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About the convolution of distributions on groupoids

Jean-Marie Lescure�, Dominique Manchon and Stéphane Vassout�

Abstract.We review the properties of transversality of distributionswith respect to submersions.
This allows us to construct a convolution product for a large class of distributions on
Lie groupoids. We get a unital involutive algebra E 0r;s.G;�

1=2/ enlarging the convolution
algebra C1c .G;�1=2/ associated with any Lie groupoid G. We prove that G-operators are
convolution operators by transversal distributions. We also investigate the microlocal aspects
of the convolution product. We give sufficient conditions on wave front sets to compute the
convolution product and we show that the wave front set of the convolution product of two
distributions is essentially the product of their wave front sets in the symplectic groupoid T �G
of Coste–Dazord–Weinstein. This also leads to a subalgebra E 0a.G;�

1=2/ of E 0r;s.G;�
1=2/

which contains for instance the algebra of pseudodifferential G-operators and a class of Fourier
integral G-operators which will be the central theme of a forthcoming paper.
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1. Introduction

The motivation of this paper is twofold. Firstly, we wish to study the convolution
of distributions on a Lie groupoid and its relationship with the action of the so-
called G-operators. Secondly, we would like to set up a neat framework in order
to investigate in a future work the notions of Lagrangian distributions and Fourier
integral operators on a groupoid.

The notion of C1 longitudinal family of pseudodifferential operators in the
framework of groupoids appeared in the fundamental work of Alain Connes [2] in
the case of the holonomy groupoid of a foliation and was then extended by several
authors [19,20,27] to arbitrary Lie groupoids. Also, in the works of Monthubert [17],
these families are considered from the point of view of distributions on the whole
groupoid, so that the action of the corresponding pseudodifferential operators onC1
functions is given by a convolution product. Here, we carry on this idea by exploring
the correspondence between C1 longitudinal families of distributions and single
�The first and third authors are supported by ANR Grant ANR-14-CE25-0012-01 SINGSTAR.
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distributions on the whole underlying manifold of the groupoid and by studying the
convolution product of distributions on groupoids. This is achieved at two levels.

The first level is based on the notion of transversality of distributions with
respect to a submersion � W M ! B [15]. It appears that the space D 0�.M/ of
such distributions is isomorphic to the space of C1 family of distributions in the
fibers of � . Also, in the spirit of the Schwartz kernel Theorem suitably stated
on the total space of a submersion, the space D 0�.M/ coincides with the space
of continuous C1.B/-linear maps between C1c .M/ and C1c .B/. Furthermore,
operations such as push-forwards and fibered-products of distributions behave well
on transversal distributions and these operations allow to define the convolution
product of distributions on groupoids, as soon as these distributions satisfy some
transversality assumptions with respect to source or target maps. Distributions on
a groupoid which are transversal both to the source and target maps are called bi-
transversal and they give rise to an involutive unital algebra E 0r;s.G;�

1=2/ for the
convolution product. Then, one has the necessary tools to prove that G-operators
on a groupoid are in 1 to 1 correspondence with transversal distributions acting by
convolution and that bi-transversal distributions are in 1 to 1 correspondence with
adjointable G-operators.

The second level is a microlocal refinement of the first one and consists in using
the wave front set of distributions. A basic observation, due to Coste, Dazord and
Weinstein [4], is that the cotangent manifold T �G of any Lie groupoid G carries a
non trivial structure of symplectic groupoid over the dual of the Lie algebroid A�G,
this structure being intimately related to the multiplication of G and then to the
convolution on C1c .G;�1=2/. This groupoid combined with the classical calculus
of wave front sets developed by Hörmander brings in natural conditions on wave
front sets of distributions on a groupoid allowing to define their convolution product
and to compute the corresponding wave front set using the law of T �G. The main
consequence of this approach is that the space of compactly supported admissible
distributions:

E 0a.G;�
1=2/ D

˚
u 2 E 0.G;�1=2/ I WF.u/\ ker s� DWF.u/\ ker r� D ;

	
;

where s� ; r� denotes the source and target maps of T �G � A�G, is a unital
involutive sub-algebra of .E 0r;s.G;�1=2/;�/ and that

WF.u � v/ �WF.u/�WF.v/; 8u; v 2 E 0a.G;�
1=2/;

where � is the multiplication in the Coste–Dazord–Weinstein groupoid T �G. We
would like to add that the corresponding formula of Hormander for the wave front set
of composition of kernels [12,13] makes the above formula quite predictable. Indeed,
given a manifold X , the composition of kernels corresponds to convolution in the
pair groupoidX �X and the composition law that Hörmander defines on T �.X �X/
to compute wave front sets of composition of kernels is precisely the multiplication
map of the Coste–Dazord–Weinstein symplectic groupoid T �.X �X/.
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The distributions belonging to E 0a.G;�
1=2/ are said to have a bi-transversal wave

front set. Actually, this second approach of the convolution product of distributions,
based on the groupoid T �G and Hörmander’s techniques, works under assumptions
on the wave front sets of distributions weaker than bi-transversality, and we shall
briefly develop this point too. However, the algebra E 0a.G;�

1=2/ is already large
enough for the applications that we have in mind. For instance, pseudodifferential
G-operators are admissible:

‰c.G/ � E 0a.G;�
1=2/:

More importantly, ifƒ � T �Gn0 is a homogeneous Lagrangian submanifold ofT �G
which is also bi-transversal as a subset of T �G, then Lagrangian distributions [14]
subordinated to ƒ are admissible:

I �.G;ƒ;�1=2/ � E 0a.G;�
1=2/

and in particular they give rise to G-operators. This will be the starting point of a
second paper.

The present paper is organized as follows. In Section 2, we revisit the Schwartz
kernel Theorem in the framework of submersions. Then the notion of distributions
transversal with respect to a submersion is recalled, we give some examples and
we study natural operations available on them. In Section 3, we apply the results
of Section 2 to the case of groupoids. We then define the convolution product of
transversal distributions and obtain the unital algebra E 0r;s.G;�

1=2/ of bi-transversal
distributions. In Section 4, we link the notion of G-operators with the one of
transversal distributions and we obtain a 1 to 1 correspondence between the space of
adjointable compactly supportedG-operators andE 0r;s.G;�

1=2/. In Section 5, we use
both the Hörmander’s results about wave front sets of distributions and the symplectic
groupoid structure on T �G to identify an important subalgebra of E 0r;s.G;�

1=2/,
namely E 0a.G;�

1=2/ the subspace of distributions with bi-transversal wave front sets,
onto which wave front sets behave particulary well with respect to the convolution
product.

Finally, we recall in Section A the definition of the Coste–Dazord–Weinstein
groupoid [4] and add some explanations and comments.

The authors would like to mention that the subject of convolution of transver-
sal distributions is also studied in an independent work by E. Van Erp and
R. Yuncken [10].

Acknowledgements. We are happy to thank Claire Debord, Georges Skandalis and
Robert Yuncken for many enlightening discussions. Also, the present version of our
article has greatly benefited from the remarks addressed by the referees and we would
like to warmly thank them.
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2. Distributions, submersions, transversality

2.1. Schwartz kernel theorem for submersions. To handle distributions on group-
oids, it is useful to study distributions in the total space of a submersion. The notion
of transversality we shall recall is borrowed from [15] and it extends the condition of
semi-regularity given in [24, p. 532].

For any manifold M and real number ˛, the bundle of ˛-densities is denoted
by �˛M . The space D 0.M;�˛M / (resp. E 0.M;�˛M /) is the topological dual of the
space C1c .M;�1�˛M / (resp. C1.M;�1�˛M /). With the convention chosen, we have
canonical topological embeddings

C1.M;�˛/ ,! D 0.M;�˛/

and we abbreviate D 0.M/ D D 0.M;�0M /, �M D �
1
M .

Distributions spaces are endowed with the strong topology. The space of
continuous linear maps between two locally convex vector spaces E;F is denoted
by L.E; F / and endowed with the topology of uniform convergence on bounded
subsets. If E;F are modules over an algebra A, the subspace of continuous A-linear
maps between E and F is denoted by LA.E; F / and considered as a topological
subspace of L.E; F /.

We are going to reformulate the Schwartz kernel Theorem for distributions in the
total space of a submersion � W M �! B between C1-manifolds. To do this, we
begin with the product case � D pr1 W X �Y �! X whereX � RnX and Y � RnY

denote open subsets.
The Schwartz kernel theorem then asserts that the map

D 0.X �Y / 3 u 7�!

�
f 7�! uf .x/ D

Z
Y

u.x; y/f .y/dy

�
2 L.C1c .Y /;D

0.X//

(2.1)
where the integral is understood in the distribution sense, is a topological isomorph-
ism.

We shall now give another form to the previous isomorphism, directly in the
general case of a submersion. In the case of a product this will turn to be:

L.C1c .Y /;D
0.X// ' D 0.X � Y / ' LC1.X/.C

1
c .X � Y /;E

0.X// (2.2)

In the general situation of a submersion � WM �! B , to any f 2 C1c .M;�M /,
one can associate a distribution ��.uf / on B defined for any g 2 C1c .B;�B/ by

h��.uf /; gi D huf; g ı �i D hu; f:g ı �i: (2.3)

One can view naturally C1c .M;�M / as a C1.B/-module by using � : for
f 2 C1c .M;�M / and g 2 C1.B;�B/, one defines f:g on M by .f:g/.m/ D
f .m/g.�.m//.
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We have:

Theorem 2.1 (Schwartz kernel theorem for submersions). The map

�� W D
0.M/ �! LC1.B/.C

1
c .M;�M /;E

0.B;�B//

u 7�! ��.u�/

is a topological isomorphism (where LC1.B/.C
1
c .M;�M /;E

0.B;�B// is consid-
ered as a subspace of L.C1c .M;�M /;D

0.B;�B//).

Proof. In fact, by C1.B/-linearity, one has the following equality of spaces

LC1.B/.C
1
c .M;�M /;E

0.B;�B// D LC1.B/.C
1
c .M;�M /;D

0.B;�B//:

Indeed, let f 2 C1c .M;�M /, take 2 C1c .B/ such that is identically one on the
compact�.supp.f //.Then one has, for anyU 2 LC1.B/.C

1
c .M;�M /;D

0.B;�B//

that U.f / D .U.f: / D  U.f /; which shows that the support of the distribution
U.f / is compact.

Now let C be a bounded subset of C1c .M;�M / and D be a bounded
subset of C1c .B/. Then C:D D ff:g I f 2 C; g 2 Dg is still a bounded
subset of C1c .M;�M /. The continuity of �� follows. Conversely, we define
I W LC1.B/.C

1
c .M;�M /;D

0.B;�B//! D 0.M/ by

hI.T /; f i D hT .f /;  i f 2 C1c .M;�M /;  2 C
1
c .B/; f  D f: (2.4)

As T is C1.B/-linear, the left hand side does not depend on the choice of  such
that f  D f , hence the definition of I.T / as a linear form on C1c .M;�M / is
consistant. Moreover, if E is a bounded subset of C1c .M;�M / then there exists a
compact subsetK �M such thatf 2 E implies supp.f / � K. Fixing 2 C1c .B/
such that  D 1 on K yields that I.T / is a distribution for any T and the continuity
of the map I . The relations �� ı I D Id and I ı �� D Id are obvious.

Remark 2.2. Playing with supports, we also get

E 0.M/ ' LC1.B/.C
1.M;�M /;E

0.B;�B//:

2.2. Transversal distributions.
Definition 2.3 (Androulidakis–Skandalis [15]). A distribution u 2 D 0.M/ is
transversal to � if ��.u:f / 2 C1c .B;�B/ for any f 2 C1c .M;�M /. We
note D 0�.M/ the space of �-transversal distributions. We also set E 0�.M/ D

D 0�.M/ \ E 0.M/

Observe that if u is �-transversal, it follows from the closed graph theorem for
LF-spaces [21, Cor. 1.2.20, p. 22] that ��.u�/ 2 L.C1c .M;�M /; C

1
c .B;�B//.
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This gives:
Proposition 2.4. Denoting by �� the isomorphism in Theorem 2.1, we have

��.D
0
�.M// D LC1.B/.C

1
c .M;�M /; C

1
c .B;�B//: (2.5)

Remark 2.5. Similarly,

��.E
0
�.M// D LC1.B/.C

1.M;�M /; C
1
c .B;�B//; (2.6)

In both cases, the inverse of the map �� is given by

h��1� .T /; f i D

Z
B

T .f / ; f 2 C1c .M;�M /: (2.7)

When � W X � Y ! X; .x; y/! x, the �-transversal distributions are exactly the
distributions semi-regular with respect to x, in the former terminology of [24, p. 532].

Actually, transversal distributions are nothing else but C1 families of dis-
tributions in the fibers of � . In the product case � W X � Y ! X; .x; y/ 7! x,
we are talking about the space C1.X;D 0.Y // of C1 functions on X taking
values in the topological vector space D 0.Y /, which is isomorphic [24, p. 532]
to L.C1c .Y /; C

1.X// . Since D 0.Y / is a Montel space, the classical argument
using Banach–Steinhaus theorem shows the useful equivalence

un �! u in C1.X;D 0.Y // , 8f 2 C1c .Y /; hun; f i �! hu; f i in C
1.X/:

(2.8)
This space is generalized as follows for general submersions.
Definition 2.6. A family u D .ux/x2B of distributions in the fibers of � is C1 if
for any local trivialization of �

U �M; X � B; � W U
'
�! X � Y; �jU D �X ı �;

we have ��.ujU / 2 C1.X;D 0.Y //: The space of C1 families is noted
C1� .B;D

0.M//.
The space C1�;cpct.B;E 0.M// is defined accordingly, where the subscript cpct

means that there exists a fixed compact K of M such that the support of every
ub 2 E 0.��1.b// is contained in K.

Using a covering of M by local trivializations and a partition of unity, we use
the topology of C1.X;D 0.Y // to build on C1� .B;D 0.M// a complete Hausdorff
locally convex vector space structure.

Also, (2.8) becomes

un �! u in C1� .B;D
0.M// , 8f 2 C1c .M;�M /;

hun; f i �! hu; f i in C1c .B;�B/: (2.9)
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Then:
Proposition 2.7. Using on D 0�.M/ the topology given by (2.5), the map

C1� .B;D
0.M//

J
�! D 0�.M/ (2.10)

u 7�!

�
f 7!

Z
B

hux; f .x; �/i

�
is a topological isomorphism.

Proof. Using a partition of unity, we can suppose that we are in the product case,
that isM D X � Y !

�
X D B . Using the identifications

C1.X;D 0.Y // ' L.C1c .Y /; C
1.X//

and
D 0�.X � Y / ' LC1.X/.C

1
c .X � Y /; C

1.X//;

the map J is given by

J.U /.f /.x/ D hux; f .x; �/i;

U 2 L.C1c .Y /; C
1.X//; f 2 C1c .X � Y /; x 2 X:

Conversely, let us define LC1.X/.C
1
c .X � Y /; C

1.X//
E
�! L.C1c .Y /; C

1.X//

by
E.T /.f /.x/ D T .ef x/.x/ (2.11)

where f 2 C1c .Y / and ef x 2 C1c .X � Y / is any map such that efx.x; y/ D f .y/.
Note that if we have a map f 2 C1c .X � Y / such that fjx0�Y D 0 then by
Taylor formula, one can find maps �i 2 C1c .X/ with 1 � i � dim.X/ such
that �i .x0/ D 0 and f .x; y/ D

P
�i .x/gi .x; y/ with gi 2 C1c .X � Y /. This

proves, using C1.X/-linearity, that there is no ambiguity in the definition of E.
Observe that for any f 2 C1c .X � Y / and any U 2 L.C1c .Y /; C

1.X//; the map
x 7! J.U /.f /.x/ is smooth by [13, Theorem 2.1.3]. As J is the restriction of the
isomorphism (2.2) to the subspaceLC1.X/.C

1
c .X�Y /; C

1.X//, we already know
that J.U / 2 L.C1c .Y /;D

0.X// and we can use the closed graph theorem again to
show that the image of J is inLC1.X/.C

1
c .X�Y /; C

1.X//: The same holds forE
and we have to show that for any T 2 L.C1c .Y /; C

1.X// and any f 2 C1c .Y / the
map x 7! E.T /.f /.x/ is smooth. As this is local in x, it is enough to check it on
any relatively compact open � 2 X . Take � 2 C1c .X/ such that � is identically 1
on � gives for any x 2 �, E.T .f //.x/ D T .�f /.x/ which shows the result. It is
easy to check that E D J�1 and that the topologies given by uniform convergence
on bounded subsets on L.C1c .Y /; C

1.X// and LC1.X/.C
1
c .X � Y /; C

1.X//

coincide through the bijection J .
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Remark 2.8. We similarly get: C1�;cpct.B;E 0.M// ' E 0�.M/. If finite dimensional
real vector bundles E over M and F over B are given, we obtain canonical
embeddings

D 0�.M;E/ ,! D 0�.M;E ˝ End.��F //
' LC1.B/.C

1
c .M;�M ˝E

�
˝ ��F /; C1c .B;�B ˝ F //

(2.12)

and
C1� .B;D

0.M;E// ,! C1� .B;D
0.M;E ˝ End.��F ///
' D 0�.M;E ˝ End.��F //:

(2.13)

2.3. Examples of transversal distributions. Obviously, if � W M ! M is the
identity map then D 0�.M/ D C1.M/ and if � mapsM to a point then D 0�.M/ D

D 0.M/.
The wave front set [13, Chapter 8] is a powerful tool to analyse the singularities

of a distribution. It can be thought of as the set of directed points in T �M n 0,
around which the Fourier transform is not rapidly decreasing. Using wave front set is
a convenient way to check the transversality of distributions with respect to a given
submersion � W M ! B , and it thus gives access to more interesting examples.
Indeed,
Proposition 2.9. Let W � T �M n 0 be a closed cone and D 0W .M/ D fu 2

D 0.M/ I WF.u/ � W g. If W \ .ker d�/? D ;, then

D 0W .M/ � D 0�.M/:

Proof. We apply the formula (3.6) of [11, p. 328]:

WF.��.u:f // � .d�/�.WF.u:f // � .d�/�.WF.u//
D
˚
.x; �/ I x D �.m/ ; .m; td�m.�// 2WF.u/

	
:

Since .ker d�/? D f.m; �/ I � 2 Im.td�m/g, we obtain WF.��.u:f // D ;, and
thus ��.u:f / is smooth.

For instance, consider a section of � , that is a submanifold X � M such that
� W X ! B is a diffeomorphism onto an open subset of B . Let ! 2 �X be any
C1 density and define l! 2 D 0.M;�M / by

hl! ; f i D

Z
X

f!: (2.14)

Then l! 2 D 0�.M;�M /, for WF.l!/ � N �.X/ (see [13, Example 8.2.5]) and
N �.X/ \ .ker d�/? D X � f0g. Alternatively, it is easy to check that ��.l! :f / is
given by theC1 density ��.!f jX /. Of course, for any differential operatorP onM ,
we still have P l! 2 D 0�.M;�M /, for WF.Pu/ � WF.u/ for any distribution u.
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Actually, this gives all instances of transversal distributions supported within a
section. Indeed, let u 2 E 0�.M;�M / such that supp.u/ � X . There is no restriction
to work in a local trivialization, that is to assume� WM D X�Rn ! X; .x; y/ 7! x

and identify X ' X � f0g. By [13, Theorem 2.3.5], we have

hu; �i D
X
j˛j�k

hu˛; .@
˛
y�/.�; 0/i; 8� 2 C

1
c .X �Rn/ (2.15)

where k is the order of u and u˛ 2 D 0.X/ has order k � j˛j. It follows that

C1.X/ 3 ��.f u/ D
X
j˛j�k

.@˛yf /.�; 0/:u˛; 8f 2 C
1.X �Rn/: (2.16)

Selecting f D y˛ shows that u˛ is C1. We have proved:
Proposition 2.10. Let u 2 E 0.M;�M / such that supp.u/ � X , X being a section
of � . Then u 2 E 0�.M;�M / if and only if u is a finite sum of distributions obtained
by differentiation along the fibers of � of distributions of the kind (2.14).
Remark 2.11. u 2 D 0�.M/ does not implyWF.u/\ ker d�? D ;. Indeed, consider
� W R �R! R; .x; y/ 7! x and define u 2 C1.R;D 0.R// by

hu; �i.x/ D
p
2�

Z
�.�/j�je��

2x2=2 O�.��/d� (2.17)

where � is C1, �.�/ D 1 if j�j � 1 and �.�/ D 0 if j�j � 1=2. Since Ou.�; �/ D
�.�/e��

2=.2�2/ we conclude WF.u/\.ker d�/? 6D ; [13, Section 8.1].
It is not obvious to us how to characterize transversal distributions whose wave

front set avoids .ker d�/?. Nevertheless, a sufficient condition can be worked out
locally, that is in local trivializations of � , and this is the content of the next lemma.
Lemma 2.12. Let v 2 D 0�X .X � Y / and assume that there exist constants d 2 N
and ı 2 Œ0; 1/ such that for any compact subset K of Y and multi-index ˇ 2 NnX ,
one can find a constant CKˇ such that

jh@ˇvx; f ij � CKˇkf kK;dCıjˇ j; 8f 2 C
1
c .Y /; x 2 X: (2.18)

Here, we have set kf kK;dCıjˇ j D
P
j˛j�dCıjˇ j supK j@˛f j. Then we haveWF.v/ �

.ker d�Y /?. In particular,WF.v/\.ker d�X /? D ;.
Remark 2.13. Distributions in Proposition 2.10 satisfy the assumption of the lemma
with ı D 0.

Proof of the lemma. Let us fix .x0; y0; �0; �0/ 62 .ker d�Y /?, that is, �0 6D 0

and assume that j.�0; �0/j D 1. We work below in a conic neighborhood �
of .x0; y0; �0; �0/ such that for all .x; y; �; �/ 2 � with j.�; �/j D 1, we have
j�j j � j�0j j=2 for some fixed j such that �0j 6D 0.
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Let .x; y; �; �/ 2 � be such that j.�; �/j D 1 and '.x; y/ be supported in a
compact neighborhoodK �L of .x0; y0/ inX �Y . Denoting 'x D '.x; �/, we have
for any N > 0

jhv; 'e�ith.�;�/;.�;�/iij

D

ˇ̌̌̌ Z
hvx ; 'xe

�ith.x;�/ ; .�;�/i
idx

ˇ̌̌̌
D

ˇ̌̌̌ Z
1'xvx.t�/e�ithx ; �idx

ˇ̌̌̌
� C:

� X
j˛j�N

sup
x2L

j@˛x1'xvx.t�/jj�jj˛j�2N
�
t�N by [13, Theorem 7.7.1]:

(2.19)

Moreover, since v W x 7! vx is C1, we have

@Nxj1'xvx.t�/ D @Nxj h'xvx; e�ith� ; �ii D h@Nxj 'xvx; e�ith� ; �ii D
3@Nxj 'xvx.t�/:

We note K� D fy C zI y 2 K; jzj < �g for any � > 0 and let �� 2 C1c .K�/ be
such that �� D 1 onK�=2. IfH.�/ denotes the supporting function ofK [13, 4.3.1],
we get using the assumption (2.18) and the proof of the Paley–Wiener–Schwartz
Theorem in [13, 7.3.1]

j
3@Nxj 'xvx.�/j D j@Nxj 'xvx.��e�ih� ; �i/j

� CK�N
X

jˇ j�dCıN

sup j@ˇ .��e�ih� ; �i/j

� CK�N :C:e
H.0/

X
jˇ j�dCıN

��jˇ j.1C j�j/dCıN�jˇ j:

With � D 1=.1Cj�j/ and using the inequalities CK�N � CK�0N if � < �0, we obtain

j
3@Nxj 'xvx.�/j � CK1N :C:.1C j�j/dCıN � C 0KN .1C j�j/dCıN : (2.20)

Using uniform estimates j�j � c1 > 0 and .1Cjt�j/ � c2t for .�; �/ 2 �; j.�; �/j D 1
and the estimate (2.20) applied to (2.19), we get

jhv; 'e�ith.�;�/;.�;�/iij � C:tdC.ı�1/N

since ı � 1 < 0, we conclude that .x0; y0; �0; �0/ 62WF.v/.
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2.4. Operations on transversal distributions.

Proposition 2.14. Let � W Z ! M and � W M ! B be submersions. There is a
separately continuous and bilinear map:

� W D 0�.M/ �D 0�.Z/ �! D 0�ı�.Z/

which extends the map .u; v/ 7! .u ı �/v when u and v are C1 maps respectively
onM and Z. In particular, the pull back of distributions onM by the submersion �
restricts to a continuous map

�� W D 0�.M/ �! D 0�ı�.Z/:

Proof. Let .u; v/ 2 D 0�.M/�D 0�.Z/. Using the isomorphism (2.5), we will denote

V D ��.v:/ 2 L.C1c .Z;�Z/; C
1
c .M;�M //

and U D ��.u:/ 2 L.C1c .M;�M /; C
1
c .B;�B//:

AsU ıV 2 LC1.B/.C
1
c .Z;�Z/; C

1
c .B;�B// this precisely defines a distribution

in D 0�ı�.Z/, which we will denote u � v D .� ı �/�1� .U ı V /. Observe that if
u 2 C1.M/ and v 2 C1.Z/, then for f 2 C1c .Z;�Z/, we have

U ıV.f /.b/ D

Z
�.m/Db

u.m/

�Z
�.z/Dm

v.z/f .z/

�
D

Z
�ı�.z/Db

.uı�/.z/v.z/f .z/;

which shows that in this case u � v D .u ı �/v. The bilinearity and separate
continuity of .u; v/ 7! u � v follow from the bilinearity and separate continuity of
the composition of continous linear maps. The latter precisely means that, for any
locally convex spaces E;F;G, the map

L.E; F / �L.F;G/ �! L.E;G/

.S; T / 7�! T ı S

is separately continuous, where the three spaces of continuous linear maps are again
provided with the topology of uniform convergence on bounded subsets.

Finally, taking v D 1, we get a continuous map

D 0�.M/ �! D 0�ı�.Z/

u 7�! u � 1

which clearly coincides with the pull back of the distribution u by the submersion �:

hu � 1; 'i D

Z
M

Z
�.z/Dm

'.z/:u.m/ D h��u; 'i; ' 2 C1c .Z;�Z/:
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Proposition 2.15. Let � WM �! B be a submersion, f W N �! B a C1 map and
consider their fibered product:

M �
B
N
f �.�/ //

��.f /

��

N

f

��
M

� // B:

(2.21)

Then the pull-back .��.f //� W C1.M/ �! C1.M �
B
N/ extends to a continuous

map
.��.f //� W D 0�.M/ �! D 0f �.�/.M �

B
N/: (2.22)

In particular, if C is a submanifold of B , if we set N D ��1.C / and f D �C W

N ! B is the restriction of � to ��1.C /, we get that the restriction map gives a
continuous map

RestC W D 0�.M/ �! D 0�C .�
�1.C //:

Proof. We identify transversal distributions with C1 families and we can work
locally, that is we assume that � W X � Y ! X , with X; Y open subsets in euclidean
spaces. Then locallyM �

B
N is of the form Y �Z, and the map f �.�/ is given by the

projection Y �Z ! Z. Ifu 2 C1.X;D 0.Y // then .��.f //�.u/ 2 C1.Z;D 0.Y //
is given by the family

Z 3 z 7�! uf .z/ 2 D 0.Y /:

The statement follows.

Remark 2.16. (1) The assertion of the previous proposition holds for commutative
square of submersions

M
p2 //

p1

��

M2

�2

��
M1

�1 // B

(2.23)

such that any point ofM , ker d.�1 ı p1/ D ker dp1 C ker dp2 or, equivalently, such
that p1 W p�12 .m2/! ��11 .b/, b D �2.m2/, is a submersion for any m2 2M2.

(2) Finite dimensional vector bundles can be added in the statements of the two
previous propositions. We have omitted them to lighten the notations.

When a finite set I of submersions is given onM , we introduce

D 0I.M/ D
\
�2I

D 0�.M/ � D 0.M/: (2.24)

The space D 0
I
.M;E/ is given the topology generated by the union of the topologies

induced by each D 0�.M/, � 2 I. We adopt similar convention for the space E 0
I
.M/ .

The previous proposition is now used to define fibered product of distributions.
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Proposition 2.17. Let �i W Mi �! B , i D 1; 2 be two submersions and consider
their fibered product

M1 �
B
M2

pr2 //

pr1
��

M2

�2

��
M1

�1 // B:

(2.25)

Set � D �i ı pri and consider extra submersions �1 WM1 �! A, �2 WM2 �! C .

M1 �
B
M2 M2 C

M1 B

A

pr2

pr1 � �2

�2

�1

�1

The fibered product of C1 functions .f1; f2/ 7�! f1˝ f2jM1�
B
M2 extends uniquely

to separately continuous bilinear maps

D 0�1.M1/ �D 0�2.M2/ �! D 0�2ıpr2.M1 �
B
M2/

.u1; u2/ 7�! u1 �
�1
u2

and D 0�1.M1/ �D 0�2.M2/ �! D 0�1ıpr1.M1 �
B
M2/

.u1; u2/ 7�! u1 �
�2
u2: (2.26)

If uj 2 D 0�j .Mj /, j D 1; 2 then the equality

u1 �
�1
u2 D u1 �

�2
u2 (2.27)

holds and both previous maps restrict to a separately continuous bilinear map

D 0�1;�1.M1/ �D 0�2;�2.M2/ �! D 0�1ıpr1;�;�2ıpr2.M1 �
B
M2/

.u1; u2/ 7�! u1 �
�1
u2:

(2.28)

Proof. We just need to combine Propositions 2.14 and 2.15. By Proposition 2.15, the
maps pr1� W D 0�1.M1/! D 0pr2.M1 �

B
M2/ and pr2� W D 0�2.M1/! D 0pr1.M1 �

B
M2/

are continuous. Then, using Proposition 2.14, denoting

u1 �
�1
u2 D u2 � .pr1�.u1// and u1 �

�2
u2 D u1 � .pr2�.u2//;
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we get separately continuous maps:

D 0�1.M1/ �D 0�2.M2/ �! D 0�2ıpr2.M1 �
B
M2/

.u1; u2/ 7�! u1 �
�1
u2

and D 0�1.M1/ �D 0�2.M2/ �! D 0�1ıpr1.M1 �
B
M2/

.u1; u2/ 7�! u1 �
�2
u2: (2.29)

Now, observe that in the case where u1 and u2 are smooth, then we have

u1 �
�1
u2 D u2 � .pr1�.u1//

D .u2 ı pr2/ � .u1 ı pr1/
D u1 � .pr2�.u2// D u1 �

�2
u2:

Hence the equality extends by continuity when uj 2 D 0�j .Mj /, j D 1; 2 and this
also allows to take into account the extra transversality assumptions (2.28) in order
to conclude, by the previous method, that u1 �

�2
u2 is transversal with respect to

�1 ı pr1; � and �2 ı pr2 and depends continuously on u1 and u2.

Consider a commutative diagram

M
f //

�   

N

�~~
B

(2.30)

where f is a C1 map and � , � are submersions. If u 2 E 0.M;�M /, the push-
forward of u by f is given by hf�u; gi D hu; g ı f i and if moreover u is transversal
with respect to � , then f�u is given by the C1 family ..f jMb /�ub/; b 2 B . We
obtain a map

f� W E
0
�.M;�M / �! E 0�.N;�N /: (2.31)

Since f is not necessarily proper, we can not extend f� to D 0� , nevertheless:
Proposition 2.18. Let ' 2 C1.M/ such that f W supp.'/ �! N is proper. Then
the map

D 0�.M;�M / �! D 0�.N;�N / (2.32)
u 7�! f�.'u/ (2.33)

is well defined and continuous.

Proof. Under the assumption on the support of ', we easily get that g 7�! ':g ı f

maps continuously C1c .N / into C1c .M/. The result follows.
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3. Convolution of transversal distributions on groupoids

We apply these observations in the context of Lie groupoids. A Lie groupoid is a
manifold G endowed with the additional following structures:
� two surjective submersions r; s W G � G.0/ onto a manifoldG.0/ called the space
of units.

� An embedding u W G.0/ �! G, which allows to consider G.0/ as a submanifold
of G and then such that

r.x/ D x; s.x/ D x; for all x 2 G.0/: (3.1)

� A C1 map
i W G �! G;  7�! �1 (3.2)

called inversion and satisfying s.�1/ D r./ and r.�1/ D s./ for any  .
� a C1 map

m W G.2/ D
˚
.1; 2/ 2 G

2
I s.1/ D r.2/

	
�! G; .1; 2/ 7�! 12 (3.3)

called the multiplication, satisfying the relations, whenever they make sense

�1 D r./ �1 D s./ r.12/ D r.1/; s.12/ D s.2/ (3.4)
.12/3 D 1.23/ r./ D  s./ D : (3.5)

It follows from these axioms that i is a diffeomorphism equal to its inverse, m is a
surjective submersion and �1 is the unique inverse of  , for any  , that is the only
element ofG satisfying �1 D r./; �1 D s./. These assertions need a proof,
and the unfamiliar reader is invited to consult for instance [16] and references therein.

It is customary to write

Gx D s
�1.x/; Gx D r�1.x/; Gyx D Gx \G

y ;

mx D mjGx�Gx W G
x
�Gx �! G:

Gx , Gx are submanifolds and Gxx is a Lie group. The submersion d W .1; 2/ 7!
1
�1
2 defined on G �

s
G is called the division of G.

Obviously, Lie groups, C1 vector bundles, principal bundles, are Lie groupoids.
Also, for any manifold X , the manifold X � X inherits a canonical structure of Lie
groupoid with unit space X and multiplication given by .x; y/:.y; z/ D .x; z/. The
reader can find in [3,5,7–9,18–20,22,25,26,28] more concrete examples.

The Lie algebroid AG of a Lie groupoid G is the fiber bundle TGjG.0/=TG.0/
over G.0/. It can be identified with Ker dsjG.0/ or Ker dr jG.0/ . Its dual A�G is the
conormal bundle of G.0/.
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We recall the construction of the canonical convolution algebra C1c .G;�1=2/
[3,6] associated with any Lie groupoid G. The product of convolution

C1c .G;�
1=2/ � C1c .G;�

1=2/
�
�! C1c .G;�

1=2/ (3.6)

is given by the integral

f � g./ D

Z
12D

f .1/g.2/;  2 G (3.7)

which is well defined and gives an internal operation as soon as we take

�1=2 D �1=2.ker dr/˝�1=2.ker ds/ D �1=2.ker dr ˚ ker ds/: (3.8)

To understand this point, we recall:
Lemma 3.1 ([3,6]). Denoting by m the multiplication map of G and by pr1; pr2 W
G.2/ ! G the natural projection maps, we have a canonical isomorphism

pr�1.�
1=2/˝ pr�2.�

1=2/ ' �.ker dm/˝m�.�1=2/: (3.9)

Proof. Let
M

p2 //

p1

��

M2

�2

��
M1

�1 // B

be a fibered product where �2 is a submersion. Then dp2 induces an isomorphism
between ker.dp1/ and p�2 .ker.d�2//. The three following diagrams being fibered
products (we use the natural diffeomorphism G.2/ ! G �

s
G given by .1; 2/ 7!

.12; 2/ for the first two)

G.2/
pr2 //

m

��

G

s
��

G
s // G.0/

G.2/
m //

pr2
��

G

s
��

G
s // G.0/

G.2/
pr1 //

pr2
��

G

s
��

G
r // G.0/;

we get ker dm ' pr2�.ker ds/ and m�.ker ds/ ' ker d pr2 D pr1�.ker ds/; and
similarly ker dm ' pr1�.ker dr/ and m�.ker dr/ ' ker d pr1 D pr2�.ker dr/: We
then have the following isomorphism of vector bundles:

pr1�.ker ds ˚ ker dr/˚ pr2�.ker ds ˚ ker dr/
' m�.ker ds/˚ ker dm˚ ker dm˚m�.ker dr/;

and taking half-densities on these bundles gives exactly (3.9).
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Since in the basic formula (3.7) the function under sign of integration

G.2/ 3 .1; 2/ 7! f .1/g.2/ 2
�
pr�1.�

1=2/˝ pr�2.�
1=2/

�
.1;2/

is a C1 section of the bundle
�
pr�1.�1=2/˝ pr�2.�1=2/

�
j
G
.2/

; Lemma 3.1 shows

that (3.7) is the integral of a one density, canonically associated with f; g over
the submanifold m�1./ and that the result is a C1 section of �1=2. Further
computations on densities show that the statement

f � g./ D

Z
Gr./

f .1/g.
�1
1 / D

Z
Gs./

f .�12 /g.2/ (3.10)

makes sense and is true. The involution on C1c .G;�1=2/ is also natural in terms of
densities

f ? D i�.f /; f 2 C1c .G;�
1=2/

where i is the induced vector bundle isomorphism over the inversion map of G

ker dr ˚ ker ds �! ker dr ˚ ker ds; .;X1; X2/ 7�! .�1; d i.X2/; d i.X1//:

By the usual convention, the spacesE 0.G;�1=2/ andD 0.G;�1=2/ are the topological
duals of, respectively, the spaces C1.G;��1=2 ˝�G/ and C1c .G;��1=2 ˝�G/
endowed with their usual Fréchet and LF topological vector space structures. The
choice of densities is made so that we have canonical embeddings

C1.G;�1=2/ ,! D 0.G;�1=2/ and C1c .G;�
1=2/ ,! E 0.G;�1=2/:

Actually, the bundle of densities used in the spaces of test functions above can be
replaced by a rather simpler one. Indeed, using the exact sequence 0 ! ker dr !
TG ! r�.TG.0// ! 0, one gets �1=2G D �1=2.ker dr/ ˝ r�.�1=2

G.0/
/. Doing the

same with s instead of r and combining the two gives

�G D �
1=2.ker dr/˝�1=2.ker ds/˝.r�˝s�/.�1=2

G.0/
/ D �1=2˝.r�˝s�/.�

1=2

G.0/
/;

hence, we have a canonical isomorphism

D 0.G;�1=2/ '
�
C1c .G; .r

�
˝ s�/.�

1=2

G.0/
//
�0
:

For simplicity, we assume in the sequel that G.0/ is compact.

Theorem 3.2. The bilinear map

E 0s.G;�
1=2/ � E 0.G;�1=2/

�
�! E 0.G;�1=2/

.u; v/ 7�! u � v D m�.u �
s
v/

(3.11)
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is well defined and separately continuous and extends the convolution product defined
on C1c .G;�1=2/. Also, the maps

D 0.G;�1=2/
�
�! D 0.G;�1=2/

v 7�! u0 � v D m�.u0 �
s
v/

and D 0s.G;�
1=2/

�
�! D 0s.G;�

1=2/

u 7�! u � v0 D m�.u �
s
v0/ (3.12)

are well defined and continuous for any u0 2 E 0s.G;�
1=2/ and v0 2 E 0.G;�1=2/.

Similar statements are available for r-transversal distributions used as right
variables. We get by restriction separately continuous bilinear maps

E 0�.G;�
1=2/ � E 0�.G;�

1=2/
�
�! E 0�.G;�

1=2/ (3.13)

for � D r and � D s. The space .E 0�.G;�1=2/;�/ is an associative algebra with
unit given by

hı; f i D

Z
G.0/

f; f 2 C1.G;��1=2 ˝�G/: (3.14)

In particular .E 0r;s.G;�1=2/;�/ is an associative unital algebra with involution given
by

u? D i�.u/: (3.15)

Proof. Applying Proposition 2.17 to the caseM1 D M2 D G, B D G.0/, �1 D s,
�2 D r and �2 W G ! fptg, one gets a distribution u �

s
v 2 D 0.G.2/; �1=2/ which

depends continuously on u and v. Since u 2 E 0 one can choose � 2 C1c .G/ such
that u D �u. Then

u �
s
v D 'u �

s
v

where ' D � ı pr1 jG.2/ and Proposition 2.18 can be applied to the case f D m

with B D fptg. This gives that u � v is well defined for v 2 D 0 and the continuity
of v 7! u � v on E 0;D 0 for fixed u 2 E 0s as well. For fixed v 2 E 0, one gets the
continuity of u 7! u � v on E 0s;D

0
s in the same way.

To prove the statement involving (3.13) for � D s we apply Proposition 2.17
to M1 D M2 D G, B D G.0/, �1 D s, �2 D r and �2 D s, and Proposition 2.18
toM D G.2/, N D G, B D G.0/ with � D s and � D s ı pr2.

The associativity of � on distributions follows by continuity and density of
C1c .G;�

1=2/.
To check that the integral defining ı has an intrinsic meaning, we identify

��1=2 ˝ �G ' .r� ˝ s�/.�
1=2

G.0/
/ and observe that the restriction to G.0/ of

any f 2 C1c .G; .r� ˝ s�/.�
1=2

G.0/
// gives an element in C1.G.0/; �G.0//, so that

ı.f / D
R
G.0/

fjG.0/ is well defined.
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Moreover, we have

r�.f ı/ D s�.f ı/ D f jG.0/ 2 C
1.G.0// � D 0.G.0//; for any f 2 C1.G/;

in particular ı 2 E 0r;s.G;�
1=2/. If ıx 2 D 0.Gx/, x 2 G.0/ is the associated C1

family, we then get by Remark 2.8

hıx; �i D r�.ıe�/.x/ D �.x/;
for any � 2 C1c .G

x/ ande� 2 C1c .G/ such thate�jGx D �:
It follows that for any f 2 C1.G;��1=2 ˝�G/,

hu � ı; f i D

Z
x2G.0/

hux ˝ ı
x; .f ım/jGx�Gx i D

Z
x2G.0/

hux; f jGx i D hu; f i:

Therefore, ı is a left unit and that it is a right unit is proved similarly. The assertion
about the involution is obvious.

In particular, when one of the two factors is in C1c , the convolution product is
defined without any restriction on the other factor. We give a sufficient condition for
the result to be C1.
Proposition 3.3. The convolution product gives by restriction a bilinear separetely
continuous map

D 0r.G;�
1=2/ � C1c .G;�

1=2/
�
�! C1.G;�1=2/:

The analogous statement withC1 functions on the left and s-transversal distributions
on the right also holds. The map u 7! u � � mapping D 0r.G;�

1=2/ to
L.C1c .G;�

1=2/; C1.G;�1=2// is injective.

Proof. If u D .uy/y 2 D 0r , the map

 7! hur./.�/; f ..�/�1/i (3.16)

is C1 and by definition of the convolution product we get

hu � f; �i D

Z
22G

hur.2/.�/; f ..�/�12/i�.2/:

Thus u � f coincides with the C1 function (3.16). The continuity of u 7! u � f

is given by Theorem 3.2 and repeating the argument given in its proof, one gets the
continuity of f 7! u � f on C10 .K;�1=2/ D ff 2 C1 I supp.f / � Kg for any
compact K � G. The results follows by inductive limit.

Finally, the vanishing of u � f for any f and the previous expression for u � f
shows that ux D 0, for any x, and thus u D 0.
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Remark 3.4. (1) Note that if in the previous proposition we suppose that u has
compact supportK � G, then u�f can be defined for any map f 2 C1.G;�1=2/.
Moreover for any f 2 C1c .G;�1=2/, then u � f is also compactly supported and
supp.u � f / � K:supp.f /.

(2) If G.0/ is non compact, to get an involutive unital algebra, one should
rather consider the subalgebraP 0r;s.G;�

1=2/ ofD 0r;s.G;�
1=2/ of distributionswhose

support has the property that the restrictions of r and s to it are proper maps.

4. G-operators

We recall the notion of G-operators given in [19] and we add a notion of adjoint for
them.

Definition 4.1. A (left)G-operator is a continuous linear map P W C1c .G;�1=2/!
C1.G;�1=2/ such that there exists a familyPx W C1c .Gx; �

1=2
Gx
/ �! C1.Gx; �

1=2
Gx
/,

x 2 G.0/ of operators such that

P.f /jGx D Px.f jGx /; 8f 2 C
1
c .G;�

1=2/; 8x 2 G.0/ (4.1)
Pr./ ıR D R ı Ps./; 8 2 G: (4.2)

A G-operator P is said to be adjointable if there exists a G-operatorQ such that

.P.f /jg/ D .f jQ.g// I f; g 2 C1c .G;�
1=2/: (4.3)

Here .f jg/ D f ? � g is the C1c .G;�1=2/-valued pre-hilbertian product of
C1c .G;�

1=2/.
We note OpG and Op?G respectively the linear spaces of G-operators and

adjointable ones.
We say that a G-operator P is supported in K if supp.P.f // � K:supp.f / for

all f . The subspaces of compactly supportedG-operators are denoted OpG;c ;Op?G;c .

Looking at C1c .G;�1=2/ and C1.G;�1=2/ as right C1c .G;�1=2/-modules for
the convolution product, G-operators can be characterized in a simple way.

Proposition 4.2. A linear operator P W C1c .G;�1=2/ ! C1.G;�1=2/ is a
G-operator if and only if it is continuous and

P.f � g/ D P.f / � g; 8f; g 2 C1c .G;�
1=2/:

In other words, OpG D LC1c .G;�1=2/.C
1
c .G;�

1=2/; C1.G;�1=2//.
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Proof. Let P 2 OpG . Let us write px for the Schwartz kernel of Px . For any f; g
compactly supported and  2 G

P.f � g/./ D

Z
22Gs./

Z
12Gs./

ps./.; 2/f .2
�1
1 /g.1/

D

Z
12Gs./

�Z
22Gs./

ps./.; 2/.R�1
1
f /.2/

�
g.1/

D

Z
12Gs./

�Z
22Gs./

pr.1/.
�1
1 ; 2/f .2/

�
g.1/

D

Z
12Gs./

P.f /.�11 /g.1/ D P.f / � g./:

Conversely, let f 2 C1c .G;�1=2/ and x 2 G.0/ such that f jGx D 0. Observe
that .g � f /jGx D 0 for any g 2 C1c .G;�1=2/. It follows that P.g � f /jGx D
P.g/ � f jGx D 0. Choose a sequence �n 2 C1c .G;�1=2/ converging to ı in E 0r .
Then �n � f converges to f in C1c .G;�1=2/ and therefore

P.f /./ D limP.�n � f /./ D 0; 8 2 Gx :

In other words, P.f /jGx only depends on f jGx and we can define Px for any x by

Px.f / D P.ef /jGx ;
8f 2 C1c .Gx; �

1=2
Gx
/ and ef 2 C1c .G;�1=2/ such that ef jGx D f :

Let  2 Gyx . Then for any  0 2 Gy and f 2 C1c .G;�1=2/, we have

R .Px.�n � f //.
0/ D P.�n � f /.

0/

D P.�n/ � f .
0/

D P.�n/ � .Rf /.
0/ D P.�n � .Rf //.

0/:

Taking the limit in this equality gives (4.2).
The set OpG being obviously closed in L.C1c .G;�

1=2/; C1.G;�1=2// this
proof shows in particular that OpG is the closure of operators of the form f 7! u�f

where u 2 C1.G;�1=2/.

Let u 2 D 0r.G;�
1=2/. Using Propositions 3.3 and 4.2, we can define P 2 OpG

by setting P.f / D u � f for any f 2 C1c .G;�1=2/.
Conversely, let P 2 OpG and px 2 D 0.Gx � Gx/ the Schwartz kernel of Px ,

x 2 G.0/. Since
 7�! P.f /./ D

Z
ps./.; 1/f .1/
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is C1 for any f , we get that  7! ps./.; �/ belongs to D 0pr1.G �s
G/ and then using

the second part of Proposition 2.15, it restricts to the map G.0/ 3 x 7! px.x; �/

belonging to D 0s.G/. Defining kP 2 D 0r.G/ by kP ./ D pr./.r./; 
�1/, we get

for any f 2 C1c .G;�1=2/, x; y 2 G.0/ and  2 G
y
x

P.f /./ D

Z
Gx

px.; 1/f .1/ D

Z
Gy

py.y; 1/f .1/

D

Z
Gy
py.y; 

�1
1 /f .�11 / D h.kP /y ; f ..�/

�1/iGy D kP � f ./:

(4.4)

Thus P the operator given by left convolution with kP . We call kP the convolution
distributional kernel of P . Note that supp.P / D supp.kP /. We have proved
Theorem 4.3. The map P 7! kP gives the isomorphisms

OpG ' D 0r.G;�
1=2/ and OpG;c ' E 0r.G;�

1=2/: (4.5)

If kP 2 D 0r;s.G;�
1=2/ then P is obviously adjointable and kP? D .kP /

?.
Conversely, if P as an adjointQ then

.kP � f /
?
� g D .f ? � k?P / � g D f

?
� .kQ � g/ I f; g 2 C1c .G;�

1=2/; (4.6)

hence k?P D kQ 2 D 0s.G;�
1=2/ \D 0r.G;�

1=2/. Thus Theorem 4.3 yields:
Corollary 4.4. The map P ! kP induces an isomorphism

Op?G ' D 0r;s.G;�
1=2/: (4.7)

Remark 4.5. Rephrazing the previous results, we have, for instance

OpG ' Ls.C
1
c .G;�

1=2/; C1.G.0/; �1=2.AG///:

where we have replaced LC1.G.0// by Ls to emphasize that the C1.G.0//-module
structure on C1c .G;�1=2/ is given by s. Also

Op?G ' Lr;s.C
1
c .G;�

1=2/; C1.G.0/; �1=2.AG///:

where Lr;s D Ls \ Lr . In terms of Schwartz kernel theorems for submersions,
G-operators thus appear as “semi-regular” distributions (see Treves [24, p. 532])
since, for � D s or � D r

D 0.G;�1=2/ ' L�.C
1
c .G;�

1=2/;D 0.G.0/; �1=2.AG///:

Now observe that if kP 2 E 0r;s.G;�
1=2/, Theorem 3.2 implies that P extends

continuously to a map D 0.G;�1=2/ �! D 0.G;�1=2/ sending the subspace E 0r;s
to E 0r;s . This leads to another characterization of adjointness.
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Proposition 4.6. A compactly supported G-operator P is adjointable if and only if
it extends continuously to a mapeP W D 0.G;�1=2/ �! D 0.G;�1=2/

such that eP .ı/ 2 D 0r;s.G;�
1=2/. In that case, eP D kP � �.

Proof. Let u 2 D 0.G;�1=2/ and .un/ � C1c .G;�1=2/ a sequence converging to u
in D 0. We haveeP .u � f / D limP.un � f / D limP.un/ � f D eP .u/ � f; 8f 2 C1c .G;�1=2/:
Thus eP is automatically C1c .G;�1=2/-right linear. It follows that

kP � f D P.f / D P.ı � f / D eP .ı/ � f; 8f 2 C1c .G;�1=2/
which proves thatkP D eP .ı/ 2 D 0r;s.G;�

1=2/ and thateP is given by left convolution
with kP .

5. Convolution on groupoids and wave front sets

We now turn to some microlocal aspects of the convolution of distributions on
groupoids. In view of Proposition 2.9, it is natural to call r-transversal any (conic)
subset W � T �G n 0 such that W \ ker dr? D ;, indeed in that case

D 0W .G;�
1=2/ � D 0r.G;�

1=2/: (5.1)

Similarly, W is called s-transversal if W \ ker ds? D ; and we call bi-transversal
any set which is both r and s-transversal. We then introduce

D 0a.G;�
1=2/ D

˚
u 2 D 0.G;�1=2/ I WF.u/ is bi-transversal

	
(5.2)

and E 0a D D 0a \ E 0. We call them admissible distributions. From Proposition 2.9,
we get

D 0a.G;�
1=2/ � D 0r;s.G;�

1=2/: (5.3)

Example 5.1. Observe that A�G n 0 is bi-transversal. Since ‰.G/ D I.G;G.0// �
D 0A�G.G/ (see [17]) we get

‰.G/ � D 0a.G;�
1=2/: (5.4)

Theorem 3.2 and Proposition 3.3 can be reused in various ways for subspaces
of distributions with transversal wave front sets. We only record the main one: the
convolution product restricts to a bilinear map

E 0a.G;�
1=2/ � E 0a.G;�

1=2/
�
�! E 0r;s.G;�

1=2/; (5.5)

and we strenghthen this result as follows, by using the cotangent groupoid structure
of Coste–Dazord–Weinstein (see Section A).
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Theorem 5.2. For any u1; u2 2 E 0a.G;�
1=2/, we have u1 � u2 2 E 0a.G;�

1=2/ and

WF.u1 � u2/ �WF.u1/�WF.u2/ (5.6)

where on the right, � denotes the product of the symplectic groupoid T �G � A�G.
In particular .E 0a.G;�1=2/;�/ is a unital involutive subalgebra of .E 0r;s.G;�1=2/;�/.

Proof. Let uj 2 E 0a.G;�
1=2/ and set Wj D WF.uj /, j D 1; 2. We first

show that the fibered product u1 �
�
u2 (where � D r; s indifferently) given by

Proposition 2.17, coincides with the distribution obtained by the functorial operations
in [13, Theorems 8.2.9, 8.2.4]:

u1 �
�
u2 D �

�.u1 ˝ u2/ 2 D 0.G.2/; �.ker dm/˝m�.�1=2//; (5.7)

where � W G.2/ ,! G2. By [13, Theorem 8.2.9], we know that

WF.u1 ˝ u2/ � W1 �W2 [W1 � .G � f0g/ [ .G � f0g/ �W2; (5.8)

and to apply [13, Theorem 8.2.4], we just need to check that

WF.u1 ˝ u2/\N �G.2/ D ;: (5.9)

Observe that N �G.2/ D kerm� � �.2/ and ker ds? D ker r� . Thus, if

ıj D .j ; �j / 2 T
�
j
G and .ı1; ı2/ 2WF.u1 ˝ u2/\N �G.2/

then .ı1; ı2/ 2 �.2/ and

r�.ı1/ D r�.ı1ı2/ D .r.1/; 0/: (5.10)

By the s-transversality assumption on W1 and the relation (5.8), this implies ı1 D
.1; 0/ and ı2 2 W2. On the other hand

s�.ı2/ D s�.ı1ı2/ D .s.2/; 0/; (5.11)

which contradicts the r-transversality of W2, and this proves (5.9). Therefore, the
right hand side in (5.7) is well defined by [13, Theorem 8.2.4] and it coincides with
the left hand side, which is obvious after pairing with test functions. Now

u1 � u2 D m�.u1 �
�
u2/ D m��

�.u1 ˝ u2/ (5.12)

and thus, using [13, Theorem 8.2.4] and [11, (3.6), p. 328],

WF.u1 � u2/ � m���WF.u1 ˝ u2/ : (5.13)
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Here��WT �G2�!T �G.2/ is the restriction of linear forms and, for any eW �T �G.2/,
m�.eW / D ˚.; �/ 2 T �G I 9.1; 2/ 2 m�1./;

.1; 2;
tdm1;2.�// 2

eW [G.2/ � 0	:
Since m is submersive, tdm1;2 is injective and the term G.2/ � 0 can be removed.
By definition of the multiplication of � D T �G, we get, for any W � T �G2, the
equivalence

12 D  and .1; 2;
tdm1;2.�// 2 �

�.W /

, 9.ı1; ı2/ 2 �
.2/
\W; ı1ı2 D .; �/: (5.14)

Thus,
m��

�W D m�.W \ �
.2//: (5.15)

By r-transversality of WF.u1/, we have s�.WF.u1// � A�G n 0, so

WF.u1/�.G � f0g/ \ �.2/ D ;:

Similarly, s-transversality of WF.u2/ gives .G � f0g/ � WF.u2/\�.2/ D ;. It
follows that

WF.u1 ˝ u2/\�.2/ D .WF.u1/�WF.u2// \ �.2/;

and therefore

m�.WF.u1 ˝ u2/\�.2// D m�..WF.u1/�WF.u2// \ �.2//
DWF.u1/�WF.u2/;

which proves (5.6). Clearly,W1�W2 is s or r-transversal if the same holds respectively
for W1 and W2, so (5.6) implies u1 � u2 2 E 0a, therefore E 0a is a subalgebra of E 0r;s .

Finally, since WF.ı/ D A�G n 0, we have ı 2 E 0a and since WF.u?/ D
i�.WF.u//, we conclude that E 0a is unital and involutive.

Looking at the proof of this theorem, we see that the assumptions on WF.uj / can
be significanlty relaxed in order to conserve the property (5.9) and then to be able to
define the convolution product u1 � u2 by the right hand side of (5.12).

Firstly, if W � T �G n 0, then W � .G � 0/ \ kerm� D ;. Indeed, if
.1; �1; 2; 0/ 2 W �.G�f0g/\�

.2/, we can choose t1 2 T1G such that �1.t1/ 6D 0
since �1 6D 0 by assumption. Using a local section ˇ of r such that ˇ.s.1// D 2 and
setting t2 D dˇds.t1/ 2 T2G, we get .t1; t2/ 2 T.1;2/G.2/ and �1.t1/C0.t2/ 6D 0,
that is �1 ˚ 0 6D 0 which proves that .1; �1; 2; 0/ 62 kerm� .

Arguing identically on .G � 0/ � W we get the equivalence, for any
distributions u1; u2

WF.u1 ˝ u2/\ kerm� D ; ,WF.u1/�WF.u2/\ kerm� D ;: (5.16)
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This is again the condition (5.9) which is sufficient to define ��.u1 ˝ u2/ D

u1 ˝ u2jG.2/ and there the convolution product under additional suitable supports
conditions.
Theorem 5.3. Let Wj � T �G n 0 be closed cones such that

W1 �W2 \ kerm� D ; (5.17)

and set W1�W2 D m�..W1 �W2 [W1 � 0 [ 0 �W2/ \ �.2//. Then the map

E 0W1.G;�
1=2/ � E 0W2.G;�

1=2/
�
�! E 0W1�W2.G;�

1=2/ (5.18)
.u1; u2/ 7�! m�.u1 ˝ u2jG.2// (5.19)

is separately sequentially continuous and coincides with the convolution product on
C1c .G;�

1=2/.

Proof. Under the assumption made on W1; W2, we can apply [13, Theorems 8.2.4,
8.2.9] to find that the bilinear map

D 0W1.G;�
1=2/ �D 0W2.G;�

1=2/ �! D 0��.W1 N�W2/.G
.2/; �1=2/

.u1; u2/ 7�! u1 ˝ u2jG.2/
(5.20)

is well defined, sequentially separately continuous for the natural notion of
convergence of sequences in the spaces D 0W [11,13], and also separately continuous
for the normal topology of these spaces [1]. Above, we have set for convenience
W1 N�W2 D W1 �W2 [W1 � 0 [ 0 �W2.

To apply m� and get a continuous map for the same topologies, we restrict
ourselves to compactly supported distributions and we get

E 0W1.G;�
1=2/ � E 0W2.G;�

1=2/

.�˝�/j
G.2/

�! E 0��.W1 N�W2/.G
.2/; �1=2/

m�
�! E 0W1�W2.G;�

1=2/: (5.21)

Indeed, the formulas (5.13) and (5.15) are still valid here and give the last distribution
space above.

If u1 or u2 is smooth then WF.u1/�WF.u2/ is empty and (5.17) is trivially
satisfied, thus
Corollary 5.4. The convolution product of Theorem 5.3 gives by restriction the maps

E 0.G;�1=2/ � C1c .G;�
1=2/

�
�! E 0

s�1
�
.0/
.G;�1=2/; (5.22)

C1c .G;�
1=2/ � E 0.G;�1=2/

�
�! E 0

r�1
�
.0/
.G;�1=2/: (5.23)
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As we said, bi-transversal subsets of T �G n 0 satisfy (5.17). Actually,

Corollary 5.5. LetW1; W2 be any subsets of T �Gn0. IfW1 is s-transversal (resp.W2
is r-transversal) then the assumption (5.17) is satisfied andW1 �W2 is s-transversal
(resp. W2 r-transversal) .

Proof. Use the equalities s� ım� D s� ı pr2 and r� ım� D r� ı pr1.

Remark 5.6. Theorems 3.2 and 5.3 do not apply exactly to the same situations. For
instance, consider the pair groupoid G D R � R. On one hand, using the relation
kerm� D ..ker ds/? � .ker dr/?/\ .T �G/.2/ and Remark 2.11, it is easy to obtain
pairs of distributions .u1; u2/ 2 E 0s.R

2/�E 0.R2/ for which only Theorem 3.2 can be
applied to defineu1�u2. On the other hand, consider the distributionsu1 D ı.0;0/ and
u2 D ı.1;1/, whose wave fronts are respectively W1 D f.0; 0; �; �/ I .�; �/ ¤ .0; 0/g
and W2 D f.1; 1; �; �/ I .�; �/ ¤ .0; 0/g. These distributions are neither s nor r
transversal, but W1 �W2 \ �.2/ D ;, hence the convolution u1 � u2 on G can only
be defined by Theorem 5.3 (note that u1 � u2 D 0; less peculiar examples can be
easily constructed).

Of course, both convolution products coincide when both make sense, since the
equality (5.7) is valid as soon as .WF.u1/�WF.u2// \ kerm� D ;.

A. The cotangent groupoid of Coste–Dazord–Weinstein

We recall the definition of the cotangent groupoid of Coste–Dazord–Weinstein.
We explain the construction of the source and target map given in [4] and we
enlighten the role played by the differential of the multiplication map of G. This is a
pedestrian approach based on concrete differential geometry while more conceptual
developments can be found in [16,23].

Let G be a Lie groupoid whose multiplication is denoted bym, source and target
by s; r and inversion by i . Differentiating all the structure maps of G, we get that
TG � TG.0/ is a Lie groupoid whose multiplication is given by dm, source and
target by ds; dr and inversion by di . Hence, it is natural to try to transpose everything
to get a groupoid structure on � D T �G. Following this idea, it is natural to decide
that the product .1; �1/:.2; �2/ 2 T �G of two elements .j ; �j / 2 T �G is defined
by .12; �/ where � is the solution of the equation

tdm.1;2/.�/ D .�1; �2/jT.1;2/G
.2/ : (A.1)

Indeed,m W G.2/ �! G being a submersion, tdm.1;2/ is injective for all .1; 2/ 2
G.2/ and � , when it exists, is therefore unique. In that case, we have

� D tdm�1.1;2/�.�1; �2/ (A.2)
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where � W T �
G.2/

G2 �! T �G.2/ is the restriction of linear forms and we introduce
the notations

� D �1 ˚ �2 and m�.1; �1; 2; �2/ D .12; �1 ˚ �2/: (A.3)

The equation (A.1) has a solution � if and only if

.�1; �2/ 2 Im tdm.1;2/: (A.4)

Since Im tdm.1;2/ D .ker dm.1;2//?, this is equivalent to

�1.t1/C �2.t2/ D 0; 8.t1; t2/ 2 ker dm.1;2/: (A.5)

Let us explicit ker dm � TG.2/. Let

L W G
s./
�! Gr./;  0 7!  0 and R W Gr./ �! Gs./; 

0
7!  0

be the left and right multiplication maps ofG. Let .1; 2/ 2 G.2/ and set  D 12,
x D s.1/. ParametrizingG.2/ D m�1./ byGr./ 3 � 7! .�; ��1/, we find, after
a routine computation:

.t1; t2/ 2 ker dm.1;2/, t1 D dL1di.t/; t2 D dR2.t/; for some t 2 TxGx :
(A.6)

It follows that (A.4) is equivalent to the equality
tdR2.�2/ D �

td.L1 ı i/.�1/ 2 .TxGx/
�; (A.7)

where it is understood that R2 and L1 ı i are differentiated at  D x and that the
linear forms �1; �2 are restricted to the ranges of the corresponding differential maps.
The same abuse of notations is used below without further notice. We then define
elements s.�1/; r.�2/ belonging to A�xG D .TxG=TxG.0//� by

s.�1/.t C u/ D
tdL1.�1/.t/; for all t C u 2 TxGx ˚ TxG.0/ D TxG; (A.8)

r.�2/.t C u/ D
tdR2.�2/.t/; for all t C u 2 TxGx ˚ TxG.0/ D TxG: (A.9)

Differentiating the relation �1 D s./ at  D x we get the relation

di C id D ds C dr (A.10)

which yields �di.t/ � t mod TxG.0/; 8t 2 TxG: Thus, (A.7), and then (A.4), is
equivalent to

r.�2/ D s.�1/ 2 A
�
xG: (A.11)

This leads to the definitions

s�.; �/ D .s./; s.�// 2 A
�G and r�.; �/ D .r./; r.�// 2 A

�G;

8.; �/ 2 T �G: (A.12)

Finally, we denote u� W A�G ,! T �G the canonical inclusion and we set

i�.; �/ D .
�1;�.tdi /

�1.�//; 8.; �/ 2 T �G: (A.13)



Convolution of distributions on groupoids 785

Theorem A.1 ([4]). Let G be a Lie groupoid. The space � D T �G is a Lie
groupoid with unit space A�G and structural maps given by s� ; r� ; m� ; i� and u�
(respectively, source, target, multiplication, inversion and inclusion of unit maps).

Remark A.2. (1) The Lie algebroid of G is sometimes defined by AG D

ker dsjG.0/ . In that picture, we deduce from (A.7) that s� and r� have to be defined
by replacing s; r by

es.�/ D �td.L ı i/.�/ and er.�/ D tdR .�/: (A.14)

(2) The submanifold �.2/ of composable pairs in � is given by

�.2/ D
˚
.ı1; ı2/ 2 T

�

G.2/
G2 I �.ı1; ı2/ 2 .ker dm/?

	
(A.15)

and m� D tdm�1 ı �.
(3) The graph of m� is canonically isomorphic to the conormal space of the

graph of m:

Gr.m�/ 3 .; �; 1; �1; 2; �2/ �! .;��; 1; �1; 2; �2/ 2 N
�Gr.m/: (A.16)

Since N �Gr.m/ is Lagrangian in T �G � T �G � T �G, we get that Gr.m�/ is
Lagrangian in .�T �G/ � T �G � T �G, that is, � is a symplectic groupoid.

Finally, we recall that T �G is also a vector bundle over G, and we note p W
T �G ! G the projection map. The following result is useful and obvious from the
construction detailed above.

Proposition A.3. (1) The subspace of composable pairs �.2/ is a vector bundle
over G.2/ and m� W �.2/ ! � is a vector bundle homomorphism:

�.2/

.p;p/
��

m� // �

p

��
G.2/

m // G

(A.17)

whose kernel is the conormal space of G.2/ into G2: kerm� D N �G.2/:

(2) The maps r� ; s� W � ! A�G are also vector bundle homomorphisms:

�

p

��

s� // A�G

p
��

G
s // G.0/

�

p

��

r� // A�G

p
��

G
r // G.0/

(A.18)

and ker r� D .ker ds/?, ker s� D .ker dr/?.
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We finish this review with two basic examples, the first one being the historical
one [4].
Example A.4. Let G be a Lie group with Lie algebra g. We have immediately

s�.g; �/ D L
�
g� 2 g� and r�.g; �/ D R

�
g� 2 g�: (A.19)

When s�.g1; �1/ D r�.g2; �2/, we get .g1; �1/.g2; �2/ D .g1g2; �/ with � charac-
terized by:

�.dm.g1;g2/.t1; t2// D �1.t1/C �2.t2/: (A.20)
Since dm.g1;g2/.t1; t2/ D dRg2.t1/C dLg1.t2/, we obtain � D R�g�1

2

�1 D L
�

g�1
1

�2.
Thus

.g1; �1/.g2; �2/ D .g1g2; R
�

g�1
2

�1/ when L�g1�1 D R
�
g2
�2: (A.21)

On the other hand, we recall that G acts on g� by

Ad�g :� D L
�
gR
�

g�1
�: (A.22)

This gives rise to the transformation groupoid G �j g� � g� whose source, target,
multiplication and inversion are thus given by

s.g; �/ D Ad�g :�; r.g; �/ D �;

.g1; �1/.g2;Ad�g1 :�1/ D .g1g2; �1/; .g; �/�1 D .g�1;Ad�g :�/:
(A.23)

Now, the vector bundle trivialization ˆ W T �G �! G � g�; .g; �/ 7�! .g;R�g�/;

gives a Lie groupoid isomorphism ˆ W T �G �! G�j g�. For instance, we check

ˆ..g1; �1/.g2; �2// D ˆ.g1g2; R
�

g�1
2

�1/

D .g1g2; R
�
g1g2

R�
g�1
2

�1/

D .g1g2; R
�
g1
�1/

D .g1; R
�
g1
�1/:.g2; R

�
g2
�2/ [since Ad�g1 :R

�
g1
�1DL

�
g1
�1DR

�
g2
�2]

D ˆ.g1; �1/:ˆ.g2; �2/:

Example A.5. We take G D X � X � Z � X � Z (cartesian product of the pair
groupoid X �X with the space Z). Here we have

�.0/ D A�G D
˚
.x; x; z; �;��; 0/ I .x; �/ 2 T �X; z 2 Z

	
:

Let  D .x; y; z/ and � D .�; �; �/ 2 T � G. Then s.�/ 2 T �
.y;y;z/

X � X � Z is
given by � 2 T �y X ' 0� T �y X � 0 after extension by 0 onto the subspace of vectors
of the form .u; u;w/. This is similar for r.�/ 2 T �

.x;x;z/
X � X � Z, starting with

� 2 T �x X ' T
�
x X � 0 � 0. Using

.u; v; w/ D .u � v; 0; 0/C .v; v; w/ D .0; v � u; 0/C .u; u;w/;
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we get

s�.x; y; z; �; �; �/ D .y; y; z;��; �; 0/; r�.x; y; z; �; �; �/ D .x; x; z; �;��; 0/

and

.x; y; z; �; �; �/:.y; x0; z;��; � 0; � 0/ D .x; x0; z; �; � 0; � C � 0/: (A.24)

Note that if Z D fptg, � D T �.X � X/ is isomorphic to the pair groupoid T �X �
T �X , with isomorphism given by

T �.X �X/ �! T �X � T �X I .x; y; �; �/ 7! .x; �; y;��/:
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