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Cohomology of Aglg % Z, and its Chern-Connes pairing

Safdar Quddus

Abstract. We calculate the Hochschild and cyclic cohomology of the noncommutative Z»
toroidal algebraic orbifold Aaelg x Z>. We also calculate the Chern—Connes pairing of the even

periodic cyclic cocycles with the known elements of Ko (A";g X Z2).
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1. Introduction and statement

In the classic paper [4], Connes constructed a noncommutative analogue of the
Chern map of differential geometry. He considered the map from the Ky group of
a noncommutative algebra to its even cyclic homology and paired a projection with
the cyclic cocycle to give a numerical invariant.

Let 8(Z?) be the Schwartz space on Z2, consisting of all complex sequences
an,m satisfying:

sup  (|n] + |m|)?|anm| < co, forallg € N.
(n,m)eZ?

For given 6 € R, we associate the algebra +¢ defined below.

Ay = %a = Z an,mUanzm | anm € S(Zz) )
(n,m)eZ?
where U; and U, are unitary generators satisfying U,U; = AU Up, A = e2mif
Connes [4] computed the cyclic cohomology and Chern—Connes index for the smooth
algebra #y. The group SL(2, Z) has the following action on +g. An element

811 81,2
= ’ “1eSLQ2,Z
& [gz,l gz,z] 2.2)
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acts on the generators U; and U, as described below:

g-Up = e(ﬂigl,lg2,l)9Ulgl.lU282.l and g-U, = e(nigl,zgz,z)eUlgl.zUzgz.z.

Let Aglg consists of all finitely supported elements of +Ag. We shall study the

crossed product of the subalgebra ,A)Zlg with the group Z, identified as a subgroup of

SL(2,7).

Berest et al. [3] calculated the Picard group of Azlg. Some of the Hochschild
homology groups of Aglg X Zy for k = 2, 3,4 and 6 were known for many years [2,
10]. All the Hochschild and cylic homology groups of the orbifolds Azlg X L,
fork = 2,3, 4 and 6, were recently calculated [12]. Further the Hochschild homology
of the Weyl algebra was studied by Alev and Lambre in [1]. In this article we shall
compute the Hochschild and cyclic cohomology of Azlg X 7.7, the Z., noncommutative
algebraic toroidal orbifold. We also compute the Chern—Connes index for this orbifold
by pairing these cocycles with the algebraic projections of the group Ko (g % Z5),
which was calculated in [5]. In this article we adopt the notation from [4] and [12]
and prove the following results.

Theorem 1.1. If 6 ¢ Q, then the Hochschild cohomology groups of Azlg X 7y are:

HO(AYE 3 Ly, (AYE % Zy)*) = C3,
H' (A % Za, (Ay* 7)) =0,
and H2(AYE % L, (AhE % Z2)*) = C.

Theorem 1.2. HP (A} x Z,) = CO and HP*¥(A}* x Z,) = 0.

Theorem 1.3. The following is the description of the Chern—Connes pairing of the
six dimensional group HP " (Azlg X Z) generated by cocycles St, SD1,1, SDo.o,
SDo.1, SD1,0 and ¢, with the five known independent projections of Aglg X 2y
namely 1, pe, qle, qg and r? [5].

‘ St S!Dl,l So(o()’() SO(D()’] S:Dl,() S(p

1 0 0 0 0 0
Pl i 0 0 0
q¢ | 3 0 0 -3 0 0
¢ | % 0 -3 0 0 0
0 0 0 20

We end the article with a conjecture over the dimension of the unknown group
alg
K() (‘A’Q el Zz)
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2. Hochschild cohomology of ,A,Zlg X Zy

We note that the dual of the algebraic noncommutative torus Azlg is

Azlg* = {a |a = Z an U0y }

(n,m)eZ?

where U; and U, are unitaries satisfying UyUy = AU U,. For a € Aglg, let the
trace 7 on the algebra Aaelg be defined as

t(a) = ag,p.

Then an element a € Azlg* actson b € A;lg as a(b) = t(ab). Using the results of

Getzler and John [7], the cohomology group H '(Aglg X 7o, (A;lg X Zi2)*) has the
following decomposition:

b a a . al a Z
H* (A % Lo, (A® 0 Z)") = @D H (A" o AG®")
8€Z>
— ° alg alg*\Z> . alg alg %\ Z>
=H (‘A’e "’4’0 ) @H (*"59 ’—l*Ae ) :
In the above equation, _lAzlg* consists of elements of Azlg* with the following

twisted Az,lg bimodule structure. For a € _1A;1g* and o € Azlg,

a-a=(—1-a)a and a-o =aaq,

where a« is the product of ¢ and « in Azlg *. We recall the modified Connes projective
resolution:

alg € alg by alg alg b alg
gt < Byt — Byt P B, — B,°.

where

Byt = Ay ® (Ay)™,
€(a®b) =ab,
hi(1®ej))=1QU; —U; ®1,
bhy(1®((e1Ne) = R1—-AU,)Qe1 —(AU1 @1 —1Q Ujp) ® es.

The above resolution was used in [12] to calculate the Hochschild and cyclic
homology groups of the algebra Azlg x Zy for k = 2,3,4 and 6. We use it to
construct the twisted cochain complex corresponding to each of the two elelments
of the group Z,. Thereafter we compute the cohomology groups of Azlg X Z» by
locating the Z, invariant cocycles.
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While the bar resolution is not computationally convenient, modified Connes
resolution for the algebraic noncommutative torus does make it easier to compute the
cohomology groups. Inorder to locate the Z, invariant cocycles of H*® (A;lg, g ,Af;lg ),
we need to use the resolution homotopy maps

Byt Co(ASE) — T (A9
and ket T (AYE) = Ca(AGD),

where J, (Aglg) is the standard bar resolution (Jx (A?)Ig) = B;lg ® (Aglg)g’k) and
Cs (Azlg) is the Connes resolution. We push a cocylcle D into the bar complex and
let Z, act on it. Then, in the Connes complex, we compare the pullback of this
Z-acted cocycle with D to check the Z, invariance. These maps were explicitly
calculated in [4] and [12].

It is worthwhile to note that Hom B3 (i)’;]g ,—1 A?)lg *) and Hom B0 (!B;lg, Azlg )

can be identified with _1¢As2]g* and Azlg*, respectively. Hence for g = —1 we have
the following Hochschild cohomology complex:

lgx —1Q1 1 lgx —102 1
_1A2g* — _10‘\)Zg* (&) _1A2g* — > _19“>Zg* — O,
.l
where for ¢, ¢1 and ¢, in Azg*, the maps _j ¢ and _j o, are as follows:

“11(p) = (U g — Uy Uy 'o — o),
—102(91,92) = Uy 'o1 — AUz — AU Y + 02U

Lemma 2.1. HO(AYS, _ A ™)%2 = C*.

Proof. Let ¢ = ) ¢n nU'UJ" be an element of _w%glg*. Then ¢ is a 0-cocycle if
and only if _jar;(¢) = 0, which implies that U; 'gp — oU; = U;'¢ — U, = 0.
This further gives the relation @y+1,m = A"@n—1.m = A" 1y_1 m_z on its
coefficients. Hence we see that

HO(AYE, 1 AYE") = C*.

The generators of this group are the cocycles generated by @0, ¢0,1. 1,0 and ¢1 1.
Let us denote by D; ; the cocycle generated by ¢; ;, for 0 < i,j < 1. First
consider the cocycle Dg,9. The above relation on the coefficients of Dy gives
Ponam = Ao o for all (2n,2m) € Z2. The maps ko and hg are idenity and
hence the action of Z, on HO(,Azlg, _1A21g*) is given by U; — U7 for j = 1,2.
Thus we conclude that the Z, action leaves Dy ¢ invariant.
For the cocycle Dy, 1, we infer that gop 2741 = A2 T ¢ ;. Now from

= N2CRDFR) g 2kl k

O—2k,—21-1 = P2(-k),2(—1-1)+1 Yo, ¥o,1
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it follows that Do 1 is a Z, invariant element of H O(A';lg, _ dlg*) In the case

— ) 2kl+l

of Dy, its coeffcients satisfy the relation @a 1 27 ¢1,0. Since

— 2 2k=DDHD ) 2kl

P—2k—1,-21 = P2(—k—1)+1,2(=1) ®1,0 $1,0,

the cocycle D1 o € HO(A‘;lg, _ Zlg*)ZZ. Finally for 9 1, we have

_ j2kl+k+l — 2kl

©2k+1,21+1 p1,1 and @ _ok—1,-2/-1 ©¥1,1.

Hence Dy ; € HO(Azlg,—w‘%glg*)Zz- -

Lemma 2.2. HZ(A‘glg,_ alg*)Z2 =0.

Proof. Letg € Aa ¢* and let @ be the corresponding element of Homi;’a §(Jp, A alg ).
Then

Pa®b®er nex)(x) = g((—1-b)xa),
foralla,b, x € A;lg. Let ¢ = kJ¢ = ¢ o kp. We have
¥ (x0, x1,%2) = @(k2(I ® x1 ® x2))(x0),
for all xg, x1, X2 € ,Af;lg. The group Z, acts on Azlg in the bar complex as
—1- y(x0,x1,x2) = x(=1-x0,—1-x1,—1-x3).

Further we pull the map —1y = —1 - ¢ back on to the Connes complex via the
map /3. Let w = h3(—1V) denote the pullback of _; on the Connes complex. We
have
w(xo) = —1Y (x0, U2, U1) — A_1¥ (0, Uz, U2)

=Y(=1-x0.Uy " UT) =AY (=1 x0. Uy . Uy )

=F(k2(I @ Uy @ U H)(=1-x0) = AG (k21 ® U @ Uy 1))(=1 - x0).
Following the calculations from [12, Section 6], we have

k(IQU;'@UY) —A,(I U U Y = (U U Y @ U U,
Applying this we conclude that
Plhka(I ® Uy' @ Ur))(=1-x0) = AB(ka(I ® Ur" ® Uy 1)) (=1 - x0)
=Wy Uy @ U U D(=1-x0) = 9(Ur Uz - (=1 - x0) - Up ' U3 ).

Hence we need to compare ¢(x) with (U1Us - (=1 - x) - U7 'U;Y). Using the
Connes complex, we see that Hz(Azlg, 1 Aglg*)z2 =_ alg*/Im( 102). Since
_102(Uz,0) = 1 —AU2 and _15(0, U;) = U2 — A, we have HZ(Aglg,_ AGET) =
Cc* generated by the cocycles supported at ¢¢,0, ¢1,0, ¥0.1 and ¢q 1.
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Case 1. We check the invariance of ¢ 0. From
000(U1Uz - (=1-x) - UT'U; ") = A7 x0,0 and  @g,0(x) = X0,0,
we see that ¢ o is not invariant under the Z, action.
Case 2. Observe that for ¢; 9, we have
10U Uz (=1-x) - UT'U; Y = x1,0 and  @1,0(x) = X1,0.

Since the cocycle class ¢y o is equivalent to the class Agp_ o, it is not invariant under
the Z, action.

Case 3. We check the invariance of ¢ ;. We have
001 (U1Uz - (—=1-x)- U7 Uy = xo-1 and  go,1(x) = Xo,1.
Since the cocycle class g 1 is equivalent to the class A~ 1gg 1, it is not invariant
under the Z, action.
Case 4. Finally, we check the invariance of ¢; 1. We have
ora(U1Uy - (=1-x)-U7'U; ) =247 % 1 and @1 1(x) = xq,1.

Since the cocycle class ¢y, is equivalent to the cocycle class ¢_; 1, the cocycle is
not invariant under the Z, action.

For ¢ = ago,0+b@1,0+ceo,1 +de1,1,if W is the pullback of the corresponding
cocycle in the bar complex after the Z, action, then:

v = a/\_lgﬂo,o + b/\_l(Pl,O + C)&_l(p0’1 + d/\_l(pl,l.

We see that the coefficients of this pullback are different from those of the original
cocycle. Therefore we conclude that

H? (A, 1 A=) = 0,

We remark in this computation that although H Z(Az,lg, . Azlg *) is of 4 dimension,

there is no nontrivial Z, invariant cocycle. 0

For ¢ € Azlg* @ A;lg*, we define the diagram Dgm(p) (C Z2 @ Z?> @ Z?)
associated to it [12, Section 7]. Two elements a, b € C indexed by the lattice Z? are
said to be f-connected and drawn on the lattice plane as

ae—e)

if there exists f € C|[x, y, w, z] whose roots are a and b. For example, consider the
following equation
1 | -5 2
ag) — a5 =Aay; — A as,.
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The corresponding diagram is as below, where the boxes represent elements of al,,
and the thick dots that of a ,.

In the above example we see that f(x,y,w,z) = x — y + A™>z — Aw has its
roots as a}t,l,aé’l,ag,o and ag’z. For ¢ = (¢!, ¢?) € Azlg* ey Aglg*, we use all
the _j o equations to —j o -connect the non-zero elements ((p,i,m, (prz’ 5). We call this
lattice graph as Dgm(g).

We notice that, for a given lattice point (2, m), there are three possible values at
that point. They are:

(1) @ m>

@) @3 e

(3) 0.
Hence we conclude that the kernel diagram Dgm(¢) of ¢ is a subset of Z> & Z2> & Z.2.
It can be easily figured out [12] that there are no edges to the graph Dgm(¢), and
the graph is a disjoint union of closed graphs with no open edges. These graphs can
be infinitely supported as Aglg* consists of elements which are infinitely supported.
For 1 < i < 3, let the maps n; : 7?2 @ 7% @ 7?2 — 72 be the ith projection,
projecting the diagram Dgm(¢) to the ith Z2. From now onwards we shall deal with
the map m; and similar arguments will hold for 7, and 3.

Definition 2.3 (Lines). For so € Z and ¢(= (@1, ¢2)) € ker(_jaz), we define a Z?
lattice Hy, such that

T D m ) fOrs = 50,
(Hyg )y = | 1 PENED s .
0, else.

Lemma 2.4. Given so € 7 and ¢ € ker(_1a2), there exists ys, € A;lg* such that
nl(ng(—lal(ySO))))w,sO = (HSO)w,sofor allw € 7.

Proof. We know that _ja1(p) = (Ul — Uy, Uy o — oUs). If _jo1(p) =
(§01,§02), then

1 m 2 —n
Pnm = Pn+lm —A"pp—1,m and Cnm = A Onm+1 — Onom—1-
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The diagram 771 (Dgm(_; 1 (¢))) can be infinitely supported, a connected component
of it resembles the one below:

Assume that (pé, 5 # 0. It is clear from the diagram that in the row y = s¢ of the
lattice 1 (Dgm(gp)), <p5),so = 0 for all w € Z. Define

1y JAT0¢g . for (w,s) = (=1,50),
(VSO )w,S -
0, else.

We have 1 (Dgm(_ o ()/s((}))))o,s0 — (Hyy)o,50 = 0. We define

) . —A_S0(<p12’s — /\_So(péjs), for (w,s) = (-3, 50),
(Vso )w,s = (1)
(Vso )w,s, else.

Then we have

71 (Dgm(—101 (V) =2,50 — (Hsg)—2,5 = m1(Dgm(—101 (7))o, = (Hsg)oso
=0.
Similarly we can construct a sequence y(") which satisfies the required condition for

50
finitely many lattice points. Define y3 := lim ys((')’). Since y3 € Aglg*, we have
n—>oo

nl(ng(_lal()/;)))).’SO — (Hyg)eso =0 for @ < 0.
We can similarly define y;) such that
m(ng((_lal(y;))))).’SO — (Hsy)eoso =0 for e > 0.
Then ys, := y5 + vy, satisfies the following equation:
1 (Dgm((—101 (¥50)))) 4 5, = (Hsg)o,so = 0 for e € Z.

This completes the proof. O
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It is interesting to note the degree of freedom that we had while constructing
the above y,,. This can be traced back to the fact that the kernel of _joq is a 4
dimensional vector space. As we shall prove that an arbitrary cocycle is a coboundary,
it is worthwhile to note the various possibilities we have in doing so; hence revealing
the nature of the map ;.

Lemma 2.5. Hl(Azlg, _lAzlg*) =0

Proof. Let ¢ belonging to ker(—;a) be a 1-cochain in the Connes complex. Let us
understand the construction of 771 (Dgm(¢)). It consists of alternate non-zero entries,
meaning one considering a row/column will find zeros at alternate positions. It has
rows/columns of ¢?’s and ¢!’s alternately placed.

Forsg € Z, we geta yy, € Azlg* asin Lemma 2.4. Define y = yo 4+ y2 +y—2 +
- € Aglg *. We observe that the lattice

71 (Dgm(—1a1(y) — (¢)))

has zero rows placed alternately. These rows are precisely the rows of ¢!
in 71 (Dgm(g)). The other alternate set of rows is the rows of the ¢'?’s, where
@? e Azlg * are the bulleted points (e) in the lattice diagram

m1(Dgm(—1a1(y) — (9))).

We state that 71 (Dgm(_1a1(y) — (¢))) is the diagram of an image element, that is,
there exists p € A;lg* such that

71 (Dgm(—101(p))) = 71 (Dgm(—1e1(y) — (9))).

It is easy to see as there is no kernel equation that relates (¢5)p.q With (¢5)74
for g # w. Also note that if there is even a single zero entry in any of these rows, then
the whole row is ought to be a zero row. This can be seen by the repetitive application
of the kernel equation to the row starting with the kernel equation containing the zero
entry.

Lemma 2.6. For wg € Z. There exist py, € Azlg* such that:

w1 (Dgm(—101(y) = (9))),,  for (w.s) = (wo, ),

m(ng(—1061(,0)))w,s = 0 else

Proof. We define py,, such that

(p(%,o’ for (}’l,m) = (LUO,—I),
0, for (n,m) = (wop, 1) and for (n, m) such that n # wy.

(pwo)n,m = {
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Thereafter we define (py )n,m form < —1 and n = wy in the following iterated way.

(pO)n,m = _(/)2/n+1,m .

Where ¢?',,41,m is second entry of 71 (Dgm(—101 (Y + pw,) — (@) 41,m- Clearly,
mi(Dgm(—1a1 (Y + pwy) — (©)))wy,s = 0 for all s < 0. Similarly, we define py,, for
m > 0 and hence we have py,, satisfying

71 (Dgm(—1a1 (Y + pwo) — ((/J)))wo’s =0 foralls e Z. O

Now we prove Lemma 2.5. The element p = ) n(pw,) has the following
property:
71 (Dgm(—1a1(p))) = 71 (Dgm(—1a1(y) — (¢))).

Hence, Hl(AZ]g, _1A21g*) =0. O

3. The Z, invariant Hochschild cohomology H '(A:lg, A;‘g *)2Z2

For g = 1, we have the following cohomology complex

a @
A?)]g* — Azlg* P Azlg* - ,Af;]g* -0,

where the maps «; and o are as follows:

ai(@) = (Urp — Uy, Uap — @U>),
az(¢1,92) = Uap1 — A@1Uz — AU @2 + 92U

0 galg 4alg*\7,
Lemma 3.1. H"(A,", A, )2 = C.

Proof. Let ¢ = Y @n mU'U3" be an element of Azlg*. If @1 (¢) = 0, then we have
Uip — Uy = Uyp — U, = 0. This imples that we have the following relations on
the coeflicients:

On—1,m = /\mﬂpn—l,m = Am—"_n_l(pn—l,m-
We see that these relations are satisfied only for m = n — 1 = 0. Hence, we have
0 1 Ig*\
H (Agg,a%;g )=C

and is generated by ¢g 9. Since the action of Z, on the bar complex is the same as
on the Connes complex, we deduce that H O(Azlg, Azlg )22 ~ C. 0
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Lemma 3.2. H?(AY%, AYE")22 = C.

Proof. We see from the calculations as in [4] that H 2 (Azlg, Azlg )22 = Azlg */Im(etz).
Since a2(U2,0) = (1 — A)(U$) and a»(0,U;) = (1 — A)(U?), we have
H Z(Aglg, Aglg*) =~ C and is generated by the cocycle equivalent to ¢_; —;. Let

~ . . alg *
@—1,—1 be the corresponding element in the Connes complex. For ¢ € 44" to be

7., invariant, we need to check that
9(x0) =9ko(I @U; ' @ UM ))(—1-x0) =A@ (ko(I @ UT' @ Us 1)) (—1 - x0) =
SUTIUST @ U TUTY (=1 - x0) = (U TUS Y - (=1 x0) - U1 UTY).

In the above, @ is the element corresponding to ¢ in the Connes complex. Considering
~ 1 lg * ~

Ele cocycle ¢_1,—1 € HZ(AZg,AZg ), we see that 9_; _1(x) = X—1,-1 and

PUTU; Y - (=1 -x) - Uy'UY) = x_1,—1. Hence we conclude that g_; 1 is

invariant under the Z, action. ]

1488 galg*\7, _
Lemma 3.3. H (A", A, )*2 = 0.
Proof. We recall from [4] that:

H'(AY, AYE™) = C2

and is generated by ‘Pll,o and ‘Pg,—r In order to locate the Z, invariant subgroup
of Hl(a%glg, Azlg*), we use the chain homotopy maps /7 and k;. Fora,b € C, we
consider the cocycle y := (a9011,o’ bgog,_l) € Aglg @ Azlg * in the Connes complex,
and let ¥ := (ap'_1,0,b9% 1) € Homﬂzlg(Jl, Aglg) be the corresponding cocycle
in the bar complex. It satisfyies the following relation:

—_—~

o' _10(@®b®ep)(x) = ¢l o(bxa), fora,b,x e Ap*.

Let y = ki(Q) = kf(a;;f—l,o,b;;io,—l) = (a;;f—l,o,b;;io,—l) o ki be the
pushforward of y. We have the following explicit description of ¥ :

¥ (x0,x1) = (a9’ —1,0,b9%0 1) (k1 (I ® x1))(x0), for xo, x1 € AZE™.

After the Z, action y is transformed to —;v (xg, x1) := ¥ (=1 - x9,—1-x1). We
now pullback _;y on to the Connes complex to compare with the cocycle y. The
pullback w := (wy, w;) can be described as follows:

(wy, wz) = hy(<1¥),  where w;(x) == 1Y (x, ;).
We observe that

wi(x) = 19 (x, Ur) = ¥ (=1-x,U7") = apl, o(ki(I © Uy ) (=1 x).
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We know from our computations [12, Proof of Theorem 4.1] that
ki(I @ UTY = —(UT @ UTY),

using this we have:

apl o(kil @ UTH)(—1-x) = —p' _1,0(U; ' @ U7 )(—1-x)
=—¢l (U@ U (-1 x)
= _(Pil,O(Ul_l “(—=1-x)- Ul_l) = —X-1,0-

Similarly, we can calculate w, and hence we finally conclude that

—~ —_~

hi(—1- (kik(a/(;f—l,o,b;;io,—l))) = —(ap'—1,0.b9%0,-1).
Hence y ¢ H (Aalg Aalg*)ZZ. O

Proof of Theorem 1.1. We know that the cohomology group H ° (,Azlg , — Zlg V22 ~

C* and the group H O(Aglg , :Af(;]g*)Z2 =~ C. Hence, we conclude that
HO(AYE X Zs, (AYE % Z5)") = C.
We also notice that,

H' (A % T, (AL % Z,)") = H'(ALE, A2 P2 @ HY(ALE, A2 72 = 0

is clear as each of these summands is zero. As for the second Hochschild cohomology
group Hz(,A)alg X Zs, (,Afﬂg X 7»)*), we observe that Hz(Aalg, a‘\)glg*)Z2 =~ C and
H Z(Aglg, _ alg *)22 = (. Hence, we finally conclude that

H?(AYE % Z, (A2 % 2,)")"? = C. O

4. Cyclic cohomology of eAsalg A

Theorem 4.1. For the algebraic noncommutative toroidal orbifold Aglg X 25, we
have,

HCO(AYE % 7o) = C5, HC' (A x7Zs) =0,
HC?(AYE % Z,) = C°.
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Proof. We consider the S, B, I sequence for cohomology exact sequence.

B
o HY(AYE AR P2 D HCO (A LAY

I 2/ 4alg algx\Zo S 2/ 4alg alg *\ Z>

— HC? (A%, _1 A7) = H? (AR, _1A"")

B 1
S HCU(AYE, Al 5

Since, HC 1 (ARS, _iARS") = H'(AYE, 1 ASEY) = 0. We get

HC?(AYE, _ Ap™) = C*.
Since HO(AZIg, _lAglg*)ZZ ~ C*, while, HO(Azlg, A;lg*)zl ~ C, we have,
HCO(AYE % Zy) = C3,
We see that HC! (,A)Zlg, ilAglg *)Z2 = (0, and hence we have
HC'(AYE % Z5) = 0.
Also since HCZ(AZIg, Aglg*)z2 ~ C? and HCZ(AZIg, _IAZIg*)Z2 =~ C*, we have
HC?(AYE % Z,) = C°. O
Now we can easily compute the periodic cyclic homology of the Azlg X 7.
Proof of Theorem 1.2. From the modified Connes complex we have
H*(AYE % L, (AYE % Z2)") =0
for @ > 3, and we have the isomorphism
HC® (AL Lo, (AYE X Z2)") 2 HC V2 (AYE % L, (AYE % Z)")
for @ > 1. Now, using the results of Theorem 4.1 we arrive at the desired results:

HPe"e“(A;lg xZy) =~ C® and HP"dd(Aglg X Zs) = 0. O

5. Chern—Connes pairing for A;lg X Zy

In this section we calculate the Chern—Connes pairing associated with the toroidal
orbifold A;lg x Z,. There are six projections generating Ko(+4g » Z5) [5]. Five of
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them belong to the algebra ,Af(;lg X Z, and they are the following:
@ ]
1
(i) [p?], where p? = 5(1 +1).

1
(iii) [qg], where qg = 5(1 — Uqt).

1
>iv) [qf], where qf = 5(1 — Uyt).

1
) [r?], where r? = 5(1 — VU, U,t),

where  is an unitary satisfying the relations 12 = land tU;r~! = U7 for1 <i < 2.
A complete description of the group Ky (Azlg X Z,5) is unknown, with the Chern—
Connes pairing of these five generators with the cyclic cocycles we will have some
understanding of its noncommutative index theory. We describe pairing table for these
projections with the cyclic cocyles of HP V" (Azlg X Z5) computed in Theorem 1.2.
Using the fact that {[e], [S¢]) = ([e]. [¢]), we have the following computations.

Proof of Theorem 1.3.
Pairing of [St]. The following are the pairings with the element

[St] € HPS"* (AY® x Z5).

L (OL[) =1

2 (1) 1) = 5
3 (). 1) = 5
4 (). [e) = 5
5 ()1 = 5.

Pairing of [.S Do,0]. The following are the pairings with the element

[SDo,0] € HPY"(AYE X Z5).

2 (16, [Duol) = 5
3. {[g8]. [Do,0]) = 0
4. (491, [Do,]) = 0
5. (%], [Do.o]) = 0.
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Pairing of [S D1,0]. The following are the pairings with the element

[SD1,0] € HPY"(AYE X Z5).

, [D1,0])
, [D1,0])
D1 ,0])

Pairing of [.S Dy,1]. The following are the pairings with the element

AR N
o~~~ o~~~

[SDo,1] € HPY"(AYE X Z5).

1. ([1],[Do,]) = 0
2. ([p%]. [Do,1]) =0
3. ([48]. [Do]) = 0
4 (1], (Do) = —
5. ([” ] [@01])—0

Pairing of [.S 1,1]. The following are the pairings with the element

[SD1,1] € HPY"(AYE % Z5).

LAl [D14]) = 0
2. ([p°.[D1a]) = 0
3. ([48). [D1a]) = 0
4. ([¢].[D1a]) =0
A
5 <[r91,[:ol,11>——§

Pairing of [¢]. The following are the pairings with the element
[p] € HPS"(ASE X Z,),

where ¢ is the even cocycle computed in the paper of A. Connes [4].

L ([1].[¢]) = 0

2. {[p°L.Ie]) = 0
3. (lgg].Tel) = 0
4. (g7 Tel) = 0
5. ([r’].[¢]) = 0 O
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We observe that since these five projections of the algebraic noncommutative
toroidal orbifold A;lg x Z, are projections of the smooth orbifold, AgxZ,;
their linear independence in Ko(sAg X Z;) implies that they are linearly inde-
pendent in KO(,A,‘;‘ngz). We conjecture that these five projections span the

group Ko (Azlg XZ5).
Conjecture 5.1. KO(AZIg X 7)) = 7.
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