
J. Noncommut. Geom. 11 (2017), 367–411
DOI 10.4171/JNCG/11-1-9

Journal of Noncommutative Geometry
© European Mathematical Society

Graph products of operator algebras
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Abstract.Graph products for groups were defined by Green in her thesis [25] as a generalization
of both Cartesian and free products. In this paper we define the corresponding graph product
for reduced and maximal C�-algebras, von Neumann algebras and quantum groups. We prove
stability properties including permanence of II1-factors, the Haagerup property, exactness and,
under suitable conditions, the property of rapid decay for quantum groups.
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1. Introduction

A graph product is a group theoretical construction starting from a simplicial graph
with a discrete group associated to each vertex. The graph product construction
results in a new group and special cases depending on the graph are free products and
Cartesian products. Important examples of graph products are right angled Coxeter
groups and right angled Artin groups.

Graph products preservemany important group theoretical properties. This yields
important new examples of groups having such properties and gives (alternative)
proofs of such properties for existing groups. For instance the graph product preserves
soficity [16], Haagerup property [2], residual finiteness [25], rapid decay [17],
linearity [27] and many other properties, see e.g. [3, 15, 26].

Whereas many of the stability properties above have important consequences for
operator algebras, the actual operator algebras of graph products have been unexplored
so far. The current paper develops the theory of reduced and universal/maximal
C�-algebraic graph products as well as the graph product of von Neumann algebras
and quantum groups. These objects generalize free products by adding commutation
relations that are dictated by the graph.
�M. C. is supported by the grant SFB 878 “Groups, geometry and actions”.
��P. F. is supported by the ANR grants NEUMANN and OSQPI.
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Free products of operator algebras play a central role in von Neumann and
C�-algebra theory; in particular in the context of free probability and deformation
and rigidity theory. Operator algebraic graph products — which give in a suitable
sense a notion of “partial freeness” being quantized in terms of the number of edges
of the graph — provide new examples that are closely related to these areas. Such
ideas appeared in fact already in an early stage of free probability theory, for example
in [35] Speicher proves amixed Fermion–Boson analogue of his central limit theorem
(used in [9] to show stability of the Connes embedding problem for graph products).
Other important implicit occurrences of graph products can be found in the work by
Bozejko and Speicher on Coxeter groups, see e.g. [8]. Also in [1] other extensions of
free probability using graphs were investigated by Accardi, Lenczewski and Salapata.
In this context we also mention the current parallel developments on bi-freeness [40].

We shall relate the basic properties of graph products of operator alge-
bras/quantum groups to the ones of their vertices. This includes Tomita–Takesaki
theory, commutants, GNS-representations, (co)representation theory, et cetera. We
also show that any graph product of von Neumann algebras decomposes inductively
into amalgamated free products of the von Neumann algebras at its edges. For
notation we refer to Section 3.

Theorem 1.1. Let � be a simplicial graph with von Neumann algebras Mv; v 2 V �
and graph product von Neumann algebra M. Fix v 2 V � . Let M1 be the graph
product von Neumann algebra given by Star.v/. Let M2 be the graph product von
Neumann algebra given by �nfvg. Let N be the graph product von Neumann algebra
given by Link.v/. Then M ' M1 ?N M2.

There is a corresponding result of Theorem 1.1 for C�-algebras, see Section 3.
Theorem 1.1 implies that any property of a von Neumann algebra that is being
preserved by arbitrary amalgamated free products is automatically preserved by the
graph product. However, there is a large number of properties which are not (or not
known to be) preserved by amalgamated free products. For example, the Haagerup
property is known not to be preserved by arbitrary amalgamated free products. But
in fact we prove the following.

Theorem 1.2. Let � be a simplicial graph with von Neumann algebras Mv; v 2 V � .
Let M be the graph product von Neumann algebra. Then,

(1) Suppose that every Mv is � -finite. M has the Haagerup property if and only if for
every v 2 V � , Mv has the Haagerup property.

(2) M is a II1 factor if for every v 2 V � , Mv is a II1 factor.

While proving stability of the Haagerup property we also included a canonical
proof of extending completely positive maps to graph (and in particular free) products
by considering their Stinespring dilations, see Proposition 3.30. In the case of
quantum groups we find the following stability properties:
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Theorem 1.3. Let � be a simplicial graph with compact quantum groups
Gv; v 2 V � . Let G be its graph product and let bGv;bG be their duals. Then,

(1) bG has the Haagerup property if and only if for every v 2 V � , bGv has the
Haagerup property.

(2) Let � be finite. If for every v 2 V � , bGv is a classical group with the property of
Rapid Decay (RD) or a quantum group with polynomial growth, then the graph
product bG has (RD).

(3) Let � be finite without edges. Then G D ?v2V �Gv . If for every v 2 V � , bGv
has (RD), then bG has (RD). i.e. (RD) is preserved by finite free products.

It must be emphasized that for compact quantum groups with tracial Haar
state (i.e. of so-called Kac type) Theorem 1.3(1) follows from Theorem 1.2(1)
by [19, Theorem 6.7]. However, it is unknown if the result of [19, Theorem 6.7]
extends beyond Kac type quantum groups. In fact [10] shows that the behaviour of
approximation properties outside the Kac case can be quite different. In the group
case our result gives an alternative proof of stability of the Haagerup property under
graph products, which was first proved in [2].

Acknowledgements. The authors thank Amaury Freslon for useful comments on
Section 5. The authors thank the anonymous referees for their comments.

Structure of this paper. Section 2 introduces the basic notions for graph products.
In Section 3 we develop the theory of graph products of operator algebras: graph
products of Hilbert spaces, von Neumann algebras and maximal and reduced graph
products of C*-algebras, study their representation theory and develop the unscrewing
technique as explained in Theorem 1.1. We also prove some stability properties such
as exactness for reduced graph products of C*-algebras and the Haagerup property
for von Neumann algebras. In Section 4 we define graph products of quantum groups,
study their representation theory and prove the stability of the Haagerup property.
Section 5 proves stability of rapid decay for quantum groups under graph products.

General notation and preliminaries. We denote Mn for the n � n matrices
over C. We use bold face characters A and M for operator algebras and calligraphic
characters H and K for Hilbert spaces. The scalar product on Hilbert spaces is
supposed to be linear in the first variable. The symbol ˝ denotes the tensor product
ofHilbert spaces, theminimal tensor product ofC�-algebras or vonNeumann algebras
and it should be natural from the context which of these is meant. The symbol ˝

max
will denote the maximal tensor product of C*-algebras. A state on a C�-algebra or
more generally a completely positivemap betweenC�-algebras is calledGNS-faithful
if the representation given by the GNS-construction is faithful. Faithful states are
GNS-faithful but the converse is false.
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2. Preliminaries

Let � be a simplicial graph. This means that � is given by a vertex set V � and edge
set E� � V � � V � n f.v; v/ W v 2 V �g. We assume that the graph is non-oriented
in the sense that .v; w/ 2 E� if and only if .w; v/ 2 E� , for all v;w 2 V � . For
v 2 V � we write Link.v/ for the set of all w 2 V � such that .v; w/ 2 E� . We set
Star.v/ D Link.v/ [ fvg. Let A � V � be a subset of vertices. The full subgraph
of � with vertex set A is the graph having vertex set A and w;w0 2 A are connected
by an edge if and only if .w;w0/ 2 E� . We slightly abuse notation and also use
Link.v/ and Star.v/ for the full subgraphs of � with respective vertex sets Link.v/
and Star.v/. It shall always be clear from the context if Link.v/ (or Star.v/) is a
graph or a vertex set.
Convention. From this point we will say that �0 � � is a subgraph if �0 is the full
subgraph of � with vertex set V �0.
Definition 2.1. A clique in the graph � is a subgraph �0 � � such that for every
v; v0 2 V �0 with v 6D v0 we have .v; v0/ 2 E�0 (so a complete subgraph of �). In
particular every single vertex of � forms a clique (with no edges). By convention
the empty graph is a clique. We denote Cliq.s/ for all cliques in � with exactly s
vertices.
Definition 2.2. For each v 2 V � let Gv be a discrete group. The graph product G�
is defined as the group obtained from the free product of Gv; v 2 V � by adding the
relations

Œs; t � D 1 for all s 2 Gv , t 2 Gw and all v;w 2 V � such that .v; w/ 2 E�:

A word is a finite sequence v D .v1; : : : ; vn/ of elements in V � . We shall commonly
use bold face notation for words and write vi for the entries of v. The collection of
words is denoted by W and by convention the empty word is not included in W .
We say that two words v and w are equivalent if they are equivalent modulo the
equivalence relation generated by the two relations:

I .v1; : : : ; vi ; viC1; : : : ; vn/ ' .v1; : : : ; vi ; viC2; : : : ; vn/ if vi D viC1;
II .v1; : : : ; vi ; viC1; : : : ; vn/ ' .v1; : : : ; viC1; vi ; : : : ; vn/ if vi 2 Link.viC1/:

(2.1)
Moreover, we say that two words v and w are type II equivalent if they are equivalent
modulo the sub-equivalence relation generated by the relation II. A word v 2 W is
reduced if the following statement holds:

Suppose that there are k < l such that vk D vl ;
then we do not have that all vkC1; : : : ; vl�1 2 Star.vk/:

(2.2)

We let Wred be the set of all reduced words. Observe that if v is reduced and type II
equivalent to v0 then also v0 is reduced.
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Lemma 2.3. We have,
(1) Every word v is equivalent to a reduced word w D .w1; : : : ; wn/.
(2) If v is also equivalent to a reduced word w0, then the lengths of w and w0 are

equal.
(3) Moreover, there exists a permutation � of f1; : : : ; ng such that

w0 D .w�.1/; w�.2/; : : : ; w�.n//:

(4) There is a unique such � if we impose the condition that if k > l and wk D wl ,
then �.k/ > �.l/.

Proof. (1) Note that any word that can not be made shorter my means of
permutations and cancellations (2.1) is reduced. Hence, statement .1/ follows from
an obvious induction.

(2) This is essentially the normal form theorem [25, Theorem 3.9]. It can be
derived as follows. For each v 2 V � let Gv be the group RC with multiplication.
For x 2 RC we shall explicitly write xv to identify it as an element of Gv . Associate
to the word w of length n the group element gw WD 2w12w2 : : : 2wn in the graph
product of the groups Gv; v 2 V � , see Definition 2.2. Since w is reduced, it follows
that gw is reduced in the sense of [25]. Assume that w0 has length m. Since w is
equivalent to w0, there exists elements x1; : : : ; xm with xi 2 Gw0

i
and xi > 1 such

that gw is equivalent to the graph product element gw0 D x1 : : : xm (this can easily
be seen by checking this on each step (2.1) to obtain this equivalence, in particular xi
is either a power or a root of 2). Since w0 is reduced, it follows that gw0 is reduced.
Hence, gw0 and gw are reduced equivalent elements in the graph product ofGv; v 2 �
and by the normal form Theorem [25, Theorem 3.9], this implies that m D n. In
fact [25, Theorem 3.9] implies also that xi D 2.

(3) Let m be the total number of times that a given v appears in w. We need to
show that v appears exactlym times in w0. Suppose that this is not the case. Since w
and w0 have the same word length we may assume, without loss of generality, that it
appears less thanm times inw0 since else, wemay change v to another vertex forwhich
this is true. But sincew0 is obtained fromw through the equivalences (2.1) this means
that there exists some l > k such that wl D wk D v and wkC1; : : : ; wl�1 2 Star.v/
which contradicts the fact that w is reduced.

(4) Write w0 D .w01; : : : ; w0n/ and note that any permutation � of f1; : : : ; ng such
that w0 D .w�.1/; : : : ; w�.n// induces, for any vertex w occurring in the word w, a
bijection fromK 0w WD fi j w

0
i D wg toKw WD fi j wi D wg. There is a unique such

bijection which is moreover increasing.

Let Wmin be a complete set of representatives of the reduced words under the
equivalence relation described above. We call an element of Wmin a minimal word.
It is then clear that every word v is equivalent to a unique minimal word w. Note
thatWmin excludes the empty word.
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3. Graph products of operator algebras

In this section we construct graph products of operator algebras. In case the graph �
does not have edges, the graph product coincides with the free product for which
we refer to [39]. In addition, it is important to emphasize that our constructions
are different from [23]: indeed graph products impose commutation relations on the
resulting algebra which, in general, cannot be written in terms of the amalgamations
imposed by the constructions in [23].

3.1. The graph product Hilbert space. For all v 2 V � let Hv be a Hilbert space
with a norm one vector �v 2 Hv . Define Hıv D Hv 	 C�v and let Pv be the
orthogonal projection ontoHıv . For v 2Wred we let,

Hv D Hıv1 ˝ � � � ˝Hıvn :

By Lemma 2.3 we see that if v 2Wred is equivalent to w 2Wred then there exists a
uniquely determined unitary map,

Qv;w W Hv ! Hw W �1 ˝ � � � ˝ �n 7! ��.1/ ˝ � � � ˝ ��.n/; (3.1)

where � is as in Lemma 2.3(4). Since every v 2Wred has a unique minimal form v0
we may simply writeQv forQv;v0 .

Define the graph product Hilbert space .H; �/ by:

H D C�˚
M

w2Wmin

Hw:

For v 2 V � , let Wv be the set of minimal reduced words w such that the
concatenation vw is still reduced and writeWc

v DWmin nWv . Define

H.v/ D C�˚
M
w2Wv

Hw:

We define the isometry Uv W Hv ˝H.v/! H in the following way:

Uv W Hv ˝H.v/ �! H

�v ˝�
'
�! �

Hıv ˝�
'
�! Hıv

�v ˝Hw:
'
�! Hw

Hıv ˝Hw
'
�! Qvw.Hıv ˝Hw/

Here the actions are understood naturally. Observe that, for any reduced word w, the
word vw is not reduced if and only if w is equivalent to a reduced word that starts
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with v. It follows that Uv is surjective, hence unitary. Define, for v 2 V � , the
faithful unital normal �-homomorphism �v W B.Hv/! B.H/ by

�v.x/ D Uv.x ˝ 1/U
�
v for all x 2 B.Hv/:

Observe the �v intertwines the vector states !�v and !�. Let �v 2 Hv . We use
��v W Hv ! C for the mapping � 7! h�; �vi.
Proposition 3.1. For all v 2 V � and all x 2 B.Hv/ one has:
(1) �v.x/� D Pv.x�v/C hx�v; �vi�.
(2) �v.x/� D Pv.x�/C hx�; �vi� for all � 2 Hıv .
(3) �v.x/� D Qvw.Pv.x�v/˝ �/C hx�v; �vi� for all w 2Wv and all � 2 Hw.
(4) If w 2 Wc

v then there exists a unique wv 2 Wv such that w ' vwv are II
equivalent and, for all � 2 Hw, one has

�v.x/� D Qvwv .Pvx ˝ id/Q�vwv� C .�
�
v x ˝ id/Q�vwv�:

Moreover, the images of �v and �v0 commute whenever .v; v0/ 2 E� .

Proof. The first part of the proposition is an immediate consequence of the definition
of Uv .
(1) One has

�v.x/� D Uv.x�v ˝�/ D Uv.Pv.x�v/˝�/C hx�v; �viUv.�v ˝�/
D Pv.x�v/C hx�v; �vi�:

(2) Let � 2 Hıv , one has

�v.x/� D Uv.x� ˝�/ D Pv.x�/C hx�; �vi�:

(3) Let w 2Wv and � 2 Hw, one has

�v.x/� D Uv.x�v ˝ �/ D Qvw.Pv.x�v/˝ �/C hx�v; �vi�:

(4) Let wv 2Wv , � 2 Hıv and � 2 Hwv . We find

�v.x/Qvwv .� ˝ �/ D Qvwv .Pv.x�/˝ �//C hx�; �vi�:

Hence, for all � 2 Hvwv , one has

�v.x/Qvwv� D Qvwv .Pvx ˝ id/� C .��v x ˝ id/�:

SinceQvwv W Hvwv ! Hw is unitary, this gives the result.
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We can now finish the proof of the proposition. Let v; v0 2 V � be such that
.v; v0/ 2 E� . Let x 2 B.Hv/ and y 2 B.Hv0/. Writing

�v.x/ D �v.x � hx�v; �vi1/C hx�v; �vi1

and �v0.x/ D �v0.y � hy�v0 ; �v0i1/C hy�v0 ; �v0i1

we see that we may and will assume that hx�v; �vi D hy�v0 ; �v0i D 0. Note that this
implies that Pv.x�v/ D x�v and Pv0.y�v0/ D y�v0 .

Let w be the unique reduced minimal word equivalent to .vv0/. Then w D .vv0/
or w D .v0v/. In both cases we findQvv0 D Qv0v ı†,

�v.x/�v0.y/� D �v.x/y�v0 D Qvv0.x�v ˝ y�v0/

D Qv0v.Pv0.y�v0/˝ x�v/ D �v0.y/�v.x/�:

Let � 2 Hıv0 . One has

�v.x/�v0.y/� D �v.x/.Pv0y� C hy�; �v0i�/
D Qvv0.x�v ˝ Pv0y�/C hy�; �v0ix�v

and �v0.y/�v.x/� D �v0.y/.Qvv0.x�v ˝ �// D �v0.y/.Qv0v.� ˝ x�v//

D Qv0v.Pv0y� ˝ x�v/C hy�; �vix�v
D Qvv0.x�v ˝ Pv0y�/C hy�; �vix�v D �v.x/�v0.y/�:

Claim. Let .v; v0/ 2 E� and w 2Wmin.

(1) Suppose that w 2 Wv \Wv0 and define w1;w2 2 Wmin such that v0w ' w1
and vw ' w2. Then w1 2 Wv , w2 2 Wv0 , vw1 ' v0w2 and, for all �v 2 Hıv ,
�v0 2 Hıv0 and � 2 Hw one has

Qvw1 .�v ˝Qv0w.�v0 ˝ �// D Qv0w2 .�v0 ˝Qvw.�v ˝ �// :

(2) Suppose that w 2 Wv n Wv0 and define w1 2 Wv0 , w2 2 Wmin such that
w ' v0w1 and w2 ' vw. Then, w1 2 Wv and w2 2 Wc

v0 . Let w3 2 Wv0 such
that w2 ' v0w3. For all � 2 Hw , y 2 B.Hv0/, � 2 Hıv ,

�v ˝Qv0w1.Pv0y ˝ id/Q�v0w1� D Q�vwQv0w3.Pv0y ˝ id/Q�v0w3Qvw.�v ˝ �/

and

Qvw1
�
�v ˝ .�

�
v0y ˝ id/Q�v0w1�

�
D .��v0y ˝ id/Q�v0w3Qvw.�v ˝ �/:

(3) Suppose thatw 2Wc
v\Wc

v0 and definew1 2Wv0 , w2 2Wv such thatw ' v0w1
and w ' vw2. Then, w1 2Wc

v and w2 2Wc
v0 . Define w01 2Wv and w02 2Wv0
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such that w1 ' vw01 and w2 ' v0w02. One has

Qvw2.Pvx ˝ id/Q�vw2Qv0w1.Pv0y ˝ id/Q�v0w1
D Qv0w1.Pv0y ˝ id/Q�v0w1Qvw2.Pvx ˝ id/Q�vw2 ;

.��v x ˝ id/Q�vw2Qv0w1.Pv0y ˝ id/Q�v0w1
D Qv0w0

2
.Pv0y ˝ id/Q�

v0w0
2
.��v x ˝ id/Q�vw2 ;

Qvw0
1
.Pvx ˝ id/Q�

vw0
1
.��v0y ˝ id/Q�v0w1

D .��v0y ˝ id/Q�v0w1Qvw2.Pvx ˝ id/Q�vw2 ;

.��v x ˝ id/Q�
vw0
1
.��v0y ˝ id/Q�v0w1 D .�

�
v0y ˝ id/Q�v0w2.�

�
v x ˝ id/Q�vw2 :

Proof of the Claim. In each of the subclaims we let u1; : : : ; un with ui 2 V � denote
(part of the) letters of w.

(1) We may assume that � D �u1 ˝ � � � ˝ �un is a simple tensor product with
�ui 2 Hıui . Let u01 : : : u0n and k be such that u01 : : : u0kv

0u0
kC1

: : : u0n is minimal
with u01 : : : u0k 2 Link.v0/ and u01 : : : u0n ' w. Let u001 : : : u00n and m1; m2 be
such that u001 : : : u00m1vu

00
m1C1

: : : u00m2v
0u00m2C1 : : : u

00
n is minimal with u001 : : : u00m1 2

Link.v/; u001 : : : u00m2 2 Link.v0/ and u001 : : : u00n ' w (for notational convenience we
assume that m1 < m2, the other case can be treated similarly). Then,

Qvw1.�v ˝Qv0w.�v0 ˝ �//

D Qvw1.�v ˝ �u01 ˝ � � � ˝ �u
0
k
˝ �v0 ˝ �u0

kC1
˝ � � � ˝ �u0n/

D �u00
1
˝ � � � ˝ �u00m1

˝ �v ˝ �u00
m1C1

˝ � � � ˝ �u00m2
˝ �v0 ˝ �u00

m2C1
˝ � � � ˝ �u00n ;

and using the fact that .v; v0/ 2 E� the same computation shows that this expression
equalsQv0w2.�v0 ˝Qvw.�v ˝ �//.

(2) We may assume that � D �u1 ˝ � � � ˝ �uk ˝ �v0 ˝ �ukC1 ˝ � � � ˝ �un and
that u1 : : : ukv0ukC1 : : : un is minimal with u1; : : : ; uk 2 Link.v0/. Then, letting
u01 : : : u

0
n and l be such that u01 : : : u0lvu

0
lC1

: : : u0n is minimal, u01 : : : u0l 2 Link.v/
and u01 : : : u0n ' u1 : : : un, we find:

Q�vwQv0w3.Pv0y ˝ id/Q�v0w3Qvw.�v ˝ �/

D Q�vwQv0w3..Pv0y�v0/˝ �u01 ˝ � � � ˝ �u0l ˝ �v ˝ �u0lC1 ˝ � � � ˝ �u0n/

D �v ˝ �u1 ˝ � � � ˝ �uk ˝ Pv0y�v0 ˝ �ukC1 ˝ � � � ˝ �un
D �v ˝Qv0w1.Pv0y ˝ id/Q�v0w1�:
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And, letting u001 : : : u00n be minimal and equivalent to u1 : : : un we have,

.��v0y ˝ id/Q�v0w3Qvw.�v ˝ �/

D .��v0y ˝ id/�v0 ˝ �u0
1
˝ � � � ˝ �u0

l
˝ �v ˝ �u0

lC1
˝ � � � ˝ �u0n

D hy�v0 ; �v0i�u0
1
˝ � � � ˝ �u0

l
˝ �v ˝ �u0

lC1
˝ � � � ˝ �u0n

D Qvw1.�v ˝ hy�v0 ; �v0i�u001 ˝ � � � ˝ �u
00
n
/

D Qvw1.�v ˝ .�
�
v0y ˝ id/Q�v0w1�/:

(3) Assume that � D �u1 ˝ � � � ˝ �ul ˝ �v ˝ �ulC1 � � � ˝ �uk ˝ �v0 ˝ �ukC1 ˝

� � �˝�un with u1 : : : ulvulC1 : : : ukvukC1 : : : unminimal and u1; : : : ; ul 2 Link.v/,
u1; : : : uk 2 Link.v0/. Then, using .v; v0/ 2 E� ,

Qvw2.Pvx ˝ id/Q�vw2Qv0w1.Pv0y ˝ id/Q�v0w1�
D Qvw2.Pvx ˝ id/Q�vw2�u1 ˝ � � � ˝ �uk ˝ Pv0y�v0 ˝ �ukC1 ˝ � � � ˝ �un
D �u1 ˝ � � � ˝ �ul ˝ Pvx�v ˝ �ulC1 ˝ � � � ˝ �uk ˝ Pv0y�v0 ˝ �ukC1 ˝ � � � ˝ �un ;

which equalsQv0w1.Pv0y˝id/Q�v0w1Qvw2.Pvx˝id/Q�vw2 by a reverse computation.
The other equalities follow in a similar way.

Remainder of the proof of the Proposition. Let w 2 Wv \ Wv0 and consider the
minimal words w1, w2 introduced in the first assertion of the Claim. For � 2 Hw,
one has,

�v.x/�v0.y/� D �v.x/Qv0w.y�v0 ˝ �/ D Qvw1 .x�v ˝Qv0w.y�v0 ˝ �//

D Qvw2 .y�v0 ˝Qvw.x�v ˝ �// D �v0.y/�v.x/�:

Let w 2 Wv nWv0 and consider the minimal words w1, w2, w3 introduced in the
second assertion of the Claim. One has,

�v.x/�v0.y/� D �v.x/Qv0w1.Pv0y ˝ id/Q�v0w1� C �v.x/.�
�
v0y ˝ id/Q�v0w1�

D Qvw
�
x�v ˝Qv0w1.Pv0y ˝ id/Q�v0w1�

�
CQvw1

�
x�v ˝ .�

�
v0y ˝ id/Q�v0w1�

�
and �v0.y/�v.x/� D �v0.y/Qvw.x�v ˝ �/

D Qv0w3.Pv0y ˝ id/Q�v0w3Qvw.x�v ˝ �/

C .��v0y ˝ id/Q�v0w3Qvw.x�v ˝ �/:

These two expressions are equal by the second assertion of the Claim. By symmetry,
this is also true when w 2 Wv0 nWv . Finally, let w 2 Wc

v \Wc
v0 and consider the
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minimal words w1;w01;w2;w02 introduced in the third assertion of the Claim. One
has:

�v.x/�v0.y/� D �v.x/Qv0w1.Pv0y ˝ id/Q�v0w1� C �v.x/.�
�
v0y ˝ id/Q�v0w1�

D Qvw2.Pvx ˝ id/Q�vw2Qv0w1.Pv0y ˝ id/Q�v0w1�
C .��v x ˝ id/Q�vw2Qv0w1.Pv0y ˝ id/Q�v0w1�
CQvw0

1
.Pvx ˝ id/Q�

vw0
1
.��v0y ˝ id/Q�v0w1�

C .��v x ˝ id/Q�
vw0
1
.��v0y ˝ id/Q�v0w1�

and �v0.y/�v.x/� D �v0.y/Qvw2.Pvx ˝ id/Q�vw2� C �v0.y/.�
�
v x ˝ id/Q�vw2�

D Qv0w1.Pv0y ˝ id/Q�v0w1Qvw2.Pvx ˝ id/Q�vw2�
C .��v0y ˝ id/Q�v0w1Qvw2.Pvx ˝ id/Q�vw2�
CQv0w0

2
.Pv0y ˝ id/Q�

v0w0
2
.��v x ˝ id/Q�vw2�

C .��v0y ˝ id/Q�v0w2.�
�
v x ˝ id/Q�vw2�:

These two expressions are equal by the third assertion of the Claim. It concludes the
proof.

We can also define the right versions of the unitaries Uv . For v 2 V � , letWv be
the set of minimal reduced words w such that the concatenation wv is still reduced
and write .Wv/c DWmin nWv . Define

H0.v/ D C�˚
M

w2Wv

Hw:

We define the isometry U 0v W H0.v/˝Hv ! H in the following way:

U 0v W H0.v/˝Hv �! H

�˝ �v
'
�! �

�˝Hıv
'
�! Hıv

Hw ˝ �v
'
�! Hw

Hw ˝Hıv
'
�! Qwv.Hw ˝Hıv/

As before, U 0v is unitary. Define, for v 2 V � , the faithful unital normal
�-homomorphism �v W B.Hv/ ! B.H/ by �v.x/ D U 0v.1 ˝ x/.U 0v/

� for all
x 2 B.Hv/. Observe the �v intertwines the vector states !�v and !�. The analogue
of Proposition 3.1 holds. We leave the details to the reader.
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Proposition 3.2. For all v 2 V � and all x 2 B.Hv/ one has:
(1) �v.x/� D Pv.x�v/C hx�v; �vi�.

(2) �v.x/� D Pv.x�/C hx�; �vi� for all � 2 Hıv .
(3) �v.x/� D Qwv.� ˝ Pv.x�v//C hx�v; �vi� for all w 2Wv and all � 2 Hw.

(4) Let w 2 .Wv/c then there exists a unique w0v 2Wv such that w ' w0vv and, for
all � 2 Hw, one has

�v.x/� D Qw0vv.id˝Pvx/Q
�

w0vv
� C .id˝��v x/Q�w0vv�:

Moreover, the images of �v and �v0 commute whenever .v; v0/ 2 E� .
Proposition 3.3. Let v; v0 2 V � and x 2 B.Hv/, y 2 B.Hv0/. One has

�v.x/�v0.y/ D �v0.y/�v.x/ whenever .v ¤ v0/ or .v D v0 and xy D yx/:

Proof. We may and will assume that hx�v; �vi D 0 D hy�v0 ; �v0i. By Proposi-
tions 3.1 and 3.2, one has

�v.x/�v0.y/� D �v.x/.y�v0/ D

(
Qvv0.x�v ˝ y�v0/ if v ¤ v0;
Pv.xy�v/C hxy�v; �vi� if v D v0:

Moreover,

�v0.y/�v.x/� D �v0.y/.x�v/ D

(
Qvv0.x�v ˝ y�v0/ if v ¤ v0;
Pv.yx�v/C hyx�v; �vi� if v D v0:

To finish the proof we need the following Claim.

Claim. Let v; v0 2 V � , w 2Wmin and � 2 Hw.
(1) Suppose that w 2 Wv \Wv0 . Let w1;w2 2 Wmin be such that w1 ' wv0 and

w2 ' vw.
� If vwv0 is reduced then w1 2Wv , w2 2Wv0 and, for all �v 2 Hv , �v0 2 Hv0 ,
one has

Qvw1.�v ˝Qwv0.� ˝ �v0// D Qw2v0.Qvw.�v ˝ �/˝ �v0/:

� If vwv0 is not reduced then v D v0, w1 D w2 ' vw ' wv 2 Wc
v \ .Wv/c

and, for all x; y 2 B.Hv/,

Qvw.Pvx ˝ id/Q�vwQwv.� ˝ y�v/ D Qwv.id˝Pvy/Q�wvQvw.x�v ˝ �/

and .��v x ˝ id/Q�vwQwv.� ˝ y�v/ D .id˝��v y/Q�wvQvw.x�v ˝ �/:
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(2) Suppose that w2Wc
v\.Wv0/c . Let w1;w22Wmin be such that w'w1v0'vw2.

� If w1 2Wv then v D v0, w1 2Wv , w ' vw1 ' w1v and w1 D w2 and, for
all x; y 2 B.Hv/,

Qvw1.x�v ˝ .id˝�
�
v y/Q�w1v�/CQvw1.Pvx ˝ id/Q�vw1Qw1v.id˝Pvy/Q�w1v�

D Qw1v..�
�
v x ˝ id/Q�vw1� ˝ y�v/

CQw1v.id˝Pvy/Q�w1vQvw1.Pvx ˝ id/Q�vw1�;

.��v x ˝ id/Q�vw1Qw1v.id˝Pvy/Q�w1v� D .id˝�
�
v y/Q�w1vQvw1.Pvx ˝ id/Q�vw1�:

� If w1 2 Wc
v write w1 ' vw3, w3 2 Wmin then w2 ' w3v0 2 .Wv0/c and,

8x 2 B.Hv/, y 2 B.Hv0/,

Qvw2.Pvx ˝ id/Q�vw2Qw1v0.id˝Pv0y/Q�w1v0�
D Qw1v0.id˝Pv0y/Q�w1v0Qvw2.Pvx ˝ id/Q�vw2�;

.��v x ˝ id/Q�vw2Qw1v0.id˝Pv0y/Q�w1v0�
D Qw3v0.id˝Pv0y/Q�w3v0.�

�
v x ˝ id/Q�vw2�;

Qvw3.Pvx ˝ id/Q�vw3.id˝�
�
v0y/Q�w1v0�
D .id˝��v0y/Q�w1v0Qvw2.Pvx ˝ id/Q�vw2�;

.��v x ˝ id/Q�vw3.id˝�
�
v0y/Q�w1v0� D .id˝�

�
v0y/Q�w3v0.�

�
v x ˝ id/Q�vw2�:

(3) If w 2Wc
v \Wv0 write w1 ' wv0, w ' vw2, w1;w2 2Wmin. Then, w1 2Wc

v ,
w2 2 Wv0 and, if w3 2 Wmin is such that w1 ' vw3, then we have w2v0 ' w3
and, for all x 2 B.Hv/, y 2 B.Hv0/,

Qvw3.Pvx ˝ id/Q�vw3Qwv0.� ˝ y�v0/ D Qwv0
�
Qvw2.Pvx ˝ id/Q�vw2� ˝ y�v0

�
;

.��v x ˝ id/Q�vw3Qwv0.� ˝ y�v0/ D Qw2v0.�
�
v x ˝ id/Q�vw2� ˝ y�v0 :

(4) If w 2 Wv \ .Wv0/c write w ' w1v
0, w2 ' vw, w1;w2 2 Wmin. Then,

w1 2Wv , w2 2 .Wv0/c and, if w3 2Wmin is such that w2 ' w3v0, then we have
w3 ' vw1 and, for all x 2 B.Hv/, y 2 B.Hv0/,

Qvw
�
x�v ˝Qw1v0.id˝Pv0y/Q�w1v0�

�
D Qw3v0.id˝Pv0y/Q�w3v0Qvw.x�v ˝ �/;

Qvw1.x�v ˝ .id˝�
�
v0y/Q�w1v0�/ D .id˝�

�
v0y/Q�w3v0Qvw.x�v ˝ �/:

The proof of the Claim is analogous to the proof of the Claim used in the proof
of Proposition 3.1 and we shall leave the details to the reader.

Remainder of the proof of the Proposition. Let w 2 Wmin and � 2 Hw. We use
freely the results and notations of the Claim and Propositions 3.1 and 3.2.
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Case 1:w 2Wv \Wv0 . If moreover vwv0 is reduced we have,

�v.x/�v0.y/� D �v.x/.Qwv0.� ˝ y�v0// D Qvw1.x�v ˝Qwv0.� ˝ y�v0//;

�v0.y/�v.x/� D �v0.y/.Qvw.x�v ˝ �// D Qw2v0.Qvw.x�v ˝ �/˝ y�v0/:

These two expressions are equal by the Claim. Suppose now that vwv0 is not reduced.
Then v D v0 and,

�v.x/�v.y/� D �v.x/.Qwv.� ˝ y�v//

D Qvw.Pvx ˝ id/Q�vwQwv.� ˝ y�v/

C .��v x ˝ id/Q�vwQwv.� ˝ y�v/;

�v.y/�v.x/� D �v.y/.Qvw.x�v ˝ �//

D Qwv.id˝Pvy/Q�wvQvw.x�v ˝ �/

C .id˝��v y/Q�wvQvw.x�v ˝ �/:

These two expressions are equal by the Claim.

Case 2:w 2 Wc
v \ .Wv0/c . If moreover w1 2 Wv then v D v0, w1 D w2 2 Wv ,

w ' vw1 ' w1v and,

�v.x/�v.y/� D �v.x/
�
Qw1v.id˝Pvy/Q�w1v� C .id˝�

�
v y/Q�w1v�

�
D Qvw1.Pvx ˝ id/Q�vw1Qw1v.id˝Pvy/Q�w1v�

C .��v x ˝ id/Q�vw1Qw1v.id˝Pvy/Q�w1v�
CQvw1.x�v ˝ .id˝�

�
v y/Q�w1v�/;

�v.y/�v.x/� D �v.y/
�
Qvw1.Pvx ˝ id/Q�vw1� C .�

�
v x ˝ id/Q�vw1�

�
D Qw1v.id˝Pvy/Q�w1vQvw1.Pvx ˝ id/Q�vw1�

C .id˝��v y/Q�w1vQvw1.Pvx ˝ id/Q�vw1�
CQw1v..�

�
v x ˝ id/Q�vw1� ˝ y�v/:

These two expressions are equal by the Claim. Suppose now that w1 2 Wc
v , w1 '

vw3, w3 2Wmin. We have:

�v.x/�v0.y/� D �v.x/
�
Qw1v0.id˝Pv0y/Q�w1v0� C .id˝�

�
v0y/Q�w1v0�

�
D Qvw2.Pvx ˝ id/Q�vw2Qw1v0.id˝Pv0y/Q�w1v0�

C .��v x ˝ id/Q�vw2Qw1v0.id˝Pv0y/Q�w1v0�
CQvw3.Pvx ˝ id/Q�vw3.id˝�

�
v0y/Q�w1v0�

C .��v x ˝ id/Q�vw3.id˝�
�
v0y/Q�w1v0�:
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Moreover, since w2 2 .Wv0/c and w2 ' w3v0, we find,

�v0.y/�v.x/� D �v0.y/
�
Qvw2.Pvx ˝ id/Q�vw2� C .�

�
v x ˝ id/Q�vw2�

�
D Qw1v0.id˝Pv0y/Q�w1v0Qvw2.Pvx ˝ id/Q�vw2�

C .id˝��v0y/Q�w1v0Qvw2.Pvx ˝ id/Q�vw2�
CQw3v0.id˝Pv0y/Q�w3v0.�

�
v x ˝ id/Q�vw2�

C .id˝��v0y/Q�w3v0.�
�
v x ˝ id/Q�vw2�:

These two expressions are equal by the Claim.

Case 3:w 2Wc
v \Wv0 . We have,

�v.x/�v0.y/� D �v.x/.Qwv0.� ˝ y�v0//

D Qvw3.Pvx ˝ id/Q�vw3Qwv0.� ˝ y�v0/

C .��v x ˝ id/Q�vw3Qwv0.� ˝ y�v0/;

�v0.y/�v.x/� D �v0.y/
�
Qvw2.Pvx ˝ id/Q�vw2� C .�

�
v x ˝ id/Q�vw2�

�
D Qwv0

�
Qvw2.Pvx ˝ id/Q�vw2� ˝ y�v0

�
CQw2v0.�

�
v x ˝ id/Q�vw2� ˝ y�v0 :

These two expressions are equal by the Claim.

Case 4:w 2Wv \ .Wv0/c . We have,

�v.x/�v0.y/� D �v.x/
�
Qw1v0.id˝Pv0y/Q�w1v0� C .id˝�

�
v0y/Q�w1v0�

�
D Qvw

�
x�v ˝Qw1v0.id˝Pv0y/Q�w1v0�

�
CQvw1.x�v ˝ .id˝�

�
v0y/Q�w1v0�/;

�v0.y/�v.x/� D �v0.y/.Qvw.x�v ˝ �//

D Qw3v0.id˝Pv0y/Q�w3v0Qvw.x�v ˝ �/

C .id˝��v0y/Q�w3v0Qvw.x�v ˝ �/:

These two expressions are equal by the Claim.

3.2. The graph product C*-algebra. For all v 2 V � , let Av be a unital C*-algebra.

3.2.1. The maximal graph product C*-algebra.
Definition 3.4. The maximal graph product C*-algebra A�;m is the universal unital
C*-algebra generated by the C*-algebras Av , for v 2 V � and the relations

avav0 D av0av for all av 2 Av , av0 2 Av0 whenever .v; v0/ 2 E�:

Here the unit of A�;m is presumed to agree with the unit of each Av .
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Remark 3.5. It is clear that A�;m is not f0g i.e. that the relations admit a non-
trivial representation as bounded operators. Indeed, for any family of representations
�v W Av ! B.Hv/ and any family of norm one vectors �v 2 Hv , the representationse�v D �vı�v W Av ! B.H/, whereH is the graph product Hilbert space of the family
of pointed Hilbert spaces .Hv; �v/v2V � and �v W B.Hv/ ! B.H/ are the unital
faithful morphisms defined in Section 3.1, satisfy the relations e�v.av/e�v0.av0/ De�v0.av0/e�v.av/ for all av 2 Av , av0 2 Av0 and all v; v0 2 V � such that .v; v0/ 2 E�
by Proposition 3.1. The associated representation � W A�;m ! B.H/ such that
�jAv D e�v for all v 2 V � obtained by the universal property is called the graph
product representation.

Example 3.6. Using the universal property ofA�;m one can easily check the following
statements.

� Let Av D C �m.Gv/ be the maximal C*-algebra of a discrete group Gv , v 2 V � .
Then

A�;m D C �m.G�/:

� Let � be a finite graph having every two vertices connected by one edge. Then

A�;m D ˝
v2V �;max

Av:

� Let � be a graph with no edges. Then

A�;m D �m
v2V �

Av;

where �m denotes the maximal free product.

� If � D Star.v/ then A�;m is a quotient of�
�
m

w2Link.v/
Aw
�
˝
max

Av:

Remark 3.7. LetA � A�;m be the linear span of elements of the form a1 : : : an with
n � 1 and ak 2 Avk , where v D .v1; : : : ; vn/ is a reduced word. Observe that A
is a dense �-subalgebra of A�;m. Indeed, the commutation relations defining A�;m
show that A is a �-subalgebra. It is dense since it contains all the Av . Moreover,
if a D a1 : : : an 2 A�;m with n � 1, ak 2 Avk and v D .v1; : : : ; vn/ is a reduced
word and if w D .w1; : : : wn/ is a reduced word (type II) equivalent to v it follows
from the commutation relations that a D a�.1/ : : : a�.n/, where � 2 Sn is the unique
permutation such that w D �.v/ defined in Lemma 2.3(4).
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3.2.2. The reduced graph product C*-algebra. From this point we assume that
each unital C�-algebra Av; v 2 V � is equipped with a GNS-faithful state !v .
Since the GNS-representation is faithful we may assume that Av � B.Hv/, where
.Hv; id; �v/ is a GNS-construction for !v . Let .H; �/ be the graph product of the
pointed Hilbert spaces .Hv; !v/. Recall that H comes with faithful unital normal
�-homomorphisms �v W B.Hv/! B.H/.
Definition 3.8. The reduced graph product C*-algebra A� is defined as the sub-
C*-algebra of B.H/ generated by

S
v2V � �v.Av/.

Since the �v are faithful, we may and will assume that Av � A� and �vjAv is the
inclusion for all v 2 V � .
Remark3.9. It follows fromProposition 3.1 that there exists a unique unital surjective
�-homomorphism �� W A�;m ! A� such that ��.a/ D a for all a 2 Av and
all v 2 V � . Moreover, suppose that a D a1 : : : an 2 A with ak 2 Avk and
v D .v1; : : : ; vn/ a reduced word. Let w D .w1; : : : ; wn/ be a reduced word that
is equivalent to v. Let � 2 Sn be the permutation obtained from Lemma 2.3(4)
using the words v and w instead of w and w0 respectively. Then it follows from the
commutation relations that a D a�.1/ : : : a�.n/.
Definition 3.10. An operator a D a1 : : : an 2 A� is called reduced if ai 2 Aıvi with
Aıvi D fx 2 Avi j !vi .x/ D 0g and the word v D .v1; : : : ; vn/ is reduced. The
word v is called the associated word.

Observe that the linear span of 1 and the reduced operators in a dense�-subalgebra
of A� .
Remark 3.11. For all v 2 V � , let !v be a not necessarily GNS-faithful state on Av .
The notion of reduced operators, relative to the family of states .!v/v2V � , also
makes sense in the maximal graph product C*-algebra and the linear span of 1 and
the reduced operators in the maximal graph product C*-algebra is the �-algebra A
introduced in Remark 3.7, which is dense.

It is clear from Proposition 3.1 that, whenever a D a1 : : : an 2 A� is a reduced
operator (with associated word in Wmin) one has a� D ba1 ˝ � � � ˝ban. Hence, the
vector� is cyclic for A� and .H; id; �/ is a GNS-construction for the (GNS-faithful)
state !�. � / D h ��;�i. We call !� the graph product state. It can be characterized
as follows: it is the unique state on A� satisfying !�.a/ D 0 for all reduced operators
a 2 A� . In particular, !� jAv D !v for all v 2 V � . Actually the commutation
relations and the properties of the graph product state determine the graph product
C*-algebra.
Proposition 3.12. Let B be a unital C*-algebra with a GNS-faithful state ! and
suppose that, for all v 2 V � , there exists a unital faithful �-homomorphism
�v W Av ! B such that:
� B is generated, as a C*-algebra, by [v2V ��v.Av/ and the images of �v and �v0
commute whenever .v; v0/ 2 E� .
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� For any operator a D �v1.a1/ : : : �vn.an/ 2 B, where v D .v1; : : : ; vn/ is a
reduced word and ai 2 Aıvi one has !.a/ D 0

Then, there exists a unique �-isomorphism � W A� ! B such that �jAv D �v .
Moreover, � intertwines the graph product state and !.

Proof. The proof is a routine. We include it for the convenience of the reader. The
uniqueness being obvious, let us show the existence. Since! is GNS-faithful we may
and will assume that B � B.K/ and .K; id; �/ is a GNS-construction for !. Define
V W H! K by V.�/ D � and,

V.a1 : : : an/� D �v1.a1/ : : : �vn.an/�

for all reduced a D a1 : : : an 2 A� with associated word .v1; : : : ; vn/. It is easy to
check that V is well defined and isometric hence, it extends to an isometry. Since it
also has a dense image, it is a unitary. Then, �.x/ WD VxV � does the job.

Remark 3.13. Proposition 3.12 implies the following.
� Let AvDC �r .Gv/ be the reduced group C�-algebra of a discrete groupGv; v2V � .
Then .A� ; !�/ D .C �r .G�/; �/, where � is the canonical trace on the reduced
C�-algebra of the graph product group G� .

� Let � be a graph in which every two vertices are connected by one edge. Then

.A� ; !�/ D ˝
v2V �

.Av; !v/:

� Let � be a graph with no edges. Then

.A� ; !�/ D �
v2V �

.Av; !v/;

the reduced free product with respect to the GNS-faitfhul states !v , v 2 V � .
� If �0 � � is a subgraph and, for all v 2 V�0 , Bv � Av is a unital C*-algebra then
the sub-C*-algebra of A� generated by [v2V �0Bv is canonically isomorphic to
graph product C*-algebras B�0 obtained from Bv , v 2 V�0 .

Remark 3.14. Let�0 � � be a subgraph and consider the graph product C�-algebras
A�0 and A� . By the universal property of Proposition 3.12, we may view A�0 � A�
canonically. Denote byW0

min �Wmin the subset of minimal reduced words in �0 and
let H0 D C�˚

L
w2W0

min
Hw � H. Let P be the orthogonal projection onto H0.

Then, it is easy to check that E�0 W x 7! PxP is a graph product state-preserving
conditional expectation from A� onto A�0 . In particular, E�0 is GNS-faithful since
it preserves the graph product states which are GNS-faithful. Moreover, E�0 is the
unique conditional expectation from A� to A�0 such that E�0.a/ D 0 for all reduced
operators a 2 A�0 with associated reduced word v D .v1; : : : ; vn/ satisfying the
property that one of the vi is not in �0. In particular, for all v 2 V � , there exists a
unique conditional expectation Ev W A� ! Av such that Ev.a/ D 0 for all reduced
operators a 2 A� n Av .
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3.2.3. Unscrewing technique. Let v 2 � , �1 D Star.v/, �2 D � n fvg and set the
following graph product C�-algebras: A1 D A�1 , B D ALink.v/, and A2 D A�2 . By
convention A; D C. Recall that, by the universal property of Proposition 3.12, we
may view B � A1 � A� and B � A2 � A� canonically. Moreover, by Remark 3.14,
we have GNS-faithful conditional expectations E1 WD ELink.v/jA1 W A1 ! B and
E2 WD ELink.v/jA2 W A2 ! B. Let us denote by A1 ?B A2 the reduced amalgamated
free product with respect to these conditional expectations.

Theorem 3.15. There exists a unique �-isomorphism � W A1 ?B A2 ! A� such that
�jA1 (resp. �jA2) is the canonical inclusion A1 � A� (resp. A2 � A� ). Moreover, �
is state-preserving.

Proof. Observe that A� is generated by by A1 and A2. Let E D ELink.v/ be
the canonical conditional expectation from A� onto B. Define, for k D 1; 2,
Aı
k
D ker.Ek/. By the universal property of amalgamated free products it suffices

to show that for any n � 2, for any a1; : : : ; an with ak 2 Aı
lk

and lk ¤ lkC1, one
has E.a1 : : : an/ D 0. Since Aı

k
is the closed linear span of reduced operators

a 2 Ak with associated reduced word v D .v1; : : : ; vn/, vi 2 �k satisfying
the property that one of the vi is not in Link.v/ we may and will assume that
each ak is a reduced operator ak D xk1 : : : x

k
rk
2 Alk with associated reduced

word vk D .vk1 ; : : : ; v
k
rk
/, vki 2 �lk satisfying the property that one of the vki is

not in Link.v/. One has a WD a1 : : : an D x11 : : : x
1
r1
x21 : : : x

2
r2
: : : xn1 : : : x

n
rn

with
xkri 2 Aı

vk
i

. Let v D .v11 ; : : : ; v
1
r1
; v21 ; : : : ; v

2
r2
; : : : ; vn1 ; : : : ; v

n
rn
/ be the associated,

not necessarily reduced, word. Let l D r1 C � � � C rn � n.
Let us show, by induction on l , that E.a/ D 0. If l D n then ak 2 Aıvk � Alk

and vk 2 �lk n Link.v/ for all k. Then v is reduced and since vk … Link.v/ we have
E.a/ D 0. Indeed, if v is not reduced, there exists i < j such that vi D vj D w

and vk 2 Link.v/ for all i < k < j . Since vk … Link.v/ for all k, it follows that
j D i C 1. Hence, w 2 .�li nLink.v//\ .�liC1 nLink.v// D fvg \ .� n fvg/ D ;,
a contradiction.

Let l � n and a D a1 : : : an is of the form described previously. We use the
notations introduced at the beginning of the proof. If the word v associated to a is
reduced then E.a/ D 0. Hence, we will assume that v is not reduced. Then there
exists i < j such that visi D w D v

j
sj and vks 2 Link.w/ whenever:

(1) i < k < j and 1 � s � rk ,

(2) k D i and si < s � ri D rk ,

(3) k D j and 1 � s < sj .

Since we can replace v by a type II equivalent word and since any subword vk is
reduced, we may and will assume that j D i C 1 and w D viri D viC11 . Hence we
have w 2 �li \ �lj D �li \ �liC1 D �1 \ �2 D Star.v/ \ � n fvg D Link.v/.
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Write, for x 2 Aw , Pw.x/ D x � !w.x/. One has

E.a1 : : : an/
D E.a1 : : : ai�1xi1 : : : xiri�1Pw.x

i
ri
xiC11 /xiC12 : : : xiC1riC1

: : : aiC2 : : : an/

C !w.x
i
ri
xiC11 /E.a1 : : : ai�1xi1 : : : xiri�1x

iC1
2 : : : xiC1riC1

: : : aiC2 : : : an/:

The right hand side of this expression is zero by the induction hypothesis.

Remark 3.16. Theorem 3.15 is trivially true when we consider the maximal graph
product and the maximal amalgamated free product.

Corollary 3.17. A� is exact if and only if Av is exact for all v 2 V � .

Proof. By an inductive limit argument we may suppose the graph � is finite. We
explain now this inductive limit argument which will be used several times in this
paper (even in the von Neumann algebra context). Let F.�/ be the set of finite
subgraphs of � ordered by the inclusion. If G1;G2 2 F.�/ and G1 � G2, we
view AG1 � AG2 � A� . Hence, we get an inductive system of unital C*-algebras
.AG/G2F.�/. Let A1 D

S
G2F.�/ AG � A� be the inductive limit. We claim

that actually A1 D A� . Indeed, it is enough to show that every reduced operator
a D a1 : : : an 2 A� , with associated word v D .v1; : : : ; vn/ lies in A1. In fact, such
an operator a lies in AG , where G is a finite subgrah of � containing the vertices
v1; : : : vn.

So we may assume that � is finite. Theorem 3.15 and the results of [21] may
then be used to reduce the corollary (by induction on the vertices) to the situation of
a clique, i.e. a graph in which every two vertices share an edge. In the latter case
the graph product is the minimal tensor product of C�-algebras, which preserves
exactness.

Remark 3.18. If � has n connected components �1; : : : ; �n then

.A� ; !�/ ' .A�1 � � � � � A�n ; !�1 � � � � � !�n/:

3.3. The graph product of vonNeumann algebras. Suppose that, for each v2V � ,
we have a von Neumann algebra Mv with a faithful normal state !v . We may and
will assume that Mv � B.Hv/, where .Hv; id; �v/ is a GNS-construction for !v . Let
.H; �/ be the graph product of the pointed Hilbert spaces .Hv; !v/. Recall that H
comes with faithful unital normal �-homomorphisms �v W B.Hv/! B.H/.
Definition 3.19. The graph product von Neumann algebra is

M� WD
� [
v2V �

�v.Mv/
�00
� B.H/:
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As before, we will assume that Mv � M� and �vjMv is the inclusion, for all
v 2 V � . We also have the same notion of reduced operators and the linear span of 1
and the reduced operators is a weakly dense �-subalgebra of M� . The graph product
state !�. � / D h � �;�i is now a normal state on M� . The graph product state is
characterized as follows: it is the unique normal state on M� satisfying !�.a/ D 0

for all reduced operators a 2 A� . In particular, !� jMv D !v for all v 2 V � .
Let us construct the right version ofM� . For v 2 V � , we denote by rv.a/ the right

action of Mv onHv i.e. rv.a/ D Jva�Jv where Jv is the modular conjugation of !v .
View rv a faithful normal unital �-homomorphism from Mop

v to B.Hv/. Denote
by Mr� the von Neumann subalgebra of B.H/ generated by

S
v2V � �v ı rv.Mv/.

Write ��v D �v ı rv and note that ��v is a faithful unital normal �-homomorphism
from Mop

v to Mr� .
Observe that, by Proposition 3.3, Mr� � M0� .
As before, we call an operator a D ��v1.a1/ : : : �

�
vn
.an/ 2 Mr� reduced if ai 2 Mıvi

and the word v D .v1; : : : ; vn/ is reduced. It is clear from the definitions that,
whenever a D ��v1.a1/ : : : �

�
vn
.an/ 2 Mr� is a reduced operator (with associated word

inWmin) one has a� Dban ˝ � � � ˝ba1. Hence, the vector � is cyclic for Mr� so it is
separating for M� and the graph product state !� is faithful with GNS-construction
.H; id; �/. It is now easy to compute the modular theory of !� . We denote
by rv , Jv and .�vt /t2R the ingredients of the modular theory of !v , for v 2 V � .
Forw 2W a reducedword of the formw D .v1; : : : ; vn/, letw be the uniqueminimal
reduced word equivalent to the reduced word w� D .vn; : : : ; v1/ and �w the unique
bijection of f1; : : : ; ng such thatw D .v�w.n/; : : : ; v�w.1//. Define the unitary operator
†w W Hw ! Hw by†w.�1˝: : :˝�n/ D Qw�; Nw.�n˝: : :˝�1/ D ��w.n/˝: : :˝��w.1/.
Finally, denote by JC the conjugation map on C.

Proposition 3.20. Let J , r and .�t /t2R be the ingredients of the modular theory
of !� . One has

(1) J D JC ˚
L

wD.v1;:::;vn/2Wmin
.Jv�w.n/ ˝ � � � ˝ Jv�w.n//†w

(2) r D idC�˚
L

wD.v1;:::;vn/2Wmin
†�w.rv�w.n/ ˝ � � � ˝ rv�w.n//†w

(3) For any reduced operator a D a1 : : : an 2 M� with associated word v D
.v1; : : : ; vn/ one has

�t .a1 : : : an/ D �
v1
t .a1/ : : : �

vn
t .an/ for all t 2 R:

Proof. .3/ follows easily from .2/. Let Sv (resp. S ) be the modular operator for
!v (resp. !� ). To get .1/ and .2/, it suffices to prove, by uniqueness of the polar
decomposition, that

S D idC�˚
M

wD.v1;:::;vn/2Wmin

.Sv�w.n/ ˝ � � � ˝ Sv�w.n// ı†w:
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Denote by T the right hand side of the preceding equation. An easy computation
gives that, for all reduced operators a D a1 : : : an 2 A� or for a 2 C1, one has
S.a�/ D T .a�/. Hence, S jM�� D T jM��, where M� � M� is the linear span
of 1 and the reduced operators and it suffices to show that M�� is a common core
for S and T . By definition, M�� is a core for S . SinceM� is a weakly dense unital
�-subalgebra of M� , it follows from the Kaplansky’s density Theorem that M��

is also a core for S : indeed, let x 2 M� . By Kaplansky’s density theorem x is in
the strong closure of the convex set of elements inM� that have norm at most kxk.
For convex sets the strong and strong-� closure coincide. Therefore, we may find
a net .xi /i in M� converging to x in the strong-� topology. It follows that xi� is
bounded and converges weakly to x� and similarly x�i � is bounded and converges
weakly to x�� in the GNS-Hilbert space. This concludes that M� is a core for S
with respect to the weak/weak-topology on the graph of S . Hence by a standard
convexity argument it is also a norm/norm core for S .

By definition of T , a core for T is given by the subspace

C�˚
M

wD.v1;:::;vn/2Wmin

Mıv1�v1 ˝ � � � ˝Mıvn�vn ;

where the direct sums and tensor products are the algebraic ones. This subspace is
exactly the linear span of� and vectors of the form a�, where a is a reduced operator
i.e. this is the spaceM��.

Remark 3.21. It follows from the preceding proposition that, for all reduced operators
a D a1 : : : an 2 M� , with ai 2 Mvi , one has JaJ D ��v1.a1/ : : : �

�
vn
.an/. Hence we

actually have M0� D Mr� .

The graph product von Neumann algebra also satisfies a universal property.
The following Proposition 3.22 can be proved exactly as Proposition 3.1 since the
isomorphism appearing in the proof of Proposition 3.12 is spatial.

Proposition 3.22. Let N be a von Neumann algebra with a GNS-faithful normal
state ! and suppose that, for all v 2 V � , there exists a unital normal faithful
�-homomorphism �v W Mv ! N such that:

� N is generated, as a von Neumann algebra, by [v2V ��v.Mv/ and the images of
�v and �v0 commute whenever .v; v0/ 2 E� .

� For any operator a D �v1.a1/ : : : �vn.an/ 2 N, where v D .v1; : : : ; vn/ is a
reduced word and ai 2 Mıvi one has !.a/ D 0

Then, there exists a unique normal�-isomorphism� W M� ! N such that�jMv D �v .
Moreover, � intertwines the graph product state and !. In particular, ! is faithful.
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Remark 3.23. The preceding proposition implies the following.
� If Mv D L.Gv/ is the group von Neumann algebra of a discrete groupGv; v 2 V �
then

.M� ; !�/ D .L.G�/; �/;
where � is the canonical trace.

� Let � be a graph for which any two vertices are connected by one edge. Then

.M� ; !�/ D ˝
v2V �

.Mv; !v/:

� Let � be a graph with no edges. Then

.M� ; !�/ D �
v2V �

.Mv; !v/:

� If �0 � � is a subgraph and, for all v 2 �0, Nv � Mv is a unital von Neumann
subalgebra then the graph product von Neumann algebra N�0 obtained from the
Nv , v 2 �0, is canonically isomorphic to

�S
v2V �0

Nv
�00. In the sequel we will

always do this identification without further explanations.
� There is a unique (state preserving) �-isomorphism MStar.v/ ' Mv ˝ MLink.v/
identifying x ˝ y with xy, for all x 2 Mv and all y 2 MLink.v/. In particular,
M0v \MStar.v/ D NStar.v/, where

Nw D

(
Mw if w 2 Link.v/;
Z.Mv/ if w D v:

Remark 3.24. Let �0 � � be a subgraph and consider the graph product von
Neumann algebras M�0 and M� . As in a C*-algebraic case, there exists a unique
normal conditional expectation E�0 from M� to M�0 preserving the graph product
states and such that E�0.a/ D 0 for all reduced operator a 2 M�0 with associated
reduced word v D .v1; : : : ; vn/ satisfying the property that one of the vi is not
in �0. In particular, for all v 2 V � , there exists a unique state preserving normal
conditional expectation Ev W M� ! Mv such that Ev.a/ D 0 for all reduced operators
a 2 M� nMv .
Proposition 3.25. Let �0; �1 � � be subgraphs. One has M�0 \M�1 D M�0\�1 .

Proof. The inclusion M�0\�1 � M�0 \ M�1 being obvious, let us show the other
one. Let M�0 be the linear span of 1 and the reduced operator in M�0 . It suffices
to show that M�0 \ M�1 � M�0\�1 . Indeed, if it is the case, then M�0\�1 contains�
M�0 \ M�1

�00
D
�
M0

�0
[ M0�1

�0
DM00

�0
\ M�1 D M�0 \ M�1 . Let x 2M�0

and write x D !�.x/1C
P
i xi , where the sum is finite and the xi are some reduced

operators in M�0 . If x 2 M�1 we have x D E�1.x/ D !�.x/1 C
P
i E�1.xi /. By

definition of the conditional expectation, for all i , E�1.xi / is either 0 or a reduced
operator with associated vertices in �0 \ �1. Hence, x 2 M�0\�1 .
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Let v 2 � , �1 D Star.v/, �2 D � n fvg and set the following graph product von
Neumann algebras: M1 D M�1 , N D MLink.v/, and M2 D M�2 . By the universal
property of Proposition 3.22, we may view N � M1 � M� and N � M2 � M�
canonically. Let us denote by M1 ?N M2 the von Neumann algebraic amalgamated
free product with respect to the graph product states. The following result can
be proved exactly as Theorem 3.15, using the universal property of von Neumann
algebraic amalgamated free products.
Theorem 3.26. There exists a unique �-isomorphism � W M1 ?N M2 ! M� such that
�jM1 (resp. �jM2) is the canonical inclusion M1 � M� (resp. M2 � M� ). Moreover,
� is state-preserving.

Before the next lemma, let us recall some standard notations. Let .M; �/ be a
finite von Neumann algebra and A;B � M two unital von Neumann subalgebras. We
write A ˜

M
B if there exists a net .ui /i of unitaries in A such that kEB.xuiy/k2 ! 0

for all x; y 2 M. We also writeNM.A/ the normalizer of A in M i.e.

NM.A/ D fu 2 U.M/ W uAu� D Ag:

A von Neumann algebra is called diffuse if it does not contain minimal projections.
In particular, type II-factors are diffuse von Neumann algebras.
Lemma 3.27. Suppose that !v is a trace for all v 2 V � . Fix v 2 V � . If Q � Mv is
a diffuse von Neumann subalgebra then

Q ˜
MStar.v/

MLink.v/

and any Q-MStar.v/-sub-bimodule of L2.M�/ which has finite dimension as right
MStar.v/-module is contained in L2.MStar.v//. In particular,

Q0 \M� � NM� .Q/
00
� MStar.v/:

Proof. Since M� D MStar.v/ �
MLink.v/

M�nfvg, we may apply [28, Theorem 1.1] (which

needs Q to be diffuse) to conclude that the last statement of the lemma follows from
the fact thatQ ˜

MStar.v/

MLink.v/ which is obvious since, by the last point of Remark 3.23,

we have MStar.v/ ' Mv ˝MLink.v/.

Corollary 3.28. Suppose that !v is a trace for all v 2 V � . Fix v 2 V � . For
w 2 Star.v/ define

Nw D

(
Mw if w 2 Link.v/;
Z.Mv/ if w D v:

If Mv is diffuse then M0v \ M� D NStar.v/ (here NStar.v/ is the graph product of
Nv; v 2 Star.v/ with respect to the graph Star.v/). In particular,

Z.M�/ D
\
v2V �

NStar.v/:
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Proof. The inclusion NStar.v/ � M0v \ M� being obvious, let us prove the other
inclusion. By Lemma 3.27 and the last assertion of Remark 3.23 we have,

M0v \M� � M0v \MStar.v/ D NStar.v/:

Corollary 3.29. If Mv is a II1-factor for all v 2 V � then M� is a II1-factor.

Proof. By the inductive limit argument we may and will assume that � is finite
graph. By Corollary 3.28 we find Z.M�/ D

T
v2V � MLink.v/. It follows

from Proposition 3.25 that Z.M�/ D MT
v2V� Link.v/. Since

T
v2V � Link.v/ �T

v2V � � n fvg D ; we conclude that Z.M�/ D C1.

3.3.1. Completely positive maps of graph products. Let .Mv; !v/v2V � and
.Nv; �v/v2V � be two families of von Neumann algebras with faithful normal states.
Proposition 3.30. For all v 2 V � , let 'v W Mv ! Nv be a state-preserving normal
ucp map. Then, there exists a unique normal ucp map ' W M� ! N� such that, for
all a D a1 : : : an 2 M� reduced, with ak 2 Mıvk ,

'.a1 : : : an/ D 'v1.a1/ : : : 'vn.an/:

Moreover, ' intertwines the graph product states and its L2-extension is given by

T' W C�˚
M

wD.v1;:::;vn/2Wmin

L2.Mv1/
ı
˝ � � � ˝ L2.Mvn/

ı

! C�˚
M

wD.v1;:::;vn/2Wmin

L2.Nv1/
ı
˝ � � � ˝ L2.Nvn/ı;

T' D idC�˚
M

T'v1 jL2.Mv1 /
ı ˝ � � � ˝ T'vn jL2.Mvn /ı :

Proof. Let .Kv; �v/ be the pointed Mv-Nv bimodule obtained from the GNS-
construction of 'v i.e. one has Kv D Mv�vNv and ha�vb; �vi D �v.'v.a/b/.
Denote by � lv (resp. �rv ) the left (resp. right) action of Mv on Kv . Observe
that, since �v is faithful, the map �rv is faithful and, since !v is faithful and 'v
preserves the states, the maps � lv is also faithful. Let .K; �/ be the graph product
of the pointed Hilbert spaces .Kv; �v/ (see Section 3.1) with the representations
�v; �v W B.Kv/! B.K/ and define e� lv D �v ı � lv and e�rv D �v ı �rv .

Let M (resp. N ) be the von Neumann algebra subalgebra of B.K/ generated
by [ve� lv.Mv/ (resp. [ve�rv.Nv/). Consider the vector state �.x/ D hx�; �i on M
and N . Observe that, for all a D a1 : : : an 2 M� reduced, with associated word
vD.v1; : : : ; vn/, Proposition 3.1 impliese� lv1.a1/ : : :e� lvn.an/�Da1�v1˝� � �˝an�vn .
Also, for all b D b1 : : : bn 2 N� reduced, with associated word vD.v1; : : : ; vn/,
Proposition 3.2 implies e�rv1.b1/ : : :e�rvn.bn/�D�vnbn˝� � �˝�v1b1. It follows that
�.a/ D �.b/ D 0 for all a 2 M� and b 2 N� reduced. Moreover, .M�; �; �/
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(resp. .N�; �; �/) is a GNS-construction for � on M (resp. on N ), where �.x/
is the restriction of x to the subspace M� (resp. �.y/ is the restriction of y to
the subspace N�). By Proposition 3.3 the images of e� lv and e�rv0 commute for
all v; v0 2 V � . Hence, N � M0 and, by the preceding computations, we find
NM� DMN� D K. It follows that � is GNS-faithful onM (resp. onN ).

By Proposition 3.22, there exists two unital normal �-homomorphisms e� l W
M� ! B.K/ and e�r W Nop

� ! B.K/ such that e� l jMv D e� lv and e�r jNv D e�rv . It is
easy to check that the images ofe� l ande�r commute. Hence,K is a M� -N� bimodule
and we will simply write a�b for the elemente� l.a/e�r.b/� , for a 2 M� , b 2 N� and
� 2 K. Define V W L2.N�/ ! K by Vbx D �:x. One can easily check that, for all
a D a1 : : : an 2 M� reduced, with ak 2 Mıvk ,

V �e� l.a1 : : : an/V D 'v1.a1/ : : : 'vn.an/:
The fact that ' intertwines the graph product states and the L2-extension formula are
obvious from the formula defining '.

The ucp map obtained in Proposition 3.30 is called the graph product ucp map, it
generalizes Boca’s construction of free product of ucpmaps [5]. As a consequencewe
are able to show that the graph product preserves the Haagerup property (see [6, 12]
for free products of respectively finite and � -finite von Neumann algebras). Recall
the following definition from [11]. We refer to [34] and [13] for alternative (but
equivalent) approaches to the Haagerup property and to [14, 29] for the case of a
finite von Neumann algebra.
Definition 3.31. A pair .M; !/ of a von Neumann algebra M with normal, faithful
state! has the Haagerup property if there exists a net f'igi2I of cp maps 'i W M! M
such that ! ı 'i � ! and such that the GNS-maps Ti W x�! 7! 'i .x/�! extend to
compact operators converging to 1 strongly.
Remark 3.32. In [12] it was proved that if a pair .M; !/ has the Haagerup property,
then the cp maps 'i can be chosen unital and such that ! ı 'i D !. Let .H! ; �!/

be the GNS-space with cyclic vector �! and Hı! the space orthogonal to �! .
Define '0i .x/ D

1
1C�

.'i .x/C � !.x//; x 2 M and let T 0i be its GNS-mapH! ! H!

determined by x�! 7! '0i .x/�! . The restriction ofT
0
i to the spaceHı! has norm less

than 1
1C�
kTik. Letting � ! 0, this shows that we may always assume kTi jHı!k < 1

in Definition 3.31.
Corollary 3.33. M� has the Haagerup property if and only if Mv has the Haagerup
property for all v 2 V � .

Proof. By the inductive limit argument, we may and will assume that the graph �
is finite (see [29, Theorem 2.3]). Suppose that Mv has the Haagerup property for
all v 2 V � . Let 'v;iv W Mv ! Mv be a net of state-preserving ucp maps with
compact L2-implementation Tv;iv and such that jj'v;iv .a/� ajj2 ! 0 for all a 2 Mv
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and all v 2 V � . By Remark 3.32 we may assume that kTv;iv jHıvk < 1. Define
the net of ucp map 'i W M� ! M� , each 'i is the graph product of the 'v;iv ,
v 2 V � and the net structure for 'i is given by the product of the nets for 'v;iv .
Since kTv;iv jHıvk < 1 and � is finite it follows that the L2-implementation of 'i is
compact. Also, jj'i .a/ � ajj2 ! 0 for all reduced operators a 2 M� . Since the
linear span of 1 and the reduced operators is weakly dense in M� , the convergence
holds for all a 2 M� , from which one easily deduces that M� has the Haagerup
property. The other implication is a obvious because of the existence of conditional
expectations.

4. Graph products of discrete quantum groups

In this paper we need compact and discrete quantum groups both in the C�-algebraic
and von Neumann algebraic framework. We recall their preliminaries here. We
define graph products of quantum groups and give their basic properties.

4.1. C*-algebraic compact/discrete quantum groups. We write Span for the
closed linear span.
Definition 4.1 (Wornonowicz [42]). A compact quantum group G is a pair .A; �/
of a unital C�-algebra A together with a comultiplication � W A! A˝ A which is a
unital �-homomorphism such that .�˝ id/ ı � D .id˝�/˝ � and such that the
following cancellation laws hold:

Span�.A/.A˝ 1/ D Span .1˝ A/�.A/ D A˝ A:

Any compact quantum group G admits a unique state ! on A that satisfies
.! ˝ id/ ı �.x/ D !.x/1A D .id˝!/ ı �.x/. ! is called the Haar state. The
GNS-space with respect to ! shall be denoted byH.

Let G D .A; �/ be a compact quantum group. A (finite dimensional) unitary
representation is a unitary operator u 2 A ˝Mn such that .� ˝ id/.u/ D u13u23
where u23 D 1˝u and u13 D .†˝ id/.u23/ with† W A˝A! A˝A the flip map.
We denote by Irr.G/ the equivalence classes of irreducible representations ofG and,
for ˛ 2 Irr.G/, we choose a representative u˛ of the class ˛. Note that in the literature
our notion of representation is often also called a corepresentation. We use n˛ for the
dimension of u˛ , i.e. u˛ 2 A˝Mn˛ . We shall write u˛i;j for the matrix coefficient
.id˝!ei ;ej /.u˛/ 2 A in case ei ; 1 � i � n˛ is an orthonormal basis of Cn˛ . The
tensor product representation is defined as u˛ ˝ uˇ WD u˛12u

ˇ
13 2 A˝Mn˛ ˝Mnˇ .

We set Pol.G/ � A for the space of matrix coefficients of finite dimensional
representations of G. It is well-known that Pol.G/ is a �-algebra. Let  2 Irr.G/
then we denote p 2 B.H/ for the projection onto the closed linear span of the
coefficients of u identified withinH.
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Let bG denote the discrete dual quantum group of G. Typically we will writebG D .bA;b�/. We have bA D ˚˛2Irr.G/Mn˛ (C�-algebraic direct sum). Letb� be the
counit of bG. It is the unique non-degenerate �-homomorphism bA ! C satisfying
.b� ˝ id/ ı b� D .id b̋�/ ı b� D id.

Every compact quantum group comes with a maximal (= universal) and a reduced
version and we shall from this point fix a compact quantum group G and let .A; �/
denote the associated reduced (compact) quantum group and let .Am; �m/ denote the
associated maximal (compact) quantum group. There exists a canonical surjection
� W Am ! A that preserves the comultiplication. We refer to [32] for the definition
of maximal (= universal) quantum groups. There is no distinction between maximal
and reduced versions of bG D .bA;b�/ since for a discrete quantum group these always
agree.

Remark 4.2. If G1 D .A1; �1/ and G2 D .A2; �2/ are compact quantum groups
then G1 �G2 is the quantum group whose C�-algebra is given by A1 ˝ A2 and with
comultiplication � D .id˝†˝ id/ ı�1 ˝�2, where † W A1 ˝ A2 ! A2 ˝ A1 is
the flip map.

4.2. Von Neumann algebraic quantum groups. Let G be a compact quantum
group. Let M be the von Neumann algebra generated by A in the GNS-construction
of the Haar state !. The comultiplication � W A ! A˝ A lifts uniquely to a unital,
normal �-homomorphism M ! M ˝ M which we keep denoting by �. Also, the
Haar state ! extends to a normal state ! on M. Then .M; �/ forms a von Neumann
algebraic locally compact quantum group in the sense of [33] with ! as left and right
invariant weight.

We say that G is of Kac type if ! is tracial. If G is of Kac type then also bG has a
tracial Haar weight. If G is of Kac type then there exists a �-antihomomorphism � W

M! M called the antipode and which satisfies �.u˛i;j / D .u
˛
j;i /
�. We letb� W bM! bM

be the dual antipode. It may be characterized by .� ˝b�/.W / D W where W is the
left multiplicative unitary from [33] (one may defineb� in other ways; the definition
given here is not the usual one).

4.3. Graphproducts, their representation theory andHaar state. For allv 2 V � ,
letGv be a compact quantumgroupwith full C*-algebraAv;m, reducedC�-algebraAv ,
von Neumann algebra Mv , Haar state !v and comultiplication �v (on any of these
algebras). Let Am.D A�;m/ be the maximal graph product C*-algebra associated to
the family of C*-algebras .Av;m/v2V � . Since!v is faithful (resp. normal and faithful)
on Av (resp. on Mv), we can also consider the reduced graph product C*-algebra
A .D A�/ associated to the family .Av; !v/v2V � and the graph product von Neumann
algebra M .D M�/ associated to the family .Mv; !v/v2V � .

By the universal property of Am, there exists a unique unital �-homomorphism
� W Am ! Am˝Am such that�jAv D �v for all v 2 V � . From [41, Definition 2:10]
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we can show thatG D .Am; �/ is a compact quantum group. Indeed, for all v 2 V � ,
the inclusion Av;m � Am intertwines the comultiplication, it induces an inclusion
Irr.Gv/ � Irr.G/. Since the matrix coefficients of Irr.Gv/ generate Am as a �-algebra
this shows that the conditions of [41, Definition 2:10] are satisfied and hence G is a
compact quantum group.

Note that it is at this point not clear that .Am; �/ is the underlying universal
quantum group of G in the sense of [32]. In fact this is true as follows from
Theorem 4.4 below. We shall also prove that M and A are the algebras of the
underlying von Neumann and reduced C�-algebraic quantum group. In order to
distinguish notation we shall — only in this section — write Cm.G/; Cr.G/ and
L1.G/ for the full and reduced C�-algebra associated with G as well as its von
Neumann algebra. Also write �G W Cm.G/ ! Cr.G/ for the canonical surjection
and L2.G/ for the GNS-space of G.
Definition 4.3. A unitary representation u of G is said to be reduced if it is of the
form u D u˛1 ˝ � � � ˝ u˛n , where n � 1, v D .v1; : : : ; vn/ is a reduced word and
˛k 2 Irr.Gvk / n f1g for all 1 � k � n.

Let �v W Av;m ! Av be the canonical surjection. By the universal property of Am,
we have a unique surjective and unital �-homomorphism � W Am ! A such that
�jAv D �v .
Theorem 4.4. We have,
(1) The Haar state ! of G is given by ! D !� ı �.
(2) All the reduced representations are irreducible and any non-trivial irreducible

representation of G is unitarily equivalent to a reduced one.
(3) We have Cm.G/ D Am, Cr.G/ D A, L1.G/ D M and � D �G.

Proof. (1) Let P � Am be the linear span of the coefficients of the reduced
representations (so 1 62 P). Since Pm equals the linear span of the reduced operators
a 2 Am relative to the family of states .!v/v2V � (see Remark 3.11) and of the form
a D a1 : : : an, with ak 2 Pol.Gvk / it follows that the linear span of 1 and P is dense
in Am. Hence, it suffices to show the invariance of ! on P . Since �.P/ � P ˇ P
and �.P/ is again contained in P (viewed within A� ) of the reduced operators
in A� we have .id˝!/�.P/ � .id˝!/.P ˇ P/ D f0g. In the same way we find
.!˝id/�.P/ D f0g. Hence, for all a 2 P , one has .id˝!/�.a/ D .!˝id/�.a/ D
0 D !.a/.

(2) Firstly, let u˛1 ˝ � � � ˝ u˛n 2 M� ˝ Mn˛1
˝ � � � ˝ Mn˛n

(where n˛i
is the dimension of u˛i ) be a reduced representation as in Definition 4.3. To
conclude the first part of the statement, we shall show that the set of elements
.! ˝ �/.u˛1 ˝ � � � ˝ u˛n/ with ! 2 .M�/� equals the complete matrix algebra
Mn˛1

˝ � � �˝Mn˛n
. Consider a tensor product of matrix units E˛1i1;j1 ˝ � � �˝E

˛n
in;jn

in the latter algebra. We have .!vk ..u
˛k
ik ;jk

/� � /˝ �/.u˛k / D �
˛k
ik ;jk

E
.˛k/
ik ;jk

for some
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constant �˛kik ;jk 2 C, see [18, Proposition 2.1], [42]. And therefore using that !� is
the vector state of the vacuum vector we see that

.!�..u
˛1
i1;j1

: : : u
˛n
in;jn

/� � /˝ �/.u˛1 ˝ � � � ˝ u˛n/

D

Y
k

.!vk ..u
˛k
ik ;jk

/� � /˝ �/.u˛k / D �
˛1
i1;j1

: : : �
˛n
in;jn

E
.˛1/
i1;j1
˝ � � � ˝E

.˛n/
in;jn

:

Moreover, since the linear span of P and 1 is dense in Am, every non trivial
irreducible representation is equivalent to a reduced one.

(3) Since � is surjective and !� is faithful on A, it follows from .1/ that
A D Cr.G/, H D L2.G/ and M D L1.G/. It follows from .2/ that Pol.G/
is the linear span of P and 1. Hence, Cm.G/ is generated, as a C*-algebra,
by
S
v2V � Pol.Gv/ and the relations avav0 D av0av are satisfied in Cm.G/, for

all av 2 Pol.Gv/, av0 2 Pol.Gv0/ and all v; v0 2 V � such that .v; v0/ 2 E� . From
the inclusions Pol.Gv/ � Cm.G/ and the universal property of Cm.Gv/ we have, for
all v 2 V � , a unital �-homomorphism �v W Cm.Gv/! Cm.G/which is the identity
on Pol.Gv/. The morphisms �v are such that �v.av/�v0.av0/ D �v0.av0/�v.av/

for all av 2 Pol.Gv/, av0 2 Pol.Gv0/ and all v; v0 2 V � and Cm.G/ is generated
by
S
v2V � �v.Cm.Gv/. By universal property of Am, we have a surjective unital

�-homomorphism from Am to Cm.G/ which is the identity on Pol.G/. Hence,
Am D Cm.G/. That � D �G follows then since these maps are �-homomorphisms
that agree on Pol.G/.

4.4. Haagerup property of discrete quantum groups. We show that the Haagerup
property of discrete quantum groups is preserved by the graph product. In case the
quantum group is of Kac type this follows fromCorollary 3.33 and [19, Theorem 6.7].
Since it is unknown if the correspondence in [19, Theorem 6.7] holds beyond Kac
type quantum groups the general case requires a proof. The special case of free
products was proved in [19, Theorem 7.8] the special case of Cartesian products of
quantum groups can be found in [24, Proposition 3.4].

4.4.1. General discrete quantum groups. Firstly recall the following equivalent
definition of the Haagerup property for discrete quantum groups, see [19,
Proposition 6.2 and Lemma 6.24].

Proposition 4.5. A discrete quantum group bG has the Haagerup property if and only
if there is a sequence of states .�k/k2N on Pol.G/ such that:

(1) For each k 2 N we have ..F�k/˛/˛2Irr.bG/ 2 Q
˛2Irr.bG/Mn˛ is actually in

˚˛2Irr.G/Mn˛ .

(2) For each ˛ 2 Irr.bG/ the net ..F�k/˛/k2N converges to the identity matrix.
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If these conditions hold, then we may moreover impose the following conditions on
the net .�k/k2N,
(3) For each k 2 N and ˛ 2 Irr.bG/ with ˛ 6D 1 we have that k.F�k/˛k � exp.� 1

k
/.

Recall the following definition from [7].
Definition 4.6. Let A be a unital �-algebra over C. A linear map ! W A ! C is
called a state if !.1/ D 1, !.a�/ D !.a/ and !.a�a/ � 0 for every a 2 A.

Let Av; v 2 V � be unital �-algebras, each equipped with a state 'v . Let A be
its algebraic graph product which is defined as the unital �-algebra freely generated
by Av; v 2 V � subject to the relation that avaw D awav for any av 2 Av ,
aw 2 Aw such that .v; w/ 2 E� (and the units of each Av are identified). Using
the decomposition Av D C1 ˚ Aıv with Av D ker 'v we may identify A with
the vector space C1˚

L
v1:::vn2Wmin

Aıv1 ˝ Aıv2 ˝ : : :˝ Aıvn . Suppose that there
exists a state  v on each Av; v 2 V � , then the algebraic graph product functional
 D ˘v2V �. v; 'v/ on A is defined as  .a1 : : : an/ D  v1.a1/ : : :  vn.an/

whenever ai 2 Aıvi with v1 : : : vn 2Wmin.
Now let again Gv; v 2 V � be a compact quantum group and G be its graph

product. The proof of the following theorem is similar to [19, Theorem 7.8].
Theorem 4.7. The discrete quantum group bG has the Haagerup property if and only
if for every v 2 V � we have that bGv has the Haagerup property.

Proof. By a standard inductive limit argument it suffices to prove the theorem under
the condition that the graph � is finite. Firstly, suppose that for every v 2 V �
the quantum group bGv has the Haagerup property. By Proposition 4.5 there exists
a sequence .�v;k/k2N of states on Pol.Gv/ satisfying (1)–(3) of this proposition.
Recall that !v is the Haar state of Gv . Let �k D ˘v2V �.�v;k; !v/ denote the graph
product functional as defined in the paragraph before this theorem.

We claim that �k; k 2 N is again a state. This follows from the following
standard argument. For convenience of notation fix k 2 N. From the state �v;k on
Pol.Gv/ we may follow the usual GNS-construction to find a pre-Hilbert spaceHv;0

with cyclic unit vector �v and representation �v such that �v;k.x/ D h�v.x/�v; �vi.
Let Av;m be the maximal C�-algebra associated with the quantum group Gv . As
in [20, Lemma 4.2] the map �v extends to a �-homomorphism Av;m ! B.Hv/

with Hv the completion of Hv;0. Let B be the reduced graph product C�-algebra
of �v.Av;m/; v 2 V � and let � denotes its cyclic vacuüm vector. Since �v.Av;m/
is included into B naturally we may regard �v as a �-homomorphism Av;m ! B.
The universal property of the maximal graph product C�-algebra Am then yields a
�-homomorphism � W Am ! B. Let �k be the state on Am defined by �k.x/ D
h�.x/�; �i and denote by �k the restriction to Pol.G/. It follows from Theorem 4.4
that indeed Pol.G/ is the algebraic graph product of Pol.Gv/; v 2 V � and by
construction it follows that �k is the graph product of the states �k;v; v 2 V � . In
particular �k is again a state.
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Let ˛j ; 1 � j � l be elements of Irr.Gvj / with vj such that v1v2 : : : vl 2Wmin.
By definition of the graph product and the graph product representation ˛1˝� � �˝˛n,
see Theorem 4.4, we see that,

.F�k/˛1˝���˝˛l D ˝ljD1.F�vj ;k/
˛j :

It is then straightforward to verify conditions (1) and (2) of Proposition 4.5. For
condition (1) one uses that � is finite and that k.F�k/˛1˝���˝˛lk � exp.� l

k
/.

5. Rapid decay

We prove that the property of Rapid Decay (RD) for discrete quantum groups is
preserved by taking graph products of finite graphs under suitable conditions on the
vertex quantum groups. In particular our result holds if every vertex quantum group is
either a classical group or a quantum group with polynomial growth. This generalizes
the result of [17] which proves the corresponding result for discrete groups.

5.1. Preliminaries on elements affiliated with a C*-algebra. For unbounded
operators affiliated with a C�-algebra we refer to [43]. WhenbA is the C�-algebra of
a discrete quantum group bG the notion of affiliated elements simplifies. In that case,
the �-algebra bA� of affiliated elements with bA can be identified with the algebraic
product

Q
˛2Irr.G/Mn˛ and, for each operator inbA� , the vector spaceHPol (the space

ofmatrix coefficients of finite dimensional representations ofG identified as subspace
ofH) forms a core. For L 2bA� we will writeQ˛2Irr.G/L

.˛/ for this representation.
Any �-homomorphism of bA extends naturally to bA� through spectral calculus. In
particular this applies to the counitb� and comultiplication b� as well as the antipode O�
of a Kac type discrete quantum group.

5.2. Definition of rapid decay. Let G D .A; �/ be a compact quantum group with
discrete dual bG D .bA;b�/. Then bA D ˚˛2Irr.G/Mn˛ where n˛ is the dimension
of ˛. In case bG is of Kac type its Haar weight b! is given by b! D ˚˛2Irr.G/n˛TrMn˛
where TrMn˛ is the normalized trace onMn˛ . For every ˛ 2 Irr.G/ let u˛ 2 A˝Mn˛

be a representation belonging to the equivalence class ˛. The Fourier transform F
of x D ˚˛2Irr.G/x˛ 2bA with finite direct sum, is defined as the element,X

˛2Irr.G/

.id˝b!/.u˛.1˝ x˛//:
Definition 5.1 (Lengths and central lengths). A length on bG is an (unbounded)
operator affiliated with bA that satisfies the following properties: L � 0,b�.L/ D 0,b�.L/jHPol D LjHPol and b�.L/ � 1˝LCL˝ 1. Given such a length, we denote by
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qn 2M.bA/ (the multiplier algebra of bA) the spectral projection of L associated to
the interval Œn; nC 1/, n 2 N. L is called central if each of its spectral projections
are central inM.bA/.
Definition 5.2. LetL be a central length on the discrete quantum group bG D .bA;b�/.
We say that .bG; L/ has the property of Rapid Decay (RD) if the following condition
is satisfied: there exists a polynomial P 2 RŒX� such that, for every k 2 N, a 2 qkbA
and every m; l 2 N, we have kqmF.a/qlk � P.k/kak2.

In fact there are other equivalent formulations of (RD), see [38, Proposition and
Definition 3.5] or [30] for the group case.

5.3. Permanence properties of (RD). We prove permanence properties of (RD)
under graph products. In particular we prove that (RD) is preserved by free products.
We collect some standard and well known observations in the next lemma. We
include a proof for convenience of the reader.
Lemma 5.3. Let G be a compact quantum group of Kac type with discrete dual
quantum group bG D .bA;b�/. Let fu˛ j ˛ 2 Irr.G/g be a complete set of
representatives of irreducible representations and let u˛i;j D .id˝!ei ;ej /.u

˛/ denote
its matrix coefficients with respect to some orthonormal basis ei of the representation
spaceH˛ for which,

!..u˛i;j /
�u˛k;l/ D ıi;kıj;ln

�1
˛ ; (5.1)

(see [18, Proposition 2.1], [42]). The contragredient representation ˛ is given by
u˛i;j D u˛j;i (and this definition is consistent with (5.1)). Let E˛i;j 2 bA be the matrix
with entry 1 on the i -th row and j -th column of thematrix block indexed by˛ 2 Irr.G/
and zeros elsewhere. Thenb�.E˛i;j / D E˛j;i .
Proof. The proof is a consequence of the relation �.u˛i;j / D .u˛j;i /

� and using
duality between G and bG. So let !˛i;j . � / D n˛ !..u

˛
i;j /
� � / so that by orthogonality

(see [18, p. 1351], [42]) we have,

.!˛i;j ˝ id/.W / D E˛i;j ; (5.2)

where W D ˚˛2Irr.G/u˛ . Then we have using that for Kac algebras �2 D id, � is
an anti-homomorphism, ! ı � D !, traciality of the Haar state ! and the relation
�.u˛i;j / D .u

˛
j;i /
�, see [36],

!˛i;j ı � D !.�
2..u˛i;j /

�/�. � // D !.�. � �..u˛i;j /
�/// D !. � �..u˛i;j /

�//

D !.�..u˛i;j /
�/ � / D !.�.u˛i;j /

�
� / D !.u˛j;i � / D !..u

˛
j;i /
�
� /;

so that .!˛i;j ı � ˝ id/.W / D E˛j;i by (5.2). This means that using the relation
.� ˝ O�/.W / D W [33],

b�.E˛i;j / D O�.!˛i;j ˝ id/.W / D .!˛i;j ı � ˝ id/.W / D E˛j;i :
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Now let us return to graph products. So let � be again a simplicial graph and for
each v 2 V � let Gv be a compact quantum group with discrete dual bGv . Let G be
the graph product of Gv; v 2 V � and let bG be its discrete dual. From Theorem 4.4
we see that the C�-algebra bA associated to bG equals

˚˛2Irr.G/Mn˛1
˝ � � � ˝Mn˛l

;

in case ˛ D ˛1˝ � � � ˝ ˛l . For k 2 N we shall use the notation A.k/ for the subspace
defined by

˚˛2Irr.G/;˛D˛1˝���˝˛kMn˛1
˝ � � � ˝Mn˛k

;

so the subspace of exactly k-fold tensor products of matrices. Letw 2 V � . We shall
denote Pw W H! H for the projection onto the linear span of the Hilbert spacesHv
with v 2 Wmin a word that is equivalent to a word that starts with w. Now we are
able to state the following Lemma 5.4.

Lemma 5.4. For v 2 V � suppose that Lv D ˚˛2Irr.G/L
.˛/
v is a central length for

the discrete quantum group bGv . Define,
L D

Y
˛2Irr.G/

l.˛/X
iD1

1Mn˛1
˝� � �˝ 1Mn˛i�1

˝L.˛i /vi
˝ 1Mn˛iC1

˝� � �˝ 1Mn˛l.˛/
; (5.3)

where each˛2 Irr.G/decomposes as the tensor product representation˛1˝� � �˝˛l.˛/
and ˛i 2 Irr.Gvi /. Then L is a central length function for the discrete quantum
group bG.

Proof. We first check that b�.L/ � L ˝ 1 C 1 ˝ L. Recall from [22, Eqn. (1) in
Proposition 3] that,

b�.p /.p˛ ˝ pˇ / D (p˛˝ˇ if  � ˛ ˝ ˇ;
0 otherwise;

(5.4)

where p˛˝ˇ 2 B.H˛˝Hˇ / is the projection onto the sum of all subrepresentations
of ˛ ˝ ˇ that are equivalent to  . Since the length functions Lv; v 2 V � are
central, we know that Lv D ˚˛2Irr.Gv/fv.˛/p˛ for some fv W Irr.Gv/ ! Œ0;1/

and similarly L D ˚˛2Irr.G/f .˛/p˛ . In fact, by definition of L we have that
f .˛/ D fv1.˛1/ C � � � C fvn.˛n/ in case ˛ D ˛1 ˝ � � � ˝ ˛n. The conditionb�.L/ � L ˝ 1 C 1 ˝ L now becomes equivalent to the property that for every
˛; ˇ 2 Irr.G/ we have b�.L/.p˛ ˝pˇ / � .L˝ 1C 1˝L/p˛ ˝pˇ , which by (5.4)
is equivalent to, X

2Irr.G/;
�˛˝ˇ

f ./p˛˝ˇ � .f .˛/C f .ˇ//p˛ ˝ pˇ : (5.5)
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Now fix ˛ D ˛1 ˝ � � � ˝ ˛n 2 Irr.G/ and ˇ D ˇ1 ˝ � � � ˝ ˇm 2 Irr.G/.
Let vi and wi be such that ˛i 2 Irr.Gvi / and ˇi 2 Irr.Gwi /. ˛ ˝ ˇ is not
necessarily irreducible, c.f. Theorem 4.4. If .vi ; viC1/ 2 E� then ˛1 ˝ � � � ˝ ˛n
is unitarily equivalent to ˛1 ˝ � � � ˝ ˛i�1 ˝ ˛iC1 ˝ ˛i ˝ ˛iC2 ˝ � � � ˝ ˛n by
intertwining with the flip map id˝i�1˝† ˝ id˝n�i�1 . Therefore, without loss
of generality, we may assume that there exists r such that v1 : : : vrw1 : : : wm is
reduced and v1 : : : vrw1 : : : wm ' v1 : : : vnw1 : : : vm. Note that this implies that
w1; : : : ; wn�r commute and fw1; : : : ; wn�rg D fvrC1; : : : ; vmg. Therefore, without
loss of generality, we may assume that vrC1 D w1; : : : ; vn D wn�r (since ˇ is
equivalent to a representation for which this is true, again by intertwining with flip
maps). Then ˛ ˝ ˇ is equivalent to

˛1˝� � �˝˛r˝˛rC1˝ˇ1˝˛rC2˝ˇ2˝� � �˝˛n˝ˇn�r˝ˇn�rC1˝� � �˝ˇm: (5.6)

Suppose that  2 Irr.G/ is contained in (5.6). Then by the Peter–Weyl decom-
positions of ˛rC1 ˝ ˇ1; : : : ; ˛n ˝ ˇn�r , there exist irreducible representations
1; : : : ; n�r with 1 � ˛rC1˝ˇ1; : : : ; n�r � ˛n˝ˇn�r such that  ' ˛1˝� � �˝
˛r˝1˝� � �˝n�r˝ˇn�rC1˝� � �˝ˇm. This implies that f ./ D

Pr
iD1 fvi .˛i /CPn�r

iD1 fviCr .i / C
Pm
iDn�rC1 fwi .ˇi / and since fviCr is a length function,

this implies that f ./ �
Pr
iD1 fvi .˛i / C

Pn�r
iD1

�
fviCr .˛iCr/C fui .ˇi /

�
CPm

iDn�rC1 fwi .ˇi / D
Pn
iD1 fvi .˛i /C

Pm
iD1 fwi .ˇi / and so condition (5.5) holds.

Next we check the relation b�.L/ D L. Let ˛ 2 Irr.G/ and assume that
it decomposes as a reduced tensor product ˛1 ˝ � � � ˝ ˛n. The contragredient
representation (see Lemma 5.3) is then given by ˛n ˝ � � � ˝ ˛1. This implies, using
Lemma 5.3 and its notation, thatb�.E˛1i1;j1 ˝ � � � ˝E˛nin;jn/ D E˛njn;in ˝ � � � ˝E˛1j1;i1 Db�.E˛nin;jn/ ˝ � � � ˝b�.E˛1i1;j1/. Applying the latter observation to (5.3) yields thatb�.L/ D L.

Finally, we haveb�.L/ D f .˛0/p˛0 , with ˛0 2 Irr.G/ the trivial representation.
Since f .˛0/ D 0 we haveb�.L/ D 0.

The following Lemma 5.6 uses the notion of polynomial growth [38]. Examples
of discrete quantum groups with polynomial growth can be found in [4].

Definition 5.5. Let G be a compact quantum group with central length L and dual
Haar weight b!. Set qn D �Œn;nC1/.L/. G has polynomial growth if there exists a
polynomial P such that for every n we have b!.qn/ � P.n/.
Lemma5.6. LetG1 andG2 be compact quantumgroups such that .bG1; L1/ has (RD).
If either .bG2; L2/ has polynomial growth or is a classical discrete group with (RD)
then .bG1 � bG2; L/ has (RD) where L was defined in Lemma 5.4.

Proof. Let q.1/
k
; q
.2/

k
and qk be the spectral projections onto Œk; kC1/ of respectively

L1; L2 and L. Also write q.1/
�k
D
Pk
jD0 q

.1/
j ; q

.2/

�k
D
Pk
jD0 q

.2/
j . LetbA1;bA2 andbA
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be the C�-algebras associated to the duals of respectively G1;G2 and G. Let P1, P2
be the polynomials witnessing (RD) for bG1 and bG2 respectively.

In order to prove that, for x 2 qkbA, we have kqlF.x/qmk � P.k/kxk2 for some
polynomial P , it suffices to prove that, for every k, the following estimate holds,

kF.x/k � P.k/kxk2; for all x 2 .q.1/
�k
˝ q

.2/

�k
/bA:

It follows from the fact that q.1/
�k
˝ q

.2/

�k
� qk . Observe that, by definition, we have

F.a˝ b/ D F1.a/˝F2.b/ for all a 2 q.1/�kbA1 and all b 2 q.2/
�k
bA2.

First assume that .bG2; L2/ has polynomial growth (so, in particular it is an
amenable discrete Kac algebra with property (RD) [38]). Let b!i be the Haar weight
on bAi , i D 1; 2. By polynomial growth we have b!2 �q.2/n �

� P3.n/, where P3
is a polynomial with P3.n/ � 1 for all n. Let x 2 .q.1/

�k
˝ q

.2/

�k
/bA be a finite

sum x D
P
i ai ˝ bi , where ai 2 q

.1/

�k
bA1 with kaik2 < 1 and bi 2 q.2/�kbA2 with

kbik2 < 1 for all i . We may and will assume that .ai / is an orthonormal system
with respect to the scalar product given by b!1. Hence, kxk22 DPi kbik

2
2 and,

kF.x/k D
X

i

F1.ai /˝F2.bi /


�

X
i

kF1.ai /k kF2.bi /k � P1.k/P2.k/
X
i

kaik2kbik2

D P1.k/P2.k/
X
i

kbik2 � P1.k/P2.k/

q
dim

�
q
.2/

�k
bA2�sX

i

kbik
2
2

D P1.k/P2.k/

q
dim

�
q
.2/

�k
bA2�kxk2 D P1.k/P2.k/kxk2qb!2�q.2/�k�

D P1.k/P2.k/kxk2

p
kX
jD0

b!2�q.2/j �
� P1.k/P2.k/kxk2

p
kX
jD0

P3.j /

� P1.k/P2.k/

� kX
jD0

P3.j /

�
kxk2 � Q.k/kxk2;

whereQ is a polynomial.
Now assume that .bG2; L2/ is a discrete group, denoted byG, with property (RD)

so that wemay take x 2 .q.1/
�k
˝q

.2/

�k
/bA to be a finite sum of the form x D

P
g ag˝ıg ,

where ag 2 q.1/�kbA1 with kagk2 < 1 for all g, ıg 2 l1.G/ is the Dirac function
at g 2 G and ag D 0 for all g 2 G such that L2.g/ > k. Hence we have
kxk22 D

P
g kagk

2
2 and F.x/ D

P
g F1.ag/˝�g , where �g 2 B.l2.G// is the left
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translation by g 2 G. Let � 2 L2.G1/ ˝ l2.G/ be a finite sum � D
P
h �h ˝ ıh.

One has:

kF.x/�k22 D
X
g;h

F1.ag/�h ˝ ıgh
2
2
D

X
g;h

F1.ag/�g�1h ˝ ıh
2
2

D

X
h

X
g

F1.ag/�g�1h
2
2
�

X
h

�X
g

kF1.ag/�g�1hk2
�2

� P1.k/
2
X
h

�X
g

kagk2 k�g�1hk2

�2
D P1.k/

2
k � 'k2

l2.G/
;

where  ; ' 2 l2.G/ are defined by  .g/ D kagk2 and '.g/ D k�gk. Observe that

k k2
l2.G/

D

X
g

kagk
2
2 D kxk

2
2

and

k'k2
l2.G/

D

X
g

k�gk
2
D

X
g

�g ˝ ıg

2 D k�k2:
Since  is supported on elements g 2 G of length less that k, we may use (RD)
for G and we find:

kF.x/�k2 � P1.k/2P2.k/2k k2l2.G/k'k
2
l2.G/

D P1.k/
2P2.k/

2
kxk22k�k

2:

This finishes the proof.

Let Pm W H! H be the projection onto the closure of the span of the spacesHw
with w a minimal word of length m 2 N.

Proposition 5.7. Let � be a finite graph and for every v 2 V � let Gv be a
compact quantum group such that .bGv; Lv/ has (RD). Moreover, assume that for
every clique �0 of � the graph product bG�0 has (RD). Let G be the graph product
with respect to � and let bG D .bA;b�/ be its discrete dual. There exists a polynomial
P 2 RŒX� such that for every k; l;m 2 N such that jk� l j � m � kC l and a 2bA.k/
we have kPmF.a/Plk � P.k/kak2.

Proof. For each v 2 V � we let av;j ; j 2 Jv , be elements of Aıv such thatbav;j WDbav;j�v; j 2 Jv is an orthonormal basis of Hıv . Set �v;j Dba�v;j D a�v;j�v; j 2 Jv
which also is an orthonormal basis of Hıv since Gv has a tracial Haar weight [38,
Proposition 4.7]. In particular, k�v;j k D kbav;j k. Throughout the proof we shall use
the convention that a summation

P
j av;j in fact is the summation over j 2 Jv . To
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prove the proposition it suffices to assume that,

F.a/ D
X

w2Wmin;
l.w/Dk

X
j1:::jk

�w;j1;:::;jkaw1;j1 : : : awk ;jk ;

� D
X

v2Wmin;
l.v/Dl

X
i1:::il

�v;i1;:::;il �v1;i1 ˝ � � � ˝ �vl ;il :

Firstly, using the notation introduced before Lemma 5.4,

PmF.a/� D Pm
� X

w2Wmin;
l.w/Dk

X
j1;:::;jk

�w;j1;:::;jk .Pw1 C P
?
w1
/aw1;j1.Pw1 C P

?
w1
/ : : :

: : : .Pwk C P
?
wk
/awk ;jk .Pwk C P

?
wk
/

�
�

� X
v2Wmin;
l.v/Dl

X
i1;:::;il

�v;i1;:::;il �v1;i1 ˝ � � � ˝ �vl ;il

�
: (5.7)

A large part of the terms in the product of these sums vanishes in fact as follows from
the following observations.

Reduction of the operator part. Firstly, consider an expression:

Q.2/
w1
aw1;j1Q

.1/
w1
: : :Q.2/

wk
awk ;jkQ

.1/
wk
; (5.8)

with Q.1/
wi and Q

.2/
wi equal to either Pwi or P?wi . Assume that (5.8) is non-zero, then

this implies the following:

(1) IfQ.1/
wi D P

?
wi

thenQ.2/
wi D Pwi .

(2) IfQ.2/
wi D Pwi , then it must be true thatQ.1/

wi�1 D P
?
wi�1

or .wi�1; wi / 2 E� .
These observations yield that, without loss of generality, (5.8) can assumed to be of
a specific form.

� We claim that (5.8) can be assumed to be of the form:

Q.2/
w1
aw1;j1Q

.1/
w1
: : :Q.2/

ws
aws ;jsQ

.1/
ws
P?wsC1awsC1;jsC1PwsC1 : : : P

?
wk
awk ;jkPwk ;

(5.9)
where for every 1 � i � s we do not have that Q.2/

wi D P?wi and Q
.1/
wi D Pwi .

In order to prove this claim first note that if Q.2/
wi D P?wi and Q

.1/
wi D Pwi then it

follows from (2) that either Q.2/
wiC1 D P?wiC1 and Q

.1/
wiC1 D PwiC1 or .wi ; wiC1/ 2

E� . It then suffices to show that in the latter case the operators P?wiawi ;jiPwi and
Q
.2/
wiC1awiC1;jiC1Q

.1/
wi1

commute. So firstly observe that PwiPwiC1 is a projection
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and hence Pwi and PwiC1 commute. By taking complements, any of the projections
Pwi ; P

?
wi
; PwiC1 andP?wiC1 commute. It follows fromLemma 3.3 thatP?wiawi ;jiPwi

andQ.2/
wiC1awiC1;jiC1Q

.1/
wiC1 commute. This concludes (5.9).

� An analogous argument as in the previous bullet point yields that, without loss
of generality, we may assume that (5.8) has the form,

Q.2/
w1
aw1;j1Q

.1/
w1
: : :Q.2/

wr
awr ;jrQ

.1/
wr
P .2/wrC1

awrC1;jrC1P
.1/
wrC1

: : :

: : : P .2/ws
aws ;jsP

.1/
ws
P?wsC1awsC1;jsC1PwsC1 : : : P

?
wk
awk ;jkPwk ; (5.10)

and that for every 1 � i � r we do not have thatQ.1/
wi D Pwi .

� IfQ.1/
wi D P

?
wi

then this implies thatQ.2/
wi D Pwi by (1). So (5.10) shows that

the expression (5.8) can be written as,

Pw1aw1;j1P
?
w1
: : : Pwrawr ;jrP

?
wr
PwrC1awrC1;jrC1PwrC1 : : :

: : : Pwsaws ;jsPwsP
?
wsC1

awsC1;jsC1PwsC1 : : : P
?
wk
awk ;jkPk; (5.11)

for some 0 � r � s � k (the cases r D 0 and s D k should be understood naturally).
� Moreover, suppose that s > rC1. Then it follows from (1) that .wrC1; wrC2/ 2

E� . As in the first bullet point this implies that PwrC1awrC1;jrC1PwrC1 and
PwrC2awrC2;jrC2PwrC2 commute. Hence it follows from (2) that .wrC1; wrC3/ 2
E� (provided that s > r2) and inductively we find that .wrC1; wi / 2 E� for every
r C 1 � i � s. The same argument yields that actually .wi ; wj / 2 E� for every
r C 1 � i; j � s. We conclude that wrC1; : : : ; ws are in clique of � .

Reduction of the vector part. Now suppose that a vector �v1;i1 ˝ � � � ˝ �vl ;il is not
in the kernel of (5.11). Then this implies that wemay assume (using the commutation
relations given by E� to permute terms in (5.11)) that v1 D wk; : : : ; vk�r D wrC1,
that ws : : : wrC1 is contained in a clique and furthermore that vk�rC1 6D wr . And in
that case,�
Pw1aw1;j1P

?
w1
: : : Pwrawr ;jrP

?
wr
PwrC1awrC1;jrC1PwrC1 : : :

: : : Pwsaws ;jsPwsP
?
wsC1

awsC1;jsC1PwsC1 : : : P
?
wk
awk ;jkPk

��
�v1;i1 ˝ � � � ˝ �vl ;il

�
Dbaw1;j1 ˝ � � � ˝bawr ;jr ˝ Pwsaws ;js�vk�sC1;ik�sC1 ˝ � � �

� � �˝PwrC1awrC1;jrC1�vk�r ;ik�r˝�vk�rC1;ik�rC1˝� � �˝�vl ;il�hawk ;jk�v1;i1 ; �i � � �

� � � hawsC1;jsC1�vk�s ;ik�s ; �i; (5.12)

where we explicitlymention that some of the indices in the triple dots of the right hand
side of this expression either increase or decrease by steps of 1. Looking at the length
of tensor products shows that (5.12) is in the kernel of Pm unlessmC k� l D sC r .
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Remainder of the proof. Now we conclude from (5.7) and (5.12) that,

kPmF.a/�k22 �
X

mCk�lDsCr
0�s;r�k

X
.u1;:::;us�r /2Cliq� .s�r/

X
w;v2Wmin;

l.w/Dk;l.v/Dl;
v1Dwk :::vk�rDwrC1;

.vk�sC1;:::;vk�r /D.ws ;:::;wrC1/D.u1;:::;us�r /

�

X
j1;:::;jr ;
jsC1;:::;jk

X
i1;:::;ik�s ;
ik�rC1;:::;il

kbaw1;j1k22 : : : kbawr ;jrk22�ıjk ;i1kbawk ;jkk42 : : : ıjsC1;ik�skbawsC1;jsC1k42
�

 X
jrC1;:::;js

awrC1;jrC1 : : : aws ;js

X
ik�r ;:::;ik�sC1

�vk�r ;ik�r ˝ � � � ˝ �vk�sC1;ik�sC1

2
2
: (5.13)

We have, since bG�0 has (RD) by assumption for every clique �0 in � , X
jrC1;:::;js

awrC1;jrC1 : : : aws ;js

X
ik�r ;:::;ik�sC1

�vk�r ;ik�r ˝ � � � ˝ �vk�sC1;ik�sC1

2
2

� P.s � r/
 X
jrC1;:::;js

awrC1;jrC1 : : : aws ;js

2
2

�

 X
ik�r ;:::;ik�sC1

�vk�r ;ik�r ˝ � � � ˝ �vk�sC1;ik�sC1

2
2
; (5.14)

for some polynomial P . Let Q be a polynomial such that P.s � r/ � Q.k/ for
any choice of s; r 2 N with 0 � s; r � k. We may choose Q independent of the
clique �0 that defined P . Combining (5.13) and (5.14) we see that,

kPmF.a/�k22 �
X

mCk�lDsCr
0�s;r�k

X
.u1;:::;us�r /2Cliq� .s�r/

X
w;v2Wmin;

l.w/Dk;l.v/Dl;
v1Dwk :::vk�rDwrC1;

.vk�sC1;:::;vk�r /D.ws ;:::;wrC1/D.u1;:::;us�r /

�

X
j1;:::;jk

X
i1;:::;il

Q.k/kbaw1;j1k22 : : : kbawk ;jkk22k�v1;i1k22 : : : k�vl ;ilk22
�M.k C 1/2Q.k/kak22k�k

2
2:

whereM is the number of cliques in � , which is finite since � is finite.

Lemma 5.8. Let G be a compact quantum group and let L be a central length
associated with bG. Then there exists a central length L0 � L associated with bG such
that L0p˛ � 1 for every ˛ 2 Irr.G/ nontrivial.

Proof. Since L is a central length we may write L D ˚˛2Irr.G/f .˛/p˛ . We
define the central length L0 D ˚˛2Irr.G/f 0.˛/p˛ , where f 0.˛/ D f .˛/ C 1
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if ˛ is nontrivial and f 0.˛/ D f .˛/ in case ˛ is trivial. As in the proof of
Lemma 5.4 the condition b�.L0/ � L0 ˝ 1C 1˝ L0 is equivalent to checking thatP
2Irr.G/;�˛˝ˇ f

0./p
˛˝ˇ
 � .f 0.˛/C f 0.ˇ//p˛ ˝ pˇ . However, this condition

easily follows from the fact that if both ˛ and ˇ are trivial then ˛ ˝ ˇ is trivial and
so  is trivial whenever  � ˛ ˝ ˇ. The condition b�.L0/ D L0 follows as in the
proof of Lemma 5.4, see also Lemma 5.3. And finally by definition of the counit we
haveb�.L0/ D f 0.˛0/ D f .˛0/ D 0 with ˛0 2 Irr.G/ trivial.

Theorem 5.9. Let � be a finite graph and let, for every v 2 V � , Gv be a compact
quantum group such that .bGv; Lv/ has (RD). Assume that for every clique �0 the
graph product bG�0 has (RD). Then the graph product .bG WD bG� ; L/ has (RD) for
some central length L. If Lvp˛ � 1 for every v 2 V � and ˛ 2 Irr.Gv/ nontrivial
then L can be taken as in Lemma 5.4.

Proof. For v 2 V � denote by Lv a central length for bGv and let L be the central
length defined in Lemma 5.4. Assume by Lemma 5.8 and [38, Remark 3.6] that,

Lvp˛ � 1; 8v 2 V �; ˛ 2 Irr.Gv/: (5.15)

This implies that Lp˛ � l.˛/ where l.˛/ the length of the reduced expression
˛ D ˛1˝� � �˝˛l.˛0/ with ˛ 2 Irr.G/. By Proposition 5.7 there exist a polynomialP
such that for every k; l;m 2 N such that jk � l j � m � k C l and a 2 bA.k/ we
have kPmF.a/Plk � P.k/kak2. Now, let a 2 qkbA and write a D

Pk
jD0 a.j / with

a.j / 2 bA.j /, which is possible by the first paragraph. Take a vector v 2 qlH and
write v D

Pl
iD0 v.i/ with v.i/ D Piv. Since

Pm
rD0 Pr � qm and the projections Pr

are orthogonal, it follows that kqmF.a.j //qlvk22 �
Pm
rD0 kPrF.a.j //qlvk22. Next,

we have an elementary equality that follows by considering word lengths and an
inequality which follows from Cauchy–Schwarz and the triangle inequality,

mX
rD0

kPrF.a.j //qlvk22 D
mX
rD0

 jCrX
iDjj�rj

PrF.a.j //v.i/
2
2

� .2j C 1/

mX
rD0

jCrX
iDjj�rj

kPrF.a.j //v.i/k22:

Now, for jj � i j � r � j C i we have,

kPrF.a.j //v.i/k22 � P.j /2ka.j /k22kv.i/k22:

For other values of r we have kPrF.a.j //v.i/k22 D 0. Since, as we observed,
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ji � j j � r � j C i for any given value of i , this shows that we can estimate,

mX
rD0

kPrF.a.j //qlvk22 � P.j /2.2j C 1/
jCmX
iD0

mX
rD0

ka.j /k
2
2kv.i/k

2
2

� P.j /2.2j C 1/2
jCmX
iD0

ka.j /k
2
2kv.i/k

2
2

� P.j /2.2j C 1/2ka.j /k
2
2kvk

2
2:

Now, using the triangle inequality and the Cauchy–Schwarz inequality we have

kqmF.a/qlvk22 �
� kX
jD0

kqmF.a.j //qlvk2
�2
� .k C 1/

kX
jD0

kqmF.a.j //qlvk22

� .k C 1/

kX
jD0

P.j /2.2j C 1/2ka.j /k
2
2kvk

2
2

� .k C 1/.2k C 1/2P 0.k/kak22kvk
2
2

D P 00.k/kak22kvk
2
2;

for some polynomials P;P 0; P 00 that satisfy the property that, for every 0 � j � k,
P.j /2 � P 0.k/ and P 00.k/ D .k C 1/.2k C 1/2P 0.k/.

Corollary 5.10. Let � be a finite graph. For v 2 V � let Gv be a compact quantum
group and assume that bGv has either polynomial growth or is a classical compact
group with (RD). Then the discrete dual of the graph product has (RD).

Proof. This is a consequence of Theorem 5.9 and Lemma 5.6.

Corollary 5.11. Let � be finite and without edges. Let G D ?v2V �Gv . If for every
v 2 V � , bGv has (RD), thenbG has (RD). i.e. (RD) is preserved by finite free products.

Proof. This is a consequence of Theorem 5.9.
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