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Abstract. Let p be an odd prime number and K a number field having a primitive pth root of
unity �p . We prove that Nikshych’s non group-theoretical Hopf algebra Hp , which is defined
over Q.�p/, admits a Hopf order over the ring of integers OK if and only if there is an ideal I
of OK such that I2.p�1/ D .p/. This condition does not hold in a cyclotomic field. Hence this
gives an example of a semisimple Hopf algebra over a number field not admitting a Hopf order
over any cyclotomic ring of integers. Moreover, we show that, when a Hopf order over OK

exists, it is unique and we describe it explicitly.
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1. Introduction

Many results in the Representation Theory of Finite Groups exploit the fact that the
complex group algebra CG of a finite group G is defined over the integers or, more
generally, over the ring of integers OK of a number field K. In other terms, OKG is
an algebra order of CG; indeed a Hopf (algebra) order. A prominent role is played by
cyclotomic fields: for example, the celebrated Brauer’s splitting field theorem states
that any irreducible representation ofKG can be realized inK.!/, with! a primitive
root of unity of order equals expG (see [3, Theorem 15.16, Corollary 15.18]).

Kaplansky’s sixth conjecture, still unsolved, is a generalization of Frobenius
Theorem for groups. It asserts that in a complex semisimple Hopf algebra H the
dimension of every irreducible representation of H divides the dimension of H .
Larson gave a positive answer in [6] if H admits a Hopf order over a number ring.
Motivated by this result, in [1] we addressed the question as to whether any complex
semisimple Hopf algebra admits a Hopf order over a number ring. In the dimensions
less than 36 in which the classification is complete (24 and 32 are still open) it turns
out that all semisimple Hopf algebras are defined over cyclotomic rings of integers,
see [1, Subsection 2.4] for an account. However, we exhibited in [1] an example in
dimension 36 that does not admit a Hopf order over any number ring, although it
satisfies the conjecture.
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As a continuation of our previous work we investigate in this paper the problem
of definability of semisimple Hopf algebras over cyclotomic ring of integers. LetH
be a semisimple Hopf algebra over a number fieldK and suppose thatH has a Hopf
order over some number ring. Does H admit a Hopf order over a cyclotomic ring
of integers contained in K? Our main result gives a negative answer for the family
of non group-theoretical semisimple Hopf algebras fHpg, with p an odd prime,
constructed by Nikshych (see [11]). The dimension of Hp is 4p2 (so in particular
the dimension of H3 is 36). These Hopf algebras were not constructed explicitly
but through a tensor category and a fiber functor. The representation category
Rep.Hp/ was obtained by equivariantization by C2 from Rep.Ap/, with Ap the
Hopf algebra studied by Masuoka in [7]. Using Tannaka reconstruction, in Section 4
we describeHp completely as follows:

Theorem 1. Let �p 2 C be a primitive pth root of unity. The Hopf algebra Hp is
generated, as an algebra over C, by the elements e0; e1; ua; ub; va; vb and g subject
to the following relations:

e0 C e1 D 1; e0e1 D e1e0 D 0;

upa D u
p

b
D e0; e0ua D ua; e0ub D ub; uaub D ubua;

vpa D v
p

b
D e1; e1va D va; e1vb D vb; vavb D �pvbva;

g2 D 1; gua D ubg; gub D uag; gva D vag; gvb D vbg:

The comultiplication, counit, and antipode ofHp are given by the following formulas:

�.ua/ D ua ˝ ua C va ˝ va; ".ua/ D 1; S.ua/ D u
p�1
a ;

�.ub/ D ub ˝ ub C vb ˝ v
p�1

b
; ".ub/ D 1; S.ub/ D u

p�1

b
;

�.va/ D ua ˝ va C va ˝ ua; ".va/ D 0; S.va/ D v
p�1
a ;

�.vb/ D ub ˝ vb C vb ˝ u
p�1

b
; ".vb/ D 0; S.vb/ D vb:

The comultiplication of g is given by

�.g/ D
1

p2

X
i;j;k;l

�kj�ilp guiau
j

b
˝ gukau

l
b C

1

p

X
k;l

��.kCl/kp gukau
l
b ˝ gv

kCl
a vkCl

b

C
1

p

X
k;l

�k.kCl/p gvkCla v
.p�1/.kCl/

b
˝ gukau

l
b C

1

p

X
k;l

gvkav
l
b ˝ gv

.p�1/l
a vkb :

The counit and antipode of g are ".g/ D 1 and S.g/ D g.

In Section 4 we delve into the structure of Hp: we describe its irreducible
(co)representations and attached (co)characters, its Hopf automorphisms, and we
show thatHp is self-dual.
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The set
B WD fuiau

j

b
g [ fviav

j

b
g [ fguiau

j

b
g [ fgviav

j

b
g

is a basis of Hp . All structure constants of Hp in this basis belong to Q.�p/.
HenceHp is defined over Q.�p/. Our main result states:

Theorem 2. Let K be a number field containing a primitive pth root of unity �p .
Consider Hp as defined over K. Then, Hp admits a Hopf order over OK , which
must be unique, if and only if there is an ideal I of OK such that I 2.p�1/ D .p/. In
particular,K can not be a cyclotomic field (nor an abelian extension of Q) if a Hopf
order exists.

This theorem implies that Nikshych’s Hopf algebras behave rather differently than
group algebras. Firstly, all group algebras are already defined over Z. Secondly, the
number of Hopf orders of a group algebra over OK depends onK, and in some cases
it is not bounded (see for example the classification of orders of the group algebras
of the cyclic groups of prime orders in Section 3).

The main result is contained in Section 6. We outline the strategy to prove it
and construct the Hopf order. The element h WD ua C va is a group-like element
of Hp and generate a Hopf subalgebra isomorphic to KCp . If X is a Hopf order
of Hp over OK , then X \ KCp is a Hopf order of KCp . The Hopf orders of the
latter are known by the results of Greither, Larson, Tate and Oort (we review their
description in Section 3, after the preliminaries). They are given by ideals I of OK
containing �p�1, see Formula 3.1. Denoting byH.I/ the corresponding Hopf order,
the OK-submodule of integrals of H.I/ is 1

p
Ip�1

P
i h
i . This determines uniquely

the Hopf orders of KCp . On the other hand, any Hopf order must contain certain
elements arising from characters and cocharacters. The proof of the main result is
based on the interaction between the orderX ofHp and the orderX \KCp ofKCp .
We exhibit certain elements which must be in X . We then conclude that necessarily
1p
p

P
i h
i 2 X \KCp (Lemma 6.8), and by the classification of orders mentioned

above, we deduce that some other elements must lie in X \KCp and therefore in X .
We show in Theorem 6.11 that these elements generate an order of Hp , which thus
must be a minimal order. By the self-duality of Hp there must also be a maximal
order. A result of Larson (see Proposition 2.4) now implies that the two orders must
be equal, and therefore the order is unique. The necessity of the existence of an
ideal I of OK such that I 2.p�1/ D .p/ arises from the following consideration: We
prove that the set of integrals of X \ KCp is exactly OK

�
1p
p

P
i h
i
�
. We write

J D fx 2 K j x.h � 1/ 2 Xg. By the classification in Section 3 we find out that
I WD J�1 must satisfy I 2.p�1/ D .p/. The unique Hopf order of Hp is the OK-
subalgebra of Hp generated by e0; e1; g; J.ua � e0/; J.ub � e0/; J.va � e1/; and
J.vb � e1/.

In Section 7 we study the problem of definability over cyclotomic ring of integers
of Hp but now considered as a complex Hopf algebra. Since Hp is already defined
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over a number field K, the question now reads as follows. Let L=K be a Galois
extension. Could a L=K-form of Hp admit an order over some cyclotomic ring
of integers? Namely, could there be another Hopf algebra H 0p over K such that
H 0p ˝K L ' Hp ˝K L and H 0p admits an order over some cyclotomic ring of
integers? The following result gives a number theoretical condition under which the
answer is affirmative:
Theorem 3. Let �n 2 C be a primitive nth root of unity, with n divisible by p.
Consider Hp as defined over Q.�n/. Let w 2 ZŒ�n� and t 2 C be such that
w is invertible and t2 D w.�p � 1/. Assume that there is d 2 ZŒ�n� such that
1
2
.d C t / 2 OQ.�n;t/. Then, Hp admits a Q.�n; t /=Q.�n/-form H 0p which in turn

admits an order over ZŒ�n�.

For p D 7 and n D 28we construct elementsw; t and d satisfying this condition.
So, H7, as a complex Hopf algebra, admits an order over the cyclotomic ring of
integers ZŒ�28�.

The following questions on the definability over cyclotomic ring of integers of
complex semisimple Hopf algebras remain open:
Questions. Does there exist a value of p for which Nikshych’s Hopf algebraHp , as
defined over the complex numbers, does not admit an order over any cyclotomic ring
of integers? More generally, does there exist a complex semisimple Hopf algebra
which admits an order over a number ring but not over any cyclotomic ring of
integers?

2. Preliminaries

Throughout H is a finite-dimensional Hopf algebra over a ground field K. Unless
otherwise stated, vector spaces, linear maps, and unadorned tensor products are
over K. The identity element of H is denoted by 1H and the comultiplication,
counit, and antipode by �; "; and S respectively. Our main references for Hopf
algebra theory are [9] and [12].

We next collect from [1, Subsection 1.2] several notions and results on Hopf
orders that we will need later. We refer the reader to there for the proofs.

2.1. Hopf orders. Let R � K be a subring and V a finite-dimensional K-vector
space. Recall that an order of V over R is a finitely generated and projective R-
submodule X of V such that the natural map X ˝R K ! V is an isomorphism. We
view X inside V as the image of X ˝R R. A Hopf order ofH over R is an order X
of H such that 1H 2 X , XX � X , �.X/ � X ˝R X , ".X/ � R and S.X/ � X .
(Note that X ˝R X can be identified naturally as an R-submodule of H ˝ H .)
Equivalently, a Hopf order ofH over R is a Hopf algebra X over R, which is finitely
generated and projective as an R-module, such that X ˝R K ' H as Hopf algebras
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over K. We will assume throughout this subsection that K is a number field and
R D OK . A Hopf order without indication of the ground ring means a Hopf order
over R.
Proposition 2.1. Let X be a Hopf order ofH .

(i) The dual order X? WD f' 2 H� W '.X/ � Rg is a Hopf order ofH�.
(ii) The natural isomorphism H ' H�� induces an isomorphism of Hopf orders

X ' X??.
(iii) If A is a Hopf subalgebra ofH , then X \ A is a Hopf order of A.
(iv) If f W H ! B is a surjective Hopf algebra map, then f .X/ is a Hopf order

of B .
An important fact in our study of Hopf orders is that they contain certain elements

arising from the characters and cocharacters of the Hopf algebra.
Proposition 2.2. Let X be a Hopf order of H . Any character of H belongs to X?.
As a consequence, any character ofH� belongs to X .

We will also need the following two results by Larson:
Proposition 2.3 ([6, Proposition 2.2]). LetH be a semisimple Hopf algebra over K
andX a Hopf order ofH . Denote byƒX andƒX? theR-submodule of left integrals
of X and X? respectively. Then ".ƒX /".ƒX?/ D .dimH/ as ideals in R.
Proposition 2.4 ([6, Corollary 3.2]). With hypotheses as before, assume thatX andY
are Hopf orders ofH such that X � Y . If ".ƒX / D ".ƒY /, then X D Y .

3. Classification of Hopf orders of KCp

Let p be a prime number and � a primitive pth root of unity. Let K be a number
field containing � and R WD OK . Let � denote a generator of the cyclic group Cp .
We will describe here all Hopf orders of KCp . Tate and Oort classified all group
schemes of order p over R in [14, Theorem 3]. Their result is more general than
classifying Hopf orders over R. However, we will combine it with Greither’s result
[4, Lemma 1.2, p. 40] to give a more explicit description of all Hopf orders of KCp .

We begin with the following observation:
Lemma 3.1. Let X be a Hopf order of KCp . Consider the fractional ideal

J D f˛ 2 K W ˛.� � 1/ 2 Xg:

Then R � J � R 1
��1

.

Proof. ByProposition 2.2, .X/ � R for any character ofCp . Using the character
mapping � to � we see that J.��1/ � R. Hence J � R 1

��1
. For the other inclusion,

notice that � is a character of .KCp/�. Then � 2 X again by Proposition 2.2, and
R.� � 1/ � X .
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The above lemma leads us to the following definition:
Definition 3.2. Let I be an ideal of R containing � � 1. The global Larson order
associated to I is the R-submodule of KCp

H.I/ D

p�1M
iD0

I i .� � 1/�i .� � 1/i : (3.1)

The name global Larson order will make sense in a few paragraphs. Notice that if
.� � 1/ � I � I 0, thenH.I/ � H.I 0/. Even though the Larson orders are orders of
the cyclic group algebra, they will play a decisive role in the classification of orders
of Nikshych’s Hopf algebra in Section 6.
Lemma 3.3. The global Larson orders are Hopf orders ofKCp . The set of integrals
inH.I/ is 1

p
Ip�1

P
i �

i .

Proof. We first show thatH.I/ is closed under multiplication. For this, it is enough
to prove that Ip.� � 1/�p.� � 1/p � H.I/. This follows from the fact that the
element x WD 1

��1
.� � 1/ satisfies a monic polynomial overR of degree p:We have:

1 D �p D
�
.��1/xC1

�p
D

pX
kD0

�
p

k

�
.��1/kxk H)

pX
kD1

�
p

k

�
.��1/k�1xk D 0:

The coefficient of xp is .� � 1/p�1 and this equals p� for some � 2 R invertible.
Multiplying by p�1��1 we obtain the desired polynomial. On the other hand, it is
clear that 1 2 H.I/; ".H.I // � R; and S.H.I // � H.I/. It remains to prove that
�.H.I // � H.I/˝R H.I/. Since � is an algebra map and H.I/ is closed under
multiplication, it suffices to check that �.rx/ 2 H.I/ ˝R H.I/ for every r 2 I .
A direct calculation reveals that

�.rx/ D rx ˝ 1C 1˝ rx C .� � 1/x ˝ rx:

The first two summands clearly belong toH.I/˝R H.I/ and the third summand as
well because � � 1 2 I .

To prove the statement about the integrals, notice that the integral 1
p

P
i �

i equals
an invertible element times a monic polynomial f of degree p � 1 in x. This can be
seen by the following calculation:

1

p

X
i

� i D
1

p

�
.� � 1/x C 1

�p
� 1

.� � 1/x
D

pX
kD1

1

p

�
p

k

�
.� � 1/k�1xk�1: (3.2)

The fractional expression is just symbolic as .��1/x is not necessarily invertible. The
powers of x in the right-hand side term have coefficients inR. Observe that p divides�
p
k

�
for k D 1; : : : ; p � 1. For k D p the coefficient of xp�1 is .� � 1/p�1 D p�



Orders of Nikshych’s Hopf algebra 925

with � 2 R invertible. If r 2 Ip�1, then r
p

P
i �

i is an integral in H.I/ by (3.2),
since � � 1 2 I . For the reverse inclusion, observe that by construction we have
Ip�1 D f˛ 2 K W ˛xp�1 2 H.I/g. Let

R
be an integral in H.I/. There is � 2 K

such that
R
D

�
p

P
i �

i . Then ��xp�1 2 H.I/ by (3.2) and thus � 2 Ip�1.

We will next prove that all Hopf orders of KCp are global Larson orders. Over
a local ring, this is a theorem by Greither, see [4, Lemma 1.2, p. 40]. We will use
the local to global result of Tate and Oort [14, Lemma 4] to pass to the number field
case.

Let p � R be a prime ideal such that p 2 p. Consider the corresponding
valuation �, scaled so that �.p/ D 1 (we find more convenient to write here the
valuation in additive terms). Then it is easy to see that �.1 � �/ D 1

p�1
because

.� � 1/p�1 D .p/:

Definition 3.4 ([5, Section 3]). Let b 2 Rp be such that 0 � �.b/ � 1
p�1

. Set
s D �.b/. The Larson order H.s/ is the Rp-subalgebra of KpCp generated by
1
b
.� � 1/.
One can see, exactly as in Lemma 3.3, that Larson orders are indeed Hopf orders,

and that H.s/ does not depend on the choice of b. Notice that H.s/ is defined only
if there is an element with valuation s in Rp. We have the following classification
result by Greither, see [15, Theorem 3.0.0] and [4, Lemma 1.2, p. 40].
Theorem 3.5 (Greither). All Hopf orders of KpCp over Rp are Larson orders.

We recall the following result of Tate and Oort:
Proposition 3.6 ([14, Lemma 4]). For any commutative ring T , let E.T / denote the
set of isomorphism classes of group schemes of order p over T . Then, the square

E.R/ //

��

Q
p2Spec.R/E.Rp/

��
E.K/ // Q

p2Spec.R/E.Kp/

where the maps are given by extension of scalars, is Cartesian.
With this in hand we can establish:

Theorem 3.7. Every Hopf order of KCp over R is a global Larson order.

Proof. A Hopf orderX ofKCp overR can be viewed as a group scheme of order p.
Proposition 3.6 tells us that giving X is the same as giving its extension of scalars
to K and Rp for every p 2 Spec.R/, in a compatible way. The extension of scalars
of X to K will be just KCp , and thus we know the extension of scalars to all Kp.
Furthermore, if p 2 Spec.R/ satisfies p … p, then we only have one Hopf order
over Rp. This is because all primitive idempotents will be contained in any Hopf
order.
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The different orders will differ only by their extension of scalars to Rp with
p 2 p. We know by Greither’s Theorem that X ˝R Rp is a Larson order over Rp.
Let qr11 � � � q

rl
l
be the prime decomposition of .�� 1/ inR. Assume thatX ˝RRqi

is
isomorphic to H.si / over Rqi

. Consider the ideal I D
Q
i q
.p�1/ri si
i . One can now

see that the Larson order H.I/ will give rise to exactly the same localizations as X
at qi . Since the square in Proposition 3.6 is Cartesian, thismeans thatX D H.I/.

We know how the integrals inside Larson orders look like by Lemma 3.3. As a
consequence:
Corollary 3.8. A Hopf order H.J / of KCp over R which contains 1

p
Ip�1

P
i �

i

contains the Hopf orderH.I/.

Proof. Using the prime decomposition of ideals, Ip�1 � J p�1 implies I � J .

The computation of the submodule of integrals in Lemma 3.3 together with
Theorem 3.7 has the following outcome, from which we will derive the necessary
condition in our main theorem:
Corollary 3.9. Let X be a Hopf order of KCp .

(i) Suppose that the R-submodule of integrals of X is generated by 1p
p

P
i �

i .
Then there exists an ideal I of R such that I 2.p�1/ D .p/.

(ii) Suppose that 1p
p

P
i �

i 2 X and there is � 2 K such that �2 D � � 1. Then
1
�
.� � 1/ 2 X .

Proof. (i) In view of Theorem 3.7, X is isomorphic to H.I/ for some ideal I of R
containing � � 1. By hypothesis and Lemma 3.3 the submodule of integrals is

R

�
1
p
p

X
i

� i
�
D
1

p
Ip�1

X
i

� i :

Then Ip�1 D .pp/ and thus I 2.p�1/ D .p/.
(ii) From the hypothesis and Lemma 3.3, we obtain .pp/ � Ip�1. We know

that .� � 1/p�1 D .p/. Using the prime factorization of ideals, we have .�/p�1 D
.
p
p/ � Ip�1. This implies that .�/ � I . Then the element �

��1
.� � 1/ D

1
�
.� � 1/ 2 X by the construction ofH.I/.

4. An explicit description of Nikshych’s Hopf algebra

The goal of this section will be to write in an explicit way Nikshych’s Hopf algebra.
For an odd prime number p, Nikshych constructed in [11] a finite-dimensional,

semisimple, weakly group-theoretical and non group-theoretical Hopf algebraHp of
dimension 4p2. It was defined in terms of a tensor category and a fiber functor. The
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representation category Rep.Hp/ is constructed from the representation category
of another Hopf algebra, Ap , by means of equivariantization by C2. As fusion
categories, Rep.Hp/ ' Rep.Ap/C2 . The Hopf algebraAp first appeared in the work
of Masuoka [7]. The above equivalence implies that Hp fits into the short exact
sequence

K ! Ap ! Hp ! KC2 ! K:

To describe explicitly the structure of Hp we need to write the structure of Ap ,
the action of the generator g of C2 on Ap , and the comultiplication of g.

From now on we abbreviate Ap to A and Hp to H . In this section we assume
that K is algebraically closed of characteristic zero.

The main result of this section is the following:
Theorem 4.1. Let � 2 K be a primitive pth root of unity. The Hopf algebra H is
generated, as an algebra overK, by the elements e0; e1; ua; ub; va; vb and g subject
to the following relations:

e0 C e1 D 1; e0e1 D e1e0 D 0;

upa D u
p

b
D e0; e0ua D ua; e0ub D ub; uaub D ubua;

vpa D v
p

b
D e1; e1va D va; e1vb D vb; vavb D �vbva;

g2 D 1; gua D ubg; gub D uag; gva D vag; gvb D vbg:

The comultiplication, counit, and antipode ofH are given by the following formulas:

�.ua/ D ua ˝ ua C va ˝ va; ".ua/ D 1; S.ua/ D u
p�1
a ;

�.ub/ D ub ˝ ub C vb ˝ v
p�1

b
; ".ub/ D 1; S.ub/ D u

p�1

b
;

�.va/ D ua ˝ va C va ˝ ua; ".va/ D 0; S.va/ D v
p�1
a ;

�.vb/ D ub ˝ vb C vb ˝ u
p�1

b
; ".vb/ D 0; S.vb/ D vb:

(4.1)

The comultiplication of g is given by

�.g/ D
1

p2

X
i;j;k;l

�kj�ilguiau
j

b
˝gukau

l
b C

1

p

X
k;l

��.kCl/kgukau
l
b˝gv

kCl
a vkCl

b

C
1

p

X
k;l

�k.kCl/gvkCla v
.p�1/.kCl/

b
˝gukau

l
b C

1

p

X
k;l

gvkav
l
b˝gv

.p�1/l
a vkb : (4.2)

The counit and antipode of g are ".g/ D 1 and S.g/ D g.
The rest of this section will be devoted to prove Theorem 4.1.

4.1. The algebra A. As an algebra, A is the direct sum

K.Cp � Cp/˚K
c.Cp � Cp/;
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where c W .Cp � Cp/ � .Cp � Cp/! K� is the 2-cocycle given by

c.aibj ; akbl/ D ��jk; 0 � i; j; k; l < p:

Here a; b are generators of Cp � Cp . We present the group algebra K.Cp � Cp/
by generators ua; ub and defining relations upa D u

p

b
D 1; uaub D ubua. The

twisted group algebra Kc.Cp � Cp/ is presented by generators va; vb and relations
v
p
a D v

p

b
D 1; vavb D �vbva. Notice thatKc.Cp �Cp/ is isomorphic to the matrix

algebra Mp.K/. To shorten, we set A0 D K.Cp � Cp/ and A1 D Kc.Cp � Cp/.
We denote the units of A0 and A1 by e0 and e1 respectively. So 1A D e0 C e1
and e0e1 D e1e0 D 0. Unless otherwise specified, the inverses are taking inside
either A0 or A1. For example, u�1a means up�1a .

The comultiplication, counit, and antipode of A are described in (4.1) above.

4.2. The algebra H . As an algebra, H is the crossed product A � KC2; where g
acts as an algebra automorphism on A by:

g.ua/ D ub; g.ub/ D ua; g.va/ D va; g.vb/ D vb:

InH we have the relations:

gua D ubg; gub D uag; gva D vag; gvb D vbg:

The hard part in the description of H is the formula for �.g/. Recall from [11]
thatH is constructed as follows: the automorphism g induces an autoequivalence

F W Rep.A/! Rep.A/; V 7! gV:

Here gV D V as a vector space, with new action x �v D g.x/v for all x 2 A; v 2 V .
The functor F is a tensor equivalence. Moreover, F �1 D F . To compute �.g/ we
will need to describe the tensor structure of F . For this, we first need to consider the
irreducible representations of A.

4.3. Irreducible representations of A. Every irreducible representation of A is an
irreducible representation of either A0 or A1.

The algebra A0 has p2 one-dimensional irreducible representations, which we
denote byKi;j with 0 � i; j < p:As aK-vector space,Ki;j D K. The action of ua
and ub on Ki;j is given by:

ua � 1 D �
i1 ub � 1 D �

j 1:

The algebra A1 has only one irreducible representation, of dimension p, which
we denote byM . Let fmi W 0 � i < pg be a basis forM . The action of A1 onM is

va �mi D �
imi ; vb �mi D miC1 .indices are taken modp/:
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4.4. Tensor structure on F . For any V;W 2 Rep.A/ irreducible we must establish
an isomorphism �V;W W F.V ˝ W / ! F.V / ˝ F.W / satisfying the unit and
associativity constraints. We do need to calculate these isomorphisms explicitly, as
we will use them later to compute �.g/. Observe that at the level of representations
F.Ki;j / D Kj;i and F.M/ DM .

4.4.1. Isomorphisms between certain representations of A. Given x 2 A1
invertible, xM stands for the following representation of A1: as a vector space,
xM DM , and the action is given by

y �m D .x�1yx/m 8y 2 A1; m 2M:

We have an isomorphism

xM !M; m 7! xm:

This will be used in this subsection to define isomorphisms between certain tensor
products of representation. Consider the representationKi;j˝M . Identify it withM ,
as a vector space, via 1˝m 7! m. Under this identification, va and vb act via �iva
and �j vb respectively. Since vavb D �vbva, we see that this is the same as xM for
x D v

�j
a vi

b
. Then we have an isomorphism of representations

li;j W K
i;j
˝M !M; 1˝m 7! .v�ja vib/m: (4.3)

In a similar fashion,M ˝Ki;j is isomorphic to xM for x D vjavib via

ri;j WM ˝K
i;j
!M; m˝ 1 7! .vjav

i
b/m: (4.4)

We discuss separately the four different cases that occur in the description of �V;W .

4.4.2. Two representations ofA0. We begin by considering the case V D Ki;j and
W D Kk;l . We have V ˝W ' KiCk;jCl :We must give an isomorphism between
F.V ˝ W / ' F.KiCk;jCl/ ' KjCl;iCk and F.V / ˝ F.W / ' Kj;i ˝ Kl;k '

KjCl;iCk . It will be determined by a nonzero scalar �..i; j /; .k; l//. Then:

�V;W W F.V ˝W /! F.V /˝ F.W /; 1˝ 1 7! �..i; j /; .k; l//1˝ 1:

The associativity constraints yield that � W .Cp � Cp/2 ! K� is a 2-cocycle. We
shall compute � explicitly in the sequel. We will see that:

�Ki;j ;Kk;l WF.K
i;j
˝Kk;l/! F.Ki;j /˝F.Kk;l/; 1˝1 7! �il�jk1˝1: (4.5)
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4.4.3. One representation ofA0 and one representation ofA1. We next consider
the case V D Ki;j and W D M (and V D M and W D Ki;j ). We first deal with
the values .i; j / D .0; 1/; .1; 0/ and then we will deduce a formula for an arbitrary
pair .i; j /.

We need to find an isomorphism between F.K1;0 ˝M/ and F.K1;0/˝ F.M/.
Both representations are isomorphic toM . Thus, up to a nonzero scalar, there is only
one possible choice. Using (4.3), we see that such an isomorphism must be given by

�K1;0;M W F.K
1;0
˝M/! F.K1;0/˝ F.M/; 1˝m 7! ˛1;0 ˝ .vavb/m;

for some ˛1;0 2 K (that will be determined later). In a similar fashion:

�K0;1;M W F.K
0;1
˝M/! F.K0;1/˝ F.M/; 1˝m 7! ˛0;1 ˝ .v

�1
b v�1a /m;

�M;K1;0 W F.M ˝K1;0/! F.M/˝ F.K1;0/; m˝ 1 7! ˇ1;0.v
�1
a vb/m˝ 1;

�M;K0;1 W F.M ˝K0;1/! F.M/˝ F.K0;1/; m˝ 1 7! ˇ0;1.v
�1
b va/m˝ 1;

for ˛0;1; ˇ1;0; ˇ0;1 2 K.
The tensor structure on F will depend on ˛1;0; ˛0;1; ˇ1;0; ˇ0;1, and �. The

compatibility of F with associativity constraints will impose some restrictions on the
possible values of them.

We show by induction that the following formula holds for .i; 0/ with i � 2:

�Ki;0;M W F.K
i;0
˝M/! F.Ki;0/˝ F.M/; 1˝m 7! ˛i1;0 ˝ .v

i
av
i
b/m:

Using naturality and compatibility of F with the associativity constraint we have the
following commutative diagram:

F.Ki;0 ˝M/

�
Ki;0;M

��

// F.Ki�1;0˝K1;0˝M/
F.id ˝ l1;0/// F.Ki�1;0 ˝M/

�
Ki�1;0;M

��
F.Ki;0/˝ F.M/ F.Ki�1;0/˝ F.M/

id ˝F.l�1
1;0
/

��
F.Ki�1;0˝K1;0/˝F.M/

OO

F.Ki�1;0/˝F.K1;0˝M/

id ˝ �
K1;0;Mtt

F.Ki�1;0/˝F.K1;0/˝F.M/

��1

Ki�1;0;K1;0
˝ id

jj

One can check that 1˝m is mapped to

˛i1;0 �..i � 1; 0/; .1; 0//
�1
˝ .viav

i
b/m:

Without loss of generality, we can assume that�..i; 0/; .j; 0// D �..0; i/; .0; j // D 1,
and then we arrive at the desired formula.
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By a similar calculation we also obtain:

�K0;j ;M W F.K
0;j
˝M/! F.K0;j /˝ F.M/; 1˝m 7! ˛

j
0;1 ˝ .v

�j

b
v�ja /m:

We can combine these two isomorphisms with the associativity constraint to get
the following general formula:

�Ki;j ;M WF.K
i;j
˝M/! F.Ki;j /˝ F.M/;

1˝m 7! ˛i1;0˛
j
0;1�

i.i�j /
˝ v

i�j

b
vi�ja m:

(4.6)

This is done as follows. Using naturality and compatibility ofF with the associativity
constraint we can construct the following commutative diagram:

F.Ki;j ˝M/

�
Ki;j ;M

��

// F.Ki;0 ˝K0;j ˝M/
F.id ˝ l0;j / // F.Ki;0 ˝M/

�
Ki;0;M

��
F.Ki;j /˝ F.M/ F.Ki;0/˝ F.M/

id ˝F.l�1
0;j
/

��
F.Ki;0 ˝K0;j /˝ F.M/

OO

F.Ki;0/˝ F.K0;j ˝M/

id ˝ �
K0;j ;Mtt

F.Ki;0/˝ F.K0;j /˝ F.M/

��1

Ki;0;K0;j
˝ id

jj

Following the longest path, we obtain:

�Ki;j ;M .1˝m/ D
˛i1;0˛

j
0;1�

i2

�..i; 0/; .0; j //
˝ v

i�j

b
vi�ja m: (4.7)

We can write a similar diagram withK0;j ˝Ki;0˝M in the upper central term and
proceeding accordingly we get:

�Ki;j ;M .1˝m/ D
˛i1;0˛

j
0;1�

i2�2ij

�..0; j /; .i; 0//
˝ v

i�j

b
vi�ja m:

These two equalities yield the following formula for �:

�..0; j /; .i; 0//

�..i; 0/; .0; j //
D ��2ij :

SinceCp�Cp is abelian andK is assumed to be algebraically closed of characteristic
zero, this completely determines the cohomology class of�. We choose the following
representative from this cohomology class:

�..i; j /; .k; l// D �il�jk :
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Substituting this in (4.7) we arrive at the desired formula for �Ki;j ;M . By making
this choice we also ensure that F 2 D Id on the subcategory of representations of A0.

By a similar calculation, we obtain:

�M;Ki;j WF.M ˝K
i;j /! F.M/˝ F.Ki;j /;

m˝ 1 7! ˇi1;0ˇ
j
0;1�

j.j�i/vj�ia v
i�j

b
m˝ 1:

(4.8)

We have described so the tensor structure on F for the tensor product of
representations of A0 with representations of A1. One can verify that this structure
is indeed compatible with all the associativity constraints involving two irreducible
representations of A0 if and only if ˛1;0; ˛0;1; ˇ1;0; and ˇ0;1 are pth roots of unity.
Moreover, F 2 D Id on Ki;j ˝M andM ˝Ki;j if and only if

˛1;0˛0;1 D ˇ1;0ˇ0;1 D 1: (4.9)

We shall assume that this holds henceforth.

4.4.4. Two representations of A1. Lastly, we compute the isomorphism between
F.M ˝ M/ and F.M/ ˝ F.M/. We know that M ˝ M ' ˚

p�1
i;jD0K

i;j : One
can easily check that the element qi;j 2 M ˝ M spanning the 1-dimensional
representation isomorphic to Ki;j must be of the form

qi;j D �i;j
X
t

��tjmt ˝mi�t ; with �i;j 2 K:

(Unless otherwise specified, throughout the limits in the sums are understood to run
from 0 to p � 1.) We take �i;j D 1 for every i; j . The isomorphism is given by:

�M;M W F.M ˝M/! F.M/˝ F.M/; qi;j 7! i;j qj;i ; (4.10)

for some i;j 2 K: Using naturality and compatibility of F with the associativity
constraint at Ki;j ˝M ˝M we obtain the following commutative diagram:L

s;t

F.Ki;j ˝Ks;t /

L
s;t

�
Ki;j ;Ks;t

��

// F.Ki;j ˝M ˝M/
F.li;j ˝ id/ // F.M ˝M/

�M;M

��L
s;t

F.Ki;j /˝ F.Ks;t /

��

F.M/˝ F.M/

F.l�1
i;j
/˝ id

��
F.Ki;j /˝ F.M ˝M/

id ˝ �M;M ))

F.Ki;j ˝M/˝ F.M/

�
Ki;j ;M

˝ id
uu

F.Ki;j /˝ F.M/˝ F.M/
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Through the isomorphism on the upper right side, 1˝ 1 2 Ki;j ˝ Ks;t is mapped
to sCi;tCj˛i1;0˛

j
0;1�

it�js ˝ qt;s . Through the isomorphism on the left side, 1˝ 1 is
mapped to s;t�it�js ˝ qt;s . From here,

i;j D ˛
j�i
1;0 0;0: (4.11)

By considering the associativity constraint for M ˝ M ˝ Ki;j and writing the
analogous diagram we get i;j D ˇj�i1;0 0;0. This implies

˛1;0 D ˇ1;0: (4.12)

The tensor structure of F onM ˝M depends therefore on ˛1;0 (which is a pth root
of unity) and 0;0 (which equals˙1 since F 2 D Id onM ˝M ).

By checking compatibility with all associativity constraints we see that the
isomorphism we have constructed does furnish a tensor structure on F . It can
be shown directly that no matter what choice we make for 0;0 and ˛1;0, we will
always end up with an isomorphic functor. We can thus assume, without loss of
generality, that

0;0 D ˛1;0 D 1:

Then, the scalars ˛0;1; ˇ1;0; ˇ0;1; and i;j equal 1 by equations (4.9), (4.11),
and (4.12). This finishes the description of the tensor structure on F .

We summarize our discussion in the following result.
Proposition 4.2. Let A be the Hopf algebra defined in Subsection 4.1. Consider its
irreducible representationsKi;j , with 0 � i; j < p, andM defined in Subsection 4.3.
There exists (up to isomorphism) only one tensor functor F W Rep.A/ ! Rep.A/
such that F.Ki;j / ' Kj;i and F.M/ 'M . It is given by the equations (4.5), (4.6),
(4.8), and (4.10), where the scalars ˛1;0; ˛0;1; ˇ1;0; ˇ0;1; and i;j equal 1.

4.5. The comultiplication of g. The category Rep.H/ can be identified with that
of F -equivariant representations of A as follows: if V 2 Rep.H/, then V 2 Rep.A/
by restriction, and Qg W V ! V; v 7! gv establishes an isomorphism between V
and F.V /.

We now consider the regular representation ofH . The following diagram should
be commutative:

H ˝H
�.g/� //

.g˝g/�
''

F.H ˝H/

��

��
F.H/˝ F.H/

where � comes from the tensor structure of F . Since g D g�1, we have:

�.g/ D .g ˝ g/�:
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For V;W 2 Rep.A/ the isomorphism �V;W W F.V ˝ W / ! F.V / ˝ F.W / is
given by multiplication by � 2 A ˝ A. The reason for this is the following: the
isomorphism �A;A W A ˝ A ' F.A ˝ A/ ! F.A/ ˝ F.A/ ' A ˝ A is natural,
and hence it must commute with multiplication from the right by elements of A˝A.
So, it must be given by multiplication from the left by some element � 2 A ˝ A.
The same holds for V;W 2 Rep.A/ by the naturality of � again with respect to any
morphisms A! V and A! W . Then, the computation of � can be derived from
our knowledge of these isomorphisms for any two irreducible representations of A.
To do this, we first need the decomposition of the regular representation of A as a
direct sum of irreducible representations. For i; j D 0; : : : ; p�1 let fij 2 A0 denote
the idempotent upon which ua acts by �i and ub by �j : It is:

fij D
1

p2

X
k;l

��.ikCjl/ukau
l
b: (4.13)

Let Vij D A0fij . Then Vij ' Ki;j . Consider in A1 the element

hi D
1

p

X
k

��ikvka :

Let Wi be the subspace spanned by vl
b
hi for l D 0; : : : ; p � 1: Then Wi ' M by

mapping vl�i
b
hi to ml . Thus we have:

A D
�M
i;j

Vij

�M�M
i

Wi

�
:

We claim that:

� D
1

p2

X
i;j;k;l

�kj�iluiau
j

b
˝ ukau

l
b C

1

p

X
k;l

��.kCl/kukau
l
b ˝ v

kCl
a vkCl

b

C
1

p

X
k;l

�k.kCl/vkCla v
�.kCl/

b
˝ ukau

l
b C

1

p

X
k;l

vkav
l
b ˝ v

�l
a v

k
b : (4.14)

Using (4.5), (4.8), (4.6), and (4.10), this formula for� is proved by checking directly
the following equalities, which we leave to the reader:

�Vij ;Vkl
.fij ˝ fkl/ D �

il�jkfij ˝ fkl D �.fij ˝ fkl/;

�Vij ;M .fij ˝ v
k�l
b hl/ D �

.i�j /.kCi/fij ˝ v
kCi�j�l

b
hl D �.fij ˝ v

k�l
b hl/;

�M;Vij
.vk�lb hl ˝ fij / D �

.j�i/.kCi/v
kCi�j�l

b
hl ˝ fij D �.v

k�l
b hl ˝ fij /;

�M;M

�X
k

��jkvk�lb hl ˝ v
i�k�l
b hl

�
D

X
k

��ikvk�lb hl ˝ v
j�k�l

b
hl

D �
�X

k

��jkvk�lb hl ˝ v
i�k�l
b hl

�
:
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A careful calculation reveals that S.g/ D g. This finishes the description of the Hopf
algebra structure ofH and hence the proof of Theorem 4.1.

Remark 4.3. Although we used that K is algebraically closed to reconstruct H , a
posteriori we see from Theorem 4.1 thatH is defined over Q.�/.

5. Duality, (co)characters, and Hopf automorphisms

In this section we study further the structure of H : we describe its irreducible
(co)representations and (co)characters, its Hopf automorphisms and we show that it
is self-dual. The description of the (co)characters is one of the essential points in the
proof of our main result since they provide elements in any Hopf order in view of
Proposition 2.2. We keep the notation of the previous section.

5.1. Dual Hopf algebra. We present here the Hopf algebra structure of H�. As a
vector space,H D A0 ˚ A1 ˚ gA0 ˚ gA1:We consider the following basis ofH :

B WD fuiau
j

b
g [ fviav

j

b
g [ fguiau

j

b
g [ fgviav

j

b
g: (5.1)

We denote the dual basis by:

B� WD fsij g [ ftij g [ f˛ij g [ fˇij g: (5.2)

From (4.1) and (4.2), we easily see thatH D A˚ gA as a coalgebra. Then

H� D A� ˚ .gA/� (5.3)

as an algebra. We denote by "A and "gA the counit of H restricted to A and gA
respectively. Then, "A and "gA are the central idempotents ofH� giving the previous
decomposition. The following result provides the full description ofH�.

Proposition 5.1. As an algebra,H� is the direct sum of the algebras A� and .gA/�.
The algebra A� is spanned by the elements sij and tij and its multiplication is
given by:

sij skl D ıi;kıj;l sij ; tkl sij D ıi;kıj;�l tkl ;

sij tkl D ıi;kıj;l tkl ; tij tkl D ıi;kıj;�l sij :
(5.4)

The algebra .gA/� is generated by the elements ij and B subject to the following
relations:

B2 D "gA; ij kl D �
il�jk iCk jCl ; and B ij D ij B: (5.5)
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The comultiplication, counit, and antipode ofH� are given by:

�.sij / D
X
k;l

skl ˝ si�k j�l C
1

p2
��.ilCjk/kl ˝ lk;

".sij / D ıi;0ıj;0; S.sij / D s�i �j ;

�.tij / D
X
k;l

�l.k�i/tkl ˝ ti�k j�l C
1

p2
��ilklB ˝ l�j kB;

".tij / D ıi;0ıj;0; S.tij / D �
�ij t�ij ;

�.ij / D
X
k;l

�liCkj skl ˝ ij C �
kiClj ij ˝ skl ;

".ij / D 0; S.ij / D �j �i ;

�.B/ D
X
k;l

�kll0B ˝ tkl C tkl ˝ 0�lB;

".B/ D 0; S.B/ D B:

(5.6)

(The operations in the indices are all done modulo p.)

Proof. From the dual basis B� in (5.2), we are going to construct a new basis ofH�
which is more convenient to express the multiplication. In .gA0/�, instead of f˛ij g
we take the dual basis of fgfij g, where ffij g are the idempotents in (4.13). We
denote this basis by fij g. Then:

ij .gu
k
au
l
b/ D �

ikCjl :

The sij ’s and tij ’s form a basis of A� and the ˇij ’s and ij ’s form one of .gA/�. A
direct and tedious calculation yields the following formulas:

sij skl D ıi;kıj;l sij ; tkl sij D ıi;kıj;�l tkl ;

sij tkl D ıi;kıj;l tkl ; tij tkl D ıi;kıj;�l sij ;

ij ˇkl D �
j.lCjCk�i/ˇk�iCj l�iCj ; ˇkl ij D �

j.iCk�j�l/ˇkCi�j lCj�i ;

ij kl D �
il�jkiCk jCl :

This gives the statement for themultiplication inA�. For the one in .gA/� we proceed
as follows: consider the element

B D
p
p
X
k

ˇk0: (5.7)
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It commutes with the ij ’s in view of the above formulas. A simple computation
shows that B2 D "gA. Each ˇij can be expressed as

ˇij D
1

p
p
p

X
k

��kik�j kB:

This can be verified directly by using the equality:

.ijB/.gv
k
av
l
b/ D

p
p �jkıl;j�i : (5.8)

Then fij g [ fijBg is a basis of .gA/�. We change our basis ofH� again to

L WD fsij g [ ftij g [ fij g [ fijBg: (5.9)

The multiplication ofH� is then fully described on L by (5.4) and (5.5).
We next compute the formulas for the comultiplication ofH� given in (5.6). These

formulas follow from direct calculations, just using the multiplication in H . The
calculations do not present any special difficulty. We briefly indicate how to proceed
for sij and leave the details and the other cases to the reader. The element sij vanishes
on A1; gA0 and gA1. Since A0A0 D .gA0/.gA0/ D A0 and A0A1 D A1A0 D 0

no other kind of summands can occur in the right-hand side. Hence it suffices to
evaluate �.sij / at ukaulb ˝ u

m
a u

n
b
and gfkl ˝ gfmn: The coefficients of skl ˝ smn

and kl ˝ mn must be respectively:

hsij ; .u
k
au
l
b/.u

m
a u

n
b/i D ıi;kCmıj;lCn

and hsij ; .gfkl/.gfmn/i D
1

p2
��.ilCjk/ık;nıl;m:

Finally, one can check with no effort that the counit and antipode are the ones
given in (5.6).

5.2. Self-duality. Nikshych proved in [11, Proposition 5.2] that H and H� are
isomorphic as algebras. In this subsection we strengthen this result by the following
proposition:
Proposition 5.2. The Hopf algebrasH andH� are isomorphic.

Proof. Let us begin by finding inside H� a Hopf subalgebra isomorphic to A. Set
d D pC1

2
. Consider the elements:

Nua D
X
k;l

�.kCl/d skl ; Nub D
X
k;l

�.k�l/d skl ; Nva D dd ; Nvb D �dd : (5.10)

Let NA be the subalgebra generated by Nua; Nub; Nva; and Nvb . Using the multiplication
rules (5.4) and (5.5) one easily checks that the assignment ux 7! Nux; vx 7! Nvx
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for x 2 fa; bg establishes an algebra isomorphism‰ betweenA and NA. The elements
corresponding to the central idempotents e0 and e1 in Subsection 4.1 are

"A D
X
k;l

skl and "gA D 00: (5.11)

Notice that "A C "gA D "H D 1H� . Using formulas (5.6) one can verify with a
long but direct computation that the above isomorphism is actually an isomorphism
of Hopf algebras.

Consider finally the element

Ng D B C
X
k;l

�dkl tkl :

It can be shown that Ng2 D 1H� , conjugation by Ng stabilizes NA, and, via the above
isomorphism, Ng acts on NA as g acts on A. Moreover, one can show that ‰ extends
to a Hopf algebra isomorphism fromH toH� by defining g 7! Ng. This finishes the
proof.

Remark 5.3. If p D 1 mod 4, then pp 2 Q.�/ and the above isomorphism is
defined over Q.�/. Otherwise, it is not defined over Q.�/ but over Q.�; !/, with ! a
primitive fourth root of unity, and maps B to !B . ConsiderH as defined over Q.�/.
Then B belongs to H ˝Q.�/ K but not to H because pp … Q.�/ in this case. In
fact, since the orbit of B under the group of Hopf automorphisms of H is fB;�Bg,
see Subsection 5.5, it follows that an isomorphism between H and H� cannot be
defined over Q.�/. The Hopf algebraH� will be a form ofH but not isomorphic to
it over Q.�/.

In the next two subsections we describe the irreducible representations of H
andH� and their characters, see [11, Proposition 5.2], which will be used to find the
possible Hopf orders ofH .

5.3. Characters of H . We have the following irreducible representations ofH and
corresponding characters:

5.3.1. Dimension 1. There are 2p irreducible representations ofH of dimension 1.
They arise from the elements inA0 that are g-invariant. For i D 0; : : : ; p�1we have
the representation V Ci (resp. V �i ), upon which A1 acts trivially, ukaulb acts through
the scalar �.kCl/i , and g acts as 1 (resp. �1). By using the previously chosen basis L

ofH� (see Equation 5.9) we can write the characters of these representations as:

�
V˙

i

D ˙i i C
X
k;l

�.kCl/iskl : (5.12)
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5.3.2. Dimension 2. The irreducible representations of H of dimension 2 come
from the 1-dimensional representations of A0 which are not g-invariant. Therefore,
their orbits have two elements: Ki;j and Kj;i for i ¤ j . Such representations are
parameterized by pairs .i; j / with i < j . We denote them byWij . There are p.p�1/2

such representations. The elements g and ukaulb act on Wij as the matrices�
0 1

1 0

�
and

�
�ikCjl 0

0 �ilCjk

�
respectively, and A1 acts trivially. The associated characters with respect to the
basis L ofH� are:

�
W

ij

D

X
k;l

.�ikCjl C �ilCjk/skl : (5.13)

5.3.3. Dimension p. Finally, there are two irreducible representations ofH of di-
mension p. They arise from the p-dimensional representation M of A1, see
Subsection 4.3. We denote them byMC andM�. They have basis fm0; : : : ; mp�1g,
the elements in A1 act as vami D �imi ; vbmi D miC1 and g acts as ˙1. The
elements of A0 act trivially. The corresponding characters in the basis L ofH� are:

�M˙ D pt00 ˙
1
p
p

X
i

i iB: (5.14)

5.4. Characters of H �. To describe the irreducible representations ofH� we will
use the decomposition (5.3) expressing H� as the direct sum H� D A� ˚ .gA/�.
We start with the irreducible representations ofA�. By the multiplication rules (5.4),
A� is the direct sum of algebras

A� D
�M

i

Ri

�M�M
i;j

Ri;j

�
;

where Ri is spanned by si0 and ti0 and Rij by sij ; si �j ; tij ; ti �j . The index i runs
from 0 to p � 1 and j from 1 to p�1

2
to avoid repetitions.

5.4.1. Dimension 1. The algebra Ri has two 1-dimensional representations, on
both of which si0 acts as 1 whereas ti0 acts as ˙1. We denote them by LCi and L�i
respectively. The characters of these representations, expressed in the basis B ofH ,
see Equation 5.1, are:

 
L˙

i

D uia ˙ v
i
a: (5.15)
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5.4.2. Dimension 2. The algebraRij is isomorphic toM2.K/. Therefore, it has one
irreducible 2-dimensional representation, which we denote by Pij . This representa-
tion is given by the following map:

sij 7!

�
1 0

0 0

�
; si �j 7!

�
0 0

0 1

�
; tij 7!

�
0 1

0 0

�
; ti �j 7!

�
0 0

1 0

�
:

In the basis B ofH the characters of these representations are expressed as:

 Pij
D uiau

j

b
C uiau

�j

b
: (5.16)

5.4.3. Dimension p. Lastly, we discuss the irreducible representations of .gA/�.
Since B2 D "jgA D 1.gA/� , we have the following two central idempotents:

� D
1

2
."jgA C B/ and �0 D

1

2
."jgA � B/:

They induce the algebra decomposition .gA/� D .gA/��˚ .gA/��0. From (5.5) we
obtain p10 D 

p
01 D "gA and 1001 D �20110: Then .gA/�� and .gA/��0

are isomorphic to Mp.K/. Hence .gA/� has two p-dimensional irreducible
representations, which we denote by NC and N�. Both have a basis fn0; : : : ; np�1g
with actions

ijnl D �
ijC2ilnlCj and Bnl D ˙nl :

The characters of the above representations are given by:

 N˙ D
1

p

X
i;j

guiau
j

b
˙

1
p
p

X
i

gvia: (5.17)

5.5. Hopf automorphisms. The group of Hopf automorphisms of H is described
by the following result:
Proposition 5.4. The groupAutHopf .H/ is isomorphic toC2�.C2ËCp/. WritingC2
as f˙1g, the Hopf automorphism � ofH corresponding to the triple .�1; �2; t / is:

�.ua/ D u
�2
a ; �.ub/ D u

�2

b
;

�.va/ D v
�2
a ; �.vb/ D �

tv
�2

b
; �.g/ D g.e0 C �1e1/:

Proof. We know from (4.1) and (4.2) that H D A ˚ gA as coalgebras and hence
H� D A� ˚ .gA/� as algebras. The algebra A� splits as a direct sum of matrix
algebras over K of dimension 1 or 4 (Subsections 5.4.1 and 5.4.2). On the other
hand, the algebra .gA/� is the direct sum of two matrix algebras of dimension p2
(Subsection 5.4.3). Let � 2 AutHopf .H/. Since � must preserve the Wedderburn
decomposition ofH�, it must hold that �.A/ � A. Thus � jA is a Hopf automorphism
of A. We are so led to compute AutHopf .A/. This gives a group morphism

‚ W AutHopf .H/! AutHopf .A/; � 7! � jA:

Using this morphism, we are going to compute AutHopf .H/ in two steps:
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Step 1. Hopf automorphisms of A. We know from Subsection 4.1 that A has an alg-
ebra decomposition ADA0˚A1, where A0 DK.Cp�Cp/ and A1DKc.Cp�Cp/.
Considering, as before, the dimensions of the simple components of the Wedderburn
decomposition of A0 and A1 we get �.A0/ D A0 and �.A1/ D A1. The group-like
elements of A are uia ˙ via with 0 � i < p: Since � preserves group-like elements
and the relations upa D e0 and vpa D e1, we must have �.ua C va/ D ura C v

r
a for

some r ¤ 0. As �.ua/ 2 A0 and �.va/ 2 A1, we obtain

�.ua/ D u
r
a and �.va/ D v

r
a: (5.18)

On the other hand, �.ub/ D ukau
s
b
for some k; s ¤ 0 because � induces a Hopf

automorphism on the quotient Hopf algebra A0 of A. We derive that k D 0 from
the equality ���.ub/ D ���.ub/. Here � stands for the multiplication of H . So
�.ub/ D u

s
b
. Using the equality��.ub/ D .�˝�/�.ub/we arrive to �.vb/ D �vsb

for some � 2 K�. Moreover, �p D 1 because �.vb/p D e1. Put � D �t with
0 � t < p. Applying � to the relation vavb D �vbva we get sr D 1 mod p. Then

�.ub/ D u
s
b and �.vb/ D �

tvsb; with s D r�1 mod p: (5.19)

Thus � determines a pair .r; t/ 2 C�p �Cp: Conversely, one can check that any such
a pair together with (5.18) and (5.19) defines a Hopf automorphism of A. Finally, by
composing two automorphisms one sees that AutHopf .A/ ' C�p Ë Cp .

Step 2. Computing the kernel and image of ‚. We claim that Ker‚ ' C2. Let
� 2 Ker‚. We know that H has a coalgebra decomposition H D A˚ gA; that �
must preserve. Then �.g/ D gz for some z 2 A. Since �jA D idA, we have for
every x 2 A:

gxg�1 D �.gxg�1/ D gzxz�1g�1:

From this it follows that z 2 Z.A/. Recall that�.g/ D .g˝ g/�, where� is given
in Equation 4.14. Using this and that � is a coalgebra map we get:

.g ˝ g/��.z/ D �.gz/ D ��.g/ D .� ˝ �/�.g/ D .gz ˝ gz/�:

We also used here that � 2 A ˝ A and �jA D idA. Since z 2 Z.A/ and � and
g are invertible, the above equality implies that z is a group-like element of A. As
1 D �.g/2 D gzgz, the only nontrivial option is z D e0 � e1. Conversely, one can
easily check that a map of this form defines an element of order 2 in Ker‚.

We claim now that Im‚ ' C2 Ë Cp . Let � 2 Im‚: Assume that � is given
by .r; t/ 2 C�p Ë Cp and equations (5.18) and (5.19). Then, arguing as before,
�.g/ D gz for some z 2 A. We have:

ur
�1

b D �.ub/ D �.guag
�1/ D gzuraz

�1g�1 D urb:
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From this, r2 D 1 mod p and so r D ˙1:Conversely, the Hopf automorphism � ofA
corresponding to .1; t/ is given by conjugation by the group-like element uta C vta.
Conjugation by the same element defines N� 2 AutHopf .H/ such that ‚. N�/ D � . Let
' 2 AutHopf .A/ be corresponding to .�1; 0/. One can check effortless that ' 2 Im‚
with preimage N' defined by N'jA D ' and N'.g/ D g.

Thus we have a short exact sequence

1! C2 ! AutHopf .H/! C2 Ë Cp ! 1:

This sequence splits because N' has order 2. The action on C2 is trivial (this is the
only possible action), and then

AutHopf .H/ ' C2 � .C2 Ë Cp/:

6. Orders of Nikshych’s Hopf algebra

In this section we will use the results of the previous sections to classify the orders of
Nikshych’s Hopf algebra. We will see that Nikshych’s Hopf algebra admits at most
one order over any number field.

We keep the conventions and notations of Section 4: � is a primitive pth root
of unity; K is a number field containing �; R D OK is the ring of integers of K;
H denotes Nikshych’s Hopf algebra of dimension 4p2, and A stands for Masuoka’s
Hopf algebra of dimension 2p2, both defined over K.

Recall fromRemark 4.3 thatH is defined overQ.�/. However, we will prove here
that H does not have orders over OQ.�/, but only over the ring of integers of some
extension of Q.�/. Set K D Q.�; !/; where ! is a primitive fourth root of unity.
The field Q.�/ contains either pp or p�p, depending on the value of p mod 4.
The existence of ! allows us to assume thatpp 2 K and treat our computations in
a unified way avoiding the distinction of cases.

The proof of Theorem 2 is quite involved. We will divide it into several parts.

6.1. Elements thatmust be in anyHopf order. Suppose thatX is aHopf order ofH
over R. Our goal in this first part is to prove that several elements of H , arising
from (co)characters, must belong to X . This will be used later to show that all basis
elements ofH , given in (5.1), must be in X .

We retain the notation of Section 4: e0; e1 are the units of A0 and A1 and "A; "gA
denote the counits of A and gA respectively. We start with the following:
Lemma 6.1. The elements e0; e1 are in X and "A; "gA are in X?.

Proof. We first show that e0; e1 2 X . The subalgebra Hb of H generated by ub
and vb is a Hopf subalgebra. Consider the algebra maps � W Hb ! K, ub 7! �,
vb 7! 0 and � W Hb ! K, ub 7! 0, vb 7! �. They are group-like elements ofH�

b
and
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�2D�pD1 and ��D�p�1� . ThenH�
b
' K.C2ËCp/ as Hopf algebras andX\Hb

may be viewed as a Hopf order of K.C2 Ë Cp/� by Proposition 2.1(iii). According
to the proof of [1, Proposition 2.1], X \Hb contains the idempotents t0; t1 (notation
as there). Let f�� i �j gi;j � K.C2 Ë Cp/� be the dual basis of f� i�j gi;j . Recall that
t0 D

P
j ��j and t1 D

P
j ���j . One can verify directly that ��j D

1
p

P
k �
�jkuk

b

and ���j D
1
p

P
k �

.j�1/kvk
b
. Then t0 D e0 and t1 D e1.

For the second statement, take into account thatH is self-dual by Proposition 5.2.
The isomorphism between H and H� established there maps e0; e1 to "A; "gA
respectively, see (5.11). We now get that "A; "gA 2 X? from self-duality of H , the
above fact, and the first statement applied to X? andH�.

Recall from (5.7) the element B used in describingH�.
Lemma 6.2. The elements ge1 and B belong to X and X?, respectively.

Proof. We first prove that ge1 2 X: We know from Proposition 2.2 that characters
of H� are in X and characters of H are in X?. Using the previous lemma, (5.17)
and (5.14) we obtain that

�1 WD e0 NC D
1

p

X
i;j

guiau
j

b
2 X

and �2 WD "gA�MC D
1
p
p

X
k

kkB 2 X
?: (6.1)

Then .�2 ˝R idX /�.�1/ 2 X . We check that .�2 ˝R idX /�.�1/ D ge1: Recall
that �2 vanishes on A0 ˚ A1 ˚ gA0, so we only need to compute the part of �.�1/
in gA1 ˝ gA1. It is:

1

p2

X
i;j;k;l

.gvkav
l
b ˝ gv

�l
a v

k
b /.v

i
av
j

b
˝ viav

�j

b
/

D
1

p2

X
i;j;k;l

��i.kCl/gvkCia v
lCj

b
˝ gvi�la v

k�j

b

D
1

p2

X
i 0;j 0;k;l 0

�.l
0�i 0/.i 0�k/gvi

0

a v
j 0

b
˝ gvl

0

a v
i 0�j 0�l 0

b

putting i 0 D k C i , j 0 D l C j , and l 0 D i � l ;

D
1

p

X
i;j;l

�.l�i/i
�
1

p

X
k

�.i�l/k
�
gviav

j

b
˝ gvlav

i�j�l

b

putting i D i 0, j D j 0, and l D l 0;

D
1

p

X
i;j

gviav
j

b
˝ gviav

�j

b
:
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Applying �2 ˝R idX to this expression we get
1

p
p
p

X
i;j;k

.kkB/.gv
i
av
j

b
/gviav

�j

b

(5.8)
D
1

p

X
i;k

�ikgvia

D

X
i

�
1

p

X
k

�ik
�
gvia

D ge1:

Therefore ge1 2 X .
We next show that B 2 X?. From (5.14) and Proposition 2.2, we know that

�MCDpt00C
1p
p

P
i i iB 2X

?. Using Lemma 6.1, we obtain "A�MCDpt002X?.
Now,

."gA ˝ "gA/�.pt00/
(5.6)
D

1

p

X
k;l

klB ˝ lkB 2 X
?
˝R X

?: (6.2)

On the other hand, by (5.17) and Proposition 2.2, we have

 NC D
1

p

X
i;j

guiau
j

b
C

1
p
p

X
i

gvia 2 X:

Using again Lemma 6.1, we get

e1 NC D
1
p
p

X
i

gvia 2 X:

Finally, applying e1 NC ˝R idX? to (6.2) we obtain
1

p
p
p

X
i;k;l

.klB/.gv
i
a/lkB D

1

p

X
i;k;l

�ilıl�k;0lkB D 00B D B:

So, B 2 X?.

Lemma 6.3. The elements ua; va; 1p
p

P
i u
i
a; and

1p
p

P
i v
i
a belong to X .

Proof. By (5.15) and Proposition 2.2, uaCva 2 X . Then e1.uaCva/ D va 2 X and
ua D .uaCva/�va 2 X . We have just seen in the above proof that 1p

p

P
i gv

i
a 2 X .

Multiplying by ge1, we have 1p
p

P
i v
i
a 2 X . Let Ha be the Hopf subalgebra of H

generated by ua and va. Proposition 2.1(iii) entails that X \ Ha is a Hopf order
ofHa. Then

�

�
1
p
p

X
i

via

�
(4.1)
D

1
p
p

X
i

uia ˝ v
i
a C v

i
a ˝ u

i
a 2 .X \Ha/˝R .X \Ha/:

Consider the character ' of Ha given by '.ua/ D 0 and '.va/ D 1: By Proposi-
tion 2.2, ' 2 .X \Ha/?. Applying '˝R idX\Ha

to the above equality we conclude
that 1p

p

P
i u
i
a 2 X:
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6.2. A special case. If we show that ge0 2 X , then it will follow from Lemmas
6.1, 6.2, and 6.3, that all elements of the basis B of H in (5.1) will be in any Hopf
order X . Unlike for other elements, this can not be shown directly. The strategy will
be to adjoin toK an element � such that �2 D �� 1, prove the statement in this case
and then derive it for K. So, in this subsection we assume that K contains such an
element � . The proof requires some preparations.
Lemma 6.4. The map T W A1 ! gA0; v

i
av
j

b
7! .B ˝R idX /�.gviav

j

b
/ can be

expressed as

T .viav
j

b
/ D

1
p
p

X
k

�jkgukau
i�k
b :

Moreover, T .X \ A1/ � X \ .gA0/:

Proof. SinceB vanishes onA0˚A1˚gA0, only the part of�.gviav
j

b
/ in gA1˝gA0

is relevant for the computation. We have:

T .viav
j

b
/
Th.4:1
D

1

p

X
k;l

�k.kCl/B
�
gvkCla v

�.kCl/

b
viav

j

b

�
gukCia u

l�j

b

D
1

p

X
k;l

�.kCi/.kCl/B
�
gvkClCia v

�.kCl/Cj

b

�
gukCia u

l�j

b

(5.8)
D

1
p
p

X
k

�.kCi/jgukCia u�kb

D
1
p
p

X
k

�kjgukau
i�k
b :

Let now x 2 X \ A1. By Lemma 6.2, we know that ge1 2 X and B 2 X?. Then
gx D ge1x 2 X and �.gx/ 2 X ˝R X . From here,

T .x/ D .B ˝R idX /�.gx/ 2 X:

Proposition 6.5. Let Z be an R-algebra and z; e 2 Z. Assume that ze D ez D z.
Set Qz D 1

�
.z � e/: If Qz 2 Z, then

1
p
p

X
i

zi

is an R-linear combination of powers of Qz.

Proof. Set
.� Qz C e/p � e

� Qz
D

pX
kD1

�
p

k

�
.� Qz/k�1:
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As in the proof of Lemma 3.3, the fractional expression is just symbolic. The left-
hand side equals

Pp�1
iD0 z

i . We obtain the result by dividing this equation by pp,
noticing that �p�1 D �

p
p for some invertible � 2 R, and

�
p
k

�
is divisible by p for

any k D 1; : : : ; p � 1.

We are now ready to tackle the difficult point.

Lemma 6.6. The element ge0 belongs to X .

Proof. View A as a Hopf subalgebra of H and A0 as a quotient Hopf algebra of A
via projecting any element on its component in A0. Then X \ A0 is a Hopf order
of A0 in light of Proposition 2.1. Look now at the Hopf subalgebra of A0 generated
by ua. Lemma 6.3 shows that 1p

p

P
i u
i
a 2 X: Applying Corollary 3.9(ii), we have

1
�
.ua � e0/ 2 X \ A0.
On the other hand, Lemmas 6.1 and 6.4 yield that

T .e1/ D
1
p
p

X
k

gukau
�k
b 2 X:

Put e D 1
p

P
k u

k
au
�k
b

. Observe that e is an idempotent and T .e1/ D
p
p ge 2 X .

Let G be the group generated by �; � subject to �2 D �p D 1, �� D �� .
The assignments e1 7! 0Iua; ub 7! � Ig 7! � define a surjective algebra map
f W H ! KG. It is easy to check that f is a Hopf algebra map and Ker f equals
the ideal generated by e1 and uau�1b � e0. By Proposition 2.1(iv), f .X/ is a
Hopf order of KG. The element � must be in f .X/ because it can be received
from characters of .KG/�. Take x 2 X \ A0 such that f .x/ D � . Then
x � ge0 D h.uau

�1
b
� e0/ for some h 2 H . Multiplying by pp ge we arrive

at pp .xge � e/ D 0. Thus pp e D x.
p
p ge/ 2 X \ A0. Consider the Hopf

subalgebra E of A0 generated by uau�1b . As pp e D 1p
p

P
k u

k
au
�k
b
2 X \ E,

Corollary 3.9(i) implies 1
�
.uau

�1
b
� e0/ 2 X . Hence

1

�
.u�1b � e0/ D u

�1
a

�
1

�
.uau

�1
b � e0/ �

1

�
.ua � e0/

�
2 X:

By Proposition 6.5, 1p
p

P
i u
i
b
2 X: LetHb be the Hopf subalgebra ofH generated

by ub and vb . Arguing as we did for Ha in the proof of Lemma 6.3, we obtain that
1p
p

P
i v
i
b
2 X . Applying Lemma 6.4, we have

T

�
1
p
p

X
i

vib

�
D ge0 2 X

and we are done.
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6.3. The necessary condition. We next derive that all basis elements of H must
be in the Hopf order X . This will be key to establish the necessary condition of our
main result and to prove later that a Hopf order ofH , if exists, must be unique.

Proposition 6.7. All elements of the basis B ofH in (5.1) belong to X .

Proof. From Lemmas 6.1 and 6.3, we know that e0; e1; ua; va 2 X . We next see that
g 2 X . Take� 2 C such that�2 D ��1 and setL D K.�/; S D OL. ThenX˝RS
is a Hopf order ofHL WD H˝KL. Lemma 6.2 combinedwith Lemma 6.6 yields that
g 2 X ˝R S . We can identifyH ˝R L withHL via multiplication. InsideH ˝R L
we have .X CRg/˝R S � X ˝R S CRg˝R S D X ˝R S � .X CRg/˝R S .
This equality indeed holds in H ˝R S � H ˝R L. Since S is faithfully flat as an
R-module, we obtain X D X CRg. Therefore g 2 X .

It remains to prove that ub; vb 2 X . We have that ubg D gua 2 X . Then
ub D .ubg/g 2 X and consequently �.ub/ 2 X ˝R X . If follows from the latter
that vb 2 X arguing forHb as we did forHa in the proof of Lemma 6.3.

As a consequence of Lemma 6.3, we get

1
p
p

X
i

uia C v
i
a 2 X:

LetE be theHopf subalgebra ofH generated by the group-like element h WD uaCva.
Clearly, E ' KCp as Hopf algebras. Put Z D E \ X and denote by ƒ the set of
integrals in the Hopf order Z of E.

Lemma 6.8. We have ƒ D R
�
1p
p

P
i h
i
�
:

Proof. Obviously, R. 1p
p

P
i h
i / � ƒ. For the reverse inclusion, let

R
2 ƒ. There

is � 2 K such that
R
D

�p
p

P
i h
i . We will prove that � 2 R. Using Proposition 6.7,

$ WD .
R
˝
R
/�.g/ 2 X ˝R X . Then .�2 ˝R �2/.$/ 2 R; with �2 being the

element defined in (6.1). We next show that .�2 ˝R �2/.$/ D �2.
Taking into account that �2 vanishes on A0 ˚ A1 ˚ gA0, it suffices to compute

the part of$ in gA1 ˝ gA1. We have:

.�2 ˝R �2/.$/
(6.1)
D

�2

p3

X
i;j;k;l

X
r;s

.rrB/.gv
iCk
a vlb/.ssB/.gv

j�l
a vkb /

(5.8)
D

�2

p2

X
i;j;k;l

X
r;s

�r.iCk/ıl;0�
s.j�l/ık;0

D �2:

So �2 2 R and thus � 2 R.
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We can now establish the necessary condition in our main result from the previous
lemma and Corollary 3.9(i):
Proposition 6.9. Suppose that H admits a Hopf order over R. Then there is an
ideal I of R such that I 2.p�1/ D .p/.

6.4. The Hopf order. Assume that there is an ideal I ofR such that I 2.p�1/ D .p/.
In this part we will construct from I a Hopf order ofH which will turn out to be the
only Hopf order. Consider the fractional ideal J WD I�1 D f˛ 2 K W ˛I � Rg. By
the unique factorization property inR, from I 2.p�1/ D .p/ D .��1/p�1 D .pp/2,
it follows that I 2 D .��1/ and Ip�1 D .pp/. ThenJ 2 D . 1

��1
/ andJ p�1 D . 1p

p
/.

We need the following version of Proposition 6.5:
Proposition 6.10. Let Z be an R-algebra and z; e 2 Z. Assume that ze D ez D z.
If J.z � e/ � Z, then

1
p
p

X
i

zi 2 Z:

Proof. Put Qz D z� e, proceed like in the other proof and use that 1p
p
Qzp�1 2 Z.

Theorem 6.11. The R-subalgebra Y of H generated by e0; e1; g; J.ua � e0/;
J.ub � e0/; J.va � e1/; and J.vb � e1/ is a Hopf order ofH .

Proof. We will first prove that Y is finitely generated as an R-module. Observe that
J is finitely generated. Write

xa D ua � e0; xb D ub � e0; ya D va � e1; yb D vb � e1:

We have that xa; xb; ya; yb 2 Y because IJ D R. Since e0; e1 2 Y; we also
have ua; ub; va; vb 2 Y . We next check that .J xa/n �

Pp�1
iD1 J

ixia for n � p.
The element xa satisfy

Pp
iD1

�
p
i

�
xia D 0. As J pJ p�2 D J 2.p�1/ D . 1

p
/, we get

R D .J pp/J p�2. Then J pp D Ip�2 � R. Hence

.J xa/
p
D J pxpa �

p�1X
iD1

J p
�
p

i

�
xia �

p�1X
iD1

Rxia �

p�1X
iD1

J ixia:

The same holds for xb; ya; and yb . Consider now the equality:

yayb D vavb � va � vb C e1

D �vbva � va � vb C e1

D �ybya C .� � 1/.ya C yb C e1/:

Then, for ˛a; ˛b 2 J the coefficient of e1 in .˛aya/.˛byb/ belongs to R because
J 2 D . 1

��1
/. Using the previous equality one can prove that any product of the form



Orders of Nikshych’s Hopf algebra 949

.ˇay
k
a /.ˇby

l
b
/ with ˇa 2 J k; ˇb 2 J l can be expressed as an R-linear combination

of elements in .J iyi
b
/.J jy

j
a / with 0 � i � l , 0 � j � k. Notice that the coefficient

of e1 always belongs to R. All these facts, together with the relations among
xa; xb; ya; yb; and g inside H , show that Y is finitely generated as an R-module.
More precisely, using that J is finitely generated, the following elements generate Y
over R:

e0; e1; ge0; ge1; J
iCj .xibx

j
a /; J

iCj .gxibx
j
a /; J

iCj .yiby
j
a /; J

iCj .gyiby
j
a /;

i; j D 0; : : : ; p � 1:

Removing the powers of J from these elements, we obtain a K-basis of H (we
understand that i; j are not simultaneously zero). Hence Y is an order ofH .

We next prove that Y is closed under comultiplication and antipode. It is easy to
check that the comultiplications of the e’s, x’s and y’s lie in Y ˝R Y , the counits of
them lie in R, and S.Y / � Y . For instance, for ˛ 2 J we have:

�.˛xa/ D ˛xa ˝ ua C ˛ya ˝ va C e0 ˝ ˛xa C e1 ˝ ˛ya 2 Y ˝R Y;

�.˛xb/ D ˛xb ˝ ub C e0 ˝ ˛xb C ˛yb ˝ v
p�1

b

C

p�1X
kD1

e1 ˝

�
p � 1

k

�
.˛yb/y

k�1
b 2 Y ˝R Y:

It only remains to show that �.g/ 2 Y ˝R Y . For, we need to rewrite �.g/ as an
R-linear combination of elements in Y ˝R Y . Recall from Equation 4.2 that �.g/
consists of four summands. We treat each of them separately:

Part in A0 ˝ A0. Consider the sum

1

p2

X
i;j;k;l

�jk�iluiau
j

b
˝ ukau

l
b D

�
1

p

X
i;l

��iluia ˝ u
l
b

��
1

p

X
j;k

�jku
j

b
˝ uka

�
:

We argue on the first factor, the second one being similar. Replace ua and ub by
xaC e0 and xb C e0 respectively and expand. The coefficient of xra˝ xsb equals

��1

p

if r D s D p � 1. Then

��1

p
xp�1a ˝ x

p�1

b
D
��1
p
p
xp�1a ˝

1
p
p
x
p�1

b

belongs to Y ˝R Y because 1p
p
2 J p�1. For either r or s different from p � 1

we use the following argument. The coefficient of xra ˝ xsb will be the same as the
coefficient of yra ˝ ysb in the sum

1

p

X
i;l

��ilvia ˝ v
l
b:
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This in turn will be the same as the coefficient of yraysb in the sum

1

p

X
i;l

��ilviav
l
b D

1

p

X
i;l

vlbv
i
a

D
1

p

�X
l

vlb

��X
i

via

�
D
1

p

�
.yb C e1/

p � e1

yb

��
.ya C e1/

p � e1

ya

�
: (6.3)

We are using here the convention in the proof of Lemma 3.3 for these fractional
expressions. The coefficient of yraysb in this sum contains the binomial coefficient

�
p
k

�
for k D 1; : : : ; p � 1. Therefore the first factor belongs to Y ˝R Y .

Part in A0 ˝ A1. We have the summand

1

p

X
k;l

��.kCl/kukau
l
b ˝ v

kCl
a vkCl

b
D

�
1
p
p

X
k

uka ˝ v
k
bv
k
a

��
1
p
p

X
l

ulb ˝ v
l
av
l
b

�
:

We show that each of the sums belongs to Y ˝R Y . We only do it for the first one.
For the second one proceed similarly. The coefficient of yra ˝ ysby

t
a in this sum will

be the same as the coefficient of xra ˝ xsbx
t
a in the sum

1
p
p

X
k

uka ˝ u
k
bu
k
a D

1
p
p

X
k

.ua ˝ ubua/
k : (6.4)

Observe that ua ˝ ubua 2 Y ˝R Y and

J.ua ˝ ubua � e0 ˝ e0/ D Jxa ˝ xbxa C Jxa ˝ xb C Jxa ˝ xa

C Jxa ˝ e0 C e0 ˝ .J xb/xa C e0 ˝ Jxb C e0 ˝ Jxa 2 Y ˝R Y:

This together with Proposition 6.10 yields that the sum belongs to Y ˝R Y .

Part in A1 ˝ A0. We argue as before with the summand

1

p

X
k;l

�.kCl/kvkCla v
�.kCl/

b
˝ ukau

l
b

D

�
1
p
p

X
k

v
.p�1/k

b
vka ˝ u

k
a

��
1
p
p

X
l

vlav
.p�1/l

b
˝ ulb

�
;

but using the following variation: vp�1
b
D Nyb C e1 with Nyb D

Pp�1
jD1

�
p�1
j

�
y
j

b
and

J � J j for j D 1; : : : ; p � 1.
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Part in A1 ˝ A1. Consider the summand
1

p

X
k;l

vkav
l
b ˝ v

�l
a v

k
b D

1

p

X
k;l

vkav
l
b ˝ v

.p�1/l
a vkb :

Write it inH ˝H op as�
1
p
p

X
k

vka ˝ v
k
b

��
1
p
p

X
l

vlb ˝ v
.p�1/l
a

�
and proceed as before. This finishes the proof.

Proposition 6.12. The Hopf order Y is unique.

Proof. Let � 2 C be such that �2 D � � 1 and set L D K.�/. We will first prove
that HL admits a unique Hopf order over S D OL and derive the uniqueness for H
arguing as we did in Proposition 6.7. Write I D .�/. Then I 2.p�1/ D .p/. Let
J � L be the inverse of I , which is generated by 1

�
. We have seen in the precedent

proof that the order Y (over S ) is generated as an algebra by e0; e1; g and the elements

Qxa WD
1

�
.ua�e0/; Qxb WD

1

�
.ub�e0/; Qya WD

1

�
.va�e1/; Qyb WD

1

�
.vb�e1/:

Let X be any Hopf order of HL. By Lemma 6.3 and Corollary 3.9(ii), X must
contain the element 1

�
.uaCva�1/. By Proposition 6.7,X contains all basis elements

of HL. Using multiplication by e0 and e1, conjugation by g and translation by the
character � W Hb ! K;ub 7! 0; vb 7! 1, we see that X must contain Qxa; Qya; Qxb;
and Qyb . Then Y � X and thus Y is a minimal Hopf order.

We know that HL is self-dual. Then H�L has also a minimal order, which we
denote by Z. This implies that Z? is a maximal Hopf order of HL. Thus any
Hopf order of HL lies between Y and Z?. We will prove that Y D Z?. The
R-submodule ƒY of left integrals in Y is spanned by 1

p
.1 C g/

P
i;j u

i
au
j

b
. Then

".ƒY / D .2p/. Using self-duality of HL, we also have ".ƒZ/ D .2p/. Since
.dimH/ D .4p2/, by Proposition 2.3, ".ƒZ?/ D .2p/. Proposition 2.4 yields
Y D Z?.

Finally, let X;X 0 be two Hopf orders of H . The Hopf orders X ˝R S and
X 0˝R S ofHL must be equal. ThenX ˝R S D .X CX 0/˝R S D X 0˝R S: As S
is faithfully flat as anR-module, we obtainX D XCX 0 D X 0 and we are done.

Remark 6.13. The precedent result shows that the behavior of orders for semisimple
Hopf algebras can be quite different to that of group algebras. When we take larger
number fields, the number of Hopf orders of the group algebra onCp tends to infinity
whereas the number of orders ofH is constantly 1.
Remark 6.14. In [8, Theorem 1.8] the second author proved that every semisimple
Hopf algebra over a number field only admits finitely many Hopf orders over its ring
of integers.
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6.5. Main result. We are finally in a position to prove our main result:
Theorem 6.15. Let p be an odd prime number and K a number field containing a
primitive pth root of unity. Nikshych’s Hopf algebra admits a Hopf order over OK ,
whichmust be unique, if and only if there is an ideal I ofOK such that I 2.p�1/ D .p/.
In particular, K can not be neither a cyclotomic field nor an abelian extension of Q
if a Hopf orders exist.

Proof. The necessary condition was established in Proposition 6.9. The sufficient
condition and uniqueness were proved in Theorem 6.11 and Proposition 6.12.

We prove thatK can not be a cyclotomic field ifH admits a Hopf order over OK .
Let I � OK be the given ideal such that I 2.p�1/ D .p/. Suppose that K is a
cyclotomic field, say K D Q.�/ with � a primitive mth root of unity. Since .p/
ramifies in OK , by [16, Proposition 2.3], p is a prime factor of m. Call n the
exponent with which p occurs. By [10, Theorem 4.40], there is a prime ideal P
of OK appearing in the factorization of .p/ with exponent e WD .p � 1/pn�1. The
exponent of P in the factorization of I 2.p�1/ will be 2l.p � 1/ for some l 2 N.
Then p should be divisible by 2, a contradiction.

That K can not be an abelian extension of Q in this case follows from the
Kronecker–Weber theorem.

7. On orders of forms

Let L=K be a Galois extension of fields with Galois group � . We have seen before
that it could happen that Nikshych’s Hopf algebraH overK does not admit an order
over any cyclotomic ring of integers, but could aL=K-form ofH do? Namely, could
there be another Hopf algebra H 0 over K such that H 0 ˝K L ' H ˝K L and H 0
admits an order over some cyclotomic ring of integers? We will show in this last
section that the answer to this question is affirmative.

We first recall from [2, Proposition 1.1] and [13, Proposition 1] some basics about
Galois descent in the Hopf algebra setting. Put HL D H ˝K L. Given  2 � , a
Hopf  -automorphism of HL is a K-linear automorphism f W HL ! HL which
satisfies:
(1) f is  -semilinear, i.e. f .˛h/ D .˛/f .h/ for all ˛ 2 L; h 2 HL.
(2) f is compatible with the multiplication, comultiplication, and antipode.
(3) f .1HL

/ D 1HL
.

(4) "f D ".
According to Galois descent, L=K-forms of H correspond to group homomor-

phisms ˆ W � ! AutK.HL/;  7! ˆ such that ˆ is a Hopf  -automorphism for
all  2 � . For such aˆ the set of invariants .HL/� is a Hopf algebra overK and the
natural map .HL/� ˝K L! HL is an isomorphism of Hopf algebras.
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Our goal is to prove the following:
Theorem 7.1. Let �n 2 C be a primitive nth root of unity, with n divisible by p.
Consider Nikshych’s Hopf algebra H as defined over Q.�n/. Let w 2 ZŒ�n� and
t 2 C be such thatw is invertible and t2 D w.�p�1/. Assume that there is d 2 ZŒ�n�
such that 1

2
.d C t / 2 OQ.�n;t/. Then,H admits a Q.�n; t /=Q.�n/-formH 0 which in

turn admits an order over ZŒ�n�.

Proof. Set L D Q.�n; t /. We will construct H 0 and show that the unique order Y
of HL descents to an order of H 0 over ZŒ�n�. The Galois group � of L=Q.�n/
is isomorphic to C2. We denote the generator by  . Bear in mind the Hopf
automorphism � ofH of order two given by

�.u� / D u
�1
� ; �.v� / D v

�1
� for � D a; b and �.g/ D g:

We can define a Hopf  -automorphism � 0 ofHL by � 0.h˝˛/ D �.h/˝.˛/ for all
h 2 H;˛ 2 L. Let ˆ W � ! AutK.HL/ be the group morphism mapping  to � 0.
Consider the formH 0 ofH given byH 0 D .HL/� .

We claim that the order Y ofHL descents to an order Y 0 WD Y � ofH 0 over ZŒ�n�.
It is enough to check that the natural map � W Y � ˝ZŒ�n�OL ! Y is an isomorphism
(this will ensure us that Y � is really a Hopf order). Since � is injective, it suffices to
check the surjectivity. We have seen in Proposition 6.12 that Y is generated over OL
by e0; e1; g; and

Qxa WD
1

t
.ua � e0/; Qxb WD

1

t
.ub � e0/; Qya WD

1

t
.va � e1/; Qyb WD

1

t
.vb � e1/:

Clearly, e0; e1; g 2 Im � as they are invariants. We will show that Im � contains the
rest of the generators. Since Im � is a subring of Y , this will give Im � D Y . Let
us show that Qxa 2 Im �. The proof for the other generators is similar. The element
q WD 1

t2
.2e0 � ua � u

�1
a / D �Qx

2
au
�1
a belongs to Y � . Since .t/ D �t , a direct

calculation reveals that � 0. Qxa/ D Qxa C tq. Set z D Qxa C 1
2
.d C t /q. One can

easily check that z 2 Y � , and therefore z 2 Im �. Finally, Qxa D z � 1
2
.d C t /q, and

1
2
.d C t /q 2 Im �, so Qxa 2 Im � as well, as desired.

With the previous theorem in hand, we will describe an example in which an
order of a form does exist.
Example 7.2. Consider the case p D 7 and n D 28. Let � WD �28 be a primitive
28th root of unity. A computation done by Dror Speiser with the computer algebra
system MAGMA showed that if w is the inverse of the element

21747826028152�11 � 25061812676688�10 C 5371269408312�9

� 2754700868376�8 C 21747826028152�7 � 22307111808312�6

C 4963799311635�4 C 12069132874072�3 � 11153555904156�2

� 12069132874072� C 17343312496677

http://magma.maths.usyd.edu.au/magma/
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and d D 1, then the condition of the theorem holds. We take t such that
t2 D w.1 � �4/. We thus have an order over ZŒ�� of a form ofH7.

ThenH7, as defined over the complex numbers, admits an order over a cyclotomic
ring of integers.

The following questions remain open:
Questions. Does there exist a value of p for which Nikshych’s Hopf algebraHp , as
defined over the complex numbers, does not admit an order over any cyclotomic ring
of integers? More generally, does there exist a complex semisimple Hopf algebra
which admits an order over a number ring but not over any cyclotomic ring of
integers?
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