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Abstract.We study a simple class of free actions of non-Abelian groups on unital C�-algebras,
namely cleft actions. These are characterized by the fact that the associated noncommutative
vector bundles are trivial. In particular, we provide a complete classification theory for these
actions and describe its relations to classical principal bundles.
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1. Introduction

In this presentation we investigate a special class of group actions on unital
C�-algebras. The experience with group actions on topological spaces shows that
free actions are easier to understand and to classify. In this context a free action of
a group G on a space P is typically regarded as principal topological G-bundles
over the quotient P=G. For instance, locally trivial bundles are, up to equivalence,
characterized by the Čech cohomologyH 1.X;G/. It is therefore reasonable to expect
that free actions on noncommutative spaces are easier to understand and classify, too.

In the first part of this series [18] we investigated free actions of compact
Abelian groups on unital C�-algebras. This classification relies on the fact that the
corresponding isotypic components are Morita self-equivalence over the fixed point
algebra. For non-Abelian compact groups the bimodule structure is more subtle.
For this reason the current article concentrates on a simple class of free actions of
non-Abelian groups, namely cleft actions. Regarded as noncommutative principal
bundles, these actions are characterized by the fact that all associated noncommutative
vector bundles are trivial. In particular, for such actions all Chern classes (cf. [2])
vanish. Although this property looks very limiting, in fact, many noncommutative
phenomena already show up here. Therefore, cleft actions may be used as toy models
of noncommutative principal bundles, e.g. for Chern–Simons actions (see [12,23]).

The earliest classification result for free actions of compact, but not necessarily
Abelian groups goes back to Wassermann [21]. He showed that free and ergodic



642 K. Schwieger and S. Wagner

actions, i.e. actions with full multiplicity and trivial fixed point space, are, up to
equivalence, characterized by unitary 2-cocycles on the dual of the group. For
finite groups Davydov [3] presented an alternative classification using classical group
cohomology. Although free and ergodic actions only correspond to principal bundles
over the singleton base space, these result yet show that noncommutative geometry
admits more interesting examples than the classical theory.

The prototypes of free and ergodic actions are the quantum 2-tori A� , � 2 T ,
equipped with the gauge action of T2. Varying � 2 T , these are in fact all non-
equivalent free ergodic actions of the 2-torus T2. Non-ergodic examples can then be
obtained by taking continuous bundles of ergodic actions. A prominent example of
this type is the gauge action of the 2-torus T2 on the Heisenberg group C�-algebra A

(see [7]). The algebra A can be written as C�–bundle over T , where for each � 2 T
the fiber is the noncommutative 2-tori A� . The action of T2 on the algebra A

is the fiberwise gauge action. Echterhoff, Nest, and Oyono-Oyono [7] proposed
such bundles as noncommutative principal torus bundles. Concerning non-Abelian
groups, the classification results of Wassermann can easily be extended to bundles
of free ergodic actions. Such bundle actions are up to equivalence determined by the
continuous family of unitary 2-cocycles corresponding to the ergodic actions in each
fiber.

Beyond the concept of bundles of ergodic actions there are multiple directions to
introduce further noncommutativity. Any C�-algebra obtained by forming a bundle
of ergodic actions over a compact base space X always contains C.X/ in its center.
In order to explore noncommutative principal bundles over a noncommutative base
space, this requirement must be abolished. Without this restriction new examples
are immediately available even for a classical base space. For instance, given a
coaction  of G on X , the crossed product C.X/ Ì OG with the dual action of G is
cleft (cf. Example 4.9) but C.X/ is central only if the coaction is inner, i.e. if it is
trivial up to a 1-cocycle (cf. Example 5.15).

A second direction to explore is to not only consider actions of classical groups
but of quantum groups. An algebraic approach to cleft actions of quantum groups
(alias Hopf algebras) is already established in the theory of Hopf-Galois extensions
(see e.g. [6,17]). There cleft actions are free actions with a convolution invertible
cleaving map. Doi [5] has shown that cleft actions can be written as a twisted crossed
product and provided a classification for these crossed products. Also the work of
Vaes and Vainerman [20] should be mentioned, who studied cleft actions of locally
compact Hopf von Neumann algebras. An essential part of our presentation will lift
the algebraic constructions to the C�-algebraic framework. In this article we restricts
ourselves to classical compact groups for sake of a simple presentation and because
most essential problems are already present in this restricted context.

The article is structured as follows. After this introduction and somepreliminaries,
we recall the basic decomposition of a C�-dynamical system into (generalized)
isotypic components in Section 3. In Section 4 we introduce cleft C�-dynamical
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systems and aweaker notion, calledweakly cleft, and discuss their relations. Section 5
presents the characterization of weakly cleft systems in terms of factor systems, alias
cocycle actions. Moreover, we discuss some relations between the type of the
dynamical system and the form of its factor system. In particular, we classify all cleft
topological (classical) principal bundles. Finally, in Section 6 we show that factor
systems and weakly cleft C�-dynamical systems are, up to equivalence, indeed in
1-1-correspondence by explicitly constructing the dynamical system.

2. Preliminaries and notations

Once and for the rest of the paper we fix a compact group G. All integrals over G
are taken with respect to the Haar probability measure. By a representation of G we
always mean a finite-dimensional unitary representation. For a representation .�; V /
we write d� for its dimension, for the dual representation we write . N�; NV /. The
set of equivalence classes of irreducible representations will be denoted by OG. All
our constructions behave naturally with respect to intertwiners and hence, for sake
of brevity, we do not distinguish between a representation of G and its equivalence
class.

Let A be a unital C�-algebra. For the unit of A we write 1A or simply 1. For
an element u 2 A we denote by AdŒu� W A ! A the map x 7! uxu�. All tensor
products of C�-algebras are taken with respect to the minimal tensor product. We
will frequently deal with multiple tensor products of unital C�-algebras A, B, and C .
If there is no ambiguity, we regard A, B, and C as subalgebras of A˝B ˝ C and
extend maps on A, B, or C canonically by tensoring with the identity map. For sake
of clarity we may occasionally use the leg numbering notation, e.g. for x 2 A˝ C

we write x13 to denote the corresponding element in A˝B ˝ C .
Our main focus in this paper will be on C�-dynamical systems, by which we

mean triples .A; G; ˛/ consisting of a unital C�-algebra A together with a group of
�-automorphisms˛g W A! A, g 2 G, such that for eachx 2 A themapg 7! ˛g.x/

is continuous. We typically write B D AG for the fixed point algebra of the
dynamical system and we denote by P0 the associated the conditional expectation
P0.x/ WD

R
G
˛g.x/ dg, x 2 A. More general, for an irreducible representation

� 2 OG we denote by P� W A ! A the G-equivariant projection onto the isotypic
component A.�/ WD P�.A/, which is given by

P�.x/ WD d�

Z
G

Tr.��g / ˛g.x/ dg; x 2 A:

Two C�-dynamical system .A; G; ˛/ and .A0; G; ˛0/ are called equivalent if there is
an isomorphism ' W A! A0 with ' ı ˛g D ˛0g for all g 2 G.

For the necessary background on modules of C�-algebras we recommend [1],
here we only briefly recall some relevant definition. For a C�-algebra B a
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right pre-Hilbert B-module is a right B-module H equipped with a sesquilinear
map h�; �iB W H � H! B that satisfies the usual axioms of a definite inner product
with B-linearity in the second component.1 We may define a norm on H by putting
kxkH D khx; xiBk

1=2. If H is complete with respect to this norm then H is
called a right Hilbert B-module. A linear operator T W H! H on a right Hilbert
B-module H is called adjointable if there is an operator T ? W H ! H satisfying
hT x; yiB D hx; T

?yiB for all x; y 2 H. Adjointable operators are automatically
bounded but the converse does not hold. The setL.H/ of all adjointable operators on a
right Hilbert B-module is a C�-algebra. A correspondence over B, or a right Hilbert
B-bimodule, is a B-bimodule H equipped with a B-valued inner product h�; �iB
which turns it into a right Hilbert B-module such that the left action of B on H is via
adjointable operators. For two correspondences H, K over the same algebra B we
denote byH˝B K their tensor product, which is again a correspondence over B. The
elementary tensors x ˝ y (x 2 H, y 2 K) are total in H˝B K. The inner product
on H˝B K is given by

hx1 ˝ y1; x2 ˝ y2iB D hy1; hx1; x2iB : y2iB

for all x1; x2 2 H1 and y1; y2 2 K.

3. Decomposition of C�-dynamical systems

As a background for later discussions we first would like to recall the general
decomposition of C�-dynamical systems .A; G; ˛/. In analogy to the GNS-
construction the conditional expectation P0 onto the fixed point space B WD AG

allows to equip A with the definite B-valued inner product

hx; yiB WD P0.x
�y/ D

Z
G

˛g.x
�y/ dg

for x; y 2 A. We writeL2.A/ for the right Hilbert B-module obtained by taking the
completion of A with respect to the corresponding norm. The C�-algebra A admits
a faithful representation on L2.A/ given by

� W A! L
�
L2.A/

�
; �.x/y WD x � y:

This allows to identify A with the subalgebra �.A/ � L
�
L2.A/

�
and we implicitly

do so unless confusion arise. For each g 2 G we have a unitary operator on L2.A/
given by Ugx WD ˛g.x/ for x 2 A � L2.A/. The map g 7! Ug is a strongly
continuous representation of G that implements the automorphisms ˛g , g 2 G, in
the sense that

�
�
˛g.x/

�
D Ug �.x/U

?
g ; x 2 A:

1In the literature the notion is usually relaxed even further to pre-C�-algebras and non-definite inner
products. But we do not need this more general framework.
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As every representation of G, the algebra A can be decomposed into its isotypic
components with respect to the actions. More precisely, the sum of the isotypic
components is direct and

Palg
�2 OG

A.�/ is a dense �-subalgebra of A. Moreover, the
isotypic components are mutually orthogonal, closed, linear subspaces of L2.A/
with

L2.A/ D
M
�2 OG

A.�/:

One aspect of this presentation will be the multiplication of A. It is worth noting
that the multiplication is determined by the action of A.�/ � A on A.�/ � L2.A/
for all pairs of irreducible representations � and �.

Instead of dealing with isotypic components, it will be more convenient to
consider, for a representation � , the generalized isotypic component

A2.�/ WD
˚
x 2 A˝L.V /

ˇ̌
�g � ˛g.x/ D x; 8g 2 G

	
:

Obviously, A2.�/ is a B-bimodule for the usual left and right multiplication. In
addition, we may equip A2.�/ with the B-valued inner product

hx; yiB WD
1
d�
.idA˝Tr/.x�y/

for x; y 2 A2.�/. Then the space A2.�/ is a correspondence over B (see e.g. [4] for
completeness of the norm). If � is irreducible, the map x 7! .idA˝Tr/.x/ gives an
isomorphism of correspondences from A2.�/ to the dual isotypic component A. N�/
with inverse given by y 7! d�

R
G
˛g.y/˝�g dg. In the following we will frequently

use this identification.
The multiplication between isotypic components is well captured by family of

maps

m�;� W A2.�/˝B A2.�/ �! A2.� ˝ �/ � A˝L.V /˝L.W /

m�;�.x ˝ y/ WD x12 � y13

for pairs of representations .�; V / and .�;W / ofG. For an irreducible representation
� 2 OG and a representation � of OG let us denote by P�;� W L.V�/! L.V� / the map
P�;�.x/ WD

P
kD1 v

�
k
xv
k
with an orthonormal basis of intertwiners v1; : : : ; vm W

V� ! V� . The map P�;� does not depend on the choice of intertwiners. Then for
irreducible representations �; � 2 OG and elements x 2 A2.�/ and y 2 A2.�/ the
operator �.x/ takes the form

�.x/y D
M
�2 OG

P�;�˝�
�
m�;�.x ˝ y/

�
: (3.1)

Since the sum of the isotypic components is norm dense in A, the C�-algebra �.A/
is generated by the set of these operators �.x/with x 2 A2.�/, � 2 OG. In particular,
the multiplication of A can be recovered from the maps m�;� for �; � 2 OG in this
way.
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4. Cleft and weakly cleft C�-dynamical systems

In principle, C�-dynamical systems .A; G; ˛/ with a given fixed point algebra B can
be classified in a functorial way in terms of the module structure of the generalized
isotypic components and their multiplicative relation (see [11]). In this presentation
we will focus on the class of cleft actions.
Definition 4.1. A C�-dynamical system .A; G; ˛/ is called cleft if for every
irreducible representation .�; V / of G the set A2.�/ � A ˝ L.V / contains a
unitary element.

Cleft C�-dynamical systems are precisely the so called semidual actions discussed
in [22]. For such a C�-dynamical system .A; G; ˛/ it follows along the same lines
as in [22, Thm. 10] that the crossed product A Ì G is isomorphic to AG ˝ K,
generalizing Green’s Theorem (cf. [8, Cor. 15] and [7]). In the algebraic theory of
actions of Hopf algebras these actions are up to equivalence given by twisted crossed
products (cf. [5,6], see also [20]). Most arguments in our discussion rely on the
following weaker hypothesis only and establishing the results in a slightly wider
framework has some technical advantages later on.
Definition 4.2. A C�-dynamical system .A; G; ˛/ is called weakly cleft if for every
irreducible representation .�; V / of G the set A2.�/ � A ˝ L.V / contains an
element s such that

s�s D 1 and ss�x D x

for all x 2 A2.�/. We call such an element s a non-degenerate isometry.
Unfortunately, we cannot present an examples of aweakly cleft but not cleft action.

In fact, in simple examples our results show that weakly cleft dynamical systems are
automatically cleft (see Lemma 4.6 and 5.9). We do not yet know whether this holds
in general. Most proofs of this article only rely on the weakly cleft assumption but can
be simplified for cleft systems. The advantage of dealing with weakly cleft actions
is that this property can be characterized by the right Hilbert module structure of the
(generalized) isotypic components. More precisely, the following lemma shows that
the C�-system .A; G; ˛/ is weakly cleft if and only if each isotypic componentA.�/,
� 2 OG, is a free right Hilbert B-module of rank d2� . In the ergodic case, B D C1,
this is the same as saying that the Hilbert space A.�/ has its maximal dimension d2� ,
i.e. A.�/ has full multiplicity.
Lemma 4.3. For an element s 2 A2.�/ the following statements are equivalent:
(a) s is a non-degenerated isometry.
(b) The map ' W B ˝ L.V�/ ! A2.�/, '.x/ WD sx is an isomorphism of right

Hilbert B-modules.

Proof. For one implication notice that for an isometry s the map '.x/ D sx is an
isometry for the right inner product. If s is non-degenerate, ' admits the inverse
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'�1.y/ D s�y. Together this proves the implication from (a) to (b). For the
converse implication, suppose that ' is an isomorphism. Then the selfadjoint element
p WD s�s 2 B ˝L.V / is a projection, since it satisfies

hp; xiB D h'.p/; '.x/iB D
1
d�
.id˝Tr/.s�ss�sx/ D hp2; xiB

for allx 2 B˝L.V /. Injectivity of' then implies that s is in fact an isometry because
'.p/ D ss�s D s D '.1/. It follows that the inverse of ' is given by '�1.x/ D s�x
and hence we have x D '

�
'�1.x/

�
D ss�x for all x 2 A2.�/.

To distinguish cleft and weakly cleft, let us introduce a third property, which
is of great independent interest. Let .A; G; ˛/ be a C�-dynamical system. For a
representation .�; V / of G we write A2.�/A2.�/� for the linear subspace generated
by products xy� of elements x; y 2 A2.�/, and we put

C.�/ WD
˚
x 2 A˝L.V / j

�
˛g ˝ AdŒ�g �

�
.x/ D x; 8g 2 G

	
:

Definition 4.4. A C�-dynamical system .A; G; ˛/ is called free if for all representa-
tions � of G we have A2.�/A2.�/� D C.�/.

Free actions have attained special interest in the literature, see, e.g. [4,13,15,16].
For the definition given here and the relation to noncommutative principal bundles,
we refer to [18, Section 3]. It should be noted that A2.�/A2.�/� is always a �-ideal
in C.�/. Therefore, the dynamical system is free if and only if the closure of
A2.�/A2.�/

� contains the unit 1A˝L.V /.
Lemma 4.5. A C�-dynamical system is cleft if and only if it is weakly cleft and free.

Proof. If .A; G; ˛/ is cleft, it is obviouslyweakly cleft. Since for every representation
.�; V / of G we find a unitary u 2 A2.�/, the set A2.�/A2.�/� contains uu� D
1A˝L.V / and hence the dynamical system is free. To show the converse, suppose
that .A; G; ˛/ is weakly cleft and free and let .�; V / be a representation of G. Then
we find a non-degenerated isometry s 2 A2.�/ and obtain

A2.�/A2.�/
�
D
�
s �B ˝L.V /

�
�
�
s ˝B ˝L.V /

��
D s �B ˝L.V / � s�:

This set is closed and, since the dynamical system is free, it contains the unit.
It follows that s must have full range, i.e. s is a unitary element and hence the system
is cleft.

Lemma 4.6. For a compact Abelian group G, every weakly cleft C�-dynamical
system is cleft.

Proof. For an Abelian groups generalized isotypic components and the isotypic
component of the dual representation literally coincide. If the C�-dynamical system
is weakly cleft, then for each � 2 OG we find an isometry s 2 A. N�/. Hence for
the dual representation N� the set A.�/A.�/� D A. N�/�A. N�/ contain the element
s�s D 1.
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Example 4.7. We start with the most basic example as a prototype. Let B be a unital
C�-algebra and denote by C.G/ the C�-algebra of continuous functions on G. We
consider the C�-dynamical system

�
B˝C.G/;G; id˝r

�
where the action on C.G/

is given by the right translation .rgf /.h/ WD f .hg/ for f 2 C.G/ and h 2 G.
Clearly, the fixed point space of this system is B D B ˝ 1G . We may identify
elements in a tensor product with C.G/ with functions on G in the usual way. Then,
for an irreducible representation .�; V / of G, the correspondence A2.�/ over B is
given by

A2.�/ D
˚
f W G ! B ˝L.V / continuous j �gf .g/ D f .e/; 8g 2 G

	
:

The function u.g/ WD ��g then obviously is a unitary element inA2.�/, which shows
that the system is cleft.

If B is commutative, i.e. B D C.X/ for some compact Hausdorff space X , then
the dynamical system of Example 4.7 can be be understood as a trivial principal
G-bundle over the space X . The next example shows that also non-trivial principal
bundles may give rise to cleft actions. Moreover, in the later Corollary 5.10 we will
provide a characterization of cleft topological principal bundles.

Example 4.8. Fix n 2 N and denote by Cn WD f� 2 C j �n D 1g the group of n-th
roots of unity. We consider the C�-algebra A WD C.T / of continuous function on
the circle with the action of Cn given by rotations, i.e. for � 2 Cn and f 2 C.T / put

.˛�f /.z/ WD f .� � z/; z 2 T :

For an irreducible representation of Cn, i.e. an element k 2 Z=nZ, we have

A2.�k/ D A.k/ D
˚
f 2 C.T / j f .� � z/ D �k � f .z/; 8z 2 T

	
:

The action is cleft, because an invertible element in A2.�k/ is, for instance, given
by the function f .z/ WD zk , z 2 T . This dynamical system can be understood as the
non-trivial principal Cn-bundle corresponding to the n-fold covering p W T ! T ,
p.z/ WD zn. In fact, since all vector bundles over T are trivial (cf. [19, Section 18]),
every principal bundles over T with arbitrary compact structure group G gives rise
to a cleft C�-dynamical system.

Example 4.9. Consider a compact group G and a closed normal subgroup N and
suppose that the action of N on C.G/ by right translations is cleft (e.g. suppose
that G=N is finite). Furthermore, let ı W A ! M

�
A ˝ C �.G// be a coaction

of G on a unital C�-algebra A. We recall that a twist over G=N is a unitary
corepresentationW 2M.A˝C �.G=N// ofG=N such that .id˝q/ıı D AdŒW � and
.ı ˝ id/.W / D W13, where q denotes the natural �-homomorphism q W C �.G/ !

C �.G=N/. Such a twist gives rise to an ideal IW of the crossed productAÌıG, called
twisting ideal, which is invariant under the canonical action ofN onAÌıG (see [14]).
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The twisted crossed product AÌı;W G WD .AÌıG/=IW then carries an action ofN ,
which we denote by ˛, that is, we obtain a C�-dynamical system

.A Ìı;W G; N; ˛/:

Since the natural embedding of C.G/ into A Ìı G is G-equivariant, the factorized
homomorphism kG W C.G/! A Ìı;W G is N -equivariant. Finally, a few moments
thought shows that being cleft is preserved under equivariant �-homomorphisms and,
therefore, it follows that the above C�-dynamical system is cleft.

5. Factor systems

Let .A; G; ˛/ be a C�-dynamical system with fixed point algebra B. Suppose for the
moment that the system is weakly cleft, that is, for each irreducible representation
� 2 OG we find a non-degenerate isometry s� 2 A2.�/ � A ˝ L.V�/. For
the trivial representation, denoted by 1, we pick s1 WD 1B . We may extend
this family of isometries to non-irreducible representations by decomposing each
representation .�; V / into a direct sum of irreducible representations .�k; Vk/ with
intertwiners vk W Vk ! V for each 1 � k � m and put s� WD

Pm
kD1 vks�kv

�
k
. It

is easily checked that this provides a non-degenerate isometry in A2.�/ and the
construction does not depend on the choice of intertwiners.

By Lemma 4.3, for each � 2 OG the space A2.�/ is isomorphic to B ˝L.V�/ as
a right Hilbert B-module, but in general not as a left B-module. In order to describe
the left action of B consider the map

� W B ! B ˝L.V�/; �.b/ WD s
�
�.b ˝ 1�/s� : (5.1)

The correspondence A2.�/ is then isomorphic to the vector space B ˝ L.V�/

equipped with the usual right multiplication by B, the usual right B-valued inner
product, and the left multiplication given by

b : x WD �.b/ x;

for all x 2 B ˝L.V�/ and b 2 B.
Lemma 5.1. The map � is a unital �-homomorphism.

Proof. Obviously, �.b�/ D �.b/
� for all b 2 B and � is unital, since s� is an

isometry. For each b 2 B the element .b˝ 1/s� lies in A2.�/. The non-degeneracy
of s� then implies for all b1; b2 2 B that

�.b1/�.b2/ D s
�
�.b1 ˝ 1/s�s

�
�.b2 ˝ 1/s�

D s��.b1 ˝ 1/.b2 ˝ 1/s� D �.b1b2/:
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Remark 5.2. We would like to point out that, since s� is non-degenerated, the map
� W B ! B˝L.V�/ is uniquely determined by the property .b˝1/s� D s��.b/
for all b 2 B.

In the following we will frequently deal with tensor products in which precisely
one factor is B. In this cases we will allow more flexibility for the position of the
factor B, that is, we reshuffle the tensor factor is such a way that B is at a convenient
position, usually the first factor, and the other factors are kept in order.

Coming back to the dynamical system, the multiplicative structure among the
sets A2.�/ for different representations can be phrased in terms of the elements s� ,
too. For two irreducible representations �; � 2 OG consider the multiplication map

m�;� W A2.�/˝B A2.�/ �! A2.� ˝ �/ � A˝L.V�/˝L.V�/;

m�;�.x ˝ y/ WD x12 y13:
(5.2)

This is a module map for the right action of B˝L.V�/˝L.V�/ on domain and
codomain. Therefore, it is uniquely determined by the elementm�;�.s� ; s�/. For this
element there is a unique element !.�; �/ 2 B ˝L.V� ˝ V�/ with m�;�.s� ; s�/ D
s�˝� � !.�; �/. In fact, !.�; �/ is the isometry given by

!.�; �/ D s��˝� .s�/12 .s�/13: (5.3)

With this element the multiplication map can be written as

m�;�.s�x ˝ s�y/ D s�˝� � !.�; �/ � .id� ˝�/.x/ � .1� ˝ y/ (5.4)

for all x 2 B ˝L.V�/, y 2 B ˝L.V�/.
We want to classify and characterize weakly cleft C�-dynamical systems in terms

of the �-homomorphisms � and the isometries !.�; �/. For this purpose, we fix a
group G and a C�-algebra B and we consider pairs .; !/ consisting of two families
 D .�/�2 OG and ! D

�
!.�; �/

�
�;�2 OG

where

(1) for each � 2 OG, we have a unital �-homomorphism � W B ! B ˝L.V�/, and

(2) for each �; � 2 OG, we have an isometry !.�; �/ 2 B ˝L.V� ˝ V�/.

Definition 5.3.
(1) The pair .; !/ is called a factor system for .G;B/ if !.1; 1/ D 1B and the

family satisfies

!.�; �/ � .id� ˝�/
�
�.b/

�
D �˝�.b/ � !.�; �/; (5.5)�

1� ˝ !.�; �/
�
� .id�˝�˝� /

�
!.�; �/

��
D !.�; �˝ �/� � !.� ˝ �; �/ (5.6)

for all �; �; � 2 OG and b 2 B.
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(2) Two factor systems .; !/ and . 0; !0/ for .G;B/ are called conjugated if there
is a family v D .v�/�2 OG of unitaries v� 2 B ˝L.V�/ such that

 0� D AdŒv�� � ı � ;
v�˝� � !

0.�; �/ D !.�; �/ � .id� ˝�/.v�/ � v�:

Equations (5.5) and (5.6) are twisted versions of the equations for a coaction and
for a 2-cocycle. For this reason, we refer to condition (5.5) as the coaction condition
and to condition (5.6) as the cocycle condition. Immediate examples of factor systems
are accordingly given a by coaction with a trivial cocycle or by a 2-cocycle with a
trivial coaction (see Remark 5.4).
Remark 5.4. (1) The normalization condition !.1; 1/ D 1B can always be
achieved by passing to a normalized, conjugated system (in the straightforwardly
generalized sense). Together with the coaction and cocycle condition the normaliz-
ation implies 1 D idB and !.�; 1/ D 1 D !.1; �/ for all � 2 OG.

(2) It is worth mention that we may rephrase things in terms of the group
C�-algebra C �.G/, more precisely its multiplier algebra MC �.G/. The fam-
ily .�/�2 OG may be equivalently written as a single unital �-homomorphism
 W B ! B ˝ MC �.G/ and the family .!.�; �//

�;�2 OG
as an isometry

! 2 B ˝MC �.G �G/. Then Equations (5.5) and (5.6) can be casted in the form

! �
�
.id˝/ ı 

�
.b/ D .ı ı /.b/ � !;

.1˝ !/ � .id˝/.!�/ D .id˝ı/.!�/ � .ı ˝ id/.!/;

where ı W MC �.G/ ! MC �.G � G/ denotes the usual comultiplication. This
formulation is used for extending the theory to compact quantum groups. If ! is
unitary, the pair .; !/ is sometimes called a cocycle action (see e.g. [20]).

The following statement summarizes that the construction from the beginning of
this section indeed provides examples of factor systems.
Lemma 5.5. Let .A; G; ˛/ be a weakly cleft C�-dynamical system and let B denote
its fixed point algebra. Furthermore, let s D .s�/�2 OG be a family of non-degenerate
isometries s� 2 A2.�/ with s1 D 1B . If  D .�/�2 OG and ! D

�
!.�; �/

�
�;�2 OG

are
the associated families of homomorphisms and unitaries given by Equations (5.1)
and (5.3), respectively, then the pair .; !/ is a factor system.

Proof. In order to show the coaction condition (5.5), we recall that we have
s��.b/ D .b˝ 1/s� for every b 2 B (see Remark 5.2). Successively applying this
relation and its starred version then yields Equation (5.5), i.e. in B˝L.V�/˝L.V�/

we obtain

!.�; �/ � �
�
�.b/

�
D s��˝�s�s��

�
�.b/

�
D s��˝�bs�s�

D �˝�.b/s
�
�˝�s�s� D �˝�.b/ � !.�; �/
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for all �; � 2 OG and b 2 B. In order to verify the cocycle condition (5.6) let us first
consider its left hand side

!.�; �/ � �
�
!.�; �/

��
D s��˝�s�s� � s

�
� .s
�
�˝�s�s�/

�s� D s
�
�˝�s�s�s

�
�s
�
� s
�
�s�˝�s�

The rightmost product s�� s��s�˝�s� lies in L.V� ˝ V�/ ˝ A2.�/. Therefore, the
non-degeneracy of s� allows us to cancel the factor s�s�� . Similarly, the element
s��s�˝� lies in L.V�/˝ A2.�/, which allows us to cancel even further to obtain

!.�; �/ � �
�
!.�; �/

��
D s��˝�s

�
�s�˝�s� :

For the right hand side of the cocycle condition, the non-degeneracy of s�˝�˝�
likewise implies

!.�; �˝ �/� � !.� ˝ �; �/ D s��˝�s
�
�s�˝�˝�s

�
�˝�˝�s�˝�s� D s

�
�˝�s

�
�s�˝�s� :

Comparing with the simplification of the left side then yields the cocycle condition
for all �; �; � 2 OG.

The next result states that the weakly cleft C�-dynamical systems are uniquely
determined by their factor systems up to equivalence.
Theorem 5.6. Let .A; G; ˛/ and .A0; G; ˛0/ be weakly cleft C�-dynamical systems
with the same fixed point algebra B and let .; !/ and . 0; !0/ be associated factor
systems, respectively. Then the following statements are equivalent:
(a) The dynamical systems .A; G; ˛/ and .A0; G; ˛0/ are equivalent.
(b) The factor systems .; !/ and . 0; !0/ are conjugated.

Proof. As a distinction we add a prime to all notions referring to .A0; G; ˛0/.
(1) To prove that (a) implies (b) it suffice to show that for the same dynamical

system .A; G; ˛/ different choices of non-degenerate isometries s� 2 A2.�/, � 2 OG,
lead to conjugated factor systems. For this purpose let s� and s0� , � 2 OG, be two
such choices and let us denote by .; !/ and . 0; !0/ the associated factor systems,
respectively. Consider first a fixed representation � 2 OG. By Lemma 4.3 there
are unique elements v� ; v0� 2 B ˝ L.V�/ with s0� D s�v� and s� D s0�v

0
� .

Uniqueness implies v�v0� D 1 D v0�v� and, since s� is a isometry, we also have
v��v� D v

�
�s
�
�s�v� D .s

0
�/
�.s0�/ D 1. Hence v� and v0� are unitaries with v0� D v�� .

For the �-homomorphisms of the factor systems we therefore obtain

 0�.b/ D .s
0
�/
�.b ˝ 1/s0� D v

�
�s
�
�.b ˝ 1/s�v� D v

�
��.b/v� ;

for every � 2 OG and b 2 B. For the isometries of the factor systems we may use the
non-degeneracy of s� and the fact that v�s�v� 2 L.V�/˝ A2.�/ to conclude for all
�; � 2 OG:

v�˝� !
0.�; �/ D v�˝�.s�˝�v�˝�/

�s�v�s�v� D s
�
�˝�s�.s�s

�
� /v�s�v�

D s��˝�s�s��.v�/v� D !.�; �/ �.v�/ v�:
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(2) For the converse implication, (b)) (a), let s� 2 A2.�/ and s0� 2 A02.�/,
� 2 OG, by non-degenerate isometries with associated factor systems .; !/ and
. 0; !0/, respectively. Furthermore, let v� , � 2 OG, be a family of unitaries realizing
the conjugation of the factor systems as in Definition 5.3. For every representation �
of G the map

'� W A
0
2.�/! A2.�/; s0�x 7! s�v�x

for all x 2 B˝L.V�/ is well-defined by Lemma 4.3. Moreover, it is straightforward
to check that '� is a unitary map between the two right Hilbert B-modules. Since
L2.A/ D

L
�2 OG

A2.�/ and likewise for A0, taking direct sums yields a unitary map

V W L2.A0/! L2.A/; V WD
M

�2 OG
'� :

Furthermore, the maps '� , � 2 OG, intertwine with the multiplication maps, that is,
for all �; � 2 OG we have

m�;�
�
'�.x/˝ '�.y/

�
D '�˝�

�
m0�;�.x ˝ y/

�
for all x 2 B˝L.V�/ and y 2 B˝L.V�/. Together with Equation (3.1) this shows
that the homomorphism

ˆ.x/ WD VxV ?

maps A0 � L
�
L2.A0/

�
into A � L

�
L2.A/

�
and hence may be restricted to an

injective �-homomorphism ˆ W A0 ! A. Exchanging the role of s� and s0� shows
that ˆ is in fact a �-isomorphism. Obviously, we have '�.x��g / D '�.x/�

�
g for

all x 2 A2.�/ and g 2 G. It follows that V intertwines the G-action on L2.A/
andL2.A0/, that is, we haveV Ug D U 0gV for allg 2 G. Consequently,ˆ intertwines
˛g D AdŒUg � on A and ˛0g D AdŒU 0g � on A0.

The following lemma rephrases freeness in terms of the multiplication maps
defined in (5.2). As a consequence we find that cleft dynamical systems are
characterized factor systems where the isometries !.�; �/ are in fact unitaries.
Lemma 5.7. A C�-dynamical system .A; G; ˛/ is free if and only if for all � 2 OG
the multiplication map

m�; N� W A2.�/˝B A2. N�/! A2.� ˝ N�/; m�; N�.x ˝ Ny/ WD x12 � Ny13

has dense range or, equivalently, is surjective.

Proof. First we note that m�; N� is an isometry of correspondences over B and hence
it is surjective if and only if it has dense range. Let us fix a finite-dimensional
representation .�; V / of G and denote by d its dimension. For sake of a convenient
notation we fix a basis of V and write elements x 2 A ˝ L.V / as matrices
x D .xi;j /1�i;j�d with entries in A. Likewise we write elements of A ˝ L. NV /
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and A˝L.V ˝ NV / as matrices with respect to the dual basis on NV and the product
basis, respectively. A straightforward computation shows that the transpose map
A2. N�/! A2.�/

�, x D .xi;j /i;j 7! xt WD .xj;i /i;j is a linear bijection. Moreover,
similar computations show that the map

' W A2.� ˝ N�/! C.�/˝L.V /; '.x/.i;j /;.k;`/ WD x.i;k/;.j;`/

is a linear bijection. Now consider the composition  WD ' ım�; N� , which takes the
concrete form

 .x ˝ Ny/.i;j /;.k;`/ D xi;j Nyk;`

for x 2 A2.�/ and Ny 2 A2. N�/. Since A2.�/ and A2. N�/ are right L.V /- and L. NV /-
modules, respectively, the range of  is a bimodule for 1C.�/˝L.V /. It follows that
the range of  is of the form J ˝L.V / for some subspace J � C.�/. Furthermore,
for elements x; y 2 A2.�/ we may put Ny WD .y�/t and find

.idC.�/˝Tr/
�
 .x ˝ Ny/

�
D

 
dX
`D1

xi;` y
�
`;j

!
i;j

D xy�;

which shows that J D A2.�/A2.�/�. We conclude that the multiplicationmapm�; N�
is surjective if and only if has full range if and only ifC.�/ D J D A2.�/A2.�/�.

Theorem 5.8. For a weakly cleft C�-dynamical system .A; G; ˛/ the following
statements are equivalent:
(a) The dynamical system is cleft or, equivalently, free.
(b) For some factor system .; !/— and hence for all factor systems — all elements

!.�; �/ for �; � 2 OG are unitary.

Proof. By Lemma 4.5, for a cleft system we may choose unitary elements s�
in A2.�/. Then it follows that the elements !.�; �/ D s��˝�s�s� (�; � 2 OG) of
the corresponding factor system are unitary, too, which proves one implication. For
the converse implication we take advantage of Lemma 5.7. Indeed, suppose that we
have non-degenerated isometries s� 2 A2.�/ for each � 2 OG such that the elements
!.�; �/ D s��˝�s�s� of the corresponding factor system are unitaries for all�; � 2 OG.
Then A2.� ˝ �/ is given by

A2.� ˝ �/ D s�˝� �B ˝L.V� ˝ V�/

D s�˝� !.�; �/ �B ˝L.V� ˝ V�/ D s�s� �B ˝L.V� ˝ V�/

D s� �
�
1B ˝L.V�/˝ 1�

�
� s� �

�
B ˝ 1� ˝L.V�/

�
Since s� �

�
1B ˝ L.V�/

�
� A2.�/ and s� �

�
B ˝ L.V�/

�
D A2.�/, we conclude

that m�;� is surjective and hence the dynamical system is free.
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Corollary 5.9. Every weakly cleft C�-dynamical system .A; G; ˛/ with commutative
or finite-dimensional fixed point algebra B is cleft.

Proof. Under the hypothesis on B an isometry ! 2 B ˝ L.V / for finite-
dimensional V is automatically unitary.

In Section 6 we will discuss whether the converse of Theorem 5.6 holds, that is,
whether every factor system gives rise to a C�-dynamical system. We postpone this
problem for the moment and continue to investigate the relation between the form
of the factor system and the type of the dynamical system. First, let us characterize
classical systems.

Corollary 5.10. Let .A; G; ˛/ be a cleft C�-dynamical system with a commutative
fixed point algebra B and let .; !/ be an arbitrary associated factor system. Then A

is commutative if and only if

�.b/ D b ˝ 1� and !.�; �/ D �
�
!.�; �/

�
for all �; � 2 OG and b 2 B, where � denotes the tensor flip of L.V�/˝L.V�/.

Proof. First suppose that A is commutative. Let s� 2 A2.�/, � 2 OG, be a family
of non-degenerated isometries and denote by .; u/ the associated factor system.
Since A is commutative, every element b ˝ 1 commutes with s� in A˝L.V�/. It
follows that �.b/ D s��.b ˝ 1/s� D b ˝ 1 for all b 2 B. Likewise the elements
.s�/12 and .s�/13 commute in A˝L.V�/˝L.V�/. It follows that

�
�
!.�; �/

�
D �

�
s��˝�s�s�

�
D s��˝� s� s� D !.�; �/:

Conversely, let s� 2 A2.�/, � 2 OG, be a family of non-degenerate isometries and
suppose the asserted condition on the corresponding factor system holds. Consider
the family of multiplication maps

m�;� W A2.�/˝B A2.�/! A2.� ˝ �/; m�;�.x ˝ y/ D x12 y13:

Looking at Equation (5.4), we have for all x 2 B ˝L.V�/ and y 2 B ˝L.V�/:

�
�
m�;�.s�y ˝ s�x/

�
D �

�
s�˝� !.�; �/ y12 x13

�
D s�˝� !.�; �/ x12 y13 D m�;�.s�x ˝ s�y/;

because x12 and y13 commute inB˝L.V�/˝L.V�/. From the general construction
of Section 3 we may then deduce that A is commutative.
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Remark 5.11. (1) Corollary 5.10 provides a classification of cleft topological
principal bundles.

(2) Similar arguments as in the proof of Corollary 5.10 show the following more
general statement for a weakly cleft system: The center ofB is contained in the center
of A if and only if for every factor system .; !/ the homomorphisms act trivially on
the center of B, i.e. �.z/ D z ˝ 1 for every central element z 2 B and � 2 OG.

For a given group G and a given fixed point algebra B there clearly seems to be
a trivial dynamical system, namely .B ˝ C.G/;G; id˝r/. From our discussions
in Example 4.7 we immediately derive from Theorem 5.6 that for a weakly cleft
dynamical system .A; G; ˛/ the following statements are equivalent:
(a) The dynamical system .A; G; ˛/ is equivalent to

�
B ˝ C.G/;G; id˝r

�
.

(b) Every factor system of .A; G; ˛/ is conjugated to the factor system .; !/ given
by

�.b/ WD b ˝ 1; !.�; �/ WD 1; �; � 2 OG; b 2 B:

A next simple class of C�-dynamical systems are those which are essentially
ergodic actions, that is, the dynamical system .A; G; ˛/ arises from an ergodic
dynamical system .A0; G; ˛0/ by tensoring with B.
Corollary 5.12. For a C�-dynamical system .A; G; ˛/ the following statements are
equivalent:
(a) .A; G; ˛/ is isomorphic to .B ˝ A0; G; idB ˝˛0/ with an ergodic cleft

C�-dynamical system .A0; G; ˛0/.

(b) .A; G; ˛/ is (weakly) cleft and admits a factor system of the form

�.b/ D b ˝ 1; !.�; �/ 2 1B ˝L.V� ˝ V�/; �; � 2 OG; b 2 B:

Proof. For the system .B˝A0; G; idB ˝˛0/ the generalized isotypic component of
� 2 OG is of the form

A2.�/ D B ˝ A
.0/
2 .�/;

where A.0/2 .�/ � A0 ˝ L.V�/ denotes the generalized isotypic component of
.A0; G; ˛0/. Since ˛0 is a cleft action, for each � 2 OG we find a unitary element
s
.0/
� 2 A

.0/
2 .�/ and obtain a unitary s� 2 A2.�/ by putting s� WD 1B ˝ s

.0/
� . Then

the corresponding factor system defined by Equations (5.1) and (5.3) is of the asserted
form.

Conversely, suppose that a factor system .; !/ for .A; G; ˛/ has the asserted
form. Then !.�; �/ is a unitary for each �; � 2 OG and the cocycle condition (5.6)
states that ! D

�
!.�; �/

�
�;�

forms a unitary 2-cocycle for G in the usual sense.
By [22] this 2-cocycle provides an ergodic cleft C�-dynamical system .A0; G; ˛0/

whose factor system is given by ! together with the trivial homomorphisms. (This
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may also be derived from the construction presented in Section 6.) By the arguments
in the first part of the proof the dynamical system .B ˝A0; G; idB ˝˛0/ then has
the factor system .; !/ and, by Theorem 5.6, it is isomorphic to .A; G; ˛/.

Example 5.13. Let B D L.H/ for some Hilbert space H. We claim that up to
isomorphism every cleft dynamical system with fixed point algebra L.H/ is of the
form .L.H/˝A0; G; id˝˛0/ with an ergodic cleft action .A0; G; ˛0/. This can be
proved directly by looking at minimal projections p 2 L.H/ and the corresponding
restricted dynamical system on the algebra pAp. Alternatively, we may consider
an arbitrary factor system .; !/ for .A; G; ˛/. Then for each representation � 2 OG
the �-homomorphism � W L.H/ ! L.H/ ˝ L.V�/ is necessarily of the form
�.b/ D v��.b ˝ 1/v� , b 2 B, for some unitary v� 2 L.H/ ˝ L.V�/. Passing
from .; !/ to a conjugated factor system, we may without loss of generality assume
�.b/ D b˝1 for all b 2 B. Then the coaction condition states that for all �; � 2 OG
the element !.�; �/ 2 L.H ˝ V� ˝ V�/ commutes with L.H/ ˝ 1�˝� and hence
lies in 1˝L.V� ˝ V�/. Finally, Corollary 5.12 proves the claim.

Corollary 5.14. For a C�-dynamical system .A; G; ˛/ and a unital C�-subalgebra
B0 � B the following statements are equivalent:
(a) There is an ˛-invariant C�-subalgebra B0 � A0 � A such that the restricted

system .A0; G; ˛jA0/ is cleft with fixed point algebra B0.
(b) There is a factor system .; !/ of .A; G; ˛/ with unitary elements !.�; �/ 2

B0 ˝L.V� ˝ V�/ and �.B0/ � B0 ˝L.V�/ for all �; � 2 OG.
In this case A0 can be chosen to have the factor system

�
� jB0 ; !.�; �/

�
�;�2 OG

and A

is generated by A0 and B.
To have a concise statement we claim equivalence here but at this point we

prove only one implication. The converse implication will be deduced later as
Corollary 6.10.

Proof of (a)) (b). For an ˛-invariant subalgebra A0 � A its generalized isotypic
component of � 2 OG, denoted by A.0/2 .�/, is contained in the generalized isotypic
component A2.�/ of A. If the action on A0 is cleft, then for each � 2 OG we find a
unitary element s� 2 A.0/2 .�/. The elements s� , � 2 OG, give rise to a factor system
for A0 and to a factor system for A. Both factor systems share the same unitaries
!.�; �/ D s��˝�s�s� 2 B0˝L.V� ˝ V�/ for all �; � 2 OG. The �-homomorphisms
of the two factor systems are both given by �.b/ D s��.b ˝ 1/s� for � 2 OG, that
is, they only differ by their domains B0 and B, respectively, and the corresponding
codomains.

Example 5.15. Wewould like to present a simple example that is not a tensor product
with a free ergodic action. For this purpose consider the group G D SU2 and the
commutative C�-algebra C.X/ for an arbitrary compact space X on which we fix
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a non-trivial continuous reflection h W X ! X , h ı h D idX . The group SU2 has
up to equivalence for every dimension precisely one irreducible representation. So
we may identify OG with the natural numbers starting with V0 denoting the trivial
representation and V1 D C2 as the standard representation of SU2. As a factor
system .; !/ we choose the coaction n W C.X/! C.X/˝L.Vn/, n 2 N, given
by

n.b/ WD

(
b ˝ 1; if n is even,
.b ı h/˝ 1; if n is odd;

accompanied by the trivial 2-cocycle !.n;m/ WD 1 for n;m 2 N. The coaction
condition for  D .n/n2N is easily verified, e.g., using the Clebsch-Gordan formula
for SU2. Suppose for a moment that there exists a C�-dynamical system .A; G; ˛/

with the factor system .; !/. (This will be proven in Section 6.) It follows from
Corollary 5.14 that there is an ˛-invariant unital subalgebra A0 � A such that the
restricted system is equivalent to the trivial system

�
C.SU2/; G; r

�
and the algebra A

is generated by A0 D C.SU2/ and B D C.X/. However, these two algebras satisfy
non-trivial commutation relations. Namely, we may collect all odd and even isotypic
components and split A into its odd and even part, that is, we call x 2 A even
if ˛�1.x/ D x and odd if ˛�1.x/ D .�x/. Recall that for each .�; V / 2 OG the
isotypic component A.�/, as correspondence over B, is isomorphic to B ˝ L.V /

with the usual right right multiplication and the left multiplication b : x D �.b/x

for x 2 A.�/ and b 2 B. Since � maps into the center of B ˝ L.V /, we obtain
for� odd that b : x D ..bıh/˝1/x D x : .bıh/ and for� even likewise b : x D x : b.
Hence, for every x 2 A0 D C.SU2/ and b 2 B D C.X/ we have

bx D xb; if x is even;
bx D x.b ı h/; if x is odd:

Theses relations determine the C�-algebra A and the action of G on A uniquely,
that is, A is the unique C�-algebra generated by C.SU2/ and C.X/ subject to the
above relations. The algebra A is a particular case of the a twisted tensor product
(see [9,10]).

Remark 5.16. It is a well-known fact from homotopy theory that there exists,
up to isomorphy, exactly one principal SU2-bundle over the 3-sphere S3, namely
the trivial principal SU2-bundle S3 � SU2. It is used as a toy model for Chern–
Simons theory developed by Witten [23] to derive a 3-dimensional quantum field
theory in order to give an intrinsic definition of the Jones polynomial and its
generalizations dealing with knots in three dimensional space. Example 5.15
shows that the noncommutative setting provides more possibilities of constructing
“noncommutative principal SU2-bundles” over S3.



Part II, Free actions of compact groups on C�-algebras 659

6. Construction of cleft systems

In the previous section we have seen that factor systems provide an invariant of
weakly cleft C�-dynamical systems. In the following we will see that they actually
provide a full classification. That is, we will show that for every factor system .; !/

for .B; G/ there actually is a weakly cleft C�-dynamical system .A; G; ˛/with factor
system .; !/. We would like to mention that the construction principle is not limited
to weakly cleft actions and can be carried out more abstractly for general actions of
compact quantum groups on C�-algebras (see [11]). However, our restricted setting
allows some simplifications.

We will split the construction into three steps. In the first step we will show
how a factor system gives rise to a multiplication and hence an algebra. The second
step will concern the construction of an involution by exploiting the Hilbert module
structure. In the last step we proceed along the lines sketched in Section 3 to finally
construct the C�-algebra and the dynamical system.

6.1. Associativity and Factor Systems. Once and for all let us fix a group G and
a unital C�-algebra B, and let .; !/ be a pair of a family  D .�/�2 OG of unital
�-homomorphisms � W B ! B ˝ L.V�/ and a family of isometries !.�; �/ 2
B˝L.V� ˝V�/ for �; � 2 OG. For the moment we do not yet assume that .; !/ is a
factor system. We extend both families naturally to arbitrary representations ofG, that
is, we decompose given representations .�; V /, .�;W / into a direct sumof irreducible
components and define � and !.�; �/ componentwise. Equivalently, � W B !

B ˝L.V / and !.�; �/ 2 B ˝L.V ˝W / are the unique �-homomorphisms and
unitary elements, respectively, such that

�.b/v D v� .b/ and !.�; �/.v ˝ w/ D .v ˝ w/!.�; � 0/ (6.1)

for all isometric intertwiners v W V� ! V and w W V� 0 ! W with irreducible
representations �; � 0 2 OG and all b 2 B.

For each representation .�; V / of G we consider the correspondence B ˝L.V /

overB given by the usual rightmultiplication, theB-valued inner product hx; yiB WD
1
d�
.id˝Tr/.x�y/, and the left multiplication

b : x WD �.b/x

for all b 2 B and x; y 2 B ˝ L.V /. We write kxk2 WD hx; xi
1=2

B
for the

corresponding norm of x 2 B ˝ L.V / and for an irreducible representation
� 2 OG, we write P�;� for the map P�;� W B ˝ L.V / ! B ˝ L.V� / given by
P�;�.x/ WD

Pm
kD1 v

�
k
xv
k
, where v1; : : : ; vm W V� ! V is an orthonormal basis

of intertwiners. The map does not depend on the choice of the orthonormal basis.
Moreover, the map P�;� is adjointable with adjoint P ?�;�.z/ D

Pm
kD1 vkyv

�
k
for all

z 2 B ˝L.V� /.
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For each pair of representations .�; V / and .�;W / of G we define a linear map
by

m�;� W ŒB ˝L.V /�˝B ŒB ˝L.W /� �! B ˝L.V ˝W /

m�;�.x ˝ y/ WD !.�; �/ � .id� ˝�/.x/ � .1� ˝ y/:

We refer to m�;� as multiplication map. For sake of a concise notation we will
frequently drop the subindex and simply write m if the respective domains are not
substantial and clearly determined by the context. Moreover, we amplify in the
canonical way. With this simplifications the map m�;� takes the form

m�;�.x ˝ y/ D !.�; �/ �.x/y

for all x 2 B ˝L.V / and y 2 B ˝L.W /.
Lemma 6.1. The map m�;� is an adjointable isometry.

Proof. Recall that for anyC�-algebraA, equippedwith the natural right inner product
hx; yiA WD x

�y (x; y 2 A), and for any isometry s 2 A the map A! A, a 7! sa

is an adjointable isometry. In particular, it follows that the map z 7! !.�; �/ z

on B ˝ L.V ˝ W / is an adjointable isometry. Therefore, the assertion follows
from the fact that the tensor product ŒB ˝ L.V /� ˝B ŒB ˝ L.W /� is canonically
isometrically isomorphic to B ˝L.V ˝W / via the isomorphism x˝ y 7! �.x/y

for all x 2 B ˝L.V / and y 2 B ˝L.W /.

Lemma 6.2. Suppose .; !/ is a factor system. Then, for all representations �; �
of G the map m�;� is a B-bimodule map. Moreover, we have

.id� ˝m�;� / ı .m?�;� ˝ id� / D m?�;�˝� ım�˝�;� (6.2)

for all representations �; �; � of G. In particular, the family of maps m�;� is
associative, i.e.

m�;�˝� ı .id� ˝m�;� / D m�˝�;� ı .m�;� ˝ id� /:

Proof. The right module property of m�;� is obviously satisfied even without
assuming that .; !/ is a factor system. Furthermore, by the coaction condition
of the factor system, Equation (5.5), we obtain

m
�
b : .x ˝ y/

�
D m

�
�.b/x ˝ y

�
D !.�; �/ �

�
�.b/x

�
y

(5.5)
D �˝�.b/ !.�; �/ �.x/y D b :m.x ˝ y/

for all b 2 B, x 2 B ˝ L.V /, and y 2 B ˝ L.W /. This shows that m�;� is
indeed a B-bimodule map. In particular, the left and right hand side of (6.2) are
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well-defined maps on the correspondence ŒB ˝ L.V� ˝ V�/� ˝B ŒB ˝ L.V� /�.
In order to verify (6.2) for representations �; �; � of G, we canonically identify the
tensor product of the three correspondencesB˝L.V�/, B˝L.V�/, andB˝L.V� /

overB with the correspondenceB˝L.V�˝V�˝V� / via the isometric isomorphism
x˝y˝ z 7! �

�
�.x/y

�
z. Then the cocycle condition, Equation (5.6), implies that

.id� ˝m�;� /
�
.m?�;� ˝ id� /.x/

�
D !.�; �/ �

�
!.�; �/

��
x;

(5.6)
D !.�; �˝ �/� !.� ˝ �; �/ x D m?�;�˝�

�
m�˝�;� .x/

�
for all x 2 B ˝L.V� ˝ V� ˝ V� /, which proves Equation (6.2). Multiplying (6.2)
with .m�;� ˝ id� / from the right and m�;�˝� from the left yields

m�;�˝� .id� ˝m�;� / D m�;�˝� ım?�;�˝� ım�˝�;� ı .m�;� ˝ id� /:

Since the left hand side of this equation and the term S WD m�˝�;� ı .m�;�˝ id� / on
the right hand side are both isometries, the orthogonal projection m�;�˝� ım?�;�˝�
acts trivially the rage of S . Therefore, we may cancelm�;�˝� ım?�;�˝� , which shows
associativity.

Remark 6.3. The normalization condition !.1; 1/ D 1B of Definition 5.3 is
equivalent to the fact that for the trivial representation the multiplication map m
recovers the B-bimodule structure, that is, for a representation .�; V / of G we have

m1;�.b ˝ x/ D b : x D �.b/x; m�;1.x ˝ b/ D x : b D x.b ˝ 1�/

for all elements x 2 B˝L.V / and b 2 B. In particular, in this casem1;1 coincides
with the usual multiplication of B.

In order to define an algebra, we consider the algebraic direct sum of the
correspondences B ˝L.V�/ for � 2 OG:

A WD
M
�2 OG

B ˝L.V�/:

The left and right action of B are given componentwise and the B-valued inner
product is hx; yiB D

P
�2 OG
hx� ; y� iB , where x� and y� denote the components

of x and y, respectively. On A we define the product of x 2 B ˝ L.V�/ and
y 2 B ˝L.V�/ with �; � 2 OG by

x � y WD
X
�2 OG

P�;�˝�
�
m.x ˝ y/

�
:

Bilinear extension then yields a bilinear map .x; y/ 7! x � y on A. For x 2 B

or y 2 B this product coincides with the left or right action of B, respectively.
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Due to the intertwining relations (6.1) the family of maps m�;� behaves nicely
with respect to intertwiners. It is straightforward to check that for all representations
�; � of G and every intertwiner v W V� ! V� we have

m.vxv� ˝ y/ D .v ˝ 1�/m.x ˝ y/ .v ˝ 1�/
�;

m.v�zv ˝ y/ D .v ˝ 1�/
�m.z ˝ y/.v ˝ 1�/

(6.3)

for all x 2 B ˝ L.V�/ and y 2 B ˝ L.V�/, and similar equations hold for the
second tensor factor. Using this relations, the associativity of Lemma 6.2 and some
algebra straightforwardly yields the following:
Lemma6.4. Suppose .; !/ is a factor system. Then the product � onA is associative,
that is, .A; �/ is an algebra.

6.2. Constructing the Involution. Throughout the remainder of the section let us
assume that .; !/ is a factor system. In order to define an involution on the algebraA,
let consider a fixed � 2 OG. We write p� 2 L.V�˝ NV�/ for the orthogonal projection
onto the fixed point space of the representation � ˝ N� . For every x 2 B ˝L.V�/

we define an element in B ˝L. NV�/ by

J.x/ WD .L?x ım
?
�; N�/.p�/;

where we denote by Lx W B ˝ L. NV�/ ! ŒB ˝ L.V�/� ˝B ŒB ˝ L. NV�/� the
adjointable map given byLxy WD x˝y. Extending this antilinearly to all summands
provides an antilinear map J W A! A. On the subalgebra B � A (i.e. for � D 1)
we immediately find J.b/ D b� for all b 2 B. For the other summands, however,
J does not coincide with the usual involution on B ˝L.V�/ in general.
Theorem 6.5. For all x; y; z 2 A we have

hJ.x/ � y; ziB D hy; x � ziB :

Proof. Let x 2 B˝L.V�/, y 2 B˝L.V�/, and z 2 B ˝L.V� /with �; �; � 2 OG.
Since .; !/ is a factor system, the multiplication maps satisfy (6.2) of Lemma 6.2.
Then, writing Qz WD P ?�; N�˝�.z/ for short, we obtain

hJ.x/ � y; ziB D hm
�
J.x/˝ y

�
; QziB D hm N�;�

�
L?xm

?
�; N�.p�/˝ y

�
; QziB

D hL?x.id� ˝m N�;�/.m
?
�; N� ˝ id�/.p� ˝ y/; QziB

(6.2)
D hL?xm

?
�; N�˝�m�˝ N�;�.p� ˝ y/; QziB

D hm.p� ˝ y/; m.x ˝ Qz/iB :

(6.1)
D h.P ?id;�˝ N� ˝ id�/.y/; .id� ˝P ?�; N�˝�/m.x ˝ z/iB :

We fix an intertwiner w W C ! V�˝ N� and we choose an arbitrary orthonormal
bases of intertwiners v1; : : : ; vm W V� ! NV� ˝ V�. Then the intertwiners
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.1� ˝ vk/
�.w ˝ 1�/ for 1 � k � m form an orthonormal basis of intertwiners

from � to � ˝ � . Orthonormality follows from the fact that for every T 2 L. NV�/

we have w�.1� ˝ T /w D 1
d�

Tr.T /. Completeness holds because the dimension
of the intertwiner space from � to � ˝ � coincides with the dimension of the
intertwiner space from � to � ˝ N� . With this intertwiners we find P�;�˝� D
.Pid;�˝ N� ˝ id�/.id� ˝P ?�; N�˝�/. Continuing the above computation, we obtain

hJ.x/ � y; ziB D hy; P�;�˝�m.x ˝ z/iB D hy; x � ziB :

The assertion for arbitrary x; y; z 2 A then follows by extending (anti-)linearly.

Corollary 6.6. Let P0 W A ! B denote the orthogonal projection onto the direct
summand B � A corresponding to the trivial representation. Then for all x; y 2 A
we have

hx; yiB D P0
�
J.x/ � y

�
:

Proof. The element 1B is a unit for themultiplication ofA and fixed by the orthogonal
projection P0. Hence by Theorem 6.5 we obtain

hx; yiB D h1B ; J.x/ � yiB D
˝
1B ; P0

�
J.x/ � y

�˛
B
D P0

�
J.x/ � y

�
:

Remark 6.7. We would like to mention that by Corollary 6.6 the element J.x/ can
be equivalently be characterized as the unique element of A satisfying hJ.x/; yiB D
P0.x � y/ for all y 2 A.

Corollary 6.8. A is an involutive algebra, i.e. for all x; y 2 A we have

J
�
J.x/

�
D x; J.x � y/ D J.y/ � J.x/:

Proof. By applying Theorem 6.5 twice we get˝
J
�
J.x/

�
; z
˛
B
D h1B ; J.x/ � ziB D hx; ziB

and
hJ.x � y/; ziB D h1B ; x � y � ziB D hJ.x/; y � ziB D hJ.y/ � J.x/; ziB

for all z 2 A. Since the inner product separates points, this yields the assertion.

6.3. Construction of free actions. Having the algebra A and the involution on A
in hands, the construction of the C�-algebra and the cleft action follows the outline
presented in Section 3. We consider A as a right pre-Hilbert B-module. The inner
product is positive definite but, unless G is finite, A is not closed with respect to the
induced norm

kxk2 WD khx; xiBk
1=2
op D kP0

�
J.x/ � x

�
k
1=2
op ; x 2 A:
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We denote by NA the completion with respect to this norm. Equivalently,
the correspondence NA over B is the direct sum of the previously discussed
correspondences B ˝L.V�/ with � 2 OG.

Theorem6.5 allows us to extend each leftmultiplication byx 2 A to an adjointable
map on the completion NA, which we again denote by �Œx� W NA! NA. Then the map

� W A! L. NA/; x 7! �Œx�

is an representation of the �-algebra A by adjointable operators on NA. The vector
1B 2

NA is clearly cyclic and separating for the subalgebra �.A/. In particular, � is
faithful and hence isometric on B � A. We denote by A the C�-algebra generated
by the range of �. To simplify the notation we identify the algebra .A; �/ with the
subalgebra �.A/ � A. For sake of clarity, we extend the notation for the �-algebraA
to the C�-algebra L. NA/, that is, for elements x; y 2 L. NA/ we write x � y for their
product and for x 2 A we write J.x/ for its adjoint. Since for x 2 A we have
k�Œx�k2 � k�Œx�1Bk

2
2 D kxk

2
2, we may regard the C�-algebra A as a subset of NA,

so that A � A � NA.
On each direct summand B ˝L.V�/ � NA, � 2 OG, we have a continuous action

of G by the usual right multiplication

Ug.x/ WD x .1B ˝ �
�
g /

for g 2 G and x 2 B˝L.V�/. For each g 2 G the mapUg is unitary onB˝L.V�/

with respect to the B-valued inner product. Taking direct sums and continuous
extension, we obtain a strongly continuous unitary representation g 7! Ug 2 L. NA/

of the groupG on the correspondence NA. We denote by ˛ D .˛g/g2G the associated
automorphism group on L. NA/, i.e. we put

˛g.x/ WD Ug � x � U
?
g ; x 2 L. NA/:

For each element x 2 A � A we have ˛g.x/ D Ug.x/, that is, on the algebra A � NA

the actions ˛ D .˛g/g2G and U D .Ug/g2G coincide. Since A is dense in A, it
follows that g 7! ˛g.x/ is continuous for every x 2 A. Summarizing, we have
constructed a C�-dynamical system .A; G; ˛/.
Theorem 6.9. The C�-dynamical system .A; G; ˛/ is weakly cleft with fixed point
algebra B and factor system .; !/.

Proof. In the first part of the proof we will show that for the action U D .Ug/g2G

on NA the isotypic component of � 2 OG is given by the direct summand B ˝L. NV�/.
This verifies in particular that B is the fixed point space. By Theorem 6.5 it follows
that the canonical B-valued inner product on A coincides with the inner product on
the larger space NA, that is,Z

G

˛g
�
J.x/ � y

�
dg D P0

�
J.x/ � y/

6:5
D hx; yiB

for all x; y 2 A.
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Using Lemma 4.3 we conclude that the dynamical system .A; G; ˛/ is weakly cleft.
In the second part of the proof we confirm that .; !/ is indeed a factor system
of .A; G; ˛/.

(1) We consider the action U D .Ug/g2G on the correspondence NA over B.
Obviously, all elements of B � NA are fixed by the action. For an element
x 2 B ˝L.V�/ in a direct summand of NA with id ¤ � 2 OG the integralR
G
Ug.x/ dg D

R
G
x��g dg vanishes because � is irreducible. Taking linear

combinations and continuous extensions then shows that
R
G
Ug.x/ dg D P0.x/ for

all x 2 NA. Adapting the arguments, we obtain for every � 2 OG and x 2 NA

d�

Z
G

Tr.��g /Ug.x/ dg D P N�.x/;

where P N� W NA ! B ˝ L. NV�/ denotes the orthogonal projection onto the direct
summand B˝L. NV�/ � NA. We conclude that B˝L. NV�/ is the isotypic component
of � in NA and hence also in A � NA.

(2) It remains to verify that .; !/ is a factor system of .A; G; ˛/. According
to the first part of the proof the isotypic component of N� 2 OG in A is given by
B˝L.V�/. As a right B-module B˝L.V�/ is generated by the element 1B˝1� .
The natural isomorphism of the isotypic and the generalized isotypic component
together with Lemma 4.3 therefore provides us with the non-degenerate isometry
s� 2 A2.�/ � A˝L.V�/ given by

s� D d�

Z
G

1B ˝ �
�
g ˝ �g dg D 1B ˝ S;

where S 2 L.V / ˝ L.V / denotes the tensor flip. This family s D .s�/�2 OG of
isometries then gives rise to a factor system . Q; Q!/ by Equations (5.1) and (5.3). For
each � 2 OG the homomorphism Q� is uniquely determined by the left action of B

on s� . For convenience we also write � for the multiplication on all A ˝ L.V�/,
� 2 OG. Then the left action of B on s� is given by

.b ˝ 1�/ � s� D d�

Z
G

�
b � .1B ˝ �

�
g /
�
˝ �g D d�

Z
G

�
�.b/.1B ˝ �

�
g /
�
˝ �g

D
�
�.b/˝ 1�

�
.1B ˝ S/ D s�.1B ˝ U/

�
�.b/˝ 1�

�
.1B ˝ S/

D s� � �.b/

for every b 2 B. Consequently, Q� D � . With some algebra involving the
multiplication �, which we leave to the reader, it is then straightforward to show that
we also have

s� � s� D s�˝� � !.�; �/

for all �; � 2 OG. This proves Q!.�; �/ D s��˝� � s� � s� D !.�; �/. Summarizing,
we have shown that .; !/ is indeed the factor system associated with the isometries
s� , � 2 OG, which finishes the proof.
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This concrete representation theorem of weakly cleft actions finally allows us as
a corollary to complete the proof of Corollary 5.14, which we asserted in Section 5.
For convenience we repeat the relevant statement as a reminder in a slightly more
general form.
Corollary 6.10. Let .A; G; ˛/ be a C�-dynamical system and B0 � B a unital
C�-subalgebra of fixed points. Furthermore, let .; !/ be a factor system such that

�.B0/ � B0 ˝L.V�/; !.�; �/ 2 B0 ˝L.V� ˝ V�/;

for all �; � 2 OG. Then there is an ˛-invariant subalgebra A0 � A such that the
restricted dynamical system .A0; G; ˛jA0/ is weakly cleft and A is generated by A0

and B.

Proof. ByTheorem6.9 andTheorem5.6wemay assume thatA admits an˛-invariant
dense subalgebra of the form A D

L
�2 OG

B ˝L.V�/ with the multiplication

x � y D
X
�2 OG

P�
�
!.�; �/ �.x/ y

�
and the action ˛g.x/ D x.1B ˝ �

�
g / for all x 2 B ˝ L.V�/, y 2 B ˝ L.V�/,

g 2 G, and �; � 2 OG. By the hypotheses on .; !/ the subset

A0 WD
M
�2 OG

B0 ˝L.V�/

is an ˛-invariant �-subalgebra ofA (cf. also Remark 6.7). Let A0 � A be the closure
of A0 with respect to the operator norm. By Theorem 6.9, the dynamical system
restricted to A0 is weakly cleft with the restriction of .; !/ to B0 as factor system.
The spaceA is linearly generated by all productsx�b D .b˝x/withx 2 1B˝L.V�/,
� 2 OG, and b 2 B. Since A0 contains all elements x 2 1B ˝L.V�/, � 2 OG, the
algebra A is generated by A0 and B. Taking closures, A is generated by A0

and B.
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