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Deformation quantization of integrable systems
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Abstract. In this paper we address the following question: is it always possible to choose
a deformation quantization of a Poisson algebra A so that certain Poisson-commutative
subalgebra C in it remains commutative? We define a series of cohomological obstructions
to this, that take values in the Hochschild cohomology of C with coefficients in A. In some
particular case of the pair .A;C/ we reduce these classes to the classes of the Poisson relative
cohomology of the Hochschild cohomology. We show, that in the case, when the algebra C

is polynomial, these obstructions coincide with the previously known ones, those which were
defined by Garay and van Straten (see [8]).

Mathematics Subject Classification (2010). 53D55, 17B63; 46L65, 17B80, 13D03.
Keywords. Quantization, integrable systems, Hochschild relative cohomology.

1. Introduction

1.1. Setting of the problem. In the theory of integrable systems one starts with a
Poisson manifold M;� (where bivector � satisfies the equation Œ�; �� D 0 for the
Schouten–Nijenhuis bracket Œ ; �). Given such data, one can introduce the Poisson
bracket on the algebra of smooth functions by the rule ff; gg D �.df; dg/ so that for
any Hamiltonian H 2 C1.M/ we have the dynamics onM given by the formulas
Pf D fH; f g for any f 2 C1.M/ (in more geometric terms we consider dynamics
determined by the vector field � ij @H

@xj ).
In particular, if � has maximal rank everywhere, i.e. if the manifold M is

symplectic (hence it has even dimension 2n), then we can use the Liouville theorem:
in order to describe the trajectories of a dynamical system, it is enough to find n
functionally-independent functions f1 D H , f2; : : : ; fn, such that ffi ; fj g D 0. If
this is the case, one says, that f1; : : : ; fn is an integrable system. Generalizing a
little, we shall say, that an integrable system on a Poisson manifoldM is any algebra
C � C1.M/ D A, such that ff; gg D 0 for all f; g 2 C .

On the other hand, for any Poisson manifold one can define the deformation
quantization of its algebra of functions (see Section 1.2), a noncommutative algebra
.AJ„K; �/ closely related to the Poisson structure on C1.M/ D A. One can say
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that an integrable system onM remains integrable after quantization (or determines
a quantum integrable system), if the subspace CJ„K is a commutative subalgebra of
.AJ„K; �/. Observe, that the deformation-quantization approach is not the only one
used to define quantum integrable systems. The general theory of quantum integrable
systems is a well developed branch of modern mathematical physics, we outline its
ideas and results in Section 1.3.

Our principal aim in this paper is to find out if there always exists a quantization
of an integrable system in the deformation quantization framework, i.e. deformation
of a Poisson algebra, which preserves its commutative subalgebra, and if it exists
to classify all such quantizations. More precisely, let .A; f ; g/ be a commutative
Poisson algebra, i.e. an algebra with Poisson bracket verifying the Leibniz rule, and
let C be its Poisson-commutative subalgebra (i.e. C is a subalgebra of A such that
the restriction of the Poisson bracket f ; g on C vanishes), then we are interested in
such a �-product in AJ„K that C remains a commutative subalgebra of AJ„K with
respect to a �-product.

In particular, we can (and shall) assume that the product in C and in its image
in AJ„K coincide: although in general, one can ask about the commutativity of CJ„K
inside AJ„K, under very mild assumptions (for instance, when the Hochschild
cohomology of C verifies the Hochschild–Kostant–Rosenberg theorem), these two
conditions are equivalent, up to an isomorphism (see Section 3.1).

Algebraically this can be written as the following three conditions on an element
of the Hochschild complex (see Section 2.1)… 2 CH 2

„
.AJ„K/,

(1) MC.…/ D 0;
(2) i�.…/ D 0;
(3) … D � C higher terms.
HereMC denotes the Maurer–Cartan equation

d…C Œ…;…� D 0;

where Œ ; � is the Gerstenhaber bracket (see Section 2.1). Here we denoted by i the
inclusion map C ! A and i� is the natural extension of i

i� W CH�.A/ �! CH�.C ;A/

i.e. i� is the map restricting the polylinear maps from the Hochschild complex of A

to C .
In order to answer the question if such deformation quantizations exist, we

consider the corresponding relative Hochschild complex and define obstructions
to such a quantization. We first phrase our results in terms of certain conditions
on some cohomology classes, and later rephrase them in terms of the elements of
Poisson cohomology on the space of Hochschild cohomology. We also compare our
results with the analogous construction of classes, defined in [8], which turn out to
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be equal to ours in a simpler situation of a symplectic space with canonical Darboux
coordinates. Still another approach to a similar question is contained in a recent
paper [7] devoted to a wide class of deformation problems of pairs.

The rest of the paper is organized as follows: in Sections 1.2 and 1.3 we recall
the history, simple facts and notions of deformation quantization and of the theory
of quantum integrable systems. In Section 2.1 we recall the definition of Hochschild
cohomology and calculate this cohomology in a particular case. In Sections 3.2
and 3.3 we define the obstructions in terms of Hochschild cohomology. Finally, in
the Section 3.4 we describe the relation of these conditions to the results of Garay
and van Straten, in particular, we reformulate our results in terms of the Hochschild–
Poisson cohomology.

Acknowledgements. We are grateful to Professor Dito for his remarks concerning
the draft version of the paper. The work of G. Sh. was supported by the RFBR grant
15-01-05990-a and by the grant for support of the scientific school 581.2014.1. The
work of D. T. was partially supported by the RFBR grant 15-01-05990-a, by the
Simons Foundation and by the grant for support of the scientific school 4833.2014.1.

1.2. Remarks on deformation quantization. The idea of deformation quantization
can be traced back to the works of the founders of quantummechanics: one may argue
that the notion of semi-classical limit of quantum systems describes the latter as a
(proto-)deformation of the classical case. Another way to derive the deformation
quantization is to consider the Hermann Weyl quantization formula:

u 7! Ou D

Z
R2l

ˆ.u/.�; �/ exp.i.�j @j C �kqk/=„/d l�d l�;

which expresses the operator on L2.Rl/, associated to u 2 C1.R2l/ in terms of
an integral, where ˆ.�/ is the inverse Fourier transform, @j D i„ @

@xj and qk is
the multiplication by xk . The function u here can be interpreted as the symbol of
the differential operator Ou. The opposite question, how to find an expression of
the classical function-symbol of an operator, lead Jose Moyal in 1949 to his famous
formula, which expresses the symbol of the product of two operators in terms of the
symbols of the factors, which is now called the Moyal star-product (at least, so this
formula is credited nowadays, although at that time there definitely were other people
working on the same subject):

u � w D fg C
i„

2
� ij @if @jg C

.i„/2

8
� ij�kl@k@if @l@jg C � � �

D m ı exp
� i„
2
�
�
.f ˝ g/;



744 G. Sharygin and D. Talalaev

where � D � ij @i ^ @j is a constant Poisson bivector on R2l and m denotes the
product of the functions. This formula appeared in 1940s and it took some time
before it attracted attention of mathematicians.

The other source of the deformation quantization ideas is its name-sake:
deformation theory of complex varieties and its algebraic version, developed in 1960s.
This theory describes possibleways to pass “continuously” fromone algebra, group or
some other mathematical object to another. In the framework of this approach various
mathematical tools were developed, such as Hochschild homology and cohomology,
Gerstenhaber bracket, etc. However, for about two decades this theory has not been
applied to quantum mechanics.

It was probably in the works by M. Flato and coauthors in mid-1970s, see [1]
and [2], where the physical and mathematical approaches were first synthesized
and the following question, which is now generally referred to as the deformation
quantization problem was formulated:

Problem 1. Let .M; �/ be a Poisson manifold (� is Poisson bivector). Find a way to
deform formally the product on C1.M/, i.e. introduce a new associative product on
the space of formal power series C1.M/J„K, such that it coincides with the original
one up to the „-terms and the commutator of any two functions f; g 2 C1.M/

with respect to this product is equal to their Poisson bracket up to „2. Classify such
products for a given Poisson structure.

One readily sees that Moyal product gives an example of such noncommutative
multiplication on R2l .

This question alongside with the closely related quantum groups theory (in
which one is to find a deformation of the group structure) has been extensively
studied in 1980s and 1990s. Many approaches to it has been developed by various
mathematicians: much of the machinery of the Hochschild homology, homological
algebra, category theory, microlocal analysis and ideas from many other fields were
applied. The notable results of this investigations are Drinfeld’s constructions in
quantum groups [5], De Wilde and Lecomte quantization, Fedosov deformation
quantizations of the symplectic manifolds, and the Kontsevich’s quantization
theorem [9] (one should pay attention both to the original Kontsevich’s proof, which
amounts to a direct computation by a given euristic formula and to the Tamarkin’s
proof, based on a general operadic approach).

1.3. Remarks on quantum integrable models. The theory of quantum integrable
models counts numerous examples originated in mathematical physics, namely in
spin chains, in condensed matter models, in statistical mechanics such as Heisenberg
magnet, Gaudin system, quantum nonlinear Schrödinger equation and many others.
More general concept of quantum integrability concerns a pair C � A of associative
algebras where C is commutative and maximal in an appropriate sense. Due to
the algebraic definition there is a deep and fruitful relation of this domain with the



Deformation quantization of integrable systems 745

representation theory and algebra in general: algebra provides examples of quantum
integrable models, and vice versa the methods of quantum integrable models give
results in representation theory.

Themainmethod in this domain is the quantum inverse scatteringmethod (QISM)
established in the ’70s of the 20th century by the school of L. D. Faddeev [6]. QISM
is deeply related with the theory of quantum groups introduced by Drinfeld [5]. The
latter presents a deformation of a classical group in the category of Hopf algebras
(there are some generalizations: quasi-Hopf algebras, bialgebras etc.) which is
“perpendicular” to the deformation problem of the present paper. Briefly speaking,
QISM allows one to construct an integrable system starting with a solution of some
structural equation like Yang-Baxter equation related to the corresponding quantum
group.

There is an alternative approach to quantum integrable models which is efficient
for a class of models of the Gaudin type. This is a quantum spectral curvemethod [11]
whose principal idea is to consider the quantum integrable model as a deformation of
a classical one preserving some additional structures, such as the spectral curve and
separated variables. This approach has important advantages against QISM in the
solution aspect. The main topic of this work is in a sense analogous: we explore the
formal deformations of a classical integrable model up to an equivalence. Besides
the models of physical interest we do not discuss the representation of the underlying
algebra. Such a difference provides the important distinction in physical properties
and will be the subject of future refinement of our approach.

2. Hochschild complex and deformations

2.1. Definitions. We have to recall principal facts about the Hochschild complex.
Let A be an associative algebra over a field k of characteristic zero; consider the
Hochschild cohomology complexCH i .A/ D Homk.A

˝i ;A/ (ifA is a (sub)algebra
of the algebra of smooth functions on amanifold, as it is below, wewill usually restrict
the notion of linear maps to the “local” ones, see remarks in the end of this section).
This complex has
� a differential d W CH i .A/! CH iC1.A/ defined on ' W A˝i ! A as follows

d'.f1; : : : ; fiC1/ D f1'.f2; : : : ; fiC1/

C

iX
jD1

.�1/j'.f1; : : : ; fjfjC1; : : :/C .�1/
iC1'.f1; : : : ; fi /fiC1I

� the cup-product [ W CH i .A/˝CH j .A/! CH iCj .A/ defined by the formula:

.' [  /.f1; : : : ; fiCj / D .�1/
ij'.f1; : : : ; fi / .fiC1; : : : ; fiCj /I
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� the Gerstenhaber bracket Œ ; � W CH i .A/˝ CH j .A/! CH iCj�1.A/

Œ';  � D ' ı  � .�1/.i�1/.j�1/ ı ';

where

.' ı  /.f1; : : : ; fiCj�1/

D

i�1X
lD1

.�1/l.j�1/'.f1; : : : ; fl ;  .flC1; : : : ; flCj /; : : : ; fiCj�1/:

The bracket with the differential make the Hochschild complex a differential
graded Lie algebra, while the differential and the cup product together define
the noncommutative differential graded algebra. Moreover being restricted to
cohomology the cup-product and the bracket provide a structure of Gerstenhaber
algebra on HH�.A/. Another important fact about the Hochschild cohomology
is that when A is an algebra of smooth functions on a manifold, its Hochschild
cohomology (with certain modifications) can be described in classical terms (as a
Gerstenhaber algebra): according to the well-known Hochschild–Kostant–Rosenberg
theorem (see [10] for example) it is equal to the algebra of polyvector fields on the
manifold with the bracket given by the Schouten–Nijenhuis bracket.

Hochschild complex plays a prominent role in the deformation problem: one can
regard the deformed multiplication in AJ„K as a formal series

a � b D ab C „B1.a; b/C „B2.a; b/C � � � :

Then the associativity condition for� can be expressed as theMaurer–Cartan equation
on the element… D „B1C„B2C � � � in the „-linear Hochschild complex of AJ„K,
i.e.MC.…/ D 0 (see the introduction).

In what follows we shall assume that A is an algebra of functions on a Poisson
manifoldM ,C its Poisson-commutative subalgebra (i.e. ff; gg D 0 for allf; g 2 C ).
For instance, we can take C D ��.C1.X// for a map � WM ! X , intertwining the
given Poisson structure on M with the trivial structure on X . Or else C can be the
algebra of integrals of an integrable system (in particular, this is especially interesting
ifM is a symplectic manifold).

Throughout the paper we shall consider the “local” (with respect to M )
Hochschild complex, i.e. the complex consisting of such cochains ' W A˝n ! A

that '.f1; : : : ; fn/.x/ D '.g1; : : : ; gn/.x/ if there exists an open neighborhood U
of x in which fi � gi ; i D 1; : : : ; n. One can show that (on smooth manifolds)
this is equivalent to the condition, that all the cochains in CH�.A/ are given by the
polydifferential operatos on M . In particular, even when we speak about cochains
on C , we assume that they are local onM ; in the terms of differential operators, one
can formulate this as follows: every polydifferential operator on the sub algebra C
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with values in A extends to a polydifferential operator on the whole A (i.e. we need
a bit more than a linear extension of operators). This condition is evidently fulfilled
when C is given by the inverse image of a projection, C D ��.C1.X//.

2.2. A variant of the HKR theorem. We use the assumptions and notation from
previous section. Consider the following exact sequence of Hochschild complexes:

0! IQ�.A;C/! CH�.A/
i
! CH�.C ;A/! 0: (2.1)

Here IQ�.A;C/ denotes the kernel of the natural restriction map i ; it can be
described as the set of all cochains ' 2 CH�.A/ that vanish if all the arguments are
from C . The exactness of this sequence on the right is evident on the level of the
conventional Hochschild complex, i.e. when the elements are just polylinear maps,
on the level of polydifferential operators it was assumed in the previous section. We
are going to describe the corresponding cohomological long exact sequence in the
case when A D C1.M/ and C D C1.X/ for a smooth submersion

� WM ! X:

To this end consider the exact sequence of vector bundles

0! T vert
� M ! TM ! T hor

� M ! 0;

where T vert
� M is the kernel of the differential of � and T hor

� M D TX=T vert
� M , which

we can identify with the pullback ��TX .

Proposition 1. Cohomology of the complexes that appear in (2.1) are given by the
formulas

HH�.A/ Š ^�TM; H�.C ;A/ Š ^�T hor
� M; H�.IQ�.A;C// Š hT vert

� M i;

where ^�TM (resp. ^�T hor
� M ) denotes the algebra of polyvector fields on M

(resp. the algebra of “horizontal” polyvector fields onM , which can be regarded as
the pullbacks of polyvector fields on X ), and hT vert

� M i denotes the kernel ker^.d�/,
the ideal in ^�TM generated by T vert

� M . The long exact sequence of cohomology
associated with (2.1) splits into short exact sequences of the form

0! hT vert
� M ik ! ^kTM ! ^kT hor

� M ! 0:

Proof. The isomorphism HH�.A/ D ^�TM is the statement of the Hochschild–
Kostant–Rosenberg theorem. Furthermore, since our complexes are local inM , we
can restrict the exact sequence to any open neighborhood inM and use partition of
unity to restore the general result from the local ones (à laMayer–Vietoris sequence,
see, for instance [3]). Thus we can assume thatM D X � F for a fibre F . Then the
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equality H�.C ;A/ Š ^�T hor
� M becomes quite evident: the Hochschild–Kostant–

Rosenberg map

�HKR W ^
�TM ! CH�.A/;

�.X1 ^ � � � ^Xn/.f0; : : : ; fn/ D
1

nŠ

X
�2Sn

.�1/�f0X1.f�.1// : : : Xn.f�.n//;

induces a map �0HKR W ^
�T hor
� M ! CH�.C ;A/, which commutes with the

differential and is clearly an isomorphism. The rest follows from the exactness
of the long sequence in Hochschild cohomology.

Here is a couple of important observations that follow from this proposition:
(1) All the maps

HH k.A/! H k.C ;A/

are epimorphic;
(2) The proposition stays true if instead of the submersion � we have only

an integrable distribution !, so that T vert
! M consists of vectors in ! and

T hor
! M D TM=T vert

! M and we take C to be the algebra of functions on M ,
eliminated by the vertical vector fields.

3. Obstructions and calculations

3.1. Deformation problem. Let � be a deformed product (for example a product
given by Kontsevich’s theorem) on a Poisson algebra A, in other words it is a
deformation of a Poisson algebra A. From the point of view of the Hochschild
complex, this is an element … in CH�.AJ„K/ that verifies the Maurer–Cartan
equation and (since we need to keep track of the Poisson structure) begins with
the Poisson bracket. Also recall that two deformations �1 and �2 are called
equivalent if there exists a formal power series of differential operators D D

id C „D1 C „
2D2 C � � � , such that

D.a �2 b/ D D.a/ �1 D.b/:

Due to Kontsevich’s formality theorem [9] �-products of this sort always exist and
their equivalence classes coincide with the equivalence classes of formal Poisson
structures under similar formal isomorphisms. Recall, that a formal Poisson structure
is a formal power series of bivectors:

… D �0 C „�1 C „
2�2 C � � � ;

that verifies the usual properties of the Poisson bivectors in the space of formal series.
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So we ask if a given class of �-products contains a product trivial on C , in other
words, given a �-product, we are going to look for an („-linear) automorphismD of
the space AJ„K such that

D�1.D.a/ �D.b// D ab; 8a; b 2 C ;

or D.a/ �D.b/ D D.ab/; 8a; b 2 C ; (3.1)

and do this term by term in expansion on „.
Let us introduce some notation for the automorphism and the deformation series:

D.a/ D aC „D1.a/C „
2D2.a/C � � �

a � b D ab C „B1.a; b/C „
2B2.a; b/C � � �

Observe that B1.a; b/ is not necessarily equal to the Poisson bracket f ; g. However,
we can always find a formal diffeomorphism D which will intertwine any given
�-product with a �-product in whichB1.a; b/ D 1

2
fa; bg, so we shall fix this equality

from now on. In effect, in a similar way one can show that every commutative
�-product on CJ„K can be replaced by the trivial one a � b D ab in C .

3.2. „2-term. Expanding both sides of (3.1) and collecting terms at „ and „2 one
obtains

„W aD1.b/CD1.a/b D D1.ab/

„
2
W B2.a; b/C B1.a;D1.b//C B1.D1.a/; b/CD1.a/D1.b/

C aD2.b/CD2.a/b D D2.ab/

The first equality means thatD1 is a derivation on a subalgebra C with values in A.
Denoting by d the Hochschild differential we reduce the second equality to the
following one:

B2.a; b/ D dD2.a; b/ �D1 [D1.a; b/ � ŒD1; B1�.a; b/ (3.2)

here the bracket means the Gerstenhaber bracket on Hochschild complex and [ is
the cup-product. Let us remember that this equality should fulfill for all a; b 2 C .
Let us also emphasize that the second term may be nontrivial despite the fact that
B1jC D 0.

Let us also recall some consequences from the associativity of the �-product for
the first terms of the deformation series:

dB1.a; b; c/ D 0;

dB2.a; b; c/ D B1.B1.a; b/; c/ � B1.a; B1.b; c//:

The first one means that the element B1 is closed in the Hochschild complex, in
particular this equation holds if one chooses the Poisson bivector � for the B1 (as
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we have done before). Moreover B1.a; b/ D 1
2
fa; bg D 0 for all a; b 2 C hence

dB2 D 0 when restricting to C . Hence the second term in the deformation series for
the �-product, when restricted to C , defines an element i�.B2/ in the cohomology
spaceH 2.C ;A/, which we shall denote by B2, when it does not cause ambiguity.
Lemma 1. The necessary condition for the automorphism D with Property 3.1 to
exist is thatB2 lies in the sum of images of [ W H 1.C ;A/˝H 1.C ;A/! H 2.C ;A/

and the Gerstenhaber action Œ�; � � W H 1.C ;A/! H 2.C ;A/.
Below we shall say more on the definition of the map Œ�; � �, see Section 3.4. At

the moment one can regard this term as the restriction of the Gerstenhaber bracket.
Evidently this condition is not sufficient for the full problem but this shows that

taking the two-term automorphism

D D aC „D1 C „
2D2;

whose coefficientsD1; D2 satisfy (3.2) one can find a deformation of the �-product
such that B2.a; b/ D 0 for all a; b 2 C .
Remark 1. (1) In the conditions of the Proposition 1 the square of any element
ŒD� 2 H 1.C ;A/ is equal to 0; hence the necessary condition in Lemma 1 is that
i.B2/ is Œ�; ��-exact inH 2.C ;A/.

(2) The condition of Lemma 1 is in effect necessary and sufficient for the
elimination of the first two terms of the �-product on C , unlike the conditions
that we shall give in the following section, which are merely sufficient.

3.3. Higher terms. Suppose, the obstruction we found in the previous section is
trivial, in particular, we can find a �-product so that

B2.a; b/ D 0; 8a; b 2 C :

Let us consider an automorphism D with D1 D 0 and D2, D3; : : : such that (3.1)
fulfills up to „3: Then the associativity condition implies

dB3.a; b; c/ D ŒB2; B1�.a; b; c/

which is 0 if a; b; c 2 C : That is B3 is closed in CH 2.C ;A/.
SubstitutingD and collecting terms with different powers of „ we obtain

dD2.a; b/ D 0;

B3.a; b/ D dD3.a; b/ � ŒD2; B1�.a; b/;

for all a; b 2 C . Hence there exists a deformation of �-product by a formal
diffeomorphism, such that (3.2) fulfills up to „4, if theH 2.C ;A/-cohomology class
ofB3 lies in the image of the Gerstenhaber bracket Œ� ; � � W H 1.C ;A/! H 2.C ;A/.

This observation can be generalized.
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Lemma 2. Let �n be a �-product equivalent to � such that

B1.a; b/ D B2.a; b/ D � � � D Bn.a; b/ D 0; 8a; b 2 C :

Then,
� the term BnC1 W C ˝ C ! A is a Hochschild cocycle;
� the �-product �n can be deformed to �nC1 if the class of BnC1 in H 2.C ;A/ lies
in the image of Œ� ; � � W H 1.C ;A/! H 2.C ;A/.

Remark 2. We should once again warn the reader that the conditions of the present
section are sufficient, but not in general necessary. In fact, in order to get necessary
and sufficient conditions, we should have dropped the assumption that the formal
diffeomorphism is congruent to the identity modulo „n. This would have caused
additional terms in the calculations. For instance, if we do so for the term B3, we
would obtain the following set of relations:

dD1 D 0;

dD2 D D1 [D1 C Œ�; D1�;

and the following relation for B3 (we use the notation B1 instead of � for the sake of
uniformity)

B3 D ŒD1; B2�C ŒD2; B1�CD1 [D2 CD2 [D1 C dD3:

Similar formulas can be written for arbitrary level n. As one can see, the necessary
condition would involve the existence of a very special formal diffeomorphism, which
would kill the given class in H 2.C ;A/. It is intriguing to find a good geometric
interpretation of the corresponding relations, but for time being we shall restrict our
attention to the sufficient conditions we have obtained.

3.4. Poisson cohomology. In previous sections we have defined a series of cohom-
ology classes B2; B3; : : : 2 H 2.C ;A/ such that the integrable system can be
quantized if they belong to the image of the Gerstenhaber bracket Œ� ; � �. Now
we are going to describe the same condition in a bit more intrinsic way.

Recall the definition of Poisson cohomology: let .M; �/ be a Poisson manifold,
^�TM will denote the space of polyvector fields onM . Let us consider the Koszul
differential d� of degreeC1 on this space given by the equation

d� W ^
kTM ! ^kC1TM; d�.T / D Œ�; P �;

where P is a polyvector field and Œ ; � is the Schouten–Nijenhuis bracket. The
equality d2� D 0 follows from the Jacobi identity and the equation Œ�; �� D 0, which
determines the Poisson bivector. The cohomology of this complex is called the
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Poisson cohomology of .M; �/. It is closely related to the Poisson homology of
Brylinski, e.g. see [4].

Let now V � TM be a distribution of subspaces in TM such that for any vector
field X 2 V we have Œ�; X� 2 ŒV � where ŒV � is defined as the kernel of the exact
sequence:

0! ŒV �! ^�TM ! ^� .TM=V /! 0:

Then we can define a version of the Poisson differential both on the space ŒV � and
on the space of sections of the quotient-bundle H D TM=V . Indeed, for any
vector field Y 2 H D TM=V , we choose a representative QY 2 TM and define
d�Y D Œ�; QY � .mod V /. From assumptions we make it follows at once that the
result doesn’t depend on the choice of representative. Since the Schouten bracket on
higher dimensional polyvector fields is defined with the help of the Leibniz rule, we
obtain the differential dH� on^�H . Similarly, the same formula defines a differential
on the kernel of the projection ^�TM ! ^�H , which we shall also denote by dV� .
More generally, if V is an integrable distribution, then we can define an action of the
Schouten–Poisson algebra of polyvector fields with values in V on the space ^�H :
the same consideration shows that the usual formulas give a well-defined result.

We shall call the cohomology of .^�H; dH� / the relative Poisson cohomology
ofM modulo V . In particular, in the case we considered in Section 2.1, we showed
that the Hochschild cohomology of the pairA;C is equal to^�T hor

� M , where T hor
� M

is the quotient-bundle of TM modulo a distribution induced by a projection (or, more
generally, modulo any integrable distribution, see remark following the proof of the
Proposition 1). In this case we shall denote the differentials dV� and dH� by d vert

�

and d hor
� respectively. Recall now that the image of theGerstenhaber bracket under the

identification of the Hochschild–Kostant–Rosenberg theorem is the Schouten bracket
of polyvector fields.

The following proposition is in certain sense an algebraic analogue of the remarks
concerning the differential d� :

Proposition 2. Let A be the algebra of smooth functions on a manifold and C its
subalgebra defined as in the conditions of Proposition 1. Then the Gerstenhaber
bracket in CH�.A/ can be restricted to the subcomplex IQ�.A;C/ and for any
' 2 IQp.A;C/ and � 2 CH q.C ;A/ the formula

Œ'; ��.a1; : : : ; apCq�1/

D

pX
iD1

.�1/iqC1'.a1; : : : ; ai�1; �.ai ; : : : ; aiCq�1/; aiCq : : : ; apCq�1/

determines an action of the Lie algebra IQ�.A;C/ on CH�.C ;A/. The image of
this action on ^�T hor

� M is given by the Schouten bracket on polyvector fields.
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Proof. It is enough to observe that in the case we consider the second term of the
usual Gerstenhaber bracket of ' and � (or rather the restriction of ' to C ) should
vanish, since ' 2 IQ�.A;C/. The rest are the classical results of Gerstenhaber.

In particular, the Gerstenhaber bracket with � 2 IQ�.A;C/ in the view of
the results of Proposition 1 induces the differentials d� ; dV� and dH� . Now the
conclusions of our previous sections can be reformulated as follows:
Proposition 3. Consider an integrable system .A;C ; f ; g/, where A and C are as
in the conditions of Proposition 1. Then the obstruction classes Bn 2 H 2.C ;A/ D

^2T hor
� M are closed with respect to d hor

� and the deformation of integrable system
exists if they are exact.

Proof. The only thing that needs checking is the closedness of Bn for all n. But
this follows from the associativity equation: a direct computation shows that is B1 D
� � � D Bn�1 D 0 on C , then

1
2
Œf ; g; Bn� D d.BnC1/:

In what follows we shall denote the corresponding classes in Poisson cohomology
by �Bn.

Let now C Š RŒx1; : : : ; xn�with generators xi given by functions fi 2 C1.M/.
One can use the Koszul resolution of C to compute the Hochschild cohomology.
Recall ([10]) that this resolution is given by

K�.C/ D ˚niD0C ˝^
iRn ˝ C ;

with differential given by d.x˝ v˝ y/ D xv˝ y � x˝ vy on C ˝Rn˝C (where
we identify xi 2 Rn with fi 2 C ) and extended to wholeK�.C/ by the Leibniz rule.
Now it is straightforward to see that

H�.C ;A/ Š A˝^�Rn:

If C Š RŒx1; : : : ; xn� is a Poisson-commutative subalgebra in A D C1.M/ we
can consider a map M ! Rn given by x 7! .f1.x/; : : : ; fn.x//. This map is a
submersion iffi are functionally independent, so thatC can be regarded as the algebra
of functions eliminated by vertical vector fields of a foliation verifying the conditions
of Proposition 1. Thus we can consider the differential d hor

� . It is straightforward to
see that it is given by the formula

d hor
� .w ˝ v/ D

nX
iD1

ffi ; wg ˝ ei ^ v (3.3)

for all w 2 A, if ei 2 Rn are the corresponding basis elements. In effect, for any
element f ˝ ei 2 A ˝ Rn we choose a representative vector field Qei of ei on M
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(we can do it locally assuming that the support of f is small enough; it is sufficient
since both formulas-definitions of d hor

� are local). Now if � D X ^ Y on the chosen
subset, where both X and Y are tangent to the fibers of the foliation, we conclude
that the representative Qei can commute with X and Y , so the formula (3.3) holds.

Thus, the complex .^�T hor
� M; d hor

� / in this case coincides with the complex of
Garay and van Straten (see [8] and definitions therein). It is now easy to prove the
following
Proposition 4. The classes �Bn we have defined coincide with the classes �n of Garay
and van Straten.

Proof. In their paper Garay and van Straten deform the series corresponding to fi
inAJ„K so that Œf .n�1/i ; f

.n�1/
j � D o.„n/ (the superscript .n�1/ denotes the n�1-st

stage of the process). In order to obtain these series in our setting, use the deforming
series D.fi / instead of f .n/i where D is determined by the n-th step of the iterative
process from Sections 3.2 and 3.3, then the commutator relations will follow from
the condition on deformed multiplication. The classes of Garay and van Straten were
given by

�n D
X
i;j

�
f
.n�1/
i ; f

.n�1/
j

�.n/
ei ^ ej :

Here Œ ; �.n/ denotes the coefficient at „n in the corresponding formula. Now the
n-th degree in „ of the commutators of elementsD.fi / andD.fj / in AJ„K is given
by Bn.fi ; fj /. It is now enough to recall the formula of the map �0HKR from
Proposition 1 to obtain the result.

4. Conclusion

In conclusion, we would like to discuss some further questions concerned with the
classification of quantum integrable systems, as well as to point out the direction of
our further investigations.

First of all, the already classical results of Kontsevich can be reinterpreted in
terms of formality statement: in his paper [9] he in effect constructs an L1-quasi-
isomorphism between the differential graded Lie algebra of Hochschild cochains
(with respect to the Gerstenhaber bracket) and the algebra of polyvector fields on
a manifold (with respect to the Schouten bracket). In our case, we have an exact
sequence of Hochschild complexes (2.1), rather than just one complex and the
corresponding exact sequence of the cohomology. Kontsevich’s theorem shows that
the complex in the middle is formal. Now the problem we address in this paper can
be reformulated as the following question about formality of another complex in the
exact sequence: observe that the Poisson structure � as a Hochschild cochain belongs
to IQ2.A;C/; thus the deformation problem we consider will be solved if we can
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prove that IQ�.A;C/ is formal. In fact, if this is so, then for any formal Poisson
structure� 2 H�.IQ2.A;C//, we shall have a formal solution to theMaurer–Cartan
equation… 2 IQ2.A;C/, extending it, just like in the Kontsevich’s theorem.

It is not quite clear if the complex IQ�.A;C/ is formal or not. In the paper of
Garay and van Straten (see [8]) it is claimed, that the introduced obstructions vanish
onR2n with constant symplectic structure. Their idea is to use the symplectic form in
order to map the Poisson relative complex to a relative version of de Rham complex.
The cohomology of the latter complex can be computed, at least locally; then one
can use sheaf constructions and the fact that any symplectic form can be locally
identified with a form with constant coefficients in order to prove the statement. This
construction has many subtle details to follow in it, so it is not at all clear whether
the same holds in a generic case: at least one of the main ingredients, i.e. the map
from Poisson to de Rham complex fails to be isomorphism.

In our attempts to clarify the situation we calculated few first obstructions in
Kontsevich’s formula in some particular cases, which all turn out to be trivial. One
should observe that the classes we obtain belong to the cohomology of the right-
hand complex in the exact sequence, while the formality problem is concerning with
the complex on the left. The reason for this might be in the fact that the exact
sequence (2.1) represents an extension in the category of differential Lie algebras,
thus the formality might be closely related to the class of this extension in the derived
category. However, so far we are only able to suggest some speculations on this rather
intriguing subject.

Another interesting question is to find an explicit formula for the deformation
quantization in this case. We want to note that our efforts to construct an explicit
formula for the quantization, by analogy with the Kontsevich quantization formula
for the Poisson algebra, have not been successful. These questions form a basis for
further research.
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