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Factorization homology and calculus
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Abstract.We use factorization homology over manifolds with boundaries in order to construct
operations on Hochschild cohomology and Hochschild homology. These operations are
parametrized by a colored operad involving disks on the surface of a cylinder defined by
Kontsevich and Soibelman. The formalism of the proof extends without difficulties to a higher
dimensional situation. More precisely, we can replace associative algebras by algebras over
the little disks operad of any dimensions, Hochschild homology by factorization (also called
topological chiral) homology and Hochschild cohomology by higher Hochschild cohomology.
Our result works in categories of chain complexes but also in categories of modules over a
commutative ring spectrum giving interesting operations on topological Hochschild homology
and cohomology.
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1. Introduction

Let A be an associative algebra over a field k. A famous theorem by Hochschild
Kostant and Rosenberg (see [14]) suggests that the Hochschild homology ofA should
be interpreted as the graded vector space of differential forms on the noncommutative
space “SpecA”. Similarly, the Hochschild cohomology of A should be interpreted as
the space of polyvector fields on SpecA.

If M is a smooth manifold, let ��.M/ be the (homologically graded) vector
space of de Rham differential forms and V �.M/ be the vector space of polyvector
fields (i.e. global sections of the exterior algebra on TM ). This pair of graded vector
spaces supports the following structure:

� The de Rham differential: d W ��.M/! ���1.M/.
� The cup product of vector fields: �:� W V i .M/˝ V j .M/! V iCj .M/.
� The Schouten–Nijenhuis bracket: Œ�;�� W V i ˝ V j ! V iCj�1.
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� The cap product or interior product: �i˝V j ! �i�j denoted by!˝X 7! iX!.

� The Lie derivative: �i ˝ V j ! �i�jC1 denoted by ! ˝X 7! LX!.

This structure satisfies some properties:
� The de Rham differential is indeed a differential, i.e. d ı d D 0.

� The cup product and the Schouten–Nijenhuis bracket make V �.M/ into a
Gerstenhaber algebra. More precisely, the cup product is graded commutative
and the bracket satisfies the Jacobi identity and is a derivation in each variable
with respect to the cup product.

� The cap product makes ��.M/ into a module over the commutative algebra
V �.M/.

� The Lie derivative makes ��.M/ into a module over the Lie algebra V �.M/.
That is, we have the following formula:

LŒX;Y � D ŒLX ; LY �;

where on the right-hand side, Œ�;�� denotes the graded commutators of linear
maps on ��.M/.

� The following additional relations are satisfied:

iŒX;Y � D ŒiX ; LY �;

LX:Y D LX iY C .�1/
jX jiXLY ;

where again, Œ�;�� denotes the graded commutators of linear maps on ��.M/.

� Finally we have the following formula called Cartan’s formula relating the Lie
derivative, the exterior product and the de Rham differential:

LX D Œd; iX �:

Note that there is even more structure available in this situation. For example,
the de Rham differential forms are equipped with a commutative differential graded
algebra structure. However we will ignore this additional structure since it is not
available in the noncommutative case.

There is an operad Calc in graded vector spaces such that a Calc-algebra is a
pair .V �; ��/ together with all the structure we have just mentioned. In other words,
the previous equations can be summed-up by saying that the pair .V �.M/;��.M//

is a Calc-algebra with respect to the cup product, the cap product, the Schouten–
Nijenhuis bracket, the Lie derivative and the de Rham differential. This classical fact
has a generalization given by the following theorem:
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Theorem. LetA be an associative algebra over a field k, letHH�.A/ (resp.HH
�.A/)

denote the Hochschild homology (resp. cohomology) of A, then the pair

.HH�.A/;HH�.A//

is an algebra over Calc.

A detailed construction of this structure can be found in [7, Section 3]. Moreover,
if we takeA to be the algebra ofC1 functions on a smooth manifoldM , the previous
theorem reduces to the classical structure described above.

It is a natural question to try to lift this action to an action at the level of chains
inducing the Calc-action in homology. This is similar to Deligne conjecture which
states that there is an action of the operad of little 2-disks on Hochschild cochains of
an associative algebra inducing the Gerstenhaber structure after taking homology.

Kontsevich and Soibelman in [19] have constructed a topological colored operad
denoted KS whose homology is the colored operad Calc. The purpose of this paper
is to construct an action of KS on the pair consisting of topological Hochschild
cohomology and topological Hochschild homology.

More precisely, we prove the following theorem:

Theorem (10.6). LetA be an associative algebra in the category of chain complexes
over a Q-algebra or in the category of modules over a commutative symmetric ring
spectrum. Then there is an algebra .C;H/ overKS such thatC is weakly equivalent
to the (topological) Hochschild cohomology of A and H is weakly equivalent to the
(topological) Hochschild homology of A.

A version of this theorem was claimed without proof in [19] in the case of
chain complexes over a field of characteristic zero. A rigorous proof was written
by Dolgushev Tamarkin and Tsygan (see Section 4 of [6]) . The topological version
does not seem to have been considered anywhere. Note that our method can also
be used in the case of chain complexes and recover the Dolgushev Tamarkin Tsygan
result via a completely different approach.

We also prove a generalization of the above theorem for Ed -algebras. Hochschild
cohomology should then be replaced by the derived endomorphisms of A seen as an
Ed -module over itself and Hochschild homology should be replaced by factorization
homology (also called chiral homology). We construct obvious higher dimensional
analogues of the operad KS and show that they describe the action of higher
Hochschild cohomology on factorization homology.

The crucial ingredients in the proof is the Swiss-cheese version of Deligne’s
conjecture (see [24] or [11]) and a study of factorization homology on manifolds
with boundaries as defined in [1].
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Plan of the paper.
� The first two sections contain background material about operads and model
categories. We have proved the results whenever we could not find a proper
reference, however, this material makes no great claim of originality.

� The third section is a definition of the little d -disk operad and the Swiss-cheese
operad. Again it is not original and only included to fix notations.

� The fourth and fifth sections are devoted to the construction of the operads Ed
and E@

d
. These are smooth versions of the little d disk operad and the Swiss-cheese

operad.
� We show in the sixth section that Ed and E@

d
are weakly equivalent to the little d

disk operad and the Swiss-cheese operad.
� In the seventh section we construct factorization homology of Ed and E@

d
-algebras

over a manifold (with boundary in the case of E@
d
) and prove various useful results

about it.
� In the eighth section, we construct a smooth analogue of the operad KS as well
as its higher dimensional versions.

� Finally in the last section we construct an action of these operads on the pair
consisting of higher Hochschild cohomology and factorization homology.

Acknowledgements. This paper is part of the author’s Ph.D. thesis at MIT. This
work benefited a lot from conversations with Haynes Miller, Clark Barwick, David
Ayala, Ricardo Andrade, John Francis and Luis Alexandre Pereira.

Conventions. In this paper, we denote by S the category of simplicial sets with its
usual model structure. All our categories are implicitly assumed to be enriched in
simplicial sets and all our functors are functors of simplicially enriched categories.
We use the symbol' to denote a weak equivalence andŠ to denote an isomorphism.

2. Colored operads

We recall the definition of a colored operad (also called a multicategory). In this
paper we will restrict ourselves to the case of operads in S but the same definitions
could be made in any symmetric monoidal category. Note that we use the word
“operad” even when the operad has several colors. When we want to specifically talk
about operads with only one color, we say “one-color operad”.

Definition 2.1. An operad in the category of simplicial sets consists of
� a set of colors Col.M/
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� for any finite sequence faigi2I in Col.M/ indexed by a finite set I , and any color b,
a simplicial set:

M.faigI I b/

� a base point � !M.aI a/ for any color a
� for any map of finite sets f W I ! J , whose fiber over j 2 J is denoted Ij ,
compositions operations�Y

j2J

M.faigi2Ij
I bj /

�
�M.fbj gj2J I c/!M.faigi2I I c/:

All these data are required to satisfy unitality and associativity conditions (see for
instance [20, Definition 2.1.1.1]).

A map of operads M ! N is a map f W Col.M/ ! Col.N / together with the
data of maps

M.faigI I b/! N .ff .ai /gI If .b//

compatible with the compositions and units.
With the above definition, it is not completely obvious that there is a set of

morphisms between two operads. Indeed, a priori, this “set” is a subset of a product
indexed by all finite sets. However it is easy to fix this by checking that the only
data needed to specify an operad is the value M.faigi2I I b/ on sets I of the form
f1; : : : ; ng. Similarly, a map of operads can be specified by a small amount of
data. The above definition has the advantage of avoiding unnecessary identifications
between finite sets.
Remark 2.2. Note that the last point of the definition can be used with an
automorphism � W I ! I . Using the unitality and associativity of the composition
structure, it is not hard to see that M.faigi2I I b/ supports an action of the group
Aut.I /. Other definitions of operads include this action as part of the structure.
Notation 2.3. Let faigi2I and fbj gj2J be two sequences of colors of M. We
denote by faigi2I � fbj gj2J the sequence indexed over I tJ whose restriction to I
(resp. to J ) is faigi2I (resp. fbj gj2J ).

For instance if we have two colors a and b, we can write a�n � b�m to denote
the sequence fa; : : : ; a; b; : : : ; bgf1;:::;nCmg with n a’s and m b’s.

Any symmetric monoidal category can be seen as an operad:
Definition 2.4. Let .A;˝; IA/ be a small symmetric monoidal category enriched
in S. Then A has an underlying operad UA whose colors are the objects of A and
whose spaces of operations are given by

UA.faigi2I I b/ D MapA.
O
i2I

ai ; b/:
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Definition 2.5. We denote by Fin the category whose objects are nonnegative inte-
gers n and whose morphisms n! m are maps of finite sets

f1; : : : ; ng ! f1; : : : ; mg:

We allow ourselves to write i 2 n when we mean i 2 f1; : : : ; ng.
For S a set, we define a category †S . Its objects are pairs .n; a/ where n 2 Fin

and a W n! S is a map. A morphism from .n; a/ to .m; b/ only exists when n D m.
In that case, it is the data of an isomorphism � W n! n which is such that a D b ı� .
This category has a symmetric monoidal structure which sends ..n; a/; .m; b// to
.nCm; c/ where c is the function nCm! S whose restriction to f1; : : : ; ng is a
and whose restriction to fnC 1; : : : ; nCmg is b.

The construction A 7! UA sending a symmetric monoidal category to an operad
has a left adjoint that we define now. We will use the boldface letter M to denote
value of this left adjoint on M. We will call it the PROP associated to M.
Definition 2.6. Let M be an operad with set of colors, the objects of the free
symmetric monoidal categoryM are the objects of†S . The morphisms are given by

M..n; a/; .m; b// D
G

f 2Fin.n;m/

Y
i2m

M.faj gj2f �1.i/I bi /:

We note that there is a map †S ! M. In fact, †S can be seen as the PROP
associated to the initial operad with set of colors S . It is easy to check that there is
symmetric monoidal structure onM that is such that the map†S !M is symmetric
monoidal.

Let .C;˝; I/ be a symmetric monoidal simplicial category. We will assume
that C has all colimits and that the tensor product distributes over colimits on both
sides. For an element X 2 CS and x D .n; u/ 2 †S , we write

X˝x D
O
i2n

Xu.i/:

Then x 7! X˝x defines a symmetric monoidal functor †S ! C. If M is an operad
with set of colors S , we can consider the category CS of sequences of objects of C
indexed by the colors of M. The operad M defines a monad on that category via the
formula

M.X/.c/ D colimx2†S
M.xI c/˝X˝x :

The category of M-algebras in C is then the category of algebras over the monad M.
If A D fAsgs2S is an algebra over the colored operad M with set of colors S ,

the functor x 7! A˝x from †S to C extends to a symmetric monoidal functor
A W M ! C. Any symmetric monoidal functor F W M ! C is of this form up to
isomorphism. We will hence abuse notation and denote an algebra over M and the
induced symmetric monoidal functor M ! C by the same symbol. We denote the
category of M-algebras in C by CŒM�.
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Right modules over operads.

Definition 2.7. Let M be an operad. A right M-module is a simplicial functor

R WMop
! S:

We denote by ModM the category of modules over M.

Remark 2.8. If O is a one-color operad, it is easy to verify that the category of right
modules over O in the above sense is isomorphic to the category of right modules
over O in the usual sense (i.e. a right module over the monoid O with respect to the
monoidal structure on symmetric sequences given by the composition product).

The category of right modules over M has a convolution tensor product. GivenP
andQ two right modules over M, we first define their exterior tensor product P �Q
which is a functor Mop �Mop ! S sending .m; n/ to P.m/ � Q.n/. The tensor
product P ˝ Q is then defined to be the left Kan extension along the symmetric
monoidal structure � WMop �Mop !Mop of the exterior tensor product P �Q.

Proposition 2.9. If A is an M-algebra, then there is an isomorphism

.P ˝M A/˝ .Q˝M A/ Š .P ˝Q/˝M A:

Proof. By definition, we have

.P ˝Q/˝M A D �Š.P �Q/˝M A:

By associativity of coends, we have

.P ˝Q/˝M A Š P �Q˝M�M �
�A:

Since A is a symmetric monoidal functor, we have an isomorphism A� A Š ��A.
Thus we have

.P ˝Q/˝M A Š P �Q˝M�M A� A:

This last coend is the coequalizer

colimm;n;p;q2†ColM ŒP.m/ �Q.n/ �M.p;m/ �M.q; n/�˝ A.p/˝ A.q/
� colimm;n2†ColM ŒP.m/ �Q.n/�˝ A.m/˝ A.n/:

Each factor of the tensor product .P ˝M A/ ˝ .Q ˝M A/ can be written as a
similar coequalizer.

Each of these coequalizers is a reflexive coequalizer. Since the tensor product
C � C! C preserves reflexive coequalizers in both variables separately, according
to [10, Proposition 1.2.1], it sends reflexive coequalizers in C � C to reflexive
coequalizers in C . The proposition follows immediately from this fact.
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2.1. Operadic pushforward. Let M be an operad with set of colors S . We have a
symmetric monoidal functor i W †S ! M, where †S is the PROP associated to I

the initial colored operad with set of colors S . This induces a forgetful functor

i� WModM !ModI:

Proposition 2.10. The functor i� is symmetric monoidal.

Proof. First, it is obvious that this functor is lax monoidal.
Since colimits in ModM and ModI are computed objectwise, the functor i�

commutes with colimits. By the universal property of the Day convolution product
(see for instance [17, Proposition 2.1]), i� is symmetric monoidal if and only if its
restriction to representables is symmetric monoidal.

Thus, let x and y be two objects of M, we want to prove that the canonical map

M.i.�/; x/˝M.i.�/; y/!M.i.�/; x � y/

is an isomorphism.
By definition, we have

M.i.z/; x � y/ D
G

f Wz!x�y

Y
k2x�y

M.f �1.k/I k/:

Amap z ! x�y in†S is entirely determined by a choice of splitting z Š u�v
and the data of a map u! x and a map v ! y. Thus we have

M.i.z/; x � y/ Š
G

zŠu�v

G
f Wu!x;
gWv!y

Y
k2x;
j2y

M.f �1.k/I k/ �M.g�1.j /I j /

Š

G
zŠu�v

M.i.u/; x/ �M.i.v/; y/

Š .M.i.�/; x/˝M.i.�/; y//.z/:

Let us consider more generally a map u W M ! N between colored operad. It
induces a functor

u� WModN !ModM:

Proposition 2.11. The functor u� is symmetric monoidal.

Proof. Let S be the set of colors of M and T be the set of colors of N . We have a
commutative diagram of operads

IS
i //

v

��

M

u

��
IT

j
// N
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where IS (resp. IT ) is the initial operads with set of colors S (resp. T ). The
functor u� and v� are obviously lax monoidal. Since i� and j � are conservative
and symmetric monoidal by the previous proposition, it suffices to prove that v� is
symmetric monoidal.

Let X and Y be two objects of ModIT
, we want to prove that the map

X.v�/˝ Y.v�/! X ˝ Y.v�/

is an isomorphism. Let p 2 Ob.†S /, the value of the left hand side at p can be
written as

colim.q;r/2.†S�†S /=p
X.vq/ � Y.vr/:

On the other hand, the value of the right hand side at p can be written as

colim.x;y/2.†T�†T /=vp
X.x/ � Y.y/:

The map v induces a functor .†S � †S /=p ! .†T � †T /=vp that is easily
checked to be an equivalence of categories. This concludes the proof.

Corollary 2.12. Let ˛ W M ! N be a morphism of operads. Then, the left Kan
extension functor

˛Š W Fun.M;C/! Fun.N;C/
restricts to a functor

˛Š W CŒM�! CŒN �:

Proof. According to proposition 2.9, it suffices for the functor from N to ModM

sending n to N.˛.�/; n/ to be a symmetric monoidal functor. This is precisely
implied by proposition 2.11 and the fact that the Yoneda embedding is symmetric
monoidal.

Definition 2.13. We keep the notations of the previous proposition. The N -algebra
˛Š.A/ is called the operadic left Kan extension of A along ˛.
Proposition 2.14. If ˛ W M ! N is a map between colored operads, then the
forgetful functor ˛� W CŒN �! CŒM� is right adjoint to the functor ˛Š.

Proof. First, we observe that ˛� W CŒN � ! CŒM� is the restriction of ˛� W
Fun.N;C/! Fun.M;C/ which explains the apparent conflict of notations.

Let S (resp. T ) be the set of colors of M (resp. N ). Let IS and IT be the
initial object in the category of operads with set of colors S (resp. T ). We define
M0 DMtIS IT . The map ˛ can be factored as the obvious map M!M0 followed
by themapM0 ! N which induces the identitymap on colors. It suffices to prove the
proposition for each of these two maps. The case of the first map is a straightforward
verification, thus we can assume that M! N is the identity map on colors.
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The forgetful functor CŒM� ! Fun.M;C/ preserves reflexive coequalizers and
similarly for CŒN � ! Fun.N;C/. On the other hand, any M-algebra A can be
expressed as the following reflexive coequalizer

MMA�MA! A;

where the top map MMA!MA is induced by the monad structure on M and the
second map is induced by the algebra structure MA! A.

Let us write temporarily L for the left adjoint of ˛� W CŒN �! CŒM�. According
to the previous paragraph, it suffices to prove the proposition for A D MX a free
M-algebra on X 2 CColM. In that case, LA D NX . On the other hand for
c 2 Col.M/, we have

˛ŠA.c/ D N .˛�; c/˝M A:

A trivial computation shows that A D MX is the left Kan extension of X˝�
along the obvious map ˇ W †S ! M and similarly NX is the left Kan extension
of X˝� along ˛ ı ˇ. Thus, we have

˛ŠA Š ˛ŠˇŠX Š .˛ ı ˇ/ŠX D NX:

3. Homotopy theory of operads and modules

In this section we collect a few facts about the homotopy theory in categories of
algebras in a nice symmetric monoidal simplicial model category.
Definition 3.1. Let M be an operad with set of colors S . A right moduleX WMop!S
is said to be †-cofibrant if its restriction along the map †op

S !Mop is a projectively
cofibrant object of Fun.†op

S ;S/.
An operad M is said to be †-cofibrant if for eachm 2 Col.M/, the right module

M.�Im/ is †-cofibrant over M.
Remark 3.2. Note that †S is a groupoid. Thus a functor X in Fun.†op

S ;S/ is
projectively cofibrant if and only if X.c/ is an Aut.c/-cofibrant space for each c
in †S . This happens in particular, if Aut.c/ acts freely on X.c/.

In particular, if O is a single-color operad, it is †-cofibrant if and only if for
each n, O.n/ is cofibrant as a †n-space.
Definition 3.3. A weak equivalence between operads is a morphism of operads
f W M ! N which is a bijection on objects and such that for each fmigi2I a finite
set of colors of M and each m a color of M, the map

M.fmigIm/! N .ff .mi /gIf .m//

is a weak equivalence.
Remark 3.4. This is not the most general form of weak equivalences of operads but
this will be sufficient for our purposes.
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Algebras in categories of modules over a ring spectrum. If E is a commutative
monoid in the category Spec of symmetric spectra, we define ModE to be the
category of right modules over E equipped with the positive model structure
(see [23, Theorem III.3.2]). This category is a closed symmetric monoidal left
proper simplicial model category. There is another model structure ModaE on the
same category with the same weak equivalences but more cofibrations. In particular,
the unit E is cofibrant in ModaE but not in ModE . The model category ModaE is
also a symmetric monoidal left proper simplicial model category.

Theorem 3.5. Let E be a commutative symmetric ring spectrum. Then the positive
model structure on ModE is such that for any operad M, the category ModE ŒM�

has a model structure in which the weak equivalences and fibrations are colorwise.
Moreover if A is a cofibrant algebra over an operad M, then A is cofibrant for the
absolute model structure.

Proof. See [22, Theorem 3.4.1].

Moreover, this model structure is homotopy invariant:

Theorem 3.6. Let ˛ W M ! N be a weak equivalence of operads. Then the
adjunction

˛Š WModE ŒM��ModE ŒN � W ˛�

is a Quillen equivalence.

Proof. See [22, Theorem 3.4.3].

The above two theorems remain true for symmetric spectra in more general model
categories. A case of great interest is the case of motivic spectra. That is symmetric
spectra with respect to P1

k
in the category of based simplicial presheaves over the site

of smooth schemes over a field k. More details about this can be found in [22].

Algebras in chain complexes. LetR be a commutativeQ-algebra. We can consider
the category Ch�.R/ of (unbounded) chain complexes over R with its projective
model structure. Note that the category Ch�.R/ is not simplicial. Nevertheless,
the functor C� which assigns to a simplicial set its normalized R-chain complex is
lax monoidal. Therefore, it makes sense to speak about an algebra over a simplicial
operad M. This is just an algebra over the operad C�.M/. The conclusions of
Theorems 3.5 and 3.6 hold in this context modulo this small modification. Proofs
can be found in [12] and [21, Section 7.4].
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Berger–Moerdijk model structure.

Theorem 3.7. Let C be a left proper simplicial symmetric monoidal cofibrantly
generated model category. Assume that C has a monoidal fibrant replacement
functor and a cofibrant unit. Then, or any operad M, the category CŒM� has a
model structure in which the weak equivalences and fibrations are colorwise. If A is
a cofibrant algebra over a†-cofibrant operad M, then A is colorwise cofibrant inC.

Proof. The proof is done in [3, Theorem 4.1]. The second claim is proved in
[10, Proposition 12.3.2] in the case of single-color operads. Unfortunately, we do not
know a reference in the case of colored operads.

For instance S and Top satisfy the conditions of the theorem. Every object is
fibrant in Top and the functor X 7! Sing.jX j/ is a symmetric monoidal fibrant
replacement functor in S. If R is a commutative ring, the category sModR of
simplicial R-modules satisfies the conditions.

If T is a small site, the category of simplicial sheaves over T with its injective
model structure (in which cofibrations are monomorphisms and weak equivalences
are local weak equivalences) satisfies the conditions of the theorem.

Homotopy invariance of operadic coend. From now on, we let .C;˝; I/ be the
category ModE with its positive model structure. We write C instead of ModE
to emphasize that the argument work in greater generality modulo some small
modifications. In particular, the results we give extend to the model category of
chain complexes overR a Q-algebra. They also extend to a category that satisfies the
Berger–Moerdijk assumptions if one restricts to †-cofibrant operads and modules
and if C satisfies an analogue of 3.6.

We want to study the homotopy invariance of coends of the form P ˝M A for A
an M-algebra and P a right module over M.

Proposition 3.8. Let M be an operad and let M be the PROP associated to M. Let
A WM! C be an algebra. Then

(1) Let P WMop ! S be a right module. Then P ˝M� preserves weak equivalences
between cofibrant M-algebras.

(2) If A is a cofibrant algebra, the functor � ˝M A is a left Quillen functor from
right modules over M to C with the absolute model structure.

(3) Moreover the functor � ˝M A preserves all weak equivalences between right
modules.
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Proof. For P a functor Mop ! S, we denote by MP the operad whose colors are
Col.M/ t1 and whose operations are as follows:

MP .fm1; : : : ; mkg; n/ DM.fm1; : : : ; mkg; n/ if1 … fm1; : : : ; mk; ng
MP .fm1; : : : ; mkgI1/ D P.fm1; : : : ; mkg/ if1 … fm1; : : : ; mkg

MP .f1gI1/ D �

MP .fm1; : : : ; mkg; n/ D ¿ in any other case:

There is an obvious operad map ˛P WM!MP . Moreover by 2.14 we have

ev1.˛P /ŠA ŠMP .�;1/˝M A Š P ˝M A;

where ev1 denotes the functor that evaluate an MP -algebra at the color1.

Proof of the first claim. If A ! B is a weak equivalence between cofibrant M-
algebras, then .˛P /ŠA is weakly equivalent to .˛P /ŠB since .˛P /Š is a left Quillen
functor. To conclude the proof, we observe that the functor ev1 preserves all weak
equivalences.

Proof of the second claim. In order to show that P 7! P ˝M A is left Quillen, it
suffices to check that it sends generating (trivial) cofibrations to (trivial) cofibrations.

For m 2 Ob.M/, denote by �m the functor S ! Fun.Ob.M/;S/ sending X to
the functor sending m to X and everything else to ¿. Denote by FM the left Kan
extension functor

FM W Fun.Ob.M/op;S/! Fun.Mop;C/:

We can take as generating (trivial) cofibrations the maps of the form FM�mI

(resp. FM�mJ ) for I (resp. J ), the generating cofibrations (resp. trivial cofibrations)
of S. We have:

FM�mI ˝M A Š I ˝ A.m/:

Since A is cofibrant as an algebra its value at each object of M is cofibrant in the
absolute model structure by Theorem 3.5. Since the absolute model structure is a
simplicial model category we are done.

Proof of the third claim. Let P ! Q be a weak equivalence between functors
Mop ! S. This induces a weak equivalence between operads ˇ W MP ! MQ.
It is clear that ˛Q D ˇ ı ˛P , therefore .˛Q/ŠA D ˇŠ.˛P /ŠA. We apply ˇ� to both
side and get

ˇ�ˇŠ.˛P /ŠA D ˇ
�.˛Q/ŠA:
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Since .˛P /ŠA is cofibrant and ˇ� preserves all weak equivalences, the adjunction
map

.˛P /ŠA! ˇ�ˇŠ.˛P /ŠA

is a weak equivalence by 3.6. Therefore the obvious map

.˛P /ŠA! ˇ�.˛Q/ŠA

is a weak equivalence.
If we evaluate this at the color1, we find a weak equivalence

P ˝M A! Q˝M A:

Operadic vs categorical homotopy left Kan extension. As we have seen in 2.14,
given a map of operads ˛ WM! N , the operadic left Kan extension ˛Š applied to an
algebra A over M coincides with the left Kan extension of the functor A W M! C.
We call the latter the categorical left Kan extension of A.

It is not clear that the derived functors of these two different left Kan extensions
coincide. Indeed, in the case of the derived operadic left Kan extension, we take a
cofibrant replacement of the M-algebra A in the model category CŒM� and in the
case of the categorical left Kan extension we take a cofibrant replacement of the
functor A W M! C in the category of functors with the projective model structure.
However, it turns out that the two constructions coincide.
Proposition 3.9. Let ˛ W M ! N be a morphism of operads. Let A be an algebra
over M. The derived operadic left Kan extension L˛Š.A/ is weakly equivalent to the
homotopy left Kan extension of A WM! C along the induced map M! N.

Proof. Let QA ! A be a cofibrant replacement of A as an M-algebra. We can
consider the bar construction of the functorQA WM! C:

B�.N.˛�; n/;M;QA/:

We know that QA is objectwise cofibrant in the absolute model structure.
Therefore, the bar construction is Reedy-cofibrant in the absolute model structure
and computes the categorical left Kan extension of A.

We can rewrite this simplicial object as

B�.N.˛�; n/;M;M/˝M QA:

The geometric realization is

jB�.N.˛�; n/;M;M/j ˝M QA:
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It is a classical fact that the map

jB�.N.˛�; n/;M;M/j ! N.˛�; n/

is a weak equivalence of functors on M. Therefore, by Proposition 3.8, the Bar
construction is weakly equivalent to ˛ŠQA which is exactly the derived operadic left
Kan extension of A.

4. The little d-disk operad

In this section, we give a traditional definition of the little d -disk operad Dd as
well as a definition of the Swiss-cheese operad SCd which we denote D@

d
. The

Swiss-cheese operad, originally defined by Voronov (see [25] for a definition when
d D 2 and [24] for a definition in all dimensions), is a variant of the little d -disk
operad which describes the action of an Dd -algebra on an Dd�1-algebra.

Space of rectilinear embeddings. Let D denote the open disk of dimension d ,
D D fx 2 Rd ; kxk < 1g.

Definition 4.1. Let U and V be connected subsets of Rd , let iU and iV denote the
inclusion into Rd . We say that f W U ! V is a rectilinear embedding if there is an
element L in the subgroup of Aut.Rd / generated by translations and dilations with
positive factor such that

iV ı f D L ı iU :

We extend this definition to disjoint unions of open subsets of Rd :

Definition 4.2. LetU1; : : : ; Un andV1; : : : ; Vm be finite families of connected subsets
ofRd . The notationU1t : : :tUn denotes the coproduct ofU1; : : : Un in the category
of topological spaces. We say that a map from U1 t : : : t Un to V1 t : : : t Vm is a
rectilinear embedding if it satisfies the following properties:

(1) Its restriction to each component can be factored as Ui ! Vj ! V1 t : : : t Vm
where the second map is the obvious inclusion and the first map is a rectilinear
embedding Ui ! Vj .

(2) The underlying map of sets is injective.

We denote by Emblin.U1 t : : : t Un; V1 t : : : t Vm/ the subspace of Map.U1 t
: : : t Un; V1 t : : : t Vm/ whose points are rectilinear embeddings.

Observe that rectilinear embeddings are stable under composition.
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The d-disk operad. We denote byD the open unit disk of Rd .
Definition 4.3. The linear d -disk operad, denoted Dd , is the operad in topological
spaces whose nth space is Emblin.Dtn;D/ with the composition induced from the
composition of rectilinear embeddings.

There are variants of this definition but they are all equivalent to this one. In
the above definition Dd is an operad in topological spaces. By applying the functor
Sing, we obtain an operad in S. We use the same notation for the topological and the
simplicial operad.

The Swiss-cheese operad. We denote byH the d -dimensional half-disk

H D fx D .x1; : : : ; xd g/; kxk < 1; xd � 0g:

Definition 4.4. The linear d -dimensional Swiss-cheese operad, denoted D@
d
, has

two colors z and h and its mapping spaces are

D@
d .z

�n; z/ D Emblin.Dtn;D/

D@
d .z

�n � h�m; h/ D Emb@lin.D
tn
tHtm;H/

where the @ superscript means that we restrict to embeddings mapping the boundary
to the boundary.

The operad D@
d

interpolates between Dd and Dd�1 by the following easy
proposition:
Proposition 4.5. The full suboperad of D@

d
on the color z is isomorphic to Dd and

the full suboperad on the color h is isomorphic to Dd�1.

The homotopy types of the spaces appearing in Dd and D@
d
can be understood

by the following proposition:
Proposition 4.6. The evaluation at the center of the disks induces weak equivalences

Dd .n/
'
�! Conf.n;D/

D@
d .z

�n � h�m; h/
'
�! Conf.m; @H/ � Conf.n;H � @H/:

Proof. These maps are Hurewicz fibrations whose fibers are contractible.

5. Homotopy pullbacks in Top=W

The material of this section can be found in [2]. We have included it mainly for
the reader’s convenience and also to give a proof of 5.5 which is mentioned without
proof in [2].
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Homotopy pullbacks in Top. Given a cospan A! B  C in model categoryM,
its pullback is usually not a homotopy invariant. In other words, a levelwise weak
equivalence between two cospans does not induce a weak equivalence between their
pullbacks. However, the pullback functor from the category of cospans in M to the
category M has a right derived functor that we call the homotopy pullback functor.
In the category of topological spaces, this functor has a very explicit model given by
the following well-known proposition:

Proposition 5.1. Let

X

f

��
Y

g
// Z

be a diagram in Top. The homotopy pullback of that diagram can be constructed as
the space of triples .x; p; y/ where x is a point in X , y is a point in Y and p is a
path from f .x/ to g.y/ in Z.

Homotopy pullbacks in Top=W . Let W be a topological space. There is a model
structure on Top=W the category of topological spaces overW in which cofibrations,
fibrations andweak equivalences are reflected by the forgetful functorTop=W ! Top.
We want to study homotopy pullbacks in Top=W .

We denote a space over W by a single capital letter like X and we write pX for
the structure map X ! W .

Let I D Œ0; 1�, for Y an object of Top=W , we denote by Y I the cotensor in the
category Top=W . Concretely, Y I is the space of paths in Y whose image in W is
a constant path. We have two maps ev0 and ev1 from Y I to Y that are given by
evaluation at 0 and 1.

Definition 5.2. Let f W X ! Y be a map inTop=W . We denote byNf the following
pullback in Top=W :

Nf //

��

Y I

ev0

��
X

f
// Y

In words, Nf is the space of pairs .x; p/ where x is a point in X and p is a path
in Y whose value at 0 is f .x/ and lying over a constant path in W .

We denote by pf , the map Nf ! Y sending a path to its value at 1.
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Proposition 5.3. Let
X

f

��
Y // Z

be a diagram in Top=W in which X and Z are fibrant (i.e. the structure maps pX
and pZ are fibrations) then the pullback of the following diagram in Top=W is a
model for the homotopy pullback

Nf

pf

��
Y // Z

Concretely, this proposition is saying that the homotopy pullback is the space of
triples .x; p; y/ where x is a point in X , y is a point in Y and p is a path in Z
between f .x/ and g.y/ lying over a constant path in W .

Proof of the proposition. The proof is similar to the analogous result in Top, it
suffices to check that the map pf W Nf ! Z is a fibration in Top=W which is
weakly equivalent to X ! Z. Since the category Top=W is right proper, a pullback
along a fibration is always a homotopy pullback.

From now on when we talk about a homotopy pullback in the category Top=W ,
we mean the above specific model.
Remark 5.4. The map from the homotopy pullback to Y is a fibration. If X , Y ,
Z are fibrant, the homotopy pullback can be computed in two seemingly different
ways. However, it is easy to see that the two homotopy pullbacks are isomorphic. In
particular, the map from the homotopy pullback to X is also a fibration in that case.

Comparison of homotopy pullbacks in Top and in Top=W . For a diagram

X

f

��
Y // Z

in Top (resp. Top=W with X and Z fibrant), we denote by hpb.X ! Z  Y /

(resp. hpbW .X ! Z  Y /) the explicit models of homotopy pullback in Top
(resp. Top=W ) constructed in the previous two subsections.

Note that there is an obvious inclusion

hpbW .X ! X  Y /! hpb.X ! Z  Y /;

which sends a path (which happens to be constant in W ) to itself.
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Proposition 5.5. Let W be a topological space and X ! Z  Y be a diagram in
Top=W in which the structure maps Z ! W and Y ! W are fibrations, then the
inclusion

hpbW .X ! Y  Z/! hpb.X ! Y  Z/

is a weak equivalence.

Proof. We denote by Pf the space of couples .x; p/ with x in X and p a path in Z
with value f .x/ at 0. The space Nf is the subspace of Pf where we require that p
is mapped to a constant path in W . We have a commutative diagram:

hpbW .X ! X  Y / //

��

hpb.X ! Z  Y / //

��

Y

��
Nf // Pf // Z

By construction, in this diagram, the right-hand side square is homotopy cartesian
in Top and the big square is homotopy cartesian in Top=W . If we can prove that
the forgetful functor Top=W ! Top preserves homotopy cartesian squares, then the
result will follow from the pasting lemma for homotopy pullbacks and the fact that
the map Nf ! Pf is a weak equivalence.

Thus, we are reduced to proving that the forgetful functor Top=W ! Top
preserves homotopy cartesian squares. We first observe that it preserves cartesian
squares. Now let

A

��

// B

��
C // D

be a homotopy cartesian square in Top=W . Let C ! C 0 ! D be a factorization of
C ! D as a weak equivalence followed by a fibration in Top=W . By definition of a
homotopy pullback square, the induced map A ! B �D C

0 is a weak equivalence.
But since the fibrations and weak equivalences in Top=W are fibrations and weak
equivalence in Top, this implies that the above square is also homotopy cartesian
in Top.

6. Embeddings between structured manifolds

This section again owes a lot to [2]. In particular, the definition 6.3 can be found
there as [2, Definition V.8.3]. We then make an analogous definitions of embedding
spaces for framed manifolds with boundary.
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Topological space of embeddings. There is a topological category whose objects
are d -manifolds possibly with boundary and the mapping spaces betweenM and N
is Emb.M;N /, the topological space of smooth embeddings with the weak C 1-
topology. The reader can refer to [13] for a definition of this topology. We want to
emphasize that this topology is metrizable, in particular Emb.M;N / is paracompact.

Remark 6.1. If one is only interested in the homotopy type of this topological
space, one could work with the C r -topology for any r (even r D 1) instead of
the C 1-topology. The choice of taking the weak (as opposed to strong topology)
however is a serious one. The two topologies coincide when the domain is compact.
However the strong topology does not have continuous composition maps

Emb.M;N / � Emb.N; P /! Emb.M;P /

whenM is not compact.

Embeddings between framed manifolds. For a manifoldM possibly with bound-
ary, we denote by Fr.TM/!M the principal GL.d/-bundle of frames of the tangent
bundle ofM .

Definition 6.2. A framed d -manifold is a pair .M; �M / where M is a d -manifold
and �M is a smooth section of the principal GL.d/-bundle Fr.TM/.

IfM andN are two framed d -manifolds, we define a space of framed embeddings
denoted by Embf .M;N / as in [2]:

Definition 6.3. Let M and N be two framed d -dimensional manifolds. The
topological space of framed embeddings from M to N , denoted Embf .M;N /,
is given by the following homotopy pullback (using the model of Proposition 5.3) in
the category of topological spaces over Map.M;N /:

Embf .M;N / //

��

Map.M;N /

��
Emb.M;N / // MapGL.d/.Fr.TM/;Fr.TN //

The right hand side map is obtained as the composite

Map.M;N /! MapGL.d/.M � GL.d/;N � GL.d//
Š MapGL.d/.Fr.TM/;Fr.TN //

where the first map is obtained by taking the product with GL.d/ and the second map
is induced by the identification Fr.TM/ ŠM �GL.d/ and Fr.TN / Š N �GL.d/
coming from the framings ofM and N .
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If we only care about the homotopy type of Embf .M;N /, we could take any
model for the homotopy pullback. However, we want to pick the explicit model of
Proposition 5.3 so that there are well defined composition maps

Embf .M;N / � Embf .N; P /! Embf .M;P /

allowing the construction of a topological category fMand (see [2, Defini-
tion V.10.1] for more details).

Embeddings between framed manifolds with boundary. If N is a manifold with
boundary, n a point of the boundary, and v is a vector in TNn � T .@N /n, we say
that v is pointing inward if it can be represented as the tangent vector at 0 of a curve
 W Œ0; 1/! N with .0/ D n.

Definition 6.4. A d -manifold with boundary is a pair .N; �/whereN is a d -manifold
with boundary in the traditional sense and � is an isomorphism of d -dimensional
vector bundles over @N

� W T .@N /˚R! TNj@N

which is required to restrict to the canonical inclusion T .@N /! TNj@N , and which
is such that for any n on the boundary, the point 1 2 R is sent to an inward pointing
vector through the composition

R! Tn.@N /˚R
�n
�! TnN:

In other words, ourmanifolds with boundary are equippedwith an inward pointing
vector at each point of the boundary. We moreover require the maps between
manifolds with boundary to preserve the direction defined by these vectors:

Definition 6.5. Let .M; �/ and .N; / be two d -manifolds with boundary, we define
the space Emb.M;N / to be the topological space of smooth embeddings from M

into N sending @M to @N and preserving the splitting of the tangent bundles along
the boundary T .@M/˚ R! T .@N /˚ R. The topology on this space is the weak
C 1-topology.

In particular, if @M is empty, Emb.M;N / D Emb.M;N � @N/. If @N is empty
and @M is not empty, Emb.M;N / D ¿.

We now introduce framings on manifolds with boundary. We require a framing
to interact well with the boundary.

Definition 6.6. Let .N; �/ be a d -manifold with boundary. A framing of N is the
data of:
� an isomorphism of vector bundles over N : �N W TN ! N �Rd

� an isomorphism �@N W T .@N /! @N �Rd�1.
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Such that there exists a map u W @N � R ! @N � R sending .x; 1/ to .x; a/ with
a > 0 and making the following diagram in the category of d -dimensional vector
bundles over @N commute:

T @N �R
�@N�id //

�

��

@N �Rd�1 �R

id
@N�Rd�1�u

��
TN

�N

// @N �Rd�1 �R

In more concrete terms this definition is saying that a framing of N is a choice of
basis in each fiber of the tangent bundle of TN . Over a point n in the boundary ofN ,
the first .d �1/ vectors of this basis are required to form a basis of Tn@N � TnN and
the last vector is required to be a positive multiple of the inward pointing vector that
is induced by the data of �. We say that a basis of TnN that satisfies this property is
compatible with the boundary.
Definition 6.7. LetM andN be two framed d -manifolds with boundary. We denote
byMap@GL.d/.Fr.TM/;Fr.TN // the topological space of GL.d/-equivariant maps f
sending @M to @N and such that for anym in @M , any basis ofTmM that is compatible
with the boundary is sent to a basis of Tf .m/N that is compatible with the boundary.
Definition 6.8. Let M and N be two framed d -manifolds with boundary. The
topological space of framed embeddings from M to N , denoted Embf .M;N /, is
the space that fits in the following homotopy pullback square in the category of
topological spaces over Map..M; @M/; .N; @N //

Embf .M;N / //

��

Map..M; @M/; .N; @N //

��
Emb.M;N / // Map@GL.d/.Fr.TM/;Fr.TN //

Concretely, a point in Embf .M;N / is a pair .�; p/ where � W M ! N is an
embedding of manifolds with boundary and p is the data at each point m ofM of a
path between the two trivializations of TmM (the one given by the framing ofM and
the one given by pulling back the framing ofN along �). These paths are required to
vary smoothly with m. Moreover if m is a point on the boundary, the path between
the two trivializations of TmM must be such that at any time, the first d � 1-vectors
are in Tm@M � TmM and the last vector is a positive multiple of the inward pointing
vector which is part of our definition of a manifold with boundary.

7. Homotopy type of spaces of embeddings

We want to study the homotopy type of spaces of embeddings described in the
previous section. None of the result presented here are surprising. Some of them are
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proved in greater generality in [4]. However the author of [4] is working with the
strong topology on spaces of embeddings and for our purposes, we needed to use the
weak topology.

As usual,D denotes the d -dimensional open disk of radius 1 andH is the upper
half-disk of radius 1

We will make use of the following two lemmas.
Lemma 7.1. Let X be a topological space with an increasing filtration by open
subsets X D

S
n2N Un. Let Y be another space and f W X ! Y be a continuous

map such that for all n, the restriction of f to Un is a weak equivalence. Then f is
a weak equivalence.

Proof. We can apply Theorem 8.5. This theorem implies that X is equivalent to
the homotopy colimit of the open sets Un which immediately yields the desired
result.

Lemma 7.2 (Cerf). Let G be a topological group and let p W E ! B be a map of
G-topological spaces. Assume that for any x 2 B , there is a neighborhood of x on
which there is a section of the map

G ! B

g 7! g:x

Then, if we forget the action, the map p is a locally trivial fibration. In particular,
if B is paracompact, it is a Hurewicz fibration.

Proof. See [5, Lemme 1].

Let Emb�.D;D/ (resp. Emb@;�.H;H/) be the topological space of self embed-
dings ofD (resp.H ) mapping 0 to 0.
Proposition 7.3. The “derivative at the origin” map

Emb�.D;D/! GL.d/

is a Hurewicz fibration and a weak equivalence. The analogous result for the map

Emb@;�.H;H/! GL.d � 1/

also holds.

Proof. Let us first show that the derivative map

Emb�.D;D/! GL.d/

is a Hurewicz fibration.
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The group GL.d/ acts on the source and the target and the derivative map
commutes with this action. By Lemma 7.2, it suffices to show that for anyu 2 GL.d/,
we can define a section of the map GL.d/! GL.d/ sending f to f u but this map
is in fact an homeomorphism.

Nowwe show that the fibers are contractible. Let u 2 GL.d/ and let Embu.D;D/
be the space of embedding whose derivative at 0 is u, we want to prove that
Embu.D;D/ is contractible. It is equivalent but more convenient to work with Rd

instead ofD. Let us consider the following homotopy:

Embu.Rd ;Rd / � .0; 1�! Embu.Rd ;Rd /

.f; t/ 7!

�
x 7!

f .tx/

t

�
At t D 1 this is the identity of Embu.D;D/. We can extend this homotopy by

declaring that its value at 0 is constant with value the linear map u. Therefore, the
inclusion fug ! Embu.D;D/ is a deformation retract.

The proof forH is similar.

Proposition 7.4. LetM be a manifold (possibly with boundary). The map

Emb.D;M/! Fr.TM/

is a weak equivalence and a Hurewicz fibration. Similarly the map

Emb.H;M/! Fr.T @M/

is a weak equivalence and a Hurewicz fibration.

Proof. The fact that these maps are Hurewicz fibrations will follow again from
Lemma 7.2. We will assume thatM has a framing because this will make the proof
easier and we will only apply this result with framed manifolds. However the result
remains true in general.

Let us do the proof for D. The space Emb.D;M/ has a left action of Diff.M/

and a right action of GL.d/ that we can turn into a left action by the inversion
isomorphism GL.d/! GL.d/op. The derivative map

Emb.D;M/! Fr.TM/ ŠM � GL.d/

is then equivariant with respect to the action of the group Diff.M/ � GL.d/. It
suffices to show that for any x 2 Fr.TM/ ŠM � GL.d/, the “action on x” map

Diff.M/ � GL.d/!M � GL.d/

has a section in a neighborhood of x. Clearly it is enough to show that for any x
inM , the map

Diff.M/!M

sending � to �.x/ has a section in a neighborhood of x.
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Let us pick x 2 V � M a neighborhood of x where V is diffeomorphic to Rd

and x is sent to 0 by this diffeomorphism. LetU � V be the set of points that are sent
toD � Rd by the diffeomorphism V ! Rd . Let us consider the group Diffc.V / of
diffeomorphisms of V that are the identity outside a compact subset of V . Clearly we
can prolong one of these diffeomorphisms by the identity and there is a well defined
inclusion of topological groups

Diffc.V /! Diff.M/

Instead of constructing a section M ! Diff.M/, we will construct a map s W
U ! Diffc.V / such that s.u/.x/ D u. Composing this map with the inclusion
Diffc.V /! Diff.M/ will give the desired section.

Using our diffeomorphism V Š Rd , we want to construct a map:

� W D ! Diffc.Rd /

with the property that �.x/.0/ D x.
Let f be a smooth function from Rd to R which is such that

� f .0/ D 1

� krf k � 1
2

� f is compactly supported.
We claim that

�.x/.u/ D f .u/x C u

satisfies the requirement. The first condition on f implies that �.x/.0/ D x, the
third condition implies that �.x/ is compactly supported and the second condition
implies that �.x/ is injective. Indeed, if �.x/.u/ D �.x/.v/, then we have u � v D
x.f .v/ � f .u//. Taking the norm, we find ku � vk � kxk

2
ku � vk which is only

possible if u D v. A function f that satisfies the requirements can be obtained by
picking any smooth function g with compact support and value 1 in 0 and then take
f .u/ D g.�u/ for some positive number � small enough so that the condition on
derivatives is satisfied.

In conclusion we have proved that the derivative map:

Emb.D;M/! Fr.TM/

is a Hurewicz fibration. The case ofH is similar.
Now we prove that this derivative map is a weak equivalence. We have the

following commutative diagram

Emb.D;M/ //

��

Fr.TM/

��
M

D //M
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Both vertical maps are Hurewicz fibrations, therefore it suffices to check that
the induced map on fibers is a weak equivalence. We denote by Embm.D;M/ the
subspace consisting of those embeddings sending 0 to m. Hence all we have to do
is prove that for any point m 2M the derivative map Embm.D;M/! FrTmM is a
weak equivalence. IfM isD andm D 0, this is the previous proposition. In general,
we pick an embedding f W D ! M centered at m. Let Un � Embm.D;M/ be
the subspace of embeddings mapping Dn to the image of f (where Dn � D is the
subspace of points of norm at most 1=n). By definition of the topology on the space
of embeddings, Un is open in Embm.D;M/. Moreover,

S
n Un D Embm.D;M/.

Therefore, by 7.1 it suffices to show that the map Un ! Fr.TmM/ is a weak
equivalence for all n.

Clearly the inclusion U1 ! Un is a deformation retract for all n, therefore,
it suffices to check that U1 ! Fr.TmM/ is a weak equivalence. Equivalently, it
suffices to prove that Emb�.D;D/ ! GL.d/ is a weak equivalence and this is
exactly the previous proposition.

This result extends to disjoint union of copies ofH andD with a similar proof.

Proposition 7.5. The derivative map

Emb.Dtp tHtq;M/! Fr.TConf.p;M � @M// � Fr.TConf.q; @M//

is a weak equivalence and a Hurewicz fibration.

In the case of framed embeddings, we have the following result:

Proposition 7.6. The evaluation at the center of the disks induces a weak equivalence

Embf .Dtp tHtq;M/! Conf.p;M � @M/ � Conf.q; @M/:

Proof. This is done in [2, V.14.4] in the case whereM does not have a boundary. To
simplify notations, we restrict to studying Embf .H;M/, the general case is similar.
By Definition 6.8 and Proposition 5.5, we need to study the following homotopy
pullback:

Map..H; @H/; .M; @M//

��
Emb@.H;M/ // Map@GL.d/.Fr.TH/;Fr.TM//

This diagram maps to the following diagram:

@M

��
Fr.T .@M// // Fr.T .@M//
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in which the bottommap is the identity. The map from the first diagram to the second
diagram are obtained by evaluating at 0 or taking derivative at 0. All three maps
are moreover weak equivalences by the previous proposition or by an easy argument.
Thus the induced map on homotopy pullbacks is a weak equivalence.

We prove a variant of this proposition. Let M be a d -manifold with compact
boundary and let S be a compact .d � 1/-manifold without boundary. We can
construct the “derivative” map

Emb@.S � Œ0; 1/ tDtn;M/! Emb.S; @M/ � Fr.TConf.n;M � @M//

which sends an embedding to its restriction to S and to its derivative at the center of
each disks
Proposition 7.7. This map is a Hurewicz fibration and a weak equivalence.

Proof. We do the proof in the case where n D 0. The general case is a combination
of this case and of Proposition 7.5. Hence, we want to prove that the “restriction to
the boundary” map:

Emb.S � Œ0; 1/;M/! Emb.S; @M/

is a Hurewicz fibration and a weak equivalence. Note that an embedding between
compact connected manifolds without boundary is necessarily a diffeomorphism.
Therefore the two spaces in the proposition are empty unless S is diffeomorphic to a
disjoint union of connected components of @M .

Let us assume that S and @M are connected and diffeomorphic. The general case
follows easily from this particular case. We first prove that this map is a Hurewicz
fibration. We use the criterion 7.2. The map

Emb.S � Œ0; 1/;M/! Emb.S; @M/

is equivariant with respect to the obvious right action of Diff.S/ on both sides.
Therefore, for any f 2 Emb.S; @M/, we need to define a section of the “action
on f ” map

Diff.S/! Emb.S; @M/

but this map is by hypothesis a diffeomorphism.
Now let us prove that each fiber is contractible. Let ˛ be a diffeomorphism

S ! @M . We need to prove that the space Emb˛.S � Œ0; 1/;M/ consisting of
embeddings whose restriction to the boundary is ˛ is contractible.

Let us choose one of these embeddings � W S � Œ0; 1/ ! M and denote its
image by C . For n > 0, let Un be the subset of Emb˛.S � Œ0; 1/;M/ consisting of
embeddings f with the property that f .S � Œ0; 1

n
�/ � C . By definition of the weak

C 1-topology, Un is open in Emb˛.S � Œ0; 1/;M/, moreover Emb˛.S � Œ0; 1/;M/ DS
n Un, therefore by 7.1, it is enough to prove that Un is contractible for all n.
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Let us consider the following homotopy:

H W

�
0; 1 �

1

n

�
� Un ! Un

.t; f / 7! ..s; u/ 7! f .s; .1 � t /u//:

It is a homotopy between the identity ofUn and amapwhose image is inU1 � Un.
Thus U1 is a deformation retract of each of the Un and it suffices to prove that U1 is
contractible. Each element of U1 factors through C D Im�, hence it is enough to
prove the lemma whenM D S � Œ0; 1/ and ˛ D id. It is equivalent and notationally
simpler to do it for S �R�01.

For t 2 .0; 1�, let ht W S �R�0 ! S �R�0 be the diffeomorphism sending .s; u/
to .s; tu/.

Let us consider the following homotopy

.0; 1� � Embid.S �R�0; S �R�0/! Embid.S �R�0; S �R�0/

.t; f / 7! h1=t ı f ı ht :

At time 1, this is the identity of Embid.S � Œ0;C1/; S � Œ0;C1//. At time 0 it
has as limit the map

.s; u/ 7!

�
s; u

@f

@u
.s; 0/

�
that lies in the subspace of Embid.S � Œ0;C1/; S � Œ0;C1// consisting of element
which are of the form .s; u/ 7! .s; a.s/u/ for some smooth function a W S ! R>0.
This space is obviously contractible and we have shown that it is deformation retract
of Embid.S � Œ0;C1/; S � Œ0;C1//.

Proposition 7.8. Let M be a framed d -manifold with compact boundary. The
“derivative” map

Embf .S � Œ0; 1/ tDtn;M/! Embf .S; @M/ � Conf.n;M � @M/

is a weak equivalence.

Proof. This follows from the previous proposition in the same way Proposition 7.6
follows from Proposition 7.5.

We are now ready to define the operads Ed , E@
d
.

Definition 7.9. The operad Ed of little d -disks is the simplicial operad whose nth
space is Embf .Dtn;D/.

1The following was suggested to us by Søren Galatius.
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Note that there is an inclusion of operads

Dd ! Ed

Proposition 7.10. This map is a weak equivalence of operads.

Proof. It is enough to check it degreewise. The map

Dd ! Conf.n;D/

is a weak equivalence which factors through Ed .n/. Moreover, by 7.6, the map
Ed .n/! Conf.n;D/ is a weak equivalence.

Definition 7.11. The operad E@
d
is a colored operad with two colors z and h and with

E@d .z
�n
I z/ D Ed .n/

E@d .z
�n � h�m

I h/ D Embf .Dtn tHtm;H/

Proposition 7.12. The obvious inclusion of operads

D@
d ! E@d

is a weak equivalence of operads.

Proof. Similar to 7.10.

8. Factorization homology

In this section, we define factorization homology of Ed -algebras and E@
d
-algebras.

The paper [1] defines factorization homology of manifolds with various kind of
singularities. The only originality of this section is the language of model categories
as opposed to1-categories.

Let M be the set of framed d manifolds whose underlying manifold is
a submanifold of R1. Note that M contains at least one element of each
diffeomorphism class of framed d -manifolds.
Definition 8.1. We denote by fMand an operad whose set of colors isM and with
mapping objects:

fMand .fM1; : : : ;Mng;M/ D Embf .M1 t : : : tMn;M/:

As usual, we denote by fMand the free symmetric monoidal category on the
operad fMand .

We can see D � Rd � R1 as an element of M. The operad Ed is the full
suboperad of fMand on the color D. The category Ed is the full subcategory
of fMand on objects of the formDtn with n a nonnegative integer.
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Similarly, we define M@ to be the set of submanifolds of R1 possibly with
boundary. M@ contains at least one element of each diffeomorphism class of framed
d -manifolds with boundary.
Definition 8.2. We denote by fMan@

d
the operad whose set of colors is M@ and

with mapping objects:

fMan@d .fM1; : : : ;MngIM/ D Emb@f .M1 t : : : tMn;M/

We denote by fMan@d the free symmetric monoidal category on the operad
fMan@

d
.

The suboperad E@
d
is the full suboperad of fMan@

d
on the colorsD andH .

As usual .C;˝; I/ denotes the category ModE of right modules over a
commutative ring spectrum.
Definition 8.3. Let A be an object of CŒEd �. We define factorization homology with
coefficients in A to be the derived operadic left Kan extension of A along the map of
operads Ed ! fMand .

We denote by
R
M
A the value at the manifoldM of factorization homology. By

definition,M 7!
R
M
A is a symmetric monoidal functor.

We have
R
M
A D Embf .�;M/ ˝Ed

QA where QA ! A is a cofibrant
replacement in the category CŒEd �.

We can define factorization homology of an object of fMan@d with coefficients
in an algebra over E@

d
.

Definition 8.4. Let .B;A/ be an algebra over E@
d
in C. Factorization homology with

coefficients in .B;A/ is the derived operadic left Kan extension of .B;A/ along the
obvious inclusion of operads E@

d
! fMan@

d
. We write

R
M
.B;A/ to denote the

value atM 2 fMan@d of the induced functor.
Again, we have

R
M
.B;A/ D Emb@f .�;M/ ˝E@

d
Q.B;A/ where Q.B;A/ !

.B;A/ is a cofibrant replacement in the category CŒE@
d
�.

Factorization homology as a homotopy colimit. In this section, we show that fac-
torization homology can be expressed as the homotopy colimit of a certain functor
on the poset of open sets of M that are diffeomorphic to a disjoint union of disks.
Note that this result in the case of manifolds without boundary is proved in [20].

We will rely heavily on the following theorem:
Theorem 8.5. Let X be a topological space and U.X/ be the poset of open subsets
of X . Let � W A ! U.X/ be a functor from a small discrete category A. For a
point x 2 X , denote by Ax the full subcategory of A whose objects are those that
are mapped by � to open sets containing x. Assume that for all x, the nerve of Ax is
contractible. Then the obvious map:

hocolim�! X

is a weak equivalence.
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Proof. See [20, Theorem A.3.1].

Let M be an object of fMand . Let D.M/ the poset of subsets of M that
are diffeomorphic to a disjoint union of disks. Let us choose for each object V
ofD.M/ a framed diffeomorphism V Š Dtn for some uniquely determined n. Each
inclusion V � V 0 in D.M/ induces a morphismDtn ! Dtn

0 in Ed by composing
with the chosen parametrization. Therefore each choice of parametrization induces
a functor D.M/ ! Ed . Up to homotopy this choice is unique since the space of
automorphisms ofD in Ed is contractible.

In the following we assume that we have one of these functors ı W D.M/! Ed .
We fix a cofibrant algebra A W Ed ! C.
Lemma 8.6. The obvious map

hocolimV 2D.M/Embf .�; V /! Embf .�;M/

is a weak equivalence in Fun.Ed ;S/.

Proof. It suffices to prove that for each n, there is a weak equivalence in spaces:

hocolimV 2D.M/Embf .Dtn; V / ' Embf .Dtn;M/:

We can apply Theorem 8.5 to the functor:

D.M/! U.Embf .Dtn;M//

sending V to Embf .Dtn; V / � Embf .Dtn;M/. For a given point � in the space
Embf .Dtn;M/, we have to show that the poset of open sets V 2 D.M/ such that
im.�/ � V is contractible. But this poset is filtered, thus its nerve is contractible.

Corollary 8.7. If A is cofibrant, there is a weak equivalence:Z
M

A ' hocolimV 2D.M/A.ı.V //:

Proof. By 3.9, the coend of Embf .�;M/ and A defining factorization homology is
a derived coend. Derived coend commute with homotopy colimits. Thus, using 8.6,
we have Z

M

A D Embf .�;M/˝Ed
A

' hocolimV 2D.M/.Embd .�; V /˝Ed
A/

' hocolimV 2D.M/

Z
V

A:

Let U be an object of Ed . The object
R
U
A is the coend:

Embf .�; U /˝Ed
A:
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Yoneda’s lemma implies that this coend is isomorphic to A.U /. Moreover, this
isomorphism is functorial in U . Therefore we have the desired identity.

We want to use a similar approach for manifolds with boundaries. LetM be an
object of fMand�1 and let M � Œ0; 1/ be the object of fMan@d whose framing is
the direct sum of the framing of M and the obvious framing of Œ0; 1/. We identify
D.M/ with the poset of open sets of M � Œ0; 1/ of the form V � Œ0; 1/ with V an
open set of M that is diffeomorphic to a disjoint union of disks. As before we can
pick a functor ı W D.M/! E@

d
.

Lemma 8.8. The obvious map

hocolimV 2D.M/Embf .�; V � Œ0; 1//! Embf .�;M � Œ0; 1//

is a weak equivalence in Fun..E@
d
/op;S/.

Proof. It suffices to prove that for each p; q, there is a weak equivalence in spaces:

hocolimV 2D.M/Embf .Dtp tHtq; V � Œ0; 1//
' Embf .Dtp tHtq;M � Œ0; 1//:

By 8.5, this can be reduced to proving that, for � 2 Emb.DtptHtq;M �Œ0; 1//,
the poset D.M/� (which is the subposet of D.M/ on open sets V that are such that
V � Œ0; 1/ �M � Œ0; 1/ contains the image of �) is contractible. But it is easy to see
that D.M/� is filtered and therefore contractible.

Proposition 8.9. Let .B;A/ W E@
d
! C be a cofibrant E@

d
-algebra, then we have:Z

M�Œ0;1/

.B;A/ ' hocolimV 2D.M/.B;A/.ı.V //:

Proof. The proof is a straightforward modification of 8.7.

There is a morphism of operad Ed�1 ! E@
d
sending the unique color of Ed�1

to H . Indeed H is diffeomorphic to the product of the .d � 1/-dimensional disk
with Œ0; 1/. Hence, for .B;A/ an algebra over E@

d
, A has an induced Ed�1-structure.

Proposition 8.10. Let .B;A/ be an E@
d
-algebra, then we have a weak equivalence:Z

M�Œ0;1/

.B;A/ '

Z
M

A:

Proof. Let ı0 W D.M/ ! Ed�1 be defined as before. Then ı can be take to be the
composite of ı0 and the map Ed�1 ! E@

d
.

Now we prove the proposition. Because of the previous proposition, the left
hand side is weakly equivalent to hocolimV 2D.M/.B;A/.ı.V //. But .B;A/.ı.V //
is A.ı0.V //. Therefore, by 8.7 hocolimV 2D.M/.B;A/.ı.V // is weakly equivalent
to
R
M
A.
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9. KS and its higher versions

In this section, we recall the definition of the operad KS . This operad was initially
defined in [19]. We construct an equivalent version of that operad as well as higher
dimensional analogues of it.
Definition 9.1. Let D be the 2-dimensional disk. An injective continuous map
D ! S1 � .0; 1/ is said to be rectilinear if it can be factored as

D
l
�! R � .0; 1/! R � .0; 1/=Z D S1 � .0; 1/;

where the map l is rectilinear and the second map is the quotient by the Z-action.
We say that an embedding S1 � Œ0; 1/ ! S1 � Œ0; 1/ is rectilinear if it is of the

form .z; t/ 7! .z C z0; at/ for some fixed z0 2 S1 and a 2 .0; 1�.
We denote by Emb@lin.S1 � Œ0; 1/ t Dtn; S1 � Œ0; 1/ the topological space of

injective maps whose restriction to each disk and to S1 � Œ0; 1/ is rectilinear.
Definition 9.2. The Kontsevich–Soibelman’s operad KS has two colors a and m
and its spaces of operations are as follows

KS.a�n
I a/ D D2.n/

KS.a�n �mIm/ D Emb@lin.S
1
� Œ0; 1/ tDtn; S1 � Œ0; 1//:

Any other space of operations is empty.
Remark 9.3. The authors of [19] use a slightly different model. They replace the
embedding S1 � Œ0; 1/! S1 � Œ0; 1/ by the choice of a base point on the boundary
of the cylinder S � Œ0; 1/. Both this spaces have the homotopy type of S1 and it is
not hard to check that our operad is equivalent to the one in [19].

The operad KS is related to the calculus operad of the introduction by the
following theorem:
Theorem 9.4. The homology of the operad KS is the calculus operad.

Proof. A proof can be found in [6, Theorem 2].

In particular, if .B;A/ is an algebra over KS in topological spaces or spectra,
then .H�A;H�B/ forms an algebra over the calculus operad.

Now we define generalizations of KS . We let S be any framed .d � 1/-manifold
andD be the d -dimensional disk.
Definition 9.5. We define S˚

� Mod to be the operad with two colors a and m and
whose spaces of operations are as follows

S˚
� Mod.a�n

I a/ D Ed .n/

S˚
� Mod.a�n �mIm/ D Emb@f .S � Œ0; 1/ tD

tn; S � Œ0; 1//:
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The category S˚
� Mod is the category whose objects are disjoint unions of copies

ofS�Œ0; 1/ andD andmorphisms are framed embeddings that preserve the boundary.
Remark 9.6. A very similar operad S�Mod is defined and studied in [16]. The
difference between S�Mod and S˚

� Mod is that, in the latter operad, the group of
diffeomorphisms of S acts on the objectm and not in the former. More precisely, the
space S�Mod.a�n �mIm/ is the subspace of S˚

� Mod.a�n �mIm/ whose points
are the embeddings that fix S pointwise.

Note that a linear embedding preserves the framing on the nose. Therefore, there
is a well defined inclusion

KS ! .S1/˚� Mod:

Proposition 9.7. This map is a weak equivalence.

Proof. This maps fits in a commutative diagram

Emb@lin.S1 � Œ0; 1/ tDn; S1 � Œ0; 1/

��

// Emb@f .S
1 � Œ0; 1/ tDtn; S1 � Œ0; 1//

��
S1 � Conf.n; S1 � .0; 1// // Embf .S1; S1/ � Conf.n; S1 � .0; 1//

The vertical maps are obtained by evaluating an embedding on S1�f0g � S1� Œ0; 1/
and on the center of each disk. The bottom horizontal map is the identity on the
second factor and sends z 2 S1 to the diffeomorphism of S1 given by x 7! x C z.

Both vertical maps are weak equivalences. For the right vertical map, it
follows from Proposition 7.8, for the left vertical map, the argument is similar
but easier. In dimension 1, a framed manifold is just an oriented manifold, and
the space Embf .S1; S1/ is weakly equivalent to the space of orientation preserving
embeddings from S1 to S1. The map S1 ! Embf .S1; S1/ is then easily seen to be
a weak equivalence, thus the bottom map is a weak equivalence.

10. Action of the higher version of KS

We are now ready to state and prove the main theorem of this paper:
Theorem 10.1. Let .B;A/ be a cofibrant algebra over the operad E@

d
in the

category C. Let M be a framed .d � 1/-manifold and � be the product framing
on TM ˚R. The pair .B;

R
M
A/ is weakly equivalent to an algebra over the operad

M˚
� Mod.

Proof. By definition M 7!
R
M
.B;A/ is the operadic left Kan extension of the

algebra .B;A/ over the operad E@
d
to an algebra over the operad fMan@

d
. The PROP

associated to the operad fMan@
d
is equivalent to the symmetric monoidal category
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fMan@d of framedmanifolds with boundary and embeddings. Thus, the construction
M 7!

R
M
.B;A/ is a simplicial and symmetric monoidal functor fMan@d ! C.

There is an inclusion from the operad M˚
� Mod to the operad fMan@

d
. In fact

M˚
� Mod can be seen as the full suboperad of fMan@

d
spanned by the colorsD and

M � Œ0; 1/. Thus, we can restrict
R
�
.B;A/ to this suboperad and, as a result, we get

the structure of anM˚
� Mod-algebra on the pair .

R
D
.B;A/;

R
M�Œ0;1/

.B;A//.
By definition, we have

R
D
.B;A/ Š Embf .�;D/˝fMan@

d
.B;A/. The functor

Embf .�;D/ is a representable functor on fMan@d . Hence by Yoneda’s lemma, we
have an isomorphism

R
D
.B;A/ Š B . On the other hand,

R
M�Œ0;1/

.B;A/ '
R
M
A

by 8.10. This concludes the proof.

For this theorem to be interesting, we need examples of E@
d
-algebras. The

following theorem gives us such examples. Before stating it, recall that, given an
Ed�1-algebra. There exists a category ModEd�1

A of operadic Ed�1-modules. This
category can be given the structure of an enriched model category over C. We can
then define the higher Hochschild cohomology of A by the formula

HHEd�1
.A/ WD RHom

ModEd�1
A

.A;A/:

We refer the reader to [24] for more explanations about this constructions and to [15]
for a construction of this object using the factorization homology philosophy. When
d D 2, and theE1-structure ofA is induced by an associative structure, thenHHE1

.A/

is amodel for topologicalHochschild cohomology (orHochschild cochains ifwework
in chain complexes).

Theorem 10.2 (Thomas). Let A be an Ed�1-algebra in C, then there is an algebra
.B 0; A0/ over E@

d
such that B 0 is weakly equivalent to HHEd�1

.A/ and A0 is weakly
equivalent to A.

Proof. This is done in [24]. The case d D 2 and with C chain complexes is done in
[8, Theorem 1.2].

Combining these two results we get the following theorem:

Theorem 10.3. Let A be an Ed�1-algebra in C. The pair .HHEd�1
.A/;

R
M
A/ is

weakly equivalent to an algebra over the operadM˚
� Mod.

Proof. It suffices to apply Theorem 10.1 to the E@
d
-algebra .B 0; A0/ produced by the

previous theorem.

By specializing to d D 2, we recover the classical case. First, we recall the
following theorem.
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Theorem 10.4 (Lurie). Let A be an associative algebra in C and let THH.A/ be its
topological Hochschild homology. Then there is a weak equivalenceZ

S1

A ' THH.A/:

Proof. This is done in [20, Theorem 5.5.3.11]. An other proof, more in the spirit of
the present paper can be found in [2, Proposition IX.4.1].

Remark 10.5. IfC D Ch�.R/, then the previous theorem remains true if we interpret
THH.A/ as the Hochschild chains of A. Similarly, if G is a topological or simplicial
group. The previous theorem is true if we interpret THH.G/ as Map.S1; BG/.

Then, we have the following corollary of Theorem 10.3:
Theorem 10.6. Let A be an associative algebra in C. Then there exists an algebra
.C;H/ over KS with weak equivalences C ' HHE1

.A/ andH ' THH.A/.
Another interesting corollary of Theorem 10.3 is the following:

Theorem 10.7. Let .M; �/ be a framed .d � 1/-dimensional and N be a .d � 2/-
connected manifold. The pair .Map.Sd�1; N /�TN ; †1CMap.M;N // is weakly
equivalent to an algebra overM˚

� Mod.

Proof. Let R D †1C�d�1N . R is an Ed�1-algebra in Spec. It is proved in [18] that

HHEd
.R/ ' Map.Sd�1; N /�TN :

Similarly, it is proved in [9] thatZ
M

R ' †1CMap.M;N /:

The result is then a direct corollary of 10.3.

Remark 10.8. This result remains true if N is a Poincaré duality space.

Remark about the case of chain complexes. It is desirable to have a version of our
theorem when C is the category of unbounded chain complexes. IfR is a Q-algebra,
then the category Ch�.R/ is a symmetric monoidal model category enriched over
itself (but not a simplicial model category). For O any operad in topological spaces,
C�.O/ is an operad in Ch�.R/ and it has been shown by Hinich in [12] that the
category of C�.O/-algebra in Ch�.R/ admits a transferred model structure.

For a C�.Ed /-algebraA in Ch�.R/, one can define factorization homology as the
enriched coend Z

M

A WD C�.Embf .�;M//˝L
C�.Ed /

A

and similarly in the case of manifolds with boundary. In the end we prove the
following theorem exactly as 10.1.
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Theorem 10.9. Let .B;A/ be an algebra over the operad C�.E@d / in the category
Ch�.R/. Let M be a framed .d � 1/-manifold and � be the product framing
on TM ˚R. The pair .B;

R
M
A/ is weakly equivalent to an algebra over the operad

C�.M
˚
� Mod/.

Remark 10.10. If R is not a Q-algebra, then the category of C�.O/-algebras cannot
necessarily be given the transferred model structure. It has been shown by Fresse
in [10] that there is still a left model structure. We are confident that up to minor
modifications, our result remains true in this situation as well.
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