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Graph products of operator algebras

Martijn Caspers™ and Pierre Fima**

Abstract. Graph products for groups were defined by Green in her thesis [25] as a generalization
of both Cartesian and free products. In this paper we define the corresponding graph product
for reduced and maximal C*-algebras, von Neumann algebras and quantum groups. We prove
stability properties including permanence of II; -factors, the Haagerup property, exactness and,
under suitable conditions, the property of rapid decay for quantum groups.
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1. Introduction

A graph product is a group theoretical construction starting from a simplicial graph
with a discrete group associated to each vertex. The graph product construction
results in a new group and special cases depending on the graph are free products and
Cartesian products. Important examples of graph products are right angled Coxeter
groups and right angled Artin groups.

Graph products preserve many important group theoretical properties. This yields
important new examples of groups having such properties and gives (alternative)
proofs of such properties for existing groups. For instance the graph product preserves
soficity [16], Haagerup property [2], residual finiteness [25], rapid decay [17],
linearity [27] and many other properties, see e.g. [3, 15,26].

Whereas many of the stability properties above have important consequences for
operator algebras, the actual operator algebras of graph products have been unexplored
so far. The current paper develops the theory of reduced and universal/maximal
C*-algebraic graph products as well as the graph product of von Neumann algebras
and quantum groups. These objects generalize free products by adding commutation
relations that are dictated by the graph.
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**P. F. is supported by the ANR grants NEUMANN and OSQPI.
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Free products of operator algebras play a central role in von Neumann and
C*-algebra theory; in particular in the context of free probability and deformation
and rigidity theory. Operator algebraic graph products — which give in a suitable
sense a notion of “partial freeness” being quantized in terms of the number of edges
of the graph — provide new examples that are closely related to these areas. Such
ideas appeared in fact already in an early stage of free probability theory, for example
in [35] Speicher proves a mixed Fermion—Boson analogue of his central limit theorem
(used in [9] to show stability of the Connes embedding problem for graph products).
Other important implicit occurrences of graph products can be found in the work by
Bozejko and Speicher on Coxeter groups, see e.g. [8]. Also in [1] other extensions of
free probability using graphs were investigated by Accardi, Lenczewski and Salapata.
In this context we also mention the current parallel developments on bi-freeness [40].

We shall relate the basic properties of graph products of operator alge-
bras/quantum groups to the ones of their vertices. This includes Tomita—Takesaki
theory, commutants, GNS-representations, (co)representation theory, et cetera. We
also show that any graph product of von Neumann algebras decomposes inductively
into amalgamated free products of the von Neumann algebras at its edges. For
notation we refer to Section 3.

Theorem 1.1. Let T" be a simplicial graph with von Neumann algebras My,,v € VT
and graph product von Neumann algebra M. Fix v € VI'. Let My be the graph
product von Neumann algebra given by Star(v). Let My be the graph product von
Neumann algebra given by I'\{v}. Let N be the graph product von Neumann algebra
given by Link(v). Then M >~ My %y M,.

There is a corresponding result of Theorem 1.1 for C*-algebras, see Section 3.
Theorem 1.1 implies that any property of a von Neumann algebra that is being
preserved by arbitrary amalgamated free products is automatically preserved by the
graph product. However, there is a large number of properties which are not (or not
known to be) preserved by amalgamated free products. For example, the Haagerup
property is known not to be preserved by arbitrary amalgamated free products. But
in fact we prove the following.

Theorem 1.2. Let T" be a simplicial graph with von Neumann algebras My, v € VT.
Let M be the graph product von Neumann algebra. Then,

(1) Suppose that every My, is o -finite. M has the Haagerup property if and only if for
everyv € VI', My, has the Haagerup property.

(2) Mis a Il factor if for every v € VI', My, is a 111 factor.

While proving stability of the Haagerup property we also included a canonical
proof of extending completely positive maps to graph (and in particular free) products
by considering their Stinespring dilations, see Proposition 3.30. In the case of
quantum groups we find the following stability properties:
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Theorem 1.3. Let I' be a simplicial graph with compact quantum groups
Gy,v € VI. Let G be its graph product and let G, G be their duals. Then,

() G has the Haagerup property if and only if for every v € VT, @v has the
Haagerup property.

(2) Let T be finite. If for everyv € VT, @v is a classical group with the property of
Rapid Decay (RD) or a quantum group with polynomial growth, then the graph
product G has (RD).

(3) Let T" be finite Xv\ithout edges. Then G = xyeyrGy. Iffor everyv € VT, @v
has (RD), then G has (RD). i.e. (RD) is preserved by finite free products.

It must be emphasized that for compact quantum groups with tracial Haar
state (i.e. of so-called Kac type) Theorem 1.3(1) follows from Theorem 1.2(1)
by [19, Theorem 6.7]. However, it is unknown if the result of [19, Theorem 6.7]
extends beyond Kac type quantum groups. In fact [10] shows that the behaviour of
approximation properties outside the Kac case can be quite different. In the group
case our result gives an alternative proof of stability of the Haagerup property under
graph products, which was first proved in [2].

Acknowledgements. The authors thank Amaury Freslon for useful comments on
Section 5. The authors thank the anonymous referees for their comments.

Structure of this paper. Section 2 introduces the basic notions for graph products.
In Section 3 we develop the theory of graph products of operator algebras: graph
products of Hilbert spaces, von Neumann algebras and maximal and reduced graph
products of C*-algebras, study their representation theory and develop the unscrewing
technique as explained in Theorem 1.1. We also prove some stability properties such
as exactness for reduced graph products of C*-algebras and the Haagerup property
for von Neumann algebras. In Section 4 we define graph products of quantum groups,
study their representation theory and prove the stability of the Haagerup property.
Section 5 proves stability of rapid decay for quantum groups under graph products.

General notation and preliminaries. We denote M, for the n x n matrices
over C. We use bold face characters A and M for operator algebras and calligraphic
characters H and /C for Hilbert spaces. The scalar product on Hilbert spaces is
supposed to be linear in the first variable. The symbol ® denotes the tensor product
of Hilbert spaces, the minimal tensor product of C*-algebras or von Neumann algebras

and it should be natural from the context which of these is meant. The symbol ®

will denote the maximal tensor product of C*-algebras. A state on a C*-algebra or
more generally a completely positive map between C*-algebras is called GNS-faithful
if the representation given by the GNS-construction is faithful. Faithful states are
GNS-faithful but the converse is false.
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2. Preliminaries

Let I' be a simplicial graph. This means that I' is given by a vertex set I'T" and edge
set ET C VI x VI \{(v,v) : v e VI'}. We assume that the graph is non-oriented
in the sense that (v, w) € ET if and only if (w,v) € ET, forall v,w € VI'. For
v € VT we write Link(v) for the set of all w € VT such that (v, w) € ET". We set
Star(v) = Link(v) U {v}. Let A C VT be a subset of vertices. The full subgraph
of T with vertex set A is the graph having vertex set A and w, w’ € A are connected
by an edge if and only if (w,w’) € ET. We slightly abuse notation and also use
Link(v) and Star(v) for the full subgraphs of I" with respective vertex sets Link(v)
and Star(v). It shall always be clear from the context if Link(v) (or Star(v)) is a
graph or a vertex set.

Convention. From this point we will say that I'y € TI" is a subgraph if 'y is the full
subgraph of I" with vertex set V' T'y.

Definition 2.1. A clique in the graph I" is a subgraph Iy € I" such that for every
v,V € VT with v # v’ we have (v,v’) € ETy (so a complete subgraph of T'). In
particular every single vertex of I" forms a clique (with no edges). By convention
the empty graph is a clique. We denote Cliq(s) for all cliques in I" with exactly s
vertices.

Definition 2.2. For each v € VT let G, be a discrete group. The graph product Gr
is defined as the group obtained from the free product of G,,v € VI by adding the
relations

[s,f] = 1foralls € Gy,t € Gy and all v, w € VT such that (v, w) € ET.

A word is a finite sequence v = (v, ..., v,) of elements in V' I". We shall commonly
use bold face notation for words and write v; for the entries of v. The collection of
words is denoted by }V and by convention the empty word is not included in W.
We say that two words v and w are equivalent if they are equivalent modulo the
equivalence relation generated by the two relations:

I (U1,...,0i, V415002, Un) = (U1, ..., Vi, Vig2,...,Vy) ifv; = vVigq,
I (v, Vi, Vig1,...,00) = (U1, ..o, Vig1, Viy ..., Uy) if v; € Link(v;41).
(2.1)
Moreover, we say that two words v and w are type Il equivalent if they are equivalent
modulo the sub-equivalence relation generated by the relation II. A word v € W is
reduced if the following statement holds:
Suppose that there are k < [ such that vy = vy, 22)
then we do not have that all vgq,...,v;—1 € Star(vg). ’
We let Wieq be the set of all reduced words. Observe that if v is reduced and type 11
equivalent to v’ then also V' is reduced.
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Lemma 2.3. We have,

(1) Every word v is equivalent to a reduced word w = (wy, ..., Wy).

(2) If v is also equivalent to a reduced word w', then the lengths of w and w' are
equal.

(3) Moreover, there exists a permutation o of {1, ...,n} such that

w = (wa(l)v Wg(2)s -« +» wa(n))-

(4) There is a unique such o if we impose the condition that if k > | and wy = wy,
then o (k) > o(l).

Proof. (1) Note that any word that can not be made shorter my means of
permutations and cancellations (2.1) is reduced. Hence, statement (1) follows from
an obvious induction.

(2) This is essentially the normal form theorem [25, Theorem 3.9]. It can be
derived as follows. For each v € VT let G, be the group Rt with multiplication.
For x € R we shall explicitly write x, to identify it as an element of G,,. Associate
to the word w of length n the group element gy := 24,2y, ... 2y, in the graph
product of the groups G, v € VT, see Definition 2.2. Since w is reduced, it follows
that gy is reduced in the sense of [25]. Assume that w’ has length m. Since w is
equivalent to W, there exists elements xy, ..., X, with x; € G, and x; > 1 such
that gy is equivalent to the graph product element gy = X7 ... )lcm (this can easily
be seen by checking this on each step (2.1) to obtain this equivalence, in particular x;
is either a power or a root of 2). Since W’ is reduced, it follows that gy is reduced.
Hence, gy and g, are reduced equivalent elements in the graph product of G,,,v € T’
and by the normal form Theorem [25, Theorem 3.9], this implies that m = n. In
fact [25, Theorem 3.9] implies also that x; = 2.

(3) Let m be the total number of times that a given v appears in w. We need to
show that v appears exactly m times in w'. Suppose that this is not the case. Since w
and W’ have the same word length we may assume, without loss of generality, that it
appears less than m times in w’ since else, we may change v to another vertex for which
this is true. But since w’ is obtained from w through the equivalences (2.1) this means
that there exists some / > k such that w; = wy = v and wg 41, ..., w;—1 € Star(v)
which contradicts the fact that w is reduced.

(4) Writew’ = (w],...,w,) and note that any permutation o of {1, ..., n} such
that w' = (Wg (1), - - - » W (n)) induces, for any vertex w occurring in the word w, a
bijection from K, := {i | w; = w} to Ky, := {i | w; = w}. There is a unique such
bijection which is moreover increasing. O

Let Wiin be a complete set of representatives of the reduced words under the
equivalence relation described above. We call an element of Wy, a minimal word.
It is then clear that every word v is equivalent to a unique minimal word w. Note
that W, excludes the empty word.
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3. Graph products of operator algebras

In this section we construct graph products of operator algebras. In case the graph I'
does not have edges, the graph product coincides with the free product for which
we refer to [39]. In addition, it is important to emphasize that our constructions
are different from [23]: indeed graph products impose commutation relations on the
resulting algebra which, in general, cannot be written in terms of the amalgamations
imposed by the constructions in [23].

3.1. The graph product Hilbert space. For all v € VT let H, be a Hilbert space
with a norm one vector &, € H,. Define H; = H, © C&, and let P, be the
orthogonal projection onto Hg. For v.e W4 we let,

Hy=Ho, ® - @H, .

By Lemma 2.3 we see that if v € W4 is equivalent to w € W4 then there exists a
uniquely determined unitary map,

Qv,w:/Hv%/Hw:fl®"'®En'_>§0(l)®"'®$a(n)s 3.1

where o is as in Lemma 2.3(4). Since every v € W,4 has a unique minimal form v’
we may simply write Qy, for Qy .
Define the graph product Hilbert space (H, Q) by:

H=CQo P Hu
WEWhin

For v € VI, let W, be the set of minimal reduced words w such that the
concatenation vw is still reduced and write W{ = W, \ W,,. Define

Hw) =CQa P He.
weEWy

We define the isometry U, : H, ® H(v) — H in the following way:

Uy : Hy @H(W) — H

£E®Q —Q
Hy ® Q i%;
£y @ Hy. —> Hu
HoO@Hy —> Quu(HS ® Hy)

Here the actions are understood naturally. Observe that, for any reduced word w, the
word vw is not reduced if and only if w is equivalent to a reduced word that starts
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with v. It follows that U, is surjective, hence unitary. Define, for v € VT, the
faithful unital normal *-homomorphism A, : B(H,) — B(H) by

Ay(x) = Uy(x @ 1)U, forall x € B(H,y).

Observe the A, intertwines the vector states wg, and wgq. Let & € H,. We use
&> : H, — C for the mapping n — (1, &y).

Proposition 3.1. Forallv € VT and all x € B(H,) one has:

(1) Ap(x)§2 = Py(x€y) + (x€v, &) €2,

(2) Av(x)§ = Py(x§) + (x§,60)2 forall § € M.

(3) Ap(x)E = Quyw(Py(x&y) ® &) + (x&y, E)E forallw € Wy, and all &€ € H,,.

4) If w € WE then there exists a unique w, € W, such that w >~ vw, are Il
equivalent and, for all £ € ‘H,, one has

Ao(X)§ = Quw, (Pox ®id) Q7 € + (§;x ®1d) Q7 €.

Moreover, the images of A, and A, commute whenever (v,v’) € ET.

Proof. The first part of the proposition is an immediate consequence of the definition
of U,.

(1) One has

Ay ()2 = Uy (x€y @ Q) = Uyp(Py(x8y) ® Q) + (x&y, &y)Uy(§y @ Q)
= Py(xéy) + (x&v, )2,

(2) Let £ € H2, one has
Ay (x)§ = Uyp(x§ ® 2) = Py(x) + (x§.§)Q.
(3) Letw € W, and § € H,, one has
Ay (x)§ = Uy(xéy ® &) = Quw(Py(x§y) ® &) + (x&v, &v)E.
(4) Letw, € Wy, & € HS and ) € H,,. We find

A’U(X)QUWU (%— ® 7)) = vau(Pv(x‘i:) X TI)) + (xg’gv”"

Hence, for all £ € Hyy,, one has

Ay (%) Quw, € = Quw, (Pox ® id)§ + (§7x ® id)E.

Since Qyw, : How, — Hy is unitary, this gives the result.
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We can now finish the proof of the proposition. Let v,v’ € VI be such that
(v,v") € ET. Let x € B(Hy) and y € B(H,). Writing

Ao (x) = Ay (x — (x&p, Ev) 1) + (xEv, §u)1
and A (X) = Ao (¥ = (¥Ev, Ev) 1) + (¥Eur. Eur) ]

we see that we may and will assume that (x£&,, &) = (y&y, &y) = 0. Note that this
implies that Py (x&,) = x&, and Py (¥€y) = y&y .

Let w be the unique reduced minimal word equivalent to (vv’). Then w = (vv’)
or w = (v'v). In both cases we find Qyy = Qyry 0 Z,

Ay (X) Ay (¥)Q2 = Ay (X) ¥y = Qoo (x6p ® yEy)
= Quv(Pu (y&w) ® x&y) = Ay (1) Ay (x)Q.

Let§ € H;,. One has

Av(X)Ay (1)§ = Ao (x)(Pv y§ + (y€,6)R2)
= Qv (x§y ® Py y§) + (¥E, §v)x&y
and Ay (¥)Au(x)§ = Ay (1) (Quv (x&p ® §)) = Aw (Y)(Qurv(§ ® X&)
= Quv(PyyE ® x&y) + (yE, &v)x&y
= Quu (x§y @ Py y€) + (¥E, Eu)xby = Ao (¥) A (¥)E.

Claim. Let (v,v') € ET andw € W,

(1) Suppose thatw € W, N W, and define wi,wy € W, such that v'w >~ wy
and vw >~ wy. Then wi € Wy, wo € Wy, vwy =~ v'wy and, for all n, € H;,
Nv € H,, and § € H,, one has

val (Mo ® Quw(nw ®E)) = Qv’wz (M @ Quw(ny ®E)).

(2) Suppose that w € Wy, \ Wy and define wy € Wy, wa € W, such that
w >~ v'wy and wy >~ vw. Then, wy € W, and wy € W, Let w3 € Wy such
that wy >~ v'ws. Forall ¢ € Hy, y € B(Hy), n € H;,

Ny & Qv’w1 (Pyy ®id) Q:/wlg = Q:WQU’W3 (Pyy ®id) Q:/W3 Quw(ny ® §)

and

Quw, (10 ® 55y ®id)Qy,, §) = (65 ®id) Q) Quw (1 ® £).

(3) Suppose thatw € Wy NW;, and define wy € Wy, wo € Wy, such thatw ~ v'wq
andw >~ vwy. Then, wy € WS and wy € WS,. Define w| € Wy and w), € Wy
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such that wy >~ vw' and w, >~ v'w),. One has

Quw, (Pox ® id) Q5 Qurw, (Pyry ®1d) Q5
= Quiw, (Pyy ®id) Q3 Quw, (Pox ® id) Q5.
(&3 x ®id) D, Quw, (Pory ®id) Q3.
= Quy Py ®id) Q] (E7x ® id)Q},,,.
Quw; (Pox ®id)Qy,, (57 ®id) Q7
= (&Y ®id)Q},,, Quw, (Pox ®id) Q5
Ex @id)Qy, 5,y ®id) Dy, = €y ®1d)Qy,, () x ®id)Q,,,.

Proof of the Claim. In each of the subclaims we let uq, ..., u, withu; € VI denote
(part of the) letters of w.

(1) We may assume that § = &, ® --- ® &, is a simple tensor product with

o / / / ! oo, /s o e
€w; € My, Letuj...u, and k be such that u)...u3v'u; _,...u, is minimal

with ... u) € Link(v') and w...u;, ~ w. Let u}...u; and my,my be
4 4 4 4 1,0 [ C] : 4 4

such that uwy...up vuy, L. Uy VU, 4. uy is minimal with wy..ooup, €

Link(v), u} ... u,, € Link(v’) and u}...u; =~ w (for notational convenience we

assume that m; < my, the other case can be treated similarly). Then,

val (nv X Qv’w(”v’ 029 E))
= val(nv ®$u/1 ®"'®§u§c @ N’ ®§“;c+1 ®®Eu£,)
= & ®"'®E"%1 ® Ny ®Eu;;ll+] ®...®gu%2 ® Ny ®E"Z¢2+1 ® - ® &y,

and using the fact that (v, v’) € ET the same computation shows that this expression
equals Qv’wz My ® Qyw(nw ® §)).

(2) We may assume that § = &, @ - ® &y, @ Ny @ &y ® - ® &y, and
that uy ... UV Ug4q ... U, is minimal with uq,...,u; € Link(v"). Then, letting
uj ...u, and [ be such that u ... ujvu; | ... u, is minimal, v’ ...u; € Link(v)
and u'y ... u), ~uy...up, we find:

Dy Qurws Py @ 1) Q. Quw(1y ® £)
= Q5 Quws (Porymy) @€y ® -+ ® &y @My ® &y @+ © &)
=Ny ®u; @+ @ &uy @ Puryny ®uyy @+ Q &y,
=1y ® Quw; Py ®1d) Q5 .
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And, letting v/ ... u,, be minimal and equivalent to u; . ..u, we have,

&y ®id) QY. Quw(y ® §)
=y @iy @& @ Q& @M, & ®&y,
= (Vo )y ® - By By ® by B ® by
= Quw; (M @ (Y1, §v)6uy ® - ® &u17)
= Quw; (v ® (§5y ®id) Q7 ).

(3) Assume thatg = Eul R R Eul ® év ® Eu1+1 e ® Euk ® Sv’ ® Euk+1 ®
< ®&y, withuy .. ujvug4y .. UR VU4 ... Uy minimal and uy, ..., u; € Link(v),
Uy, ...ug € Link(v’). Then, using (v,v’) € ET,

vaz (Pyx ® id) Q:wz Qv/wl (Pyy ®id) Q:’wls
= QUWZ(va () ld)Q:w2Eul R Q Euk X Pv/ygv/ (%) Euk-‘rl R gun
= gul ®"'®Eu1 ®va$v ®$u1+1 ®"'®Euk ®Pv’)’$v’ ®§uk+1 ®"'®Eun’

which equals Qyryw, (Pyry ®id) Q% Quw, (Pyx®id) Q.. by areverse computation.

v'w] AL/}
The other equalities follow in a similar way.

Remainder of the proof of the Proposition. Let w € W, N W, and consider the
minimal words wy, w, introduced in the first assertion of the Claim. For § € H,,
one has,

A () Ay (1€ = Ap(X) Quw(Vér ® &) = Quw; (x&y ® Quw(¥ér ® §))
= vaz Vér ® Quw(x§y ®E)) = A ()4 (x)E.

Let w € W, \ W, and consider the minimal words w;, w,, w3 introduced in the
second assertion of the Claim. One has,

Ay (XA (1)E = 2o (X) Qurwy (Prry ®1d)Qyry & + Ao (x) (5 y ®1d) Q7 &
= Quw (x& ® Qurw, (Pyy ®id) Q) )
+ Quw, (60 ® (E)y ®1id)Q}y,, €)
and Ay (¥)Ay(X)§ = Ay (1) Quw(xy ® &)
= Quw; (Pry ®id) Q. Quw(xEy ® §)
+ )y ®id) Qyry, Quw(xby ® £).

These two expressions are equal by the second assertion of the Claim. By symmetry,
this is also true when w € Wy, \ W,,. Finally, let w € W N WY, and consider the
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minimal words wy, W’1 , Wa, w/2 introduced in the third assertion of the Claim. One
has:

Ay () Ay (1)E = Ay (%) Qur, (Pyry @ 1) Q3 € + Au(X) (63 y ® id) Dy, &
= Quw, (Pox ®id) Q5. Qurw, (P y ® id) Q3
+ (£ x ®id) Q5 Quw, (Pory ® id) Q) €
+ Qo (Pox ®IDQ; | (£ y ® i) Qs
+(Ex ®id) Q) (5 y ® id) Q) &
and Ay () Ao (X)E = Ay (1) Quw, (Pox ®1d) Q5 € + A (0) (Ex ® id) Q3 &
= Quw, (Pory ® i) Q) Quw, (Pox ®id) Q5,6
+ &y ®id) D3y, Quw, (Pox ® id) Q5 &
+ Qo (Pry ®id)Qy,, (67 x ®1d) Q)
+ €y ®1d) Dy, (Erx ® id)Q;, €.

These two expressions are equal by the third assertion of the Claim. It concludes the
proof. 0

We can also define the right versions of the unitaries U,. Forv € VT, let WY be
the set of minimal reduced words w such that the concatenation wv is still reduced
and write WWY)¢ = Win \ W". Define

Hw)=Cea P H
WEWY
We define the isometry U, : H'(v) ® H, — H in the following way:
U):Hw)@Hy —H
QRE —Q
QRH > H®
Ho® & — He
Ha ® Hy —> Quo(Hy ® Hy)

As before, U, is unitary. Define, for v € VT, the faithful unital normal
sx-homomorphism p, : B(H,) — B(H) by py(x) = U)(1 ® x)(U))* for all
x € B(Hy). Observe the p, intertwines the vector states wg, and wg. The analogue
of Proposition 3.1 holds. We leave the details to the reader.
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Proposition 3.2. Forallv € VT and all x € B(H,) one has:

(1) pu(X)Q = Py(x§y) + (x§v, §u)S2.

(2) po(x)§ = Py(x§) + (x§, &) forall § € Hy,.

(3) pu(X)E = Quu(§ ® Py(x§y)) + (x&v.60)§ forallw € WY and all § € H,,.

(4) Letw € W)€ then there exists a unique w,, € YW° such that w >~ w' v and, for
all & € Hy, one has

pv(x)§ = Qw@v(id ®,va)Q:4)vE + (id ®$$X)Q::4}v5

Moreover, the images of p, and p, commute whenever (v,v') € ET.

Proposition 3.3. Let v,v' € VI and x € B(H,), y € B(Hy). One has
Ao (X))o () = po (Y)Ay(x)  whenever (v # v') or (v =" and xy = yx).

Proof. We may and will assume that (x&,,&,) = 0 = (y&,,&,). By Proposi-
tions 3.1 and 3.2, one has

vi’(xgv ® y&v) ifv 75 v,

Av(X) Py ()2 = Ay (x)(yEv) = {Pv(xyéu) + (xy&,,6)Q ifv =0

Moreover,

vi/(xév ® yév) ifv # v,

Pv (P) Ay (X)2 = py (¥)(x§y) = {Pv(yXEv) + (yxEn, £)Q ifv =

To finish the proof we need the following Claim.

Claim. Letv,v' € VI, w € W,,;, and § € H,,.

(1) Suppose thatw € YW, N WY Let wi,wa € W be such that wy ~ wv' and
Wy XX UW.

o Ifuwv' is reduced then wy € Wy, wo € WY and, for all ny € Ho, 1y € Hay,
one has

va1 My ® Qwv’(g ®ny)) = szv’(ng(nv X E) ® Nyr).

o If vwv' is not reduced then v = v/, w; = wy >~ vw >~ wv € WS N (WV)°©
and, for all x,y € B(Hy),

va(va ® id)Q:wav(g ® yév) = Qwv(id ®PvJ’)Q$vaw(x€v ® 5)
and (6, x ®1d) 9y, Quv(§E ® &) = (id ®E,y) Oy, Quw (xEy ® £).
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(2) Suppose thatw e W O(Wv/)c. Let wi,wy €W,in be such that w ~wiv' ~vw,.
o Ifwy € W, thenv = v/, w; € WY, w >~ vw; >~ wiv and wi = w, and, for
all x,y € B(Hy),
Quw, (x&y ® (i[d ®E; ) Dy 1) + Quw, (Pox ®id) Q5 Quiv(id ®Pyy) Oy &
= Quo((§)x ®id) Q5 & ® y§y)
+ Qv (Id ®Pyy) Q5o Qo (Pox ®id)Q, &,
(Erx ®id) Q7 Quiv(d®Puy)Qy oE = (d ®ETY)Qy,, Quwy (Pox ® id) Q5 £.

o Ifwi € WS write wi >~ vws, ws € W, then wy >~ w3v' € WY and,
Vx € B(Hy), y € B(Hy),

va2 (va ® id) Q:w2 le v/(id ®Pv/y) Q:il v/f
= le v/ (ld ®7Dv’y) Q:’I v/ vaz (va ® ld) Q:WQE’

(6 x ®id)Q},, Qu v (id @Pyy) Q. /&
= QW3U’(id ®Pv’y) 9;3 v’(é;x ® ld) Q:wzg’

Quws (Pox @ id)Qy,, (id @€ ) Q6
= (ld ®%—:/y)Q:1v/ vaz (va ® ld) Q:wzg’

(rx ®id)Qy,, ([d®E,y)Qy, & = (d®E; )y, (E)x ®id)Qy, &

Q) Ifw e W, N WY ywrite wy ~ wv', w > vWa, W1, Wy € Wnin. Then, wy € W,
wy € WY and, if ws € W is such that wy >~ vws, then we have wov' >~ ws
and, for all x € B(Hy), y € B(Hy),

QI)W3 (va ® id) Q:w3 Qwv/(‘i‘_ ® ygv/) = Qwv/ (va2 (,va ® id) Q:wzé & y%_v’) s
Ex® id)Q:m Qv (§ ® y&v) = Quow (653 ® id)Q:WQE ® yéur.

@) If w € Wy 01 OVY)E write w ~ wiv', wao =~ vw, wi,ws € Wy Then,
w1 € Wy, wy € (W”')C and, ifws € Wy, is such that wy ~ w3v/, then we have
w3 >~ vwy and, for all x € B(Hy), y € B(Hy),

Quvw (Xév &® lev’(id ®,Pv’y)Q::1v/§§-) = QW3v’(id ®Pv/y)Q:3v/ va(va ® &),
Quw, (X6 ® (I ®Ey)Qy, /) = (Id ®Ey) Dy Quw(xEy ® ).

The proof of the Claim is analogous to the proof of the Claim used in the proof
of Proposition 3.1 and we shall leave the details to the reader.

Remainder of the proof of the Proposition. Let w € Wy, and € € H,. We use
freely the results and notations of the Claim and Propositions 3.1 and 3.2.
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7 .
Case 1: w € W, N WY . If moreover vwv’ is reduced we have,

Av(x)pv’(y)g = Av(x)(Qwv’(E 029 y%—v’)) = QUWI (xi:v &® Qwv’(g ® ygv’))’
P (V) Ay (X)E = pu (1) (Quw(xEy ® §)) = Qwov (Quw(xEy ® ) ® ).

These two expressions are equal by the Claim. Suppose now that vwv’ is not reduced.
Then v = v’ and,

Ay (X)pp ()€ = Ay () (Qwv (§ ® yE&y))
= Quw(Pyx ®id) Q5 Qwi (E ® y&y)
+ (5, x ®id)Q;,, Qwo (E ® yEy),

Po (D) Ay(X)E = py(¥)(Quw(xEy ® §))
= Quw(id ®va)Q:<vv Quw(xéy ® §)
+ (id ®&,y) Dy Quw(xEy ® §).

These two expressions are equal by the Claim.

’
Case 2:w € W5 N (WV)¢. If moreover w; € W, then v = v/, wi = wy € WY,
W >~ VWi >~ w1v and,

APy (D)E = Ap(x) (Quyw (id @P ) QE E + (1d RELY) QL ,E)
= Quw, (Pox ® id) Q5 Quw v (id @Pyy) Q5 &
+ (§;x ®id)Q},,, Qw0 (d ®Pyy) Q5 €
+ Quw, (xEy ® (id ®EF ) Q% 4E).
Pv(P)Ay(x)E = py(y) (QUW1 (Pyx ® id) Q:wlé + (E:X ®id) Q:WIE)
= Qw1 (d ®Pyy) 9y, Quw, (Pox ® id) Q5 £
+ (id ®§:J’) Q;kvlvgvm (Pyx ® id) Q:ng
+ Qwio((E5x ® D) Q7 § ® yév).

These two expressions are equal by the Claim. Suppose now that w; € W5, w; ~
VW3, W3 € Whin. We have:

Ao () oo (P)E = Ay (x) (Quy v (([d @Py ) Q3 /6 + (1d @8 y) Qs E)
= Quw, (Pux ® id)Qj,,, Qw, v (([d ®Pyry) Qs /&
+ (£ x ®1d)Q},,, Qu, v (id @Py y) Qi /6
+ Quws (Pox ® id) Q. (iId ®E y) Q5 /€
+ (&) x ®id)Qy,, ([d ®E)y) Oy &
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Moreover, since wy € (W?')¢ and w, ~ w3v’, we find,
P (NAo()E = pur(9) (Quws (Pox ® 1) Q5,6 + (6] x ®1d) Q] £)
= Qu,v (i[d®Py y) Q% o Quw, (Pox ® id) Q5 &
+ (id ®& 1) Qo Qow, (Pox ® id) Q5 &
+ Quyr ([d®Pyy) Dy, (65 x @ id) Q5 €
+ (id @&y y) Oy (6 x ®1d) Oy, €

These two expressions are equal by the Claim.

Case 3:w € WS N WY, We have,
Ay (X) Py (1)§ = Ay (X)(Qwor (§ ® y§v))
= QUW3 (Pyx ® id) Q:w3 Qwv’(s ® yi:v’)
+(Ex ®d)Qy, Q€ VE),
por (M Av(VE = pur (1) (Quw, (Pox ®1d) Q7 € + (65 x ® id) Q5 €)
= Qwv’ (vaz (va &® ld) Q:wzg ® ysv’)
+ szv’(E:x ® id)Q;wzé ® yi‘-v"

These two expressions are equal by the Claim.

Case 4:w € W, N (WY)¢. We have,

Ay (%) oo (P)E = Ay (x) (Quy v (([d @Py y) Oy, /6 + (1d @8 y) Qs E)
= Quw (x&) ® Qu, v (Id ®Py y) Q5 /£)
+ Quw, (x& ® (id ®ES ) QD /),
pv (A (X)) = pr (YN Qow(xéy ® £))
= wa/(id ®’Pv’y)Q;kv3v/ Quw(xéy ® §)
+ (id ®&),y) Q1 Quw(¥Ey ® §).

These two expressions are equal by the Claim. O

3.2. The graph product C*-algebra. Forallv € VT, let A, be a unital C*-algebra.

3.2.1. The maximal graph product C*-algebra.

Definition 3.4. The maximal graph product C*-algebra Ar ,, is the universal unital
C*-algebra generated by the C*-algebras A, for v € VT and the relations

aya, = aya, foralla, € Ay, ay, € A, whenever (v,v') € ET.

Here the unit of Ar,, is presumed to agree with the unit of each A,.
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Remark 3.5. It is clear that Ar, is not {0} i.e. that the relations admit a non-
trivial representation as bounded operators. Indeed, for any family of representations
7y« Ay = B(Hy) and any family of norm one vectors &, € H,, the representations
Ty = Ayomy @ Ay — B(H), where H is the graph product Hilbert space of the family
of pointed Hilbert spaces (Hy,&y)veyr and Ay : B(Hy,) — B(H) are the unital
faithful morphisms defined in Section 3.1, satisfy the relations 7y (ay) Ty (@y) =
T (ay)Ty(ay) foralla, € Ay, ay € Ay and all v, v’ € VT such that (v,v’) € ET
by Proposition 3.1. The associated representation 7 : Ar,, — B(#) such that
7|a, = Ty for all v € VT obtained by the universal property is called the graph
product representation.

Example 3.6. Using the universal property of Ar ,,, one can easily check the following
statements.

* Let Ay = C,;(G,) be the maximal C*-algebra of a discrete group G,, v € VT.
Then
Al",m = C:z(Gl")

* Let I' be a finite graph having every two vertices connected by one edge. Then

AI‘,m = ® Ay

veVT,max

e Let I" be a graph with no edges. Then
Arg = %" Ay,
Tm = &y

where %" denotes the maximal free product.

e If I' = Star(v) then Ar, is a quotient of

( 4 Aw)®A,,.

w €Link(v) max

Remark 3.7. Let A C Ar, be the linear span of elements of the form a; . . . a, with
n > 1andag € Ay, where v = (vq,...,v,) is a reduced word. Observe that A
is a dense *-subalgebra of Ar,,. Indeed, the commutation relations defining Ar
show that A is a *-subalgebra. It is dense since it contains all the A,. Moreover,
ifa =ay...ap € Ay withn > 1, ax € Ay, and v = (vy,...,v,) is a reduced
word and if w = (wy,...w,) is a reduced word (type II) equivalent to v it follows
from the commutation relations that a = as(1) . . . dg(n), Where o € §, is the unique
permutation such that w = o (v) defined in Lemma 2.3(4).
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3.2.2. The reduced graph product C*-algebra. From this point we assume that
each unital C*-algebra A,,v € VT is equipped with a GNS-faithful state w,.
Since the GNS-representation is faithful we may assume that A, C B(#H,), where
(Hy,id, &) is a GNS-construction for w,. Let (H, 2) be the graph product of the
pointed Hilbert spaces (Hy, w,). Recall that H comes with faithful unital normal
s-homomorphisms A, : B(H,) — B(H).

Definition 3.8. The reduced graph product C*-algebra Ar is defined as the sub-
C*-algebra of B(H) generated by |, cpr Av(Ay).

Since the A, are faithful, we may and will assume that A, C Ar and A, |a, is the
inclusion for allv € V.

Remark 3.9. It follows from Proposition 3.1 that there exists a unique unital surjective
*-homomorphism Ar : Ar, — Ar such that Ar(a) = a for all a € A, and
all v € VI'. Moreover, suppose that a = aj...a, € A with qp € Ay, and
v = (v1,...,V,) areduced word. Let w = (wq,...,wy) be a reduced word that
is equivalent to v. Let 0 € S, be the permutation obtained from Lemma 2.3(4)
using the words v and w instead of w and w’ respectively. Then it follows from the
commutation relations that a = ag(1) ... dg(n)-

Definition 3.10. An operator a = a; ...a, € Ar is called reduced if a; € AS,— with
Ay, = {x € Ay, | wy;(x) = 0} and the word v = (v1,...,vp) is reduced. The
word v is called the associated word.

Observe that the linear span of 1 and the reduced operators in a dense *-subalgebra
of Ar .

Remark 3.11. Forall v € VT, let w, be a not necessarily GNS-faithful state on A,,.
The notion of reduced operators, relative to the family of states (wy)yeyr, also
makes sense in the maximal graph product C*-algebra and the linear span of 1 and
the reduced operators in the maximal graph product C*-algebra is the *x-algebra A
introduced in Remark 3.7, which is dense.

It is clear from Proposition 3.1 that, whenever a = a1 ...a, € Ar is a reduced
operator (with associated word in Wy,;,) one has a2 = a1 ® --- ® d,. Hence, the
vector €2 is cyclic for Ar and (H, id, ©2) is a GNS-construction for the (GNS-faithful)
state wr(-) = (- 2, Q). We call wr the graph product state. It can be characterized
as follows: it is the unique state on Ar satisfying wr(a) = 0 for all reduced operators
a € Ar. In particular, wr|a, = wy for all v € VI'. Actually the commutation
relations and the properties of the graph product state determine the graph product
C*-algebra.

Proposition 3.12. Let B be a unital C*-algebra with a GNS-faithful state w and

suppose that, for all v € VT, there exists a unital faithful x-homomorphism

Ty - Ay = B such that:

e B is generated, as a C*-algebra, by Uycy 11, (Ay) and the images of w, and 1,y
commute whenever (v,v’) € ET.
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» For any operator a = my,(ay)...my,(an) € B, where v = (vi,...,v,) is a
reduced word and a; € Ay, one has w(a) = 0

Then, there exists a unique *-isomorphism w . Ar — B such that w|a, = .

Moreover, 1 intertwines the graph product state and w.

Proof. The proof is a routine. We include it for the convenience of the reader. The
uniqueness being obvious, let us show the existence. Since w is GNS-faithful we may
and will assume that B C B(K) and (I, id, n) is a GNS-construction for w. Define
V:H— Kby V(Q) = nand,

Viay...an)2 = Ty, (ay) .. - Ty (an)n

for all reduced a = a; ...a, € Ar with associated word (vq, ..., v,). It is easy to
check that V' is well defined and isometric hence, it extends to an isometry. Since it
also has a dense image, it is a unitary. Then, 7 (x) := VxV* does the job. O

Remark 3.13. Proposition 3.12 implies the following.

* LetA, =C(G,) be the reduced group C*-algebra of a discrete group G,,ve VT.
Then (Ar.wr) = (C}(Gr), ), where t is the canonical trace on the reduced
C*-algebra of the graph product group Gr.

e Let I" be a graph in which every two vertices are connected by one edge. Then

(AF,(UF) = ® (Avaa)v)-
veV T

e Let I" be a graph with no edges. Then
(AF’ wl") = v€>l‘</r(AU7 wv)»

the reduced free product with respect to the GNS-faitfhul states w,, v € VT

e IfI'g C I' is a subgraph and, for all v € Vr,, B, C A, is a unital C*-algebra then
the sub-C*-algebra of Ar generated by U,eyr,By is canonically isomorphic to
graph product C*-algebras Br,, obtained from By, v € V1.

Remark 3.14. Let 'y C T be a subgraph and consider the graph product C*-algebras
Ar, and Ar. By the universal property of Proposition 3.12, we may view Ar, C Ar
canonically. Denote by W2, C Wi, the subset of minimal reduced words in I'g and
let Ho = CQ & @wewgm Hw C H. Let P be the orthogonal projection onto Hy.
Then, it is easy to check that £, : x — PxP is a graph product state-preserving
conditional expectation from Ar onto Ar,. In particular, £, is GNS-faithful since
it preserves the graph product states which are GNS-faithful. Moreover, £, is the
unique conditional expectation from Ar to Ar, such that £, (a) = 0 for all reduced
operators a € Ar, with associated reduced word v = (vy,...,v,) satisfying the
property that one of the v; is not in I'g. In particular, for all v € VT, there exists a
unique conditional expectation &, : Ar — A, such that &,(a) = 0 for all reduced
operators @ € Ar \ Ay.
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3.2.3. Unscrewing technique. Letv € I', I'; = Star(v), ['; = I' \ {v} and set the
following graph product C*-algebras: A; = Ar,, B = ApLink), and A, = Ar,. By
convention Ag = C. Recall that, by the universal property of Proposition 3.12, we
may view B C A; C Ar and B C A, C Ar canonically. Moreover, by Remark 3.14,
we have GNS-faithful conditional expectations & := ELinkw)la, : A1 — B and
& = ELinkw)|a, : A2 — B. Let us denote by A; xg A, the reduced amalgamated
free product with respect to these conditional expectations.

Theorem 3.15. There exists a unique x-isomorphism w : Ay xg Ay — Ar such that
7|, (resp. 7w|a,) is the canonical inclusion Ay C Ar (resp. Ay C Ar). Moreover,
is state-preserving.

Proof. Observe that Ar is generated by by A; and Ay. Let £ = EpLinkw) be
the canonical conditional expectation from Ar onto B. Define, for k = 1,2,
A} = ker(& ). By the universal property of amalgamated free products it suffices
to show that for any n > 2, for any ay,...,a, with a; € A;’k and I # lg41, one
has E(ay...an) = 0. Since A} is the closed linear span of reduced operators
a € A; with associated reduced word v = (vy,...,v,), v; € [I'p satisfying
the property that one of the v; is not in Link(v) we may and will assume that
k k

each ayp is a reduced operator ay = x7 B with associated reduced

word v = (v’f, ey v’r‘k), vll‘ € Iy, satistying the property that one of the vf‘ is
not in Link(v). One has a := aj...a, = x{...x} x7...x7 ...x}...x} with

X "
k o _ 1 1 2 2 n n :
X, € AU{(. Letv = (vl,...,vr],vl,...,vrz,...,vl,...,vrn) be the associated,

not neceslsarily reduced, word. Let! =ry +---+r, > n.

Let us show, by induction on [, that £(a) = 0. If | = n then a; € Aﬁk C Ay
and v, € I'y, \ Link(v) for all k. Then v is reduced and since v ¢ Link(v) we have
E(a) = 0. Indeed, if v is not reduced, there exists i < j such that v; = v; = w
and v; € Link(v) for alli < k < j. Since vg ¢ Link(v) for all k, it follows that
J =i+ 1. Hence, w € (I';; \ Link(v)) N (I';; ., \ Link(v)) = {v} N (I"\ {v}) = 4,
a contradiction.

Let! > nand a = a;...a, is of the form described previously. We use the
notations introduced at the beginning of the proof. If the word v associated to a is
reduced then £(a) = 0. Hence, we will assume that v is not reduced. Then there
exists i < j such that véi =w= vsjj and v¥ € Link(w) whenever:

D i<k<jandl <s <ryg,

2) k=iands; <s <r;j =ryg,

(3) k=jand1l <s <s;.

Since we can replace v by a type II equivalent word and since any subword vi is

reduced, we may and will assume that j =i + 1 and w = vii = vi“. Hence we

havew € I, NIy, = Iy, NIy, = T1 Ny = Star(v) N T\ {v} = Link(v).
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Write, for x € Ay, Py (x) = X — wy (x). One has

Eay...ay)
i i i i1y i+ 41
=E&(ay...ai—1x].. .x;i_IPw(xﬁixll )X, ...x;iH e Qi ... dy)
i i1 i j i+1 41
+ a)w(x;l,x’1 )e(ar...ai—1x]. ..x;i_lx’2 ...x;iH cdiga ... dy).
The right hand side of this expression is zero by the induction hypothesis. O

Remark 3.16. Theorem 3.15 is trivially true when we consider the maximal graph
product and the maximal amalgamated free product.

Corollary 3.17. Ar is exact if and only if A, is exact for all v € VT.

Proof. By an inductive limit argument we may suppose the graph I' is finite. We
explain now this inductive limit argument which will be used several times in this
paper (even in the von Neumann algebra context). Let F(I") be the set of finite
subgraphs of T" ordered by the inclusion. If G;,G, € F(T') and G; C G,, we
view Ag, C Ag, C Ar. Hence, we get an inductive system of unital C*-algebras
(Ag)gerr). Let Ao = Ugera)Ac C Ar be the inductive limit. We claim
that actually Ao = Ar. Indeed, it is enough to show that every reduced operator
a=aj...ay € Ar, with associated word v = (v1, ..., v,) lies in Ay. In fact, such
an operator a lies in Ag, where G is a finite subgrah of I' containing the vertices
U1,...0Upn.

So we may assume that I" is finite. Theorem 3.15 and the results of [21] may
then be used to reduce the corollary (by induction on the vertices) to the situation of
a clique, i.e. a graph in which every two vertices share an edge. In the latter case
the graph product is the minimal tensor product of C*-algebras, which preserves
exactness. O

Remark 3.18. If T" has n connected components I'y, ..., T, then

(Ar',a)p) ~ (AI‘I >|<~-'>|<Apn,a)1'*] >|<-~~>|<a)pn).

3.3. The graph product of von Neumann algebras. Suppose that, foreachve VT,
we have a von Neumann algebra M, with a faithful normal state w,. We may and
will assume that M, C B(H,), where (H,, id, &,) is a GNS-construction for w,. Let
(H, 2) be the graph product of the pointed Hilbert spaces (H, w,). Recall that H
comes with faithful unital normal *-homomorphisms A, : B(H,) — B(H).

Definition 3.19. The graph product von Neumann algebra is

Mr ::( U AU(MU)) C B(H).

veV
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As before, we will assume that M, C Mr and A,|m, is the inclusion, for all
v € VI'. We also have the same notion of reduced operators and the linear span of 1
and the reduced operators is a weakly dense *-subalgebra of M. The graph product
state wr(-) = (- R, Q) is now a normal state on Mr. The graph product state is
characterized as follows: it is the unique normal state on Mr satisfying wr(a) = 0
for all reduced operators @ € Ar. In particular, wr |y, = w, forallv e VT

Let us construct the right version of M. Forv € VT, we denote by r, (a) the right
action of My, on H, i.e. ry(a) = Jya™*J, where J, is the modular conjugation of w,,.
View r, a faithful normal unital *-homomorphism from M;’ to B(H,). Denote
by ML the von Neumann subalgebra of B(H) generated by J,cpr pv © 7o(My).
Write p}: = py o Iy and note that pf; is a faithful unital normal *x-homomorphism
from My’ to MF..

Observe that, by Proposition 3.3, M} C M%.

As before, we call an operatora = p} (ar) ... le:,, (an) € ML reducedif a; € My,
and the word v = (vq,...,Vy,) is reduced. It is clear from the definitions that,
whenever a = pl (ar) ... pgn (an) € ML is areduced operator (with associated word
in Winin) one has a2 = @, ® --- ® a@;. Hence, the vector  is cyclic for M[. so it is
separating for Mr and the graph product state wr is faithful with GNS-construction
(H,id, 2). It is now easy to compute the modular theory of wr. We denote
by V,, Jy and (0/):er the ingredients of the modular theory of w,, for v € VT.

Forw € W areduced word of the formw = (vy, ..., v,), let W be the unique minimal
reduced word equivalent to the reduced word w* = (v,, ..., v;) and oy the unique
bijectionof {1, ... ,n}suchthatW = (Vg (n). - - -, Vo, (1)) Define the unitary operator

z:w : Hw - HWby 2:w(él®- . ®§n) = Qw*,ﬁ'(sn X.. ®El) = an(n)®- . -®Ecw(1)-
Finally, denote by J¢ the conjugation map on C.

Proposition 3.20. Let J, V and (0y)ser be the ingredients of the modular theory
of wr. One has

D J=Jc® 69w=(v1,.-.,vn)evv,m-n(Jvfrwm) ® @ Jug ) B
(2) V= ld(CQ D @w:(vl,...,vn)ewm,-,, Ex(vvaw(n) X ® chrw(n))zw

(3) For any reduced operator a = aj...a, € Mr with associated word v =
(v1,...,vy) one has

o(ay...an) =0, (ay)...0."(a,) forallt € R.

Proof. (3) follows easily from (2). Let S, (resp. S) be the modular operator for
wy (resp. wr). To get (1) and (2), it suffices to prove, by uniqueness of the polar
decomposition, that

S =idco ® @ (Svow(n) Q- Q Svow(n)) ° Zw.

W=(V1,.--,U7) EWnin
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Denote by T the right hand side of the preceding equation. An easy computation
gives that, for all reduced operators @ = ay...a, € Ar or for a € Cl1, one has
S(@a) = T(a2). Hence, S|mro = T'|mpq, where Mr C Mr is the linear span
of 1 and the reduced operators and it suffices to show that M2 is a common core
for S and T'. By definition, M €2 is a core for S. Since M is a weakly dense unital
x-subalgebra of Mr, it follows from the Kaplansky’s density Theorem that M
is also a core for S: indeed, let x € Mr. By Kaplansky’s density theorem x is in
the strong closure of the convex set of elements in M that have norm at most || x|.
For convex sets the strong and strong-* closure coincide. Therefore, we may find
anet (x;); in Mr converging to x in the strong-* topology. It follows that x; <2 is
bounded and converges weakly to x$2 and similarly x 2 is bounded and converges
weakly to x* in the GNS-Hilbert space. This concludes that M is a core for S
with respect to the weak/weak-topology on the graph of S. Hence by a standard
convexity argument it is also a norm/norm core for S.
By definition of T, a core for T is given by the subspace

(CQEB @ MEIEUI®"'®M1°)”€U”7

W=(V1,...,0n) €Whin

where the direct sums and tensor products are the algebraic ones. This subspace is
exactly the linear span of €2 and vectors of the form a2, where a is a reduced operator
i.e. this is the space M. O

Remark 3.21. It follows from the preceding proposition that, for all reduced operators
a=aj...ap € Mr, witha; € My,, one has JaJ = ,011;] (ap). ..,011;” (an). Hence we
actually have M, = MF..

The graph product von Neumann algebra also satisfies a universal property.
The following Proposition 3.22 can be proved exactly as Proposition 3.1 since the
isomorphism appearing in the proof of Proposition 3.12 is spatial.

Proposition 3.22. Let N be a von Neumann algebra with a GNS-faithful normal
state w and suppose that, for all v € VT, there exists a unital normal faithful
*-homomorphism m, : M, — N such that:

* N is generated, as a von Neumann algebra, by Uycyrmy(My) and the images of
1y and 1, commute whenever (v,v’) € ET.

» For any operator a = my,(a1)...my,(ay) € N, where v = (v1,...,v,) is a
reduced word and a; € My, one has w(a) =0

Then, there exists a unique normal *-isomorphismw : Mr — Nsuch that 7|y, = 7.
Moreover, 1 intertwines the graph product state and w. In particular, w is faithful.
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Remark 3.23. The preceding proposition implies the following.

e IfM, = L(Gy) is the group von Neumann algebra of a discrete group G,,v € VI’
then

(Mr, or) = (L(Gr), 1),
where 7 is the canonical trace.

* Let I' be a graph for which any two vertices are connected by one edge. Then

(Mr,or) = ® (My,wy).
veV T

e Let I" be a graph with no edges. Then

M = M .
(Mr, wr) U;;/F( s Wy)

e If 'y C I' is a subgraph and, for all v € I'y, N, C M, is a unital von Neumann
subalgebra then the graph product von Neumann algebra Nr,, obtained from the
Ny, v € Iy, is canonically isomorphic to (UUEVFO Nv)”. In the sequel we will
always do this identification without further explanations.

* There is a unique (state preserving) *-isomorphism Mg m) =~ My ® Mpink(w)
identifying x ® y with xy, for all x € M, and all y € My (). In particular,
M;} N MStar(v) = NS{ar(u), Where

My if w € Link(v),
v Z(My) ifw =v.
Remark 3.24. Let 'y € T be a subgraph and consider the graph product von
Neumann algebras Mr, and Mr. As in a C*-algebraic case, there exists a unique
normal conditional expectation £r,, from Mr to Mr, preserving the graph product
states and such that €, (a) = 0 for all reduced operator a € Mr, with associated
reduced word v = (vq,...,v,) satisfying the property that one of the v; is not
in T'p. In particular, for all v € VT, there exists a unique state preserving normal
conditional expectation £, : Mp — M, such that £, (a) = 0 for all reduced operators
a € Mr \ M,.

Proposition 3.25. Let I'o, I'y C I" be subgraphs. One has Mr, N Mr, = Mrynr;.

Proof. The inclusion Mrynr; C Mr, N Mr, being obvious, let us show the other
one. Let Mr, be the linear span of 1 and the reduced operator in Mr,,. It suffices
to show that M, N Mr, C Mrynr,. Indeed, if it is the case, then Mr,nr, contains
(Mry N"Mr,)" = ( v M/Fl)/ = M{, NMr, =Mp, N Mp,. Let x € Mr,
and write x = wr(x)1 + ), x;, where the sum is finite and the x; are some reduced
operators in Mr,. If x € Mp, we have x = &r,(x) = wr(x)1 + ), &r, (x;). By
definition of the conditional expectation, for all i, £, (x;) is either O or a reduced
operator with associated vertices in I'g N I'y. Hence, x € Mrynr;, . O
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Letv € I', I’y = Star(v), I'; = I' \ {v} and set the following graph product von
Neumann algebras: M; = Mr;, N = M), and My = Mr,. By the universal
property of Proposition 3.22, we may view N C My C Mr and N C M, C Mr
canonically. Let us denote by M; xy M, the von Neumann algebraic amalgamated
free product with respect to the graph product states. The following result can
be proved exactly as Theorem 3.15, using the universal property of von Neumann
algebraic amalgamated free products.

Theorem 3.26. There exists a unique *-isomorphism 7w : My xy My — Mr such that
7T |m, (resp. |w,) is the canonical inclusion My C Mr (resp. My C Mr ). Moreover,
T IS state-preserving.

Before the next lemma, let us recall some standard notations. Let (M, t) be a
finite von Neumann algebra and A, B C M two unital von Neumann subalgebras. We
write A £ B if there exists a net (¢;); of unitaries in A such that || Eg(xu; y)|2 — 0

M
for all x, y € M. We also write Ny (A) the normalizer of A in M i.e.
Nu(A) = {u e UM) : uAu™ = A}.
A von Neumann algebra is called diffuse if it does not contain minimal projections.

In particular, type II-factors are diffuse von Neumann algebras.
Lemma 3.27. Suppose that wy is a trace forallv € VI'. Fixv e VI'. If Q C My is
a diffuse von Neumann subalgebra then
Q # M)
MStar(v)

and any Q-Mg(v)-sub-bimodule of L2(Mr) which has finite dimension as right
Msar(v)-module is contained in L*>(Msyr(v))- In particular,

Q' NMr C NMF (Q)” C Msar(v)-

Proof. Since Mr = Mgar(v) " *  Mr\(y}, we may apply [28, Theorem 1.1] (which

Link(v)
needs Q to be diffuse) to conclude that the last statement of the lemma follows from

thefactthat Q £  Mpnk(v) Whichis obvious since, by the last point of Remark 3.23,
MSlar(v)
we have Mg (v) 2 My ® Miink()- |

Corollary 3.28. Suppose that w, is a trace for all v € VI'. Fixv € VI. For
w € Star(v) define

)My, if w € Link(v),

)z My) ifw=v.

If My is diffuse then M, N Mr = Ngur(v) (here Ngwr(v) is the graph product of
Ny, v € Star(v) with respect to the graph Star(v)). In particular,

Z(MF) = ﬂ NStar(v)'
veV

w
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Proof. The inclusion Ngg) C M, N Mr being obvious, let us prove the other
inclusion. By Lemma 3.27 and the last assertion of Remark 3.23 we have,

M;) N Mr C M:; N MStar(v) = NStar(v)- O
Corollary 3.29. If M, is a II;-factor for all v € VI then Mr is a 111 -factor.

Proof. By the inductive limit argument we may and will assume that I" is finite
graph. By Corollary 3.28 we find Z(Mr) = (),eyr MLink@w). It follows
from Proposition 3.25 that Z(Mr) = Mn _, - Link(w)- Since [,y Link(v) C
Myeyr I \ {v} = @ we conclude that Z(Mr) = Cl1. O]

3.3.1. Completely positive maps of graph products. Let (M,,wy)yeyT and
(Ny, y)veyT be two families of von Neumann algebras with faithful normal states.

Proposition 3.30. Forallv € VT, let ¢, : My — Ny, be a state-preserving normal
ucp map. Then, there exists a unique normal ucp map ¢ : Mr — Nr such that, for
alla = a, ...a, € Mr reduced, with ay, € M‘;k,

pa...an) =@y, (ai) ...y, (as).

Moreover, ¢ intertwines the graph product states and its L?-extension is given by

T,:CQ® P L2My)° @ ®LA(M,,)°

w=(v1,..., V5 ) €EWnin
- CQ® P L*(Ny)° ®---®L*(Ny,)°,

Ww=(V1,...,U1n) €EWnin

T(p = ld([:Q @ @ T(pvl |L2(Mv1)o ® M ® T(pvn ILZ(Mvn)O.

Proof. Let (ICy,ny) be the pointed M,-N, bimodule obtained from the GNS-
construction of ¢, i.e. one has K, = Myny,N, and (anyb,ny) = wy(py(a)b).
Denote by 7! (resp. n”) the left (resp. right) action of M, on KC,. Observe
that, since p, is faithful, the map n] is faithful and, since w, is faithful and ¢,
preserves the states, the maps nll) is also faithful. Let (XC, ) be the graph product
of the pointed Hilbert spaces (/Cy, ny) (see Section 3.1) with the representations
Ay, oy : B(Ky) — B(K) and define 7\, = A, o 7} and 7 = p, o n”.

Let M (resp. ) be the von Neumann algebra subalgebra of B(K) generated
by U, 7 (My) (resp. U, 77 (N,)). Consider the vector state j(x) = {(x1,7) on M
and N. Observe that, for all @ = ay...a, € Mr reduced, with associated word
v=(v1,...,Uy), Proposition 3.1 implies?ff)l(al) .. .77{)” (an)n=ainy, ®--Qanny,.
Also, for all b = by...b, € Nr reduced, with associated word v=(vy,...,v,),
Proposition 3.2 implies ?r'l',l (b1) ... 775, (bn)N="1v,bp ®--®ny, by. Tt follows that
(@) = u(b) = 0 forall a € Mp and b € Nr reduced. Moreover, (/\/l_n, T, n)
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(resp. (A7, p. 1)) is a GNS-construction for & on M (resp. on N), where 7 (x)
is the restriction of x to the subspace M (resp. p(y) is the restriction of y to
the subspace A/n). By Proposition 3.3 the images of ?ff, and 7, commute for
all v,v” € VI. Hence, N' C M’ and, by the preceding computations, we find
NMn = MNn =K. It follows that u is GNS-faithful on M (resp. on N).

By Proposition 3.22, there exists two unital normal x-homomorphisms 7; :
Mr — B(K) and 7, : Nf¥ — B(K) such that 7;|w, = 7., and 7,|n, = 7. Itis
easy to check that the images of 77; and 7, commute. Hence, K is a Mp-Nr bimodule
and we will simply write a&b for the element 77;(a)7, (b)E, fora € Mr, b € Nr and
£ € K. Define V : L2(Nr) — K by VX = n.x. One can easily check that, for all
a =adaj...a, €Mr reduced, with q; € Mﬁk,

V*Ti(ar...an)V = @y (a1) ... ¢v,(an).

The fact that ¢ intertwines the graph product states and the L?-extension formula are
obvious from the formula defining ¢. O

The ucp map obtained in Proposition 3.30 is called the graph product ucp map, it
generalizes Boca’s construction of free product of ucp maps [5]. As aconsequence we
are able to show that the graph product preserves the Haagerup property (see [6, 12]
for free products of respectively finite and o-finite von Neumann algebras). Recall
the following definition from [11]. We refer to [34] and [13] for alternative (but
equivalent) approaches to the Haagerup property and to [14,29] for the case of a
finite von Neumann algebra.

Definition 3.31. A pair (M, w) of a von Neumann algebra M with normal, faithful
state w has the Haagerup property if there exists a net {¢; }ic; of cpmaps ¢; : M — M
such that w o ¢; < w and such that the GNS-maps 7; : xQ, — ¢;(x)2, extend to
compact operators converging to 1 strongly.

Remark 3.32. In [12] it was proved that if a pair (M, @) has the Haagerup property,
then the cp maps ¢; can be chosen unital and such that w o ¢; = w. Let (Hy, R4y)
be the GNS-space with cyclic vector €2, and H_, the space orthogonal to €2,.
Define ¢;(x) = %ﬂ((pi (x) + € w(x)), x € Mand let T/ be its GNS-map H, — Ho
determined by xQ,, — ¢/ (x)S2,. The restriction of 7} to the space H, has norm less
than 1+_€||T, |. Letting € — 0, this shows that we may always assume ||7; |4, [| < 1
in Definition 3.31.

Corollary 3.33. Mr has the Haagerup property if and only if My, has the Haagerup
property forallv € VT.

Proof. By the inductive limit argument, we may and will assume that the graph I"
is finite (see [29, Theorem 2.3]). Suppose that M, has the Haagerup property for
all v € VI'. Let ¢y, : My — M, be a net of state-preserving ucp maps with
compact L2-implementation Ty, ;, and such that ||, ;, (@) —a||» — O foralla € M,
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and all v € VI'. By Remark 3.32 we may assume that ||y ;,|3s] < 1. Define
the net of ucp map ¢; : Mr — Mr, each ¢; is the graph product of the ¢, ;,,
v € VT and the net structure for ¢; is given by the product of the nets for ¢y, ;, .
Since || Ty,i, |5l < 1 and T is finite it follows that the L?-implementation of ¢; is
compact. Also, ||g;(a) — al|| — O for all reduced operators a € Mr. Since the
linear span of 1 and the reduced operators is weakly dense in Mr, the convergence
holds for all @ € Mr, from which one easily deduces that Mr has the Haagerup
property. The other implication is a obvious because of the existence of conditional
expectations. O

4. Graph products of discrete quantum groups

In this paper we need compact and discrete quantum groups both in the C*-algebraic
and von Neumann algebraic framework. We recall their preliminaries here. We
define graph products of quantum groups and give their basic properties.

4.1. C*-algebraic compact/discrete quantum groups. We write Span for the
closed linear span.

Definition 4.1 (Wornonowicz [42]). A compact quantum group G is a pair (A, A)
of a unital C*-algebra A together with a comultiplication A : A — A ® A which is a
unital x-homomorphism such that (A ® id) o A = (id ® A) ® A and such that the
following cancellation laws hold:

Span A(A)(A® 1) = Span (1 @ A)A(A) = A® A.

Any compact quantum group G admits a unique state @ on A that satisfies
(w ®id) o A(x) = w(x)la = (id®w) o A(x). w is called the Haar state. The
GNS-space with respect to w shall be denoted by H.

Let G = (A, A) be a compact quantum group. A (finite dimensional) unitary
representation is a unitary operator ¥ € A ® M, such that (A ® id)(u) = uj3uz3
where 13 = 1 @ u and u;3 = (X ®id)(uz3) with ¥ : AQ A — A ® A the flip map.
We denote by Irr(G) the equivalence classes of irreducible representations of G and,
for o € Irr(G), we choose a representative u® of the class «. Note that in the literature
our notion of representation is often also called a corepresentation. We use n,, for the
dimension of u®, i.e. u* € A® My,. We shall write u;’ ; for the matrix coefficient
(id ®we; e, )(u¥) € Aincase ¢;,1 < i < ngy is an orthonormal basis of C"*. The
tensor product representation is defined as u* ® ub = u‘i‘zu?3 EAQ My, ® My,.

We set Pol(G) € A for the space of matrix coefficients of finite dimensional
representations of G. It is well-known that Pol(G) is a x-algebra. Let y € Irr(G)
then we denote p, € B(H) for the projection onto the closed linear span of the
coefficients of u? identified within .
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Let G denote the discrete dual quantum group of G. Typically we will write
G = (7-\\, Z). We have A = Dgerrr(@) Mn, (C*-algebraic direct sum). Let € be the
counit of G. Tt is the unique non-degenerate *-homomorphism A—>C satisfying
(€®id)o A = (id®e) o A = id.

Every compact quantum group comes with a maximal (= universal) and a reduced
version and we shall from this point fix a compact quantum group G and let (A, A)
denote the associated reduced (compact) quantum group and let (A,,, A;,) denote the
associated maximal (compact) quantum group. There exists a canonical surjection
v : A, — A that preserves the comultiplication. We refer to [32] for the definition
of maximal (= universal) quantum groups. There is no distinction between maximal
and reduced versions of G = (,/A\, Z) since for a discrete quantum group these always
agree.

Remark 4.2. If G; = (A1, Ay) and G, = (A3, A,) are compact quantum groups
then Gy x G, is the quantum group whose C*-algebra is given by A; ® A, and with
comultiplication A = (iId®X ® id) o A} ® Ay, where ¥ : Ay ® Ay — Ay Q Ap is
the flip map.

4.2. Von Neumann algebraic quantum groups. Let G be a compact quantum
group. Let M be the von Neumann algebra generated by A in the GNS-construction
of the Haar state w. The comultiplication A : A — A ® A lifts uniquely to a unital,
normal x-homomorphism M — M ® M which we keep denoting by A. Also, the
Haar state @ extends to a normal state @ on M. Then (M, A) forms a von Neumann
algebraic locally compact quantum group in the sense of [33] with w as left and right
invariant weight.

We say that G is of Kac type if w is tracial. If G is of Kac type then also G has a
tracial Haar weight. If G is of Kac type then there exists a *-antthomomorphism « :
M — M called the antipode and which satisfies « (u7’ ;) = (u5;)*. We let® : M — M
be the dual antipode. It may be characterized by (k ® ¥)(W) = W where W is the
left multiplicative unitary from [33] (one may define k¥ in other ways; the definition
given here is not the usual one).

4.3. Graph products, their representation theory and Haar state. Forallv € VT,
let G, be acompact quantum group with full C*-algebra A, ,,, reduced C*-algebra A,,
von Neumann algebra M,,, Haar state @, and comultiplication A, (on any of these
algebras). Let Ay, (= Ar,») be the maximal graph product C*-algebra associated to
the family of C*-algebras (Ay ;) veyT. Since wy, is faithful (resp. normal and faithful)
on A, (resp. on M,), we can also consider the reduced graph product C*-algebra
A (= Ar) associated to the family (A,, ®,)yeyT and the graph product von Neumann
algebra M (= Mr) associated to the family (M, @y)yevr.

By the universal property of A, there exists a unique unital *-homomorphism
A Ap = Ay @Ay suchthat Ala, = A, forallv € VT'. From [41, Definition 2.1']
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we can show that G = (A, A) is a compact quantum group. Indeed, forallv € VT,
the inclusion A, ,, C A,, intertwines the comultiplication, it induces an inclusion
Irr(Gy) C Irr(G). Since the matrix coefficients of Irr(G, ) generate A, as a x-algebra
this shows that the conditions of [41, Definition 2.1’] are satisfied and hence G is a
compact quantum group.

Note that it is at this point not clear that (A,,, A) is the underlying universal
quantum group of G in the sense of [32]. In fact this is true as follows from
Theorem 4.4 below. We shall also prove that M and A are the algebras of the
underlying von Neumann and reduced C*-algebraic quantum group. In order to
distinguish notation we shall — only in this section — write C,,(G), C,(G) and
L*°(G) for the full and reduced C*-algebra associated with G as well as its von
Neumann algebra. Also write vg : Cp, (G) — C,(G) for the canonical surjection
and L?(G) for the GNS-space of G.

Definition 4.3. A unitary representation u of G is said to be reduced if it is of the
formu = u* ® --- @ u*, wheren > 1, v = (vy,...,vy,) is a reduced word and
oy € Irr(Gy, ) \ {1} forall 1 <k <n.

Letv, : Ay, m — A, be the canonical surjection. By the universal property of A,
we have a unique surjective and unital *-homomorphism v : A, — A such that
V|a, = Vp.

Theorem 4.4. We have,
(1) The Haar state o of G is given by @ = wr o v.

(2) All the reduced representations are irreducible and any non-trivial irreducible
representation of G is unitarily equivalent to a reduced one.

(3) We have Cp,(G) = A, Cr(G) = A, L®°(G) =Mand v = vg.

Proof. (1) Let P C A,, be the linear span of the coefficients of the reduced
representations (so 1 & P). Since Py, equals the linear span of the reduced operators
a € A, relative to the family of states (wy)yepr (see Remark 3.11) and of the form
a=aj...ap, withag € Pol(Gy,) it follows that the linear span of 1 and P is dense
in A,;,. Hence, it suffices to show the invariance of w on P. Since A(P) c PO P
and v(P) is again contained in P (viewed within Ar) of the reduced operators
in Ar we have (id ®w)A(P) C (idQ®w)(P © P) = {0}. In the same way we find
(w®id)A(P) = {0}. Hence, foralla € P, one has (id ®w)A(a) = (0 ®id)A(a) =
0= w(a).

(2) Firstly, let u*! ® --- ® u*” € Mr ® Mnoé1 ® -+ ® My, (where ngy;
is the dimension of u%) be a reduced representation as in Definition 4.3. To
conclude the first part of the statement, we shall show that the set of elements
(0@ )U* ® --- @ u*) with @ € (Mr). equals the complete matrix algebra

My, @+ ® My, . Consider a tensor product of matrix units E;’i',jl R ® E;’;’fjn

in the latter algebra. We have (wy, ((ugck, ) @) = /\f;k i El(]‘j‘kaC for some
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constant )L?Z" i € C, see [18, Proposition 2.1], [42]. And therefore using that wr is

the vector state of the vacuum vector we see that

(Or (G, j, -5 5,)" ) ® VU™ @+ @ u)

*Pinsjn
_ o _ n (1) (atn)
- l_[(ka ((uikk,jk)* ) @ Yu) = Aillajl - 'A?;,jn Eil,ljl Q- ® Ein,jn'
k

Moreover, since the linear span of P and 1 is dense in A,,, every non trivial
irreducible representation is equivalent to a reduced one.

(3) Since v is surjective and wr is faithful on A, it follows from (1) that
A=C,(G), H = L2(G) and M = L*®(G). It follows from (2) that Pol(G)
is the linear span of P and 1. Hence, C,(G) is generated, as a C*-algebra,
by [U,epr Pol(Gy) and the relations aya,y = aya, are satisfied in Cp,(G), for
all a, € Pol(Gy), ay € Pol(Gy) and all v, v’ € VT such that (v,v’) € ET. From
the inclusions Pol(G,) C C,,(G) and the universal property of Cy, (G,) we have, for
allv € VT, aunital x-homomorphism r,, : Cy, (Gy) — Cy,(G) which is the identity
on Pol(G,). The morphisms 7, are such that m,(ay)my (ay) = oy (ay)my(ay)
for all a, € Pol(Gy), ay € Pol(Gy) and all v,v’ € VI and Cp,(G) is generated
by Upeyr 7w (Cm(Gy). By universal property of A,, we have a surjective unital
s«-homomorphism from A, to C,,(G) which is the identity on Pol(G). Hence,
A = Cp(G). That v = vg follows then since these maps are x-homomorphisms
that agree on Pol(G). O

4.4. Haagerup property of discrete quantum groups. We show that the Haagerup
property of discrete quantum groups is preserved by the graph product. In case the
quantum group is of Kac type this follows from Corollary 3.33 and [19, Theorem 6.7].
Since it is unknown if the correspondence in [19, Theorem 6.7] holds beyond Kac
type quantum groups the general case requires a proof. The special case of free
products was proved in [19, Theorem 7.8] the special case of Cartesian products of
quantum groups can be found in [24, Proposition 3.4].

4.4.1. General discrete quantum groups. Firstly recall the following equivalent
definition of the Haagerup property for discrete quantum groups, see [19,
Proposition 6.2 and Lemma 6.24].

Proposition 4.5. A discrete quantum group G has the Haagerup property if and only
if there is a sequence of states (U )ken on Pol(G) such that:

(1) For each k € N we have ((Fug)%)
Gaaelrr(G)Mna-

werr@ € yern@ Mno is actually in

(2) Foreacha € Irr(@) the net ((Fg)*)ken converges to the identity matrix.
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If these conditions hold, then we may moreover impose the following conditions on

the net (fL)ken,

(3) Foreachk e Nanda € Irr(@) with o # 1 we have that || (F ug)%| < exp(—%).
Recall the following definition from [7].

Definition 4.6. Let A be a unital x-algebra over C. A linear map w : A — C is
called a state if w(1) = 1, w(a*) = w(a) and w(a*a) > 0 for every a € A.

Let A,,v € VT be unital *-algebras, each equipped with a state ¢,. Let A be
its algebraic graph product which is defined as the unital x-algebra freely generated
by Ay,v € VI subject to the relation that aya, = aya, for any a, € A,,
ay € Ay such that (v, w) € ET (and the units of each A, are identified). Using
the decomposition A, = C1 @ A] with A, = ker¢, we may identify A with
the vector space C1 @ D, 1, ew,,, Av, ® A, ® ... ® A7 . Suppose that there
exists a state Y, on each A,,v € VT, then the algebraic graph product functional
¥V = oyevr (Yv,@y) on A is defined as ¥(ay...a,) = WUl(al) oY, (an)
whenever a; € Af,l_ with v1 ...V, € Whin.

Now let again G,,v € VI be a compact quantum group and G be its graph
product. The proof of the following theorem is similar to [19, Theorem 7.8].

Theorem 4.7. The discrete quantum group G has the Haagerup property if and only
if for every v € VI we have that G, has the Haagerup property.

Proof. By a standard inductive limit argument it suffices to prove the theorem under
the condition that the graph I is finite. Firstly, suppose that for every v € VI
the quantum group @U has the Haagerup property. By Proposition 4.5 there exists
a sequence (Uyx)ken Of states on Pol(Gy) satistying (1)—(3) of this proposition.
Recall that w, is the Haar state of G,,. Let ux = oyeyr(Uy k. ®y) denote the graph
product functional as defined in the paragraph before this theorem.

We claim that ug,k € N is again a state. This follows from the following
standard argument. For convenience of notation fix k € N. From the state (t, x on
Pol(G,) we may follow the usual GNS-construction to find a pre-Hilbert space H,,o
with cyclic unit vector £, and representation 7, such that p, ¢ (x) = (7 (%), &y).
Let Ay, be the maximal C*-algebra associated with the quantum group G,. As
in [20, Lemma 4.2] the map m, extends to a *-homomorphism A, , — B(Hy)
with #H, the completion of #, . Let B be the reduced graph product C*-algebra
of my(Ay,m), v € VI and let £ denotes its cyclic vacuiim vector. Since 7y, (Ay 1)
is included into B naturally we may regard =, as a x-homomorphism A, ,, — B.
The universal property of the maximal graph product C*-algebra A, then yields a
s«-homomorphism 7 : A,, — B. Let u; be the state on A,, defined by uz(x) =
(m(x)&, &) and denote by . the restriction to Pol(G). It follows from Theorem 4.4
that indeed Pol(G) is the algebraic graph product of Pol(G,),v € VI and by
construction it follows that py is the graph product of the states ug,,v € VI'. In
particular uy is again a state.
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Leta;,1 < j <[ be elements of Irr(ij) with v; such that viva ... v; € Wiin.
By definition of the graph product and the graph product representation &; ® - - - Q &y,
see Theorem 4.4, we see that,

(Fu) &8 = @b (Fpup, )%

It is then straightforward to verify conditions (1) and (2) of Proposition 4.5. For
condition (1) one uses that T is finite and that ||(F uz)*1 @ ®% || < exp(—é). O

5. Rapid decay

We prove that the property of Rapid Decay (RD) for discrete quantum groups is
preserved by taking graph products of finite graphs under suitable conditions on the
vertex quantum groups. In particular our result holds if every vertex quantum group is
either a classical group or a quantum group with polynomial growth. This generalizes
the result of [17] which proves the corresponding result for discrete groups.

5.1. Preliminaries on elements affiliated with a C*-algebra. For unbounded
operators affiliated with a C*-algebra we refer to [43]. When A is the C*-algebra of
a discrete quantum group G the notion of affiliated elements simplifies. In that case,
the x-algebra A" of affiliated elements with A can be identified with the algebraic
product [ [, err(c) Mn, and, for each operator in A", the vector space Hpo (the space
of matrix coefficients of finite dimensional representations of G identified as subspace
of H) forms a core. For L € A" we will write | E—— L@ for this representation.

Any x-homomorphism of A extends naturally to A7 through spectral calculus. In
particular this applies to the counit € and comultiplication A as well as the antipode &
of a Kac type discrete quantum group.

5.2. Definition of rapid decay. Let G = (A, A) be a compact quantum group with
discrete dual G = (/P:, 3). Then A = Daenr(@)Mn, Where ng is the dimension
of a. In case G is of Kac type its Haar weight @ is given by & = Bacirn(@)naTrM,,
where Tryy,,,, is the normalized trace on M, . Forevery a € Irr(G) letu® € AQ My,
be a representation belonging to the equivalence class «. The Fourier transform F
of X = Byenr(@)Xa € A with finite direct sum, is defined as the element,

> (dRD) (1 ® xq)).

a€lrr(G)

Definition 5.1 (Lengths and central lengths). A length on G is an (unbounded)
operator affiliated with A that satisfies the following properties: L > 0,€(L) = 0,
K(L)|#py = Ll34py and A(L) <1 ® L + L ® 1. Given such a length, we denote by
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qn € M(ﬂ) (the multiplier algebra of 7—\\) the spectral projection of L associated to
the interval [n,n 4+ 1), n € N. L is called central if each of its spectral projections
are central in M (A).

Definition 5.2. Let L be a central length on the discrete quantum group G = (/A\, 3).
We say that (@, L) has the property of Rapid Decay (RD) if the following condition
is satisfied: there exists a polynomial P € R[X] such that, forevery k € N, a € qkﬂ
and every m, [ € N, we have ||g,, F (a)q;| < P(k)|all2-

In fact there are other equivalent formulations of (RD), see [38, Proposition and
Definition 3.5] or [30] for the group case.

5.3. Permanence properties of (RD). We prove permanence properties of (RD)
under graph products. In particular we prove that (RD) is preserved by free products.
We collect some standard and well known observations in the next lemma. We
include a proof for convenience of the reader.

Lemma 5.3. Let G be a L compact quantum group of Kac type with discrete dual
quantum group G = (A, A) Let {u® | a € Irr(G)} be a complete set of
representatives of lrreduable representations and letuf ; = (id ®we; ;) (u”) denote
its matrix coefficients with respect to some orthonormal basis e; of the representation
space Hgy for which,

w((u?‘j)*u% ) =i k5jlno_¢1, (5.1
(see [18, Proposmon 2.1], [42]). The contragredient representation o is given by
uf‘ i = u ; (and this definition is consistent with (5.1)). Let E; "‘ . € A be the matrix
with entry ] on the i -th row and j -th column of the matrix block mdexed bya € Irr(G)
and zeros elsewhere. Then Tc\(El"‘ j) = E%

Proof. The proof is a consequence of the relation «(uf ;) = (u‘;,i)* and using

duality between G and G. So let wi'i(+) = na o((uj j)* -) so that by orthogonality
(see [18, p. 1351], [42]) we have,

(07 ; ®1d)(W) = Ef;, (5.2)

where W = @genr(c)u®. Then we have using that for Kac algebras k%2 = id, « is
an anti-homomorphism, w o k = w, traciality of the Haar state w and the relation
K(u;-’"j) = (”(},i)*’ see [36],
of; ox = ok ((uf ;) I(-)) = ok (- k(WE)™)) = (- k(@;)™)
=ok(u;)") ) =ok@i;)" ) =ow@j; )=o(@j)" ).
so that (o ; ok @ id)(W) = E;il by (5.2). This means that using the relation
(k @ K)(W) = W [33],

K(E]) = k(of; ®id)(W) = (of; ok @ id)(W) = EY,. O
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Now let us return to graph products. So let I be again a simplicial graph and for
each v € VT let GG, be a compact quantum group with discrete dual Gyp. Let G be
the graph product of G,,v € VT and let G be its discrete dual. From Theorem 4.4
we see that the C*-algebra A associated to G equals

®aelrr(G)Mnal Q- Mnal s

incasex = a1 ®--- ® ;. For k € N we shall use the notation A for the subspace
defined by

®a€Irr(G),a=a1 Q- Qg Mnal K Mnak s

so the subspace of exactly k-fold tensor products of matrices. Let w € V' I'. We shall
denote Py, : H — H for the projection onto the linear span of the Hilbert spaces Hy
with v.€ Wyin a word that is equivalent to a word that starts with w. Now we are
able to state the following Lemma 5.4.

)

Lemma 54. Forv € VI suppose that L, = @aelrr(G)Ll(,a is a central length for

the discrete quantum group G,,. Define,

I(e)
_ (@)

L=]] Zanal ®@lmy,, OLG QI Q- Qlu,, . (53)
achr(G) i=1

where each a € Irr(G) decomposes as the tensor product representation oy - - - @y (q)
and a; € Irr(Gy,). Then L is a central length function for the discrete quantum

group G.

Proof. We first check that E(L) <L®1+1® L. Recall from [22, Eqn. (1) in
Proposition 3] that,

pi® ity ca®p,

5.4)
0 otherwise,

A(py)(pa ® pp) =

where pf,@ﬂ € B(Hq ® Hp) is the projection onto the sum of all subrepresentations
of « ® B that are equivalent to y. Since the length functions L,,v € VT are
central, we know that L, = @gem(c,) fo(®)pe for some f, : Irr(G,) — [0, 00)
and similarly L = @®gemr@) f(®)pe. In fact, by definition of L we have that
fla) = fo,(a1) + -+ fo,(p) incase ¢ = o] ® -+ ® ap. The condition
K(L) < L®1+1® L now becomes equivalent to the property that for every
a, B € Irr(G) we have A(L)(pa ® Pp) <(L®1+4+1® L)py ® pg, which by (5.4)
is equivalent to,

D i < (f(@) + f(B)pa ® pp- (5.5)

yelr(G),
ySa®p
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Now fix @« = 01 ® - Quy € Irr(G) and B = 1 Q --- ® By € Irr(G).
Let v; and w; be such that @; € Irr(Gy;) and B; € Irr(Gy,). o ® B is not
necessarily irreducible, c.f. Theorem 4.4. If (vj,v;41) € ET then o1 ® --- ® apy
is unitarily equivalent to o] ® - ® ®j—] ® Ci+1 @ O ® W42 ® -+ ® ®y by
intertwining with the flip map id® ! @ % ® id®""~! . Therefore, without loss
of generality, we may assume that there exists r such that vy ...v,wy... wy is
reduced and vy ... VW1 ... Wy = V1...VuW71...Vy. Note that this implies that
Wi, ..., Wy—, commute and {wy, ..., Wn—r} = {Vr41,..., Un}. Therefore, without
loss of generality, we may assume that v,4; = wi,...,v, = Wy_, (since B is
equivalent to a representation for which this is true, again by intertwining with flip
maps). Then o ® B is equivalent to

01 Q- QRur Uy 41 ®,81 ®Olr+2®,32®‘ Qo ®,3n—r ®,3n—r+1®' "®,3m‘ (5-6)

Suppose that y € Irr(G) is contained in (5.6). Then by the Peter—Weyl decom-
positions of a;4+1 ® Bi1,...,a, ® Bu—r, there exist irreducible representations
VisewoosVn—r Withy; Car41®PB1,. o Vn—r C 0y ® By—r suchthaty ~ a1 ®---®
4 ®@Y1® ®Yn—r ®Pp—r4+1Q-+-® P This implies that f(y) = Z;:l Jo; (i) +
it S 7)) + DT iq Sfw; (Bi) and since fv,+, is a length function,
thlS 1mphes that f(y) < Zz—l S (@) + 21_1 (va_r (ir) + Su; (Bi ))
et Jw (Bi) = Y7y fo; (@) + D71, fuw; (Bi) and so condition (5.5) holds.
Next we check the relation K¥(L) = L. Let o € Irr(G) and assume that
it decomposes as a reduced tensor product o; ® -+ ® ,. The contragredient
representation (see Lemma 5.3) is then given by a; ® --- ® ay. This implies, using
Lemma 5.3 and its notation, that K(E}' . ® --- @ E ) =EY ® --QE%

i1,J1 insjn Jnsin Jisit

K(E}" ]n) ®-® K(El1 ;). Applying the latter observation to (5.3) yields that
R(L)'Z

Finally, we have €(L) = f(ao) pay, With ag € Irr(G) the trivial representation.

Since f(ag) = 0 we have €(L) = 0. O

The following Lemma 5.6 uses the notion of polynomial growth [38]. Examples
of discrete quantum groups with polynomial growth can be found in [4].

Definition 5.5. Let G be a compact quantum group with central length L and dual
Haar weight @. Set ¢, = X[n,n+1)(L). G has polynomial growth if there exists a
polynomial P such that for every n we have @(q,) < P(n).

Lemma5.6. Let Gy and G, be compact quantum groups such that (@1 , L1) has (RD).
If either (Gz, L») has polynomial growth or is a classical discrete group with (RD)
then ((Gq x Ga, L) has (RD) where L was defined in Lemma 5.4.

Proof. Let q,(cl), q I({z) and gy, be the spectral projections onto [k, k + 1) of respectively

L1,L, and L. Also write q(<112 = ZIJC-:O qﬁl), q(<2,2 = Z] —o q(2) Let Ay, A, and A
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be the C*-algebras associated to the dual/s\ of resggctivcly G1,G, and G. Let Py, P>
be the polynomials witnessing (RD) for G; and G5 respectively.

In order to prove that, for x € gxA, we have [|g; F(x)gm|l < P(k)|x||2 for some
polynomial P, it suffices to prove that, for every k, the following estimate holds,

IFCll < P()|x]l2.  forall x € (42 ® g Z)A.
It follows from the fact that ‘1(<112 ® q(<213 > ¢r. Observe that, by definition, we have
Fa®b)=Fi(a) ® Fo(b) foralla € q(<,2A1 and all b € q(Z)Az
First assume that (Gz, L>) has polynomial growth (so, in particular it is an
amenable discrete Kac algebra with property (RD) [38]). Let @; be the Haar weight
onA;,i = 1,2 By polynomial growth we have @, (q(2)> < Ps3(n), where P3

is a polynomial with P3(n) > 1 for all n. Let x € (q(l) (2))A be a finite

sum x = ) .a; ® b;, where a; € q<,2A1 with ||la;|l2 < co and b; € q( )Az with

|bill2 < oo for all i. We may and will assume that (a@;) is an orthonormal system
with respect to the scalar product given by @;. Hence, ||x||5 = Y, [|b:|3 and,

< Y IF @) | Fabi)ll < Pr(k)Pa(k) > llai 216 12

= PLk) P2(k) 3 1billz < Pyk) Patk)y/dim (¢ 2Rz) S 164113

= Py (k) P2(k)/dim (¢2Rs) x> = P1(k)Pz(k)||x||2\/@2(q(<212)

P1(k) P2 ()| x 2 Zaz(qﬁ?’) < P1(k) Pa(k)||xl2
j=0

IA

k
Pl(k)Pz(k)( ) Pg(n) Ixl2 < Q®)lxlla
j=0

where Q is a polynomial.
Now assume that (@2, L») is a discrete group, denoted by G, with property (RD)

so that we may take x € (q(l) (2))A to be a finite sum of the form x = Z ag®dg,

where ag € 61(<le1 with |jagl|l2 < oo for all g, 8 € [°°(G) is the Dirac function

at g € G and ag = 0 for all g € G such that L>(g) > k. Hence we have
Ix]13 = de lag||3 and F(x) = > g Filag) ® Ag, where A, € B(1?(G)) is the left
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translation by ¢ € G. Let § € L*(G;) ® [%(G) be a finite sum § = Y, &, ® §.
One has:

IF@EIR = | X Fuapt ® s = | 3 At @
g.h g.h

2
-S| A@ten], = 2 Z 5@k )
h g h g

2
< PP X ((Lllaxlalignll) = P10+ ol
g

h

where ¥, ¢ € [2(G) are defined by ¥ (g) = |lagl|> and ¢(g) = ||&g||. Observe that

2
W12 = 2 lagl3 = IxI3
g
and

ol = Yol = | & @ 8 = el
g g

Since ¥ is supported on elements g € G of length less that k, we may use (RD)
for G and we find:

IF@EIP < PL)? Pak 1122 19226y = Pr)* Pk X 3111
This finishes the proof. 0

Let Py, : H — H be the projection onto the closure of the span of the spaces Hy
with w a minimal word of length m € N.

Proposition 5.7. Let I" be a finite graph and for every v € VI let Gy, be a
compact quantum group such that (@v, Ly) has (RD). Moreover, assume that for
every clique Ty of T the graph product @Fo has (RD). Let G be the graph product
with respect to I" and let G= (2, K) be its discrete dual. There exists a polynomial
P € R[X] such that for every k,l,m € Nsuchthat |k—1| <m <k+landa € /A\(k)
we have || P F(a) Pr|| < P(k)|la]».

Proof. Foreachv € VI we letay, ;,j € Jy, be elements of A; such that @y, ; :=
ay,jSy, j € Jy is an orthonormal basis of Hj. Set &, ; = ZZ\:,J- = a:’ij,j e J,
which also is an orthonormal basis of H; since G, has a tracial Haar weight [38,
Proposition 4.7]. In particular, ||§, ;|| = ||@y,; . Throughout the proof we shall use

the convention that a summation ) _ ; ay,; in fact is the summation over j € J,. To
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prove the proposition it suffices to assume that,

Fla) = E E )‘wn, JEGwi, gy - Qwge, s

WEWnin, Ji.-
l(w)=k

E = Z Z /Jl/v,l'],...,i[gvl,il Q- Q Svl,il-

VEWnin, 11...I]

1(v)=I

Firstly, using the notation introduced before Lemma 5.4,

PnF(a)E = P, ( S Awteic Py + Paaw, jy (Pu, + Pa)) ..

V;(EV)lel[ch J1seeosJk
w)=
- (Pyy + Plf)_k)awkajk (Pw + Plj_k))

( Z Z Mv,iq,..., zlgvl i ®- ®§vl ll) . (5.7

VEWnin, 1,..00
I(v)=

A large part of the terms in the product of these sums vanishes in fact as follows from
the following observations.

Reduction of the operator part. Firstly, consider an expression:
Qr(,uzl)awl,ll Q(l) . legawk Jk Qz(,ullzv (58)

with qull.) and Q,(U2i) equal to either Py, or P,ji. Assume that (5.8) is non-zero, then
this implies the following:

(1) If 0f) = Pg then 03 = Py,.

2) If Ql(uzi) = Py, , then it must be true that Qz(t}i)—l = Pwli_1 or (wj—1,w;) € ET.

These observations yield that, without loss of generality, (5.8) can assumed to be of
a specific form.

¢ We claim that (5.8) can be assumed to be of the form:

2 1 2 1
Qz(ul)awuh Qz(u]) e Qz(v\)awvsjv Q( )P wé+1aws+1,]s+1 Pyg iy Pwkawk Jx Puy -
(5.9)
where for every 1 < i < s we do not have that Q(z) = Pl and Qz(vll.) = Py,.

In order to prove this claim first note that if Q(z) = PJ' and Q,(Uli) = Py, then it

2 1
follows from (2) that either Q,(UIA)Jrl = PuJ;Jrl and Qz(l,i)Jrl = Py, ., or (Wi, wit+1) €
ET'. It then suffices to show that in the latter case the operators PuJ;i Ay, j; Py, and

Ql(,}zl ) 19w 1. Ji 41 Qz(uli)l commute. So firstly observe that Py, Py, , is a projection
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and hence Py,; and Py, , commute. By taking complements, any of the projections
Py, Py Puy

and Qz(uzl.)Hale’jiﬂ QSi)+1 commute. This concludes (5.9).

and PuJ;l_ 4, commute. It follows from Lemma 3.3 that PuJ;l_ Qw; , j; Puw;

* An analogous argument as in the previous bullet point yields that, without loss
of generality, we may assume that (5.8) has the form,

2 1 2 1 2 1
I(UI)awlajl Qz(ul) T Ql(vr)awrajr QI(U,?PlE)r).Hawr-&-laJ‘r-&-l Plf)r)+1 e

2 1) pl 1
te Plf)s)aws,js Plf)s)PwS+1aws+l’js+l Pws-i-l ce Pwkawksjk Pwk’ (510)

and that for every 1 <i < r we do not have that Qz(vll.) = Py,.

« If 0%)) = P then this implies that Q) = Py, by (1). So (5.10) shows that
the expression (5.8) can be written as,

. pL . pl .
Puyaw,jy Py -+« Pu,@uw, i Poy Py Gwp oy jrgr Py -

1 1
te PwsawA'ajs Pws Pws+1aws+lajs+l Pws—H T Pwkawkajk Pk’ (511)

for some 0 < r < s < k (the cases r = 0 and s = k should be understood naturally).

¢ Moreover, suppose thats > r+1. Then it follows from (1) that (w41, Wy42) €
ET. As in the first bullet point this implies that Py, aw,, j. 4, Pw,,, and
Py, 50w, 5, jrir Pw,,, commute. Hence it follows from (2) that (w41, wy43) €
ET (provided that s > r,) and inductively we find that (w, 1, w;) € ET for every
r +1 <1i <s. The same argument yields that actually (w;, w;) € ET for every
r+1<i,j <s. Weconclude that w,41, ..., w;s are in clique of T'.

Reduction of the vector part. Now suppose that a vector &, ;;, ® --- ® &y, ;, is not
in the kernel of (5.11). Then this implies that we may assume (using the commutation
relations given by ET to permute terms in (5.11)) that vy = wg, ..., Vk—r = Wr41,
that wy . .. wy41 is contained in a clique and furthermore that vg_, 11 # w,. And in
that case,

(Pwlawl,jl Pu%l oo Py, aw, j, PuJ}_r Py, 1@w, i1, jrr Pwpgy -
o Pugan,, j Puyg szfg+1aws+1,js+1 Pygyy - sz_kawkajk Pk) (évl,il Q- ® Evz,iz)
=y j; @ ®du,,jr ® Puytug,j§vi_syrin_ssr ®
ot '®Pwr+1awr+1 SJr41 Evk—raik—r ®§Uk—r+lsik—r+l ®-- '®$Ulail X(awkafk Svl,il ,§2) -
T (aws+lsjs+l€vk—ssik—s’ @), (5.12)
where we explicitly mention that some of the indices in the triple dots of the right hand

side of this expression either increase or decrease by steps of 1. Looking at the length
of tensor products shows that (5.12) is in the kernel of P,, unlessm +k —[ = s +r.
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Remainder of the proof. Now we conclude from (5.7) and (5.12) that,

2
IPnF@El3 < ) > )
m+k—Il=s+r (Uy,...u )eCliqgr(s—r) = W,VEWnin,
0<s.r<k SR I(w)=k,I(V)=I,
V1 =Wk -Vk—r =Wr+1;
(vk—S-'rl!"'7vk—r)=(w3‘5“'swl‘+1)=(u17~'-1uS7r)

~ 2 ~ 2 ~ 4 ~ 4
: Z Z @w, i 15 - - N@w, i, 13%8 g iy @i Nl - - - 8js+lsik—s ||aws+l>js+l 17

]l, 5.]": I]seensif— -5
Js+1sesk Bk— P 1seeesi]

2
: ) Z Awy g 1,jr41 - - Qg js Z Evgmraitmr ® @ Evp_giriikosi ‘2 (5.13)
Jr41sensls Ik—rseolk—s+1
We have, since @Fo has (RD) by assumption for every clique I'g in I,
2
” Z Awp i 1,Jr+1 -+ - Qws, js Z Svpriig—yr ® - ® skas+lvikfs+l 5
Jrd1ses Ik—rseelk—s+1
2
SP(S—}’)H Zawr+lafr+l"‘aw5aj.¥‘2
Jrlsesls
2
: H 3 Evrirs ® @ Eue i ;- (614

Ik—rseolk—s+1

for some polynomial P. Let Q be a polynomial such that P(s — r) < Q(k) for
any choice of s,7 € N with 0 < 5,7 < k. We may choose Q independent of the
clique I'y that defined P. Combining (5.13) and (5.14) we see that,

| PaF @3 < Y. ) »

m+k—Il=s+r (uy,...us—r)eCliqr(s—r)  W,vEWnin,
0<s.r<k o 1(wWy=k,I(v)=I,
VI =Wk - Vg—r=Wr41,
Wk —s4150sVk—r) =W seeis Wy 4 1) =1 5000 sUs—r)

~ 2 ~ 2 2 2
0wy 13- NG i U3 1Evy i 13 - €0,

B
JlseeosJk B1seensly

< Mk +1)*0®k)|lal3 €13
where M is the number of cliques in I', which is finite since I" is finite. 0

Lemma 5.8. Let G be a compact quantum group and let L be a central length
associated with G. Then there exists a central length L' > L associated with G such
that L' py > 1 for every a € Irr(G) nontrivial.

Proof. Since L is a central length we may write L = @yemc)f(@)pa. We
define the central length L' = ®yem@)f (®)pa, Where f'(a) = f(a) + 1
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if @ is nontrivial and f’(¢) = f(«) in case « is trivial. As in the proof of
Lemma 5.4 the condition A(L') < L' ® 1 + 1 ® L' is equivalent to checking that
> e (G).ycacp S (y)p“®ﬂ < (f"(o) + f'(B)) pa ® pp. However, this condition
easily follows from the fact that if both @ and § are trivial then « ® B is trivial and
so y is trivial whenever y C a ® 8. The condition ¥(L’) = L’ follows as in the
proof of Lemma 5.4, see also Lemma 5.3. And finally by definition of the counit we
have €(L") = f'(ao) = f(ag) = 0 with oy € Irr(G) trivial. O]

Theorem 5.9. Let I be a finite graph and let, for every v € VT, Gy be a compact
quantum group such that (Gv, v) has (RD). Assume that for every clique I'g the
graph product Gpo has (RD). Then the graph product (G = Gr, L) has (RD) for
some central length L. If Lypy > 1 for every v € VI and a € Irr(Gy) nontrivial
then L can be taken as in Lemma 5.4.

Proof. For v € VT denote by L, a central length for @v and let L be the central
length defined in Lemma 5.4. Assume by Lemma 5.8 and [38, Remark 3.6] that,

Lype =1, VYveVI,a € Irr(Gy). (5.15)

This implies that Lp, > [(«) where [(«) the length of the reduced expression
a=0a;® @@, Witha € Irr(G). By Proposition 5.7 there exist a polynomial P
such that for every k,/,m € Nsuchthat |k — ]| <m <k +1[landa € /A\(k) we
have || PnF(a) Pyl < P(k)|all2. Now, leta € qiA and write a = Y5 _; a(;y with
agy € K( j)» which is possible by the first paragraph. Take a vector v € ¢;H and
write v = Zf:o () with vy = P;v. Since Y r—, Py > ¢m and the projections P,
are orthogonal, it follows that ||gmF(a¢))qivl|3 < X reo | P-F(a¢))qiv||3. Next,
we have an elementary equality that follows by considering word lengths and an
inequality which follows from Cauchy—Schwarz and the triangle inequality,

m
Z 1P Flagyqivllz =) H Z P F(a(]))v(l)

r=0 i=|j—r|
m  j+r
<@ji+DY. D IPFlag)vel3-
r=0i=|j—r|

Now, for |j —i| <r < j 4+ i we have,

| P Fagy)vils < PG llacylzlvell3-

For other values of r we have ||P,F(a(;))vill3 = 0. Since, as we observed,
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li — j| <r < j +i for any given value of i, this shows that we can estimate,

m jtm m
Y NPFagyamli < PG+ 1D Y llagBllve 3
r=0 i=0 r=0
j+m
< PG+ DY llag3lveli3
i=0

< P(H)*Q2j + Dllagyli3lvl3.

Now, using the triangle inequality and the Cauchy—Schwarz inequality we have

k 2 k
lgm F@)aro )3 < (Z ||qu<a<j>)qw||2) <K+ 1Y lamFagnanl?

Jj=0 j=0

k
< (k+ 1Y P(YQ)+ Dlag 31013
j=0

< (k + 12k + D2 P'(k)||all3]v]3
= P"(k)|al3llv]3.

for some polynomials P, P’, P” that satisfy the property that, for every 0 < j < k,
P(j)? < P'(k) and P"(k) = (k + 1)(2k + 1)?>P’(k). O

Corollary 5.10. Let T’ b/g a finite graph. For v € VT let Gy be a compact quantum
group and assume that Gy, has either polynomial growth or is a classical compact
group with (RD). Then the discrete dual of the graph product has (RD).

Proof. This is a consequence of Theorem 5.9 and Lemma 5.6. O

Corollar)/'\S.ll. Let T be ﬁr/z\ite and without edges. Let G = x,cy1rGy. If for every
v € VI, Gy has (RD), then G has (RD). i.e. (RD) is preserved by finite free products.

Proof. This is a consequence of Theorem 5.9. O
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