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Cohomology of A
alg
�

Ì Z2 and its Chern–Connes pairing

Safdar Quddus

Abstract. We calculate the Hochschild and cyclic cohomology of the noncommutative Z2
toroidal algebraic orbifold A

alg
�

Ì Z2. We also calculate the Chern–Connes pairing of the even
periodic cyclic cocycles with the known elements of K0.Aalg

�
Ì Z2/.
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1. Introduction and statement

In the classic paper [4], Connes constructed a noncommutative analogue of the
Chern map of differential geometry. He considered the map from the K0 group of
a noncommutative algebra to its even cyclic homology and paired a projection with
the cyclic cocycle to give a numerical invariant.

Let S.Z2/ be the Schwartz space on Z2, consisting of all complex sequences
an;m satisfying:

sup
.n;m/2Z2

�
jnj C jmj

�q
jan;mj <1; for all q 2 N:

For given � 2 R, we associate the algebra A� defined below.

A� D

�
a D

X
.n;m/2Z2

an;mU
n
1 U

m
2 j an;m 2 S.Z2/

�
;

where U1 and U2 are unitary generators satisfying U2U1 D �U1U2, � D e2�i� .
Connes [4] computed the cyclic cohomology and Chern–Connes index for the smooth
algebra A� . The group SL.2;Z/ has the following action on A� . An element

g D

�
g1;1 g1;2
g2;1 g2;2

�
2 SL.2;Z/
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acts on the generators U1 and U2 as described below:

g � U1 D e
.�ig1;1g2;1/�U

g1;1
1 U

g2;1
2 and g � U2 D e

.�ig1;2g2;2/�U
g1;2
1 U

g2;2
2 :

Let A
alg
�

consists of all finitely supported elements of A� . We shall study the
crossed product of the subalgebra A

alg
�

with the group Z2 identified as a subgroup of
SL.2;Z/.

Berest et al. [3] calculated the Picard group of A
alg
�
. Some of the Hochschild

homology groups of A
alg
�

Ì Zk for k D 2; 3; 4 and 6 were known for many years [2,
10]. All the Hochschild and cylic homology groups of the orbifolds A

alg
�

Ì Zk ,
for k D 2; 3; 4 and 6, were recently calculated [12]. Further theHochschild homology
of the Weyl algebra was studied by Alev and Lambre in [1]. In this article we shall
compute theHochschild and cyclic cohomology ofA

alg
�

ÌZ2, theZ2 noncommutative
algebraic toroidal orbifold. We also compute theChern–Connes index for this orbifold
by pairing these cocycles with the algebraic projections of the group K0.A� Ì Z2/,
which was calculated in [5]. In this article we adopt the notation from [4] and [12]
and prove the following results.

Theorem 1.1. If � … Q, then the Hochschild cohomology groups of A
alg
�

Ì Z2 are:

H 0.A
alg
�

Ì Z2; .A
alg
�

Ì Z2/
�/ Š C5;

H 1.A
alg
�

Ì Z2; .A
alg
�

Ì Z2/
�/ D 0;

and H 2.A
alg
�

Ì Z2; .A
alg
�

Ì Z2/
�/ Š C:

Theorem 1.2. HP even.A
alg
�

Ì Z2/ Š C6 andHP odd.A
alg
�

Ì Z2/ D 0.

Theorem 1.3. The following is the description of the Chern–Connes pairing of the
six dimensional groupHP even.A

alg
�

Ì Z2/ generated by cocycles S� , SD1;1, SD0;0,
SD0;1, SD1;0 and ', with the five known independent projections of A

alg
�

Ì Z2
namely 1, p� , q�1 , q

�
2 and r� [5].

S� SD1;1 SD0;0 SD0;1 SD1;0 S'

1 1 0 0 0 0 0

p� 1
2

1
2

0 0 0 0

q�1
1
2

0 0 -1
2

0 0

q�2
1
2

0 -1
2

0 0 0

r� 1
2

0 0 0 -�
2

0

We end the article with a conjecture over the dimension of the unknown group
K0.A

alg
�

Ì Z2/.
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2. Hochschild cohomology of A
alg
�

Ì Z2

We note that the dual of the algebraic noncommutative torus A
alg
�

is

A
alg�
�
D

�
a j a D

X
.n;m/2Z2

an;mU
n
1 U

m
2

�
;

where U1 and U2 are unitaries satisfying U2U1 D �U1U2. For a 2 A
alg
�
, let the

trace � on the algebra A
alg
�

be defined as

�.a/ D a0;0:

Then an element a 2 A
alg�
�

acts on b 2 A
alg
�

as a.b/ D �.ab/. Using the results of
Getzler and John [7], the cohomology group H �.Aalg

�
Ì Z2; .A

alg
�

Ì Z2/�) has the
following decomposition:

H �
�
A

alg
�

Ì Z2;
�
A

alg
�

Ì Z2
���
D

M
g2Z2

H �
�
A

alg
�
; gA

alg�
�

�Z2
D H �

�
A

alg
�
;A

alg�
�

�Z2MH �
�
A

alg
�
;�1A

alg�
�

�Z2 :
In the above equation, �1Aalg�

�
consists of elements of A

alg�
�

with the following
twisted A

alg
�

bimodule structure. For a 2 �1Aalg�
�

and ˛ 2 A
alg
�
,

˛ � a D .�1 � ˛/a and a � ˛ D a˛;

where a˛ is the product of a and ˛ inA
alg�
�

. We recall themodifiedConnes projective
resolution:

A
alg
�

�
 � B

alg
�

b1
 � B

alg
�

M
B

alg
�

b2
 � B

alg
�
;

where

B
alg
�
D A

alg
�
˝ .A

alg
�
/op;

�.a˝ b/ D ab;

b1.1˝ ej / D 1˝ Uj � Uj ˝ 1;

b2.1˝ .e1 ^ e2// D .U2 ˝ 1 � �˝ U2/˝ e1 � .�U1 ˝ 1 � 1˝ U1/˝ e2:

The above resolution was used in [12] to calculate the Hochschild and cyclic
homology groups of the algebra A

alg
�

Ì Zk for k D 2; 3; 4 and 6. We use it to
construct the twisted cochain complex corresponding to each of the two elelments
of the group Z2. Thereafter we compute the cohomology groups of A

alg
�

Ì Z2 by
locating the Z2 invariant cocycles.
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While the bar resolution is not computationally convenient, modified Connes
resolution for the algebraic noncommutative torus does make it easier to compute the
cohomology groups. In order to locate theZ2 invariant cocycles ofH �.Aalg

�
; gA

alg�
�

/,
we need to use the resolution homotopy maps

h� W C�.A
alg
�
/! J�.A

alg
�
/

and k� W J�.A
alg
�
/! C�.A

alg
�
/;

where J�.Aalg
�
/ is the standard bar resolution .Jk.A

alg
�
/ D B

alg
�
˝ .A

alg
�
/˝k/ and

C�.A
alg
�
/ is the Connes resolution. We push a cocylcle D into the bar complex and

let Z2 act on it. Then, in the Connes complex, we compare the pullback of this
Z2-acted cocycle with D to check the Z2 invariance. These maps were explicitly
calculated in [4] and [12].

It is worthwhile to note that Hom
B

alg
�

.B
alg
�
;�1A

alg�
�

/ and Hom
B

alg
�

.B
alg
�
;A

alg�
�

/

can be identified with �1Aalg�
�

and A
alg�
�

, respectively. Hence for g D �1 we have
the following Hochschild cohomology complex:

�1A
alg�
�

�1˛1
���! �1A

alg�
�
˚ �1A

alg�
�

�1˛2
���! �1A

alg�
�
! 0;

where for '; '1 and '2 in A
alg�
�

, the maps �1˛1 and �1˛2 are as follows:

�1˛1.'/ D .U
�1
1 ' � 'U1; U

�1
2 ' � 'U2/;

�1˛2.'1; '2/ D U
�1
2 '1 � �'1U2 � �U

�1
1 '2 C '2U1:

Lemma 2.1. H 0.A
alg
�
;�1A

alg�
�

/Z2 Š C4.

Proof. Let ' D
P
'n;mU

n
1 U

m
2 be an element of �1Aalg�

�
. Then ' is a 0-cocycle if

and only if �1˛1.'/ D 0, which implies that U�11 ' � 'U1 D U�12 ' � 'U2 D 0.
This further gives the relation 'nC1;m D �m'n�1;m D �mCn�1'n�1;m�2 on its
coefficients. Hence we see that

H 0.A
alg
�
;�1A

alg�
�

/ Š C4:

The generators of this group are the cocycles generated by '0;0, '0;1, '1;0 and '1;1.
Let us denote by Di;j the cocycle generated by 'i;j , for 0 � i; j � 1. First

consider the cocycle D0;0. The above relation on the coefficients of D0;0 gives
'2n;2m D �2mn'0;0 for all .2n; 2m/ 2 Z2. The maps k0 and h0 are idenity and
hence the action of Z2 on H 0.A

alg
�
;�1A

alg�
�

/ is given by Uj ! U�1j for j D 1; 2.
Thus we conclude that the Z2 action leaves D0;0 invariant.

For the cocycle D0;1, we infer that '2k;2lC1 D �2klCk'0;1. Now from

'�2k;�2l�1 D '2.�k/;2.�l�1/C1 D �
2.�k/.�l�1/C.�k/'0;1 D �

2klCk'0;1
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it follows that D0;1 is a Z2 invariant element of H 0.A
alg
�
;�1A

alg�
�

/. In the case
of D1;0, its coeffcients satisfy the relation '2kC1;2l D �2klCl'1;0. Since

'�2k�1;�2l D '2.�k�1/C1;2.�l/ D �
2.�k�1/.�l/C.�l/'1;0 D �

2klCl'1;0;

the cocycle D1;0 2 H
0.A

alg
�
;�1A

alg�
�

/Z2 . Finally for D1;1, we have

'2kC1;2lC1 D �
2klCkCl'1;1 and '�2k�1;�2l�1 D �

2klCkCl'1;1:

Hence D1;1 2 H
0.A

alg
�
;�1A

alg�
�

/Z2 :

Lemma 2.2. H 2.A
alg
�
;�1A

alg�
�

/Z2 D 0:

Proof. Let' 2 A
alg�
�

and let e' be the corresponding element ofHomB
alg
�
.J2;A

alg�
�

/.
Then e'.a˝ b ˝ e1 ^ e2/.x/ D '..�1 � b/xa/;
for all a; b; x 2 A

alg
�
. Let  D k�2e' De' ı k2. We have

 .x0; x1; x2/ De'.k2.I ˝ x1 ˝ x2//.x0/;
for all x0; x1; x2 2 A

alg
�
. The group Z2 acts on A

alg
�

in the bar complex as

�1 � �.x0; x1; x2/ D �.�1 � x0;�1 � x1;�1 � x2/:

Further we pull the map �1 D �1 �  back on to the Connes complex via the
map h�2 . Let w D h�2.�1 / denote the pullback of �1 on the Connes complex. We
have

w.x0/ D �1 .x0; U2; U1/ � ��1 .x0; U1; U2/

D  .�1 � x0; U
�1
2 ; U�11 / � � .�1 � x0; U

�1
1 ; U�12 /

De'�k2.I ˝ U�12 ˝ U�11 /
�
.�1 � x0/ � �e'�k2.I ˝ U�11 ˝ U�12 /

�
.�1 � x0/:

Following the calculations from [12, Section 6], we have

k2.I ˝ U
�1
2 ˝ U

�1
1 / � �k2.I ˝ U

�1
1 ˝ U

�1
2 / D .U�11 U�12 ˝ U

�1
1 U�12 /:

Applying this we conclude that

e'.k2.I ˝ U�12 ˝ U�11 //.�1 � x0/ � �e'.k2.I ˝ U�11 ˝ U�12 //.�1 � x0/

De'.U�11 U�12 ˝ U
�1
1 U�12 /.�1 � x0/ D '.U1U2 � .�1 � x0/ � U

�1
1 U�12 /:

Hence we need to compare '.x/ with '.U1U2 � .�1 � x/ � U�11 U�12 /. Using the
Connes complex, we see that H 2.A

alg
�
;�1A

alg�
�

/Z2 D �1A
alg�
�

= Im.�1˛2/. Since
�1˛2.U2; 0/ D 1��U

2
2 and �1˛2.0; U1/ D U 21 ��, we haveH 2.A

alg
�
;�1A

alg�
�

/ Š

C4 generated by the cocycles supported at '0;0, '1;0, '0:1 and '1;1.
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Case 1. We check the invariance of '0;0. From

'0;0.U1U2 � .�1 � x/ � U
�1
1 U�12 / D ��1x0;0 and '0;0.x/ D x0;0;

we see that '0;0 is not invariant under the Z2 action.

Case 2. Observe that for '1;0, we have

'1;0.U1U2 � .�1 � x/ � U
�1
1 U�12 / D x�1;0 and '1;0.x/ D x1;0:

Since the cocycle class '1;0 is equivalent to the class �'�1;0, it is not invariant under
the Z2 action.

Case 3. We check the invariance of '0;1. We have

'0;1.U1U2 � .�1 � x/ � U
�1
1 U�12 / D x0;�1 and '0;1.x/ D x0;1:

Since the cocycle class '0;1 is equivalent to the class ��1'0;�1, it is not invariant
under the Z2 action.

Case 4. Finally, we check the invariance of '1;1. We have

'1;1.U1U2 � .�1 � x/ � U
�1
1 U�12 / D ��1x�1;�1 and '1;1.x/ D x1;1:

Since the cocycle class '1;1 is equivalent to the cocycle class '�1;�1, the cocycle is
not invariant under the Z2 action.

For D a'0;0Cb'1;0Cc'0;1Cd'1;1, if‰ is the pullback of the corresponding
cocycle in the bar complex after the Z2 action, then:

‰ D a��1'0;0 C b�
�1'1;0 C c�

�1'0;1 C d�
�1'1;1:

We see that the coefficients of this pullback are different from those of the original
cocycle. Therefore we conclude that

H 2.A
alg
�
;�1A

alg�
�

/Z2 D 0:

We remark in this computation that although H 2.A
alg
�
;�1A

alg�
�

/ is of 4 dimension,
there is no nontrivial Z2 invariant cocycle.

For ' 2 A
alg�
�
˚ A

alg�
�

, we define the diagram Dgm.'/ .� Z2 ˚ Z2 ˚ Z2)
associated to it [12, Section 7]. Two elements a; b 2 C indexed by the lattice Z2 are
said to be f -connected and drawn on the lattice plane as

ba

if there exists f 2 CŒx; y; w; z� whose roots are a and b. For example, consider the
following equation

a16;1 � a
2
5;0 D �a

1
4;1 � �

�5a25;2:
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The corresponding diagram is as below, where the boxes represent elements of a1�;�
and the thick dots that of a2�;�.

a14;1 a16;1

a25;0

a25;2

In the above example we see that f .x; y;w; z/ D x � y C ��5z � �w has its
roots as a14;1; a16;1; a25;0 and a25;2. For ' D .'1; '2/ 2 A

alg�
�
˚ A

alg�
�

, we use all
the �1˛1 equations to �1˛1-connect the non-zero elements .'1n;m; '2r;s/. We call this
lattice graph as Dgm.'/.

We notice that, for a given lattice point .n;m/, there are three possible values at
that point. They are:
(1) '1n;m,
(2) '2n;m,
(3) 0.

Hence we conclude that the kernel diagramDgm.'/ of ' is a subset ofZ2˚Z2˚Z2.
It can be easily figured out [12] that there are no edges to the graph Dgm.'/, and
the graph is a disjoint union of closed graphs with no open edges. These graphs can
be infinitely supported as A

alg�
�

consists of elements which are infinitely supported.
For 1 � i � 3, let the maps �i W Z2 ˚ Z2 ˚ Z2 ! Z2 be the i th projection,
projecting the diagram Dgm.'/ to the i th Z2. From now onwards we shall deal with
the map �1 and similar arguments will hold for �2 and �3.
Definition 2.3 (Lines). For s0 2 Z and '.D .'1; '2// 2 ker.�1˛2/, we define a Z2

latticeHs0 such that

.Hs0/w;s WD

(
.�1.Dgm.'///w;s; for s D s0;
0; else:

Lemma 2.4. Given s0 2 Z and ' 2 ker.�1˛2/, there exists s0 2 A
alg�
�

such that
�1.Dgm.�1˛1.s0////w;s0 D .Hs0/w;s0 for all w 2 Z.

Proof. We know that �1˛1.'/ D .U�11 ' � 'U1; U
�1
2 ' � 'U2/. If �1˛1.'/ D

.'1; '2/, then

'1n;m D 'nC1;m � �
m'n�1;m and '2n;m D �

�n'n;mC1 � 'n;m�1:
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The diagram�1.Dgm.�1˛1.'/// can be infinitely supported, a connected component
of it resembles the one below:

y D s0.

Assume that '10;s0 ¤ 0. It is clear from the diagram that in the row y D s0 of the
lattice �1.Dgm.'//, '2w;s0 D 0 for all w 2 Z. Define

. .1/s0 /w;s D

(
���s0'10;s; for .w; s/ D .�1; s0/;
0; else:

We have �1.Dgm.�1˛1. .1/s0 ///0;s0 � .Hs0/0;s0 D 0. We define

. .2/s0 /w;s D

(
���s0.'1�2;s � �

�s0'10;s/; for .w; s/ D .�3; s0/;
.
.1/
s0 /w;s; else:

Then we have

�1.Dgm.�1˛1. .2/s0 ///�2;s0 � .Hs0/�2;s0 D �1.Dgm.�1˛1.
.2/
s0
///0;s0 � .Hs0/0;s0

D 0:

Similarly we can construct a sequence  .n/s0 which satisfies the required condition for
finitely many lattice points. Define �s0 WD lim

n!1
 .n/s0 . Since �s0 2 A

alg�
�

, we have

�1
�
Dgm.�1˛1.�s0//

�
�;s0
� .Hs0/�;s0 D 0 for � � 0:

We can similarly define >s0 such that

�1
�
Dgm..�1˛1.>s0///

�
�;s0
� .Hs0/�;s0 D 0 for � > 0:

Then s0 WD �s0 C 
>
s0

satisfies the following equation:

�1
�
Dgm..�1˛1.s0///

�
�;s0
� .Hs0/�;s0 D 0 for � 2 Z:

This completes the proof.
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It is interesting to note the degree of freedom that we had while constructing
the above s0 . This can be traced back to the fact that the kernel of �1˛1 is a 4
dimensional vector space. Aswe shall prove that an arbitrary cocycle is a coboundary,
it is worthwhile to note the various possibilities we have in doing so; hence revealing
the nature of the map �1˛1.

Lemma 2.5. H 1.A
alg
�
;�1A

alg�
�

/ D 0.

Proof. Let ' belonging to ker.�1˛2/ be a 1-cochain in the Connes complex. Let us
understand the construction of �1.Dgm.'//. It consists of alternate non-zero entries,
meaning one considering a row/column will find zeros at alternate positions. It has
rows/columns of '2’s and '1’s alternately placed.

For s0 2 Z, we get a s0 2 A
alg�
�

as in Lemma 2.4. Define  D 0C 2C �2C
� � � 2 A

alg�
�

. We observe that the lattice

�1
�
Dgm.�1˛1./ � .'//

�
has zero rows placed alternately. These rows are precisely the rows of '1
in �1.Dgm.'//. The other alternate set of rows is the rows of the '02’s, where
'02 2 A

alg�
�

are the bulleted points (�) in the lattice diagram

�1
�
Dgm.�1˛1./ � .'//

�
:

We state that �1.Dgm.�1˛1./ � .'/// is the diagram of an image element, that is,
there exists � 2 A

alg�
�

such that

�1
�
Dgm.�1˛1.�//

�
D �1

�
Dgm.�1˛1./ � .'//

�
:

It is easy to see as there is no kernel equation that relates .'02/p;q with .'02/l;w
for q ¤ w. Also note that if there is even a single zero entry in any of these rows, then
the whole row is ought to be a zero row. This can be seen by the repetitive application
of the kernel equation to the row starting with the kernel equation containing the zero
entry.

Lemma 2.6. For w0 2 Z. There exist �w0 2 A
alg�
�

such that:

�1
�
Dgm.�1˛1.�//

�
w;s
WD

(
�1
�
Dgm.�1˛1./ � .'//

�
w;s
; for .w; s/ D .w0; s/;

0; else:

Proof. We define �w0 such that

.�w0/n;m D

(
'10;0; for .n;m/ D .w0;�1/;
0; for .n;m/ D .w0; 1/ and for .n;m/ such that n ¤ w0:
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Thereafter we define .�w0/n;m form < �1 and n D w0 in the following iterated way.

.�0/n;m D �'
20
nC1;m:

Where '20nC1;m is second entry of �1.Dgm.�1˛1. C �w0/� .'///nC1;m. Clearly,
�1.Dgm.�1˛1. C �w0/� .'///w0;s D 0 for all s < 0. Similarly, we define �w0 for
m > 0 and hence we have �w0 satisfying

�1
�
Dgm.�1˛1. C �w0/ � .'//

�
w0;s
D 0 for all s 2 Z:

Now we prove Lemma 2.5. The element � D
P
s2N.�w0/ has the following

property:
�1
�
Dgm.�1˛1.�//

�
D �1

�
Dgm.�1˛1./ � .'//

�
:

Hence,H 1.A
alg
�
;�1A

alg�
�

/ D 0.

3. The Z2 invariant Hochschild cohomologyH �.A
alg
�
;A

alg�

�
/Z2

For g D 1, we have the following cohomology complex

A
alg�
�

˛1
�! A

alg�
�
˚ A

alg�
�

˛2
�! A

alg�
�
! 0;

where the maps ˛1 and ˛2 are as follows:

˛1.'/ D .U1' � 'U1; U2' � 'U2/;

˛2.'1; '2/ D U2'1 � �'1U2 � �U1'2 C '2U1:

Lemma 3.1. H 0.A
alg
�
;A

alg�
�

/Z2 Š C.

Proof. Let ' D
P
'n;mU

n
1 U

m
2 be an element of A

alg�
�

. If ˛1.'/ D 0, then we have
U1' � 'U1 D U2' � 'U2 D 0. This imples that we have the following relations on
the coefficients:

'n�1;m D �
m'n�1;m D �

mCn�1'n�1;m:

We see that these relations are satisfied only for m D n � 1 D 0. Hence, we have

H 0.A
alg
�
;A

alg�
�

/ Š C

and is generated by '0;0. Since the action of Z2 on the bar complex is the same as
on the Connes complex, we deduce thatH 0.A

alg
�
;A

alg�
�

/Z2 Š C.
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Lemma 3.2. H 2.A
alg
�
;A

alg�
�

/Z2 Š C.

Proof. Wesee from the calculations as in [4] thatH 2.A
alg
�
;A

alg�
�

/Z2DA
alg�
�
=Im.˛2/.

Since ˛2.U2; 0/ D .1 � �/.U 22 / and ˛2.0; U1/ D .1 � �/.U 21 /, we have
H 2.A

alg
�
;A

alg�
�

/ Š C and is generated by the cocycle equivalent to '�1;�1. Lete'�1;�1 be the corresponding element in the Connes complex. For ' 2 A
alg�
�

to be
Z2 invariant, we need to check thate'.x0/ De'.k2.I ˝U�12 ˝U�11 //.�1 � x0/� �e'.k2.I ˝U�11 ˝U�12 //.�1 � x0/ De'.U�11 U�12 ˝ U

�1
2 U�11 /.�1 � x0/ D '.U

�1
1 U�12 � .�1 � x0/ � U

�1
2 U�11 /.

In the above,e' is the element corresponding to ' in the Connes complex. Considering
the cocycle e'�1;�1 2 H 2.A

alg
�
;A

alg�
�

/, we see that e'�1;�1.x/ D x�1;�1 ande'.U�11 U�12 � .�1 � x/ � U�12 U�11 / D x�1;�1. Hence we conclude that e'�1;�1 is
invariant under the Z2 action.

Lemma 3.3. H 1.A
alg
�
;A

alg�
�

/Z2 D 0.

Proof. We recall from [4] that:

H 1.A
alg
�
;A

alg�
�

/ Š C2

and is generated by '1�1;0 and '20;�1. In order to locate the Z2 invariant subgroup
of H 1.A

alg
�
;A

alg�
�

/, we use the chain homotopy maps h1 and k1. For a; b 2 C, we
consider the cocycle � WD .a'1�1;0; b'20;�1/ 2 A

alg�
�
˚A

alg�
�

in the Connes complex,
and lete� WD .af'1�1;0; bf'20;�1/ 2 Hom

B
alg
�

.J1;A
alg
�
/ be the corresponding cocycle

in the bar complex. It satisfyies the following relation:f'1�1;0.a˝ b ˝ e1/.x/ D '1�1;0.bxa/; for a; b; x 2 A
alg�
�

:

Let  D k�1 .e�/ D k�1 .a
f'1�1;0; bf'20;�1/ D .af'1�1;0; bf'20;�1/ ı k1 be the

pushforward ofe�. We have the following explicit description of  :

 .x0; x1/ D .a
f'1�1;0; bf'20;�1/.k1.I ˝ x1//.x0/; for x0; x1 2 A

alg�
�

:

After the Z2 action  is transformed to �1 .x0; x1/ WD  .�1 � x0;�1 � x1/. We
now pullback �1 on to the Connes complex to compare with the cocycle �. The
pullback w WD .w1; w2/ can be described as follows:

.w1; w2/ D h
�
1.�1 /; where wi .x/ WD �1 .x; Ui /:

We observe that

w1.x/ D �1 .x; U1/ D  .�1 � x; U
�1
1 / DBa'1�1;0.k1.I ˝ U�11 //.�1 � x/:
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We know from our computations [12, Proof of Theorem 4.1] that

k1.I ˝ U
�1
1 / D �.U�11 ˝ U

�1
1 /;

using this we have:

Ba'1�1;0
�
k1.I ˝ U

�1
1 /

�
.�1 � x/ D �f'1�1;0.U�11 ˝ U�11 /.�1 � x/

D �'1�1;0.U
�1
1 ˝ U

�1
1 /.�1 � x/

D �'1�1;0
�
U�11 � .�1 � x/ � U

�1
1

�
D �x�1;0:

Similarly, we can calculate w2 and hence we finally conclude that

h�1
�
� 1 �

�
k�1
�
af'1�1;0; bf'20;�1��� D ��af'1�1;0; bf'20;�1�:

Hence � … H 1.A
alg
�
;A

alg�
�

/Z2 .

Proof of Theorem 1.1. Weknow that the cohomology groupH 0.A
alg
�
;�1A

alg�
�

/Z2 Š

C4 and the groupH 0.A
alg
�
;A

alg�
�

/Z2 Š C. Hence, we conclude that

H 0
�
A

alg
�

Ì Z2;
�
A

alg
�

Ì Z2
���
Š C5:

We also notice that,

H 1
�
A

alg
�

Ì Z2;
�
A

alg
�

Ì Z2
���
D H 1

�
A

alg
�
;A

alg�
�

�Z2
˚H 1

�
A

alg
�
;�1A

alg�
�

�Z2
Š 0

is clear as each of these summands is zero. As for the second Hochschild cohomology
group H 2.A

alg
�

Ì Z2; .A
alg
�

Ì Z2/�/, we observe that H 2.A
alg
�
;A

alg�
�

/Z2 Š C and
H 2.A

alg
�
;�1A

alg�
�

/Z2 D 0. Hence, we finally conclude that

H 2
�
A

alg
�

Ì Z2;
�
A

alg
�

Ì Z2
���Z2

Š C:

4. Cyclic cohomology of A
alg
�

Ì Z2

Theorem 4.1. For the algebraic noncommutative toroidal orbifold A
alg
�

Ì Z2, we
have,

HC 0
�
A

alg
�

Ì Z2
�
Š C5; HC 1

�
A

alg
�

Ì Z2
�
Š 0;

HC 2
�
A

alg
�

Ì Z2
�
Š C6:
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Proof. We consider the S;B; I sequence for cohomology exact sequence.

� � � ! H 1
�
A

alg
�
;�1A

alg�
�

�Z2 B
�! HC 0

�
A

alg
�
;�1A

alg�
�

�Z2
I
�! HC 2

�
A

alg
�
;�1A

alg�
�

�Z2 S
�! H 2

�
A

alg
�
;�1A

alg�
�

�Z2
B
�! HC 1

�
A

alg
�
;�1A

alg�
�

�Z2 I
�! � � �

Since,HC 1.Aalg
�
;�1A

alg�
�

/ D H 1.A
alg
�
;�1A

alg�
�

/ D 0. We get

HC 2
�
A

alg
�
;�1A

alg�
�

�
Š C4:

SinceH 0.A
alg
�
;�1A

alg�
�

/Z2 Š C4, while,H 0.A
alg
�
;A

alg�
�

/Z2 Š C, we have,

HC 0
�
A

alg
�

Ì Z2
�
Š C5:

We see thatHC 1.Aalg
�
;˙1A

alg�
�

/Z2 D 0, and hence we have

HC 1
�
A

alg
�

Ì Z2
�
Š 0:

Also sinceHC 2.Aalg
�
;A

alg�
�

/Z2 Š C2 andHC 2.Aalg
�
;�1A

alg�
�

/Z2 Š C4, we have

HC 2
�
A

alg
�

Ì Z2
�
Š C6:

Now we can easily compute the periodic cyclic homology of the A
alg
�

Ì Z2.

Proof of Theorem 1.2. From the modified Connes complex we have

H �
�
A

alg
�

Ì Z2;
�
A

alg
�

Ì Z2
���
D 0

for � � 3, and we have the isomorphism

HC �
�
A

alg
�

Ì Z2;
�
A

alg
�

Ì Z2
���
Š HC �C2

�
A

alg
�

Ì Z2;
�
A

alg
�

Ì Z2
���

for � > 1. Now, using the results of Theorem 4.1 we arrive at the desired results:

HP even�Aalg
�

Ì Z2
�
Š C6 and HP odd�Aalg

�
Ì Z2

�
D 0:

5. Chern–Connes pairing for A
alg
�

Ì Z2

In this section we calculate the Chern–Connes pairing associated with the toroidal
orbifold A

alg
�

Ì Z2. There are six projections generating K0.A� Ì Z2/ [5]. Five of
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them belong to the algebra A
alg
�

Ì Z2 and they are the following:
(i) Œ1�

(ii) Œp� �, where p� D
1

2
.1C t /.

(iii) Œq�0 �, where q�0 D
1

2
.1 � U1t /.

(iv) Œq�1 �, where q�1 D
1

2
.1 � U2t /.

(v) Œr� �, where r� D
1

2
.1 �
p
�U1U2t /,

where t is an unitary satisfying the relations t2 D 1 and tUi t�1 D U�1i for 1 � i � 2.
A complete description of the group K0.Aalg

�
Ì Z2/ is unknown, with the Chern–

Connes pairing of these five generators with the cyclic cocycles we will have some
understanding of its noncommutative index theory. Wedescribe pairing table for these
projections with the cyclic cocyles ofHP even.A

alg
�

Ì Z2/ computed in Theorem 1.2.
Using the fact that hŒe�; ŒS��i D hŒe�; Œ��i, we have the following computations.

Proof of Theorem 1.3.
Pairing of ŒS��. The following are the pairings with the element

ŒS�� 2 HP even.A
alg
�

Ì Z2/:

1. hŒ1�; Œ� �i D 1

2. hŒp� �; Œ� �i D
1

2

3. hŒq�0 �; Œ� �i D
1

2

4. hŒq�1 �; Œ� �i D
1

2

5. hŒr� �; Œ� �i D
1

2
.

Pairing of ŒSD0;0�. The following are the pairings with the element

ŒSD0;0� 2 HP
even.A

alg
�

Ì Z2/:

1. hŒ1�; ŒD0;0�i D 0

2. hŒp� �; ŒD0;0�i D
1

2

3. hŒq�0 �; ŒD0;0�i D 0

4. hŒq�1 �; ŒD0;0�i D 0

5. hŒr� �; ŒD0;0�i D 0.
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Pairing of ŒSD1;0�. The following are the pairings with the element

ŒSD1;0� 2 HP
even.A

alg
�

Ì Z2/:

1. hŒ1�; ŒD1;0�i D 0

2. hŒp� �; ŒD1;0�i D 0

3. hŒq�0 �; ŒD1;0�i D �
1

2

4. hŒq�1 �; ŒD1;0�i D 0

5. hŒr� �; ŒD1;0�i D 0.

Pairing of ŒSD0;1�. The following are the pairings with the element

ŒSD0;1� 2 HP
even.A

alg
�

Ì Z2/:

1. hŒ1�; ŒD0;1�i D 0

2. hŒp� �; ŒD0;1�i D 0

3. hŒq�0 �; ŒD0;1�i D 0

4. hŒq�1 �; ŒD0;1�i D �
1

2

5. hŒr� �; ŒD0;1�i D 0.

Pairing of ŒSD1;1�. The following are the pairings with the element

ŒSD1;1� 2 HP
even.A

alg
�

Ì Z2/:

1. hŒ1�; ŒD1;1�i D 0

2. hŒp� �; ŒD1;1�i D 0

3. hŒq�0 �; ŒD1;1�i D 0

4. hŒq�1 �; ŒD1;1�i D 0

5. hŒr� �; ŒD1;1�i D �

p
�

2
.

Pairing of Œ'�. The following are the pairings with the element

Œ'� 2 HP even.A
alg
�

Ì Z2/;

where ' is the even cocycle computed in the paper of A. Connes [4].
1. hŒ1�; Œ'�i D 0
2. hŒp� �; Œ'�i D 0
3. hŒq�0 �; Œ'�i D 0
4. hŒq�1 �; Œ'�i D 0
5. hŒr� �; Œ'�i D 0.
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We observe that since these five projections of the algebraic noncommutative
toroidal orbifold A

alg
�

Ì Z2 are projections of the smooth orbifold, A�ÌZ2;
their linear independence in K0.A� Ì Z2/ implies that they are linearly inde-
pendent in K0.Aalg

�
ÌZ2/. We conjecture that these five projections span the

group K0.Aalg
�

ÌZ2/.

Conjecture 5.1. K0.Aalg
�

Ì Z2/ Š Z5.
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