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The Novikov conjecture on Cheeger spaces
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Abstract. We prove the Novikov conjecture on oriented Cheeger spaces whose fundamental
group satisfies the strong Novikov conjecture. A Cheeger space is a stratified pseudomanifold
admitting, through a choice of ideal boundary conditions, an L2-de Rham cohomology theory
satisfying Poincaré duality. We prove that this cohomology theory is invariant under stratified
homotopy equivalences and that its signature is invariant under Cheeger space cobordism.
Analogous results, after coupling with a Mischenko bundle associated to any Galois covering,
allow us to carry out the analytic approach to the Novikov conjecture: we define higher analytic
signatures of a Cheeger space and prove that they are stratified homotopy invariants whenever
the assembly map is rationally injective. Finally we show that the analytic signature of a Cheeger
space coincides with its topological signature as defined by Banagl.
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1. Introduction

Which expressions in the rational Pontryagin characteristic classes are homotopy
invariant? Novikov showed that for a simply connected smooth manifold, X , the
only answer is the L-genus, which by Hirzebruch’s theorem computes the signature

hL.X/; ŒX�i D �.X/:

For a non-simply connected manifold, X , we can construct the “higher signatures”
in term of the classifying map r W X �! B�1X ,

fhL.X/ [ r�˛; ŒX�i W ˛ 2 H�.B�1X IQ/g

and the Novikov conjecture is that these are homotopy invariant. One very fruitful
approach to this conjecture uses functional analysis to “reduce” the conjecture to
the strong Novikov conjecture, recalled below, which only involves the group �1X .
Although the general conjecture remains open, there are now many groups for which
the conjecture is known, including discrete subgroups of finitely connected Lie
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groups, hyperbolic groups in the sense of Gromov, and many others. Beyond its
explicit statement, the Novikov conjecture is one of the crucial open problems in the
topology of manifolds because of its close connections to many open problems in
topology, differential geometry, algebra, operator algebras, and representation theory.
We refer the reader to e.g. [43] for a short discussion of the Novikov conjecture and
the references therein for a full discussion.

Because of the importance of the conjecture and the ubiquity of singular spaces,
it is natural to ask for an analogous result on some class of singular spaces. The
first obstacle is that the cohomology of singular spaces need not satisfy Poincaré
Duality and so a singular space may not have a signature. Goresky and MacPherson
introduced the intersection homology of stratified spaces to overcome this difficulty,
and showed that it satisfied a “generalized Poincaré Duality”. Siegel singled out the
class of stratified spaces, called “Witt spaces”, for which the “middle perversity”
intersection homology groups satisfy Poincaré Duality and hence define a signature.

Intersection homology theory is not homotopy invariant, but it is invariant under
stratified homotopy equivalences. Witt spaces haveL-classes in homology, as shown
by Goresky–MacPherson and Cheeger [16,22,45], so the Novikov conjecture here is
that the higher signatures of bX are stratified homotopy invariant. In [3] the authors
proved that, whenever bX is a Witt space whose fundamental group �1bX satisfies the
strong Novikov conjecture, it also satisfies the Novikov conjecture.

There is a larger class of stratified spaces that have a signature extending the
classical signature. Following work of MacPherson, Cheeger, and Morgan, Markus
Banagl initiated the study of self-dual sheaf complexes compatible with intersection
homology in [6]. He found a class of spaces “L-spaces” which admit a bordism
invariant signature. (For a general stratified pseudomanifold one can define the
notion of perverse signature, see [12,19,29]; this is not, however, a bordism invariant.)
In [2] the authors found an analytic analogue of Banagl’s theory, christened “Cheeger
spaces” (using the concept of ideal boundary conditions, see Definition 5.1) and
studied their de Rham/Hodge theory. In this paper, we show that these spaces satisfy
Theorem 1.1. Every Cheeger space bX has a signature, depending only on the
stratified homotopy class of bX and invariant under Cheeger space-cobordism. If the
fundamental group of bX satisfies the strong Novikov conjecture, then bX satisfies the
Novikov conjecture.

There are interesting “natural” examples of Cheeger spaces. For example, as
studied by Banagl and Kulkarni [11], reductive Borel–Serre compactifications of
Hilbert modular surfaces admit self-dual boundary conditions. It is likely that Borel–
Serre compactifications of locally symmetric spaces of higherQ�rank should provide
other examples.

In more detail, we start in §2 by recalling the resolution of a stratified space
with a Thom–Mather stratification, what we term a smoothly stratified space. It is
on these spaces that we have developed the Hodge–de Rham theory in [2]. These
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cohomology groups depend on a choice of geometric data at singular strata, which
we refer to as a mezzoperversity because the resulting groups lie, in a certain sense,
between the “lower middle perversity” and “upper middle perversity” groups of
Goresky–MacPherson.

In §3 we allow twisting by a flat vector bundle and consider the resulting de Rham
operators. Importantly, since wewill carry out the “analytic approach” to the Novikov
conjecture (see [42]), we consider the effect of twisting the de Rham operator by a
bundle of projective finitely generated modules over a C �-algebra. Indeed, if � is a
countable, finitely generated, finitely presented group, and bX 0 �! bX a � covering,
then the action of � on bX 0 and on C �r � , the reduced C �-algebra of � , produce such
a flat bundle over bX . It is denoted by

G .r/ D
bX 0 � C �r �

�
;

where r W bX �! B� is the classifying map of the � covering. We denote the
corresponding “higher” de Rham operator by ÄG .r/

dR . We prove that for any choice of
mezzoperversity there is an associated domain for ÄG .r/

dR which is closed, self-adjoint,
and C �r �-compactly included in L2.X Iƒ�iieT �X ˝ G .r//.

In §4 we show that the cohomology associated to a mezzoperversity, possibly
twisted by a flat bundle, is a stratified homotopy invariant. The main difficulty is that
if F W bX �!cM is a stratified homotopy equivalence, the corresponding pull-back of
differential forms is generally not a bounded operator on L2-differential forms. We
get around this by using the “Hilsum–Skandalis replacement” of F �,HS.F /, which
is a bounded map on L2-forms. The trade-off is that we must work much harder
to understand how this replacement map behaves on the domains of the twisted de
Rham operators.

The constructions of these sections all work in the general setting of smoothly
stratified spaces, but the definition of a signature, and higher signatures, requires
a more restrictive category of spaces, which we call Cheeger spaces. In section 5
we recall the definition of a Cheeger space and its signature. At first, this signature
is defined using a self-dual mezzoperversity and an adapted metric. We prove an
analytic analogue of a cobordism result of Banagl [8] and use it to show that the
signature is independent of both the mezzoperversity and the metric. Together with
the stratified homotopy invariance of the de Rham cohomology, this shows that the
signature only depends on the stratified homotopy class of a Cheeger space, and is
invariant under Cheeger space-cobordism.

We also use the results of [2] to show that the signature operator with domain given
by a self-dual mezzoperversity defines a K-homology class. The higher signature
operator ÄG .r/

sign defines a class in K�.C �r �/ andwe show that this class, itsC �r �-index,
is related to the K-homology class of the “lower” signature operator via the “assembly
map” ˇ.



454 P. Albin, E. Leichtnam, R. Mazzeo and P. Piazza

In §6 we follow Thom’s procedure to define a homology L-class using the
signature of submanifolds or, in our case, subspaces transversal to the stratification.
We extend a result of Moscovici–Wu from the setting of Witt spaces to show that the
Chern character of the K-homology class of the “lower” signature operator is equal
to this L-class. Using this class we define the higher signatures of a Cheeger space
and we prove that, whenever the assembly map ˇ is rationally injective, the higher
signatures are stratified homotopy invariant, i.e. the Novikov conjecture.

Finally in section §7 we prove that the analytic signature of a Cheeger space
coincides with its topological signature as defined by Banagl.

We rely throughout on the analytic techniques developed and explained in [3].
There are other approaches to analysis on stratified spaces, though none to our
knowledge tailored so well to the types of geometric problems of interest here.
We refer the reader to [41] and references therein where closely related ideas are
developed.
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2. Smoothly stratified spaces, iie metrics, and mezzoperversities

2.1. Smoothly stratified spaces. There are many notions of stratified space [34].
Most of them agree that a stratified space bX is a locally compact, second countable,
Hausdorff topological space endowed with a locally finite (disjoint) decomposition

bX D Y 0 [ Y 1 [ � � � [ Y T
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whose elements, called strata, are locally closed and verify the frontier condition:

Y j \ Y k ¤ ; H) Y j � Y k :

The depth of a stratum Y is the largest integer k such that there is a chain of strata
Y D Y k; : : : ; Y 0 with Y j � Y j�1 for 1 � j � k. A stratum of maximal depth is
always a closed manifold. The maximal depth of any stratum in bX is called the depth
of bX as a stratified space. Thus a stratified space of depth 0 is a smooth manifold
with no singularity.

Where the definitions differ is on how much regularity to impose on the strata
and how the strata “fit together”. In this paper we shall mainly consider smoothly
stratified pseudomanifoldswith Thom–Mather control data. We proceed to recall the
definition, directly taken from [14] and [3].
Definition 2.1. A smoothly stratified space of depth 0 is a closed manifold. Let
k 2 N, assume that the concept of smoothly stratified space of depth � k has been
defined. A smoothly stratified space bX of depth k C 1 is a locally compact, second
countable Hausdorff space which admits a locally finite decomposition into a union of
locally closed strataS D fY j g, where each Y j is a smooth (usually open) manifold,
with dimension depending on the index j . We assume the following:

(i) If Y i ; Y j 2 S and Y i \ Y j ¤ ;, then Y i � Y j .
(ii) Each stratum Y is endowed with a set of “control data” TY , �Y and �Y ; here TY

is a neighbourhood of Y inX which retracts onto Y , �Y W TY �! Y is a fixed
continuous retraction and �Y W TY ! Œ0; 2/ is a “radial function”1 tubular
neighbourhood such that ��1Y .0/ D Y . Furthermore, we require that if Z 2 S
and Z \ TY ¤ ;, then

.�Y ; �Y / W TY \Z �! Y � Œ0; 2/

is a proper differentiable submersion.
(iii) If W;Y;Z 2 S, and if p 2 TY \ TZ \ W and �Z.p/ 2 TY \ Z, then

�Y .�Z.p// D �Y .p/ and �Y .�Z.p// D �Y .p/.
(iv) If Y;Z 2 S, then

Y \Z ¤ ; , TY \Z ¤ ;;

TY \ TZ ¤ ; , Y � Z; Y D Z or Z � Y :

(v) There exist a family of smoothly stratified spaces (with Thom–Mather control
data) of depth less than or equal to k, indexed by S, fLY ; Y 2 Sg, with the
property that the restriction�Y W TY ! Y is a locally trivial fibration with fibre

1In our previous paper [3] we inexplicably required �Y to be proper; this is of course wrong, as it
would imply all strata to be compact.
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the cone C.LY / over LY (called the link over Y ), with atlas UY D f.�;U/g
where each � is a trivialization ��1Y .U/ ! U � C.LY /, and the transition
functions are stratified isomorphisms of C.LY / which preserve the rays of
each conic fibre as well as the radial variable �Y itself, hence are suspensions
of isomorphisms of each linkLY which vary smoothly with the variable y 2 U .

If in addition we let bXj be the union of all strata of dimensions less than or equal
to j , and require that
(vi) bX D bXn � bXn�1 D bXn�2 � bXn�3 � � � � � bX0 and bX n bXn�2 is dense in bX

then we say that bX is a stratified pseudomanifold.
The depth of a stratum Y is the largest integer k such that there is a chain of strata

Y D Y k; : : : ; Y 0 with Y j � Y j�1 for 1 � j � k. A stratum of maximal depth is
always a closed manifold. The maximal depth of any stratum in bX is called the depth
of bX as a stratified space.

We refer to the dense open stratum of a stratified pseudomanifold bX as its regular
set, and the union of all other strata as the singular set,

reg.bX/ WD bX n sing.bX/; where sing.bX/ D [
Y2S

depthY>0

Y :

In this paper, we shall often for brevity refer to a smoothly stratified pseudomanifold
with Thom–Mather control data as a stratified space. When a distinction is needed we
use the label topologically stratified for a space satisfying the pared down conditions
listed at the beginning of this section.
Remarks. (i) If X and X 0 are two stratified spaces, a stratified isomorphism
between them is a homeomorphism F W X ! X 0 which carries the open strata of X
to the open strata of X 0 diffeomorphically, and such that � 0

F.Y /
ı F D F ı �Y ,

�0Y D �F.Y / ı F for all Y 2 S.X/.
(ii) For any Y 2 S, let SY D ��1Y .1/. This is the total space of a fibration �Y W

SY ! Y with fibre LY . Define the mapping cylinder over SY by Cyl .SY ; �Y / D
SY � Œ0; 2/ = � where .c; 0/ � .c0; 0/ if �Y .c/ D �Y .c

0/. The equivalence class
of a point .c; t/ is sometimes denoted Œc; t �, though we often just write .c; t/ for
simplicity. Then there is a stratified isomorphism

FY W Cyl .SY ; �Y / �! TY I

this is defined in the canonical way on each local trivialization U �C.LY / and since
the transition maps in axiom (v) respect this definition, FY is well-defined.

(iii) For more on axiom (v) we refer the reader to [3] and references therein.
As an example, consider a stratified space with a single singular stratum Y � bX ;

the control data induces a smooth fibration of T \ f� D "g over Y with fiber Z, and
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the neighborhood T itself is homeomorphic to the mapping cylinder of this smooth
fibration. Another way of thinking about this is to note that the set eX D bX n f� � "g
is a smooth manifold with boundary, its boundary fibers over Y with fiber Z, and
the interior of eX is diffeomorphic to the regular part of bX . We call eX the resolution
of bX . There is a natural map

ˇ W eX �! bX
given by collapsing the fibers of the boundary fibration. Changing " yields
diffeomorphic spaces, so a more invariant way of making this construction is to
replace Y in bX with its inward-pointing spherical normal bundle, a process known
as the “radial blow-up of bX along Y .”

This process of replacing bX by eX is already present in Thom’s seminal work [49],
and versions of it have appeared in Verona’s “resolution of singularities” [50] and the
“déplissage” of Brasselet–Hector–Saralegi [14]. These constructions show that any
stratified space as described above (a Thom–Mather stratification) can be resolved to
a smoothmanifold, possibly with corners. Our version involves modifying bX through
a sequence of radial blow-ups to obtain a manifold with corners eX , the boundaries
of which carry coherent iterated fibrations. This structure was identified by Richard
Melrose, and described carefully in [3, §2]:
Definition 2.2. Let eX be a manifold with corners, and enumerate its boundary
hypersurfaces as fH˛g over some finite index set ˛ 2 A. An iterated fibration
structure on eX consists of the following data:
(a) EachH˛ is the total space of a fibration �˛ W H˛ ! eY ˛ , where the fibreZ˛ and

base eY ˛ are themselves manifolds with corners.
(b) If two boundary hypersurfaces meet, i.e.H˛ˇ WD H˛\Hˇ ¤ ;, then dimZ˛ ¤

dimZˇ .
(c) If H˛ˇ ¤ ; as above, and dimZ˛ < dimZˇ , then the fibration of H˛ restricts

naturally toH˛ˇ D H˛\Hˇ (i.e. the leaves of the fibration ofH˛ which intersect
the corner lie entirely within the corner) to give a fibration ofH˛ˇ with fibresZ˛ ,
whereas the larger fibresZˇ must be transverse toH˛ atH˛ˇ . Writing @˛Zˇ for
the boundaries of these fibres at the corner, i.e. @˛Zˇ WD Zˇ \H˛ˇ , thenH˛ˇ
is also the total space of a fibration with fibres @˛Zˇ . Finally, we assume that
the fibres Z˛ at this corner are all contained in the fibres @˛Zˇ , and in fact that
each fibre @˛Zˇ is the total space of a fibration with fibres Z˛ .

The constructions in [14] and [3] show that any space bX with a Thom–Mather
stratification has a resolution to a manifold with corners eX carrying an iterated
fibration structure and a “blow-down map”

ˇ W eX �! bX
which is continuous, surjective, and restricts to a diffeomorphism between the interior
of eX and the regular part of bX . There is a useful iterative structure to this resolution
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construction. Indeed, the closure Y of each singular stratum Y � bX inherits the
structure of a stratified space and the fibrations of the boundary faces in eX have as
bases the resolutions of these spaces, and the associated fibers are the resolutions of
the links of the singular strata. For a normal stratified space (i.e. one whose links are
connected) the boundary hypersurfaces of eX are in one-to-one correspondence with
the singular strata of bX . If the link at a stratum is not connected, then the blow-up
of that stratum produces more than one boundary hypersurface (cf. [3, Remark 2.4])
and one should work with “collective boundary hypersurfaces” as in [4]. This makes
only a notational difference, so we assume for simplicity henceforth that the boundary
hypersurfaces of eX and the singular strata of bX are in one-to-one correspondence.

There are many advantages of working with eX over bX , especially for doing
analysis (see [2, 3]). One advantage is that the resolution eX picks out a particularly
well-behaved subset of functions on bX .
Definition 2.3. Given a smoothly stratified space bX with resolution eX , and a smooth
manifoldM , let

C1.bX;M/ D ff 2 C0.bX;M/ W f ı ˇ 2 C1.eX;M/g:

We abbreviate C1.bX;R/ D C1.bX/.
If bX andcM are both smoothly stratified spaces, we define

C1.bX;cM/ D ff 2 C0.bX;cM/ W f �C1.cM/ � C1.bX/g:
There is a partition of unity of bX consisting entirely of functions from C1.bX/ [1].

We point out that

f 2 C1.bX;cM/ ” 9ef 2 C1.eX;fM/ s.t. f ı ˇX D ˇM ı ef
and

f 2 C1.bX/ ” f ı ˇ 2 C1ˆ .eX/
D fef 2 C1.eX/ W 8H 9fH 2 C1.YH / s.t. i�Hef D ��HfH g

where iH W H ! eX denotes the natural embedding.
Definition 2.4. Our convention is that a manifold with corners has embedded
boundary hypersurfaces (bhs). Thus if H is a boundary hypersurface of eX then
there is a boundary defining function for H , rH , meaning that rH is a non-negative
smooth function on eX ,H D r�1H .0/, and drH does not vanish onH . A map between
manifolds with corners F W eX �! fM is called a b-map if, for some (hence any)
choice of boundary defining functions frig of eX and f�j g offM , we have

F �.�j / D hj
Y

r
e.j;i/
i

with hj a smooth non-vanishing function on eX and e.i; j / 2 N0, for all i; j [37], [36,
(A.11)].



The Novikov conjecture on Cheeger spaces 459

Thus ifH andK are boundary hypersurfaces of eX andfM , respectively, then the
image of the interior of H under a b-map F is either contained in or else disjoint
from K, and moreover, the order of vanishing of the differential of F along H is
constant.

A smooth b-map between stratified spaces f 2 C1
b
.bX;cM/ is a smooth map

whose lift ef 2 C1.eX;fM/ is a b-map of manifolds with corners.
By an isomorphism of smoothly stratified spaces we mean an invertible smooth

b-map whose inverse is also a smooth b-map
Remark 2.5. In [3, Definition 4, p. 258] our notion of smooth map between stratified
spaces is what here we are calling a smooth b-map between stratified spaces.

As explained in [3], a smoothly stratified space is a stratified space whose cocycles
take values in stratified isomorphisms.

We recall other classes of maps we will use so as to have all of their definitions
in one place.
Definition 2.6. Acontinuousmapbetween topologically stratified spacesf W bX�!cM
is stratum-preserving if

T 2 S.cM/ H) f �1.T / D
[
Si ; Si 2 S.bX/:

Equivalently if the image of a stratum of bX is contained in a stratum ofcM .
A smooth b-map between smoothly stratified spaces is necessarily stratum

preserving.
Definition 2.7 (cf. [33, Def. 4.8.4]). A stratum preserving continuous map between
topologically stratified spaces f W bX �!cM is codimension-preserving if

T 2 S.cM/ H) codimf �1.T / D codimT:

If bX and cM are smoothly stratified, we denote the set of smooth codimension
preserving b-maps between them by C1

b;cod
.bX;cM/.

A stratified homotopy equivalence between two topologically stratified spaces is
a pair of codimension preserving maps f W bX �! cM and g W cM �! bX such
that g ı f and f ı g are homotopic to the identity through codimension-preserving
homotopies bX � Œ0; 1� �! bX and cM � Œ0; 1� �! cM , respectively. A smooth
stratified homotopy equivalence between two smoothly stratified spaces is a stratified
homotopy equivalence with f 2 C1

b;cod
.bX;cM/, g 2 C1

b;cod
.cM; bX/ and with f ı g

and gıf homotopic to the identity through smooth codimension preserving b-maps.
This notion of stratified homotopy equivalence is that used in [17, Proposition 2.1],

where they were shown to preserve intersection homology. We will show below
that smooth stratified homotopy equivalence preserve refined intersection homology
groups.
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We will show in the next section that smoothly stratified spaces admit a smooth
stratified homotopy equivalence if and only if they admit a continuous stratified
homotopy equivalence.

2.2. Approximation of continuous functions. Another advantage ofworking with eX
is that we can make use of all of the standard machinery of smooth differential
geometry. Since our object of study is bX it is important to make constructions
consistent with the iterated fibration structure of eX . Thus, an iterated wedge
metric (or iterated incomplete edge or iie metric) is a Riemannian metric on eX that
degenerates at each boundary hypersurface by collapsing the fibers. Inductively, an iie
metric g on a smooth manifold is a Riemannian metric, and on a general manifold eX
with an iterated fibration structure is one that near the boundary hypersurfaceH has
the form

dx2 C x2geZ C ��HgYH
where we have trivially extended the fibration �H to a collar neighborhood of H .
Here x is a boundary defining function for H , meaning a smooth non-negative
function on eX vanishing linearly on its zero set, H , gYH is a metric on the base of
the fibration and geZ restricts to each fiber of �H to be an iie metric on eZ. (See [3]
for more details; in this paper we will work exclusively with rigid iie metrics like
these without further comment.)

Using iie metrics to measure distances, we next show that appropriate continuous
maps can be approximated by smooth b-maps in the same homotopy class.
Theorem 2.8. Let bX andcM be two smoothly stratified spaces and

h0 W bX �!cM
a continuous stratum-preserving map between them. For any " > 0, there is a smooth
b-map h1 2 C1

b
.bX;cM/ and a continuous homotopy

H W bX � Œ0; 1� �!cM
such that:

(i) H0 D h0,H1 D h1,
(ii) Ht is stratum-preserving for each t 2 Œ0; 1�,
(iii) If h0 preserves the codimension of each stratum, then so does each Ht ,

t 2 Œ0; 1�.

Proof. We first assume that bX and cM are of depth one. Choose radial functions x
and x0 on each of these spaces near their respective singular strata, Y and W , and
fix the conic fibrations � and � 0 in each of the tubular neighborhoods U D fx < 1g
and V D fx0 < 1g. We can cover each of these neighborhoods by a finite number of
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coordinate charts, possibly scaling x and x0 if necessary, so that we can represent h0
via local adapted coordinates .x; y; z/ in U and .x0; y0; z0/ in V as

h0.x; y; z/ D .x
0.x; y; z/; y0.x; y; z/; z0.x; y; z//:

The functions x0 and y0 are continuous for 0 � x � 1; furthermore, x0.0; y; z/ � 0,
and the fact that h0 is continuous on bX means that y0.0; y; z/ is independent of z
(we are implicitly using this last fact to say that the image of any conic fiber ��1.y/
remains within a given coordinate chart infM ). However, in general, z0.x; y; z/ need
not even have a limit as x ! 0

We construct an initial homotopy to a map which maps the conic fibers of � to
those of � 0 and so that z0 is continuous at x D 0. Choose a smooth nonnegative
function �.t; x/, 0 � t; x � 1, such that �.0; x/ � x, �.t; x/ > 0 for all x � 0

and �.t; x/ D x for x � 1=2 when t > 0, and finally �.1; x/ D 1=4 for x � 1=4,
and choose another such function e�.t; x/ � 0, again with e�.0; x/ � x but nowe�.1; x/ D 0 for x � 1=4. Then

h0t D .x
0.x; y; z/; y0.e�.t; x/; y; z/; z0.�.t; x/; y; z//

is a homotopy of continuous stratum-preserving maps, and h01 has the required
properties. Strictly speaking this is defined relative to coordinates, but because we
have fixed � and � 0, the conic fibers are well-defined and this procedure makes sense
globally. Note that h01 lifts to a continuous map eX !fM which respects the fibration
structure of the boundaries. We may also, at this stage, choose a further homotopy
which acts only on the radial variables and which results in a map for which x0 D x
for x � 1=4.

We now construct the remainder of the homotopy using standard mollification
operators in such local coordinate charts. Note that by construction x0 D x and
y0.x; y; z/ is constant for x � 1=4, so we need only mollify the fibre-preserving
map h0 along the hypersurface fx D 1=4g. Locally this amounts to mollifying the
family of functions z0.1=4; y; z/. We invoke the argument detailed in [28, Ch. 2,
Thm. 2.6] to pass from mollification in these local neighborhoods to a global smooth
approximation, which proceeds by inductively extending the approximation over
elements of a locally finite open cover.

Note that this whole argument only depends on the fact that eX has depth 1.
Indeed, suppose thatfM has depth `. We may as well assume that the image of the
principal open stratum of eX lies in the principal open stratum offM . In addition, the
singular stratum Y of eX is a closed manifold, hence its image lies entirely within a
stratum W of fM , and does not intersect any other strata. Therefore, fM effectively
has depth 1 near the image of eX , and since the argument above is local, it applies
directly.

We now induct on the depth of eX . Suppose that the result has been proved for all
stratified spaces with depth less than k, and for all stratified imagesfM . Suppose eX
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has depth k. As before, let Y denote its highest depth stratum and W the stratum
in fM which contains h0.Y / but not h0.eX/. Also choose tubular neighborhoods,
fibrations and radial variables .U ; �; x/ and .V ; � 0; x0/, respectively. We first choose
a homotopy to a map h00 which maps the fibers of � to the fibers of � 0, satisfies
.h00/

�.x0/ D x, and whose projection to a map of links Z ! Z0 is constant in x
for x � 1=4. Now apply the inductive hypothesis and the local nature of the proof to
homotope h00 in the region x � 1=4 to a smooth stratum-preserving map h000 which
continues to preserves the fibers of the stratified subspace fx D 1=4g. We finally
choose a homotopy of the family of maps on the links of these conic fibers which is
smooth. This completes the proof.

Corollary 2.9. If g1 W bX �! cM and g2 W bX �! cM are two smooth stratum-
preserving maps and they are homotopic through continuous stratum-preserving
maps, then they are homotopic through smooth stratum-preserving b-maps.

Corollary 2.10. If bX andcM are smoothly stratified spaces and there is a continuous
stratified homotopy equivalence between them, then there is a smooth stratified
homotopy equivalence between them.

Miller [38] established a criterion for recognizing if certain maps between two
homotopically stratified spaces is a stratified homotopy equivalence. His criterion
applies to smoothly stratified spaces, and our theorem shows that it recognizes smooth
homotopy equivalences.
Corollary 2.11. Let bX and cM be smoothly stratified spaces and g 2 C1.bX;cM/.
Assume that bX and cM have the same number of strata, the pre-image of a stratum
ofcM under g is a stratum of bX and the induced map between the partially order sets
(corresponding to the partial ordering of the strata) is an isomorphism. Then g is a
homotopy equivalence (through smooth maps with these properties) if and only if the
induced maps on strata and links are stratified homotopy equivalences.

2.3. Mezzoperversities. Iterated incomplete edge (iie) metrics and the correspond-
ing dual metrics are degenerate on T eX and T �eX , respectively. However there are
rescaled versions of these bundles on which these are non-degenerate bundle metrics.
An efficient description of the iie-cotangent bundle iieT �X is given by its space of
sections:

C1.eX I iieT �X/ D f! 2 C1.eX IT �eX/ W j!jg is pointwise boundedg:

Thus in local coordinates nearH it is spanned by

dx; dy; xdz

where y is a local coordinate along YH and z is a local coordinate along the fibers
of �H . The iie-tangent bundle iieTX is the dual bundle of iieT �X .
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There is an analogous construction of “iterated edge”, or ie, bundles and metrics.
Briefly, a vector field on eX is an ie-vector field if its restriction to any boundary
hypersurface is tangent to the fibers of the boundary fibration and the ie-vector fields
are the sections of vector bundle, the ie-tangent bundle ieTX . For more details on
the ie and iie tangent bundles, we refer the reader to [3, §4.4]. This ie-tangent bundle
will play an important role in Section 4.3.

An important fact is that iieT �X restricted to the interior of eX is canonically
isomorphic to the cotangent bundle of X , the regular part of bX . Thus when studying
differential forms on X we can equally well work with sections ofƒ�.iieT �X/. This
has several advantages when analyzing the behavior of the exterior derivative d and
the de Rham operator ÄdR D d C ı of an iie-metric. For example it brings out some
remarkable symmetry and inductive structure of these operators at each boundary
hypersurface. This is exploited in [3] and [2] to study geometrically natural domains
for these differential operators when acting on L2.

Let .bX; g/ be a stratified space with an iie metric, and let L2.X Iƒ�iieT �X/
denote the Hilbert space of differential forms on X with respect to the induced
measure. The operator ÄdR D d C ı is initially defined as a linear operator

ÄdR W C1c .X Iƒ�iieT �X/ �! C1c .X Iƒ�iieT �X/

and has two canonical extensions to a closed unbounded operator on L2. The first is
the minimal domain

Dmin.ÄdR/ D f! 2 L
2.X Iƒ�iieT �X/ W

9.!n/ � C1c .X Iƒ�iieT �X/ s.t. !n
L2

���! ! and .ÄdR!n/ is L2-Cauchyg

and the second is the maximal domain

Dmax.ÄdR/ D f! 2 L
2.X Iƒ�iieT �X/ W ÄdR! 2 L

2.X Iƒ�iieT �X/g;

where ÄdR! is evaluated distributionally. These are adjoint domains and if they
coincide we say that ÄdR is essentially self-adjoint.

There are two obstructions to these domains coinciding. The first is geometric. An
iie metric g on bX induces an iie metric on each link Z of bX , and so a corresponding
de Rham operator ÄZdR. Often a closed domain for ÄdR will induce a closed domain
for each ÄZdR and the small eigenvalues of ÄZdR obstruct essential self-adjointness
of ÄdR. Fortunately it is easy to avoid the non-zero small eigenvalues by working
with “properly scaled” metrics, see [3, §5.4], [2, §3.1], and we always assume that
we have done this.

The second obstruction is topological. For example, if all of the links are odd-
dimensional then for a suitably scaled iie metric the de Rham operator is essentially
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self-adjoint. The precise condition needed was formulated by Siegel [45]. A Witt
space is a pseudomanifold bX such that every even-dimensional link Z satisfies

IHm
dimZ=2.Z/ D 0

where IHm
� is the upper middle perversity intersection homology of Goresky–

MacPherson [22]. These are precisely the spaces where a suitably scaled iie metric
has essentially self-adjoint de Rham operator.

Suppose that Y 1; : : : ; Y T are the singular strata of bX organized with non-
decreasing depth, so that the link of bX at Y 1 is a smooth manifold Z1, say of
dimension f 1. We denote by H i the boundary hypersurface of eX lying above Y i .
The iie metric g on bX induces a Riemannian metric on each Z1 and we say that g is
suitably scaled at Y 1 if each ÄZ1dR does not have non-zero eigenvalues with absolute
value less than one. For thesemetrics, in [2] we prove that any elementu 2 Dmax.ÄdR/

has an asymptotic expansion at Y 1,

u � x�f
1=2.˛1.u/C dx ^ ˇ1.u//Ceu

in terms of a boundary defining functionx forH 1, however the terms in this expansion
are distributional,

˛1.u/; ˇ1.u/ 2 H
�1=2.Y 1Iƒ�T �Y 1 ˝Hf 1=2.H 1=Y 1//;eu 2 xH�1.X Iƒ�iieT �X/:

HereHf 1=2.H 1=Y 1/ is the bundle over Y 1 with typical fiberHf 1=2.Z1/, the Hodge
cohomology group of Z1 with its induced metric. It has a natural flat connection
discussed in detail below in §4.1 and it inherits a metric. This is true for all values
of f 1, with the convention that if f 1 is not even then Hf 1=2.H 1=Y 1/ D 0, and so
˛1.u/ D ˇ1.u/ D 0.

The stratumY 1 is aWitt stratum ofbX if the groupHf 1=2.Z1/ is trivial. Otherwise
the distributional differential forms ˛.u/, ˇ.u/ serve as “Cauchy data” at Y 1 which
we use to define Cheeger ideal boundary conditions. For any subbundle

W 1

  

// Hf 1=2.H 1=Y 1/

xx
Y 1

that is parallel with respect to the flat connection, we define

Dmax;W 1.ÄdR/ D fu 2 Dmax.ÄdR/ W ˛1.u/ 2 H
�1=2.Y 1Iƒ�T �Y 1 ˝W 1/;

ˇ1.u/ 2 H
�1=2.Y 1Iƒ�T �Y 1 ˝ .W 1/?/g: (2.1)
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Canonical choices are to take W 1 equal to the zero section or W 1 equal to
Hf 1=2.H 1=Y 1/.

If the link of bX at Y 2, Z2, is smooth we can carry out the same procedure at Y 2.
If Z2 is not smooth, then the compatibility conditions between the strata show that
the link ofZ2 at its singular stratum is againZ1 (see, e.g. [2, §1.2]). Thus the choice
of flat bundle W 1 induces a domain for the de Rham operator on Z2,

DW 1.ÄZ
2

dR /

by imposing Cheeger ideal boundary conditions corresponding toW 1. The metric g
is suitably scaled at Y 2 if at each Z2 the operator .ÄZ2dR ;DW 1.ÄZ2dR // does not have
non-zero eigenvalues with absolute value less than one.

The null space of ÄZ2dR with this domain is finite dimensional and denoted
H�
W 1.Z

2/. These spaces form a bundle over Y 2,

H�
W 1.H

2=Y 2/ �! Y 2;

which is again naturally endowedwith a flat connection and a bundlemetric. We prove
in [2] that every differential form u 2 Dmax;W 1.ÄdR/ has a distributional asymptotic
expansion at Y 2,

u � x�f
2=2.˛2.u/C dx ^ ˇ2.u//Ceu0

where now x is a boundary defining function forH 2, f 2 is the dimension ofZ2, and

˛2.u/; ˇ2.u/ 2 H
�1=2.Y 2Iƒ�T �Y 2 ˝Hf 2=2

W 1 .H 2=Y 2//;eu 0 2 xH�1.X Iƒ�iieT �X/:
(As with f 1, if f 2 is odd then our convention is that Hf 2=2

W 1 .H 2=Y 2// D 0 and
so ˛2.u/ D ˇ2.u/ D 0.) Thus to define Cheeger ideal boundary conditions at Y 2,
compatibly with the choice at Y 1, we need to choose a flat subbundle

W 2 //

  

Hf 2=2

W 1 .H 2=Y 2/

xx
Y 2

and then we set

Dmax;.W 1;W 2/.ÄdR/ D fu 2 Dmax;W 1.ÄdR/ W ˛2.u/ 2 H
�1=2.Y 2Iƒ�T �Y 2 ˝W 2/;

ˇ2.u/ 2 H
�1=2.Y 2Iƒ�T �Y 2 ˝ .W 2/?/g:

Now proceeding inductively we can give the general definition.
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Definition 2.12. Let .bX; g/ be a stratified space with an iie metric. A collection of
bundles

W D fW 1
�! Y 1; W 2

�! Y 2; : : : ; W T
�! Y T g

is a (Hodge) mezzoperversity adapted to g if, inductively, at each q 2 Y i the
operator ÄZ

i
q

dR with its induced domain does not have any non-zero eigenvalues of
absolute value less than one, and each W i is a flat subbundle

W i //

��

Hf i=2

.W 1;:::;W i�1/
.H i=Y i /

ww
Y i

whereHf i=2

.W 1;:::;W i�1/
.H i=Y i / is zero if f i is odd and otherwise is the bundle overY i

with typical fiber equal to the null space of ÄZidR with domain D.W 1;:::;W i�1/.Z
i /.

Every HodgemezzoperversityW on bX induces a Hodgemezzoperversity on each
link Z which we denoteW.Z/.

Every mezzoperversity induces a closed self-adjoint domain for ÄdR,

DW.ÄdR/;

which we prove in [2] is compactly included in L2.X Iƒ�iieT �X/. Indeed, we show
in [2, Theorem 4.3] that

DW.ÄdR/ � H
1
loc.X Iƒ

�.iieT �X// \
\

"2.0;1=2/

�"L2.X Iƒ�.iieT �X//:

and it is known that the space on the right hand side is compactly included in
L2.X Iƒ�iieT �X/.2 Exactly the same result holds for the signature operator provided
that the Hodge mezzoperversity W is self-dual (see Section 5 below): this is
established in [2, Theorem 6.2]. Thus .ÄdR;DW.ÄdR// is Fredholm with discrete
spectrum, facts already used in the inductive definition of the mezzoperversity. We
denote the corresponding Hodge cohomology groups by

H�W.bX/
orH�W.bX Ig/ when we want to consider the dependence on the metric.

2The (only) displayed equation in the proof of Theorem 4.3 in [2] reads

�u 2
\

"2.0;1=2/

�"L2.X Iƒ�.iieT �X//

whereas it should clearly read

�u 2H1
loc.X Iƒ

�.iieT �X//\
\

"2.0;1=2/

�"L2.X Iƒ�.iieT �X//:

Indeed, �"L2 is not compactly included in L2.
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We can also use a mezzoperversity to define domain for the exterior derivative
as an unbounded operator on L2 differential forms. Namely, we take the closure
of DW.ÄdR/ in the graph norm of d ,

DW.d/ D f! 2 L
2.X Iƒ�iieT �X/ W 9.!n/ � DW.ÄdR/

s.t. !n
L2

���! ! and .d!n/ is L2-Cauchyg:

Similarly we define DW.ı/ and show that these domains are mutually adjoint and
satisfy

DW.ÄdR/ D DW.d/ \DW.ı/: (2.2)
An important feature of these domains is that, if we denote

DW.d/
Œk�
D DW.d/ \ L

2.X Iƒk.iieT �X//

then
d W DW.d/

Œk�
�! DW.d/

ŒkC1�

so that DW.d/
Œ�� forms a complex. We denote the corresponding de Rham

cohomology groups by H�W.bX/. We prove in [2] that these groups are independent
of the choice of metric and that there is a canonical isomorphism

H�W.bX/ Š H�W.bX/: (2.3)

A de Rham mezzoperversity is defined like a Hodge mezzoperversity but using
de Rham cohomology groups instead of Hodge cohomology groups. Note that we
need an iie metric to talk about a Hodge mezzoperversity, since it involves bundles
of harmonic forms. However, as we recall below, the de Rham cohomology groups
are metric independent, so we can talk about a de Rham mezzoperversity without
reference to a particular metric. Since we can think of a de Rham mezzoperversity as
an equivalence class of Hodge mezzoperversities, with the advantage of being metric
independent, we often denote a de Rham mezzoperversity by ŒW �.

In more detail, suppose that .bX; g;W/ and .bX; g0;W 0/ are Hodge mezzoperver-
sities with adapted iie metrics, say

W D fW 1
�! Y 1; : : : ; W T

�! Y T g;

W 0 D f.W 1/0 �! Y 1; : : : ; .W T /0 �! Y T g:

Since g and g0 are quasi-isometric over eX as metrics on iieTX , we have

L2.X Iƒ�iieT �X Ig/ D L2.X Iƒ�iieT �X Ig0/:

The two Hodge mezzoperversities represent the same de Rham mezzoperversity if,
at each Y i , the Hodge–de Rham isomorphism (2.3) identifies W i and .W i /0. We
proved in [2, Theorem 5.9] that in that case

DW.d/ D DW0.d/; hence H�W.bX Ig/ D H�W0.bX Ig0/ DW H�ŒW�.
bX/

where we use ŒW� to indicate the de Rham mezzoperversity associated toW .
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Let us say that an iie metric g is adapted to the de Rham mezzoperversity ŒW�

if the Hodge–de Rham isomorphisms corresponding to g and its induced iie metrics
on the links produce a Hodge mezzoperversityW adapted to g.

3. Twisted de Rham operators and induced domains

Let g be an iie metric on bX and let ÄdR D d C ı be the corresponding de Rham
operator. If f 2 C1.bX/ then

ŒÄdR; f �

is a linear combination of the exterior product by df and the interior product by rf ,
and hence is a bounded operator onL2.X Iƒ�iieT �X/. It follows that u 2 Dmax.ÄdR/

implies f u 2 Dmax.ÄdR/ and, since there is a partition of unity consisting of functions
in C1.bX/, we have

u 2 Dmax.ÄdR/ ” f u 2 Dmax.ÄdR/ for all f 2 C1.bX/: (3.1)

We say that a domain for the de Rham operator is a local domain if it satisfies (3.1).
Directly from their definition, Dmin.ÄdR/ and DW.ÄdR/ are local domains for any
mezzoperversityW .

Consider a covering of a stratified space

� � bX 0 �! bX
where � is a countable, finitely generated, finitely presented group, with classifying
map r W bX �! B� . In [3] we made use of the following fact: if Uq Š Rh �C.Z/ is
a distinguished neighborhood of a point q 2 bX , then the induced�-coverings overUq
and over C.Z/ are trivial (since the cone induces a nullhomotopy). It follows that if
we have a representation of � on RN and we form the flat bundle E D bX 0 �� RN
and the twisted de Rham operator ÄEdR then over a distinguished neighborhood we
can identify

E
ˇ̌
Uq
Š Uq � RN ; ÄEdR

ˇ̌
Uq
D ÄdR

ˇ̌
Uq
˝ IdRN

since not only the bundle E is trivial over Uq but also its connection. (In this last
equality and below we abuse notation, as we should more correctly conjugate ÄEdR by
the identification of E

ˇ̌
Uq

with Uq � RN to obtain ÄdR
ˇ̌
Uq
˝ IdRN .)

We can use this to define a domain for ÄEdR for each mezzoperversityW . Indeed,
on any distinguished neighborhood we have L2.UqIE/ D L2.Uq/N , so it makes
sense to define

DW.ÄEdR/ D fu 2 L
2.X Iƒ�iieT �X ˝E/ W ÄEdRu 2 L

2.X Iƒ�iieT �X ˝E/

and, for all f 2 C1.bX/ supported in a distinguished neighborhood,
f u 2 DW.ÄdR/

N
g:
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Notice that, because DW.ÄdR/ is local, we have DW.ÄEdR/ D DW.ÄdR/ when E
is the trivial flat R-bundle. On the other hand each domain DW.ÄEdR/ is local by
construction.

In the same way, let us denote the flat connection on E by dE and define

DW.d
E / D fu 2 L2.X Iƒ�iieT �X ˝E/ W dEu 2 L2.X Iƒ�iieT �X ˝E/

and, for all f 2 C1.bX/ supported in a distinguished neighborhood,
f u 2 DW.d/

N
g:

Since, by construction, these domains are just copies of the untwisted domains near
each singular stratum, Theorem 5.6 in [2] implies the following:
Theorem 3.1. Let .X; g;W/ be a stratified space endowed with an iie-metric g and
adapted Hodge mezzoperversity. Let � be a countable, finitely generated, finitely
presented group, bX 0 �! bX a � covering, and E �! X a flat bundle associated
to an orthogonal representation of � on RN . The operator .ÄEdR;DW.ÄEdR//
is self-adjoint and its domain is compactly included in L2.X Iƒ�iieT �X ˝ E/,
hence ÄEdR is Fredholm with compact resolvent. In particular the corresponding
Hodge cohomology groups

H�W.bX IE/
are finite dimensional.

The operators .dE ;DW.d
E // define a Fredholm Hilbert complex and hence

finite dimensional de Rham cohomology groups

H�W.bX IE/;
which are canonically isomorphic to the Hodge cohomology groups. The domains
DW.d

E /, and hence these groups, are independent of the choice of metric and depend
onW only through the de Rham mezzoperversity ŒW �.

A key fact for this paper is that all of the above is true if we replace the finite rank
bundleE �! bX with certain bundles of projective finitely generated modules over a
C �-algebra. Let us assume that we have a �-covering as above, but now consider the
action of � on C �r � , the reduced C �-algebra of � (i.e. the closure of the algebra of
operators generated by the elements of � in the left regular representation), to define
a bundle G .r/ of free left C �r �-modules of rank one:

G .r/ D C �r � �� bX 0 (3.2)

The vector space of smooth sections with compact support of the bundleƒ�iieT �X˝
G .r/! X is endowed with the (usual) C �r ��scalar product defined by:

h

X

1

a
1
1I
X

2

b
2
2i D
X

.a
1 I 
1 � b.
2/�1/L2 
1.
2/
�1
2 C �r � :
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Its completion with respect to h�I �i is denoted L2.X Iƒ�iieT �X ˝ G .r//. (Note that
this notation is slightly different from that employed in [3].)

The trivial connection on C �r � � bX 0 induces a flat connection on G .r/, and we
denote the corresponding twisted exterior derivative (i.e. the flat connection) by dG .r/

and the twisted de Rham operator by ÄG .r/
dR . As above, we can use localization to

define a domain DW.ÄG .r/
dR / for every mezzoperversity W . For example over a

distinguished neighborhood we can identify

G .r/
ˇ̌
Uq
Š Uq � C �r �; ÄG .r/

dR
ˇ̌
Uq
D ÄdR

ˇ̌
Uq
˝ IdC�r �

Then the previous theorem implies (cf. [3, Proposition 6.3]):

Theorem 3.2. With the notation of the previous theorem, the operator

.ÄG .r/
dR ;DW.ÄG .r/

dR //

is self-adjoint and its domain is C �r ��compactly included in

L2.X Iƒ�iieT �X ˝ G .r//I

in particular it has a C �r ��compact resolvent.

4. Stratified homotopy invariance of twisted de Rham cohomology

We define morphisms between iterated fibration structures and show that they induce
pull-back maps on L2-cohomology. Iterated edge metrics are used both to define
the cohomologies and to define the pull-back map. We show that a (smooth
codimension preserving) stratified homotopy equivalence induces an equivalence
in L2-cohomology. For stratified diffeomorphisms, this map is just pull-back of
differential forms, but for a general homotopy equivalence we use the “Hilsum–
Skandalis replacement” construction from [3,27].

4.1. Gauss–Manin connection. Itwill be useful to have amore invariant description
of the flat connections on the vertical cohomology bundles of the links, so we start
by describing this.

Let .bX; g;W/ be a stratified space equipped with an iie metric and a (de Rham)
mezzoperversity W . Each hypersurface H i of eX , the resolution of bX , is the total
space of a fibration

H i �i
���! Y i

with fiber eZi , the resolution of the link of bX at Y i .
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For any ` 2 N0, the vertical cohomology of L2-de Rham cohomology with
Cheeger ideal boundary conditions forms a bundle

H`W.Zi /
.Zi / � H`W.Zi /

.H i=Y i / �! Y i

and we described in [2] a flat connection for this bundle using a connection for �i .
This is a version of the Gauss–Manin connection for �i which, as is well

known [32], can be obtained through the Leray–Serre spectral sequence without
using a connection for �i . We now review this construction in the L2-setting.
Lemma 4.1. There is a natural L2-Gauss–Manin connection rH on the vertical
cohomology bundle

H`W.Zi /
.H i=Y i / �! Y i

that does not depend on the choice of iie-metric or on a choice of connection for �i .

Proof. We describe the smooth construction in parallel to the L2 construction as
the former makes the latter more transparent. Recall that we have shown that the
cohomology groups H`W.Zi /

.H i=Y i / only depend on the de Rham mezzoperversity
W.Zi / and not on the iie metric.

Recall that the iie-geometry is defined in Section 1. We then have a short exact
sequences of bundles overH i ,

0 �! iieTH i=Y i �! iieTH i
�! ��.iieT Y i / �! 0

0 �! ��.iieT �Y i / �! iieT �H i
�!

iieT �.H i=Y i / �! 0
(4.1)

which induce short exact sequences of sections overH i , e.g.

0 �! C1.H i
Iƒ���.iieT �Y i // �! C1.H i

Iƒ�iieT �H i /

�1
����! C1.H i

Iƒ�iieT �.H i=Y i // �! 0

0 �! L2.H i
Iƒ���.iieT �Y i // �! L2.H i

Iƒ�iieT �H i /

�
L2

����! L2.H i
Iƒ�iieT �.H i=Y i // �! 0:

For our purposes we need the corresponding sequence for L2-differential forms in
the domain of d ,

0 �! DW.Zi /.dH i / \ L
2.H i

Iƒ�.��iieT Y i //

�! DW.Zi /.dH i / �! �L2.DW.Zi /.dH i // �! 0: (4.2)

It is useful to observe that each of

C1.H i
Iƒ�.iieT �H i //; L2.H i

Iƒ�.iieT �H i //; DW.Zi /.dH i /

is a module over ��C1c .Y i /.
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Note that since we are not imposing boundary conditions on the boundary of Y i ,
the first non-zero term in (4.2) can be identified with

f! 2 L2.H i
Iƒ�.��iieT Y i // W d! 2 L2.H i

Iƒ�.��iieT Y i //g;

while the last non-zero term can be thought of as forms whose restriction to each
fiber is in DW.Z

i /.dZi /. We can make this precise by using the invariance under
multiplication by C1c .Y i / to localize to a neighborhood andmollify in Y i and thereby
obtain a dense subdomain of forms which can be restricted to an individual fiber.

The exact sequence (4.1) induces Cartan’s filtration

F `j C1 D C1.H i
Iƒj .��.iieT �Y i /// b̋ C1.H i

Iƒ`�j .iieT �H i //

D degree ` differential forms onH i with “horizontal degree” at least j

which can also be described by

F `j C1 D f! 2 C1.H i
Iƒ`.iieT �H i // W !.V1; : : : ; V`/ D 0

whenever ` � j C 1 of the Vk are verticalg;

where a vector field is vertical when it is a section of TH i=Y i . We similarly obtain
filtrations of L2 differential forms

F `j L
2
D f! 2 L2.H i

Iƒ`.iieT �H i // W !.V1; : : : ; V`/ D 0

whenever ` � j C 1 of the Vk are verticalg:

and F `
j;W.Zi /

D F `j L
2 \ DW.Zi /.d/. These filtrations are compatible with the

exterior derivative

d W F �j C1 �! F �j C1; d W F �j L
2
\Dmax.d/ �! F �j L

2;

d W F �j DW.Zi / �! F �j DW.Zi /

so there are associated spectral sequences. As in [32] we show that the differential
on the E1 page of the spectral sequence yields the connection we are looking for.

We can use (4.1) to compute E0, the graded complex associated to the filtration.
First note that

E
j;k
0 C1 D F jCkj C1=F jCkjC1 C

1

D C1
�
H i
Iƒj .��T �Y i /

� b̋ C1
�
H i
IƒkT �.H i=Y i /

�
D C1

�
H i
Iƒj .��T �Y i / b̋ ƒkT �.H i=Y i /

�
inherits a differential

@
j;k
0;C1 W E

j;k
0 C1 �! E

j;kC1
0 C1;



The Novikov conjecture on Cheeger spaces 473

that only raises the “vertical degree”. Moreover since the individual terms in the
Cartan filtration are ��C1c .Y i /-modules, this differential is linear over ��C1c .Y i /.
This allows us to localize to a contractible neighborhood of Y i and identify @j;k0;C1
with the vertical exterior derivative,

@
j;k
0;C1 D dH i=Y i :

Similarly we can identify

E
j;k
0 L2 D L2.H i

Iƒj .��T �Y i / b̋ ƒkT �.H i=Y i //

and
@
j;k

0;L2
D dH i=Y i

is the densely defined vertical exterior derivative. The same holds, mutatis mutandis,
on Ej;k0 DW.Zi / D F

jCk
j DW.Zi /=F

jCk
jC1 DW.Zi /.

The E1 page is the cohomology of the E0 page with the induced differential, so
by the description of the latter we have

E
j;k
1 C1 D

ker @j;k0;C1

Image @j;k�10;C1

D C1.Y i IƒjT �Y i b̋ HkC1.H
i=Y i // DW �j .Y i IHkC1.H

i=Y i //

Similarly

E
j;k
1 DW.Zi / D f! 2 L

2.Y i IƒjT �Y i b̋ HkW.Zi /
.H i=Y i // W

d! 2 L2.Y i IƒjT �Y i b̋ Hk.H i=Y i //g

DW �
j

L2
.Y i IHkW.Zi /

.H i=Y i //

The exterior derivative onH i induces a differential on this page

@
j;k
1;C1 W �

j .Y i IHkC1.H
i=Y i // �! �jC1.Y i IHkC1.H

i=Y i //

@
j;k

1;L2
W �

j

L2
.Y i IHkW.Zi /

.H i=Y i // �! �
jC1

L2
.Y i IHkW.Zi /

.H i=Y i //
(4.3)

by restriction from C1.H i Iƒ�iieT �H i / to the kernel of the composition

F
jCk
j C1 �! F

jCkC1
j C1 �! F

jCkC1
j C1=F jCkC1jC1 C1

and similarly for L2-forms.
Note thatC1c .Y i Iƒ�T �Y i / D ��c .Y i / is a subset of both��.Y i IH0C1.H i=Y i //

and, because of the compact support, also of ��
L2
.Y i IH0W.Zi /

.H i=Y i //. Both of
the E1 pages are closed under exterior product with a form in �jc .Y i / and satisfy

! 2 �j
0

c .Y
i /; � 2 E

j;k
1 H) @

jCj 0;k
1 .! ^ �/ D d! ^ �C .�1/j

0

! ^ @
j;k
1 �
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with their respective differentials. However this shows that

@
0;k
1;C1 W C

1.Y i IHkC1.H
i=Y i // �! �1.Y i IHkC1.H

i=Y i //

@
0;k

1;L2
W �0

L2
.Y i IHkW.Zi /

.H i=Y i // �! �1
L2
.Y i IHkW.Zi /

.H i=Y i //

are connections and that themaps (4.3) are induced by these connections. In particular
@
1;k
1 ı @

0;k
1 is exterior multiplication by the curvature of the connection, and since @1

is a differential, the connections are flat. We denote these connections byrH in either
case.

Finally note that the connection on HkW.Zi /
.H i=Y i / is independent of choices

since all rigid, suitably scaled, iie metrics yield the same L2 space and the same
DW.Zi /.dH i /.

Remark 4.2. It follows from the proof of this lemma that a map on differential
forms between the total spaces of two fibrations will induce maps intertwining the
Gauss–Manin connection if:

(i) it commutes with the exterior derivative, and
(ii) it is compatible with Cartan’s filtration, i.e. it takes degree k forms pulled-back

from the base to degree k forms pulled-back from the base.

4.2. Iterated fibration morphisms. Given a smooth map f W eX �!fM between
manifolds with corners and iterated fibration structures, we can pull-back differential
forms onfM to differential forms on eX . However this will not pull-back ie-forms to
ie-forms (nor iie-forms to iie-forms) unless f is a b-map whose restriction to each
boundary hypersurface is a fiber bundle map. For this reason we think of these maps
as the “morphisms” in this setting.

Recall from Definition 2.4 that F 2 C1
b
.bX;cM/ means that F 2 C0.bX;cM/ has

a lift eF W eX �!fM
which is a smooth b-map between manifolds with corners; note that eF necessarily
preserves the boundary fibration structures in that its restriction to a boundary
hypersurface is a fibre bundle map. The differential of a smooth b-map extends
by continuity from the interior to a map between the iterated edge tangent bundles

DeF W ieTX �! ieTM

and we say that F is an ie-submersion if this map is surjective. As an example,
consider a boundary hypersurfaceH in a manifold with cornersfM endowed with an
iterated fibration structure. By definition, there is a fibrationH

�
��! eY , and bothH

and eY inherit boundary fibration structures from fM . It follows, directly from the
definitions, that � is a smooth b-map.
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The exponential mapping associated to an ie metric g provides another important
example of an ie-submersion. We explain this carefully. First note that the unit
ball bundle ieBM � ieTM is an open manifold with an iterated fibration structure
described as follows. To each boundary hypersurface H of fM corresponds a
boundary hypersurface

ieBHM D ieBM
ˇ̌
H

in ieBM , which is is the total space of a fibration  W ieBHM �! eY , where  is the
composition of the maps

ieBHM �! ieBH
D�
����!

ieBY �! eY
(the first map here is orthogonal projection andD� is the differential of the fibration
� W H �! eY ).
Lemma 4.3. The exponential map exp W ieBM

ˇ̌
M
�! M extends uniquely to a

smooth ie-submersion
exp W ieBM �!fM;

which for each boundary hypersurfaceH fits into the commutative diagram

ieBHM
exp
ˇ̌
H //

 
��

H

�
��eY id // eY

(4.4)

Proof. Wefirst prove thiswhenM has a simple edge, so that the tubular neighborhood
of its singular stratum is a bundle of cones, each of which has a smooth compact
cross-section. In this case, the resolutionfM is a manifold with fibered boundary:

� W @fM ! Y ;

with typical fiber Z. Introduce local coordinates .x; y; z/ so that

g D
dx2

x2
C
��gY

x2
C h;

where h is a symmetric 2-tensor orthogonal to dx=x which restricts to a smooth
family of metrics on each fiber Z ' ��1fyg.

Now let 
.t/ D .x.t/; y.t/; z.t// denote a geodesic starting at some point p0 D
.x0; y0; z0/ with x0 > 0 and with initial tangent vector . Px0; Py0; Pz0/ 2 Tp0M with
g-norm no greater than 1. We analyze the behavior of the first two coordinates x.t/
and y.t/ as the parameter x0 & 0. Indeed, from j
 0.t/jg � 1 we obtainˇ̌̌̌

x0.t/

x.t/

ˇ̌̌̌
� C; gY .y

0.t/; y0.t// � Cx.t/2;
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whence x.t/ D x0B1.t/, where jB1.t/j � C independently of initial conditions and
for jt j � �0. Then from jy0.t/j � x.t/B2.t/, where B2.t/ is similarly bounded,
we obtain finally that y.t/ D y0 C x0B3.t/. Now letting x0 ! 0, one obtains that
x.t/ D 0; y.t/ D y0 for all t 2 Œ0; �� for all geodesics starting at a point .0; y0; z0/.
This proves the result for depth one spaces.

Next assume that M has depth two. Using the notation above, replace Y by Y0
and assume thatZ is a bundle of cones C.Z1/ over the smooth manifoldZ1. In local
coordinates .x0; y0; x1; y1; z1/, the complete metric g takes the form

dx20
x20x

2
1

C
��0gY0

x20x
2
1

C
dx21
x21
C
��1gY1

x21
C hZ1 :

A geodesic 
.t/ D .x0.t/; y0.t/; x1.t/; y1.t/; z1.t// with j
 0.t/j � 1 satisfiesˇ̌̌̌
x00.t/

x0.t/x1.t/

ˇ̌̌̌
� C; gY0.y

0
0.t/; y

0
0.t// � C.x0.t/x1.t//

2;ˇ̌̌̌
x01.t/

x1.t/

ˇ̌̌̌
� C; gY1.y

0
1; y
0
1/ � Cx1.t/

2:

Arguing as before,

x1.t/ D x1.0/B1.t/; x0.t/ D x0.0/x1.0/B0.t/;

y1.t/ D y1.0/C x1.0/eB.t /; y0.t/ D y0.0/C x0.0/x1.0/eB0.t/;
where the coefficient functions are all uniformly bounded and smooth. This implies
the corresponding conclusion in this case as well.

The general case is very similar and is left to the reader.

It follows that expM restricts to a map of each fiber of �, and indeed it is easy to
see that this is the exponential map for the induced ie-metric on the fiber, i.e.

ieBHM
ˇ̌
��1.q/

expM //

�
''

��1.q/

ieB��1.q/
exp
��1.q/

99

where � is the orthogonal projection.

4.3. Hilsum–Skandalis maps. If bX and cM are smoothly stratified spaces and
F 2 C1

b
.bX;cM/ then pull-back of forms defines a map

F � W C1.M I iieƒ�/ �! C1.X I iieƒ�/
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which unfortunately need not act continuously on L2. However we explained in [3,
§9.3], following [27], how to replace F � with a “Hilsum–Skandalis map”

HS.F / W C1.M I iieƒ�/ �! C1.X I iieƒ�/

which extends to a bounded operator on L2. Recall that this map is defined
on ie�� (and then on iie��) using an ie-metric gM on M and a Thom form TM
for ieBM �!M , by: first defining �X and B.F / through the natural diagram

F �.ieBM/
B.F / //

�X

��

ieBM

�M

��
X

F //M

and then setting

HS.F /.!/ D .�X /�.B.F /�TM ^ .expM ı B.F //�!/ for all ! 2 C1.M I ieƒ�/:

Wewill make use of a boundary version of this map. Let YX be a singular stratum
of X and let F map YX into YM a singular stratum ofM . With the notation above,
the lift of F acting between the resolutions of X andM participates in

HX

�X
��

eF // HM

�M
��

YX
F // YM

(4.5)

We let J W ieBHM ,! ieBHMM be the inclusion and define

HSYX .
eF /.!/ D .�X ˇ̌HX /�.B.eF /�TM ˇ̌HM ^ .expM ˇ̌HM ı J ı B.eF //�!/

for all ! 2 C1.HM I ieƒ�T �HM /. The fact that the exponential map onM limits to
the exponential map on the fibers of �M indicates that the mapHS.F / should limit
toHSYX .F / which we now make precise.
Lemma 4.4. Given q 2 YX , let UF.q/ Š Œ0; 1/xM � B � ZM

F.q/
be a distinguished

neighborhood of F.q/ 2 YM , and let ! 2 DW.dM /, supported in UF.q/, have the
form

! D �x
�f=2
M .˛.!/C dxM ^ ˇ.!//Ce!

where � 2 C1.cM/ is a smooth cutoff function, ˛ and ˇ are smooth in B and
independent of xM (as sections of iieT �M ), and e! is in xML2.M Iƒ�iieT �M/.
Note that ˛.!/ and ˇ.!/ both necessarily have vertical degree f=2.

Then � D HS.F /! has an expansion at YX with leading term

x
�f=2
X .˛.�/C dxX ^ ˇ.�//
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and we have
x
�f=2
X ˛.�/

ˇ̌
HX
D HSYX .

eF /.x�f=2M ˛.!/
ˇ̌
HM

/: (4.6)

Proof. Note first that we can ignore the “error term” e!; indeed, since eF is a b-map,
the pull-back xM under eF is a product of nonnegative integer powers of defining
functions, one of is certainly xX . ThusHS.F /e! 2 xXL2.X Iƒ�iieT �X/.

If  is a smooth function on fM that is constant on the fibers of the boundary
fibration, then HS.F /. / is a smooth function on eX that is constant on the fibers
of the boundary fibrations. Indeed, the value of HS.F /. / at a point on the fiber
over q 2 YX is an average of the values of  on the fiber over F.q/ 2 YM , but  is
constant on the fibers.

In particular, HS.F /.�/ will be a smooth cut-off function on X with support
in a distinguished neighborhood Uq of q, and independent of xX in a small enough
distinguished neighborhood of q.

Next note that since ˛.!/ is independent of xM as a section of iieT �M ,
x
�f=2
M ˛.!/

ˇ̌
HM

is naturally a section of ƒ�iieT �HM , and so the right hand side
of (4.6) makes sense. In fact it is convenient to interpret bothę.!/ D x�f=2M ˛.!/ and ě.!/ D x�f=2M ˇ.!/

as sections of ƒ�iieT �HM pulled-back to UF.q/, which we denote j �ƒ�iieT �HM .
The function

p D expM ı B.F /
is smooth down to fxX D 0g where it restricts to

p0 D expM
ˇ̌
HX
ı B.eF /ˇ̌

��1
X
HX
:

Given a section 
 of j �ƒ�iieT �HM , we can pull it back by either p or p0, and clearly
we have

p�
 D p�0
 C dx ^ 

0
C 
 00; for some 
 0; 
 00 with j
 00j � CxX :

This shows that p�.x�f=2˛.!// will have vertical degree f=2 at xX D 0, and so
the left hand side of (4.6) makes sense and is naturally interpreted as a section of
ƒ�iieT �HX . It also establishes the equality (4.6) since the Thom form over HM is
the restriction of the Thom form overM , and the push-forward is along the restriction
of �X toHX .

4.4. Pull-back of mezzoperversities. Let .bX; gX / and .cM;gM / be smoothly strat-
ified spaces endowed with iie metrics and resolutions eX andfM respectively. Recall
from Definition 2.6 that a smooth codimension preserving map between them

F 2 C1b;cod .bX;cM/

is a map F 2 C0.bX;cM/ that lifts to a smooth b-map eF 2 C1.eX;fM/ such that
the codimension of a stratum of cM coincides with the codimension of its inverse



The Novikov conjecture on Cheeger spaces 479

image in bX . Given such a map, we use the boundary Hilsum–Skandalis maps to
define the pull-back of a mezzoperversity from cM to bX and then show that it is a
mezzoperversity on bX .

Let Y 1X ; : : : ; Y
T
X be an ordering of the strata of bX by non-decreasing depth, and

let
Y iM be the stratum ofM containing F.Y iX /

Note that the list Y 1M ; : : : ; Y
T
M may repeat strata of cM , and may not have all of the

strata of cM . Let H i
X and H i

M be the boundary hypersurfaces of eX and fM sitting
above Y iX and Y iM respectively, and denote the fibrations by

ZiX �H
i
X

�i
X

����! Y iX ; ZiM �H
i
M

�i
M

����! Y iM :

For each stratumY iM , letW i
M D W.Y

i
M /be the flat subbundle ofH

mid
WM .Z

i
M
/
.H i

M=Y
i
M /

inWM . Also, let use denote by

H`

W.Zi
M
/
.H i

M=Y
i
M /

the bundle of vertical Hodge cohomology with boundary conditions.

Note that, at each stratum Y iX and each q 2 Y iX , the induced map on the fiberseF q D eF ˇ̌
.Zi
X
/q
W .ZiX /q �! .ZiM /F.q/

is itself a smooth codimension-preserving b-map. Indeed, it is clearly a smooth map
and the “codimension-preserving” assumption is that it preserves the dimension of
the links, but “the link of a link is a link” so this is automatic.

In particular, since the fibers Z1X are depth zero stratified spaces so are their
images, i.e. they are both smooth closed manifolds. For q 2 Y 1X , it follows from [3]
and is easy to see directly, that HS.eF q/ induces a map in de Rham cohomology,
ŒHS.eF q/�, that only depends on the homotopy class of eF q .
Definition 4.5. We set:

F ].H`.H 1
M=Y

1
M //q D ŒHS.

eF q/� �H`..Z1M /F.q//� � H`..Z1X /q/;

It follows from the previous definition that

F ].H`.H 1
M=Y

1
M // D

[
q2Y 1

X

F ].H`.H 1
M=Y

1
M //q

is a vector subbundle of H`.H 1
X=Y

1
X / over Y

1
X . Notice that the pull-back maps

HS.eF q/ fit together to formHSY 1
X
.eF / which, from (4.4) and (4.5) satisfies

HSY 1
X
.eF /.�1M /�C1.Y 1M ; ƒjT �Y 1M / � .�1X /�C1.Y 1X ; ƒjT �Y 1X /:
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It follows, by Remark 4.2, that the map HSY 1
X
.eF / intertwines the Gauss–Manin

connections. Thus F ].H`.H 1
M=Y

1
M // is a flat subbundle of H`.H 1

X=Y
1
X / with its

natural flat structure.
Reasoning in the same way, if we define

W.Y 1X / D F
].W.Y 1M // D

[
q2Y 1

X

ŒHS.eF q/� �W.Y 1M /F.q/�
then W.Y 1X / is a flat subbundle of Hmid.H 1

X=Y
1
X / with its natural flat structure.

Moreover it follows from Lemma 4.4 that

HS.F /Dreg
WM

.ÄMdR/ � Dmax;W.Z1
X
/.d

X /

where the space on the right is defined in (2.1), and the space used on the left is
defined in [2, Lemma 2.2] as

Dreg
WM

.ÄMdR/ D fu 2 DWM
.ÄMdR/ W in a distinguished neighborhood

Uq D B � Œ0; 1� �Z around a point of a stratum Y ,
the terms in its asymptotic expansion are smooth on Bg:

Now since HS.F / intertwines dM and dX and is a bounded map on L2, it
follows that we can replace the domain on the left with its graph closure with respect
to dM and obtain

HS.F /DWM
.dM / � Dmax;W.Z1

X
/.d

X /:

These considerations suggests the following definition and theorem, and indeed
constitute most of the proof for depth one pseudomanifolds.
Definition 4.6. At the non-Witt strata of X we define

W.Y iX / D F
]W.Y iM / D

[
q2Y i

X

HS.eF q/.W.Y iM /F.q//
and we refer to the set

WX D F
]WM D fW.Y

i
X /g:

as the pull-back of the mezzoperversityWM by F .
Theorem 4.7. Let bX ,cM , F be as above. The pull-back of a mezzoperversity WM

onM is itself a mezzoperversity on X ,

WX D F
]WM :

The Hilsum–Skandalis replacement of F satisfies

HS.F /DWM
.dM / � DWX

.dX /; HS.F /dM D dXHS.F /
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and hence defines a map in de Rham cohomology

ŒHS.F /� W HjWM
.cM/ �! HjWX

.bX/; for every j 2 N0: (4.7)

This map is unchanged by varying F smoothly through smooth codimension-
preserving b-maps.

Proof. If bX has depth zero, that is, if bX is a smooth closed manifold, then since F is
codimension-preserving it must map into the smooth part of cM and the theorem is
classical. Let us inductively suppose that we have established the theorem for spaces
of depth less than the depth of bX .

At each singular stratum Y iX of bX , point q 2 Y iX , and for each ` 2 N0, define

F ].H`
WM .Z

i
M
/
.H i

M=Y
i
M //q D ŒHS.

eF q/��H`WM .Z
i
M
/
..ZiM /F.q//

�
sinceZiX has depth less than that of bX , by our inductive hypothesis this is a subspace
of

H`
WX .Z

i
X
/
..ZiX /q/:

By homotopy invariance these spaces together form a vector bundle

F ].H`WM
.H i

M=Y
i
M // D

[
q2Y i

X

F ].H`
WM .Z

i
M
/
.H i

M=Y
i
M //q;

which is flatwith respect to the natural flat structure ofH`
WX .Z

i
X
/
.H i

X=Y
i
X /. It follows

that at the non-Witt strata of X , W.Y iX / is a flat subbundle of H
mid
WX .Z

i
X
/
.H i

X=Y
i
X /,

and soWX is a mezzoperversity on bX .
At each stratum of bX , Lemma 4.4 shows that

HS.F /Dreg
WM

.ÄMdR/ � DWX
.dX /:

As above, we can replace the domain on the left with its graph closure with respect
to dM and obtain

HS.F /DWM
.dM / � DWX

.dX /:

Thus we have a map in de Rham cohomology (4.7). If we vary F smoothly through
smooth codimension-preserving b-maps, then we can use [3, Lemma 9.1] to see that
the map in cohomology is unchanged. (Note that although [3, Lemma 9.1] is stated
for homotopy equivalences, the construction does not use more than that the map is
smooth and codimension preserving.)

Finally, let us discuss the important case of a stratified homotopy equivalence.
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Theorem 4.8. Let .bX; gX /, .cM;gM /, and .bJ ; gJ / be pseudomanifolds endowed
with iie metrics. Let F 2 C1

b;cod
.bX;cM/ and G 2 C1

b;cod
.cM;bJ /, and let WJ be a

de Rham mezzoperversity on bJ . Then we have

.G ı F /].WJ / D F
]
�
G].WJ /

�
and a commutative diagram

H�WJ
.bJ /
ŒHS.G/� %%

ŒHS.GıF /� // H.GıF /]WJ
.bX/

H�
G]WJ

.cM/

ŒHS.F /�

77
:

In particular, if F W bX �!cM is a stratified homotopy equivalence then ŒHS.F /� is
an isomorphism.

Proof. This follows from [3, Lemma 9.2] where we showed that ŒHS.G ı F /� D
ŒHS.F /� ı ŒHS.G/�.

4.5. Twisted cohomology. In this section we will explain how the constructions
above define a pull-back map on twisted cohomology.

Let .cM;gM ;WM / be a pseudomanifold with an iie metric and de Rham
mezzoperversity. As in §3, let � be a countable, finitely generated, finitely presented
group, let r WcM �! B� be a classifying map that is smooth onM , and E �! M

an associated flat vector bundle. As described above this defines a closed domain for
the flat connection (which we think of as a twisted exterior derivative)

dE W DWM
.dE / � L2.M Iƒ�iieT �M ˝E/ �! L2.M Iƒ�iieT �M ˝E/

with corresponding twisted de Rham cohomology groups, H�WM
.cM IE/.

Now assume as in §4.2 that .bX; gX / is another pseudomanifold with an iie metric
and that

F 2 C1b;cod .bX;cM/

is a smooth codimension-preserving b-map. The map F ı r W bX �! B� defines a
flat bundle F �E �! X which is just the pull-back bundle of E with its pulled-back
connection. We also have the pulled-back mezzoperversity WX D F ]WM and we
can assume without loss of generality that the metric gX is adapted toWX .

It is straightforward to see that the Hilsum–Skandalis replacement of F
constructed above extends to a map

HS.F / W C1.M Iƒ�iieT �M ˝E/ �! C1.X Iƒ�iieT �X ˝ F �E/:
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Directly from its definition, the domain DWM
.dE / near a boundary hypersurface is

justN copies of the domainDWM
.dM /, so fromTheorem4.7we can see thatHS.F /

will map it into DWX
.dF

�E /, and thus ultimately induce a map in cohomology.
Just as above, the same considerations work if we use the canonical representation

of � on C �r �; we end up with a pull-back map from the differential forms on M
twisted by G .r/ to the differential forms on X twisted by G .F ı r/.
Theorem 4.9. Let bX ,cM , F , andE be as above. The Hilsum–Skandalis replacement
of F satisfies

HS.F /DWM
.dE / � DWX

.dF
�E /; HS.F /dE D dF

�EHS.F /

and the corresponding map in de Rham cohomology

ŒHS.F /� W HjWM
.cM IE/ �! HjWX

.bX IF �E/; for every j 2 N0

is unchanged by varyingF smoothly through smooth codimension-preserving b-maps
and is an isomorphism if F is a stratified homotopy equivalence.

Another natural extension ofHS.F / satisfies

HS.F /DWM
.dG .r// � DWX

.dG .F ır//; HS.F /dG .r/
D dG .F ır/HS.F /

and the induced map

HS.F / W ker dG .r/= Im dG .r/
�! ker dG .F ır/= Im dG .F ır/

is unchanged by varyingF smoothly through smooth codimension-preserving b-maps
and is an isomorphism if F is a stratified homotopy equivalence.

5. The analytic signature of a Cheeger space

Let .bX; gX / be an oriented pseudomanifold with an iie metric, and define the
intersection pairing of L2-differential forms by

L2.X Iƒ�iieT �X/ � L2.X Iƒ�iieT �X/
Q // R

.u; v/
� //

R
X
u ^ v:

Every mezzoperversityW onX has an associated dual mezzoperversityDW [2, §6].
The simplest characterization of DW is to point out that if gX is adapted toW then
the Hodge star induces a bijection

� W DW.d/ �! DDW.d/:

The restriction ofQ,

Q W DW.d/ �DDW.d/ �! R;
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is non-degenerate and descends to a non-degenerate pairing

Q W H�W.bX/ � H�DW.
bX/ �! R:

We can think of this as a refinement of Goresky–MacPherson’s generalized Poincaré
duality.
Definition 5.1. A mezzoperversity W is self-dual if W D DW . A pseudomani-
fold bX on which there is a self-dual mezzoperversity is a Cheeger space.

Not all pseudomanifolds bX are Cheeger spaces. For example a space with isolated
conic singularities is a Cheeger space if and only if the signatures of the links vanish.
The reductive Borel–Serre compactification of a Hilbert modular surface is a more
intricate example of a Cheeger space, see [1, 11].

Let bX be a Cheeger space andW a self-dual mezzoperversity with an adapted iie
metric g. In this case the intersection pairing is a non-degenerate pairing

Q W H�W.bX/ � H�W.bX/ �! R : (5.1)

Moreover, as already pointed out, the Hodge star is now a linear map

� W DW.ÄdR/ �! DW.ÄdR/: (5.2)

This allows for the definition of the signature operator, as we shall now explain.
IfbX is even-dimensional, theHodge star induces a natural involution on the compactly
supported differential forms on X ,

I W C1c .X Iƒ�T �X/ �! C1c .X Iƒ�T �X/; I2 D Id (5.3)

that extends to L2 iie forms

I W L2.X Iƒ�.iieT �X// �! C1c .X Iƒ�.iieT �X//; I2 D Id :

TheC1, �1 eigenspaces define the self-dual and anti-self-dual forms,

L2.X Iƒ�C.
iieT �X//; and L2.X Iƒ��.

iieT �X//:

The de Rham operator, extended to complexified forms, anticommutes with I and
this defines, as usual, the signature operator

Äsign D

�
0 Ä�sign

ÄCsign 0

�
:

If bX is odd-dimensional, the signature operator is

Äsign D �i.dI C Id/ D �iI.d � ı/ D �i.d � ı/I :
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To summarize, the signature operator is an unbounded operator with domain
equal to complex-valued compactly supported differential forms, suitably graded in
the even dimensional case.

IfW is a self-dualmezzoperversity andX is even-dimensional, then by (5.2), we
can define

DW.Ä˙sign/ D DW.ÄdR/ \ L
2.X Iƒ�˙.

iieT �X//:

We then obtain [2, Theorem 7.6]:
Theorem 5.2. Let .bX; g/ be an even dimensional stratified space endowed with a
suitably scaled iie metric g and Cheeger ideal boundary conditions corresponding
to a self-dual mezzoperversityW . The signature operator

ÄCsign W DW.ÄCsign/ � L
2.X Iƒ�C.

iieT �X// �! L2.X Iƒ��.
iieT �X//

is closed and Fredholm, with adjoint .Ä�sign;DW.Ä�sign//. Its Fredholm index is equal
to the signature of the generalized Poincaré duality quadratic formQ from (5.1).

If bX is odd dimensional we define

DW.Äsign/ D DW.ÄdR/

Using (2.2) and (5.2) we see immediately that .Äsign;DW.Äsign// is well defined,
self-adjoint and Fredholm.

In this section we will show that this signature depends only on the Cheeger
space bX itself. We will also prove analogous statements for the twisted “higher”
signature operator.

From now on we assume that all spaces are oriented and all representations are
over the field of complex numbers.

5.1. K-homology classes. We start by using the results from [3] recalled above to
see that given .bX; g;W/, a Cheeger space with a self-dual mezzoperversity and an
adapted iie-metric, the corresponding signature operator defines aK-homology class
in K�.bX/ D KK�.C.bX/;C/. This extends the construction from [3] and [40] for
Witt spaces.

Recall [5,13] that an even unbounded Fredholmmodule for C.bX/ is a pair .H;D/
satisfying
(1) D is a self-adjoint unbounded operator acting on the Hilbert space H , which

also has an action (unitary �-representation) of C.bX/;
(2) C.bX/ has a dense �-subalgebra A whose action preserves the domain of D and

satisfies

a 2 A H) ŒD; a� extends to a bounded operator onH I

(3) IdCD2 is invertible with compact inverse;
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(4) There is a self-adjoint involution � on H commuting with C.bX/ and anti-
commuting withD.

An odd Fredholm module for C.bX/ is a pair .H;D/ satisfying all but the last of these
conditions.

In view of this definition we point out that the class of functions C1.bX/ from
Definition 2.3 form a dense subset of C.bX/ (e.g. by the Stone–Weierstrass theorem).
We also point out that, from [2, Theorem 6.6], ifD D .Äsign;DW.Äsign//, then

.IdCD2/�n�1 is trace-class on L2.X Iƒ�C
iieT �X/: (5.4)

Theorem 5.3. Let .bX; g;W/ be a Cheeger space with a self-dual mezzoperversityW
and adapted iie metric g. The signature operator .Äsign;DW.Äsign// defines an
unbounded Fredholm module for C.bX/ and thus a class ŒÄsign;W � 2 KK�.C.bX/;C/,
� � dimX mod 2. The class ŒÄsign;W � does not change under a continuous homotopy
of metrics and self-dual mezzoperversities.

Proof. In the notation above, we take H D L2.X I iieƒ�X/, endowed with the
natural representation of C.bX/ by multiplication operators, A D C1.bX/, D D
.Äsign;DW.Äsign//, and � D I from (5.3). All the conditions defining an unbounded
Kasparov module are easily proved using the results of the previous section.
First, note that multiplication by any element f of A preserves DW.Äsign/. Next,
note that ŒÄsign; f � is given by Clifford multiplication by df which exists everywhere
and is an element in L1.bX/; in particular ŒÄsign; f � extends to a bounded operator
on H ; finally we know that .1CD2/�1 is a compact operator (indeed, the compact
inclusion of DW into L2, together with self-adjointness proves that both .i CD/�1
and .�i CD/�1 are compact). Moreover we recall equation (5.4). Thus there is a
well defined class in KK�.C.bX/;C/ which we denote simply by ŒÄsign;W �.

Given a homotopy .gt ;Wt / of self-dual mezzoperversities and adapted iie
metrics, let Ätsign;Wt

be the corresponding signature operators, with domains in
H D Ht . Proceeding as in the work of Hilsum on Lipschitz manifolds [25] one can
prove that the 1-parameter family .Ht ; Ätsign;Wt

/ defines an unbounded operatorial
homotopy; using the homotopy invariance of KK-theory one obtains

ŒÄ0sign;W1
� D ŒÄ1sign;W2

� in KK�.C.bX/;C/ :
We omit the details since they are a repetition of the ones given in [25].

We can carry out the same construction for the signature operator twisted by
a flat C-vector bundle as we have considered above. However the machinery of
K-homology makes this unnecessary; indeed the class ŒÄsign;W � determines the index
of the signature operator with coefficients in E.

Coefficients in a bundle of C �-algebra modules does require a different, though
formally very similar, construction. Thus let .bX; g;W/ be a Cheeger space with a
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self-dual mezzoperversity and an adapted iie metric, and let r W bX �! B� be a
classifying map for a �-covering with � a finitely generated discrete group. Let G .r/
be the flat bundle associated to r with fiber C �r � .

First note that exactly as above we have a twisted signature operator,

.ÄG .r/
sign ;DW.ÄG .r/

sign //;

which by Theorem 3.2 is closed, Fredholm, and self-adjoint and has domain is
C �r �-compactly included in L2.X Iƒ�iieT �X ˝ G .r//. As in [3, Proposition 6.4]
these facts can be combined with arguments of Skandalis, published in [44], to prove
the following theorem:

Theorem 5.4. Let .bX; g;W/, r W bX �! B� , and G .r/ be as above.

� If D is the operator .ÄG .r/
sign ;DW.ÄG .r/

sign //, then IdCD2 is surjective (i.e. D is a
“regular” operator).

� The operator D and the C �r �-Hilbert module L2.X Iƒ�iieT �X ˝ G .r// define
an unbounded Kasparov .C; C �r �/-bimodule and thus a class in K�.C �r �/. We
call this the index class associated toD and denote it by

Ind.ÄG .r/
sign;W/ 2 KK�.C; C

�
r �/ ' K�.C

�
r �/:

� If
ŒŒÄsign;W �� 2 KK�.C.bX/˝ C �r �;C �r �/

is the class obtained by tensoring the class ŒÄsign;W � 2 KK�.C.bX/;C/with IdC�r � ,
then

Ind.ÄG .r/
sign;W/ D ŒG .r/�˝ ŒŒÄsign;W ��:

That is, the index class of the higher signature operator is the Kasparov product
of ŒŒÄsign;W �� with ŒG .r/� 2 KK0.C; C.bX/˝ C �r �/.

Corollary 5.5. Let ˇ W K�.B�/! K�.C
�
r �/ be the assembly map; let r�ŒÄsign;W � 2

K�.B�/ the push-forward of the signature K-homology class. Then

ˇ.r�ŒÄsign;W �/ D Ind.ÄG .r/
sign;W/ in K�.C

�
r �/: (5.5)

Proof. Since Ind.ÄG .r/
sign;W/ D Œ

fC �r ��˝ ŒŒÄsign;W ��, this follows immediately from the
very definition of the assembly map, see [30, 31].

We point out that so far all of our constructions depend on .g;W/, though they
are unchanged under a homotopy of this data.
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5.2. Stratifiedhomotopy invariance of the analytic signature. Let .cM;gM ;WM /

be an oriented Cheeger space with a self-dual mezzoperversity and an adapted
iie-metric. Let bX be an oriented Cheeger space and F W bX �! cM an orientation-
preserving stratified homotopy equivalence, WX D F ].WM / and gX an adapted
iie-metric. We have already shown that the de Rham cohomology groups are stratified
homotopy invariant, so that

ŒHS.F /� W H�WM
.cM/

Š
���! H�WX

.bX/:
Each of these cohomology spaces has a quadratic form (5.1) and it is a priori not
clear what if any relation the two quadratic forms will have. This is, however, exactly
the situation for which the Hilsum–Skandalis replacement was formulated. We can
use [3, Proposition 9.3] (cf. [27, Lemma 2.1]) to see that the signature of H�WX

.bX/
is equal to the signature of H�WM

.cM/ with their respective quadratic forms.
We also have the corresponding result for the signature operator twisted by a flat

bundle of projective C �-modules.
Theorem 5.6. Let .cM;gM ;WM / be an oriented Cheeger space with a self-dual
mezzoperversity and an adapted iie-metric. Let bX be an oriented Cheeger space and
F W bX �! cM an orientation-preserving stratified homotopy equivalence, WX D

F ].WX / and gX an adapted iie-metric. Let � be a countable, finitely generated,
finitely presented group and let r W cM �! B� be a classifying map. We have an
equality

Ind.ÄG .r/
sign;WM

/ D Ind.ÄG .F ır/
sign;WX

/ in K�.C �r �/:

Proof. As in §9.4 of [3], let

QX W L
2.X Iƒ�iieT �X ˝ G .r// � L2.X Iƒ�iieT �X ˝ G .r// �! C �r �

QX .u; v/ D

Z
X

u ^ v�

and denote the adjoint of an operator T with respect toQX by T 0.
From [27, Lemma 2.1], it suffices to show that:

(a) HS.F /dG .r/ D dG .F ır/HS.F / andHS.F /.DW.d
G .r/// � DF ]W.dG .F ır//

(b) HS.F / induces an isomorphism

HS.F / W ker dG .r/= Im dG .r/
�! ker dG .F ır/= Im dG .F ır/

(c) There is a bounded operator ‡ on a Hilbert module associated tocM , acting on
DW.d

G .r//, such that Id�HS.F /0HS.F / D dG .r/‡ C ‡dG .r/

(d) There is a bounded involution " oncM , acting on DW.d
G .r// commuting with

Id�HS.F /0HS.F / and anti-commuting with dG .r/.
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We have established (a) and (b) in Theorem 4.9. The computations in the proof of
Proposition 9.3 in [3] show that Id�HS.F /0HS.F / D dG .r/‡ C ‡dG .r/, with ‡
constructed in [3, Lemma 9.1], and we can check that it preserves DW.d

G .r//.
Finally, for (d ), it suffices to take "u D .�1/juju, on all forms u of pure differential
forms degree juj.

5.3. Bordism invariance of the analytic signature. We will define a bordism
between stratified pseudomanifolds with self-dual mezzoperversities, that is Cheeger
spaces. The corresponding topological object was introduced by Banagl in [6]
where it was denoted �SD� , and was later considered by Minatta [39] where it was
denoted Sig, short for “signature homology.”
Definition 5.7. If M is a topological space, we denote by Sigann .M/ the bordism
group of four-tuples .bX; g;W ; r W bX �!M/ where bX is an oriented Cheeger space
of dimension n,W is a self-dual Hodge mezzoperversity, g is an adapted iie metric,
and r W bX �!M is a continuous map.

An admissible bordism between .bX; g;W ; r W bX �! M/ and .bX 0; g0;W 0; r 0 WbX 0 �!M/ is a four-tuple .X ; G;W ; R WX �!M/ consisting of:
(i) a smoothly stratified, oriented, compact pseudomanifold with boundary X ,

whose boundary is bX t bX 0, and whose strata near the boundary are collars of
the strata of bX or bX 0,

(ii) an iie metric G on X that near the boundary is of the collared form dx2 C g

or dx2 C g0,
(iii) an adapted self-dual mezzoperversity W that extends, in a collared way, that

of bX and bX 0,
(iv) a map R WX �!M that extends r and r 0.
If M is a point, we will leave off the trivial maps r W bX �! fptg from the

descriptions of the elements of Sigann .pt/.

Theorem 5.8. If .bX; g;W/ and .bX 0; g0;W 0/ are n-dimensional and cobordant then
the indices of the corresponding signature operators coincide,

ind.ÄXsign;DW.ÄXsign// D ind.ÄX 0sign;DW0.ÄX
0

sign//

and so this Fredholm index defines a map

Sigann .pt/ �! Z:

Similarly, for any finitely generated discrete group, � , the index class of the twisted
signature operators defines a map

Sigann .B�/ �! Kn.C �r �IQ/ (5.6)

where the latter group is Kn.C �r �/˝Z Q.
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We point out that the spaces Sigann .M/ form an Abelian group (under disjoint
union) and the analytic signature maps from this theorem are group homomorphisms.

Proof. We proceed as in [3, §7]. We shall only deal with the case where n is
even, the case n odd being actually simpler. Let .X ; G;W / be a bordism between
.bX; g;W/ and .bX 0; g0;W 0/, where dim X D n (X denotes the regular part of bX ).
Let C0.X / denote the vector space of continuous functions on X which are zero on
the boundary @X . To the semisplit short exact sequence

0! C0.X /! C.X /! C.@X /! 0

and the inclusion i W @X !X , one associates the following long exact sequence

� � � ! KK1.C0.X /; C �r �/
ı
! KK0.C.@X /; C �r �/

i�
! KK0.C.X /; C �r �/! � � �

Thus i� ı ı D 0. First we apply this exact sequence to the case where � D f1g,
C �r f1g D C.

Since by definition the elements of C0.X / vanish at @X , we can proceed as
in the proof of Theorem 5.3 in order to show that ÄX

sign;W defines an unbounded
Fredholm .C0.X /;C/ bi-module and thus a class ŒÄX

sign;W � in KK1.C0.X /;C/ D
K1.X ; @X /. Since the metric and the self-dual mezzoperversities are “collared”
near the boundary of X , the same proof as in [3, §7] applies to show that

ıŒÄX
sign;W � D 2ŒÄ

X
sign;W �˚ 2Œ�ÄX 0sign;W0 �

Consider the constant map � WX ! fptg, we write its restriction to @X under the
form �@ D � ı i . We have a natural map

�@� W KK0.C.
bX/;C/! KK0.C;C/ ' Z ;

and similarly for KK0.C.bX 0/;C/. The index of ÄXsign;W (or the signature of
.X; g;W/) is then equal to �@�.ŒÄXsign;W �/. Recall that i�ı D 0. Therefore, the
difference of twice the signatures of .X; g;W/ and .X 0; g0;W 0/ is given by

�@�
�
2ŒÄXsign;W �˚ 2Œ�ÄX 0sign;W0 �

�
D �@�ıŒÄ

X
sign;W � D ��i�ıŒÄ

X
sign;W � D 0 :

Since Z has no torsion, we are done.
A similar argument [3, §7] works in the presence of a finitely generated discrete

group, � . Given .X ; G;W ; R W X �! B�/, let @W D W
ˇ̌
@X

and @R D R
ˇ̌
@X

.
We argue as above but now using that .X ; G;W ; R W X �! B�/ defines a class
ŒÄG .R/

sign;W � 2 KK1.C0.X /; C �r �/, the exactness of

KK1.C0.X /; C �r �/
ı
��! KK0.C.@X /; C �r �/

i�
���! KK0.C.X /; C �r �/;

and the fact that ıŒÄG .R/
sign;W � D Œ2Ä

G .@R/

sign;@W �.
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5.4. The analytic signature does not depend on the mezzoperversity. In [8],
Banagl gave a clever argument to show that the signature of a self-dual sheaf on an
L-space (a topological version of a Cheeger space, see below and [1]) is the same for
every self-dual sheaf. We now show that the same argument works in the analytic
setting, and we will later make use of this result to connect the topological and
analytic signatures. In particular, we show that if .bX; g;W/ is a Cheeger space with
a self-dual mezzoperversity W and an adapted metric, then the analytic signature
depends only on bX and not on g orW .

Theorem 5.9. Let bX be a Cheeger space and let .g;W/ and .g0;W 0/ be two pairs
of self-dual Hodge mezzoperversities with adapted iie-metrics. For any topological
space,M , and a map r W bX �!M ,

.bX; g;W ; r W bX �!M/ is cobordant to .bX; g0;W 0; r W bX �!M/:

Proof. Let us consider the pseudomanifold with boundary

X D bX � Œ0; 1�t :
Instead of the product stratification, let us stratifyX using the strata of bX as follows:

(i) The regular stratum of bX contributes X � Œ0; 1�

(ii) Every singular stratum of bX , Y k , contributes three strata to X ,

Y k � Œ0; 1=2/; Y k � .1=2; 1�; Y k � f1=2g:

Notice that the link of X at Y k � Œ0; 1=2/ and Y k � .1=2; 1� is equal to Zk , while,
a neighborhood of Y k � f1=2g in X fibers over Y k � f1=2g with fiber R � C.Zk/,
and so

the link of X at Y k � f1=2g is the (unreduced) suspension of Zk , SZk .

The lower middle perversity intersection homology of SZk , when dimZk D 2j �1,
is given by [18, p. 6]

ImHi .SZ
k/ D

8̂<̂
:
ImHi�1.Z

k/ i > j

0 i D j

ImHi .Z
k/ i < k

so X always satisfies the Witt condition at the strata Y k � f1=2g.
Let us endow X with any iie metric G such that, for some t0 > 0,

G
ˇ̌
X�Œ0;t0/

D g C dt2; G
ˇ̌
X�.1�t0;1�

D g0 C dt2:
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Next we need to endow X with a self-dual mezzoperversity W . Let Y 1; : : : ; Y T
be an ordering of the strata of bX with non-decreasing depth. Denote

W D fW 1
�! Y 1; : : : ; W T

�! Y T g;

W 0 D f.W 1/0 �! Y 1; : : : ; .W T /0 �! Y T g

and denote the fiber of, e.g. W j �! Y j at the point q 2 Y j , by W j
q . Let us define

W 1
� �! Y 1 � Œ0; 1=2/

by requiring that the Hodge–de Rham isomorphism identifies all of the fibers.
Notice that the vertical L2-de Rham cohomology is constant along the fibers
of H 1 � Œ0; 1=2/ �! Y 1 � Œ0; 1=2/, by stratified homotopy invariance, so this
condition makes sense and determines a flat, self-dual, vector bundle. (Where
we are using that self-duality can be checked at the level of de Rham cohomology.)
It may be necessary to scale the metric to make it compatible with W 1

� , but this
can always be done without changing the metric in a collar neighborhood of @X ,
since the original metrics and mezzoperversities are initially adapted. Once this is
done, we can define W 2

� �! Y 2 � Œ0; 1=2/ in the same way, and inductively define
W 3
� �! Y 3 � Œ0; 1=2/; : : : ; W T

� �! Y T � Œ0; 1=2/.
We define W j

C �! Y j � .1=2 � 1� in the same way to obtain

W D fW 1
� �! Y 1 � Œ0; 1=2/;W 1

C �! Y 1 � .1=2; 1�; : : :

: : : ; W T
� �! Y T � Œ0; 1=2/;W T

C �! Y T � .1=2; 1�g;

a self-dual mezzoperversity over X .
(In summary, we extend the metrics g and g0 arbitrarily to an iie metricG without

changing them in collar neighborhoods of the boundary, and then we choose a Hodge
mezzoperversity by extending the de Rham mezzoperversities trivially from Y i to
Y i � Œ0; 1=2/ on the left and from Y i to Y i � .1=2; 1� on the right.)

Note the key point that since the strata induced by Y k � Œ0; 1=2/ are disjoint from
the strata induced by Y k � .1=2; 1�, there is no compatibility required between the
corresponding mezzoperversities.

Finally, define R WX �!M by R.�; t/ D r.�/. The result is a cobordism

.X ; G;W ; R WX �!M/;

between .bX; g;W ; r W bX �!M/ and .bX 0; g0;W 0; r W bX �!M/.

This result suggests that we should define a seemingly coarser cobordism theory.
Definition 5.10. If M is a topological space, we denote by �Che

n .M/ the bordism
group of pairs .bX; r W bX �! M/ where bX is an oriented Cheeger space and
r W bX �!M is a continuous map smooth on X .
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An admissible bordism between .bX; r W bX �! M/ and .bX 0; r 0 W bX 0 �! M/ is
a pair .X ; R WX �!M/ consisting of:

(i) a smoothly stratified, oriented, compact pseudomanifold with boundary X ,
whose boundary is bX t bX 0, and whose strata near the boundary are collars of
the strata of bX or bX 0,

(ii) a map R WX �!M that extends r and r 0.

We also require that X is a “Cheeger space with boundary” in that it carries a
self-dual mezzoperversity with a collared structure near its boundary.

There is an obvious forgetful map F W Sigann .M/ �! �Che
n .M/ and the previous

theorem shows that this map is an isomorphism.

Corollary 5.11. Every Cheeger space bX has a well-defined analytic signature,
� an.bX/, equal to the index of the signature operator .Äsign;DW.Äsign// for any choice
of self-dual mezzoperversity W and adapted iie metric g. The signature defines a
homomorphism

�Che
n .pt/ �an

// Z

ŒbX� � // ind.Äsign;DW.Äsign//:

Moreover if � is a finitely generated discrete group then for any smooth map
r W bX �! B� there is a signature class in K0.C �r �IQ/ depending on no other
choices. This signature class defines a group homomorphism

�Che
n .B�/

�an
� // K0.C �r �IQ/

ŒbX; r� � // Ind.ÄG .r/
sign;W/

(5.7)

whereW is any self-dual mezzoperversity on bX .

We can combine this with Theorem 5.6 to see that if bX and cM are Cheeger
spaces and they are stratified homotopically equivalent (smoothly or continuously,
by Theorem 2.8), then

� an.bX/ D � an.cM/ in Z:

Also, if .cM; r W cM �! B�/ 2 �Che
n .B�/ and F 2 C1

b;cod
.bX;cM/ is a stratified

homotopy equivalence then

� an
� .
cM; r/ D � an

� .
bX;F ı r/ in K�.C �r �/: (5.8)

Remark 5.12. It would be interesting to find a purely topological definition of � an
�

as in the work of Banagl [10] and Friedman–McClure [20] for Witt spaces; by
Corollary 7.4 such a signature would coincide with � an

� over ZŒ1
2
�.
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6. The higher analytic signatures of a Cheeger space

6.1. The analytic L-class of a Cheeger space. Following Thom [47,48], Goresky–
MacPherson [22], and Banagl [8] we define the (analytic) L-class of a Cheeger space
as an element in homology (see also the work of Cheeger [16] on Witt spaces). The
results of the previous section are used to show that this is independent of choices
and intrinsic to the Cheeger space.

By means of [21, 46] we may identify a smoothly stratified space bX with a
Whitney stratified subset of RN for some N � 1. Fixing such an identification, and
following [22, §5.3], we say that a continuous map f W bX �! Sk is transverse if:
(a) f is the restriction of a C1 map ef W U �! Sk for some neighborhood U of bX

in RN ,
(b) ef is transverse to the north poleN 2 Sk ,
(c) ef �1.N / is transverse to each stratum of bX .
Lemma 6.1. Let bX be a Cheeger space and k 2 N.

(i) If f W bX �! Sk is a transverse map then f �1.N / is naturally a Cheeger
space.

(ii) There is a unique map
� W ŒbX; Sk� �! Z;

where ŒbX; S2q� denotes the set of homotopy classes of continuous maps, which
assigns the number � an.f �1.N // to each transverse map f W bX �! Sk .

Proof. (i) Because ef �1.N / is a smooth submanifold of RN that is transverse to
all strata of bX , we know from [23, §1.11] that f �1.N / D ef �1.N /\ bX is naturally
stratified with strata

ff �1.N / \ Y W Y is a stratum of bXg
and that the inclusion f �1.N / ,! bX is “normally non-singular.” In particular,
this means that f �1.N / has a tubular neighborhood in bX that can be identified
with a neighborhood of the zero section of the normal bundle of ef �1.N / in RN ,
restricted to bX . As this normal bundle is trivial (since it is induced from the normal
bundle of N 2 Sk), f �1.N / has a neighborhood in bX of the form U � f �1.N /
(cf. [40, Proof of Theorem 5.1]).

The projection mapU �f �1.N / �! f �1.N / is stratum preserving (whereU �
f �1.N / is stratified by restricting the stratification of bX ) by [23, Theorem 1.11(4)]
and so f �1.N / naturally inherits Thom–Mather data from bX , and the link of a
point in f �1.N / coincides with its link in bX (see [24, Proposition 5.2] for a much
more general case). It also follows that any iie metric on bX restricts to an iie metric
on f �1.N / and both of these metrics induce the same metric on each link Zk , and
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that any mezzoperversity W on bX induces a mezzoperversity on f �1.N /. Since
self-duality of W can be checked using the metric on each link, it follows that
self-dual mezzoperversities induce self-dual mezzoperversities. Thus f �1.N / is a
Cheeger space.

(ii) As in [22, §5], standard techniques show that every continuousmapbX �! Sk
may be approximated by a transverse map in the same homotopy class, and that
between any two such maps there is a transverse homotopy H W bX � Œ0; 1� �! Sk .
Note that, by the same arguments as above, H�1.N / is a Cheeger space with
boundary. This proves that themap � can (only) be defined by choosing any transverse
representative f W bX �! Sk in a homotopy class ŒbX;Sk� and assigning to it the
number � an.f �1.N //.

If 2q is an even integer such that 4q > nC 1, then

H2q.bX IQ/ Š ŒbX; S2q�˝Q

where ŒbX; S2q� denotes the set of homotopy classes of continuous maps, and so the
map � from the lemma induces a map:

H 2q.bX IQ/ �! Q

and so a class inH2q.bX IQ/. If 4q � nC 1, we pick an integer ` > nC 1 such that
4qC4` > nC`C1, and then byKünnethwe haveH2qC2l.bX�S2`IQ/ ' H2q.bX IQ/.
Note that bX �S2` is a Cheeger space (with the product stratification, as is the product
of bX with any smooth manifold).
Definition 6.2. The L-class L.bX/ of a Cheeger space bX is the rational homology
class L.bX/ 2 Heven.bX IQ/ defined in the following way. For any even integer 2q
such that 4q > n C 1 and any smooth map F W bX ! S2q transverse to the North
pole N ,

hL.bX/; ŒF �i D � an.F �1.N //

where ŒF � denotes the associated cohomology class in H2q.bX IQ/ and � an.F �1.N //

is the signature of the Cheeger space F �1.N /. If 4q � n C 1 then one considersbX � S2` for `� 1 as explained above.

6.2. The Chern character and the L-class. Let .bX; g;W/ be a Cheeger space
with a self-dual mezzoperversity and an adapted iie metric. We have seen that the
associated signature operator defines a class in K-homology,

ŒÄsign;W � 2 K�.bX/
and we have defined an L-class of bX in the rational homology of bX . In this section
we extend a result of Cheeger [16] andMoscovici–Wu [40] relating these two objects,
namely the Chern character

Ch W K�.bX/˝Q �! H�.bX;Q/
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takes one to the other. We start by establishing a preliminary result on finite
propagation speed that will be useful in the proof.

The next theorem states that the finite speed property continues to holds in our
setting, despite the fact that the ideal boundary conditions are not preserved by the
multiplication by Lipschitz functions. Note that the distance associated to an iie
metric satisfies

dist.p; p0/ D sup jf .p/ � f .p0/j
where f runs over the subset of elements of C1.bX/ such that kg.dfjX /k1 � 1.
Theorem 6.3. Let dist denote the distance associated with the iie metric g and
consider the de Rham operator with domain corresponding to a mezzoperversityW ,
.ÄdR;DW.ÄdR//. There exists ı0 > 0 such that for any real t 2 Œ�ı0; ı0�:

Supp .eit ÄdR/ � f.p; p0/ 2 bX � bX j dist.pIp0/ � jt j g :
Proof. Because .ÄdR;DW.ÄdR// is self-adjoint, the operator eit ÄdR defines for any
real t a bounded operator on H D L2.X Iƒ�iieT �X/ which preserves DW.ÄdR/.
We follow Hilsum and his proof of Corollary 1.11 in [26]. We can assume t > 0 at
the expense of working with �ÄdR instead of ÄdR. Consider two Lipschitz functions
�; on bX with compact support such that kg.d�jX /k1 � 1, kg.d jX /k1 � 1 and

dist.supp .�/I supp . // > t :

We can assume that both � and  are compactly supported in a distinguished
neighborhood Uq Š Œ0; "0/ � Bh � Zq of a point q on a singular stratum. It is
clear that � (resp.  ) is a uniform limit of a sequence .�k/ (resp. . k/) of elements
of C1.bX/ satisfying the same properties and having support in a fixed compact
subset of Uq . Following Hilsum we consider the function hk defined on bX by:

hk.p/ D inf.jt j; dist.p; supp�k// �  k.p/C inf  k; if p 2 supp k
hk.p/ D inf.jt j; dist.p; supp�k// � �k.p/C inf �k; if p 2 supp�k
hk.p/ D inf.jt j; dist.p; supp�k// otherwise :

Lemma 6.4. There exists ı0 2 .0; "0� such that for each t 2 .�ı0; ı0/ and each
k 2 N�, each stratum has a neighborhood in which hk does not depend on the link
variable.

Proof. In a distinguished neighborhood of a point in a singular stratum we have
coordinates .x; y; z/ such that the metric g has the form:

g D .dx/2 C ��gY .y/C x
2hZ.y/ ;

where a choice of a connection is understood. Observe that this metric is bundlelike
and that the fibers in Z define a Riemannian foliation. Let

t ! .x; y; zI �; �; �/.t/
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denote a geodesic in the domain of this chart, where t 2 Œ0; a�. If its tangent vector
at t D 0 is orthogonal to the fiber in Z then its projection onto the basis will be a
geodesic with the same length. One then gets easily the lemma.

Therefore, the multiplication by each hk preserves the domain DW , and an
immediate extension of Lemma 1.10 of [26] shows that  keit Äsign;W�k D 0 as an
operator acting on H . Moreover, the two sequences of multiplication operators
. k/k2N, .�k/k2N converge in B.H/ respectively to the multiplication operators
defined by  and �. One then gets immediately  eit Äsign;W� D 0 which proves the
result.

Theorem 6.5.
(1) The operator ÄdR with domain DW.ÄdR/ admits an "�local parametrix G1 such

that ÄdRG1 � Id and G1ÄdR � Id are trace class.
(2) For any h 2 S.R/, the operator h.ÄdR/ is trace class.

Proof. (1) Note that (5.4) shows that G D Ä2n�1dR .IdCÄ2ndR /�1 defines a
parametrix for ÄdR with compact remainder. Set for any real s, f .s/ D s2n�1

1Cs2n
.

We observe that .i t/4nC1bf .t/ D 3.@4nC1s f /.t/. Therefore:

G D

Z
R
eitÄdRbf .t/ dtp

2�
:

Consider " 2 .0; ı0=2� and � 2 C1.RI Œ0; 1�/ such that �.t/ D 0 for t 2 Œ�"; "�
and �.t/ D 1 for jt j � 2". Using integration by parts one checks easily that for any
integer k � 2:

ÄkdR
Z
R
eitÄdR.�.t/.i t/�4n�1/ .i t/4nC1bf .t/ dtp

2�

is bounded on L2iie. Now it follows from [2, Theorem 4.5] that

u; ÄkdRu 2 L
2.X Iƒ�iieT �X/ H) u 2 �1=2�"H k

iie.X Iƒ
�iieT �X/

for any “total boundary defining function” � and every " > 0, so one checks easily
that Z

R
eitÄdR�.t/bf .t/ dtp

2�

has range in \"0>0 �1�"
0

H 2n
iie . Therefore, using Theorem 6.3 one sees that

G1 D

Z
R
eitÄdR.1 � �.t//bf .t/ dtp

2�

does the job.
The proof of (2) is simpler than that of (1) and is left to the reader.
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Theorems 6.3 and 6.5 allow to proceed as in Moscovici–Wu [40] in order to prove
the following
Theorem 6.6. The Chern character Ch WK�.bX/ ˝ Q �! H�.bX;Q/ sends the
K-homology class of the signature operator Äsign;W to the analytic L-class in
homology.

Proof. We follow closely [40] and describe only the steps that could exhibit a (modest)
new difficulty. Let u 2 C1.R/ be an even function such that the function v.x/ D
1 � x2u.x/ is Schwartz and both u and v have Fourier transforms supported in
.�1=4; 1=4/. There are smooth functions u; v such that

u.x2/ D u.x/; v.x2/ D v.x/ :

Note that v is Schwartz and so is the function

w.x/ D
1 � v.x/2

x
v.x/ :

For each real t > 0, Theorems 6.3 and 6.5 allow to define the following idempotent

P.tÄdR/ D

�
.v.t2Ä2dR//2� w.t2Ä2dR/ � tÄdR�

�v.t2Ä2dR/ � tÄdR� .v.t2Ä2dR//2�

�
;

where � denotes the grading associated with the Hodge star acting on differential
forms onX . Then we define an Alexander–Spanier cycleƒ�ftÄsign;Wg by setting for
any real t > 0:

ƒ�ftÄsign;Wg.f
0
˝ � � � ˝ f 2q/ D

.2�i/q

qŠ.2q C 1/2
Tr
� X
�2†2qC1

sign .�/ P.tÄdR/f
�.0/
� � �P.tÄdR/f

�.2q/

�
I

where f 0; : : : ; f 2q 2 C.bX/, q > 0 and †2qC1 is the permutation group of
f0; : : : ; 2qg.

In the case q D 0 we set:

ƒ�ftÄsign;Wg.f
0/ D Tr

�
P.tÄdR/f

0
�

�
1��
2

0

0 1��
2

�
f 0

�
Thus ƒ�ftÄsign;Wg defines a skew-symmetric measure on X2qC1 supported in the
jt j-neighborhood of the diagonal. For any real t > 0, ƒ�ftÄsign;Wg represents the
homology class ChŒÄsign;W � (see [40, Section 4]).

We now follow very closely the proof of Theorem 5.1 of [40]. Consider an even
integer 2q such that 4q > n C 1. Consider a map F W bX ! S2q transverse to the
north poleN . There exists (as above) an open neighborhood U ofN in S2q such that
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F �1.U / ' U �F �1.N / and F is isomorphic to the projection to U when restricted
to F �1.U /.

Let u 2 H 2q.S2qIR/ be such that huI ŒS2q�i D 1. We can represent u by
an Alexander–Spanier cocycle � compactly supported inside U (actually this is
why we use Alexander–Spanier cohomology). Then F �.�/, which represents the
cohomology class F �.u/, is supported inside F �1.U /. We choose an incomplete
conic iterated metric on S2q � F �1.N / which coincides with the metric on bX in
a neighborhood of the (compact) support of F �.�/. According to Lemma 6.1,
the stratified space F �1.N / (and thus also S2q � F �1.N /) admits a self-dual
mezzoperversityfW which is induced by the one of bX . Therefore we have a signature
operatoreÄsign;eW on S2q � F �1.N /. An immediate extension of Lemma 4.2 of [40]
shows, thanks to the finite propagation speed property, that for t > 0 small enough:

hƒ�ftÄsign;WgIF
�.u/i D hƒ�fteÄsign;eWgI��.�/i ;

where � W S2q � F �1.N /! S2q denotes the projection.
Now, we use the proof of Lemma 4.3 of [40] (multiplicative formula). We get:

hƒ�fteÄsign;eWgI��.�/i D � ind ÄF
�1.N/

sign;eW �
2qhŒS2q�; Œu�i ;

which proves the result.

We point out that, in particular, this shows that the Chern character of the rational
K-homology class ŒÄsign;W � is independent of the metric and of the choice ofW .

6.3. Higher signatures of a Cheeger space and the Novikov conjecture.

Definition 6.7. Let bX be a Cheeger space. Let � D �1bX and r W bX �! B� a
classifying map for the universal cover. The higher signatures of bX are the collection
of rational numbers ˚˝

˛; r�L.bX/˛ W ˛ 2 H�.B�;Q/
	

From Corollary 5.5, the reduction of the Novikov conjecture for the higher
signatures of bX is the strong Novikov conjecture for �1X exactly as in the classical
case (see [3, Theorem 11.1]). Indeed, recall that the strong Novikov conjecture states
that the assembly map

ˇ W K�.B�1bX/ �! K�.C �r �1bX/
is rationally injective.

Theorem 6.8. Let bX be a Cheeger space whose fundamental group �1bX satisfies the
strong Novikov conjecture. IfcM is a Cheeger space stratified homotopy equivalent
to bX (smoothly or continuously), then their higher signatures coincide.
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Proof. The claim is that if bX and cM are stratified homotopy equivalent Cheeger
spaces with fundamental group � , then˝

˛; rX� L.bX/˛ D ˝˛; rM� L.cM/
˛
for all ˛ 2 H�.B�;Q/

where rM WcM �! B� and rX W bX �! B� are classifying maps for the universal
covers. Equivalently, that

rX� L.bX/ D rM� L.cM/ in H�.B�IQ/: (6.1)

By Theorem 2.8 there is a smooth stratified homotopy equivalence F 2

C1
b;cod

.bX;cM/. We know from (5.8) that

� an
� .
cM; r/ D � an

� .
bX;F ı r/;

and hence from Corollary 5.5 that for any self-dual mezzoperversity oncM ,WM ,

ˇ.rM� ŒÄsign;WM
�/ D ˇ..F ı rM /�ŒÄsign;F ]WM

�/:

Since we are assuming the strong Novikov conjecture holds for � , this implies

rM� ŒÄsign;WM
� D .F ı rM /�ŒÄsign;F ]WM

�:

Now taking Chern characters and using Theorem 6.6, we see that

rM� L.cM/ D .F ı rM /�L.bX/ in H�.B�IQ/:

But F ı rM is a classifying map for the universal cover of bX so this proves (6.1).

7. Relation with the topological signature

The analytic treatment of the signature operator developed in [2] has a topological
analogue developed earlier by Markus Banagl [6], which has served as inspiration
for the analytic development. On an arbitrary topologically stratified non-Witt space
(see [9,Definition 4.1.1]), bX , Banagl defines a categorySD.bX/ of “self-dual sheaves”
as a way of extending Poincaré Duality. In [1] the authors, together with Banagl,
develop a topological analogue of the analytic treatment of the L2-cohomology
from [2].

A topologically stratified space bX is called an L-space if SD.bX/ ¤ ;. In [1,
Proposition 4.3] we show that a smoothly stratified space is a Cheeger space if and
only if it is anL-space. Moreover in that case a self-dualmezzoperversity corresponds
to Banagl’s “Lagrangian structures.” EveryL-space bX has a signature which we will
denote

� top.bX/:
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It is defined using a self-dual sheaf complex, but Banagl showed that it depends only
on bX . If bX admits a smooth stratification then it also has the analytic signature
defined above,

� an.bX/:
We will show that these signatures coincide.

As mentioned above, our cobordism groups Sigann .pt/ are smooth analogues of
topological groups first defined in [6], which we will denote by Sigtopn .pt/. A class in
this group is represented by a pair .bX;S�/where bX is an n-dimensional topologically
stratified pseudomanifold and S� is a self-dual sheaf complex. An admissible bordism
is a compact oriented topologically stratified pseudomanifold with boundary X
together with a sheaf complex in SD.X /which pushes to the given sheaf complexes
over the boundary. Minatta has computed these groups [39, Proposition 3.8] (see
also [7, §4]) by showing that the signature is a complete invariant,

Sigtopn .pt/ Š

(
Z if n is a multiple of four
0 otherwise

(7.1)

The proof of (7.1) is to note that if bX is an L-space with vanishing signature,
then the cone over bX is a compact oriented topologically stratified pseudomanifold
with boundary and the self-dual sheaf over bX , pulled-back to the interior of the cone,
extends to a self-dual sheaf over the entire cone. Thus the topological signature,
which is obviously surjective since smooth manifolds are L-spaces, is also injective.
In particular, every L-space with a non-zero signature is topologically cobordant to
a smooth manifold with that signature.

Notice that we can carry out the same proof to compute the group Sigann .pt/,
using either the analytic or topological signatures. Indeed, either of these signatures
is surjective since smooth manifolds are Cheeger spaces. The proof of injectivity
extends to the smooth context because the cone over a smoothly stratified space admits
a smooth stratification. So a Cheeger space with vanishing topological or analytic
signature is smoothly nullcobordant. If either the topological or analytic signature is
non-vanishing then the Cheeger space is smoothly cobordant to a smooth manifold
with that signature. But since the smooth and topological signatures coincide on
smooth manifolds, they must coincide on all Cheeger spaces. Therefore, one gets:
Theorem 7.1. The analytically defined signature of a Cheeger spaces coincides with
its topological signature

� an.bX/ D � top.bX/
and induces an isomorphism Sigann .pt/ Š Sigtopn .pt/.

We defined an analyticL-class above using the analytic signature of submanifolds
transverse to the stratification. There is also a topological L-class. Indeed, it follows
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from [15] that every self-dual complex of sheaves has an L-class in homology which
is a topological invariant. Banagl showed that on an L-space, bX , the L-class is
independent of the choice of self-dual sheaf complex from SD.bX/ and is defined in
the same way as we defined the analytic L-class (Def. 6.2) but using the topological
signature. Hence we have:
Corollary 7.2. The analytic L-class of a Cheeger spaces coincides with its
topological L-class.

Minatta [39, Theorem 3.4] has shown that M 7! Sigtop� .M/ is a multiplicative
generalized homology theory (with the product induced by Cartesian product) and
by adding a formal variable t , the signature becomes an isomorphism of graded rings

Sigtop� .pt/
Š // ZŒt �

ŒbX� � // � top.bX/tdimX=4
It is easy to see thatM 7! Sigan� .M/ is also a multiplicative generalized homology
theory. (Indeed, Minatta’s proof holds in the smooth setting and even simplifies, as
his main tool is a transversality theorem which is standard for smooth spaces but
required a “very sophisticated argument” to establish in the topological category.)
Moreover, by Theorem 5.7 in [1], there is a natural map Sigan� .M/ �! Sigtop� .M/

which induces a natural transformation of multiplicative homology theories. Since
we have seen that this map is an isomorphism when M D pt, we conclude (see
e.g. [35, Theorem 2.9]):
Corollary 7.3. There is an isomorphism of multiplicative generalized homology
theories (over CW -complexes)

Sigan� .�/ �! Sigtop� .�/:

Let us recall Minatta’s computation of this homology theory with coefficients in
the following three cases:
(a) For rational coefficients [39, Proposition 4.2],

Sigtop� .M/˝Z Q Š H�.M IQŒt �/ :

(b) At odd primes [39, Proposition 4.6], [7, Theorem 4.1],

Sigtop� .M/˝Z ZŒ1
2
� Š �SO

� .M/˝�SO
� .pt/ ZŒ

1
2
�Œt �;

where �SO
� denotes the smooth oriented bordism.

(c) At two [39, Corollary 4.8],

Sigtop� .M/˝ Z.2/ Š H�.M IZ.2/Œt �/:

In particular, for any topological spaceM there is a surjection [7, Corollary 4.1]

�SO
� .M/˝Z ZŒ1

2
�Œt � �! Sigtop� .M/˝Z ZŒ1

2
�:
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This allows us to state a uniqueness result for the “analytic symmetric signature”
of (5.6), (5.7), � an

� .�/. Note that, by the work of Kasparov and Mishchenko, for
a smooth closed manifold Ind.ÄG .r/

sign / coincides with the symmetric signature of
Mishchenko.

Corollary 7.4. Any homomorphism

Sigan� .B�/˝Z ZŒ1
2
� �! K�.C

�
r �IQ/

that coincides with the symmetric signature of Mishchenko, tensored with ZŒ1
2
�, for

smooth manifolds is equal to � an
� .�/˝ ZŒ1

2
�.

The proof is analogous to the corresponding statement for Witt spaces, [3,
Proposition 11.1].
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