(/lle_”z’l(l + |/\|)pmd)t)|s|g,0

< Cu—2pm—2(/ e 1+ |)L|)p;”a’k)|s|g,o
u?T

< Cu_zp’”_2|s|8,0.

(8.9)
So, there exists p € N, such that
|upAk exp(—ung,l)Ak/sL’O < C|s]e.0- (8.10)
Following the process in (7.96)—(7.100), we have
[u? exp(—u? L )((U.x). (U".x")| = CA+ U]+ |U')". (8.11)
Following the process in (7.101)—(7.104), We get Lemma 8.1. ]

Let Nxe,x be the normal bundle to X% in X. We identify Nxes,x to the
orthogonal bundle to 7X¢ in TX. Let g¥¥ be the metric on Nye /x induced
by g7X. Let duy, be the Riemannian volume form on (Ny /X gvx).

ForU € T),Y, x € X8,V € Nxe/x, |[U[,|V| < ag/4, let kx(U,x,V) be
defined by

dvx(U,x, V) =kx(U,x,V)dunye, (V)dvxs(x). (8.12)
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Set n’ = dim Z%. By standard results on heat kernel (cf. [4, Theorem 6.11]), there
exist smooth functions a%. _,,(x),...,a%,(x)(x € W&) such that as u — 0, for

g
x € X3,,

=~ 273 -1 max
ﬁENx,UENy, SuzTr[g exp ( —u Ll/T’,l)(g U, x,V),U,x, V))]
[ULIVI<ap/4

0
kx(U.x. V)dvoyydoy, = Y ap (0w + O@). (8.13)

j=—n’

where the a’T,’ j (x) only depend on the operator Li’ T/ 1 and its higher derivatives
on x. By (8.5), a7, ;(x) is continuous on 7" € [1, +o0].

By (7.29), (8.5)—(8.8) and (8.13), there exist ar’,; depending continuously on
T’ € [1, +00] such that for any u € (0, 1], T’ € [1, +00],

0
‘wsﬁ[g exp (— B;/T,,T,)] — Z aT/,juj| <Cu. (8.14)
j=-n
Since ¢ = u/T’, (8.14) is reformulated by
’wsTr[g exp (— B;,T,)] - Z ars (sT’)J‘ <CeT'. (8.15)
j=-n’
Following the process in (6.6)—(6.8), we have

‘{wsﬁ[g exp(—B;,T/)]}dT/ _ 20: [aT/,j]dT/(sT/)j‘ <Cs. (8.16)

j=-n

For T’ > 1 fixed, by Theorem 2.2 and (4.20), we have

tim {ysTgexp (~ 5]}
= _/Zg ya(T') A chg (LIZ/27vLIZ/2) Achg (E.VE). (8.17)
From (8.15) and (8.17),
lar ;1T =0 if j <1,

, 1/2 (8.18)
lazr0]?T :_/ ya(T') Achg (LY, VEZ7) Achg (E, VE).
VA3

Since T’ = €T,
lar: ;17 = e Mar ;197" (8.19)
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From (8.18) and (8.19), comparing the coefficients of d T in (8.15), we have

~ , daTr
'{wsTr[g exp (- Bs,T/s)]}
+g—1/ ya(T/e) A chg (LY, VEZ") Achg (E.VE)| < €. (820)
ze

By (7.2) and (8.20), we get Theorem 4.6(iii). L]

9. Proof of Theorem 4.6(iv)

In this section, we prove Theorem 4.6(iv) by following the process of [5, Section IX]
and [26, Section 9]. In Section 9.1, as in Section 7.1, we reduce the problem to a
local problem near ;1 (V#). In Section 9.2, we study the matrix structure of Lg’T
as in Section 5.2. In Section 9.3, we prove Theorem 4.6(iv).

We use the same notation as in Sections 5, 7 and the assumptions in Section 3.2.

9.1. Finite propagation speed and localization.

Proposition 9.1. There exist C >0, C' > 0,8 > 0, Ty > 1, suchthat for0 < ¢ < 1,
T > T,
o o~ ) daT C
{vsTeGoB,7)]} | = - ©.1)

Proof. As we noted in Section 6, if we replace Br by B’ and B, to B3, everything
in Section 5 works well. So thereexist C > 0,6 > 0, To > 1, suchthatfor0 < ¢ <1,
T =Ty,

~[ ~ ~[ ~ C
‘wsTr[gng (2B}, /8)] - wsTr[gng (5232)]‘ <5 9.2)
Since the second term above does not involve d T' part, by (7.1) and following the
argument in (6.5)—(6.8), we get Proposition 9.1. O

By Proposition 9.1, to establish Theorem 4.6(iv), we only need to prove the
following result.

Theorem 9.2. Thereexist C > 0,C’ > 0,8 > 0, and Ty > 1 such that for0 < ¢ < 1,
T>T,
~T ~ dT C
{usTieFe(B,7)]} | = e 9.3)

By the finite propagation speed as in (7.27), if x € W, ng (B;,T / 2)(x,-) only
depends on the restriction of B;,T/a to 7Y (BY (m1x, @)).

Now we can use the same argument as discussed in (7.27)—(7.29) to know the
proof of Theorem 9.2 is local near ;1 (V¥).
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9.2. The matrix structure of the operator L g’ r asT — +oo. We use the same
trivialization and notations as in Section 7.1.
By (7.46),

/Yg /UGNy, ﬁ[gfﬁaz(L;,T)(g_l(U’x)v W, X))] dUNdeyg
Ul<eo/4

_ /Y g / veny, T gFa (L) (67 W), (U ) | duwy . O4)

|U|<ap/4e

Recall that the vector bundle K was defined in the argument before (7.34) and the
operator S, was defined in (7.37). Let IFSO be the vector space of square integrable

sections of A(T*VE)RS(Nyz/y)RS; K ® L;/z over Ty, Y. Then F? is a Hilbert
subspace of 1°. Let F? + be its orthogonal complement in /°. Let p, be the
orthogonal projection operator from 7% on F?. Set p- = 1 — p,. Thenif s € 1°,

pes(U) = PR s(U,) UeT),Y. (9.5)

Put
Eer = peLrpe.  For = peLl Dy

1

(9.6)
Ga,T = P;‘Lg,TPa, H&‘,T = De LS,ij_'

Then we write LS,T in matrix form with respect to the splitting /% = F? @ F -+

E F,
3 _ e,T e,T
Lir = (Gs,T Hg,r) ©.7)

The following lemma is an analogue of Proposition 5.7.

Lemma 9.3. There exist operators E,, Fe, Go, H such that as T — oo,

Ee,T = Ee + O(I/T)’ Fs,T = TFs + 0(1)’

) 9.8)
Ger =TG, + O(1), H.,7 =T“H.+ O(T).
Set
0. = pz(eU)RsSs_l[DX,sDH n ngz’"]sa. 9.9)
0 0,L
Then Q¢ maps F; into F;°~. Moreover,
Fe = peQep;
Gs = py Qepe, 9.10)

He = pH(p*(lUNDL? + (1 — p*(eU) DE2) pi-.
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Proof. From (7.1), (7.3), (7.38) and (7.40), we find the coefficient of T2 in the
expansion of Lg”T is given by

Hy = (1- p*(e|U) P DE2PRA + p2(e|U) DY 9.11)
When p(e|U|) # 0, K.y = ker Dgxl}z' So
He = P ((1 = p2eUD) DY + p* (el UDDY) PGt (9.12)

Using (9.5), we see that (9.12) fits with the last formula in (9.10).
By (7.1), (7.3), (7.38) and (7.40), we find that the coefficient of T in the expansion
of L] 1 is the operator Q.

Using (9.9), it is clear that Q. maps IFSO into IFS L Also (9.8) and the remaining
equations in (9.10) follow.
The proof of Theorem 9.3 is complete. O

Clearly, for U € T),Y, H.y, the operator H, at U, is an elliptic operator acting
along X,,.

Proposition 9.4. For any ¢ > 0,
ker Hoy = A(T*VE)RS(Nye,y)@Key ® L2, (9.13)
Proof. By (9.10),if s € A(T*V&)®S(Nye)y)®K.y ® Ly/?, then
Hgs = 0. (9.14)
The operator H,y is self-adjoint and nonnegative. Therefore if H.s = 0, then
PR (lUNDE PR s = 0,

PR (1= p2(eU)DE2 PR s = 0.

&

(9.15)

If p?(e|U|) # 0, we deduce from the first identity in (9.15) that Pslfjj‘s =0,
ie.s € A(T*Vg)®8(Nyg/Y)®K€U ® L;,/z. If p?(¢|U|) = 0, by the second
identity in (9.15), PEI;’LS € ker D;‘O. Using (7.34), we deduce that PSIE’J‘S = 0,
ie.s € A(T*VE)RS(Nye)y)®Key @ LY.

The proof of proposition 9.4 is complete. O

9.3. Proof of Theorem 9.2. For s € I, put

K,L 2
eU s|€,0

+ 3 V820 + T2 PVEZOEPRAS2 0 (9.16)
- .

1

2 . K .12 2
|s|e,T,1 = |P6US|8,0 + T |P
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Lemma 9.5. There exist ¢1,¢2,¢3,¢4 > 0, Tg > 1, such that for any s, s’ € I with
compact support, € € (0,1], T > Ty, we have

3 2 2
Re(L; 15,8)c0 = C1lslzry — c2lslz o
|Im(Lg”Ts,s)6,0| < c3lsler1lSle0s 9.17)
3
(LZrs 8 )s0l = calsleralsler-

Proof. By (7.1), (7.3), (7.38) and (7.40), the 2-order term of the differential operator
Lg,T is a fiberwise elliptic operator

T2H, + ATY, (9.18)

From (9.9), since K is a vector bundle over 7),Y x S, for s € I with compact
support, there exists C; > 0, such that

(H PKts, PXYs), o = Ci I PE s 2, (9.19)

Since H, is a fiberwise selfadjoint elliptic operator along the fibers X, from the
elliptic estimates, there exist C,, C3 > 0, such that

(HePXts, PRts) g = C Y |OVEZ®E PIts)2 ) — Gl PR s 2. (920)
i
From (9.19) and (9.20), there exists C4 > 0, such that
(H.PXts, PXs), o > C4(Z |OVSZ®E pIts |2, + |P£’J‘s|§’0). (9.21)
i

By (7.76), there exist Cs, Cg > 0, such that

(ATYs.5),0= Cs > |Vy,sI20— Cels|2,. (9.22)
p

Then there exist C{, C5 > 0, such that
(T?He + ATV )s,8)60 = C{lsI2 7.1 — C3ls12,. (9.23)
By Lemma 7.6 and (9.9), there exist C > 0, such that
(TQes.s)e0l = Cls £,0- 9.24)
Then Lemma 9.5 follows from (7.76), (9.23) and (9.24). ]

e, 1 |S

Set D, = {PX o, PK + KLy, pKt pELyOX®EPpKLy e B, be the
operator from [, to itself,

Ee = E.— F:H;'G,. (9.25)

Following the same argument in (5.72)—(5.133), we can get an analogue of
Theorem 5.15.
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Theorem 9.6. There exist C > 0, § > 0, and Ty > 1 such that for 0 < ¢ < 1,
T > T,

~r = ~r = C
|UsTr[gF 2 (L) )] — ¥sTi[gF2(Ee)]| < 75 (9.26)

Since there is no d T part in the second term above, as in (6.5)—(6.8), we get
Theorem 9.2.
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