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Abstract. This paper proposes a new notion of smoothness of algebras, termed differential
smoothness, that combines the existence of a top form in a differential calculus over an algebra
together with a strong version of the Poincaré duality realized as an isomorphism between
complexes of differential and integral forms. The quantum two- and three-spheres, disc, plane
and the noncommutative torus are all smooth in this sense. Noncommutative coordinate algebras
of deformations of several examples of classical orbifolds such as the pillow orbifold, singular
cones and lens spaces are also differentially smooth. Although surprising this is not fully
unexpected as these algebras are known to be homologically smooth. The study of Riemannian
aspects of the noncommutative pillow and Moyal deformations of cones leads to spectral triples
that satisfy the orientability condition that is known to be broken for classical orbifolds.
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1. Introduction

It is often the case that a deformation of a singular variety or an orbifold produces a
noncommutative object that behaves as if it were a smoothmanifold. This observation
underlies the theory of noncommutative resolutions [32]. Recent papers [4] and [3]
contain illustrations of this phenomenon on the algebraic level on a number of
(families of) explicit examples such as quantum teardrops [7], quantum (classically
singular) lens spaces [16], the noncommutative pillow [2] (see also [13] and [14,
Section 3.7]) and quantum cones. In [4] and [3] the smoothness is understood in
the homological sense, i.e. as the existence of a finite-length resolution of algebras
by finitely generated projective bimodules; see [31, Erratum], [20]. In the present
article we establish that also from the point of differential and spectral geometry the
noncommutative pillow, quantum cones and lens spaces behave as smooth objects.

The idea behind the differential smoothness of algebras is rooted in the observation
that a classical smooth orientable manifold, in addition to de Rham complex of
�Supported by NCN grant 2012/06/M/ST1/00169.
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differential forms, admits also the complex of integral forms isomorphic to the de
Rham complex; [21, Section 4.5]. The de Rham differential can be understood as
a special left connection, while the boundary operator in the complex of integral
forms is an example of a right connection. In the standard (commutative) differential
geometry a knowledge of the integral forms and right connections does not contribute
to a better understanding of the structure of a manifold, the existence of the Hodge
star and the Poincaré duality are fully sufficient. On the other hand it becomes
useful in defining the Berezin integral on a supermanifold, and precisely in this
context right connections and integral forms have been introduced in [21, Chapter 4].
Supergeometry might be interpreted as one of the predecessors or special cases of
noncommutative geometry thus it seems quite natural to expect that the (rather mild)
usefulness of integral forms in supergeometry should becomemore pronounced in the
noncommutative setup. This expectation led to the introduction of a noncommutative
version of a right connection termed a hom-connection (or divergence) in [3] and then
to the associated complex of integral forms in [6].

While every algebra admits a differential calculus (albeit not necessarily of any
geometric interest), a priori not every algebra must admit a complex of integral
forms relative to a given differential calculus. The main results of [6] show that
divergences (though not necessarily flat) can be defined for calculi generated by
twisted multiderivations and the examples studied there feature complexes of integral
forms isomorphic to noncommutative de Rham complexes (of dimension equal to
the classical dimension of non-deformed spaces). This can be thought of as a strong
version of Poincaré duality, since it is an isomorphism of the complexes of differential
and integrable forms, not just of their homologies, that is observed. Motivated by
these examples, we introduce here the term integrable differential calculus to indicate
a calculus that is isomorphic to the associated complex of integral forms. Informally,
an algebra that is a deformation of the coordinate algebra of a classical variety and
has an integrable differential calculus of classical dimension can be understood as
being differentially smooth. More formally, an affine or finitely generated algebra
with integer Gelfand–Kirillov dimension, say n, is said to be differentially smooth
if it admits an integrable n-dimensional differential calculus that is connected in the
sense that the kernel of the differential restricted to the algebra consists only of scalar
multiples of the identity. In this sense the algebras studied in [6] are smooth, a
fact that should not be too surprising, since these are q-deformations of classically
smooth compact manifolds (the two- and three-spheres and planes). The novelty
of the present paper is that the differential smoothness is established for algebras
that describe noncommutative versions of classically singular spaces (orbifolds). In
particular we prove:

Theorem A. Coordinate algebras of the noncommutative pillow, cones and lens
spaces are differentially smooth, i.e. they admit connected integrable differential
calculi of dimension 2 in the first two cases and 3 in the case of lens spaces.
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TheoremA indicates that noncommutative coordinate algebras of deformations of
some classically non-smooth spaces or orbifolds are not only homologically smooth,
but also admit types of differential calculi characteristic of smooth manifolds. In
short, at this level at least, we are not able to distinguish between noncommutative
deformations of manifolds and orbifolds, and should such a distinction be possible it
must occur on finer geometric levels. The first such level that should be studied are the
Riemannian or metric aspects of differentially smooth algebras, which following [9]
are encoded in spectral triples. It was shown in [26] that on the classical level, a
spectral triple can distinguish between a manifold and a (good) orbifold in the sense
that the orientability condition (meaning the existence of a Hochschild cycle whose
image in the differential calculus induced by the Dirac operator is the chirality
operator) that holds in the former case fails to hold in the latter. We put the
noncommutative pillow and a special case of the quantum cone corresponding to
the Moyal deformation of the unit disc to the test, and find spectral triples that satisfy
a milder version of the orientability condition, more precisely we construct cycles
but not Hochschild cycles that map to the chirality operator. One might speculate
whether the fact that constructed cycles are not Hochschild cycles is a remnant of
the singular nature of the classical counterparts of noncommutative manifolds. The
construction of spectral triples on any invariant subalgebras with respect to the action
of a finite group has been studied in several cases following the standard method of
restriction of the known spectral triple over the full algebra. This has been studied
for the lens spaces [30] and three-dimensional Bieberbach manifolds [23] allowing
for the classification of spin structures in the noncommutative counterparts of these
manifolds. However, in neither of the constructed examples an orientation cycle was
constructed. Although in the q-deformed case the existence of such a cycle could
be doubtful (as the spectral triple for the SUq.2/ itself has no orientation cycle) it
is expected that such a cycle exists for the more regular case of noncommutative
quotients of the noncommutative torus and � -deformations. The construction of an
orientation cycle presented here for the noncommutative pillow and theMoyalN D 2
cone is the first such result.

Notation. All algebras considered in this paper are associative and unital over the
complex field C. If X is a classical geometric space (affine space, manifold,
orbifold etc.), O.Xq/ denotes the noncommutative coordinate algebra of the (non-
existing in a usual sense) quantum spaceXq . Although we write�A for a differential
calculus over an algebra A, in order to avoid overloading notation, we write �.Xq/
for a differential calculus over O.Xq/. Similarly, Ik.Xq/ means integral k-forms
over O.Xq/, i.e. right O.Xq/-module homomorphisms �k.Xq/! O.Xq/.
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2. Integrable differential calculi over noncommutative algebras

2.1. Integrable calculi and differential smoothness of affine algebras. By a
differential graded algebra we mean a non-negatively graded algebra � (with
the product traditionally denoted by ^) together with a degree-one linear map
d W �� ! ��C1 that satisfies the graded Leibniz rule and is such that d ı d D 0.
We say that a differential graded algebra .�; d/ is a calculus over an algebra A
if�0 D A and, for all n 2 N,�n D AdA^dA^ � � � ^dA (dA appears n-times). In
this case wewrite�A. Note that due to the Leibniz rule�nA D dA^dA^� � �^dAA
too. A differential calculus �A is said to be connected if ker d jA D C:1. If A is
a complex �-algebra then it is often requested that �A be a �-algebra and that
�ıd D d ı�. In this situation one refers to�A as a �-differential calculus. If B is a
subalgebra ofA, then by restriction of�A toB wemean the differential calculus�B
with �nB D BdB ^ dB ^ � � � ^ dB � �nA

A calculus �A is said to have dimension n if �nA ¤ 0 and �mA D 0 for all
m > n. An n-dimensional calculus �A admits a volume form if �nA is isomorphic
to A as a left and right A-module. The existence of a right A-module isomorphism
means that there is a free generator of �nA (as a right A-module), i.e. ! 2 �nA,
such that all elements of �nA can be uniquely written as !a, a 2 A. If ! is also a
free generator of �nA as a left A-module, we refer to it as to a volume form on �A.
The right A-module isomorphism �nA ! A corresponding to a volume form ! is
denoted by �! , i.e.

�!.!a/ D a; for all a 2 A: (2.1)

Since�nA is also isomorphic to A as a left A-module, any free generator ! induces
an algebra endomorphism �! of A by the formula

a! D !�!.a/: (2.2)

If ! is a volume form, then �! is an algebra automorphism.
Dually to a differential calculus onA one considers its integral calculus; see [3,6].

Let�A be a differential calculus onA. The space of n-forms�nA is anA-bimodule.
Let InA denote the right dual of �nA, i.e. the space of all right A-linear maps
�nA! A. Each of the InA is an A-bimodule with the actions

.a � � � b/.!/ D a�.b!/; for all � 2 InA, ! 2 �nA, a; b 2 A:

The direct sum of all the InA, denoted IA D ˚nInA, is a right �A-module with
action

.� � !/.!0/ D �.! ^ !0/; for all � 2 InCmA, ! 2 �nA, !0 2 �mA: (2.3)

A divergence on A is a linear map r W I1A! A, such that

r.� � a/ D r.�/aC �.da/; for all � 2 I1A, a 2 A: (2.4)
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A divergence can be extended to the whole of IA, rn W InC1A! InA, by setting

rn.�/.!/ D r.� � !/C .�1/
nC1�.d!/; for all � 2 InC1A, ! 2 �nA: (2.5)

A combination of (2.4) with (2.5) yields the following Leibniz rule, for all
� 2 ImCnC1A and ! 2 �mA,

rn.� � !/ D rmCn.�/ � ! C .�1/
mCn� � d!I (2.6)

see [3, 3.2 Lemma].
A divergence is said to be flat ifrır1 D 0. This then implies thatrnırnC1 D 0,

for all n 2 N, hence IA together with the rn form a chain complex, which is termed
the complex of integral forms over A. The cokernel map of r, i.e. ƒ W A !
cokerr D A= Imr is called the integral on A associated to IA. Note that, in
general, it is not guaranteed that a given differential calculus on A will admit a
divergence on A and even if it admits such a divergence that it would be flat; see [6].

Given a left A-module X with action a � x, for all a 2 A, x 2 X , and an algebra
automorphism � of A, the notation �X stands for X with the A-module structure
twisted by �, i.e. with the A-action a˝ x 7! �.a/ � x.

The following definition introduces notions which form the backbone of the
majority of this paper.
Definition 2.1. An n-dimensional differential calculus�A is said to be integrable if
�A admits a complex of integral forms .IA;r/ for which there exist an algebra
automorphism � of A and A-bimodule isomorphisms ‚k W �kA ! �In�kA,
k D 0; : : : ; n, rendering commutative the following diagram:

A
d //

‚0
��

�1A
d //

‚1
��

�2A
d //

‚2
��

� � �
d // �n�1A

d //

‚n�1
��

�nA

‚n
��

�InA
rn�1 // �In�1A

rn�2 // �In�2A
rn�3 // � � �

r1 // �I1A
r // �A :

The n-form ! WD ‚�1n .1/ 2 �
nA is called an integrating volume form.

Examples of algebras admitting integrable calculi discussed in [6] include the
algebra of complex matrices MN .C/ with the N -dimensional calculus generated
by derivations [11,12], the quantum group SUq.2/ with the three-dimensional left
covariant calculus [35] and the quantum standard sphere with the restriction of the
above calculus.

The following theorem indicates that the integrability of a differential calculus
can be defined without explicit reference to integral forms.
Theorem 2.2. The following statements about an n-dimensional differential calcu-
lus �A over an algebra A are equivalent:
(1) �A is an integrable differential calculus.
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(2) There exist an algebra automorphism � of A and A-bimodule isomorphisms
‚k W �

kA! �In�kA, k D 0; : : : ; n, such that, for all !0 2 �kA, !00 2 �mA,

‚kCm.!
0
^ !00/ D .�1/.n�1/m‚k.!

0/ � !00: (2.7)

(3) There exist an algebra automorphism � ofA and anA-bimodulemap# W �nA!
�A such that all left multiplication maps

`k# W �
kA! In�kA; !0 7! # � !0; k D 0; 1; : : : ; n;

where the actions � are defined by (2.3), are bijective.
(4) �A has a volume form ! such that all left multiplication maps

`k�! W �
kA! In�kA; !0 7! �! � !

0; k D 1; : : : ; n � 1;

where �! is defined by (2.1), are bijective.

Proof. (1) ) (2) The existence of an algebra automorphism � and maps ‚k W
�kA! �In�kA that make the diagram in Definition 2.1 commute are parts of the
definition of integrability of a differential calculus. We will prove that the ‚kCm
satisfy equations (2.7) by induction with respect to k C n.

First, for kCm D 0 (2.7) holds by definition. With the inductive assumption that
the formula is true for all k Cm < p � n, it needs to be demonstrated that (2.7) is
also true for p. Using the commutativity of the diagram in Definition 2.1, the Leibniz
rule and (2.6), we can compute:

‚kCmC1.! ^ da/

D .�1/kCm .‚kCmC1.d.!a// �‚kCmC1..d!/a//

D .�1/kCm .rn�k�m�1‚kCm.!a/ �‚kCmC1.d!/a/

D .�1/kCm .rn�k�m�1.‚kCm.!/a/ � .rn�k�m�1‚kCm.!//a/

D .�1/kCm.�1/n�k�m�1‚kCm.!/ � da D .�1/
n�1‚kCm.!/ � da:

The inductive assumption and the fact that every element of �mA is a linear
combination of products of m � 1-forms with exact one-forms, imply the required
equality,

‚kCmC1.!
0
^ !00/ D .�1/.n�1/.mC1/‚k.!

0/ � !00;

for all !0 2 �kA, !00 2 �mC1A. The assertion follows by the principle of
mathematical induction.

(2)) (3) Given a system of A-bimodule isomorphisms ‚k W �kA! �In�kA,
k D 0; : : : ; n that satisfy (2.7), define

# WD ‚0.1/:
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Since ‚n satisfies (2.7), for all ! 2 �nA,

#.!/ D ‚0.1/.!/ D ‚0.1/ � ! D ‚n.!/:

Thus # D ‚n and, in particular, it is an A-bimodule map as stated. Again by (2.7),
for all !0 2 �kA,

‚k.!
0/ D .�1/.n�1/k‚0.1/ � !

0
D .�1/.n�1/k# � !0;

i.e. ‚k D .�1/.n�1/k`k# , and hence all the `k
#
are bijective, as required.

(3)) (4) Note that by the definition of the action (2.3) # D `n
#
, hence # is an

A-bimodule isomorphism. Consequently,�nA is isomorphic to A as a left and right
A-module, hence ! WD #�1.1/ is a volume form. Since #�1 is a bimodule map
�A! �nA, for all a 2 A,

a D �!.!a/ D �!.#
�1.1/a/ D �!.#

�1.a//;

i.e. �! D # , hence all the `k�! are bijective.
(4)) (1) Given a volume form ! 2 �nA, define

‚k D .�1/
.n�1/k`k�! W �

kA! In�kA; k D 0; 1; : : : ; n: (2.8)

By assumption ‚k are bijective for k D 1; : : : ; n � 1. Note that ‚n D �! , hence it
is bijective too. We will next show that the map

‚�10 W InA! A; � 7! ��1! .�.!//;

where �! is the algebra automorphism associated to ! via (2.2), is the inverse of‚0.
For all a 2 A,

‚�10 .‚0.a// D �
�1
! .‚0.a/.!// D �

�1
! .�!.a!//

D ��1! .�!.!�!.a/// D �
�1
! .�!.a// D a;

by the definitions of �! and �! . On the other hand, for all � 2 InA and a 2 A,

‚0 ı‚
�1
0 .�/ .!a/ D ‚0

�
��1! .�.!//

�
.!a/ D �!

�
��1! .�.!//!a

�
D �! .!�.!/a/ D �.!/a D �.!a/;

by the definitions of �! and�! and the rightA-linearity of �. Since�nA is generated
by ! this means that the composite map ‚0 ı‚�10 is the identity. Hence ‚�10 is the
inverse of ‚0, as claimed.

Directly from definition (2.8), the ‚k satisfy equations (2.7). In particular, they
are right A-module maps. Next note that, for all a 2 A, !00 2 �n,

�!.a!
00/ D �!.a/�!.!

00/; �!.!
00a/ D �!.!

00/a: (2.9)
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Thus, for all a 2 A, !0 2 �kA, and !00 2 �n�kA,

‚k.a!
0/.!00/ D .�1/.n�1/k�!.a!

0
^ !00/

D .�1/.n�1/k�!.a/�!.!
0
^ !00/ D �!.a/‚k.!

0/.!00/;

by the first of equation (2.9). Therefore, all ‚k given by (2.8) are bimodule
isomorphisms �kA! �In�kA, where � D �! .

Let us define:

rk D ‚n�k ı d ı‚
�1
n�k�1 W IkC1A! IkA: (2.10)

Obviously, the mapsrk will make the diagram in Definition 2.1 commute, and, since
d ı d D 0 also rk�1 ı rk D 0. We need to prove that r WD r0 is a divergence and
that all the remaining rk given by (2.10) extend r in the sense of equalities (2.5).

For all a 2 A and � 2 I1A,

r.� � a/ D ‚n ı d ı‚
�1
n�1.� � a/ D ‚n

�
d
�
‚�1n�1.�/a

��
D ‚n

�
d
�
‚�1n�1.�/

�
a
�
C .�1/n�1‚n

�
‚�1n�1.�/ ^ da

�
D ‚n

�
d
�
‚�1n�1.�/

��
aC � � da D r.�/aC �.da/;

where the second equality follows by the right A-linearity of ‚n�1, the third one
is a consequence of the graded Leibniz rule, the fourth one follows by the right
A-linearity of‚n and by equation (2.7), and the final equality is simply the definition
of r in (2.10) and the action (2.3). This proves that r is a divergence.

Observe that setting !0 D ‚�1
k
.�/ in (2.7) and then applying‚�1

kCm
one obtains,

for all !00 2 �mA and � 2 In�kA,

‚�1kCm.� � !
00/ D .�1/.n�1/m‚�1k .�/ ^ !

00:

This can be used (in the second equality below) to prove (2.5). For any � 2 ImC1A

and !00 2 �mA,

r.� � !00/ D ‚n ı d ı‚
�1
n�1.� � !

00/ D .�1/.n�1/m‚n
�
d
�
‚�1n�1�m.�/ ^ !

00
��

D .�1/.n�1/m‚n
�
d
�
‚�1n�1�m.�/

�
^ !00

�
C .�1/.mC1/n�1‚n

�
‚�1n�1�m.�/ ^ d!

00
�

D ‚n�m
�
d
�
‚�1n�1�m.�/

��
� !00

C .�1/mC1‚n�m�1
�
‚�1n�1�m.�/

�
^ d!00

D rm.�/.!
00/C .�1/m� � d!00;

where the third equality follows by the Leibniz rule, the fourth one is a consequence of
the identities (2.7) that all the‚k obey and the final equality follows by the definitions
of rm and the action (2.3). This proves that each of the rk defined by (2.10) is an
extension of r, and thus completes the proof of the theorem.
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Remark 2.3. A volume form! 2 �nA is an integrating form if and only if it satisfies
conditions (4) of Theorem 2.2.

As it stands the integrability of a calculus over an algebra A is a property of
the differential graded algebra �A rather than a characterization of A itself. To
connect this property of �A to the nature of A we need to relate the dimension
of the differential calculus with that of A. Since we are dealing with algebras that
are deformations of coordinate algebras of affine varieties, the Gelfand–Kirillov
dimension seems to be best suited here; see [19] or [22, Chapter 8] for a detailed
discussion of the Gelfand–Kirillov dimension.

Let A be a finitely generated or affine algebra with generating subspace V . Let
us write V.n/ for the subspace of A spanned by 1 and all words in generators of A
of length at most n. The algebra A is said to have polynomial growth if there exist
c 2 R and � 2 N such that dimV.n/ � cn� for all sufficiently large n. The
Gelfand–Kirillov dimension of A is a real number defined as

GKdim.A/ WD inff� j dimV.n/ � n� ; n� 0g; (2.11)

if A has polynomial growth and is defined as infinity otherwise. In the case of
commutative affine algebraswith polynomial growth, theGelfand–Kirillov dimension
coincides with the dimension of the underlying affine space (the Krull dimension of
its coordinate algebra).
Definition 2.4. An affine algebra with integer Gelfand–Kirillov dimension n is said to
be differentially smooth if it admits ann-dimensional connected integrable differential
calculus.

For example, the polynomial algebra CŒx1; : : : ; xn� has the Gelfand–Kirillov
dimension n and the usual exterior algebra is an n-dimensional integrable calculus,
hence CŒx1; : : : ; xn� is differentially smooth. The results of [6] establish differential
smoothness of coordinate algebras of the quantum group SUq.2/, the standard
quantum Podleś sphere and the quantum Manin plane. The following example
shows that not all algebras are differentially smooth.
Example 2.5. The algebra A D CŒx; y�=hxyi is not differentially smooth.

Proof. Since xy D yx D 0, the algebra A has a basis 1; xn; yn, n D 1; 2; : : :,
hence GKdim.A/ D 1. Suppose there is a one-dimensional connected integrable
calculus�A and let‚1 W �1A! �A, where � is an algebra automorphism on A, be
the required bimodule isomorphism. The Leibniz rule together with the equalities
xy D yx D 0 imply that

x dy D �dx y; y dx D �dy x:

Apply ‚1 to these identities to obtain

�.x/�y D ��xy; �.y/�x D ��yx; (2.12)

where �x WD ‚1.dx/ and �y WD ‚1.dy/.
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The algebra A admits two types of automorphisms �i W A! A, i D 1; 2,

�1.x/ D ax; �1.y/ D by; and �2.x/ D ay; �2.y/ D bx; a; b 2 C; a; b ¤ 0:

For � D �1, (2.12) read

ax�y D ��xy; by�x D ��yx;

with the only solutions given by �y D yp.y/ and �x D xq.x/, where p; q are
polynomials. Hence the image under ‚1 of any one-form must be a polynomial
without a scalar term, so 1 cannot lie in‚1.�1A/, and therefore‚1 is not surjective.
In the case of the automorphisms �2, equations (2.12) come out as

ay�y D ��xy; bx�x D ��yx:

Since the algebra is commutative,

y.a�y C �x/ D 0 D x.b�x C �y/;

which can be solved. If ab 6D 1 then again both �x and �y are polynomials without
any scalar terms and, by the same arguments as above, ‚1 is not surjective which
contradicts the assumption that‚1 is an isomorphism of bimodules. If ab D 1, then
the only solution is �y D c and �x D �ac, for some c 2 C. However, in this case
d.ay C x/ D 0, which contradicts the assumption that the differential calculus is
connected.

Therefore, there are no one-dimensional connected integrable calculi over A,
i.e. A is not differentially smooth.

2.2. Finitely generated and projective integrable calculi. Geometrically the most
interesting cases of differential calculi are those where �kA are finitely generated
and projective right or left (or both) A-modules.
Lemma 2.6. Let�A be an integrable n-dimensional calculus overAwith integrating
form !. Then �kA is a finitely generated projective right A-module if there exist a
finite number of forms !i 2 �kA and N!i 2 �n�kA such that, for all !0 2 �kA,

!0 D
X
i

!i�!. N!i ^ !
0/: (2.13)

Proof. The elements !i are generators of �kA, while the equalities

�i .!
0/ D `n�k�!

. N!i /.!
0/ D �!. N!i ^ !

0/;

define �i 2 HomA.�kA;A/, and then (2.13) guarantees that !i ; �i form a dual basis
for �kA, hence �kA is projective.
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To show the implication in the other direction let us assume that �kA is finitely
generated projective with a basis !i and the dual basis �i . Let us define:

N!i WD ‚
�1
n�k.�i /:

Using the properties of an integrable differential calculus it is easy to show that (2.13)
is satisfied.

Lemma2.7. Let�A be ann-dimensional calculus overA admitting a volume form!.
Assume that, for all k D 1; 2; : : : ; n�1, there exist a finite number of forms !ki ; N!

k
i 2

�kA such that, for all !0 2 �kA,

!0 D
X
i

!ki �!. N!
n�k
i ^ !0/ D

X
i

��1!
�
�!.!

0
^ !n�ki /

�
N!ki ; (2.14)

where�! and �! are defined by (2.1) and (2.2), respectively. Then! is an integrating
formand all the�kA are finitely generated and projective as left and rightA-modules.

Proof. Conditions (2.14) imply that !ki , �!. N!
n�k
i ^ �/ form a dual basis for �kA

as a right A-module and N!ki , �
�1
!

�
�!.� ^ !

n�k
i /

�
form a dual basis for �kA as a

left A-module.
For all k define,

ˆk W In�kA! �kA; � 7!
X
i

��1!
�
�.!n�ki /

�
N!ki :

Then, for all � 2 In�k and !0 2 �n�kA,�
`k�! ıˆk

�
.�/.!0/ D �!

�
ˆk.�/ ^ !

0
�

D

X
i

�!
�
��1!

�
�.!n�ki /

�
N!ki ^ !

0
�

D

X
i

�.!n�ki /�!
�
N!ki ^ !

0
�

D

X
i

�
�
!n�ki �!

�
N!ki ^ !

0
��
D �.!0/;

where the first of equations (2.9) was used in the derivation of the third equality, and
next the right A-linearity of � and the first of equations (2.14) were employed. On
the other hand, for all !0 2 �kA,�
ˆkı`

k
�!

�
.!0/ D

X
i

��1!
�
`k�! .!

0/.!n�ki /
�
N!ki D

X
i

��1!
�
�!.!

0
^!n�ki /

�
N!ki D !

0;

by the second of equations (2.14). Therefore, all of the `k�! are isomorphisms, and
hence ! is an integrating form.
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In the set-up of Lemma 2.7, a combination of the form of the inverse of the `k�!
together with that of the divergence associated to the isomorphisms `k�! via (2.10),
gives the following formula for the divergence:

r.�/ D .�1/n�1
X
i

�!
�
d
�
��1!

�
�.!1i /

��
N!n�1i

�
; (2.15)

for all � 2 I1A.

2.3. A construction of two-dimensional integrable calculi. In this section we
construct a class of two-dimensional integrable calculi. Notwithstanding its quite
technical nature and rather specialized appearance, the following lemma is applicable
in a variety of situations including, of course, those that are the subject matter of this
article.
Lemma 2.8. Assume that:
(a) A is an algebra and B � A is a subalgebra, hence A is a B-bimodule in a

natural way;
(b) AC; A� � A are right B-submodules of A such that ACA� D A�AC D B;
(c) there exists a two-dimensional differential calculus �B over B with �1B D

AC ˚ A� as a right B-module and the product in �1B given by the formula

.aC; a�/ ^ .bC; b�/ D !.�C.aC/b� C ��.a�/bC/;

for all a˙; b˙ 2 A˙, where ! is a volume form and �˙ W A˙ ! A˙ are
invertible linear maps.

Then �B is integrable.
Before we start proving Lemma 2.8 let us point to the classical motivation

behind it. In classical (complex) geometry, Riemann surfaces can be obtained as
quotients of the disc (with hyperbolic metric) by Fuchsian groups. As a result,
algebras of functions and modules of (holomorphic or antiholomorphic) sections of
the cotangent bundle over such a surface can be embedded in the algebra of functions
on the disc and the corresponding modules over it. In particular, (anti-)holomorphic
sections over a Riemann surface can be expressed in terms of functions on the disc.
In the classical situation B should be thought of as functions on a Riemann surface,
A as functions on the disc and A˙ as (anti-)holomorphic sections on the surface
expressed in terms of functions on the disc.

Proof of Lemma 2.8. In view of Theorem 2.2 we only need to show that the map

‚ WD `k! W �
1B ! I1B; !0 7! Œ!00 7! �!.!

0
^ !00/�;

is bijective. Since A˙A� D B , there exist r i˙; s
i
˙
2 A˙ such that

r iCr
i
� D s

i
�s
i
C D 1;
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where here and below the repeated index is summed. Let us define a linear map:

‚�1 W I1B ! �1B; � 7!
�
��1C

�
�.0; si�/s

i
C

�
; ��1�

�
�.r iC; 0/r

i
�

��
: (2.16)

Then ‚�1 is the inverse of ‚. Indeed, for all .aC; a�/ 2 �1B ,

‚�1 ı‚.aC; a�/

D
�
��1C

�
�!
�
.aC; a�/ ^ .0; s

i
�/
�
siC
�
; ��1�

�
�!
�
.aC; a�/ ^ .r

i
C; 0/

�
r i�
��

D
�
��1C

�
�C .aC/ s

i
�s
i
C

�
; ��1�

�
�� .a�/ r

i
Cr

i
�

��
D .aC; a�/;

and, for all � 2 I1B ,

‚ ı‚�1.�/.aC; a�/ D �!
�
��1C

�
�.0; si�/s

i
C

�
; ��1�

�
�.r iC; 0/r

i
�

�
^ .aC; a�/

�
D �C

�
��1C

�
�.0; si�/s

i
C

��
a� C ��

�
��1�

�
�.r iC; 0/r

i
�

��
aC

D �
�
0; si�s

i
Ca�

�
C �

�
r iCr

i
�aC; 0

�
D �.aC; a�/;

where we used that siCa�; r i�aC 2 B and the fact that � is a rightB-linear map. Now
Theorem 2.2 implies that �B is an integrable differential calculus as claimed.

A typical problem to which Lemma 2.8 can be applied is the construction of
an integrable differential calculus over an invariant part of a strongly group-graded
algebra. Let G be an Abelian group. Recall that an algebra A is called a G-graded
algebra if A D ˚g2GAg and, for all g; h 2 G, AgAh � AgCh, and it is said to
be strongly-graded if AgAh D AgCh. In the strongly-graded case, for all h 2 G,
A�hAh D AhA�h D A0, where A0 is the invariant subalgebra, i.e. the subalgebra of
all elements of A graded by the neutral element 0 2 G. In this case, one can choose
B D A0, AC D Ah, A� D A�h (for a suitable h 2 G), and �˙ to be restrictions
of any degree-preserving automorphism of A. For example, Lemma 2.8 provides
one with a proof of integrability of the two-dimensional differential calculus over the
standard quantum Podleś sphere, alternative to that given in [6, Section 4]. In this
case A is the coordinate algebra of SUq.2/, which is strongly graded by the integer
group Z. The invariant part of A is the coordinate algebra of the quantum standard
Podleś sphere [25], h D 1, and the degree preserving automorphism of A is induced
by the 3D-calculus on A.

2.4. Integrability and principality. Strongly graded algebras are examples of prin-
cipal comodule algebras. Let H be a Hopf algebra with bijective antipode. Recall
from [8] that a rightH -comodule algebraAwith coaction %A W A! A˝H is called
a principal comodule algebra if the canonical map

can W A˝B A! A˝H; a˝ a0 7! a%A.a0/;

is bijective and there exists a right B-module and right H -comodule splitting of
the multiplication map B ˝ A ! A. Here B is the coinvariant subalgebra,
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B D AcoH WD fb 2 A j %A.b/ D b ˝ 1g. Principal comodule algebras play the role
of principal fibre bundles in noncommutative geometry and, classically, a quotient
of a smooth manifold by a free action of a Lie group is smooth, thus it is natural
to expect that if a principal comodule algebra admits an integrable calculus so does
its coinvariant algebra. In this section we consider a special case of an integrable
differential calculus over a principal comodule algebra that induces such a calculus
over the coinvariant subalgebra.

Let A be a right H -comodule algebra. A differential calculus �A is said to be
H -covariant if �A is a right H -comodule algebra with the degree-zero coactions
%�

kA W �kA! �kA˝H that commute with the differential, i.e. such that

%�
kC1A

ı d D .d ˝ id/ ı %�kA:

If B is a coinvariant subalgebra of A, then the covariant calculus �A restricts to
the calculus �B on B . Clearly, �B is contained in the coinvariant part of �A,
�B � .�A/coH , but the converse inclusion is not necessarily true.
Lemma 2.9. Let A be a principal H -comodule algebra with the coinvariant
subalgebra B . Let �A be an H -covariant n-dimensional integrable calculus with
integrating form !. Assume that:
(a) �B D .�A/coH ;
(b) ! is invariant, i.e. ��nA.!/ D ! ˝ 1, and hence ! 2 �nB;
(c) for all k D 1; : : : ; n�1, if!0 2 �kA has the property that, for all!00 2 �n�kB ,

!0 ^ !00 2 �nB , then !0 2 �kB .
Then �B is an integrable differential calculus and ! is its integrating form.

Proof. By assumption (b),�nB Š B with the isomorphism �B! W �nB ! B which
is the restriction of �A! W �nA! A, !a 7! a.

Let us write %�kA.!0/ D !0.0/ ˝ !0.1/ and hŒ1� ˝ hŒ2� D can�1.1 ˝ h/,
summation understood in both cases. The map h 7! can�1.1 ˝ h/ is known as
the translation map. By the properties of the translation map (see [27, 3.4 Remark]),
for all !00 2 �n�kA, there is an inclusion

!00.0/!
00
.1/
Œ1�
˝ !00.1/

Œ2�
2
�
�n�kA

�coH
˝B A D �

n�kB ˝B A

where the last equality is a consequence of assumption (a). Therefore, for all � 2
In�kB , one can define O� 2 In�kA by

O� W !00 7! �
�
!00.0/!

00
.1/
Œ1�
�
!00.1/

Œ2�: (2.17)

Note that O�.!00/ D �.!00/, for all !00 2 �n�kB . Further note that, for all !0 2 �kB ,

2
`k
�B!
.!0/ D `k

�A!
.!0/: (2.18)
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Indeed, take any !00 2 �n�kA. Then

2
`k
�B!
.!0/.!00/ D �B!

�
!0 ^ !00.0/!

00
.1/
Œ1�
�
!00.1/

Œ2�
D �A!

�
!0 ^ !00.0/!

00
.1/
Œ1�
�
!00.1/

Œ2�

D �A!
�
!0 ^ !00.0/!

00
.1/
Œ1�!00.1/

Œ2�
�
D �A!

�
!0 ^ !00

�
D `k

�A!
.!0/.!00/;

where the third equality follows by the right A-linearity of �A! and the fourth one by
the fact that hŒ1�hŒ2� D ".h/, where " is the counit ofH .

Take any � 2 In�kB . By assumption, there exists a unique !0 2 �kA, such that

O� D `k
�A!
.!0/: (2.19)

Hence, for all !00 2 �n�kB ,

�.!00/ D O�.!00/ D �A! .!
0
^ !00/; (2.20)

i.e. !0 ^ !00 D �A!
�1
.�.!00//. Since �.!00/ 2 B , �A!

�1
.�.!00// 2 �nB , and

assumption (c) implies that !0 2 �kB .
For all k D 1; : : : ; n � 1 define the maps

ˆk W In�kB ! �kB; � 7! !0;

where !0 is given by (2.19). We claim that ˆk is the inverse of `k
�B!

. For any
� 2 In�kB ,

`k
�B!
.ˆk .�// D `

k

�B!

�
!0
�
D `k

�A!

�
!0
�
j�n�kBD

O� j�n�kBD �:

In the converse direction, for all !0 2 �kB ,

ˆk
�
`k
�B!

�
!0
� �
D !00 2 �kB;

where
`k
�A!

�
!00
�
D

3
`k
�B!

�
!0
�
D `k

�A!

�
!0
�
;

by (2.18). Since the maps `k
�A!

are bijective, !00 D !0, as required.

Remark 2.10. The assumptions of Lemma 2.9 mean that both A and B have
integrable calculi of equal dimensions. Geometrically this limits the applicability of
Lemma 2.9 to actions of finite quantum groups.

In view of the construction of the isomorphismsˆk in Lemma 2.9, the divergence
rB W I1 ! B corresponding to the integrable calculus �B is related to the
divergence rA W I1 ! A by

rB.�/ D rA. O�/; for all � 2 I1B: (2.21)
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In particular this means that the image of rB is contained in the image of rA, hence
it is contained in the kernel of the integral ƒA W A ! cokerrA. By the universal
property of cokernels, there must exist a unique map � W cokerrB ! rA connecting
the integrals on A and B by

ƒAjB D � ıƒB (2.22)

In favourable situations, the formula (2.22) allows one to integrate on B using
integration on A.

3. The noncommutative pillow

In this section we study the noncommutative version of one of the prime examples of
a good orbifold, (meaning a singular space obtained by a non-free action of a finite
group on a smooth manifold) known as a pillow orbifold and obtained as a quotient
of the two-torus by an action of the cyclic group Z2 [29, Chapter 13].

3.1. Two-dimensional integrable differential calculus over the noncommutative
pillow. The coordinate algebra of the noncommutative torus, O.T2

�
/, is a complex

�-algebra generated by unitary V;W subject to the relation

V W D �W V; where � D exp.2�i�/: (3.1)

We assume that � is irrational. The algebra map

� W O.T2
� /! O.T2

� /; V 7! V � and W 7! W �; (3.2)

is an involutive automorphism, and hence it splits O.T2
�
/ into a direct sum O.T2

�
/ D

O.T2
�
/C ˚ O.T2

�
/�, where a 2 O.T2

�
/˙ if and only if �.a/ D ˙a. This splitting

means also that O.T2
�
/ is a Z2-graded algebra. The fixed point subalgebra O.P� / WD

O.T2
�
/C is the coordinate algebra of the noncommutative pillow orbifold introduced

in [2]. It is generated by x D V C V � and y D W CW �, but it is also convenient
to consider z D V W � C V �W , which can be expressed in terms of x and y via

.1 � �2/z D xy � �yx: (3.3)

As a vector space O.P� / is spanned by 1 and

am;n D V
mW n

CV �mW �n bm;n D V
mW �nCV �mW n; m; n 2 N; mCn > 0:

(3.4)
O.P� / can also be identified with an algebra generated by self-adjoint x; y; z subject
to relations (3.3) and

xz � N�zx D .1 � N�2/y; zy � N�yz D .1 � N�2/x; (3.5a)
x2 C y2 C N�z2 � xzy D 2.1C N�2/: (3.5b)
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It is equation (3.5b) that allows one to interpret P� as a deformation of the pillow
orbifold. Using the relations (3.3)–(3.5) we can write a linear basis for O.P� / in the
generators x; y as xkyl and xk.yx/yl , k; l 2 N. Therefore, the subspace V.n/ of
words in generators of length at most n has a basis

fxkyl ; xi .yx/yj j k C l � n; i C j � n � 2g:

Consequently,

dimV.n/ D

 
nC 2

2

!
C

 
n

2

!
D n2 C nC 1;

so O.P� / has the Gelfand–Kirillov dimension two.
We now turn to the description of O.T2

�
/�. Letbx D V � V �; by D W �W �; and bz D V W � � V �W: (3.6)

Clearly,bx;by;bz 2 O.T2
�
/�, and, in fact

Lemma 3.1. The elements bx;by;bz generate O.T2
�
/� as a left (resp. right) O.P� /-

module.

Proof. O.T2
�
/� is spanned by

Oam;n D V
mW n

�V �mW �n; Obm;n D V
mW �n�V �mW n; m; n 2 N; mCn > 0:

(3.7)
We prove by induction that Oam;n are elements of the left O.P� /-module generated bybx;by;bz (the proof for Obm;n is similar). First, Oa1;0 Dbx, Oa0;1 Dby and

Oa1;1 D V W � V
�W � D .V C V �/.W �W �/ � V �W C V W � D xby Cbz:

Next, we fix an n and assume that

Oam;n D a
x
m;nbx C aym;nby C azm;nbz; axm;n; a

y
m;n; a

z
m;n 2 O.P� /; (3.8)

for all m � k. Then, in view of the unitarity of V ,

OakC1;n D V
kC1W n

� V �kC1W �n

D .V C V �/.V kW n
� V �kW �n/ � V k�1W n

C V �k�1W �n

D .xaxk;n � a
x
k�1;n/bx C .xayk;n � ayk�1;n/by C .xazk;n � azk�1;n/bz;

hence OakC1;n is in the module generated bybx;by;bz. Using the unitarity of V and W
and relations (3.1) one finds:

bxy D �ybx C .1 � �2/bz; byy D yby; bzy D N�ybz � .1 � N�2/bx: (3.9)
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Let us fix an m and assume that (3.8) is true for all n � k. Then, by the unitarity
of W ,

Oam;kC1 D V
mW kC1

� V �mW �kC1

D .V mW k
� V �mW �k/.W CW �/ � V mW k�1

C V �mW �k�1

D axm;kbxy C aym;kbyy C azm;kbzy � .axm;k�1bx C aym;k�1by C azm;k�1bz/:
In view of the relations (3.9), Oam;kC1 is in the left O.P� /-module generated bybx;by;bz.

We are now ready to construct a connected two-dimensional differential calculus
�.P� / on O.P� /. Set �1.P� / D O.T2

�
/� ˚ O.T2

�
/� and �2.P� / D O.P� /,

�n.P� / D 0, for all n > 2, and define the product of elements in �1.P� /, by

.a1; a2/ ^ .a3; a4/ D a1a4 � a2a3 2 O.P� /; ak 2 O.T2
� /� (3.10)

The following linear endomorphisms of O.T2
�
/,

@V .V
mW n/ D imV mW n; @W .V

mW n/ D inV mW n; (3.11)

are derivations i.e. they satisfy the Leibniz rule. The factor i in the above formulae
ensures that @V;W ı � D � ı @V;W . Furthermore @V;W commute among themselves
and anticommute with the automorphism � (3.2), i.e.

@V ı @W D @W ı @V and @V;W ı � D �� ı @V;W :

All this means that @V;W .O.T2
�
/˙/ � O.T2

�
/� and that the maps

d W O.P� /! �1.P� /; a 7! .@V .a/; @W .a//;

and
d W �1.P� /! O.P� /; .a1; a2/ 7! @V .a2/ � @W .a1/;

define a complex. The combination of the derivation property of @V;W together with
the definition of multiplication in (3.10) ensure that the maps d satisfy the graded
Leibniz rule. Clearly @V .V mW n/ D @W .V

mW n/ D 0 if and only if m D n D 0,
hence �.P� / is a connected calculus. With these at hand we can state:
Theorem 3.2. �.P� / is a connected integrable differential calculus, hence the
noncommutative pillow algebra is differentially smooth.

Proof. In order to apply Lemma 2.8 we need to check if O.T2
�
/�O.T2

�
/� D O.P� /

and that �.P� / is a differential calculus (not just a differential graded algebra) over
O.P� /. To check the former, observe that

Ox2 C Oy2 � N� Oz2 � Oxz Oy D 2. N�2 � 1/; (3.12)
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which ensures that 1 2 O.T2
�
/�O.T2

�
/� and, consequently, that O.T2

�
/�O.T2

�
/� D

O.P� /. Straightforward calculations that use the defining relations of the non-
commutative torus lead to the following relations supplementing (3.9)

bxx D xbx; byx D N�xby � .� � N�/bz; bzx D �xbz C .� � N�/by: (3.13a)bxz D N�zbx C .1 � N�2/by; byz D �zby � .� � N�/bx; bzz D zbz: (3.13b)

In view of the definitions of @V;W and d one finds .ibx; 0/ D dx and .0; iby/ D dy.
This observation combined with equations (3.9) and (3.13) yields

.iby; 0/ D 1

1 � N�2
.dxz � N�zdx/; .ibz; 0/ D 1

1 � �2
.dxy � �ydx/;

and

.0; ibx/ D 1

N� � �
.dyz � �zdy/; .0; ibz/ D 1

1 � �2
.�dyx � xdy/:

Since O.T2
�
/� is generated by bx;by;bz and d satisfies the Leibniz rule, this proves

that �1.P� / D O.P� /dO.P� /. Finally,

1

2. N�2 � 1/

�
.bx; 0/.0;bx/C .by; 0/.0;by/ � �.bz; 0/.0;bz/ � .bx; 0/.0; zby/�

D
1

2. N�2 � 1/

�
Ox2 C Oy2 � N� Oz2 � Oxz Oy

�
D 1;

by (3.12). Hence

1 2 �1.P� / ^�
1.P� / D O.P� /dO.P� / ^O.P� /dO.P� /

D O.P� /dO.P� / ^ dO.P� /;

which implies that O.P� /dO.P� / ^ dO.P� / D O.P� / D �2.P� /, as required for
a differential calculus. Therefore, Lemma 2.8 implies that �.P� / is an integrable
differential calculus (with integrating form 1) over the noncommutative pillow as
required.

Since

@V . Oam;n/ D imam;n; @W . Oam;n/ D inam;n;

@V . Obm;n/ D imbm;n; @W . Obm;n/ D �inbm;n;

where am;n, bm;n are given by (3.4) and Oam;n, Obm;n are given by (3.7), the image of the
divergence r which obviously coincides with the image of d W �1.P� / ! O.P� /,
contains all elements of O.P� / except those that are in the subspace spanned by
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the identity, i.e. O.P� / D C ˚ Imr. Therefore cokerr D C and the integral
ƒ W O.P� /! C comes out as

ƒ.a/ D

(
˛; if a D ˛1, for ˛ 2 C;

0; otherwise;

i.e. it is equal to the trace on O.P� / obtained by the restriction of the trace on the
noncommutative torus.
Remark 3.3. Theorem 3.2 can be also proven with the help of Lemma 2.9. The Z2-
action on the noncommutative two-torus can be interpreted as the following coaction
of CZ2 on O.T2

�
/,

%.V / D
1

2
.V C V �/˝ 1C

1

2
.V � V �/˝ u;

%.W / D
1

2
.W CW �/˝ 1C

1

2
.W �W �/˝ u;

where u is the generator of Z2, u2 D 1. The coinvariant subalgebra coincides
with O.P� /. Equation (3.12) assures that this coaction is principal. Furthermore,
it extends to the standard calculus �.T2

�
/ on O.T2

�
/ freely generated by two

central, anticommuting forms !V D V �dV and !W D W �dW . One can check
that�.T2

�
/ is integrable with a volume form!V ^!W , invariant under the coaction %.

Furthermore, one can verify that the invariant part of �.T2
�
/ coincides with the

calculus �.P� / constructed above and that the condition (c) in Lemma 2.9 is also
satisfied.

3.2. The noncommutative pillow as a complex manifold. As before we use the
direct sum decomposition O.T2

�
/ D O.T2

�
/C ˚ O.T2

�
/�, with O.P� / D O.T2

�
/C,

determined by the automorphism (3.2). .�.P� /; d/ is the differential calculus
constructed in Section 3.1.
Proposition 3.4. The module O.T2

�
/� is a non-free finitely generated projective left

(resp. right) module over the non-commutative pillow algebra O.P� /. Consequently,
the cotangent bundle over P� whose sections are given by �1.P� / is non-trivial.

Proof. The fact that O.T2
�
/�O.T2

�
/� D O.P� / means that O.T2

�
/� is a finitely

generated projective left and right O.P� /-module. The formula (3.12) yields an
idempotent

e D
1

2. N�2 � 1/

0@bxbybz
1A�bx; by �bxz; �N�bz� ; (3.14)

which identifies O.T2
�
/� as a submodule of the free module O.P� /

3. The matrix
trace of e comes out as

Tr e D 3 �
1

2
.x2 C �z2/ D 1 �

1

2
.a2;0 C �

2b2;2/;
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where am;n, bm;n are given by (3.4). Therefore, ƒ.Tr e/ D 1. However, since ƒ is a
trivial trace this does not yet guarantee that O.T2

�
/� is not a free O.P� /-module. To

show the non-freeness we need to consider a family of traces on O.P� /, which arise
from twisted traces on the algebra of the noncommutative torus. More specifically,
if for a given involutive automorphism � of O.T2

�
/ there is a functional O� such that

O�.ab/ D O�.�.b/a/; 8a; b 2 O.T2
� /;

then O� restricted to the invariant subalgebra is a trace. For the automorphism (3.2),
there are four linearly independent twisted traces (in addition to ƒ) [33]:

O�ij .V
˛W ˇ / D e�i�˛ˇ ı N̨i ı

Ň

j ; i; j D 0; 1;

where N̨ D ˛ mod 2 and Ň D ˇ mod 2. Evaluating the extension of these traces to
the projector (3.14) we obtain the following results:

O�00.Tr e/ D �1; O�01.Tr e/ D 0; O�10.Tr e/ D 0; O�11.Tr e/ D 0:

It is the nontrivial value of O�00 on Tr e, which shows that the module O.T2
�
/�

determined by e is non-free. Therefore, the module of sections of the cotangent
bundle �1.P� /, which is given as O.T2

�
/� ˚O.T2

�
/�, is also non-trivial.

Following [17] (cf. [1]), by a complex structure on O.P� / corresponding to
the differential calculus .�.P� /; d/ we understand the bi-grading decomposition
of �.P� /,

�n.P� / D
M

pCqDn

�.p;q/.P� /;

a �-algebra structure on �.P� / such that � W �.p;q/.P� / ! �.q;p/.P� /, and the
decomposition d D ı C Nı into differentials ı W �.p;q/.P� / ! �.pC1;q/.P� /,
Nı W �.p;q/.P� /! �.p;qC1/.P� / such that

ı.a/� D Nı.a�/; for all a 2 �.P� /: (3.15)

As explained in [17], up to a conformal factor in a metric, the complex structure
associated to the calculus on O.T2

�
/ corresponding to derivations @V and @W is

determined by the derivations

@� D
1

� � N�
.�N�@V C @W /; N@� D

1

� � N�
.�@V � @W /; (3.16)

where � 2 CnR. With the help of these derivations one constructs complex structures
for the calculus �.P� / over the non-commutative pillow manifold as follows:

�.1;0/� .P� / D �
.0;1/
� .P� / D O.T2

� /�;

�.2;0/� .P� / D �
.0;2/
� .P� / D 0; �.1;1/� .P� / D O.P� /:
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The �-structure on O.T2
�
/� is that of the �-structure of the noncommutative torus,

while the �-structure on �.1;1/� .P� / is opposite to that on O.P� /. The holomorphic
and anti-holomorphic differentials are

ı� WD @� jO.P� / W O.P� /! �.1;0/� .P� /; ı� WD @� jO.T2
�
/�
W �.0;1/� .P� /! O.P� /;

and
Nı� WD N@� jO.P� / W O.P� /! �.0;1/� .P� /; Nı� WD �N@� jO.T2

�
/�
W �.1;0/� .P� /! O.P� /:

One can understand this complex structure as the decomposition of the differential d
discussed in Section 3.1 as follows. Let us write . Oa; Ob/� for an element of
�
.1;0/
� .P� /˚�

.0;1/
� .P� / and !� , N!� for a basis of the direct sum �

.1;0/
� .P� / ˚

�
.0;1/
� .P� /, so that

. Oa; Ob/� D Oa!� C Ob N!� ; Oa; Ob 2 O.T2
� /�:

Similarly, let us write .a; b/ for an element of�1.P� / and !V , !W for a basis of the
direct sum decomposition into the O.T2

�
/�. In this notation, for all a 2 O.P� /,

@� .a/!� C N@� .a/ N!� D da D @V .a/!V C @W .a/!W :

By comparing coefficients at @V and @W one arrives at the following invertible
transformation �

!�
N!�

�
D

1

� � N�

�
1 �

1 N�

��
!V
!W

�
;

i.e. . Oa; Ob/� D
1

� � N�
. OaC Ob; � OaC N� Ob/:

In particular, this interpretation guarantees that the differential graded algebra
determined from �

.p;q/
� .P� / is a differential calculus over O.P� /.

3.3. Spectral geometry of the noncommutative pillow. In the classical situation
the quotient of the torus by the action of the cyclic group Z2, which was described
in Section 3.1, gives an orbifold with four corners. To see the striking difference
between the commutative and noncommutative cases it is convenient to use the same
language, adapted to describe both commutative and noncommutative manifolds. At
present, the best candidate for such an approach is the notion of a spectral triple [9],
which is modelled on the definition of Riemannian spin geometry.

In what follows, we shall briefly recall the construction of a spectral triple for
the noncommutative torus (cf. [10]), then we shall find real spectral triples for the
noncommutative pillow and see whether the axioms of spectral triples allow us to
determine whether the latter is a manifold or an orbifold.
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Let C1.T� / denote the Fréchet algebra of smooth elements of the noncommu-
tative torus, which contains all series

P
m;n amnV

mW n with famngm;n2Z 2 C a
rapidly decreasing sequence. Fix � D 0 or � D 1

2
. Consider a separable Hilbert

space H with an orthonormal basis em;n,m; n 2 ZC� (so there are four possibilities)
and the representation � of the algebra C1.T� / given on the generators of the
noncommutative torus as:

�.V /em;n D e
�i�nemC1;n; �.W /em;n D e

��i�mem;nC1:

Theorem 3.5 ([24]). The following datum .C1.T� /;H ˝C2;D; 
; J / gives a real
equivariant spectral triple over the noncommutative torus. Here, the representation
of the algebra is taken to be diagonal, the operators 
 and J are:


em;n;˙ D ˙em;n;˙; Jem;n;˙ D �e�m;�n;�;

and the Dirac operatorD is:

Dem;n;� D .mC � n/em;n;C; Dem;n;C D .mC �
�n/em;n;�;

for any � , j� j D 1, with a non-zero imaginary part.

Observe that four different possibilities for the choice of m; n (integer or half-
integer) correspond to four different spin structures over the classical torus [24]. Next,
following the ideas of [23] we can construct the restriction of these spectral triples
to the invariant subalgebra of C1.T� / with respect to the Z2-action determined by
(the extension of) the automorphism � (3.2). As the first step we lift the action to the
Hilbert space H ˝C2.
Lemma 3.6. For any of the four spin structures and any � ,

�em;n;˙ D ˙e�m;�n;˙;

is unique (up to sign) lift of the action of Z2 to the Hilbert space H ˝ C2, which
commutes with J , D and 
 and implements the action of � (3.2) on the algebra
C1.T� /.

This lemma is a direct consequence of the application of Theorem 2.7 of [23]
when one restricts to a subalgebra of the noncommutative torus. As a consequence,
we have:
Corollary 3.7. Each of the spin structures over the noncommutative torus restricts to
an irreducible real spectral triple over the algebra of the noncommutative pillow by
takingC1.P� / D C1.T� /C; .H˝C2/C;D; 
; J , whereC1.T� /C is the invariant
subalgebra of (the extension of) the automorphism � (3.2), .H˝C2/C is the invariant
part of the Hilbert space (the eigenspace of � with eigenvalue 1) and D;J; 
 are
restrictions of the operators to that space.
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So far we have constructed and classified all real spectral triples over the
noncommutative pillow, which are restrictions of equivariant real spectral triples over
the noncommutative torus. Such a construction guarantees that almost all conditions,
which are satisfied for a spectral triple over the torus (such as finiteness and the
behaviour of the spectrum of the Dirac operator, etc.) are automatically satisfied.
There exists however one exception, which is the crucial element making it possible
to distinguish manifolds from orbifolds. This is the orientability condition (see [26]),
which is satisfied for all commutative spectral geometries and for the noncommutative
torus. The original condition requires the existence of a Hochschild cycle, so that
its image under � gives the chirality operator 
 (in the even-dimensional case). For
the noncommutative pillow we can establish a milder version of the orientability
condition, by constructing explicitly a cycle (though not a Hochschild cycle) whose
image is the chirality operator 
 .

Theorem3.8. For any value of the conformal structure � with the non-zero imaginary
part, j� j D 1, and any value of the deformation parameter � D e2�i� , provided that
�4 6D 1, there exists a cycle ! D

P
i ai ˝bi ˝ ci 2 C1.P� /˝C1.P� /˝C1.P� /,

such that: X
�.ai /ŒD; �.bi /�ŒD; �.ci /� D 
:

Proof. We write � D cos� C i sin�. Then by explicit computation we verify that

1

4
.1 � �4/xŒD; y�ŒD; z�

�
1

2
�2 cos�.1C �2/.2�4 cos� � �4 C 2 cos� � 1/ xŒD; z�ŒD; y� � 2�2

�
1

2

�
2�6 cos2 � � �6 cos� C 2�4 cos2 � C 2�4 � 5�4 cos�

� �3 cos� C 2�2 cos2 � C 2 cos2 � � cos�
�
�2 yŒD; x�ŒD; z�

C
1

2
�.1C �2/.1C �4/.2 cos� � 1/.cos� � 1/ zŒD; x�ŒD; y�

�
1

2
.1 � �4/.cos� � 1/�2 zŒD; y�ŒD; x�

C
1

4
.1C �2/.2 cos� � 1/.2�4 cos� C 2 cos� � �4 � �2/� ŒD; x�yŒD; z�

C
1

2
cos��2

�
2�6 cos� C 2�4 cos� C 2�2 cos� C 2 cos�

� �6 � �2 � 2 � 4�4
�
ŒD; z�ŒD; y�x

�
1

2
�2.1C �2/.1C �4/.2 cos� � 1/.cos� � 1/ ŒD; x�zŒD; y�

D sin�.2 cos� � 1/.�2 � 1/3.1C �2/
:
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Although the above formula uses terms like ŒD; x�yŒD; z�, it can be easily converted
to the desired form using the Leibniz rule.

Remark 3.9. The above cycle is certainly not unique and we provide its explicit form
only to demonstrate its existence. Certainly, it could be simplified or rewritten in a
more convenient form.

Observe that for the image of this cycle to be nonvanishingwemust have sin� 6D 0
(which is the same condition as for the noncommutative torus, see [24]) as well as
�4 6D 1. It is interesting that even for some rational values of � we have a non-
degenerate cycle for the respective spectral triple.
Remark 3.10. The above demonstrated cycle is not a Hochschild cycle. It remains
an open problem whether a Hochschild cycle of the same type exists for the
noncommutative pillow. However, wewould like to stress that in [26] the nonexistence
of an orientation cycle for an orbifold is demonstrated for any cycle (not only for the
Hochschild ones).

4. Quantum cones

4.1. Two-dimensional integrable differential calculi over quantum cones. Hom-
ological smoothness and the complex differential geometry of quantum cones were
recently established and studied in [5]. In this section we prove that the two-
dimensional differential calculus over the quantum cone described in [5] is integrable
and thus establish differential smoothness of quantum cone algebras.

LetN be a positive integer. The coordinate algebra of the quantum cone O.CNq;�/

is defined as a complex �-algebra generated by self-dual a and b; b�, which satisfy
relations

ab D qN baC�ŒN �qb; bb� D

N�1Y
lD0

�
q�laC�Œ�l �q

�
; b�b D

NY
lD1

�
qlaC�Œl�q

�
;

(4.1)
where q > 0, � 2 R are parameters and, for all n 2 Z,

Œn�q WD
1 � qn

1 � q
(4.2)

denotes q-integers. For N ¤ 1, a linear basis of the space V.n/ spanned by words
of generators of length at most n is˚

aibj ; akb�lC1 j i C j � n; k C l � n � 1
	
;

hence

dimV.n/ D

 
nC 2

n

!
C

 
nC 1

n � 1

!
D .nC 1/2:
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Consequently,
GKdim

�
O
�
CNq;�

��
D 2:

For N D 1, a can be expressed in terms of bb�, so it becomes redundant. In this
case we denote b D z and b� D z�. Then relations become

z�z � qzz� D �; (4.3)

and the resulting algebra is the coordinate algebra of the quantum disc [18], which
we denote by O.Dq;�/. The linear basis is ziz�j , i; j 2 N, hence the quantum disc
algebra has Gelfand–Kirillov dimension two. The special case � D 0 corresponds to
the Manin quantum plane and the case q D 1 and � 6D 0 corresponds to the Moyal
deformation of the plane.

A differential �-calculus �.Dq;�/ on O.Dq;�/ is freely generated by one-forms
dz and dz� subject to relations

zdz D q�1dzz; z�dz D qdzz�;

dz ^ dz� D �q�1dz� ^ dz; dz ^ dz D 0;
(4.4)

and their �-conjugates; see e.g. [28]. Since�1.Dq;�/ is an O.Dq;�/-bimodule freely
generated by dz and dz�, the commutation relations between dz and elements ˛ of
O.Dq;�/ induce an algebra automorphism � W O.Dq;�/! O.Dq;�/, by

˛dz D dz�.˛/; for all ˛ 2 O.Dq;�/: (4.5)

On the basis zkz�l , k; l 2 N, of O.Dq;�/ this comes out as

�.zkz�l/ D ql�kzkz�l : (4.6)

Note that � also satisfies the equality

˛dz� D dz��.˛/; for all ˛ 2 O.Dq;�/: (4.7)

Finally, the commutation rules (4.5) and (4.7) imply that d.˛/ D 0 if and only if ˛ is
a scalar multiple of the identity, i.e. the calculus �.Dq;�/ is connected.

For all values of N , O.CNq;�/ embeds into O.Dq;�/ by the �-inclusion

a 7! zz�; b 7! zN : (4.8)

We define the calculus �.CNq;�/ on O.CNq;�/, by restricting �.Dq;�/ to O.CNq;�/.

Theorem 4.1. For all N 2 N and � ¤ 0, �.CNq;�/ is a 2-dimensional connected
integrable differential calculus on O.CNq;�/, hence the quantum cone algebras
O.CNq;�/ are differentially smooth.
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Proof. As a restriction of a connected calculus �.CNq;�/ is connected. O.Dq;�/ can
be equipped with a grading by elements of the cyclic group ZN D f0; 1; : : : ; N �1g,
defined by deg.z/ D 1, deg.z�/ D N�1, which is compatible with the�-operation in
the sense that if deg.˛/ D k, then deg.˛�/ D N �k. The embedding (4.8) identifies
O.CNq;�/ with the invariant subalgebra O.Dq;�/0 of O.Dq;�/. By [5, Theorem 2.1]
this grading is strong, provided � ¤ 0. Note that � (4.5) preserves the ZN -grading
of O.Dq;�/.

By [5, Theorem 3.1], the restriction �.CNq;�/ of �.Dq;�/ to the differential
calculus on O.CNq;�/ is generated by the one-forms

dzz�; db / dzzN�1; dz�z; db� / dz�z�N�1:

The first two one-forms generate the holomorphic part of �1.CNq;�/, while the other
two generate the anti-holomorphic part. The module of one-forms �1.CNq;�/ is not
free, but �2.CNq;�/ is freely generated by the closed volume form dz ^ dz�:

da ^ da D .z dz� C z� dz/ ^ .z dz� C z� dz/

D .�zz� C
1

q
z�z/ dz ^ dz� D �

�

q
dz ^ dz�;

hence it can be identified with O.CNq;�/.
Since z� and zN�1 generate the O.CNq;�/-submodule of O.Dq;�/ consisting of

elements ofZN -degreeN �1, the holomorphic part of�1.CNq;�/ consists of elements
of the form

dz˛�; deg.˛�/ D N � 1:
Similarly, the antiholomorphic forms are dz�˛C, deg.˛C/ D 1. This shows that

�1.CNq;�/ Š O.Dq;�/1 ˚O.Dq;�/N�1;

where the right module isomorphism is

dz˛� C dz
�˛C 7! .˛C; ˛�/; deg.˛˙/ D ˙1 mod N: (4.9)

By relations (4.4), (4.5) and (4.7),

.dz˛�C dz
�˛C/.dzˇ�C dz

�ˇC/ D dz ^ dz
� .�.˛�/ˇC � q�.˛C/ˇ�/ : (4.10)

In view of the isomorphism (4.9), the product rule (4.10) can be recast into the desired
form

.˛C; ˛�/ ^ .ˇC; ˇ�/ D �C.˛C/ˇ� C ��.˛�/ˇC;

where
�C D �q�; �� D �;

with � given by (4.5). In this way the constructed calculus over the quantum cone
meets all of the requirements of Lemma 2.8, and therefore it is integrable.
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Remark 4.2. The integrability of the calculi over the quantum cones can also be
established by employing Lemma 2.9. The ZN -grading of O.Dq;�/ which yields
O.CNq;�/ can be interpreted as the group algebra CZN -coaction

%.z/ D z ˝ u; %.z�/ D z� ˝ uN�1;

where uN D 1 is the generator of ZN written multiplicatively. This coaction, which
is principal by [5, Theorem 2.1], extends to the differential calculus�.Dq;�/, whose
invariant part coincides with�.CNq;�/ and satisfies assumptions (a)–(c) of Lemma 2.9.
Once it is shown that�.Dq;�/ is an integrable calculus, the integrability of�.CNq;�/
will follow from Lemma 2.9.

Using (4.4) one easily checks that, for all k; l 2 N,

dz ^ dz�zkz�l D d

�
�

qk

Œl C 1�q
dzzkz�lC1

�
: (4.11)

If zkz�l 2 O.CNq;�/, i.e. k � l D mN , for some m 2 Z, then k � l � 1 D
.m � 1/N C N � 1, so that deg.zkz�lC1/ D N � 1 and hence the argument of d
on the right hand side of (4.11) is a holomorphic form on O.CNq;�/. Therefore the
map d W �1.CNq;�/ ! �2.CNq;�/ is surjective. Since r D ��dz^dz� ı d ı ‚�1,
where ‚�1 is the isomorphism constructed through Lemma 2.8, it follows that r
is also surjective. Consequently, the integral associated to r vanishes everywhere
on O.CNq;�/.

The divergence r can be computed using the explicit form of the isomor-
phism‚�1 constructed in the proof of Lemma 2.8. As the first step, let us define the
operations @z; @z� W O.Dq;�/! O.Dq;�/ by

d˛ D @z.˛/dz C @z�.˛/dz
�
D dz�.@z.˛//C dz

��.@z�.˛//;

where � is given explicitly in (4.6). Both @z and @z� are twisted derivations, i.e. for
all ˛; ˇ 2 O.Dq;�/,

@z.˛ˇ/ D @z.˛/�
�1.ˇ/C ˛@z.ˇ/;

and similarly for @z� . In fact, they are q-derivations, i.e.

� ı @z ı �
�1
D q@z; � ı @z� ı �

�1
D q�1@z� : (4.12)

If we choose r i
˙
; si
˙
;2 O.CNq;�/, such that deg.r i

˙
/ D deg.si

˙
/ D ˙1 mod N and

r iCr
i
� D si�s

i
C D 1 (summation implicit), whose existence is guaranteed by [5,

Theorem 2.1], then the formula (2.16) combined with all the above identifications of
forms on O.CNq;�/ and with (4.12) gives

r.�/ D q@z.�.dzs
i
�/s

i
C/C q

�1@z�.�.dz
�r iC/r

i
�/; (4.13)



On the noncommutative pillow, cones and lens spaces 441

for all right O.CNq;�/-module maps � W �1.CNq;�/ ! O.CNq;�/. We note in passing
that the first order calculus �1.Dq;�/ is the calculus associated to the twisted multi-
derivation .@z; @z�/ in the sense of [6, Section 3], and, for N D 1, r in (4.13) is
exactly the divergence associated to such a calculus. For N ¤ 1, (4.13) coincides
with the induced divergence on the base space of a quantum principal bundle obtained
by the method described in [6, Section 4].

When � D 0, relations (4.3) define the quantum plane. In this case, the ZN -
grading is not strong (apart from the trivial case N D 1): there is no possible
combination of zkz�k and z�N�kzN�k , k D 1; : : : ; N � 1, with coefficients of
degree zero that would give the identity element. Furthermore dzz� and dz�z are
not elements of �1.CNq;0/ (although their linear combination dzz� C q�1dz�z is).
Finally,�2.CNq;0/ is generated by dz^dz�aN�1, dz^dz�b and dz^dz�b�, which
are not free; when � D 0, relations (4.1) allow one to write 0 as a linear combination
(with non-zero coefficients from O.CNq;0/) of any two out of aN�1; b; b�. This means
that�2.CNq;0/ cannot be isomorphic to O.CNq;0/, hence these differential calculi over
the quantum Manin cones CNq;0 are not integrable.

4.2. Spectral triple for the Moyal cone. In the special case of q D 1 and � 6D 0,
O.D1;�/ is the algebra of the Moyal plane, which could be also studied from the
angle of spectral triples. First, observe that the algebra C1.D1;�/ of the seriesP
am;nz

mz�n with rapidly decreasing coefficients is a subalgebra of S.R2/, the
Schwartz functions on the plane with the product defined through the oscillating
integral,

.f � g/.z/ D .��/�2
Z

C
d2s

Z
C
d2t f .z C s/g.z C t /e�2i�=.s

�t/; z 2 C:

It is easy to see that the action of the cyclic group ZN on the space of Schwartz
functions:

�.f /.z/ WD f
�
e
2
N �iz

�
;

is an automorphismof this algebra. Let us consider the invariant subalgebraS.R2/ZN

as the algebra of smooth functions on the Moyal cone. We can now take the spectral
triple for the Moyal plane, as constructed in [15]. Using the same procedure as in the
case of the noncommutative pillow, we lift the action of ZN to the Hilbert space, the
latter being justL2.R2/˝C2. The spectral triple over theMoyal plane is constructed
with the diagonal action of the algebra by left Moyal-multiplication and the Dirac
operator and chirality operator of the form

D D

�
0 @z
@z� 0

�
; 
 D

�
1 0

0 �1

�
:

Since we can decompose the Hilbert space into a direct sum of spaces on which the
group ZN acts by multiplication by different roots of unity, it is easy to construct
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a subspace, which is preserved both by the Dirac operator and by the action of the
invariant subalgebra. The restriction of the original spectral triple to that subspace
gives a spectral triple for the Moyal cone.

If we try to consider a nondegenerate (Hochschild) cycle for the Moyal cone we
need to observe first that its construction for the Moyal plane is, in fact, based on the
Weyl algebra of plane waves in the multiplier of the Moyal algebra. However, since
there are no plane waves which are in the multiplier of the invariant subalgebra of the
Moyal cone one cannot use such a construction.

On the other hand we are dealing here with the case of spectral triples over
a locally compact noncommutative space, so we might relax the conditions and
demand that the cycle exists in the algebra of unbounded multiplier of the invariant
algebra. Although to show the existence for any N appears to be rather a challenge,
we shall demonstrate in the case of N D 2 that this is indeed possible.
Lemma 4.3. Let N D 2 and let S.R2/Z2 be the algebra of the Moyal cone with the
spectral triple as above. Then the following cycle gives the volume form 
 :

� ŒD; b��aŒD; b� � 2aŒD; b�ŒD; b��C
3

2
aŒD; b��ŒD; b�

C 3bŒD; a�ŒD; b�� � bŒD; b��ŒD; a�C b�ŒD; b�ŒD; a� D 4�2
:

The proof is by explicit computation and making the Ansatz that the cycle is at
most linear in each entry in the generators a; b; b� of the cone algebra O.C 2q;0/.

Let us observe that again, as in the case of the noncommutative pillow, the above
cycle has a nonvanishing image only if � 6D 0 and that again the solution is not
unique. For this particular Ansatz there are no Hochschild cycles which could give 
 .

We believe that the construction of such cycles is possible in the noncommutative
case for every Moyal cone, it is again an open and challenging problem to prove it
for everyN and to determine whether it is possible to find a Hochschild cycle, which
gives the orientation.

5. Three-dimensional integrable differential calculi over quantum lens spaces

The aim of this section is to prove differential smoothness of quantum lens spaces by
constructing quantum principal bundles over them with integrable differential calculi
that satisfy the assumptions of Lemma 2.9.

The coordinate algebra O.Lq.N I 1;N // of the quantum lens space Lq.N I 1;N /
is a �-algebra generated by �; � subject to the relations

�� D ql��; ��� D ql���; ��� D ���; (5.1a)

��� D

l�1Y
mD0

.1 � q2m���/; ��� D

lY
mD1

.1 � q�2m���/; (5.1b)
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where q 2 .0; 1/; see [16]. In the classical limit q D 1, this is the coordinate algebra
of the singular lens space. A linear basis of the space V.n/ spanned by words in
generators �; ��; �; �� of length at most n is given by˚

� i�j ��k; ��rC1�s��t j i C j C k � n; r C s C t � n � 1
	
; (5.2)

hence

dimV.n/ D

 
nC 3

3

!
C

 
nC 2

n � 1

!
D
1

6
.nC 1/.nC 2/.2nC 3/:

Consequently,
GKdim.O.Lq.N I 1;N /// D 3:

The algebra O.Lq.N I 1;N // embeds as a �-algebra into O.SUq.2//, the
coordinate algebra of the quantum group SUq.2/. O.SUq.2// is a �-algebra
generated by ˛ and ˇ subject to the following relations

˛ˇ D qˇ˛; ˛ˇ� D qˇ�˛; ˇˇ� D ˇ�ˇ; (5.3a)
˛˛� D ˛�˛ C .q�2 � 1/ˇˇ�; ˛˛� C ˇˇ� D 1; (5.3b)

where q 2 .0; 1/; see [34]. The embedding O.Lq.N I 1;N // ,! O.SUq.2// is

� 7! ˛N and � 7! ˇ: (5.4)

Henceforth we view O.Lq.N I 1;N // as a subalgebra of O.SUq.2// via the
embedding (5.4). Next we construct a differential calculus on O.Lq.N I 1;N //

as the restriction of the left covariant three-dimensional calculus �.SUq.2// of
Woronowicz [35] over O.SUq.2//. The calculus �.SUq.2// is a connected
�-calculus generated by the one-forms !0, !˙, which satisfy the following relations:

!0 ˛ D q
�2 ˛ !0 ; !0 ˇ D q

2 ˇ !0 ; (5.5a)
!˙ ˛ D q

�1 ˛ !˙ ; !˙ ˇ D q ˇ !˙ ; (5.5b)
!i ^ !i D 0; !C ^ !� D �q

2 !� ^ !C ; !˙ ^ !0 D �q
˙4 !0 ^ !˙ ;

(5.5c)

and their �-conjugates with !�0 D �!0, !�� D q!C. The differential is given by

d˛ D ˛ !0 � q ˇ !C ; dˇ D �q2 ˇ !0 C ˛ !� ; (5.6a)
d!0 D q!� ^ !C ; d!C D q

2.q2 C 1/ !0 ^ !C : (5.6b)

This is a calculus over O.SUq.2//, since

!0 D ˛
�d˛ C q�2ˇdˇ�; !C D q

�2˛dˇ� � q�1ˇ�d˛;

by (5.6a) and (5.3).
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Theorem 5.1. For all values of q 2 .0; 1/ and N 2 N, the restriction
�.Lq.N I 1;N // of the 3D-calculus �.SUq.2// to O.Lq.N I 1;N // is a three-
dimensional integrable differential calculus. Consequently, O.Lq.N I 1;N // is a
differentially smooth algebra.

Proof. As explained in [4, Theorem 2], O.SUq.2// can be made into a principal
CZN -comodule algebra with coinvariants equal to O.Lq.N I 1;N //. The Hopf
�-algebra CZN is generated by a unitary group-like element u such that uN D 1.
The CZN -coaction is a �-algebra map given on the generators of O.SUq.2// by

˛ 7! ˛ ˝ u; ˇ 7! ˇ ˝ 1: (5.7)

The coinvariant subalgebra is generated by ˇ, ˛N and thus can be identified with
O.Lq.N I 1;N // by (5.4).

The calculus �.SUq.2// is a CZN -covariant calculus by the �-coaction

!0 7! !0 ˝ 1; !˙ 7! !˙ ˝ u
˙1: (5.8)

It is shown in [6, Section 4.1] that�.SUq.2// is integrable with an integrating volume
form ! D !� ^ !0 ^ !C. Thus we are in a situation to which Lemma 2.9 can be
applied provided assumptions (a)–(c) are satisfied.

First we look at the coinvariant part of�.SUq.2// and study it degree by degree.
The coinvariant part of �1.SUq.2// can be identified with

h!0; ˛
�!C; ˛

N�1!C; ˛!�; ˛
�N�1!�iO.Lq.N I 1;N //:

Thus is suffices to show that!0; ˛�!C; ˛N�1!C; ˛!�; ˛�N�1!�2�1.Lq.N I 1;N //,
i.e. that each of these forms can be expressed as linear combinations of bdb0; db b0,
b; b0 2 O.Lq.N I 1;N //. Starting with the second of the relations (5.6a) and its
�-conjugate, and using the commutation rules (5.5), (5.3) we find

ˇdˇ� D ˇˇ� !0 C q
2ˇ˛� !C; dˇ�ˇ D q2ˇˇ� !0 C q

2ˇ˛� !C:

Hence

ˇ˛�!C D
1

q2 � 1

�
ˇdˇ� � q�2.dˇ�/ˇ

�
2 �1.Lq.N I 1;N //:

Consequently, also ˇˇ�!0 2 �1.Lq.N I 1;N //. The first of relations (5.6a)
combined with the commutation rules (5.5), (5.3) yields

d˛N D ŒN �q�2
�
˛N!0 � q˛

N�1ˇ!C
�
; (5.9)

where ŒN �q�2 denotes the q-integer (4.2). By (5.3b), ˛�k˛k is a polynomial in ˇˇ�
with the constant term 1, hence (5.9) gives

ŒN �q�2!0 D �˛
�Nd˛N C f1.ˇˇ

�/ˇˇ�!0 C f2.ˇˇ
�/ˇ˛�!C; (5.10)

for some polynomials f1 and f2. Hence !0 2 �1.Lq.N I 1;N //. The �-conjugate
of the second of equations (5.6a) implies that ˛�!C 2 �1.Lq.N I 1;N // too.
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Again using the �-conjugate of the second of equations (5.6a) as well as relations
(5.5), (5.3) we find

˛N�1!C D
q�2

q2N � 1

�
q3N .dˇ�/˛N � ˛Ndˇ�

�
2 �1.Lq.N I 1;N //:

Taking suitable �-conjugates we conclude, therefore, that all the generating forms of
�1.SUq.2//

coCZN are elements of �1.Lq.N I 1;N //, i.e.

�1.SUq.2//
coCZN D �1.Lq.N I 1;N //;

as required.
Next, studying two-forms one finds that the coinvariant part of �2.SUq.2// is

h!�^!C; ˛
�!C^!0; ˛

N�1!C^!0; ˛!�^!0; ˛
�N�1!�^!0iO.Lq.N I 1;N //:

All but the first of these generating two-forms are obtained as products of one-forms
which have already been shown to be in�1.Lq.N I 1;N //; thus they are elements of
�2.Lq.N I 1;N //. Using relations (5.3b) and (5.5) one easily finds that

!� ^ !C D
1

1 � q2

�
q�1˛!� ^ ˛

�!C C q
5˛�!C ^ ˛!�

�
:

Hence also !� ^ !C is a linear combination of products of one-forms in
�1.Lq.N I 1;N //, thus it is in �2.Lq.N I 1;N //. This proves that

�2.SUq.2//
coCZN D �2.Lq.N I 1;N //:

Finally, the volume form!D!�^!0^!C is the product of forms in�.Lq.N I 1;N //,
thus both the coinvariant part of �3.SUq.2// equals �3.Lq.N I 1;N // and ! is
coinvariant. Therefore, assumptions (a)–(b) of Lemma 2.9 are satisfied.

To check assumption (c) it might be convenient to interpret the CZN -coaction in
terms of the ZN -grading. In that way �.SUq.2// is a ZN -graded algebra with the
�-compatible grading given on generators by

deg.˛/ D deg.!C/ D 1; deg.ˇ/ D deg.!0/ D 0:

As is shown above,�.Lq.N I 1;N // is the degree-zero subalgebra of�.SUq.2//. If
we take any !0 D a�!� C a0!0 C aC!C 2 �

1.SUq.2// and assume that, for all
!00 2 �2.Lq.N I 1;N //, !0 ^ !00 2 �3.Lq.N I 1;N //, i.e. deg.!0 ^ !00/ D 0, then
in particular, taking !00 D !� ^ !C we find

0 D deg.!0 ^ !� ^ !C/ D deg.a0!0 ^ !� ^ !C/ D deg.a0/:

Similarly, by taking!00 D ˛�!0^!C and!00 D ˛!�^!0, one finds that deg.a�/ D
˙1. Therefore, deg.!0/ D 0, as required.
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In a similar way, assuming that !0 D a�!0 ^ !C C a0!� ^ !C C aC!� ^

!0 2 �2.SUq.2// is such that for all !00 2 �1.Lq.N I 1;N //, !0 ^ !00 2
�3.Lq.N I 1;N //, and choosing !00 to be !0, ˛�!C and ˛!�, one finds that
deg.a0/ D 0 and deg.a˙/ D ˙1. Therefore, deg.!0/ D 0, as needed. This
proves that assumption (c) of Lemma 2.9 is also satisfied, and consequently that
�.Lq.N I 1;N // is a three-dimensional integrable calculus, as needed.

A divergence on O.SUq.2// corresponding to the 3D-calculus was derived in
[6, Section 4.1]. The corresponding divergence on O.Lq.N I 1;N //, computed from
the formula (2.21) comes out as, for all � 2 I1.Lq.N I 1;N //,

r.�/ D @0
�
O� .!0/

�
C q�2@C

�
O� .!C/

�
C q2@�

�
O� .!�/

�
;

where @i are defined by da D @i .a/!i . The maps O� are defined by (2.17) and can be
computed in terms of �:

O�.!0/ D �.!0/; O�.!C/ D x0�
�
!C˛

N�1
�
˛�N�1 C

N�1X
iD1

xi�
�
!C˛

�
�
˛.ˇˇ�/i ;

O�.!�/ D y0�
�
!�˛

�N�1
�
˛N�1 C

N�1X
iD1

yi� .!�˛/ ˛
�.ˇˇ�/i ;

where xi ; yi 2 C are solutions of

x0˛
N�1˛�N�1C

N�1X
iD1

xi˛
�˛.ˇˇ�/i D 1; y0˛

�N�1˛N�1C

N�1X
iD1

yi˛˛
�.ˇˇ�/i D 1 :

The existence of such xi ; yi is proven in [4, Lemma 2].
Finally, it is shown in [6, Section 4.1] that the integral associated to the 3D-calculus

coincides with a scalar multiple of the normalized integral on the Hopf algebra
O.SUq.2// or the invariant Haar integral on SUq.2/ described in [34, Appendix 1].
The formula (2.22) implies that the integral on O.Lq.N I 1;N // is the restriction of
the Haar integral on SUq.2/, given by

ƒ
�
�k��k

�
D

1

Œk�q�2
; (5.11)

and zero on all other elements � i�j ��k , ��iC1�j ��k , i; j; k;2 N, j ¤ k of the linear
basis (5.2) for O.Lq.N I 1;N //.
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